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“The absence of evidence is not the evidence of absence.”
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Abstract

The seed of my thesis was planted in 2013 within the project “Messaggeri
della Conoscenza” when I spent one month in Moscow and in Dubna and
started a scientific collaboration with the Moscow State University (MSU).

My thesis work focuses on the study of Cosmic Strings (CS). The exis-
tence of cosmic strings was first proposed by Thomas Kibble in 1976 [5], who
drew on the theory of line vortices in superconductors to predict the forma-
tion of similar structures in the universe, at large as it and cooled during
the early phases of the Big Bang. They are hypothetical remnants of the
early universe whose formation is a predicted result of spontaneous symme-
try breaking. Being relics of the phase transitions that produced them, if
they are stable and survive for a significant amount of time, they may leave
an imprint on many astrophysical and cosmological observables. In this way,
Cosmic Strings provide us with the possibility to understand fundamental
physical processes, offering us a unique window on the early universe that
would otherwise be inaccessible to us.

To understand the cosmological context and the effect of cosmic strings I
start, in Chapter 1, with a summary of basic cosmological concepts that will
be helpful to understand cosmic strings as topological defects. In Chapter 2,
I describe the processes leading to the formation of topological defects and
cosmic strings models; Chapter 3 is a survey on different types of defects,
with very different characteristics and dimensions. A CS produces a peculiar
conical topology of the space-time and it may cause detectable effects both
in radio and in optical data. The main part of my work thesis, described in
Chapter 4, deals with the developement of an effective strategy to detect and
characterize these elusive physical entities. Our procedure is a mix of two
methods for CS search: the analysis of the anisotropy of the CMB radiation
and the detection of the strong gravitational lensing effects of remote sources



by a CS. Radio maps of CMB anisotropy, provided by the space mission
Planck for various frequencies, were filtered and then processed through con-
volution with modified Haar functions (MHF) to search for CMB gradients
induced by a CS. This procedure shows that strings can only be semilo-
cal, with the upper restriction on individual string tension (linear density) of
Gµ/c2 ≤ 7.36×10−7. The result was a list of preliminary CS candidates with
the amplitude δT/T . 40µK. We select the best one (Cosmic String candi-
date No. 1 = CSc-1) and on it we carry on an independent optical analysis,
based on the search of gravitationally lensed sources. First, we verified the
feasibility of our experiment: the test gives successful results demonstrating
that, using our data, is possible to detected the presence of cosmic strings at
> 2.6σ confidence level. Using photometric criteria, with both an automatic
algorithm and through visual inspection, we identify some pairs of lensed
galaxies, in order to look for a convincing excess over the average density of
background galaxy pairs in ordinary fields. We find an excess of 20% of pairs
in string fields respect to the number of pairs in the ordinary fields.

We analyze the possibility to find a preferred orientation of the pairs
for different value of the separation between pair components. The result
is that we find an excess: there is a dominant direction of the arrangement
of pairs for [8′′, 9′′] angular separations. Then we plot, separately for each
separation interval, the number of pairs of different intervals of inclination
angle β, achieving a significant excess of [4′′, 6′′] distanced pairs in the interval
β ∈ [20◦, 30◦]. Both Student’s test and Poisson’s distribution of the pairs in
each angle bin, confirm this result.

For the [4′′, 6′′] distanced pairs, we also find that the orientation between
the pairs and the hypothetical string direction is almost orthogonal in the
sky: this is consistent with the hypothesis that some of these sources are
lensed by a CS.

Even if no definitive conclusion can be drawn at this point, we thus found
some observational signatures expected from Cosmic Strings, using for the
first time two indipendent methods in combination. The definitive confir-
mation of the gravitational lensing origin of our pairs candidates requires
spectroscopic observations. We plan to acquire their spectra as well as to
continue the study of the spectral and morphological features of the lens
candidates in the CSc-1 fields.
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Chapter 1
Introduction to modern
cosmology

According to our current knowledge, the universe originated 13.7 × 109

years ago. Its evolution from one hundredth of a second up to the present day
can be reliably described by the Big Bang model. This includes the expan-
sion of the universe, the origin of light elements and the relic radiation from
the initial fireball, as well as a framework for understanding the formation
of galaxies, other large-scale structures and exotic objects such as example
primordial black holes, cosmological strings, textures, etc. The Big Bang
model is now so well tested that it is known as the Standard Cosmolog-
ical model. Such model is based upon the so called cosmological principle
[1], which asserts that the universe is, on large scales, both homogeneous and
isotropic. This assumption is supported by many evidences including the
measured distributions of galaxies and of faint radio sources, but by far the
best evidence comes from the observed uniformity of the cosmic microwave
background radiation on large angular scales. However, on smaller scales this
assumption is not true, so the question arise of what is the origin of the den-
sity fluctuations that produced the observed anisotropies and ultimately led
to the formation of galaxies and other large scale structures. In this scenario,
Cosmic Strings (CS) are the first candidates as the sources of the density
perturbations that cause the formation of structures in the universe. Recent
studies have indicated that, cosmic strings could still be partly responsible
for these perturbations [2] and Inflation theory gives a explanation for the
current data.

To understand the role of the cosmic strings in a cosmological context,
we start in this section with a summary of basic cosmology concepts.
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1. INTRODUCTION TO MODERN COSMOLOGY

1.1 The model and formalism
Since the early universe is homogeneous on large scales, the metric that

includes the assumptions of the homogeneity and the isotropy of space-time
most suitable for the study of cosmology is the Friedmann-Robertson- Walker
(FRW) metric:

ds2 = dt2 − a2 (t) dl2 (1.1)

where t is the cosmological time, dl represents the line element on a three-
dimensional space of constant curvature, and a (t) is the scale factor that
determines the fractional or Hubble expansion rate:

H (t) = ȧ (t)
a (t) (1.2)

The scale factor a (t) is the only degree of freedom to consider following the
(strong) demand of the cosmological principle and it contains informations
on the dynamics of the universe on a large scale. In spherical coordinates,
this metric takes the form:

dl2 = dr2

1− kr2 + r2
(
dθ2 + sin θdφ2

)
(1.3)

where the constant curvature k is determined by the spatial topology and
geometry of the universe and can be > 0, < 0 or = 0 if the universe is,
respectively, closed, open or flat.

The physical distances between objects are determined introducing the
comoving distances and multiplying them by the scale factor a (t); in ad-
dition, it is often useful to introduce an alternative time coordinate, the
conformal time τ , defined as dτ = dt/a (t), leading to the metric

ds2 = a2 (τ)
[
dτ 2 − dl2

]
. (1.4)

Once the cosmological principle has been assumed, the Friedmann equations
are:

3 ȧ
2 + k

a2 = 8πGε (1.5)

ε̇ = −3 ȧ
a

(ε+ p) (1.6)

where ε is the energy density, p is the pressure and G the universal gravita-
tional constant. They allow to derive the evolution of the universe (i.e. a (t))
given a certain state equation p = p (ε) for the cosmic fluid.

The age of the universe is currently estimated to be about 13.7 billion
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1. INTRODUCTION TO MODERN COSMOLOGY

years [3], [4]. The primordial universe was very hot and dense and was
cooled by the expansion, with the temperature decreasing as T (t) v a (t)−1.
The Hubble expansion rate is determined by the energy contents of the uni-
verse. In a universe dominated by radiation or very relativistic matter (the
hottest, earliest stages), the scale factor evolves as a (t) v t1/2 and the en-
ergy density in radiation as ρradiation ∼ a (t)−4 ∼ t−2. The energy density of
non-relativistic matter is inversely proportional to volume ρmatter ∼ a (t)−3

and eventually takes over (after about 4000 years), leading to a period of
matter domination, during which a (t)2/3 and therefore ρmatter ∼ t−2. More
recently – about five billion years ago – we have entered a second epoch of
accelerated expansion due possibly to a cosmological constant or some un-
known form of dark energy whose energy density is maybe constant in time
ρdark energy ∼ const. The current cosmological model accepts that the energy
density in the universe today would be dominated by dark energy (about
74%), followed by about 22% dark matter and only about 4% of regular
(baryonic) matter [10]. Fig. 1.1 below briefly summarizes the thermal his-
tory of the universe as it is currently understood.

Figure 1.1: Diagram of evolution of the universe from the Big Bang (left) - to the
present (right).
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1. INTRODUCTION TO MODERN COSMOLOGY

The Standard Cosmological model, that uses the (FRW) metric, is able to
explain several features which characterize the evolution of universe: (i) the
expansion of the universe, (ii) the origin of the cosmic background radiation,
(iii) the nucleosynthesis of elements, and (iv) the formation of large-scale
structures. However, there are some questions, related mainly to the initial
conditions, to which the Hot Big Bang model has been so far unable to
provide correct answers. It is possible to find an explanation introducing
the idea of inflation. Inflation essentially consists of a phase of accelerated
expansion, corresponding to forces of negative pressure (or, equivalentely
positive tension), which counteracts the gravitational forces and an equation
of state 3p < −ρ, which took place at a very high energy scale. From the
observational point of view, the uniformity of the CMB indicates that at the
epoch of last scattering the universe was isotropic and homogeneous, with a
high degree of precision 10−5. At very large scale, universe is homogeneous,
while at small scales today we observe large inhomogeneities. The two main
models suggest that the initial density perturbations can either be due to
freezing in of quantum fluctuations of a scalar field during an inflationary
period, or they may be seeded by a class of topological defects, which could
have formed naturally during a symmetry breaking phase transition in the
early universe. It is this last model that we will analyze in the next chapter.
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Chapter 2
Topological defects formation:
the phase transitions

Phase transitions are physical phenomena: the changes of phase of the
substances from solid to liquid (e.g. ice to water) and liquid to gas (e.g.
water to steam) are few examples of the phase transitions that occur in
our daily life. Consider a cold day: ice forms quickly on the surface of a
pond. However, it does not grow as a smooth, featureless covering. Instead,
the water begins to freeze in many places independently, and the growing
plates of ice join up in random way, leaving zig-zag boundaries between them.
These irregular margins are an example of what physicists called topological
defects. “Defects” because they are places where the crystal structure of the
ice is disrupted and “topological” because an accurate description of them
involves ideas of symmetry embodied in topology, the branch of mathematics
that focuses on the study of continuous surfaces. Current theories of particle
physics likewise predict that a variety of topological defects would almost
certainly have formed during the early evolution of the universe. Just as
water turns to ice (a phase transition) when the temperature drops, so the
interactions between elementary particles run through distinct phases as the
typical energy of those particles falls with the expansion of the universe.
When conditions favour the appearance of a new phase, it generally crops
up in many places at the same time, and when separated regions of the new
phase run into each other, topological defects are the result.

An important category of phase transitions is that which corresponds to
Spontaneous Symmetry Breaking (SSB) and one such example is the phase
transition from paramagnetic phase to ferromagnetic phase. Most of the
phase transitions are associated with a change in symmetry of the system.
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2. TOPOLOGICAL DEFECTS FORMATION: THE PHASE
TRANSITIONS

However, it is not essential that the symmetry of the system changes in the
phase transition. Also, the universe underwent several phase transitions as
it became cooler.

In this chapter, we will describe various properties of the phase transitions
in the early universe (Grand Unification Theory (GUT), Electroweak and
Quantum Chromodynamics (QCD)) and the formation of topological defects
as result of spontaneous symmetry breaking phase transitions.

2.1 The spontaneous symmetry breaking
One of the most important concepts in modern particle physics is that of

spontaneous symmetry breaking. The idea that there are underlying sym-
metries of nature that are not manifest at ground level (i.e. the vacuum)
appears to play a crucial role in the unification of the forces. In all unified
gauge theories, including the standard model of particle physics, the under-
lying gauge symmetry is larger than that of vacuum. In the early universe,
GUT unifies strong and electroweak interactions and the electroweak the-
ory, a local gauge theory combines electromagnetic and weak interactions
and it is based on the idea of SSB. The phenomenon of SSB is most often
implemented with a scalar field, called Higgs field in the context of particle
physics. Due to the spontaneous symmetry breaking of electroweak symme-
try, the fundamental gauge bosons i.e. W+, W− and Z0 become massive:
this is the famous Higgs mechanism. In unified gauge theories, the symmetry
of the Lagrangian is broken spontaneously during a phase transition. The
effective potential, which is the expression of free energy for the fields in the
Lagrangian taking into account all quantum corrections, contains all the in-
formation about the phases of the system as well as the order of the phase
transition. In this section, we will describe basic physics of SSB. The metric
used in this work has signatures (+,−,−,−) [6].

The essential features of SSB can be illustrated in the following example,
first studied by Goldstone. Let us consider the Lagrangian density:

L =
(
∂µφ

)
(∂µφ)− V (φ) (2.1)

where φ is a complex scalar field and the potential V (φ) is given by

V (φ) = 1
4λ

(
φφ− η2

)2
. (2.2)

The positive real constants λ and η are, respectively, the self-interaction
term, that states how strongly two scalar particles interact, and the mass
term. That potential is also known as the Mexican hat potential, Fig. 2.1.
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2. TOPOLOGICAL DEFECTS FORMATION: THE PHASE
TRANSITIONS

Figure 2.1: Mexican hat potential.

