

UNIVERSITÀ degli STUDI di NAPOLI «Federico II»

DOTTORATO di RICERCA in FISICA – PhD program in Physics

Physics PhD courses catalogue

- 38th cycle, and till active ones -

(last updated on March 8th, 2023)

n.b. SUPRA courses are those ones offered (on-line) in the frame of the *Southern Universities Physics Research Agreement*, involving the University of Naples "Federico II", University of Campania "L. Vanvitelli" - Caserta, University of Bari, University of Salento - Lecce

1. Theoretical Physics of Fundamental Interactions

1.1. Selected topics in Theoretical Physics (G. Mangano, F. Lizzi)

1.2. Fundamental interactions: QCD and BSM (IV - SUPRA 2023)

Perturbative QCD(F. Tramontano - Unina)Teoria di Regge_(C. Corianò - UniSalento)Weak decays and effective Hamiltonian in the Standard Model and Beyond(F. De Fazio - UniBa)

1.3. Phenomenology of particle interactions

Introduction to Neutrino physics(G. Ricciardi)Heavy Flavour Physics(P. Santorelli)Effective Theories and Flavour Physics(G. D'Ambrosio)

1.4. Advanced theoretical/mathematical physics

Supersymmetry, String and Branes(F. Pezzella – R. Marotta)Topics on Non-Perturbative Quantum Field Theory(L. Rosa)Geometric and Topological methods in Theoretical Physics(P. Vitale)

2. Astrophysics, Astroparticle and Cosmology

2.1. Multi-messenger and particle astrophysics of compact objects (III - SUPRA 2023)

Compact objects(F. De Paolis - UniSalento)Neutrino Oscillations(D. Montanino - UniSalento)Supernova Neutrinos(A. Mirizzi - UniBa)Gravitation, Relativity and Black Holes(M. De Laurentis)Physics and evolution of supermassive Black Holes(M. Paolillo)Gravitational Waves and Gamma-Ray Bursts(T. Di Girolamo)

2.2. Experimental High-Energy Astroparticle Physics (VII SUPRA 2023)

Experimental Techniques in Astroparticle Physics(G. Marsella - UniPa)HE and VHE Observations from Extragalatic Sources(L. Perrone - UniSalento)HE Transients and the Multimessenger Context(E. Bissaldi - UniBa)Astrophysics with ultra-high-energy neutrinos and Neutrino Telescopes(F. Loparco - UniBa)Experimental techniques in Space Science(B. Panico Unina)Dark Matter in cosmology and astrophysics(F. locco Unina)

2.3. Extended theories of Gravity and the problem of Dark Energy and Dark Matter

(S. Capozziello)

3. Nuclear and Particle Physics

3.1. Particle Detectors, Trigger and DAQ (I - SUPRA 2023)

Particle detectors(M. Primavera - UniSalento)Photo-detection(E. Bissaldi - UniBa)Trigger and DAQ for Particle Physics(M. Della Pietra)

Detection methods for nuclear astrophysics and applications (R. Buompane – UniCampania)

3.2 Nuclear Physics in low-background conditions (A. Best)

3.2. Signals formation and treatment in particle detectors_ (II - SUPRA 2023)

Signal formation (M. Abbrescia - UniBa)
Signals treatment (A. Aloisio)

3.3. <u>Unified theory of nuclear reactions</u> (G. La Rana)

4. Physics of Matter

4.1. Advanced topics in experimental physics of matter

Advanced Spectroscopies in strongly correlated systems(G. De Luca)Electrodynamic properties of novel materials and devices(A. Andreone)Organic conductors(A. Cassinese)Ultrafast processes and femtosecond laser pulses(A. Rubano)Physics and applications of Superconducting and Spintronic Devices(G.P. Pepe)

4.2. A general overview of the Physics of Surfaces and Interfaces (R. Di Capua)

4.3. Statistical Physics for Complex Systems (VIII - SUPRA 2023)

Active Matter and Complex Fluids (G. Gonnella – A. Lamura - UniBa)
Statistical Mechanics of Complex Systems (A. De Candia)
Stochastic Processes and Analysis of Correlations (E. Lippiello - UniCampania)

5. Artificial Intelligence and Computing

5.1. Artificial Intelligence and Machine Learning (V-SUPRA 2023)

Machine Learning: basics and applications_(G. De Nunzio, G. Palma – UniBa)Data Modelling(N. Amoroso - UniBa)Artificial Intelligence for Social Good(L. Bellantuono – Uniba)

5.2. Quantum Computing and Artificial Intelligence (G. Acampora)

5.3. Evolutionary Computation and Applications (A. Vitiello)

6. Biomedical Physics

6.1. Biophysics for Health and Environment (IX- SUPRA 2023)

Biophysical mechanisms and therapeutic implications of human exposure to ionising radiation (L. Manti)

Bio-photonics for clinics and environment (M. Lepore - UniCampania)

6.2. Advanced computational tools in Medical Physics (G. Mettivier)

6.3. Biosensors (B. Della Ventura and R. Velotta)

7. Other Formation

7.1. Statistical Methods for Data Analysis
7.2. Computational Geophysics
7.3. Waves and Interactions in Nonlinear Media
7.4. Scientific writing
7.5. How to boost your PhD
(A. O.M. Iorio)
(R. Scala)
(R. Fedele)
(P. Russo)

Advanced computational tools in Medical Physics

Lecturer	Prof. Giovanni Mettivier (giovanni.mettivier@unina
Credits (planned)	2
Planned hours	12
Planned schedule	
Prerequisites:	Medical Physics background, Programming skills (C, python, Matlab
Description:	The lectures introduce to some basic aspects and concepts of the us of Monte Carlo simulations procedures and Artificial Imaging tools for their application in the Medical Physics field. The use of simulation code, like Geant4, allows to students to implement and stude dosimetric and radiation-matter interaction problems related medical apparatus or medical procedure (Virtual Clinical Trials). The study of AI algorithms (Machine Learning and Deep Learning) and autonomy models are the basis for understand the basic of automate learning and reasoning. In this course, the students will have opportunity to design and develop such systems as part practical lessons.

Advanced Spectroscopies in strongly correlated systems

Lecturer	Prof. Gabriella Maria De Luca (gabriellamaria.deluca@unina.it)	
Credits (planned):	4/5	
Planned hours:	24	
	12 lectures, 2 hours each	
Planned schedule:	October / November 2022	
Prerequisites:	None. One or two lessons (depending on the students background) will be dedicated to the few needed concepts of solid state physics.	
Description	The aim of this course is to give an outline of the characteristic of the most important spectroscopy's techniques and to provide to the PhD student the necessary basis to plan or to develop its own spectroscopy experiment using synchrotron light and/or scanning probe microscopy.	
	Advanced spectroscopies are the most powerful experimental tools to investigate the electronic and magnetic properties of complex materials. These techniques are based on the study of the interaction of the matter with radiation, being typically X-rays or electrons.	
	Modern X-rays spectroscopy's takes advantages from the high brilliance third generation synchrotron sources. These techniques can achieve high momentum and energy resolution, but they are typically unable to get spatially resolved information. Scanning tunneling microscopy's/Spectroscopy's are on the other hand based on the extremely high spatial resolution achieved by probing the tunneling electronic current coming from a tip in close proximity with a sample. These combined techniques can probably offer the largest possible number of information about the electronic properties of the solids. Examples of application of these techniques to different undisclosed issues in condensed matter physics will be given during the course, like the microscopic mechanism of superconductivity in the High Critical Temperature	
	Superconductors and Novel oxides Interfaces, Proximity effect in	
	Ferromagnetic/Superconducting heterostructures and	
	Multiferroicity (coexistence of more of two ferroic orders).	
	The detailed program will include: 1) Introduction to the Physics of complex, strongly correlated materials	
	 2) Electrons and X-rays as probes of the electronic density of states 3) Introduction to the synchrotron light a. X-ray Absorption and X-ray Photoemission 	
	Spectroscopies b. Examples: HTS and other metal transition oxides c. Resonant Inelastic X-ray Scattering d. Angle resolved Photoemission Spectroscopy	

