A Cosmic Connection: Properties of Nuclei and Properties of the Cosmos

Science Questions in Nuclear Physics

The origin of elements & the chemical evolution of our universe

How were Elements from Iron to Uranium made?

"The 11 Greatest Unanswered Questions of Physics", 3rd in the list http://discovermagazine.com/2002/feb/cover From: National Academy of Science Report, 2002

<u>RIB: Radioactive Ion Beam Facilities</u> for Explosive Nucleosynthesis

Production of radioactive isotopes

Target spallation and fragmentation by light ions (Used by TRIUMF, HRIBF)

Facilities for Explosive Nucleosynthesis

Providing high intensity radioactive beams for studying nuclear reaction and decay processes associated with explosive stellar burning far from stability! Others are CARIBU/ANL, ISAC/TRIUMF, REX/ISOLDE, TwinSol/Notre Dame

Fasci radioattivi: Progetto EXOTIC at LNL

284 nuclei "stabili" 3600 nuclei radioattivi noti 6000 nuclei di "possibile" esistenza

Fasci radioattivi permettono studi di

Struttura, Astrofisica, Dinamica

EXOFIC (a) LNL: produzione di fasci di nuclei leggeri radioattivi tramite reazioni di cinematica inversa di fasci primari di nuclei stabili su bersagli gassosi \rightarrow studio della dinamica di reazione e di struttura nucleare a $E_{lab} \sim V_C$

Fasci prodotti: ¹⁷F, ⁸B, ⁷Be, ⁸Li, ¹⁰C, ¹¹C Fasci futuri: ¹⁸Ne, ¹⁸F, ¹⁴O

Moti collettivi del nucleo atomico Risonanze Giganti

un comportamento organizzato di un sistema complesso

Risonanza Dipolare Gigante (GDR) \rightarrow oscillazione collettiva di protoni in opposizione di fase ai neutroni del nucleo atomico: emissione γ dipolari **Dipolo Dinamico (DD)** \rightarrow eccitazione di una **GDR** di **pre-equilibrio** in reazioni tra ioni pesanti asimmetrici in carica: emissione γ dipolari pronti

Studio del Dipolo Dinamico importante per:

Dinamica dell'equilibrazione di carica Informazioni su $E_{sym}(\rho)$ a $\rho < \rho_0$: nuclei radioattivi con alone, stelle di neutroni ... Raffreddamento in reazioni di fusione \rightarrow formazione di SHE

Highlights

Primo studio sistematico del Dipolo Dinamico in reazioni centrali e periferiche usando un metodo sperimentale indipendente dal modello

Struttura Nucleare Teorica

Calcoli microscopici di struttura nucleare

Studiamo le proprietà dei nuclei partendo da un'interazione NN che soddisfa le simmetrie della QCD

Ricorso a HPC (High Performance Computing)

Supercalcolatore MARCONI 20 PetaFlops

Possibilita' di tesi per laurea magistrale presso il Consorzio Interuniversitario per il Calcolo Automatico (CINECA)

Studio della Fusione-Fissione indotta da ioni

Collaborazioni: Flerov Laboratory Nuclear Reaction, Dubna Department of Physics, Jyvaskyla Omsk State University, Russia

Nuclei di massa media (A~100-150 amu) elevata Energia di Eccitazione (~100 MeV) alti Momenti Angolari (fino a 80ħ)

Tempi caratteristici dei processi di fissione (Particle clock)

Viscosità della materia nucleare

Modelli dinamici e modello statistico

<u>Osservabili</u>: Frammenti di fissione, Particelle Cariche, Residui di Evaporazione

Docenti coinvolti

Dipartimento	INFN
Francesco Andreozzi	Luigi Coraggio
Giovanni La Rana	Angela Garano
Marco La Commara	Dimitra Pierroutsakou
Antonio Porrino	
Mariano Vigilante	
Emanuele Vardaci	

Quiescent stellar nucleosynthesis

Stellar evolution and nucleosithesys

<u>Cas A Supernova Remnant</u> Hydrogen (orange), Nitrogen(red), Sulfur(pink), Oxygen(green)

by Hubble Space Telescope

Cas A with Chandra X-ray observatory:

red: iron rich blue: silicon/sulfur rich

Galactic Radioactivity - detected by γ-radiation

Nuclear reactions at astrophysical energies

Example

 z_1 =p and z_2 =p (e.g. in the Sun)

 $E_{c} = 550 \text{ keV}$

TUNNEL EFFECT

 $T \sim 15 \times 10^6 \text{ K} \Rightarrow \text{F} = \text{kT} \sim 1 \text{ keV}$

during <u>quiescent burnings</u>:

reactions occur through

 $kT \ll E_c$

cross section has <u>STRONG energy dependence</u>

Why going underground

Laboratory for Underground Nuclear Astrophysics

Some examples

H-burning in the Sun and solar neutrinos:

p+p->D+e⁺+ ν , ³He(³He, 2p)⁴He, ³He(α , γ)⁷Be, ⁷Be(p, γ)⁸B and ¹⁴N(p, γ)¹⁵O

• Age of Globular Clusters and C production in AGB:

¹⁴N(p,γ)¹⁵O

• AGB nucleosynthesis - ¹⁷O/¹⁸O abundaces, ¹⁹F origin, ²⁶Mg excess....:

 $\frac{{}^{14}N(p,\gamma){}^{15}O}{{}^{14}C(\alpha,\gamma){}^{18}O}, \frac{{}^{14}N(\alpha,\gamma){}^{18}F}{{}^{15}N(\alpha,\gamma){}^{19}F}, \frac{{}^{15}N(p,\gamma){}^{16}O}{{}^{15}N(p,\alpha){}^{12}C}, \frac{{}^{17}O(p,\gamma){}^{18}F(\beta^{+}){}^{18}O}{{}^{18}O(p,\gamma){}^{19}F}, \frac{{}^{18}O(p,\gamma){}^{19}F}{{}^{18}O(\alpha,\gamma){}^{22}Ne}, \frac{{}^{18}O(p,\alpha){}^{15}N}{{}^{18}F(\alpha,p){}^{21}Ne}, \frac{{}^{19}F(\alpha,p){}^{22}Ne}{{}^{22}Ne}, \frac{{}^{22}Ne(p,\gamma){}^{23}Na}{{}^{23}Na(p,\gamma){}^{24}Mg}, \frac{{}^{24}Mg(p,\gamma){}^{25}AI(\beta^{+}){}^{25}Mg}, \frac{{}^{25}Mg(p,\gamma){}^{26}AI(\beta^{+}){}^{26}Mg}, \frac{{}^{26}Mg(p,\gamma){}^{27}AI}{{}^{26}Mg(p,\gamma){}^{27}AI}$

• Main neutron sources:

 $\frac{^{13}C(\alpha,n)^{16}O}{^{22}Ne(\alpha,n)^{25}Mg}$

• Explovive CNO burning:

¹⁵O(α,γ)¹⁹Ne, ¹⁴O(α,γ)¹⁸Ne, ¹⁸Ne(α,p)²¹Na

• He and advaced burnings:

 $\frac{1^{2}C(\alpha,\gamma)^{16}O}{1^{2}C(\alpha,\gamma)^{20}Ne}$, $\frac{1^{2}C(\alpha,\gamma)^{20}Ne}{1^{2}C(\alpha,\gamma)^{20}Ne}$, $\frac{1^{6}O(\alpha,\gamma)^{20}Ne}{1^{6}O(\alpha,\gamma)^{20}Ne}$

中国锦屏地下实验室 China Jinping Underground Laboratory

JUNA Jinping Underground Nuclear Astrophysics

JUNA

An alternative approach: Recoil Mass Separator

 $\mathbb{C}_{enter \, for} \mathbb{I}_{sotopic} \mathbb{R}_{esearch \, on} \mathbb{C}_{ultural \, and} \mathbb{E}_{nvironmental \, heritage}$

Other Applications of Low energy Nuclear Physics

- Radioactive Dating
 - C¹⁴/C¹² gives ages for dead plants/animals/ people.
 - Rb/Sr gives age of earth as 4.5 Gigayear (1 Gigayear= 1×10⁹ years).
- Environmental radioactivity.
- Element analysis
 - Forenesic (eg date As in hair, C¹⁴/C¹² bomb spike).
 - Biology (eg elements in blood cells)
 - Archaeology (eg provenance via isotope ratios).

The AMS system CIRCE

DI

10 CT

¹⁰Be, ²⁶Al, ¹²⁹I, ²³⁶U, Pu

Laboratorio di Radioattività

Radioattività Ambientale

Nell'ambito delle attività del laboratorio continua la mappatura della radioattività in varie tipologie di ambienti della Campania. In questa attività giocano un ruolo di primo piano le scuole, che da ambienti da controllare sono diventate veri centri di coordinamento delle campagne di misura e di approfondimento, da parte degli studenti, delle tematiche relative alla radioattività.

Docenti coinvolti

Dipartimento	INFN
Andreas Best	Mauro Romoli
Antonino Di Leva	
Gianluca Imbriani	
Giovanni Paternoster	
Enzo Roca	

Curriculum Nucleare

Insegnamenti I anno	Insegnamenti II anno
Elettrodinamica Classica	Laboratorio di Fisica Nucleare
Meccanica Quantistica	Insegnamento affine
Laboratorio di Fisica	Insegnamento a scelta autonoma
Fisica Nucleare	
Reazioni Nucleari	
Insegnamento affine	

Insegnamenti affini	Insegnamenti affini
Fisica Computazionale	Metodologie Nucleari per la Fisica Sanitaria e il Controllo Ambientale
Fisica dei Nuclei Esotici	Fisica Nucleare per i Beni Culturali e Ambientali
Astrofisica Nucleare	