The Lagrangian has a rotational symmetry. This means that under (cir-
cular) transformations in the φ,φ∗ plane the Lagrangian does not change.
Just by looking at Fig. 2.1 it can be seen that the potential is invariant
under the group U(1) of global phase transformations,

φ (x)→ eiαφ (x) . (2.3)

Here, “global” indicates that α is independent of the space-time location
x. The minima of the potential V (φ) lie on the circle |φ| = η and this
circle represents the vacuum manifold of the theory. The ground state (the
vacuum) of the theory is characterized by a non-zero expectation value of
the field operator φ

〈0 |φ| 0〉 = ηeiθ (2.4)
with an arbitrary phase θ. The phase transformation (2.3) changes θ into
θ + α. Hence, the vacuum state |0〉 is not invariant under (2.3), and the
symmetry is spontaneously broken. The state of unbroken symmetry with
〈0 |φ| 0〉 = 0 corresponds to a local maximum of V (φ). Due to the SSB
of a continuous global symmetry, massless Goldstone bosons appear in the
theory. This can be seen as follows. In order to study the particle spectrum
in this model, we have to consider small perturbations of the field around
that state. They are described by the Lagrangian (2.1) with

V (φ) ≈ −1
2η

2φφ+ const (2.5)

The negative sign of the mass term in (2.5) indicates the instability of the
symmetry state. The broken symmetry vacua with different values of θ are
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2. TOPOLOGICAL DEFECTS FORMATION: THE PHASE
TRANSITIONS

all equivalent, and their properties can be found by studying any one of them.
Choosing the vacuum with θ = 0, we can represent φ as

φ = η + 1√
2

(φ1 + iφ2) (2.6)

where φ1 and φ2 are real fields with zero vacuum expectation values. Substi-
tution of (2.6) into the Lagrangian (2.1) gives

L = 1
2 (∂µφ1)2 + 1

2 (∂µφ2)2 − 1
2λη

2φ2
1 + Lint (2.7)

where the interaction term Lint includes cubic and high-order terms in φ1 and
φ2. The above form of the Lagrangian shows that the field φ1 corresponds to
a massive particle with positive mass, µ =

√
λη, while the field φ2 becomes

massless. The reason for this is clear from Fig. 2.1: φ1 corresponds to
radial oscillations about a point on the circle of minima, |φ| = η, while φ2
corresponds to motion around the circle. The appearance of massless scalar
particles, called Goldstone boson, is a general feature of spontaneously broken
global symmetries. Despite of its simplicity, this model captures the essential
physics of SSB. In general, the number of Goldstone bosons will be equal to
the dimension of the vacuum manifold (number of broken generators). In
a phenomenological model, a well-known example of Goldstone bosons are
pions, which appear as a consequence of SSB of chiral symmetry in QCD in
the massless limit of quarks. If the same argumentation indeed is applied to
the real fields, ϕ and θ, the Lagrangian becomes

L = 1
2 (∂µϕ)2 + η2 (∂µθ)2 − 1

2λη
2ϕ2 + Lint (2.8)

with ϕ the massive scalar particle and θ the massless Goldstone particle. It
should be pointed out, however, that with an opportune gauge it is possible
to eliminate the above-cited boson.
For a straight, static string, it is sufficient to look for a solution of the equa-
tions of motion in two spatial dimensions, and then to use translation in-
variance to extend the solution to three dimensions. For example, if the
solution in two dimensions is φ0 (x, y), then the solution in three dimensions
is φ (x, y, z) = φ0 (x, y). The static string solution obtained using the La-
grangian (2.1) is:

φ (x, y) = ηf (mρ) einθ (2.9)
where (ρ, θ) are polar coordinates on the xy-plane, m2 = λη2, and n is the
(integer) winding number of the string. This string solution is known as a
“global” string because there are no gauge fields in the model.
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2. TOPOLOGICAL DEFECTS FORMATION: THE PHASE
TRANSITIONS

2.2 Kibble mechanism
As we know, for temperatures much larger than the critical one the vac-

uum expectation value of the scalar field vanishes at all points of space,
whereas for T < Tc it evolves smoothly in time towards a non vanishing 〈|φ|〉
[6]. However, the new value of 〈|φ|〉 is not uniform in space due to both
thermal and quantum fluctuations. This leads to the existence of domains
wherein the 〈|φ (−→x )|〉 is coherent and regions where it is not. In each domain,
the configuration of the order parameter field can be taken as nearly uniform
while it varies randomly from one domain to another.
In a first-order phase transition, at very high energies the symmetry break-
ing potential has 〈|φ|〉 = 0 as the only vacuum state. When the temperature
goes down to Tc, a set of degenereted vacua develops and the transition is
not smooth as before, for a potential barrier separates the old (false) and the
new (true) vacua. If the barrier at this small temperature is high enough,
compared to the thermal energy existing in the system, the field φ will re-
main trapped in the false vacuum state even for small (< Tc) temperatures,
in other words the domain walls effectively “freeze-out”. The typical scale of
domain walls at formation is set by correlation length ξ beyond which the
fluctuations in φ are uncorrelated.
This is a complete picture from classical point of view. However in some
regions of space, quantum tunneling effects can free the field from the old
vacuum state: there is a probability per unit time and volume in space that at
a point −→x a bubble of true vacuum will nucleate and each of them will has an
independent value of the field. This leads again to the formation of domains
where the fields are correlated, whereas no correlation exists between fields
belonging to different domains. Then after the creation of the bubble, it will
expand at the speed of light surrounded by a “sea” of false vacuum domains.
As opposed to second-order phase transitions, here the nucleation process is
extremely inhomogeneous and 〈|φ (−→x )|〉 is not a continuous function of time.
To put it briefly, the general feature of the existence of uncorrelated domains
became known as the Kibble mechanism [5] and it seems to be generic to
most types of phase transitions during which “topological defects” arise.

2.3 Cosmic Strings in the Abelian-Higgs model
The symmetry described above is a global symmetry. Its symmetry trans-

formations involve rotating every point in the field by the same constant.
A “local” symmetry allows each point to vary by a different angle. This
symmetry is present in the Abelian- Higgs model described below. The

9



2. TOPOLOGICAL DEFECTS FORMATION: THE PHASE
TRANSITIONS

Lagrangian of the previous example led to an infinite energy density contri-
bution. In the case of the Abelian-Higgs model, a gauge field Aµ will cancel
out the divergences, which will lead to an energy density that will no longer
be infinite, as happened in the previous section. In this case, the Lagrangian
equals:

L = |Dµφ|2 −
1
4FµνF

µν − λ

4
(
|φ|2 − η

)2
(2.10)

where the last term is the same potential as the previous example (2.2),
Dµ = ∂µ − ieAµ is the covariant derivative and e the gauge coupling. The
antisymmetric tensor is Fµν = ∂µAν − ∂νAµ. This model is invariant under
the Abelian group G = U (1) of local gauge transformations,

φ (x)→ eiα(x)φ (x) , Aµ (x)→ Aµ (x) + e−1∂µα (x) . (2.11)

Since the minima of V (φ) are at |φ| = η, this symmetry is spontaneously
broken, and the field φ acquires a non-zero vacuum expectation value.
To study the properties of the broken-symmetry vacuum, it is convenient to
use the gauge in which φ (x) is real. Then, representing φ as φ = η+φ1/

√
2,

we obtain

L = 1
2 (∂µφ1)2 − 1

2µ
2φ2

1 −
1
4FµνF

µν + 1
2M

2AµA
µ + Lint (2.12)

where
µ =
√
λη, M =

√
2eη, (2.13)

and L includes higher order than two in φ1 and Aµ. We see that in the
breaking of a gauge symmetry does not appear the Goldstone boson. In fact,
if the simmetry breaking is local the boson is not present in the spectrum and
simultaneously the gauge field becomes massive. The interpretation of this
situation is that the boson is “absorbed” as longitudinal mode of the gauge
vector. This model was considered by Nielsen and Olesen in their discovery
paper on string solutions in relativistic field theories [7].

There is an important difference between global and gauge (or local)
cosmic strings: local strings have their energy confined mainly in a thin core,
due to the presence of gauge fields Aµ that cancel the gradients of the field
outside of it. Also these gauge fields make it possible for the string to have
a quantized magnetic flux along the core. On the other hand, if the string
was generated from the breakdown of a global symmetry there are no gauge
fields, just Goldstone bosons, which, being massless, give rise to long-range
forces. No gauge fields can compensate the gradients of φ this time and
therefore there is an infinite string mass per unit length.

10



Chapter 3
The variety of defects

Topological defects are at the heart of most SSB based phase transitions.
Whenever there is a phase transition based on spontaneous symmetry break-
ing, topological defects are produced if they are allowed by the structure
of the vacuum manifold. These objects should be produced in high-energy
particle physics phase transitions just as well as they are produded and, only
in this case seen, in low energy condensed matter phase transitions. As has
already been mentioned, phase transitions were common in our universe as
well when it was young. After its formation, it started to expand and cool
down, undergoing several phase transitions related to a series of symmetry
breakings. At the beginning, when the universe was very hot, all fundamen-
tal interactions were united under the same simple group G (they had the
same coupling constant). When the temperature of the universe decreased
below some characteristic critic values, Tc , it underwent a series of symmetry
breakings related to phase transitions until it reached the present state where
all four fundamental forces are decoupled. It is consequently reasonable to
expect that during this process, topological defects of cosmological size might
have been formed. We can summarize these processes in terms of symmetry
groups writing:

G→ H → SU (3)× SU (2)× U (1)→ U (3)× U (1) (3.1)

Here, each arrow represents a symmetry breaking phase transition where
matter changes form and the groups − G,H, SU(3), etc. − represent the dif-
ferent types of matter, specifically the symmetries that the subject exhibits
and they are associated with the different fundamental forces of nature. The
basic premise of grand unification is that the known symmetries of the el-
ementary particles resulted from a larger (and so far unknown) symmetry
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3. THE VARIETY OF DEFECTS

group G. After a phase transition has occurred, the original symmetry G is
broken down to H. The group SU(3) is associated with the strong nuclear
force, SU(2) is the symmetry group of the weak interaction and the group
U(1) is associated with the electric and magnetic forces.

The formation or not of topological defects during the phase transitions,
followed by SSB, and the determination of the type of the defects, depends
on the topology of the vacuum manifold M. After the phase transition, the
order parameter field, that defines the degree of asymmetry in the phase of
symmetry breaking, chooses different vacua from this vacuum manifold in
different regions of space. These regions form domains in space. During
further evolution of the system, the order parameter may get ‘locked’ in
symmetric state in localized regions whenever neighboring domains cover
the vacuum manifold in topologically non-trivial 1 manner. Then, there will
be some defects. Since these defects are formed due to non-trivial topology
of the vacuum manifold, these are called topological defects. The necessary
conditions of the formation of such defects depends on various homotopy
groups 2 of the vacuum manifold. A theory may have symmetry breaking
pattern with vacuum manifold consisting of two or more disconnected pieces.
If this occurs, “domain walls” can form, Fig. 3.1.

Figure 3.1: Domain walls occur at the boundaries between regions of space.

Similarly, other topological defects, in addition to the domains, like strings,
monopoles may arise when the first and the second homotopy group of M
are non-trivial, respectively. Different models for the Higgs field lead to the

1The trivial topology on an open set X is usually defined to be the collection {∅,X}.
Any other topology on X is non-trivial.

2A homotopy group consists of equivalence classes of maps of spheres (with fixed base
point) into the manifold, where two maps are equivalent if they can be smoothly deformed
into each other.
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3. THE VARIETY OF DEFECTS

formation of a whole variety of topological defects, with very different fea-
tures and dimensions. In the following, let us provide a review of the most
important characteristics of each class of defects. Some of the proposed the-
ories have symmetry breaking patterns leading to the formation of domain
walls: two-dimensional thin surfaces appearing at the junction of field values
belonging to different disconnected sectors of M, trapping enormous con-
centrations of mass-energy, similar to two-dimensional sheet-like structures
found in ferromagnets. Their appearance is associated with the breaking of a
discrete symmetry. Domain walls occur at the boundaries between regions of
space with values of the field φ in different components, with φ interpolating
between these two values across the wall. The model generally considers a
set of real scalar fields φi with a Lagrangian of the form

L = 1
2 (∂µφi)2 − V (φ) (3.2)

where the potential V (φ) has a discrete set of degenerate minima.
Within other theories, cosmological fields are distributed in such a way that
the old symmetric phase is confined into a finite region of space surrounded by
the new and non-symmetric phase. This situation evolves into the generation
of defects with linear geometry called “cosmic strings”, Fig. 3.2.

Figure 3.2: Cosmic string appears as a line.

The strings arise in models in which the vacuum manifold M is not simply
connected, so it contains enclosed holes about which loops can be trapped.
Theoretical reasons suggest these strings (vortex lines) do not have any loose
ends in order that the two phases not mixed up. This leaves infinite strings
and closed loops as the only possible alternatives for these defects to manifest
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3. THE VARIETY OF DEFECTS

themselves in the early universe. In other words, it can be stated that cosmic
strings are infinitely long and filamentary remnants of primordial dark energy
which formed in the early universe and were then stretched by the expansion
of the universe up to the point that, at present epoch, some cosmic strings
could cross the entire length of our observable universe.
By analogy with strings, point like defects or monopoles, Fig. 3.3, arise if
the manifold of degenerate vacua contains non-contractible two-surfaces (like
the sphere S2).

Figure 3.3: A field configuration on a two-sphere signalling the presence of a
monopole within. In particular, the three-dimensional “hedgehog” configuration cor-
responds to a monopole.

With a bit more abstraction, scientists have even conceived other (semi)
topological defects, called “textures”, in Fig. 3.4.

Figure 3.4: Examples of texture configurations in one (a) and two (b) dimensions,
corrisponding to the winding of a field about circular vacuum manifold.

These are conceptually simple objects, yet, it is not so easy to imagine
them for they are just global field configurations living on a three-sphere
vacuum manifold (the minima of the effective potential energy), whose non-
linear evolution perturbs space-time. In contrast to domain walls and cosmic
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strings, textures have no core and thus the energy is more evenly distributed
over space. Secondly, they are unstable to collapse and it is precisely this
last feature that makes these objects cosmologically relevant. In so doing,
it should be evident already that the topology of the vacuum manifold M
determines whether defects appear at a particular symmetry breaking.