Selected Topics in Theoretical Physics

Lecturer	Prof. Fedele Lizzi	(fedele.lizzi@unina.it)
Credits (planned)	6-8 (to be agreed with the students)	
Planned hours	24-36	
Planned schedule		
Prerequisites	usual courses of a physics master degree	
Description	Part I Generalities on the theory of groups Representation of a group The euclidean group in 2 and 3 dimensions SO(3) and SU(2) and their representations Lie groups and Lie algebras The Lorentz group and its representations The Poincare' group Classification of semi-simple Lie algebras Part II Discrete dynamical systems Stability, periodicity, bifurcations, chaos Continuous non linear systems, Attractors Perturbations of Hamiltonian systems KAM theory Continuous systems with infinite dimensions: KI Gordon, Kink. Non linear equations: Burger, Kdv. Topological solitons	ein-Gordon, Sine

A general overview of the Physics of Surfaces and Interfaces

Lecturer	Prof Pohorto Di Convo	roberto.dicapua@unina.it
Credits	Prof. Roberto Di Capua	roberto.dicapua@umna.n
(planned)	6	
Planned hours	36 hours (18 lectures, 2 hours each)	
Planned schedule	the detailed schedule can be arrange	ed with students
Prerequisites	Basic knowledge of classical general physics and quantum mechanics. One or two lectures will be devoted to the few needed basic concepts of solid-state physics.	
Description	The course aims to provide the foundation of physics of surfaces and interfaces. It is conceived to be of potential interest not only for Ph.D. students working in the physics of matter, but also for those involved in other fields, due to the development of fundamental issues and methodologies of wide application.	
	The lectures are intended as an concepts provided from the master mechanics, atomic-scale and many-binteraction between matter and redeveloped and applied to the study subject which is gaining more and many other fields.	r degree in physics on quantum bodies physics, structure of matter, radiation: such concepts will be of solid surfaces and interfaces, a
	physics, for probing and measurin interfaces: atomic force microscopy tunnelling microscopy and spe	the few basic concepts of solid-state ing of some arguments. Then, the nized along the following three lines. gical and theoretical aspects of the es, charge distribution at surfaces train and defects, thermodynamic collective excitations and related and of the excitations and related and properties, applications and engineering at atomic-scale, a results in this field. Internal techniques, and underlying and the properties of surfaces and and related techniques, scanning

Artificial Intelligence and Machine Learning

First module	Machine Learning: basics and applications	
Lecturers	Giorgio De Nunzio Giuseppe Palma	giorgio.denunzio@unisalento.it
Credits (planned)	tbd	
Planned hours	10	
Planned schedule	5 lessons / 2 hrs lesson	
Prerequisites		
Description	- ML taxonomy: supervised, reinforcement, unsupervised - Regression: linear regression, GLM	
	- Classification: scores (confusion matrix a calibration; cross entropy, Brier score), c tradeoff: underfitting, overfitting.	· · · · · · · · · · · · · · · · · · ·
	- Perceptrons and Shallow Feed-Forward 1 - Regression and Classification in Matlab-	
	- Applications of regression and classificate Medicine with synthetic and public access	•
	- Applications of regression and classificate Medicine with synthetic and public access	· ·

Second module	Approximate reasoning and evolutionary computation	
Lecturers	Giovanni Acampora Ferdinando Di Martino Autilia Vitiello	(giovanni.acampora@unina.it) (fdimarti@unina.it) (autilia.vitiello@unina.it)
Credits (planned)	tbd	
Planned hours	10 (5 lessons, 2 hrs each)	
Planned schedule		
Prerequisites		
Description	 Introduction (1 hour) Prof. Giovanni Acampora Approximate reasoning (5 hours) Prof. Ferdinando Di Martino Lecture Fuzzy sets and fuzzy relations Fuzzy operators: t-norm, s-norm, residuum 	
	Fuzzy membership functions and fuz	

The extension principle Fuzzy partitions and Linguistic variables

Lecture 2:

Fuzzy inference systems: fuzzy rule set inference systems

Mamdani fuzzy inference model

Tagaki-Sugeno- Fuzzy inference model Type2 fuzzy sets: intervsl type2 fuzzy sets

Interval type2 fuzzy systems

• Evolutionary computation (4 hours) Prof.ssa Autilia Vitiello

Lecture 1:

Introduction to the Evolutionary Computation and its motivations The main scheme of an Evolutionary algorithm

Lecture 2:

Different evolutionary algorithms: Genetic Algorithms, Differential Evolution and Particle Swarm Optimization. Design issues for evolutionary algorithms: parameter tuning and performance measures.

Third module	Causality analysis of time series data
Lecturer	Sebastiano Stramaglia
	(sebastiano.stramaglia@uniba.it)
Credits (planned)	tbd
Planned hours	10 (5 lessons, 2 hrs each)
Planned schedule	
Prerequisites	
Description	Lecture 1: Complex Networks. Small world networks: Watts-Strogatz model. Scale free networks: Albert-Barabasi model. Communities in complex networks. Applications. Lecture 2: The problem of inference of Complex Networks from multivariate time series data. Time Series. Stationarity. Linear correlations and the power spectrum. Cross-correlation and coherence between time series. Prediction. Applications. Lecture 3: Introduction to Information Theory. Shannon's Entropy. Mutual Information. Maximum Entropy methods. Transfer Entropy. Applications. Lecture 4: Vector autoregressive models. Granger causality and its relation with transfer entropy. Applications. Lecture 5: Decomposition of Granger causality in frequency and time. Higher order dynamical networks. Synergy and redundancy. Applications.

Fourth module	Data modelling	
Lecturer	Nicola Amoroso	
	(sebastiano.stramaglia@uniba.it)	
Credits (planned)	tbd	
Planned hours	10 hrs (5 lectures, 2 hrs each)	
Planned schedule		
Prerequisites		

Description	Introduction: graph theory. Different graph models. Nodal and edge characterization. Local and global properties.
	Community detection. Learning: Basic definitions, bias, variance and cross-validation. Supervised Models. Deep Learning. Unsupervised models: Clustering

Biophysics for Health and Environment

First module	Biophysical mechanisms and therapeutic implications of human exposure to ionising radiation	
Lecturer	prof. Lorenzo Manti lorenzo.manti@unina.it	
Credits (planned)	4	
Planned hours	20	
Planned schedule	10 lectures of 2 hr each-preferably in the Fall (e.g. October/November) but can be modified according to students' needs/requests	
Prerequisites	Fundamentals of radiation-matter interaction	
Description	Fundamentals of radiation-matter interaction The aim of the course is to provide an overview of the unique biological action exerted by ionizing radiation (IR). The ensuing effects at cellular and tissue level are governed by the spatiotemporal mode with which energy deposition occurs at the nanometer level (i.e., at the scale of the DNA) and are influenced by a cascade of complex biomolecular responses. The course will therefore illustrate the main biophysical principles on which modern radiotherapy (RT) relies. New approaches will be also discussed such as the use of accelerated particle beams (hadrontherapy) and the exploitation of nuclear fusion reactions where physics can give an essential contribution to IR-based cancer therapy	

Second module	Biophotonics for clinics and environment	
Lecturer	Maria Lepore (maria.lepore@unicampania.it)	
Credits (planned)	4	
Planned hours	24	
Planned schedule		
Prerequisites	Basic concepts of optical techniques	
Description	The course will deal with the application of optical techniques to the development of new diagnostic strategies and environment monitoring tools. Vibrational and fluorescence spectroscopies will be used for investigating biofluids, human tissues, radioexposed cells and enzymes in order to monitor biological processes and to develop sensor devices.	

Third module	Numerical Methods for Data Analysis in Optical Spectroscopy	
Lecturers	Ines Delfino Carlo Camerlingo Maria Lepore	(delfino@unitus.it) (carlo.camerlingo@spin.cnr.it) (maria.lepore@unicampania.it)
Credits (planned)	3	
Planned hours	18	
Planned schedule		
Prerequisites	Basic notions of a programming language	
Description	The course aims to introduce numerical methods particularly useful for the analysis of spectral data with particular attention to background subtraction, noise reduction and quantitative applications (chemometrics). Univariate and multivariate analysis (PCA, Principal Component Analysis), wavelet algorithms will be discussed and applied in the analysis of practical cases of students' interest.	

Biosensors	
Lecturers	Dr. Bartolomeo Della Ventura(bartolomeo.dellaventura@unina.it)Prof. Raffaele Velotta(raffaele.velotta@unina.it)
Credits (planned)	2
Planned hours	12
Planned schedule	tbd
Prerequisites	Physics background
Description	The course aims at providing the student with the most widespread techniques currently used in realizing biosensors. Lectures will include the discussion of the physical mechanisms underlying the transduction processes and laboratory demonstrations of some devices. The following biosensors will be described. Piezoelectric biosensors: quartz-crystal microbalances. Electrochemical biosensors: volt-amperometric and impedance spectroscopy techniques. Fundamentals of plasmonics: surface plasmon resonance and localized-surface plasmon resonance. Plasmonic-based biosensors: colorimetric and fluorescence-based biosensors.

Black Holes		
Lecturers	Mariafelicia De Laurentis Tristano Di Girolamo Maurizio Paolillo	(mariafelicia.delaurentis@na.infn.it) (tristano.digirolamo@unina.it) (maurizio.paolillo@unina.it)
Credits (planned)	4	
Planned hours	24 (12 lectures, 2 hours each)	
Planned schedule	t bd	
Prerequisit es	3	

Description

This class is intended to offer to the students a boad view of Black Holess, from the theoretical aspects of gravitational physics, through the observational evidences of their properties, all the way to their astrophysical and cosmological manifestations.

Part I: Gravitation, Relativity and Black Holes (*Mariafelicia De Laurentis*) Rotating black holes: Kerr black holes, Kerr black hole in Boyerè Lindquist coordinates, Uniqueness of the Kerr solution, Global Properties of the Kerr metric, On the conformal structure of the Kerr solution.

The four laws of black hole evolution, Surface gravity and angular velocity of the horizon, First law of black hole dynamics, Rotational Energy of Astrophysical Black Holes, Time-Evolution of black holes Quasi-stationary evolution of accreting black holes, Merging of black holes, The first "image" of a Black Hole with the Event Horizon Telescope

Part II: Gravitational Waves and Gamma Ray Bursts (Tristano di Girolamo)

Gravitational waves (GWs). Black holes as sources of GWs. Detection of GWs. Observations of GWs from black holes. Gamma Ray Bursts (GRBs): observations and theoretical interpretation.

GRB progenitors. Black holes as centrale engines and final products of GRBs.

Part III: Physics and evolution of supermassive Black Holes in the Universe (Maurizio Paolillo)

The Discovery of Active Galactic Nuclei; Taxonomy of AGNs; clues to the interpretation: variability, luminosity and efficiency; steps toward unification: Eddington luminosity, Eddington mass and accretion rate; accretion efficiency. The Unified Model; AGN physical scales; broadband emission in AGNs; accretion disk spectrum; X-ray corona and other components.

Observational evidence of the Unified Model: Quasar host galaxies; dynamical mass measurements; circumnuclear disks, dusty nuclear disks; reverberation mapping mass measurements; evidence of hidden BLR in Sy2; relativistic distortion in Fe lines; the Milky Way nuclear BH.

AGN evolution from multi-wavelength studies of AGN populations optical, Xray and infrared; luminosity function and number counts; AGN activity and number density evolution; resolving the Cosmic X-ray Background; Soltan argument: how to derive the current Black Hole mass density of the Universe; The link between Supermassive Black Holes and galaxy evolution; Evidences of AGN feedback in galaxies.

Di Girolamo Multi-messenger and particle astrophysics of compact objects

Module 1	Compact objects	
Lecturer	Francesco De Paolis (francesco.depaolis@unisalento.it)	
Planned hour	6	
Planned schedule		
Prerequisites	Basic Astrophysics	
Description	 Last stages of stellar evolution and formation of the compact objects 	
	Phenomenological properties of neutron stars and pulsars Salasted recent topics on the physics of the compact chicats.	
	Selected recent topics on the physics of the compact objects	
Recommended texts	 Slides of the lecturer and texts suggested during the lectures 	
Assessment methods	Short essay on one of the topics developed during the lectures	

Module 2	Neutrino Oscillations
Lecturer	Daniele Montanino (daniele.montanino@unisalento.it)
Planned hour	6-8h
Planned schedule	
Prerequisites	Particle physics
Description	 Introduction to the neutrino masses, mixing and oscillations in vacuum and matter Phenomenology of neutrino oscillations from terrestrial
	experiments and astrophysical sources, in particular solar neutrinos
Recommended texts	• Giunti, Kim, "Fundamentals of neutrino Physics and Astrophysics" (Oxford University Press, 2007) • Slides of the lecturer
Assessment methods	Short essay on one of the topics developed during the lectures

Module 3	Supernova neutrinos
Lecturer	Alessandro Mirizzi (alessandro.mirizzi@uniba.it)
Planned hour	6
Planned schedule	
Prerequisites	Particle physics
Description	 Supernova (SN) explosion mechanism SN 1987A neutrino observation Future SN neutrino observations Neutrino oscillations in dense SN medium
Recommended texts	 G. Raffelt, "Stars as Laboratories for Fundamental Physics" (University of Chicago Press, 1996) Slides of the lectures
Assessment methods	Short essay on one of the topics developed during the lectures