The relevant properties of the manifold M are studied using homotopy
theory, so in order to classify qualitatively defects we can use the nth homo-
topy group πn (M) . More generally, the topological defects of a particular
dimensionality arising in a given model can be classified by the elements of
the appropriate homotopy group of the vacuum manifoldM. Table 3.1 sum-
marizes the correspondence between defects and the homotopy group.

Topological defect Dimension Classification

Domain walls 2 π0 (M)
Strings 1 π1 (M)

Monopoles 0 π2 (M)
Textures − π3 (M)

Table 3.1: Topological classification of defects with the homotopy groups πn (M) .

In this framework, we focus on cosmic strings. Cosmic strings are without
any doubt the topological defect most thoroughly studied, in both cosmology
and solid-state physics. In fact, they exist in many field theories motivated
by particle physics, and this suggests that they may exist on a larger scale
in the universe, hence the name “cosmic” strings. In cosmological appli-
cations, strings are generally curved, dynamical, and may form closed loops.
The energy of a string is concentrated along an infinite line and remains con-
centrated there for a duration that is very long compared to the dynamical
time of the string.

Depending on the energy scale of symmetry breaking, local monopoles
and domain walls can have catastrophic cosmological effects, since they might
dominate the energy density of the universe. Local textures are not cosmo-
logically significant, as they decay quickly with time. Strings, on the other
hand, are far more interesting because they find their natural explanation in
the inflationary scenario and are fully predicted by a wide class of elementary
particle models, and they will be studied extensively throughout this thesis.
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3.1 Other cosmic string models
In addition to elementary defects previously mentioned, the cosmic zoo

includes other species of “animals”. The physical properties of these defects
can be very different depending on whether they are formed as a result of
gauge or global symmetry breaking. Here, we give a brief description of
some possible configurations of defects. The list below is not complete and
furthermore there are some defects that fit more than one category. For more
details, we refer the discussion to the reviews by Vilenkin and Shellard [6],
Hindmarsh and Kibble [8].

• Wiggly strings
The name wiggly strings is sometimes used to denote any type of string
whose mass per unit length is different from its tension µ (the main
parameter to describe a string, see Chapter 4). In the simple rela-
tivistic strings, the mass per unit length and the string tension are
equal, because of Lorentz invariance under boosts along the direction
of the string, but this need not be true for more elaborate models. The
wiggles, some small structures, on the string produce a renormalized
effective mass per unit length U > µ and an effective tension T < µ.
Moreover, the presence of currents along the strings seems to influence
the mass and the tension. A particular kind of these small structures
is found in extra dimensional models. In fact, if there are more than
the three spatial dimensions we observe, strings may be able to wrap
around the extra dimensions leading to a renormalized four-dimensional
tension and mass per unit length.
The presence of extra dimensions provides a further energy flux mecha-
nism (as energy may be lost into or gained from the extra dimensions),
which will affect the string dynamics.

• Non-topological, embedded, electroweak and semilocal strings
In the Nielsen-Olesen model, the scalar field is zero at the core of the
string, and the symmetry is unbroken there. The zero field is protected
by the topological properties of the vacuum manifold and the string is
called topological. These strings are unbreakable and stable. There
are cases in which there is no topological protection but the strings are
nevertheless stable. The scalar field configuration at the core can be
deformed continuosly into a ground state, so these non-topological
strings can break. Whether this happens depends on the masses and
couplings of the particles present, on the temperature, etc. Examples
of these types of strings are the “embedded” and the “electroweak”
strings, that carry magnetic flux of the Z boson. They are closely
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related to “semilocal” strings, another example of embedded strings
where the symmetry breaking involves both local and global symmetries
interwined in a particolar way. Semilocal strings play a fundamental
role: their very low mass makes them remarkably stable. So they
can form networks as a collection of segments which then grow and
reconnect to form longer strings or loops. Furthermore, using Planck
mission dataset [2], the study reported in the paper by Sazhina &
Scognamiglio [9] claims the semilocal strings as the most preferred one.

• Dressed and Superconducting strings
If a stable string traps in its core any particles whose mass is lower inside
due to interactions with the scalar field, the string is called “dressed”.
In extreme cases, the mass of these trapped particles is zero in the core
and they lead to persistent currents along the strings, which are then
known as “superconducting”.

• Hybrid network
Hybrid network is made by more than one type of defect, such as for in-
stance strings of different kind or composite defects combining strings,
monopoles and/or domain walls. It can happen that the hydride net-
work contains different types of strings linked by junctions and bridges.
Interesting is also the case in which two types of strings each carrying
different type of flux that is separately conserved. Their name is “(p,q)
strings”, where p and q are numbers that refer to the units of each kind
of flux carried by the strings. Finally, the case in which a string has
monopoles at its ends: the union of such elements are called “necklace”.
We wanted to provide a very brief outline of the other types of defects
and refer the reader to the paper by Achùcarro & Martins [3] for more
details.

3.2 The Cosmic Superstrings
The recent interplay between superstring theory and cosmology has led

to the notion of cosmic superstrings [12], providing the missing link between
superstrings and their classical analogues. The ideas of cosmic strings and
superstrings emerged at about the same time, but were initially unrelated.
In 1985, Witten was the first to consider the possibility that fundamental
strings produced in the early universe could progressively stretch to cosmic
size. Unfortunately, this possibility was quickly ruled out for several reasons.
First the string energy scale is close to the Planck energy (about 1019GeV ),
and so the superstring tension µ would be too high: Gµ & 10−3, while it was
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clear even then that for cosmic strings Gµ . 10−5, otherwise they would gen-
erate excessively large perturbations. Secondly, any period of inflation would
have diluted the numbers of pre-existing cosmic strings or superstrings to an
unobservable level; only strings formed after or at the end of inflation could
be observationally relevant.
According the String Theory, the fundamental constituents of matter are
not point particles but one-dimensional strings, either open or closed (form-
ing loops), whose vibrational modes produce all elementary particles and
their interactions. Two important features of the theory are supersymmetry
and the presence of extra dimensions, namely the brane-world scenario (a
multi-dimensional space-time when additional spatial dimensions have cer-
tain properties) [11]. In fact, the theory can only be made consistent in a
space-time of more than the conventional four dimensions that we observe
- 26 for bosonic strings or 10 for superstrings - , which incorporate super-
symmetry, connecting bosons and fermions. But why can we only perceive
four dimensions? Where are the other six dimensions? The theory tells us
that the additional dimensions can be perceived and “seen” only on an in-
finitesimal distance, as they are folded on themselves and therefore beyond
our direct knowledge (and perhaps even indirect). One way of reducing the
number of dimensions is the Kaluza-Klein mechanism, in which it is assumed
that the remaining six dimensions are compactified, resulting in an effective
4-dimensional space-time we live in. The superstrings have been considered
as possible cosmological objects in accordance with the fact that their en-
ergy can be significantly lower than the Planck one. Thus, the tension of the
cosmological superstrings would be comparable with the observational limits.
This approach is implemented in the representation of brane-world. In the 4D
space-time fundamental superstrings can not be stretched to the cosmologi-
cal scale, they “tear” and will become a system of microscopic superstrings.
In the brane-world scenario, an extra dimension reduction provides the exis-
tance of superstrings on the cosmological scales.

More generally, M-theory, contains the brane-world scenario, in which
the fundamental objects are two-dimensional “membranes” and the back-
ground space-time is 11-dimensional. The M-theory combines the five theo-
ries of the strings, showing that they are, essentially, different descriptions of
various aspects of the same theory. The five theory, that can be distinguished
by the form of strings and how they implement the supersymmetry concept,
are listed here:
• Type I

• Type IIA
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• Type IIB

• Type SO(32)

• Type E8 × E8

The common property of these models is that ordinary matter is concentrated
on the hypersurface, the brane, immersed in a space-time of higher dimension,
called the bulk and the gravity can be spread in it (for review, see [10]).
From this perspective, our universe may be one of such a brane. Finally, the
superstring can naturally appear in brane-world scenario with energies that
are comparable with observational constraints on cosmic string energies.
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Chapter 4
Searching for Cosmic Strings in
astrophysical data

Despite the complexity of the cosmological scenario, that still stands in
the way of a complete understanding of cosmic strings, a promising strategy
is described here, aimed at detecting these elusive physical entities. The
procedure presented in this work is a combination of two modern methods
for CS observational search: the analysis of the anisotropy of the Cosmic
Microwave Background (CMB) radiation, looking for step-like discontinuities
in gradient of CMB temperature and the strong gravitational lensing effects
on background sources by a CS.
We must stress that the optical and CMB methods provide complementary
informations and in order to provide definitive results they must be used in
conjunction.

4.1 First method: cosmic strings signature
on CMB maps

In 1964, Bell Labs scientists Arno Penzias and Robert A. Wilson were
conducting experiments with the Holmdel Horn Antenna, an extremely sen-
sitive device originally used to detect radio emission from the Cassiopeia A
supernova remnant, when they detected a uniform noise source, which was
assumed to come from the apparatus. Despite taking all conceivable steps to
eliminate interference, checking the antenna and the electronics (including
removal of a birds nest from the horn), they continually detected a strange,
buzzing noise that was coming from all parts of the sky at all times of day and
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night. They ultimately concluded that the signal, corresponding to a black
body radiation with a temperature of 2.7K 1, might actually be coming from
outside of our galaxy. Almost by chance, they later learned that researchers
and astrophysicists Robert H. Dicke, Jim Peebles and David Wilkinson at
nearby Princeton University were looking for a way to detect residual radia-
tion that they believed would have resulted from the Big Bang. As it turned
out, the radiation detected by Penzias and Wilson was a perfect match for
what the Princeton researchers had predicted, and it was a success of the
Big Bang model.

Since then, there have been many advances in observational cosmology
and quantitative cosmological constraints now came from a number of com-
plementary investigations. What we observe today in the radio maps is the
variation in temperature of the CMB: nothing more than a snapshot of the lo-
cal properties (density, peculiar velocity and the total gravitational potential)
of the gas of CMB photons at the time the primordial plasma recombined at
redshift z ≈ 1100.
As it was outlined in the previous chapter, in its early history the universe has
gone through phases where it was in different regimes of the energy density:
matter, radiation, and dark energy. The matter consisted of all known ele-
mentary particles and included a dominant component of dark matter, stable
and massive particles with negligible electromagnetic interactions. Initially,
matter and radiation were in thermal equilibrium. As the universe expanded,
particle energies (and hence the temperature of the universe) decreased. The
universe was initially radiation dominated and most of its energy density was
in photons, neutrinos, and in their kinetic motion. After the universe cooled
to the point at which the energy in rest mass equaled that in kinetic motion
(matter - radiation equality), the expansion rate slowed and the universe
became matter dominated, with most of its energy connected to the slow
motion of relatively heavy stable particles: among the baryons, mainly pro-
tons and deuterons, plus the already mentioned dark matter particles. When
the universe became sufficiently cool, electrons and protons combined to form
hydrogen atoms. Before this happened, the photons could not travel far, as
they were continuously absorbed and re-emitted by the charged particles in
the universe. After recombination, the universe was neutral, photons come
to us from this surface of last scattering with no further interactions, save
the red-shifting due to the expansion, because they are able to travel long

1There is a finite time interval during which decoupling took place and during it ap-
proximately all interactions between photons and matter were elastic scattering processes
(i. e. Thomson scattering). In those processes the frequency of a photon does not change,
therefore the conclusion that the spectrum of the photons remains a black body spectrum
still holds.
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distances (the universe become “trasparent”). The radiation we see today in
the CMB was produced at this very remote epoch.
From the very beginning, cosmologists began searching for anisotropies in
the background radiation and, despite of the numerous experiments, aimed
to detect the large-angle temperature anisotropies, they were first discov-
ered by RELIKT-1 in 1992 [14]. After it, several instruments (COBE-DMR,
RELIKT-2, etc) have mapped the anisotropies and we now have high qual-
ity measurements of the statistics of the anisotropies: we will focus on the
WMAP satellite and on a third-generation CMB satellite, Planck.

The anisotropy of the CMB consists of the small temperature fluctua-
tions in the blackbody radiation, superimposed on the average of 2.7K. The
anisotropies of the CMB are classified in primary and secondary:

• The primary anisotropies are the CMB fluctuations generated before
recombination;

• The secondary anisotropies are the CMB fluctuations generated fol-
lowing recombination.

All temperature fluctuations in the microwave background are due to one or
more among the following effects:

• A change in the intrinsic temperature of radiation at a given point in
space. This will occur if the radiation density increases via adiabatic
compression, just as with the behavior of an ideal gas. The fractional
temperature perturbation in the radiation just equals the fractional
density perturbation;

• A Doppler shift if the radiation at a particular point is moving with
respect to the observer. Any density perturbations within the horizon
scale will necessarily be accompanied by velocity perturbations. The
induced temperature perturbation in the radiation equals the peculiar
velocity, with motion towards the observer corresponding to a positive
temperature perturbation;

• A difference in gravitational potential between a particular point in
space and the observer will result in a temperature shift of the radiation
propagating between the point and the observer due to gravitational
redshifting. This is known as the Sachs-Wolfe effect.

The result of temperature fluctuations is the basic observable of the CMB:
the power spectrum, that is the CMB intensity as a function of frequency
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and direction on the sky n̂ (being radiation anisotropic). Since the CMB
spectrum is an extremely good blackbody [32] with a nearly constant tem-
perature across the sky, T , we generally describe this observable in terms of
a temperature fluctuation

Ω(n̂) = ∆T/T. (4.1)

In the hypothesis of Gaussian fluctuations, we consider the multipole decom-
position of the temperature field in terms of spherical harmonics Y ∗lm

Ωlm =
∫

Ω (n̂)Y ∗lm (n̂) dn̂ (4.2)

The field is fully characterized by its power spectrum Ω∗lmΩl′m′ , where the
order m describes the angular orientation of a fluctuation mode, and the
degree (or multipole) l describes its characteristic angular size. Thus, in a
universe with no preferred direction, we expect the power spectrum to be
independent of m. Finally, we define the angular power spectrum Cl by

〈Ω∗lmΩl′m′〉 = δll′δmm′Cl (4.3)

where the brackets denote an ensemble average over skies with the same
cosmology, so the set of Cl forms the power spectrum that shows the intensity
of the harmonics at variation the multipole order. Fig. 4.1 shows the trend of
the power spectrum: it is relatively flat for l < 20, the main peak is present
for l ∼ 200 and represents the most important feature of the power spectrum.