Module 4	Gravitation, Relativity and Black Holes
Lecturer	Mariafelicia De Laurentis (mariafelicia.delaurentis@unina.it)
Planned hour	6-8
Planned schedule	
Prerequisites	analytical mechanics, general relativity
Description	Rotating black holes: Kerr Spacetime and its global properties. Kerr black hole in Boyer-Lindquist coordinates. Zero-mass limit. Kerr-Schild form of the Kerr solution. Ergosphere and Horizon (Infinite redshift surface, Surface gravity, Surface
	geometry of horizon and ergo surface) Particle and Light Motion in Equatorial Plane. Matter accretion and black hole parameters change. Evolution in the black hole parameter space. Geodesics in Kerr Spacetime: General Case. Light Propagation. Black hole shadow. Generic properties of the rotating black hole shadows (Asymmetry, Flattening etc). Image of Black Holes with the Event Horizon Telescope.
Recommended texts	Slides of the lectures
Assessment methods	Short essay on one of the topics developed during the lectures

Module 5	Physics and evolution of sup	ermassive Black Holes
Lecturer	Maurizio Paolillo	(maurizio.paolillo@unina.it)
Planned hour	6-8	

Planned schedule	
Prerequisites	Basic classical physics and gravitation. Useful but not required: Module " Gravitation, Relativity and Black Holes ", Introductory astrophysics, Physics of Galaxies
Description	The Discovery of Active Galactic Nuclei; Taxonomy of AGNs; clues to the interpretation: variability, luminosity and efficiency; steps toward unification: Eddington luminosity, Eddington mass and accretion rate; accretion efficiency. The Unified Model; AGN physical scales; broadband emission in AGNs; accretion disk spectrum; X-ray corona and other components. Observational evidence of the Unified Model: Quasar host galaxies; dynamical and reverberation mapping mass measurements; evidence of hidden BLR in Sy2; relativistic distortion in Fe lines; the Milky Way nuclear BH. AGN evolution from multi-wavelength studies of AGN populations optical, X-ray and infrared; luminosity function and number counts; AGN activity and number density evolution; resolving the Cosmic X-ray Background; Soltan argument: how to derive the current Black Hole mass density of the Universe; The link between Supermassive Black Holes and galaxy evolution; Evidences of AGN feedback in galaxies.
Recommended texts	Lecture slides; "Exploring the X-ray Universe", Seward & Charles, 2010
Assessment methods	Short essay on one of the topics developed during the lectures

Module 6	Gravitational Waves and Gamma-Ray Bursts
Lecturer	Tristano Di Girolamo (tristano.digirolamo@unina.it)
Planned hour	6-8
Planned schedule	
Prerequisites	Basic astrophysics and particle physics
Description	Generation of Gravitational Waves (GWs). Binary Black Holes (BBHs) as sources of GWs. Detection of GWs. Observations of GWs from BBHs. Gamma Ray Bursts (GRBs): observations and theoretical models. GRB progenitors. Black holes as central engines and final products of GRBs.
Recommended texts	Shapiro & Teukolsky, "Black Holes, White Dwarfs and Neutron Stars"
Assessment methods	Short essay on one of the topics developed during the lectures

Effective the	eories and flavour physics
Lecturer	Dr. Giancarlo D'Ambrosio gdambros@na.infn.it
Credits (planned)	5
Planned hours	24
Planned schedule	
Prerequisites	
Description	Cross sections, decay widths, calculation of Feynman diagrams Quantum electrodynamics, precision tests: Lamb shift and g-2 Gauge theories, Yang Mills Fermi theory, beta decay, muon decay, universality of weak interactions, parity violation in weak interactions, V-A structures, effective theories Phenomenology of strong interactions, Goldstone theorem, pion as Goldstone mode spontaneous and explicit symmetry breaking Higgs mechanism Standard model of particle physics Flavour theory, quark and meson mixing, Cabibbo Kobayashi Maskawa matrix and determination of matrix elements, absence of flavor changing neutral currents, GIM mechanism and minimal flavor violation (MFV)
	Effective field theories, chiral perturbation theory

Electrodyna	mic properties of novel materials and devices
Lecturer	Prof. Antonello Andreone (antonello.andreone@unina.it)
Credits (planned)	4
Planned hours	24
Planned schedule	
Prerequisites	
Contents and topics	- Electrodynamics of metals, superconductors and dielectric media: basic principles
	- A short introduction to artificial materials: metamaterials and photonic band gap crystals and quasicrystals
	- Transformation optics: a new approach to defining the light geometry using metamaterials
	- Cutting edge THz technology
	- Plasmonics and plasmonic structures
	 Some exemplary applications of "natural" and "artificial" materials: from microwave systems to optical devices and sensors, cloaking, solar cells

Evaluation	All participants are required to make an oral presentation or write an
	essay on a selected subject after the course. The participants may suggest
	a topic related to their own research subject.

Evolutionary Computation and Applications		
Lecturer	Autilia Vitiello autilia.vitiello@unina.it	
Credits (planned)	3/4	
Planned hours	20 hours (10 lectures of 2h)	
Planned schedule		
Prerequisites	Basic concepts of computer science	
Description	Evolutionary computation is a subfield of the computational intelligence which includes a group of problem-solving techniques whose basic principles rely on the theory of biological evolution. Evolutionary computation methods are characterized by high performance in a wide range of problem settings.	
	The goal of the course is to give an overview of the best-known evolutionary algorithms and show practical application examples in the scientific and engineering fields.	

Experimental High-Energy Astroparticle Physics

Module 1	Experimental Techniques in Astroparticle Physics	
Lecturer	Giovanni Marsella	(giovanni.marsella@unipa.it)
Credits	2-3	
Planned hours	16	
Planned schedule		
Prerequisites	Basic particle physics, astrophysics and detectors	

Description	Description of the principal experimental techniques in Astroparticle Physics. Contents:	
	 Introduction to Cosmic Rays (CR) sources Primary CRs, acceleration mechanism, propagation Secondary CRs, atmospheric showers Detection techniques in Space, Extensive Air Shower arrays and underground detectors 	
	 Presentation of the principal experiments and recent results 	

Module 2	Experimental and VHE Observations from Extragalactic Sources	
Lecturers	Lorenzo Perrone et al. (lorenzo.perrone@unisalento.it)	
Credits	1-2	
Planned hours	5 - 10	
Planned schedule		
Prerequisites	Basic particle physics, astrophysics and detectors	
Description	The lectures intend to cover the description of the detection techniques of ultra-high energy comic rays (Pierre Auger Observatory, Telescope Array) and the current status of the art (results and perspectives) in the field. Recommended texts: review papers and journal papers	

Module 3	HE Transients and the Multimessengers Context	
Lecturer	Elisabetta Bissaldi	(elisabetta.bissaldi@uniba.it)
Credits	2-3	
Planned hours	16	
Planned schedule		
Prerequisites	Basic astrophysics, detectors	
Description	 Basic astrophysics, detectors Transient phenomena in the gamma-ray sky: Gamma-Ray Bursts (GRBs), Soft Gamma Repeaters. Terrestrial GammaRay Flashes; Solar Flares. Temporal and spectral characteristics Multi-frequency and Multi-messenger studies; LIGO/Virgo gravitational wave (GW) events and follow-up observations; The case of GRB 170817A/GW 170817; IceCube neutrino events and follow-up observations; The case of TXS 0506+056; Other recent discoveries in the field. Longair, "High-energy astrophysics" 	
	2. De Angelis & Pimenta, "Intr Astroparticle Physics" 3. Recent publications Assessment methods: lessons, fine	roduction to Particle and