Figure 4.1: CMB power spectrum with data from WMAP, and high-l data from
other experiments.
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Such a peak, called “acoustic peak” and indicates that at a particular
angular scale the anisotropies are maximum. The acoustic peak is followed
by a series of lower oscillations, while spectrum declines rapidly for l > 1000.
In addition to temperature fluctuations, the decoupling, since the Thomson
scattering which couples the radiation and the electrons is not isotropic but
varies with the scattering angle, inevitably leads to non-zero polarization
of the microwave background radiation. Some of the CMB radiation is lin-
early polarized, thanks to the fact that most electrons at the surface of last
scattering see a quadrupole temperature anisotropy around them, however
quite generically the polarization fluctuations are expected to be significantly
smaller than the temperature fluctuations.

In this way, the CMB anisotropies encode information on the primordial
perturbation itself, as well as on the matter composition and geometry of
the universe. This also implies that any topological defects resulting from
the formation of the universe must have left its signature, in fact, they are
expected to induce discontinuities in the anisotropy of the CMB [6], [31],
[35]. This method offers two advantages: the background source (CMB) is
the most distant source in the universe (redshift ∼ 1000 ) or, equivalently, it
is the closest source to the particle horizon of our universe. Therefore, all the
cosmic strings which are inside the observable part of the universe will affect
the CMB. The second advantage is that multi-frequency all-sky surveys of
the CMB already exist and despite of the low sensitivity, the studies have
allowed to set upper limits [38].

4.1.1 Search for anisotropy of CMB induced by a soli-
tary CS by modified Haar wavelets in Planck and
WMAP radio data

The peculiar topology of the space-time in presence of a string can cause
a detectable effect in the cosmic microwave background, by giving a contri-
bution to its anisotropies. In fact, if we consider a solitary, long and straight
CS moving with a constant velocity v, owning to the tension (linear density)
µ against a homogeneous and isotropic background [36], its moving may gen-
erate anisotropy in the CMB due to the simple Doppler mechanism. This
is known as the Kaiser–Stebbins effect [39]: a moving CS induces a relative
speed between the light source and observer and causes a shift of photons.
Consider two particles moving towards the string along parallel paths with
the same velocity v. As they pass the string, the particles start moving
towards one another and eventually collide. The relative velocity of the par-
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ticles after they pass the string is

δu = βγ∆Θ (4.4)

where ∆Θ = 8πGµ (c = 1) is the deficit angle, which is the angle of the
3D space of the cone, which replaces the 3D Euclidean space of our universe
in the presence of a cosmic string [6] and β (c = 1) is the projection of
string velocity on the line perpendicular to the one joining the source and
the observer, in unit of c. The Lorentz factor, γ = (1− β2)−1/2, appears after
transforming to the reference frame of one of the particles, and assuming that
the line connecting the particles is perpendicular to the string direction. If
one of the objects is a source of radiation and the other is an observer, then
the observer will detect a discontinuous change in the frequency of radiation
due to the Doppler shift. In a cosmological setting, the string is backlighted
by a uniform black-body radiation background, and the Doppler shift results
in a discontinuous change of the background temperature across the string
[39]. The magnitude of this variation is:

δT

T
= δu = 8πGµ β√

1− β2 = 8πGµβγ (4.5)

According to this model [36], an anisotropy induced by solitary CS represents
a sequence of zones of decreased and increased temperature: the cold spot in
front of moving string, the step-like jump, and then appearance of hot spot;
finally a cold spot follows again . The total effect is a step-like discontinuity
in the CMB temperature distribution as depicted in Fig. 4.2.

Figure 4.2: The Mollweide projection of the sky shows simulated structure of
anisotropy (temperature variation) induced by one straight CS lying on the line con-
necting the north and south Galactic pole. A string is moving relativistically from
the left to the right.
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It is possible to generalize equation (4.5) for arbitrary angles between the
string, its velocity, and the line of sight [13], [15].

Due to the specific discontinuity structure of CS anisotropy and its low
amplitude we searched its traces with a special step-like set of orthogonal
functions, convolving the ordinary maps (obtained in the radio) with a mod-
ified Haar functions (MHF), Fig. 4.3.

Figure 4.3: The basic Haar function and the scaled and translated versions of a
“mother wavelet” Ψ (t).

The convolution procedure is the standard technique based on the use
of the most appropriate and complete orthonormal system. In our case of a
step-like signal the choice is the MHF set. The modified Haar harmonic is
most sensitive to the appearance of discontinuities in radio survey data, in
fact this technique is able to detect a CS at a level of δT ≈ 10µK [37]. Let we
show how to get it in the following. In principle, we could expand our data in
ordinary trigonometric functions of the angular coordinate of the disk (e.g.
sinϕ and cosϕ) and in some set of functions that are orthogonal to the disk
radius. However, generally speaking, expansion in functions (of an angular
variable) of any other form implies that the signal power is distributed over
all the harmonics. Thus, when expanded in trigonometric functions of the
angular anisotropy due to the CS, the amplitudes of all the harmonics will
be non-zero. In other words, the signal from the CS will be smeared out
over the entire spectrum. In order for the signal to be detected, the power
smeared out over all the harmonics must be “gathered” to make use of the
full power of the signal. For our purpose the MHF is a realization of the first
harmonic of the Haar system of orthogonal functions with cyclic shift. This
function is equal to 1 in the rotation range [0, π), and it is equal to −1 in
the rotation range [π, 2π). The rotations result in a set of amplitudes. Since
a CS could be oriented arbitrarily with respect to a grid of lines of longitude
and latitude, the search for a CS at each point requires multiple convolutions

26



4. SEARCHING FOR COSMIC STRINGS IN ASTROPHYSICAL DATA

with a rotation of the circle, which corresponds to a shift in the “jump” in
the Haar function. This shift yields a new orthogonal and complete set of
functions: MHF. When there is a CS at a convolution point, the harmonic is
maximum if a chord of the circle coincides with the position of the CS. We
assigned each pixel a value equal to the corresponding maximum value of the
convolution, making a map of CS candidates as in Fig. 4.4.

Figure 4.4: CS candidates (continuous zone with indication of temperature gradi-
ents) in Planck data after MHF analysis at the 3σ level. Units are [µK]. The radius of
the MHF convolution is 5◦. The long continuous traces in the vicinity of the Galactic
equator are the remnants of the Galactic filter.

Before the MHF algorithm was applied on real data, the WMAP and
Planck data, we estimated its efficiency and chose the optimal convolution
circle radius [16]. The MHF algorithm was applied to process a map that is
a sum of two model maps: the first map is a simulated map of the primordial
CMB anisotropy that arose at the surface of last scattering and the second
one is a pure anisotropy generated by a straight, moving CS (see Fig. 4.2 as
an example of such map). The maps of the primordial CMB anisotropy and
the anisotropy generated by the moving CS were summed with a coefficient
to characterize the signal-to-noise ratio. To choose an optimal circle radius
for a search for CS, computer simulations were executed to obtain maps
of the distribution of the harmonic amplitude for circles with various radii.
So, the CS detection was characterized by the signal-to-noise ratio, since
the CS position in the model maps was known. The amplitude at the CS
location was taken to be the signal and the rms of the harmonic amplitude
in the map to be the noise. Those simulations indicate that the optimal
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value of the convolution circle radius is from 3◦ to 5◦. In order to study the
efficiency of the MHF algorithm, statistical methods of simulations were also
apply, creating a robust set of 300 maps of sky simulating the CMB structure
without any string. The results show that there are less than one false string
candidates in simulations: this is considered a strong support to the efficiency
of the process [16]. The Figg. 4.5 and 4.6 show examples of simulated maps
and the result of them after the application of MHF algorithm.

Figure 4.5: Simulated CMB map. Units are [µk].

Figure 4.6: False CS candidates for simulated CMB map Fig. 4.5. Units are [µk].
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In order to find CS candidates (see Fig. 4.4), we prepared six inde-
pendent original Planck maps (from 100 to 857 GHz) cleaning them with
recommended Galaxy filters and point source extractors [2]. The cleaned
maps are convolved in each pixel with a MHF specified in a circle, see Fig.
4.7 as a cleaned map example for 143 GHz.

Figure 4.7: Cleaned Planck data map for 143 GHz, with 70% Galaxy mask. Units
are [K] .

We use two main necessary conditions to handle found structure as CS
candidate:

• a continuous line, that represents the best match between the Haar
step-like function and the “jump” on CMB map;

• at least three correlated vector of temperature gradients.

We applied this procedure to all the available wave-channels 100, 143, 217,
353, 545, 857 GHz for different sky coverage of 70, 80, 90, 95, 97, 99 %.
The sky coverage characterizes the type of Galactic mask [2]. Of course,
in this process we reject some candidates lying in the equatorial Galactic
region since that region gives spurious contributions to the radiation emission.
Furthermore, all available filters were used to compare the positions of the
candidates and filter out those which are not present at all frequencies, as the
appearance of a real CS shall not depend on the observation frequency. The
result of CS candidates search by MHF algorithm applied to Planck data is
shown for filter 143 GHz, in the following Table 4.1.
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CS candidate number CS tension Sky coverage

3 5.52 97
2 5.66 99
2 6.15 90
2 6.32 70
1 7.07 99
1 7.36 97

Table 4.1: The result of CS candidates search by MHF algorithm applied to Planck
CMB data for filter 143 GHz. CS tension in unit of

(
107).

These results comes from the relation between the tension µ and the
number of the cosmic strings. For example, for the filter 143 GHz, the 1σ
value corresponds to δT = 14.8 µK but in this case we have some wrong
candidates which have to be studied by additional optical methods (search
for an excess of gravitational lensing events nearby the CS candidates). The
2σ and 3σ levels correspond to 29.6 µK (Gµ/c2 = 4.21 × 10−7) [10] and
44.4 µK (Gµ/c2 = 6.32 × 10−7), respectively. We found that there are no
CS with tension more than Gµ/c2 = 7.36 × 10−7. For tensions in the range
Gµ/c2 = 6.44× 10−7 to Gµ/c2 = 7.36× 10−7 we have no more than one CS
candidate. For the lowest tension limit available by the MHF algorithm, we
have no more than five CS candidates in the whole universe inside the last
scattering surface. For Gµ/c2 ≤ 4.83× 10−7 the MHF method is ineffective
because of unverifiable or even wrong CS candidates. Thus, the existence of
string with tensions Gµ/c2 ≤ 4.83 × 10−7 is not excluded, but it is beyond
the Planck data possibilities.

Finally, our MHF algorithm with the results in [2] made it possible to
clarify the preferred CS types. The most preferable types of CS are semilocal
ones, described by the model with complex scalar doublet [6]. If its imaginary
part is equal to 0, the semilocal CS becomes the Abelian-Higgs CS. The
main difference between these two types of CS is that the semilocal CS can
have ends (monopoles) and can be unstable under certain conditions. The
topological (“ordinary”) CS have no end and formally, they break on the
surface of last scattering. It means that if our CS candidates are topological
defects, then they have to be very far from the observer, up to z = 7, because
their length is much less than 100◦ [36]. In this case we have no possibility
to observe their effects in the optical data by looking through gravitational
lensing events, and we will never confirm our candidates by independent
optical observation. But the situation substantially changes if we are dealing
with semilocal CS. They can be closer to us, being not very long. Therefore,
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our strategy is now to find suitable optical fields to search for the chains of
gravitational lenses, produced by candidates semilocal CS. The structure of
the CS candidates found by the MHF method confirms the view of semilocal
CS as a collection of segments (for the detailed study we remand to [9]).

Following the above criteria, we select the best map, with δT/T = 38.5µK,
hereinafter referred to as CSc-1. The identification of it was done in IDL
system with the HEALPix package, which is designed to generate and ana-
lyze sky maps. It has been used the IDL-program (developed by M.V. Sazhin
and O.S. Sazhina) for cosmic string search with the MHF method. Using as
input the ILC-Plack map 2 it was identified the string candidate CSc-1 with
the higher level of the standard deviation (s.d.), calculated over all sky map
after the Haar convolution. Using the HEALPix operators ‘mollview’ and
‘mollcursor’, we define the galactic coordinates of the containing region the
CSc-1, Fig. 4.8, which will be the issue being addressed in the later optical
analysis.

Figure 4.8: The Mollweide projection of the CMB anisotropy map after the MHF-
convolution and the cosmic string candidate CSc-1 is indicates with the rectangular
frame. The amplitude of the CSc-1 is ≈ 40µK under the original CMB background
of the order of 100µK. There are indicated the temperature gradients which have to
be correlated.

2The ILC is a technique of the NILC method applied to multi-channel observations
in needlet space, with weights that are allowed to vary over the sky and over the full
multipole range, in order to extract the CMB (or any component with known spectral
behaviour).
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4.1.2 The CMB explorers
• WMAP

The Wilkinson Microwave Anisotropy Probe also known as WMAP,
and Explorer 80 is a spacecraft which measures differences in the tem-
perature of the CMB across the full sky, Fig. 4.9.

Figure 4.9: WMAP spacecraft.

WMAP is named in tribute to American physicist David Todd Wilkin-
son, who died in 2002 and he had been a member of the mission’s sci-
ence team. The WMAP spacecraft was launched on 30 June 2001 from
Florida and was positioned near the second Lagrangian point (L2), a
gravitational balance point between Earth and the Sun and 1.5 million
km opposite the Sun from Earth.
Data from WMAP showed temperature variations of 0.0002K caused
by intense sound waves echoing through the dense early universe, about
380,000 years after the Big Bang. This anisotropy hinted at density
variations where matter would later coalesce into the stars and galaxies
that form today’s universe. WMAP determined the age of the universe
to be 13.8 billion years, measured the composition of the early, dense
universe, showing that it started at 63% dark matter, 12% atoms, 15%
photons, and 10% neutrinos. The contribution of dark energy at the
time was negligible. It also used to universe’s geometry and to the
Big Bang model and the cosmic inflation theory. For that, the mission
created a full-sky map of the CMB, with a 13 arcminute resolution via
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multi-frequency observation. The map requires the fewest systematic
errors, no correlated pixel noise, and accurate calibration, to ensure
angular-scale accuracy greater than its resolution. The map contains
3,145,728 pixels, and uses the HEALPix scheme to pixelize the sphere.
The telescope also measured the CMB’s E-mode polarization and fore-
ground polarization. WMAP was initially planned to operate for two
years, but its mission was extended to September 2010 and in 8 years,
three different data releases were produced.

• Planck
Planck is the latest space observatory operated by the European Space
Agency (ESA) from 2009 to 2013 and it mapped the anisotropies of the
CMB at microwave and infrared frequencies, with high sensitivity and
small angular resolution, Fig. 4.10.

Figure 4.10: The Planck satellite.

The project, initially called COBRAS/SAMBA, was later renamed af-
ter its approvals, in honour of the German physicist Max Planck. Its
features are listed below:

– The spacecraft carries two instruments: the Low Frequency In-
strument (LFI) and the High Frequency Instrument (HFI), both
can detect the total intensity and polarization of photons;

– Covered frequency range: 30 to 857 GHz;
– Sensitivity: ∆T/T ∼ 10−6;
– Angular resolution: 5 arcmin.
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4.2 Second method: strong gravitational lens-
ing by a CS

Gravitational lensing is a consequence to General Relativity: when pho-
tons from distant sources travel across the universe, their trajectories are
perturbed by the distribution of matter. In particular, their paths are de-
flected by an angle due to the local curvature of space-time; in the “strong
lensing” regime this can produce multiple images, in the simplest case double
images. Let us discuss the theoretical features of a CS as gravitational lens.

The gravitational properties of cosmic strings are deeply different from
those of non-relativistic matter. This can be easily seen in the toy model
case of a static and straight cosmic string, where in the weak field limit, the
Einstein field equations are

∇2φ = 4πG (ρ+ 3p) = 0 (4.6)

where φ is the gravitational field, ρ the energy density and p is the pressure.
For a cosmic strings p = −ρ/3, in the hyphotesis of a universe dominated by
radiation. A cosmic string affects the global geometry of space-time around
it: Vilenkin (1981) first studied the gravitational properties of cosmic strings
under the weak field approximation. He found that the metric describing the
space-time around a straight cosmic string in cylindrical coordinates (assum-
ing that the cosmic string lies on the z-axis) has the form

ds2 = dt2 − dz2 − dr2 − r2dθ, 0 ≤ θ < 2π (1− 4Gµ) . (4.7)

This is the Minkowskian metric of the space-time, but with the angular
coordinate not allowed to vary up to 2π. The effects of such a geometry can
be seen in the trajectories of two test particles moving in parallel towards a
cosmic string, which is perpendicular to their motion plane as shown in Fig.
4.11.

Figure 4.11: In the space-time around a cosmic string, the trajectories of two test
particles as they move perpendicular to it. The cosmic string’s axis passing through
the top of the cone.
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Photons from a background source move around the CS, and by circum-
navigating the CS, they form two images on its sides. Since along the two
trajectories the space is flat, there is no gravitational attraction exerted by
the CS on the photons and no distortion is introduced. However, in spite of
the fact that the metric is locally flat, the global properties of the space-time
are not Minkowskian but conical, and a complete revolution around the po-
sition of the CS, gives a total angle that is smaller than 2π; the difference is
called “deficit angle”, Fig. 4.12:

∆Θ = 8πGµ, (4.8)

where c = 1.

Figure 4.12: An illustration of the strong lensing by cosmic string. The space-time
around the string can be obtained by removing the angular wedge of width ∆Θ, but
remain flat everywhere. An observer can thus see double images objects located on a
certain zone behind the string.

This is one of the most important astrophysical characteristic of a CS,
because it defines the properties of the CS as gravitational lens [18], where
µ is the linear density (or tension) of a cosmic string and G is the Newton
constant. The physical properties of a CS predicted by Kibble are character-
ized by just one parameter, namely the mass per unit length µ, from which
the lensing properties can be derived [26], [6], [8].

In gravitational lensing processes, the angular distance between lensed
images depends on the deficit angle and from the linear distances (from the
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observer to the lens and from the observer to the background source).
In general, this parameter also depends on the transverse velocity and orien-
tation of the CS with respect to the observer. In fact, when the photons pass
the cosmic string, they follow the geodesics of the conical space-time around
the string and converge, acquiring an extra velocity component. However, in
the simplified model derived here both effects can be safely neglected [19],
[20]. The same result about deficit angle is obtained in a full relativistic anal-
ysis under the assumption of purely one-dimensional strings [6]. If the cosmic
string has non-negligible width, then in general ∆Θ > 8πGµ [21]. However,
in the case where Gµ << 1, Eq. (4.8) is a very good approximation.

In this work, I use the simplest kind of relation between the CS anisotropy
δT , the CS mass per unit length µ and the projection β of the CS velocity
on the plane perpendicular to the line of sight [18]:

δT

T
= 8πGµ β√

1− β2 (4.9)

Here T = 2.73K is the CMB temperature, δT has the order of µK, c = 1 is
the speed of light.
We assume that the CS is far enough from the observer, so that the geomet-
rical factor is close to 1 3. We also assume the CS perpendicular to the line
of sight, so the CS velocity is equal to β (c=1). Finally, we use the relation
between the CS tension µ and the observed angular distance ∆Θ between
two images of a remote galaxy lensed by CS, the deficit angle defined in
(4.8). The peculiar form of the metric around a cosmic string can result in
characteristic lensing patterns of distant light sources. In fact, the photons
from a distant source travel in conical space-time and if a straight long string
passes across our line of sight it may produce images which look as two exact
copies of the same galaxy. This effect arises if the angular distance between
the background galaxy and the CS in the plane perpendicular to the line of
sight is smaller than CS deficit angle (proportional to the CS tension). In
a more general case of loops and non-straight strings, the patterns will be
more complicated, but still have a characteristic signature. The reason why
we consider only straight string is simple, for astronomical constrains, these
objects are much easier to detect than loops, for example. Furthermore, a
a straight configuration for the string is energetically favourable, it will be
more stable.

A CS signature can be found by searching for an excess of strong grav-
itational lensing events: the so-called chain or “Milky Way of gravitational

3The geometrical factor is defined as Rg−Rs

Rg
where Rs is the distance between the

observer and the string and Rg is the distance between the source and the observer. We
suppose that, on average, the CS is halfway between the source and the observer.
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lenses” [6], Fig. 4.13.

Figure 4.13: Merely figurative picture of cosmic string “Milky Way” [6]: a chain of
background objects lensed by a cosmic string.

Since a cosmic string has a long structure, the light from all objects laying
in the background within an angular distance from the string smaller than
the deficit angle will be lensed. The final effect being that along the path
of the string will appear a set of such pairs, rather than isolated pairs. The
string, in fact, will lens all objects along its path, generating a linear excess
(linear distribution) of lensed galaxies. In general, in wide-field astronomical
images if there is a CS, we have to expect both ordinary gravitational lenses
and lenses induced by the CS.

In our work, we focus on the case where gravitational lensing is caused
primarily by galaxy-sized deflector in order to find an excess of candidate
galaxies pairs. For low angular resolution, a pair of images of a source lensed
by a CS looks like ordinary lensing. In the case of lensing of a galaxy by
another galaxy or by some mass distribution, it is also appeared two images
[22]. Therefore, there is the problem of distinguishing between normal lenses
and lenses induced by a CS. This issue can be addressed statistically by
using the observational estimations of the number of ordinary lenses at a
given redshift and given magnitude. In the case of lensing by a CS, the
surface brightness distribution presents discontinuities and strong gradients
that are not present in ordinary gravitational lensing, where instead the
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resolved images could be distorted, forming arcs, but are otherwise smooth
[22]. In fact, an important aspect of gravitational lensing by a cosmic string
is that, at a difference with what happens for compact lenses, the images will
be virtually undistorted due to the conical nature of the space-time. The
only distortion which can arise are sharp edges in the fainter isophotes of an
extended background source [18]. In other words, the isophotal analysis of
lensed images could give the unambiguous proof of presence of a CS. However,
if the two images have a large angular separation, the CS lensing features
may be visible only in the outer faint isophotes and using high resolution
instruments. Fig. 4.14 depicts a simulation of a galaxy lensed by a cosmic
string [18].

Figure 4.14: Example of gravitational lensing of a resolved galaxy by a cosmic
string.

Furthermore, in contrast to what happens in other lensing models, the
lensing by a cosmic string does not introduce any amplification of an indi-
vidual image from the background source. It is worth recalling that it can
not ruled out the possibility, even though rare, to face with a false positive
case of two merging galaxies. Thereafter, we mention the resounding case of
CSL-1 [27].

An opportunity to detect the gravitational lensing signature by a cos-
mic string appeared in 2003, when the case of a peculiar object, named
Capodimonte-Sternberg lens N.1 or CSL-1, was discovered in the OACDF
[27], [28] but it had been rejected only at the end of a lengthy observational
work, Fig. 4.15.
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Figure 4.15: Capodimonte – Sternberg candidate lens n. 1, CSL-1.

CSL-1, located at (α, δ) = (12 : 23 : 30.70,−12 : 38 : 57.8) is a double ex-
tended source laying in a low density field and with the two components
separated by ∼ 2 arcsec, so a separation compatible with the predictable
deficit angle for a cosmic string. Both components are well resolved and
have roundish and identical shapes in ground-based images. Low resolution
spectroscopy showed that both components are at a redshift of 0.460±0.008,
while photometry (both global properties and luminosity profiles) matched
those of giant elliptical galaxies at medium redshift. Visual inspection, com-
parison of main absorption lines, ratio of the spectra of the two components
and their cross correlation, showed that the spectra of the two components,
altough in the limited spectral range covered by the original spectra, were
identical at a ∼ 99% confidence level. These properties led to propose that
this objects could be a background galaxy lensed by a cosmic string, and so
the first case of gravitational lensing by a cosmic string.

A rare coincidental alignment of two identical giant ellipticals at the same
redshift seemed very unlikely due to a series of odd conditions: the two el-
lipticals should have been relatively near ≈ 11kpc to each other, and in spite
of this undistorted, with identical (within the errors) spectra, and residing
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in a relatively low-density environment (no other galaxies could be detected
in the same region). The only method to clarify the nature of the object was
to obtain high angular resolution images of the object (i.e. HST data), Fig.
4.16 [18].

Figure 4.16: The actual HST image of CSL-1.

The simulations showed that lensing of an extended background object by a
cosmic strings would introduce sharp edges in the low light level isophotes,
but in average seeing conditions, these sharp edges are rounded off by the
seeing and therefore not visible, Fig. 4.17 [18].

Figure 4.17: Numerical simulation of the image of an E galaxy as it would appear
if lensed by cosmic string.
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The follow-up high resolution analysis provided the interpretation of CSL-1
as two elliptical galaxies in an early state of interaction which may even-
tually lead to a merger, a rare case of “dry merger”. Even though it was
an unsuccessful case, the detailed study of this anomalous object allowed to
determine which kind of observations are necessary to detect observational
effects induced by cosmic strings [29], [30], [27], [19].

Since a high-resolution follow-up of many CS lens candidates is extremely
time consuming, to persue this approach we first require a statistically sig-
nificant indication of the presence of a CS. One possible approach is the use
of an excess of gravitational lensing events in the region of the sky where
recently we found traces of anisotropy by a CS, the gravitational lensing
chain.

4.2.1 Feasibility test
To confirm the presence of a CS in the regions where we found CMB gra-

dients, we looked for an excess of lensed galaxies pairs. We covered the area
of ∼

(
(18.9◦)2

)
, assembled from 31 overlapping squared fields 1◦ × 1◦ from

(α = 11 : 29 : 03, δ = +15 : 23 : 37) to (α = 10 : 57 : 47, δ = +25 : 03 : 51).
In the following, these fields will be called “string fields”. Fig. 4.18 is an
example of one of such fields with center (α, δ) = (11 : 17 : 55,+18 : 52 : 27),
from the STScI Digitized Sky Survey, POSS2/UKSTU.

Figure 4.18: A 1◦ × 1◦ string field with center (α, δ) = (11 : 17 : 55,+18 : 52 : 27)
in r-band from POSS2/UKSTU.
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This field size is because of the resolution of 1◦ used for all sky radio data,
but increasing a processing time or processing the selected areas instead of
the whole sky, in future studies it will be possible to increase this resolution.
In order to get these fields we used data from the STScI Digitized Sky Survey,
POSS2/UKSTU [24], both for a preliminary visual analysis and when SDSS
data were not available, and the same area is checked also using fields from
Sloan Digital Sky Server DR12 [23], below we will provide the details.