Module 4	Indirect Dark Matter Searches	
Lecturer	Francesco Loparco	(francesco.loparco@uniba.it)
Credits	2-3	
Planned hours	16	
Planned schedule		
Prerequisites	Basic particle physics and detector	s

Description	Dark Matter models Dark matter distribution in galaxies WIMPs as dark matter searches with gamma rays and charged particles Searches dark matter from the Sun	
	Recent publications, some textbooks, slides from the lecturer <i>Assessment method: final report</i>	

Experimental techniques in Space Science

Lecturer:	Beatrice Panico (Univ. of Naples, beatrice.panico@unina.it)
Credits (planned):	2
Planned hours:	10
Planned schedule:	tbd
Prerequisites:	
Description:	The course will present the experimental techniques applied in the observation of cosmic rays from space. An overview on the next generation of space-based instrument for cosmic rays measurements will be provided. The course is designed for students performing doctoral studies in experimental astroparticle physics.
	Summary: 1. Open scenarios on the basic physical processes involving low energy cosmic rays, coming from astrophysical accelerators in high-density regions and from Dark Matter. 2. Methods and observing techniques to study cosmic rays from space 3. Current research in multimessenger astroparticle physics and in Space Weather. 4. UHECRs from space 5. Extracting a spectral energy distribution from data provided by different experiment During the course some practical experiences with students are foreseen: from data handling to software design and
	development, statistical analysis. In specific cases students are allowed and invited to investigate in-depth topics and to discuss during lectures.
	Assessment: students will be evaluated based on a final short seminar on an article or a modern research topic selected according to their interest.

Extended theories of Gravity and the problem of Dark Energy and Dark Matter

Lecturer:	Prof. Salvatore Capozziello (University of Naples, capozziello@na.infn.it)	
Credits (planned):	2	
Planned hours:	12	
Planned schedule:	April / May	
Prerequisites:	General Relativity, Cosmology, Quantum Field Theory	
Description:	Abstract: Extended theories of gravity can be related to several unification approaches and fundamental theories of interactions. They have recently attracted a lot of interest as alternative candidates to explain the observed cosmic acceleration, the flatness of the rotation curves of spiral galaxies, the gravitational potential of galaxy clusters, and other relevant astrophysical phenomena. Very likely, what we call "dark matter" and "dark energy" are nothing else but signals of the breakdown of General Relativity at large scales. Furthermore, PPNparameters deduced from Solar System experiments do not exclude, a priori, the possibility that such theories could give small observable effects also at these scales. I review these results giving the basic ingredients of such an approach.	
	Topics:	
	 Observational cosmology: an overview Dark Energy and dark Matter from the observations Physical and Mathematical Foundations of Extended Theories of Gravity Dark Energy and Dark Matter as Curvature Effects Probing Extended Theories of Gravity at Fundamental Level Advanced issues: GRBs to discriminate among Cosmological Models 	
	References: S. Capozziello, V. Faraoni "Beyond Einstein Gravity" Fundamental Theories of Physics, Springer, Dordrecht 2010	

Fundamental interaction: QCD and BSM

Module 1	Perturbative QCD		
Lecturer	Francesco Tramontano (francesco.tramontano@unina.it)		
Credits	2		
Planned hours	12 (2 lectures per week, 2 hours each)		
Planned schedule	tbd		
Prerequisites	Particle physics background		
Description	The lectures introduce to some basic aspects and concepts of perturbative QCD: running coupling and asymptotic freedom, the parton model, infrared divergences and the factorization theorem, parton densities and parton evolution, colour coherence. Applications to e+e-annihilation, deep inelastic lepton-nucleon scattering and hadron-hadron collisions are discussed.		

Module 2	Teoria di Regge		
Lecturer	Giovanni Chirilli (Regensburg) ref. Claudio Corianò		
Credits (planned)	2		
Planned hours	10		
Planned schedule	tbd		
Prerequisites	Particle physics background		
Description	Regge Theory; High parton density; small x evolution equations and Wilson lines formalism; Background field method; Highenergy Operator Product Expansion; High-energy factorization for scattering amplitudes		

Module 3	BSM	
Lecturer	Fulvia De Fazio	(Università di Bari)
Planned hours	16	
Planned schedule		
Prerequisites	Particle physics background	
Description	Physics beyond the Standard Model - Reasons to go beyond the Standard Model - Models based on extended gauge groups - Models introducing extra dimensions - Aspects of supersymmetry - Extension of the effective hamiltonians in New Physics Models	

Geometric and topological methods in Theoretical Physics

Lecturer	Prof.ssa Patrizia Vitale	(patrizia.vitale@unina.it)
Credits (planned)	3	
Planned hours	20	
Planned schedule		
Prerequisites	Background in theoretical/mathematical p	hysics
Description	Differential calculus on manifolds Topological invariants (homology, cohomolo Lie groups and Lie algebras Riemannian geometry Fiber bundles	ogy and homotopy groups)

Heavy Flavour Physics

Lecturer:	Prof. Pietro Santorelli	(pietro.santorelli@unina.it)
Credits (planned)	2-3	
Planned hours	14-16	
Planned schedule		
Prerequisites:	Basic concepts of Quantum Field Theorexperimentalists	y. Suitable for theorists and
Description:	This course will provide an introduction QuantumChromoDynamics for heavy qualicates of heavy mesons. The following a	arks and its application to weak
	 A very short review of the Standard M Integrating out heavy particles, scale Heavy Quark Effective Theory Semileptonic and rare decays of B m Non-leptonic two body decays of B ar CP Violation 	e separation, radiative corrections esons

How to boost your PhD		
Lecturer	Dr. Antigone Marino (CNR–ISASI, antigone.marino@unina.i	
Credits (planned)	2	
Planned hours	12	
Planned schedule		
Prerequisites	none	
Description	Nowadays, the scientific researcher profession requires a plurality of skills, on which we rarely stop to think about. Which ones are they? Above all, how to acquire them to turbo boost your PhD? The course is focused on this aspect of the scientific carriers. • Soft Skills - The technical skills of a person are the first ingredients for a successful career, but often the competition with others is played on other skills, which are more related to the character of the person. This does not mean owning them or not. A good training	
	 action will widen the spectrum of these skills as well as technical ones. Scientific Communication – A large amount of researcher's work is now devoted to communication. Mostly through posters, slides papers and reports. We will see what are the channels of communication and how to treat them properly. 	
	• Digital Reputation - Once upon a time, there was a file in every scientist's computer called curriculum dot something. Nowadays this file is not enough to promote your career. Society is collecting al	

your digital presence will be given.

outreach event effective are.

the information in the biggest database we have ever had, internet. The care of our digital records can be a fundamental key for our work. The digital reputation of a scientist is defined by his/her behaviour in the online environment and by the content he/she posts about him/her self and others. Tips to analyse and control