• The Sloan Digital Sky Survey
The Sloan Digital Sky Survey or SDSS is a digital imaging and spec-
troscopic survey of the high Galactic latitude sky, covering mainly in
the Northern hemisphere.
Images were taken using a photometric system of five filters (named u,
g, r, i and z). These images are processed to produce lists of objects
observed and various parameters, such as whether they seem pointlike
or extended (as a galaxy might) and how the brightness on the CCDs
relates to various kinds of astronomical magnitude. For imaging obser-
vations, the SDSS telescope used the drift scanning technique, which
tracks the telescope along a great circle on the sky and continuously
records small strips of the sky. The SDSS has taken deep images of
more than one-third of the entire celestial sphere. It is possible to view
SDSS images online for any object or sky position in the survey area,
and download images of SDSS fields as FITS files. The SDSS data
have been made available to the scientific community and the public
in a roughly annual cumulative series of data releases. These data
have been distributed in the form of direct access to raw and processed
imaging and spectral files and also through a relational database, the
“Catalog Archive Server”, or “CAS”, presenting the derived informa-
tion.
In this work we use photometric data from the Data Release 12 (DR12)
that is the final data release of the SDSS-III, containing all SDSS ob-
servations through July 2014 to date. DR12 covers an area of 14, 555
square degrees and the total area of imaging (including overlaps) is of
31,637 square degrees. The following Figg. 4.19 and 4.20 show the area
covered by the survey and the main features [17].
Raw and processed image and spectroscopic data are available through
the Science Archive Server, while the Catalog Archive Server pro-
vides the catalogs of photometric, spectroscopic, and derived quanti-
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ties. More advanced and extensive querying capabilities are obtainable
through “CasJobs”, which allows time-consuming queries to be run in
the background. The Imaging Query Form lets you search for catalog
objects by position, magnitude, and other imaging constraints.

Figure 4.19: SDSS Legacy Sky Coverage.

Figure 4.20: Imaging statistics Data Release 12 (SDSS).
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To build our sample we extracted from SDSS-DR12 all objects that are
classified as “galaxy,” whitin PhotoObjAll, the full photometric cata-
log quantities for SDSS imaging. So, we extract all galaxies together
with their photometry; in particular we used the (“model Mag”) mag-
nitudes as they are fine for unresolved objects (at bright magnitudes,
mag <∼ 18, model magnitudes may not be a robust means to select
objects by flux), rejecting all objects with missing or non-detected in
any of the SDSS photometric bands.
For the visual inspection, the quickest way to view SDSS imaging data
for an area of sky is the SkyServer Navigate tool. It allows to navigate
through sky images to look for interesting objects providing an inter-
active image of a given area of sky, with an overlay of catalog data for
objects identified in that sky area. When you click on an object, the
interface displays the main source properties. In this way it possible
to get the information about the type of object, in particular for this
work, the galaxies have been selected, the photometric redshift and the
magnitudes in different bands.

• The Second Palomar Observatory Sky Survey and the UK
Schmidt Telescope Unit
The Catalogs and Surveys Group of the Space Telescope Science Insti-
tute has digitized the photographic Sky survey plates from the Palo-
mar and UK Schmidt telescopes to produce the “Digitized Sky Survey”
(DSS). The Second Palomar Observatory Sky Survey (POSS-II), con-
ducted about 4 decades later, was the last of the major photographic
sky surveys [25]. Using an improved telescope optics and improved
photographic emulsions, it covered the entire Northern sky with ∼ 900
partly overlapping 6.5◦ fields spaced by 5◦, in 3 bandpasses, correspond-
ing to Kodak IIIa-J (blue), IIIa-F (red) and IV-N (far red) emulsions.
The resolution depends on plate but typically it is 3′′. For this reason
we decided to improve our analysis using SDSS catalog.
When retrieving images from the MAST site this is the mapping be-
tween available survey options and the individual surveys: for all fields,
string and control ones, we use the surveys POSS2/UKSTU Red and
POSS2/UKSTU Blue. By entering a height and width in arcminutes,
we specify the field size of 1◦ × 1◦ for the returned image.
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Before embarking in our analysis, the question we want to address is: can
strong lensing events by cosmic strings be observed and used as a way of
demostrating the presence of a CS? So, we calculate the expected number of
objects, in particular galaxies, which a straight string would lens in an average
ordinary extragalactic field. With the word “ordinary field” we indicate a
region of the sky where there is no indication (from CMB maps) of the
presence of a string. These fields will be used both to measure the average
density of objects in the sky as well as “control fields” in order to verify the
presence of an excess of lens candidates. We choose eleven control fields all
around the string region. They cover an area of

(
(∼ 12.6◦)2

)
, that we have

calculated using the procedure described in Appendix A.
To this end we submit to SDSS SkyServer a query to download a catalog of
all galaxies within the region of interest. So, using SDSS data we producing
a preliminary catalog, setting the following criteria:

• we choose all objects identified as “Galaxy”: we want all pairs made of
two galaxies rejecting the false positive, i.e. star-galaxy, star-star, etc.
which are not the case of CS. We exclude objects like stars because we
are interested to strong gravitational lensing, that need two things (1)
the lens must be very massive to produce a big enough image to see
and (2) the alignment needs to be just right i.e. the object must be
almost exactly behind the lens;

• we choose all objects having a measured photometric redshift with its
error;

• we choose all objects having a measured Model mag 4 in all five bands
(u, g, r, i and z) with their error;

• we require all objects having extension, i.e. petrorad 5, between 0.1 e
4.5 arcseconds. The lower limit is an indicative value because we want
extended objects but not extended more than the deficit angle, whose

4Just as the PSF magnitudes are optimal measures of the fluxes of stars, the optimal
measure of the flux of a galaxy would use a matched galaxy model. With this in mind,
the code fits two models to the two-dimensional image of each object in each band:

1. a pure deVaucouleurs profile,
2. a pure exponential profile.

The best-fit model in the r-band is fit to the other four bands; the results are stored as
the model magnitudes.

5The Petrosian radius rP is defined as the radius at which RP (rP ), ratio of the local
surface brightness in an annulus at r to the mean surface brightness within r, equals some
specified value RP,lim.
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maximum value in our analysis is 9′′. For this reason, we fixed the
upper limit as the half of ∆Θ.

The query returned a total number N of 138556 objects over
(
(12.6◦)2

)
for the control fields:

Control field number Objects from catalog 1σ level objects
1 11858 20
2 12635 16
3 13689 23
4 14522 29
5 13252 27
6 16522 32
7 16079 31
8 15691 20
9 2341 4
10 9492 12
11 12475 15

Table 4.2: Results of automatic algorithm for 11 control fields of area
(

(12.6◦)2
)

. In
the second column all objects from catalog for each control field, in the third column
the candidate pairs that satisfy the photometric criteria at 1σ confidence level.

To calculate the total number of galaxies that a string can lens, we must
first set limits on the magnitude of the objects for each band, because we
confine our search to objects that we can inspect by eyes. Each limit value
corresponds to the minimum magnitude of candidate lens pair obtained with
visual inspection of two control fields, CF1 = (10 : 56 : 16,+15 : 47 : 35) and
CF2 = (11 : 06 : 50,+13 : 25 : 36), Table 4.3:

Band Model mag limit

u 24.6
g 24.2
r 23.0
i 22.2
z 22.3

Table 4.3: Magnitude limits in all five bands.

We incorporate the information we get into the above criteria obtaining,
for eleven ordinary fields, the total number of galaxiesNtot = 76659. Knowing

46



4. SEARCHING FOR COSMIC STRINGS IN ASTROPHYSICAL DATA

this quantities, we can divide over all control field area
(
(12.6◦)2

)
to obtain

the mean value of Ntot for square degree of area , N :

N ±
√
N ' 6084± 78 (4.10)

Since we assume that lensed galaxies have maximum separation of 9′′, fixing
a small region of 1◦ × 9′′

(
(0.0025◦)2

)
as a) in Fig. 4.21, the number of

galaxies in it is
Nperp
expected lens = 15.2± 3.9 (4.11)

or if we consider the situation b) in Fig. 4.21.:

N obl
expected lens = 21.5± 4.6. (4.12)

Figure 4.21: Two different cases for a straight cosmic string to across the sky in a
region of maximum width 9′′.

What has just been calculated, are only lower limits to the expected num-
ber of lensed galaxies as we are assuming that the string is locally straight
and the field that we took in account is not surely affected by gravitational
effect due to the string, according the processed CMB radio maps.

At this point, it is fundamental to understand if it is possible to measure
the excess of lensed galaxies with respect to false positive pairs, like galaxies
pairs due to gravitational lensing not by a cosmic string or simply galaxies
close in projection on the sky, as in the case of CSL-1. We process the catalogs
of the control fields applying with the software TOPCAT, an interactive
graphical viewer and editor for tabular data. The aim is using an algorithm
to estimate the statistical significance of the excess of candidate galaxies pairs
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produced by strong gravitational lensing due to the CS. So after matching,
separately, each catalog with itself to obtained pairs, we adopt the following
criteria:

1. we choose the pairs separated by angular distance 2′′ < ∆Θ < 9′′. This
range come from taking into account as lower limit the resolution of the
survey and for the upper limit the relation (4.8), i.e. we are searching
for close objects pairs in according to the tension 10−7 < µ < 10−6 6

for an individual cosmic string [6];

2. we fix magnitude limits in each bands, as reported in Table 4.3;

3. we evaluate the redshift of each component of the pair: these have to
be equal (within the error) for gravitational lens systems;

4. we evaluate the colors of each component of the pair: these have to
be equal (within the error) in all the SDSS Survey bands (u, g, r, i,
z) [23]; in fact the gravitational lensing gives an acromathic effect: the
intensity can change but not the color of light rays.

The last two conditions 3. and 4. traslate in:∣∣∣(m1
x −m2

x

)
−
(
m1
y −m2

y

)∣∣∣ = k ·
√

(∆mx)2 + (∆my)2 (4.13)

with
∆mx =

√
(e1
x)2 + (e2

x)2 (4.14)

where m1
x,m

2
x,m

1
y,m

2
y are the magnitudes for two galaxies in one pair in the

bands x and y respectively, e1
x, e

2
x, e

1
y, e

2
y are the 1σ error bars for definition

of each magnitude.
Similarily:

z1 − z2 = k ·
√
e2
z1 + e2

z2 (4.15)

where e2
z1 and e2

z2 are the redshift errors of the two pair objects and k = 1, 2, 3
is the significance threshold that we decide to adopt. In present analysis, we
let us just consider the 1σ significance level.
The procedure leads to a list of 229 pairs (Nbackgoround tot) for all ordinary
fields. Fig. 4.22 shows an example of the distribution of the pairs in one of
our control fields.

6We report the formula used to derive the limits: ∆Θ = 8π µ
m2

P lanck

, where mPlanck is

the Planck mass defined as mPlanck =
√
6hc
G . In our case 6 h = c = 1.
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Figure 4.22: Control field N.1, where the green circles mark the positions of candi-
date lensed pairs.

Thus, in an average field of 1◦ × 1◦, we compute Nbackground as follows:

Nbackground = Nbackgoround tot

AreaCF
= 18.17 (4.16)

Now, we can calculate the signal to noise ratio to know the significance of
the expected excess of pairs (always considering a 1 square degree field) as:

S

N
= Nexpected lens√

Nexpected lens +Nbackground × 2
' 2.6 (4.17)

What we have achieved justifies and validates our experiment. In fact, this
successful result demonstrates that, using our data, is possible to detected
the presence of cosmic strings at 2.6σ confidence level. Furthermore, the
feasibility test is conducted considering only a 1◦ × 1◦ field. Since we use a
total area of

(
(12.6◦)2

)
, we can produce better results than the previous of

a factor ∼
√

12 > 3, thereby improving our experiment.
It is important to stress that the two catalogues of galaxy pairs include either
resolved (i.e. extended) objects or pairs that are not as readily recognizable
as string-lensed pairs, due to their faintness. A forthcoming investigation will
be devoted to search for discontinuities in the outer isophotes of the resolved
lens candidates.
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4.2.2 Optical analysis of galaxy pairs in the CSc-1 field
The same above procedure is also applied to string fields, Table 4.4.

String field number Objects from catalog 1σ level pairs
1 16969 25
2 16596 13
3 14319 18
4 12481 12
5 12280 12
6 11937 11
7 12036 7
8 11766 25
9 12423 14
10 11556 5
11 12549 14
12 13090 17
13 13940 19
14 15251 14
15 14726 21
16 16491 14
17 16035 11
18 14527 13
19 13731 13
20 14087 7
21 14507 10
22 14184 15
23 14012 14
24 13429 8
25 13188 5
26 13787 12
27 15025 8
28 15628 12
29 14656 23
30 13476 17
31 14030 18

Table 4.4: Results of automatic algorithm for 31 string fields of area
(

(18.9◦)2
)

. In
the second column all objects from catalog for each control field, in the third column
the candidate pairs that satisfy the photometric criteria at 1σ confidence level.
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We obtain a total number of 427 pairs (Npairs tot) in the total area of
(
(18.9◦)2

)
of string fields that satisfy all above-cited photometric criteria.

The mean number of galaxies pairs per square degree in a string field is:

Npairs = Npairs tot

AreaSF
= 22.59 (4.18)

Now, we have all elements to calculate the number of objects in excess respect
to the number of background objects:

Nexcess = Npairs tot −Nbackground tot ·
AreaSF
AreaCF

= 82.5 (4.19)

so, we have an excess of 4.36 pairs per square degree. The error of the excess
is:

∆Nexcess =

√√√√Npairs tot +Nbackground tot ·
(
AreaSF
AreaCF

)2
' 30.7. (4.20)

The significance is:
S

N
= Nexcess

∆Nexcess

= 2.7. (4.21)

Hence, current result seems to suggest that there is a small excess of about
20% in a one square degree string field respect to the same area control
field. This result is in full agreement with the expected result of cosmic
strings scenario: in the presence of a cosmic string should be an excess of the
gravitational lensing events.

In order to identify if there is a preferred range of separation between
the components of pair, we compare the distribution for ordinary fields and
string fields, after rescaling the number of pairs at same area. Fig. 4.23 is
what we obtain: there is an excess of ∼ 38% of pairs in the string fields in
the range [8′′, 9′′]. It should be a first indication of the physical properties of
the cosmic string.

As discussed before, we can reasonably assume that the string is straight,
so we can find its direction by checking if there is a preferred orientation be-
tween close pairs of galaxies along straight lines across the sky. For each field,
we calculate the relative number of pairs with the same angle of inclination
β as a function of PSF. Let us give a description of the search methodol-
ogy. For a line l which connects the centers of the pair components (with
the specified coordinates {x1, y1} and {x2, y2} for the 1st and 2nd component,
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respectively), we can write the equation of the perpendicular line lp in the
form:

y = −(x2 − x1)
y2 − y1

· x+ (x2 − x1)
y2 − y1

· x1 + y1 (4.22)

The accuracy (or the error) ∆β on the slope of the line lp is defined by the
PSF of nearest star from the equation:

(
FWHM

∆Θ

)
= tg

(
∆β
2

)
, (4.23)

where ∆Θ is the angular distance between pair components and FWHM (full
width at half-maximum) is the angular resolution of the survey. In spherical
coordinates

∆Θ =
√

(y1 − y2)2 + cos2y1 · (x1 − x2)2. (4.24)

The inclination angle βi (in arcsec) for each pair i, and its error are given by:

βi = −arctan
(
xi2 − xi1
yi2 − yi1

)
±∆β (4.25)

where

∆β = 2 arctan
 PSFi√

(yi1 − yi2)2 + cos2 yi1 · (xi1 − xi2)2

 . (4.26)

For each pair we found in the string and in the control fields, in order to
estimate the number of pairs which have compatible orientation, we calcu-
late the corresponding angle β and its error ∆β. This error is related, as
you can see in the formula (4.26), to PSF value. We choose three different
cases for ∆β: the ideal case of ∆β = 0, ∆β with PSF = 1.185′′ (this value
has been calculated from the reference star in one of the string fields), and
∆β with PSF = 1.3′′ (it is the median PSF FWHM in r-band declared in
the SDSS catalogs). According to the theory, we expect the random uniform
distribution of βi in fields without the CS and a multi-modal distribution or
a distribution with a single peak in the fields with a CS candidate.
The reason of such a “multi-modality” depends on the curvature of the string.
In the simplest case of a straight string, if the gravitational lensing pairs are
formed by a string, the angles of the lines l should obviously be the same. In
a more realistic case, when the string admits a curvature line, however, one
have to expect the number of pairs with certain angles of inclination should
overcome the number of pairs with other angles.
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Figure 4.23: The histogram for different separation of the pairs for string (blue bar)
and ordinary fields (green bar). It is possible to see the greatest excess for separation
[8′′, 9′′].

In the search procedure of the pairs, we considered a rather wide window
for possible distances between the pair components, from 2′′ up to 9′′. For
the purpose to search such an excess for a certain angle we divided the in-
terval 2′′ − 9′′ into four subintervals: [2′′, 4′′], [4′′, 6′′], [6′′, 8′′], [8′′, 9′′]. For
each of the subintervals we plot the following histogram: the x-axis shows
the intervals of inclination angle β of the line l (binned in 10◦ intervals:
β ∈ ([170◦, 180◦], [160◦, 170◦], ...[0◦, 10◦])), the y-axis shows the numbers of
pairs n. This histogram is done for β without its error ∆β, see Figg. 4.24,
4.25.

Figure 4.24: The histogram for the pairs with separation [2′′, 4′′] for string fields.
The green bars represent β with ∆β = 0. The angle bin is in [◦].
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Figure 4.25: The histograms for different separation ([4′′, 6′′], [6′′, 8′′], [8′′, 9′′]) of the
pairs for string fields. The green bars represent β with ∆β = 0. The angle bin is in
[◦].
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We apply Student’s t-statistics to test the presence of an excess in the
distribution of pairs numbers for a certain inclination angle interval, after
checking with the χ2-test the normal distribution of our samples. For each
subinterval ([2′′, 4′′], [4′′, 6′′], [6′′, 8′′], [8′′, 9′′]) we calculated the mean and s.d.
values as

µk = 1
18

18∑
i=1

nki,

σk =

√√√√ 1
18− 1

18∑
i=1

(nki − µk).

where k = 1, 2, 3, 4 and nik are the number of pairs for each interval of
inclination angle β. For each maximum value n∗ki, if

|n∗ki − µk|
σk

> t(5%, 18− 1)

then we have a surplus for significance level 5%. Here, t(5%, 17) = 2.11 is
the table value of the Student’s t-statistics which depends on the significance
level and the number of degrees of freedom, DF = 17.

The results are the following:

1. For the subinterval [2′′, 4′′] the excess in pairs number is 10% (in com-
parison with mean value of ordinary fields) and t−statistics is t5% =
1.641 < 2.11. No excess at any β.

2. For the subinterval [4′′, 6′′] the excess in pairs number is 12% (in com-
parison with mean value of ordinary fields) and t−statistics is t5% =
3.082 > 2.11. This excess is for β ∈ [20◦, 30◦].

3. For the subinterval [6′′, 8′′] the excess in pairs number is 11% (in com-
parison with mean value of ordinary fields) and t5% = 1.457 < 2.11.
No excess at any β.

4. For the subinterval [8′′, 9′′] the excess in pairs number is 38% (in com-
parison with mean value of ordinary fields) and t5% = 1.489 < 2.11.
No excess at any β.

It indicates the statistically significant abundance of [4′′, 6′′] distanced
pairs in the interval β ∈ [20◦, 30◦] in equatorial system, that corresponds in
galactic system to β ∈ [10◦, 21◦] (in the Appendix B the calculation of the
string inclination angle β from the equatorial system to the galactic system
is reported). Although the excess of pairs in the string fields respect to the
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ordinary fields pairs in that case is 12% we cannot overlook this result with-
out further check. In more realistic cases, when we consider the ∆β is more
difficult to identify an overshoot, the difference becomes statistical equiva-
lent. To establish the reliable correlation with the presence of a cosmic string
it is needed optical observations with higher precision.

In addition, for the [4′′, 6′′] interval, according to the physical meaning
of the data (we have positive and integer values of number of galaxies pairs
with different separation between the components for each of β angle bin),
let us assume the Poisson distribution of the pairs in each β angle bin.
We also assume that the Poisson distribution is the same for all angle bin
and thus, we can take λ as the average value of the occurrences over all angle
bins. The probability density of having x occurrences within a given interval
is:

f (x) = λxe−λ

x! .

Table 4.5 reports the results of the statistic, considering the value in the
upper tail of the function f (x), P .

Separation λ x P

[2′′, 4′′] 1.389 3 0.0525
[4′′, 6′′] 4.889 13 0.00056
[6′′, 8′′] 9.778 13 0.120
[8′′, 9′′] 7.667 12 0.049

Table 4.5: The results for the Poisson’s distribution test. For each separation inter-
val, λ is the average number of pairs, x is the excess and P the The probability of
observing x pairs per interval.

It is clear that the excess, that we have already found using t-Student test,
is again confirmed by this different test. In fact, the probability that n=13
for the subinterval [4′′, 6′′] is too low, indicating that it is an anomalous value.

A further check for the excess of [4′′, 6′′] distanced pairs comes by consid-
ering the orientation angle φ of these pairs respect to the equatorial plane. If
we consider a x−y reference frame, we define “orientation angle” the angle of
the line joining the centres of galaxies of each pair forms with the x-axis (in
other words, respect to the Equator). According to theoretical predictions,
if the temperature gradient on radio maps is a signature of the presence of a
cosmic string, since we selected fields along that gradient, we expect to find
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galaxies pairs oriented orthogonally to the string fields direction. In order to
verify this hypothesis, we plot the centres of string fields (blue dots) and the
centres of the pairs in excess (orange dot) as showed in Fig. 4.26.

Figure 4.26: The position in the sky (in equatorial system) of the centres of the
string fields (blu dot) and the centres of the galaxies pairs distances [4′′, 6′′] with
β ∈ [20◦, 30◦]. The coordinates are in decimal degrees.

Let us look at the orientation of the pairs and the string fields, calculating
their orientation angle φ, reported in the following Tables 4.6 and 4.7:

α1 δ1 α2 δ2 φ

11 : 33 : 42 +15 : 32 : 51 11 : 33 : 41 +15 : 32 : 47 66
11 : 30 : 53 +14 : 47 : 19 11 : 30 : 53 +14 : 47 : 14 61.3
11 : 32 : 42 +15 : 49 : 21 11 : 32 : 42 +15 : 49 : 17 69.8
11 : 32 : 22 +16 : 00 : 09 11 : 32 : 22 +16 : 00 : 14 62.8
11 : 30 : 18 +16 : 45 : 58 11 : 30 : 19 +16 : 46 : 01 66.3
11 : 26 : 03 +16 : 24 : 36 11 : 26 : 03 +16 : 24 : 31 60.5

Table 4.6: The coordinates of each galaxy of pairs (α1, δ1) and (α2, δ2) (in equatorial
system) and the orientation angle φ. The mean value of φ is φ̄ = 64.4.
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α δ φ

11 : 32 : 08 +15 : 07 : 04 −53.1
11 : 31 : 13 +15 : 25 : 09 −53.9
11 : 30 : 19 +15 : 43 : 38 −54.8
11 : 29 : 27 +16 : 02 : 17 −55.6
11 : 28 : 36 +16 : 21 : 05 −56.5
11 : 27 : 45 +16 : 40 : 06 −57.2
11 : 26 : 56 +16 : 59 : 12 −58.2

Table 4.7: The coordinates of the centres of string fields (α, δ) (in equatorial system)
and the orientation angle φ. The mean value of φ is φ̄ = −55.6. The sign minus is
because the angle we measure goes clock-wise.

Fig. 4.27 below shows the orientation in the sky of the centers of the
galaxies pairs and the centers of string fields.

Figure 4.27: The position in the sky (in equatorial system) of the centres of string
fields (blu dots) and the centres of the galaxies pairs distances [4′′, 6′′] with β ∈
[20◦, 30◦] (orange dots). In the upper panel the dashed line is the best fit of the last
seven centers of string field with orientation angle equal to −55, 63◦; in the lower panel
the pair with coordinates (11 : 33 : 42,+15 : 32 : 51) and (11 : 33 : 41,+15 : 32 : 47)
with orientation angle 66◦. The coordinates are in decimal degrees.
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The result is that the each other’s position between the pairs and the
fields is almost orthogonal in the sky: this seems to suggest that there is the
possibility that the galaxies pairs are lensed by a string that should pass in
the middle of them. If we take in account the error ∆β, that in the case
of PSF = 1.3′′ has as mean value 27.5◦ and the not so high resolution of
the radio maps (1◦) from which has been selected the region of the cosmic
string candidate, there is a reasonable agreement between the orientation of
galaxies pairs and string fields. The nature of these pairs should be confirmed
by high resolution observations (similar to CSL-1) in order to remove false
positive pairs and obtain a definitive conclusion.

In carrying out this study, it has been also necessary to proceed with the
visual inspection to check the quality of the automatic algorithm in order
to improve the selection of the galaxies pairs. For this purpose we used
the Sloan Digital Sky Server DR12, to verify the candidates using 5 bands
with resolution 1.3′′. Fig. 4.28, in the next page, shows some examples of
candidates lens galaxies pairs for different deficit angles found via automatic
procedure and then they are checked on SDSS DR12 Navigate Tool.

59



4. SEARCHING FOR COSMIC STRINGS IN ASTROPHYSICAL DATA

Figure 4.28: Candidate lens galaxies pairs from SDSS DR12. The white line indi-
cates the separation between the two components of the pair.
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Chapter 5
Results and conclusions

Cosmic strings are expected to produce well defined and unambiguous
observational features. In the CMB radiation, cosmic strings produce well
defined step-like discontinuities. In the CMB maps the anisotropy induced
by a cosmic string would appear as a sequence of zones of decreased and
increased temperature: first a cold spot in front of the moving string, then a
step-like jump followed by an hot spot and, finally, a second cold spot [36].
In fact the structure of such temperature fluctuation is dependent on the
cosmic string parameters since they are affected by the position of the string
with respect to the observer, by the string velocity and direction, and by the
string linear density. In optical surveys the indication of the presence of a
cosmic string is a chain of lensed galaxies and sharp edges in well resolved
galactic images.

In this thesis, we addressed the problem of recognition of the cosmic
strings signatures using both radio data and optical one. In the first part, the
elaborated and tested algorithm to CS detection in CMB maps from WMAP
and Planck mission was applied to identify cosmic strings candidates. This
algorithm is based on convolution procedure of original observational radio
data with modified Haar functions (MHF) and it is able to achieve the res-
olution for CS deficit angles of the order of 1 arcsec. The main result that
there are no CS with tension larger than Gµ/c2 = 7.36× 10−7. Secondly, we
found a list of preliminary CS candidates in the Planck data, after fixing two
main necessary conditions to handle found structures as CS candidates. In
particular, we selected the best candidate (CSc-1) in order to carry on the
subsequent optical analysis, identifying its position in the sky. The same CS
candidates have been found in the WMAP 9-year data. Finally, our MHF
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algorithm with the results in [2] made it possible to clarify the preferred CS
types. The most preferable types of CS are semilocal strings. They can have
ends (monopoles) and can be unstable under certain conditions. They can be
closer to us, being not very long. The structure of the CS candidates found
by the MHF method confirms the view of semilocal CS as a collection of
segments. Therefore, our strategy has been to find suitable optical fields to
search for the chains of gravitational lenses, produced by candidates semilo-
cal CS. Independence of Planck and WMAP data sets serves as an additional
argument to consider those CS candidates as very promising.