• Outreach - Political institutions are now asking us to bring our work to the attention of journalists, citizens and stakeholders. That is why outreach is playing an important role in scientific careers. Organizing a good outreach event needs a little bit of experience and a welldefined project. We will see which the conditions that make the

C 0 100 1	autotiono	1 Coos	bredies
	putationa		

Lecturer	Dr. Antonio Scala; University of Naples, Federico II; antonio.scala@unina.it
Credits (planned)	3
Planned hours	20
Planned schedule	the detailed schedule can be arranged with students
Prerequisites	Basic knowledge of classical physics and continuum mechanics. Basic knowledge of earth physics and seismology
Description	Several problems of concern in Geophysics, such as seismic and the tsunami waves within the Earth or the evolution of winds and precipitations in the atmosphere, are modelled through the momentum balance in the framework of the continuum mechanics with specific constitutive equations. In this course we present 1) the basic equations for elastodynamics and fluid dynamics within the Earth system and couple them with frictional conditions to simulate earthquake
	rupture generation and propagation. 2) Finite differences methods to solve the elastodynamic equation, convergence, stability.
	3) Variational formulation of the elastodynamics, Finite and Spectral Element Methods (FEM and SEM respectively) and consistent boundary conditions to model the Earth free surface and the earthquake rupture.
	At the end of the course the student is expected to be familiar with the main principles of the presented techniques and able to understand which approach to use and how to do it in different contexts.

Introduction to Neutrino Physics			
Lecturer	Prof.ssa Giulia Ricciardi (giulia.ricciardi2@unina.it)		
Credits (planned)	4-6		
Planned hours	24-36		
Planned schedule			
Prerequisites	basics of particle physics		
Description	This course aims at providing the basics of the theory of neutrino physics and their oscillations. Some recent experimental results are also discussed. It can be extended to include the basics of leptogenesis.		

Mathematical aspects of gauge theories Lecturer Prof.ssa Patrizia Vitale (patrizia.vitale@unina.it) Credits 3 (planned) Planned hours 20 Planned schedule Prerequisites background in theoretical/mathematical physics Description Principal G-bundles and associated vector bundles Gauge connections Abelian and non-Abelian gauge theories as theories of connections on fiber bundles

Or	gani	CC	ond	net	ore
OI	Ram		OTIC	uct	OTO

Lecturer	Antonio Cassinese	antonio.cassinese@unina.it
Credits (planned)	3	
Planned hours	8 - 10 lectures, 2 hours each	
Planned schedule	tbd	
Prerequisites	(like semiconductors, conduction interest for electronic and opt	c compounds with different functionalities etors, ferroelectrics, superconductors) of oelectronic application. d practical application will be described.
Description	- Injection and Electrical co I/O hybrids. P-type and n	or the realization of organic and I/O
		different functionalities (conductors,
	- Electro –optical techniques I/O hybrid materials.	s for the characterization of organic and
	- Organic Field effect transis application	stor (OFET) basic issues and practical
	- Organic/Inorganic and Or	ganic/Organic interface
	- Emerging Routes in Organ	ic Electronics

Particle Detectors-Trigger/DAQ

Module 1	Particle Detectors
Lecturer	Margherita Primavera (margherita.primavera@le.infn.it)
Planned hours	22
Planned schedule	
Prerequisites	Charged particles interactions with matter
Description	Generalities on gaseous detectors. Ionization and transport phenomena in gases. Amplification in gases. Gaseous detectors: ionization chambers, proportional counters, MultiWire Proportional Chambers, Drift chambers, TPC, Geiger counters, streamer tubes, Resistive Plate Counters. Calorimetry. Electromagnetic and hadronic calorimeters. Calorimeter calibration and monitoring. Cherenkov detectors: DISC, RICH, DIRC. Transition radiation detectors. Micropattern detectors, dual readout calorimeters.

Module 2	Photodetection	
Lecturer	Elisabetta Bissaldi	(elisabetta.bissaldi@ba.infn.it)
Planned hours	16	
Planned schedule	1 lecture per week two hours each	
Prerequisites	Experimental particle physics back	ground
Description	This course aims to provide the knowledge of radiation measurement from classic scintillation detectors devices. It requires an elementar measurements, radiation matter electronics. The program includes Organic and Inorganic scintillators; photodetectors; SiPM technologies, Part of the course will be devoted to	nts and detection techniques, s to Silicon Photomultiplier ry background in radiation r interactions and basic Photon-matter interactions; Optical coupling; Solid-state properties and Applications.

Module 3	Trigger and DAQ for Particl	e Physics
Lecturer	Massimo Della Pietra	(massimo.dellapietra@unina.it)
Planned hours	10	
Planned schedule		
Prerequisites	Experimental particle physics b	ackground
Description	experimental physics. Basic ellatency and trigger rate. Consacquisition: dead time and systems, trigger for High Energy of Trigger - DAQ and related Control, Online data quality. Desystem for collider HEP: the experiments. Trigger systems for test-beam setup. Triggerles	data acquisition system for lements and definitions: trigger nection between trigger e data busy status. Multilevel trigger y Physics at colliders. Integration systems Event building, Run escription of most relevant trigger e trigger system of the LHC for fixed target experiments and s DAQ systems for particle and ct of the trigger system efficiency

Module 4	Nuclear Physics in low-backgroun	d conditions
Lecturer	Prof. Andreas Best	(andreas.best@unina.it)
Credits (planned):	3-4	
Planned hours:	16-24	
Planned schedule:	To be arranged in discussion with stude	ents
Prerequisites:	Basic knowledge of nuclear physics.	
Description:	This course aims to give an overview of characteristics of experimental nuclear conditions, in particular in reference to underground. We will discuss the "traditional" laboratories and underground of backgrounds and their rejection via examples of currently active low-backgrounds in common materials; me closely similar conditions on the surface	r physics in low-background to nuclear astrophysics deep main differences between und ones; the motivations for environments; main sources passive and active methods; ground laboratories; intrinsic tethods to achieve similar or
	Course outline	
	IntroductionBackground sources in nuclear plSignal to noise in nuclear astroph	·
	Backgrounds and suppression thereof • Deep-underground environments • Passive shielding • Active shielding, pulse shape disc	rimination
	Real-world examples Operational deep-underground lab Low-background measurements of Possible site visit at INFN-LNGS (t	on the surface
	The students can give indication for top be part of the program of the course.	oics of their interest that could

Physics and applications of Superconducting and Spintronic Devices

Lecturer	Prof. G.P. Pepe	(giovannipiero.pepe@unina.it)
Credits (planned)	4 /5	
Planned hours	about 30 (2-3 hours/week)	
Planned schedule		
Prerequisites	basic knowledge of solid state ph	ysics and electronics
Description	applied aspects related to the nanosized regime, including of cryogenics, diagnostic tools for SQUIDbased microscopy) and time detectors and nonequilibrum ph	sh competences on both fundamental and superconducting electronics mainly in deposition techniques, nano-patterning, or advanced microscopy (AFM, MFM, he resolved spectrometry, superconducting ysics. Moreover, the recent achievements g superconducting structures) will be also
	A brief overview of the program is the following:	
	GinzburgLandau theory, weak	activity: linear electrodynamics, The superconductivity, the Josephson effect, in superconductors, superconducting vity in low dimension systems.
	nano-litography, the self-asse	position and characterization, top-bottom mbling processes in nanotechnology, scale (AFM, STM, advanced microscopy).
		cronics: magnetism and nanostructures, o-optics mainly in superconducting based
		at seminars on topics related to the above s using general templates as proposed by

Quantum Computing and Artificial Intelligence Lecturer Prof. Giovanni Acampora giovanni.acampora@unina.it 4/6 Credits (planned) Planned hours 20 to 24 Planned schedule Prerequisites Foundations of Computer Science and Computer Programming Description The program overviews: a) concepts of Artificial Intelligence; b) Machine Learning; c) Implementation of Machine Learning algorithms in Python; d) Quantum Computing; e) Quantum Architectures; f) Quantum Algorithms; g) An embryonic view on Quantum Machine Learning.

Quantum Information, Quantum Computation and Quantum Imaging

Module 1	Physical Coherence and Correlation	ı Functions
Lecturer	Saverio Pascazio	(Università di Bari)
Planned hours	16	
Planned schedule	Eight two-hour lectures between February and July	
Prerequisites	Background in quantum theory, technologies and applications	
Description	Optical Fluctuations and Coherence. theory. The Radiation field. Ex Measuring correlation functions. (spatial) correlation functions Equ (temporal) correlation functions. Bey transitions and correlation functions.	rperimental milestones. Equilibrium equal-time utilibrium equal-position

Module 2	Introduction to Quantum Computat	ion
Lecturer	Luigi Martina	(Università del Salento)
Planned hours	16	
Planned schedule	Eight two-hour lectures between February and July	
Prerequisites	Quantum Mechanics and Statistical M	Iechanics
Description	Quantum Mechanics and Statistical Mechanics Since at least a couple of decades, the Physics of Information and Computation has been a recognized as an autonomous discipline. In fact, the latter fields should be linked to the study of the underlying physical processes, namely of the quantum mechanical universe. But the intrinsic probabilistic character of the quantum measurements and the non-commutative algebra of the observables induce important modifications in the central results of classical information theory, including: quantum parallelism, compression of quantum information, bounds on classical information encoded in quantum systems, bounds on quantum information sent over a noisy quantum channel, efficient quantum algorithms and quantum complexity. The course will touch the above topics.	

Module 3	Quantum imaging	
Lecturer	Milena D'Angelo	(Università di Bari)
Planned hours	16	
Planned schedule	Eight two-hour lectures between June an	d July
Prerequisites	Background in quantum theory and optics. Attendance of either one of the two above modules is suggested.	
Description	From classical to quantum imaging. Klyshko advanced wave model. Ghost imaging and diffraction, from first protocols to recent advances (differential GI, computational GI, compressive GI,). Single-pixel imaging. Super-resolution: NOON states, and Quantum Fisher information. Sub-shot-noise imaging. Imaging by undetected photons. Imaging through turbulence and scattering media, and imaging around corners. Correlation plenoptic imaging: from principles to applications.	

Scientific writing

Lecturer	Prof. Paolo Russo	(paolo.russo@unina.it)
Credits (planned)	5	
Planned hours	30 2 (hrs per lecture, 2 lectures per week)	
Planned schedule		
Prerequisites	none	
Description	The course provides basic intro to the propublication in international journals, with publishing, scientific journal selection, we manuscript editing, revision and procorrespondence. Moreover, the following description of the basic aspects of the Editor Journal (Editor, associate editors, editorial journal manager); basic aspects of the methods for manuscript review; understabiliometrical indices. The course evaluation will be based on exect on selected aspects of the course material.	reference to motivations for riting style, ethical issues, ofs reading, manuscript aspects will be covered: rial structure of a scientific board members, publisher, nanuscript review process; anding and evaluation of

Signals formation and treatment in particle detectors

Module 1	Signals formation	
Lecturer	Marcello Abbrescia marcello.abbrescia@uniba.it	
Planned hours	10	
Planned schedule	5 lectures of 2 hours each	
Prerequisites	Basic notions of electromagnetism and of particle detector physics	
Description	 Electrostatics-Principles-Reciprocity-Induced currentsInduced voltages - Ramo-Shockley theorem - Mean value theorem - Capacitance matrix - Equivalent circuits; Signals in: - Ionization chambers - Liquid argon calorimeters - Diamond detectors - Silicon detectors GEMs (Gas Electron Multiplier) - Micromegas (Micromesh gas detector) - APDs (Avalanche Photo Diodes) - LGADs (Low Gain Avalanche Diodes) - SiPMs (Silicon Photo Multipliers - Strip detectors - Pixel detectors - Wire Chambers - Liquid Argon TPCs. 	

Module 2	Signals treatment	
Lecturer	Alberto Aloisio	(alberto.aloisio@unina.it)
Planned hours	10	
Planned schedule		
Prerequisites		
Description	Sistemi di schermatura e di guardi rivelatori - Cenni sul noise di componer - Uso del simulatore analogico di studio: rumore di alcune configuamplificatori operazionali, effetto di sul noise gain	nti attivi e passivi o per l'analisi di alcuni casi urazioni base degli

Statistical I	Methods for Data Analysis	5
Lecturer	Dr. Alberto Orso M. Iorio	(albertoorsomaria.iorio@unina.it)
Credits (planned)	2-3	
Planned hours	12-18	
Planned schedule		
Prerequisites	Basic knowledge of the concept of probability. Examples and exercises will be done in C++, so basic knowledge of computer programming is recommended.	
Description	Statistical methods for data analysis: • Statistics and probability distributions • Parameter estimates and maximum likelihood (ML) and extended ML methods • The Bayes theorem: frequentistic and Bayesian approaches • Computation of upper limits • Combining measurements • Monte Carlo techniques • Fit quality with Toy Monte Carlo • Multivariate discrimination methods • Artificial Neural Networks	
	Introduction to statistics application toolkit: RooFit TMVA	tion frameworks based on ROOT

Statistical Physics for Complex Systems

Module 1	Active Matter and Complex Fluids	
Lecturers:	Giuseppe Gonnella Antonio Lamura	(giuseppe.gonnella@uniba.it)
Credits (planned)	2-3	
Planned hours	16 (8 two hrs lectures)	
Planned schedule		
Prerequisites	Background in classical physics and sta	atistical mechanics
Description	Statistical physics and biological systems. Active matter: basic particle and continuous models. The phase diagram of passive and active colloids. Topological transitions. Complex fluids: theoretical modelling. Polymers: static and dynamical properties in dilute conditions. Ternary mixtures with surfactant: self -aggregation, active and double emulsions. Basic rheological behavior of complex fluids. The yielding transitions. Simulations methods in soft and active matter. Molecular dynamics, Multi-Particle Collision Methods, lattice Boltzmann Methods	
Module 2	Statistical Mechanics of Complex Systems	
Lecturer:	Prof. Antonio De Candia	(antonio.decandia@unina.it)
Credits (planned)	2-3	
Planned hours	16 (8 lectures, two hrs each)	
Planned schedule		
Prerequisites	basic knowledge of statistical mechanics	
Description	Sherrington - Kirkpatrick model for spin-glasses. Replica - symmetric solution. The Parisi solution. The p-spin model. The cavity method. Dynamics and Mode - Coupling theory. TAP equations. The spin - glass on the Bethe lattice. Reconstruction on trees and point - to - set correlations.	