In the second part, we considered simple model of a long straight CS mov-
ing in the plane perdendicular to the line of sight and that it is far enough
from the observer. The convolution of radio maps, obtained from WMAP
and Planck CMB data, provides a list of preliminary CS candidates with
amplitude δT/T . 40µK. After selecting the best one (CSc-1) covering the
field of area

(
(18.9◦)2

)
, we carried on the optical analysis, based on the search

of sources of strong gravitational lensing.
First of all, we computed the possibility to detect an excess of candidate lens
pairs in the ordinary fields and then we measured the excess of lensed galax-
ies with respect to false positive pairs. As result we attested the feasibility of
our experiment at 2.6σ level of confidence to detect the presence of a cosmic
string. Using a simple algorithm, we identified lens candidates that satisfy
photometric criteria and we obtained a list of 427 pairs in the total area of
string fields and 229 pairs for all ordinary fields. The conclusion is that the
number of gravitational lensing candidates we found in string fields is 20%
greater as in the ordinary fields and this result is in full agreement with the
cosmic strings scenario. Assuming pure Poissonian fluctuations this excess is
significant at the 2.7σ level.
The next step was to find, assuming that the string is straight, its orienta-
tion by correlating close pairs of galaxies along the string. We plotted all
angle β without its error (the simplest case) in order to estimate the relative
number of pairs which have compatible orientation. Taking in account the
different possible distances between the pair component, we found the domi-
nant direction of the arrangement of pairs for [8′′, 9′′] angular separations. In
order to ascertain the presence of an excess in the distribution of pair num-
bers for a certain inclination angle interval, we plotted, separately for each
separation intervals, the number of pairs of different intervals of inclination
angle β. Then we applied Student’s t-statistics, getting as result for the first
test a statistically significant excess of [4′′, 6′′] distanced pairs in the interval
β ∈ [20◦, 30◦]. This result is also confirmed by the Poisson’s test. Although
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the excess of pairs in the string fields respect to the ordinary fields pairs in
that case is 12% we cannot overlook this result without further check with
higher precision optical observations. In more realistic cases, when we con-
sider the ∆β is more difficult to identify an overshoot, the difference becomes
statistical equivalent.

For the [4′′, 6′′] distanced pairs, we also computed the orientation of galax-
ies pairs respect the string fields direction, calculating the angle φ respect to
the Equator. This calculation of the “orientation angle” allowed us to know
if the galaxies pairs are oriented orthogonally to the string fields direction as
we expect. The result is that the each other’s position between the pairs and
the fields is almost orthogonal in the sky: this could to suggest that there is
the possibility that the galaxies pairs are lensed by a string that should pass
in the middle of them.

Even if no definitive conclusion can be draw at this point, there have been
intriguing hints of observations that might be signatures of cosmic strings.
Further work in the near future should clarify their status, in fact the only
“smoking gun” for a CS is the observation of special cuts in outer isophotes
of the lensed image. For this purpose, high angular resolution images of the
lensed sources are in order. The preliminary results of this study are not
conclusive, and further analysis is still required. There are several straight-
forward improvements one could make to our string searching methods that
could improve both the final limits and the searching efficiency in future
projects.

This work foresees many possible developments: the next significant ad-
vance in this field may be to use higher resolution radio and optical surveys.
This improvement can lead to a better analysis in order to prevent the pos-
sibility that the signal produced by a real string is diluted by background
pairs and to allow the detection of outer faint isophotes of lensed galaxies.
In addition, the simple algorithm used in this work can be trasformed in a
more sophisticated one, to include constraints on the morphology of galaxies
pairs and different values of the separation angle. It is also worth to use the
direction of the temperature gradients in radio maps as a criterion in order to
exclude those pairs with incompatible orientation. It is appropriate to men-
tion here that there are alternative methods of cosmic string detection that
do not require gravitational lensing and analysis of the cosmic microwave
background radiation (CMB) data: detection of gravitational wave bursts
from the cusps and kinks of cosmic strings.

It is clear, then, that the knowledge about cosmic strings has advanced
at a incredible rate over the last 20 years, but there are still many issues to
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be solved before we can confirm the existence and derive the properties of
Cosmic Strings.
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Appendix A
The area of the surface
covering CSc-1

The area covering the CSc-1 consists of 21 overlapping fields. For each
field, the coordinates of its four angles are known.

Firstly let us calculate the area of one such field. Secondly we calculate
the area of intersection of two neighboring fields (to be excluded from the
total area).

Let a surface S be defined by an equation z = f(x, y). The surface S
is assumed to be smooth at each point, i.e. there exists a perpendicular to
S at each point. Let D be the definition region of the function z on the
coordinate plane Oxy (the region D is the projection of the surface S on the
plane Oxy). The surface area S which is over the region D is calculated by
the formula

S =
∫∫
D

√√√√1 +
(
∂f

∂x

)2

+
(
∂f

∂y

)2

dxdy.

Indeed, the angle γ between the perpendicular and the axis Oz is

cos γ = ± 1√√√√1 +
(
∂f

∂x

)2

+
(
∂f

∂y

)2
.

We construct the projection of the unit cell ∆σij onto the coordinate plane
Oxy:

∆σij = ∆xi ·∆yi
cos γij

,
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where γij is calculated in a point cij. The complete area of S is limit of the
sum: ∑

i,j

∆σij =
∑
i,j

√√√√1 +
(
∂f

∂xi

)2

+
(
∂f

∂yj

)2

∆xi∆yj.

Finally

S =
∫∫
D

√√√√1 +
(
∂f

∂x

)2

+
(
∂f

∂y

)2

dxdy.

Now let z is an implicit function of x and y: F (x, y, z) = 0. In that case

∂F

∂x
+ ∂F

∂z
· ∂z
∂x

= 0,

∂F

∂y
+ ∂F

∂z
· ∂z
∂y

= 0.

In the implicit case

∂z

∂x
= −

∂F

∂x
∂F

∂z

,

∂z

∂y
= −

∂F

∂y
∂F

∂z

.

Finally

S =
∫∫
D

√√√√(∂F
∂x

)2

+
(
∂F

∂y

)2

+
(
∂F

∂z

)2

∣∣∣∣∣∂F∂z
∣∣∣∣∣

dxdy.

Each field is defined on the sphere x2 +y2 +z2 = 1. For this implicitly defined
surface

∂F

∂x
= 2x, ∂F

∂y
= 2y, ∂F

∂z
= 2z,

and
S =

∫∫
D

√
x2 + y2 + z2

|z|
dxdy

Introducing polar coordinates on the sphere with unit radius

x = cosα, y = sinα
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we change cartesian coordinates into polar with jacobian r and obtain

S =
r2∫
r1

α2∫
α1

1√
1− r2

rdαdr.

Let us take as coordinate plane Oxy the plane of the celestial equator. In
this case the angle α ∈ (0, 2π) is the right ascension and δ ∈ (0, π/2) is
declination. The axes Oz is directedto the north pole.

The relation between the polar coordinate r and declination angle δ is

r1 = cos δ2, r2 = cos δ1

(δ1 < δ2).
For each field (α1, δ1), (α2, δ2), (α3, δ3), (α4, δ4) we take approximately α1 =
α3, α2 = α4 and δ1 = δ2, δ3 = δ4. For example (the field No. 11):

α1 = 170.56404, δ1 = 18.3216;
α2 = 169.51245, δ2 = 18.32824;
α3 = 170.5539, δ3 = 17.32329;
α4 = 169.50818, δ4 = 17.3299.

The area

S =
cos δ1∫

cos δ2

α2∫
α1

1√
1− r2

rdαdr = (α2 − α1) · (sin δ2 − sin δ1)

≈ (α2 − α1) · (δ2 − δ1) · cos δ1 + δ2

2

Since every two fields intersect each other, it is necessary to exclude their
intersection area:

S1,2 = S1 + S2 − SU
It’s easy to do in terms of projection: we need to arrange the corners of the
two intersected fields α1

1, α
1
2, α

2
1, δ

2
2 and δ1

1, δ
1
2, δ

2
1, δ

2
2. So, if we have variation

row α̃1 < α̃2 < α̃3 < α̃4 and δ̃1 < δ̃2 < δ̃3 < δ̃4 then

SU = (α̃3 − α̃2) · (sin δ̃3 − sin δ̃2) ≈ (α̃3 − α̃2) · (δ̃3 − δ̃2) · cos δ̃3 + δ̃2

2 .

So for fields No. 11 and No. 12 we have

α1
1 = 170.56404, δ1

1 = 18.3216;
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α1
2 = 169.51245, δ1

2 = 18.32824;

α1
3 = 170.5539, δ1

3 = 17.32329;

α1
4 = 169.50818, δ1

4 = 17.3299.

and
α2

1 = 170.37474, δ2
1 = 18.66864;

α2
2 = 169.32095, δ2

2 = 18.67431;

α2
3 = 170.36562, δ2

3 = 17.67029;

α2
4 = 169.31784, δ2

4 = 17.67593.

For definiteness we choose

α1
1 = 170.56404, δ1

1 = 18.3216, α1
2 = 169.50818, δ1

2 = 17.3299

and

α1
2 = 170.37474, δ1

2 = 18.66864, α2
2 = 169.31784, δ2

2 = 17.67593

and arrange the angles

(α̃1, α̃2, α̃3, α̃4) = (169.31784, 169.50818, 170.37474, 170.56404);

and
(δ̃1, δ̃2, δ̃3, δ̃4) = (17.3299, 17.67593, 18.3216, 18.66864).

The total area for these two intersected fields is.

S12 = S1 + S2 − SU = 0.99683 + 0.99686− 0.53213 = 1.46156.

It is worth noting that if we sum the single areas of each field, in that
calculation we lose the 13% of the total area.
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Appendix B
Trasformation from the second
equatorial system to the
galactic system for the string
inclination angle

Here we will make the trasformation of the string inclination angle β ∈
[20◦ − 30◦], for which we have an excess of galaxies pairs distances 4′′ − 6′′,
from the second equatorial system to the galactic system. The transition
between the galactic end second equatorial system is written as

sin b = sin δ sin δ′ + cos δ cos δ′ cos(α− α′),

cos b sin(l′ − l) = cos δ sin(α− α′),
cos b cos(l′ − l) = cos δ′ sin δ − sin δ′ cos δ cos(α− α′).

where (l, b) and (α, δ) are galactic and equatorial coordinates, respectively
and (α′, δ′) are the equatorial coordinates of the galactic pole. In the epoch
J1950 (in degree and in radians):

α′ = 192.25◦ = 3.355,

δ′ = 27.4◦ = 0.478,
l′ = 123◦ = 2.147.

For the optical data, we can estime δ ∼ tan β · α, where α changes in the
range [166◦, 174◦] for the thirteen pairs and β is the inclination angle. For
the upper limit β = 30◦, we receive

b ∼ tan 10◦ · l
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B. TRASFORMATION FROM THE SECOND EQUATORIAL SYSTEM
TO THE GALACTIC SYSTEM FOR THE STRING INCLINATION

ANGLE

and for the lower limit, β = 20◦ we see

b ∼ tan 210 · l.

Therefore, the inclination angle β ∈ [20◦, 30◦] in second equatorial system
became β ∈ [10◦, 21◦] in galactic system .
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R. Silvotti, and M. Pavlov. Search for gravitational lenses near the ex-
tragalactic double object csl-1. Astronomy Letters, 31(2):73–79, (2005).
astro-ph/0406516.

[30] M.V. Sazhin, O. Khovanskaya, M. Capaccioli, G. Longo, M. Paolillo, G.
Covone, N.A. Grogin, and E.J. Schreier. Gravitational lensing by cosmic
string: what we learn from the csl-1 case. Mon. Not. Royal Astr. Soc.,
376:1731–1739, (2007). astro-ph/0611744.

[31] N. Kaiser and A. Stebbins. Microwave anisotropy due to cosmic strings.
Nature, 310:391, (1984).

[32] Fixsen DJ, Cheng ES, Gales JM, Mather JC, Shafer RA, et al. (1996).
Ap. J. 473:576–587

[33] U.-L. Pen, U. Seljak, N. Turok, Power spectra in global defect theories
of cosmic structure formation. Phys. Rev. Lett. 79, 1611– 1614 (1997).
arXiv:astro-ph/9704165.

[34] R. Battye, A. Moss, Updated constraints on the cosmic string tension.,
Phys. Rev. D 82, 023521 (2010), arXiv:1005.0479.

[35] M.B. Hindmarsh. The Formation and evolution of cosmic strings, chap-
ter Seaching for Cosmic Strings, page 527. Cambridge Univ. Press,
(1990).

[36] O.S. Sazhina, M.V. Sazhin, V.N. Sementsov, Anisotropy of CMBR in-
duced by a straight moving cosmic string (in Russian). JETP 133(5),
1005, (2008).

[37] O.S. Sazhina, V.N. Sementsov, N.T. Ashimbaeva, Cosmic string detec-
tion in radio surveys. Astron. Rep. 58(1), 16–29, (2014).

[38] E. Jeong and G.F. Smoot. The validity of the cosmic string pattern
search with the cosmic microwave background. ApJL, 661, (2007).

[39] N. Kaiser, A. Stebbins, Microwave anisotropy due to cosmic strings.
Nature 310, 391–393, (1984).

73


	Introduction to modern cosmology
	The model and formalism

	Topological defects formation: the phase transitions
	The spontaneous symmetry breaking
	Kibble mechanism
	Cosmic Strings in the Abelian-Higgs model

	The variety of defects
	Other cosmic string models
	The Cosmic Superstrings 

	Searching for Cosmic Strings in astrophysical data
	First method: cosmic strings signature on CMB maps
	Search for anisotropy of CMB induced by a solitary CS by modified Haar wavelets in Planck and WMAP radio data
	The CMB explorers

	Second method: strong gravitational lensing by a CS
	Feasibility test
	Optical analysis of galaxy pairs in the CSc-1 field


	Results and conclusions
	Appendix
	The area of the surface covering CSc-1
	Trasformation from the second equatorial system to the galactic system for the string inclination angle