Module 3	Stochastic Processes and Analysis of Correlations	
Lecturer:	Prof. Eugenio Lippiello	(eugenio.lippiello@unicampania.it)
Credits (planned)	2-3	
Planned hours	16 (8 two hrs lectures)	

Planned schedule	
Prerequisites	Background in classical statistical mechanics.
Description	The purpose of these lectures is to give a simple mathematical introduction to the description of stochastic processes with innovative applications in the field of epidemiology and earthquake data time- series analysis. - Markov processes Master and Fokker Plank equations Stochastic energetics Branching processes Watson-Galton model Application to genetics Epidemic models Applications to epidemiology and earthquake occurrence Analysis of correlations in stochastic signals Detrended Fluctuation Analysis Power spectrum of a signal

Supersymmetries, Strings and branes		
Lecturers	Dr. Franco Pezzella Dr. Raffaele Marotta	(INFN, pezzella@na.infn.it) (INFN, lmarotta@na.infn.it)
Credits (planned):	4	
Planned hours:	24	
Planned schedule		
Prerequisites	General Relativity, Quantum Field Th	neory
Description	 Supersymmetry in two space-time dimensions (D=2): Superstring Theories N=1,2 in D=4 Supersymmetry N=1 in D=6 and D= 10 Supersymmetry A Brief introduction to supergravity theories Aspects of duality Classical and quantum aspects of superstrings are discussed together with the properties of D-branes, string dualities and more recent developments in String Theory. 	

Topics in Non-Perturbative Quantum Field Theory (from two to four dimensions)

Lecturer	Prof. Luigi Rosa	(luigi.rosa@unina.it)
Credits (planned)	4	
Planned hours	30	
Planned schedule		
Prerequisites	theoretical physics background	
Description	NON-PERTURBATIVE METHODS IN TWO-DIMENSIONAL FIELD THEORY: From massless scalar field to conformal field theories. TWO-DIMENSIONAL NON-PERTURBATIVE GAUGE DYNAMICS: Fundamental aspects of gauge theories in two dimensions. FROM TWO TO FOUR DIMENSIONS: Conformal invariance in four-dimensional field theories and in QCD. From two-dimensional solitons to four-dimensional magnetic monopoles. Instantons in QCD GAUGE THEORIES: The gauge principle; Functional quantization of gauge theories. BRST symmetry and physical states. Realizations of symmetry; Ward-Takahashi identities. Spontaneous symmetry breaking; Continuous global symmetry; The Goldstone's theorem; the Higgs mechanism; Casimir energy and the cosmological constant problem. NON ABELIAN GAUGE FIELDS: the Gribov ambiguity; path integral in QCD; Instantons; confinement and dual superconductivity; 'theoftPolyakov magnetic monopoles	

Ultrafast processes and femtosecond laser pulses

Lecturer	Prof. Andrea Rubano (andrea.rubano@unina.it)
Credits (planned)	3
Planned hours	18
Planned schedule	
Prerequisites	Basic knowledge of Solid-state Physics would be helpful. Linear Optics and basics of Quantum Physics are required.
Description	The PhD Course will introduce the students to the realm of Ultrafast Processes, with a special focus on optical pulses and their interaction with matter. The introduction will give broad overview about pulsed light, pulsed sources, and especially commercial femtosecond lasers. Theoretical and technical description about the most common ways to produce and amplify short pulses will be given in some detail. In the main part, different applications of ultrafast pulses will be described as follows: 1) Metrology: How to measure optical frequencies? Frequency
	Comb, optical clockwork. 2) Nonlinear Optics: New frequencies, new probes? Nonlinear lightmatter interaction, principles and main applications. Sum and difference frequency generation. Frequency doubling. Extreme cases: THz and X-rays generation schemes.
	3) Novel states: How to access non-equilibrium states? Scanning microscopy approaches: two-photon microscopy, stimulated emissiondepletion microscopy.
	4) Fs-spectroscopy: How to resolve ultrafast dynamics? Overview about the general Pump&Probe experimental scheme. Examples: coherent phonon control, isomerization and structural transitions, charge transfer and separation, hot-electron dynamics in metals.
	5) Fs-photonics: How to control light with light? Spectral lenses in photonic crystals.
	The aim of the Course is to give a wide panorama on today's available techniques using ultrashort laser pulses and to provide technical skills and theoretical background to the student which intends to work within this field of research. The actual layout of the course can be extended in some aspects and reduced in others, depending on the student's interests and motivations.

Lecturer	Prof. Giovanni La Rana (Giovanni.larana@na.infn.it)	
Credits (planned):	4	
Planned hours:	20 10 lectures, 2 ours each	
Planned schedule:	To be agreed with students	
Prerequisites:	Basic knowledge of nuclear physics and quantum mechanics.	
Description:	This course aims to deepen the study of nuclear reactions induced by light and heavy ions at low energy (E / A <10 MeV / A). Starting from phenomenology and the main nuclear models, the final goal is to present and discuss the unified theory due to H. Feshbach. This theory, based on the projection operator technique, provides an important framework for understanding the physics and modelling nuclear processes, from direct mechanisms to the formation of compound nuclei. Part of the course makes use of advanced quantum mechanics concepts applied to nuclear physics, the basic elements of which will be introduced during the lectures.	
	Course outline	
	 Phenomenology of nuclear reactions at low energy (E/A < MeV/A): direct and compound nucleus processes, g resonances, fluctuations in the cross section. Nuclear models: single particle potential model for nucleastering, theory of the compound nucleus in the discrete continuum region, Statistical Model, Optical model. Brief review of scattering and reactions theory: cross section and T matrix, Green operator, Lippmann Schwinger equate Born development and approximate methods. Unified Theory of nuclear reactions: prompt and time-delaprocesses, the projection operator technique, genexpression of the transition amplitude, resonance the Derivation of the generalized Optical-Model poten Intermediate structure in nuclear reactions: 'doorway state' 	
	References G.R. Satchler: Introduction to nuclear reactions D.F. Jackson: Nuclear Reactions P. Roman: Advanced Quantum Theory F.S. Levin/H. Feshbach: Reaction Dynamics	

Waves and Interactions in Nonlinear Media

Lecturer	Prof. Renato Fedele (renato.fedele@unina.it)	
Credits (planned)	4	
Planned hours	25	
Planned schedule		
Prerequisites	Classical Electrodynamics, Fundamentals of Quantum Mechanics, Fundamentals of Statistical Mechanics	
Description:	The course is interdisciplinary and gives a general description of the propagation of waves in nonlinear media and their interactions (three and four waves parametric processes). Some physical examples in nonlinear optics (Kerr media, optical fibers), surface gravity waves (ocean waves), large amplitude waves in plasmas (Langmuir wave packets) and matter waves physics (Bose-Einstein condensates) are given. From these examples, a unified description modelled by suitable nonlinear Schrödinger equations is extrapolated. Such a description is then extended to phase space by means of the Wigner quasi-distribution. Particular attention is devoted to both theoretical and experimental aspects of the modulational instability and the related stabilizing role of the Landau damping for an ensemble of partially incoherent waves.	