UNIVERSITA DEGLI STUDI DI NAPOLI
“FEDERICO II”

Scuola Politecnica e delle Scienze di Base

Area Didattica di Scienze Matematiche Fisiche e Naturali

Dipartimento di Fisica “Ettore Pancini”

Laurea Triennale in Fisica

A quantum implementation of Support Vector
Machine algorithm on IBM QX processors

Relatori: Candidato:
Acampora Giovanni Mendozza Raffaele
Vitiello Autilia Matr. N85000978

Anno Accademico 2018/2019

Introduction

Since the introduction of computers, the way to do research and manage data has
radically changed. Complex software can be executed with programmable hard-
wares, giving us real time responses to hard problem. Of course, not all problems
are solvable by a classical computer, or at least not in polynomial time. On the
other hand the Von Neumann model for computers is based on a sequential logic,
so it necessarly exhibits structural limits when managing big amounts of data.
This seems to be an insurmontable limit : even if according to Moore’s first law
the complexity of a circuit (measured, for example, as the number of transistors)
is going to double every eighteen months, there will be structural limits imposed
by microscopic quantum effects, poisoning our circuit. But if the real nature of
matter is quantum, why don’t use these effects as the building blocks of our com-
puter, rather than as flaws? This is what happens with a quantum computer. As
the research about semiconductors led to the invenction of the transistor and then
to the digital logic at the base of nowadays computers, the blossoming research
about superconductive materials and atomic physics has brought to the birth of the
first quantum computer. EDVAC and ENIAC extended for several m? of surface
and required a continous monitoring by human operators : no one thought they
could evolve in a laptop or a smartphone. At the same manner, quantum com-
puters developed by IBM are very big and have small processors. They can be
programmed by remote via cloud thanks to the IBM Q EXPERIENCE platform.
This could be a turning point in the history cause it could overturn our everiday
life, as the classical computer did. Actually the idea of a quantum computer was
born in the early 1980s thanks to Richard Feynman. Then numerous computer
scientists and physicists developed new theories about quantum information and
showed that (at least theorically) a quantum computer can perform better than a
classical one. This is because a quantum computer can take advantage of phenom-
ena unknown to its classical counterpart. On the other hand, modern works and
experiments require to manage with big amounts of data, constantly monitored
and analyzed. This led to the birth of new tecniques to learn from data, i.e. to the
birth of machine learning. Among the most important algorithms widley used by
researchers, there is the Support Vector Machine (SVM), a linear classifier used

i1

to predict some properties from new data, according to the previous experience
of the algorithm. Then one question naturally emerges : is it possible to improve
a symilar algorithm with quantum effects? Is it possible to develop a quantum
machine learning theory?

In this work we will try to lay the foundations to apply all benefits of quantum me-
chanics to machine learning, hoping this will considerably improve performances.
We will adopt the following scheme : in the first chapter basic ideas about ma-
chine learning will be showed, then we will shift the focus to supervised learning
and classification problem, presenting the SVM. The basic concepts about quan-
tum computation will be presented in the second chapter, with particular empha-
sis about the "quantum speed-up". In the same chapter a brief description of the
processors used in the IBM quantum computers will be provided, as well as the
description of the IBMQ platform. The third chapter presents a brief introduction
to quantum machine learning and a detailed description of the quantum support
vector machine implemented by IBM. Eventually, in the last chapter, a compar-
ison is made between the classical and quantum implementation of the SVM on
the same data.

111

Contents

1 Machine learning : the SVM algorithm
1.1 A formal definition of the classification problem
1.2 Linear discrimination
1.3 Supervised learning: a brief introduction
1.4 Optimizing parameters: Gradient Descent and hinge loss
1.5 Support Vector Machine
1.6 The "Kernel trick"
1.7 Data preprocessing : standardization and PCA

2 Quantum computing and IBM Q EXPERIENCE
2.1 Qubits and computational basis
2.2 Quantum gates and quantum circuits
23 Qiskit ...
24 IBM QX Processors oo v v v v i e e e e e
2.4.1 Getting access to quantum processors
2.4.2 Transmons : basic concepts
243 IBM quantum-chips

3 Quantum machine learning : gSVM
3.1 Quantum machine learning
32 qSVM . .
3.2.1 gSVMimplementations
322 IBMgSVM

4 Experiments
4.1 Datasets e e e e
4.2 Experimentsetting
4.3 Resultsand discussion

v

Chapter 1

Machine learning : the SVM
algorithm

Talking about machine learning, we simply refer to a class of algorithms able
to infer unknown properties from data. There are three main different ways to
perform this task, so it is possible to identify three subsections of the machine
learning domain :

e Supervised learning: the algorithm tries to "learn" a model from a limited
set of known data , e.g. classification and regression algorithms.

e Unsupervised learning: the algorithm tries to extract information from un-
structured data, e.g. clustering algorithms.

e Reinforcement learning: the algorithm tries to maximize some notion of
rewards throug its interaction with the environment.

In this chapter we will describe how supervised learnig algorithms work, then the
SVM will be presented and discussed in detail. It is a very important implemen-
tation of linear (and not only) classifier, cause differently from other algorithms it
provides for one and one only analytical solution.

1.1 A formal definition of the classification problem

Let us say we are studying a phenomenon x. We can think about it as a numerical
vector of d components, each representing the measure of one characteristic of x:
they are called features and than € RY. Repeating these measurement ¢ times,
their collection ' := {x*}!=! is called dataset, where each x; is an instance and
Y € R? x R!. The i‘" feature of the j" instance from the dataset will be referred
to as acf Given x’ we may be interested to know a boolean value (yes/not, for

1

example) or a numeric function related to its features. Then collecting a sufficient
number N of instances =’ and relative output 7 it is possible to define the set
x = {=, r' =Y

Just to fix our ideas, let us think about a feature space of dimension d=2 with just
two classes (r € {0, 1}) so we can represent the training set as in figure 1.1

30

25 1 +

2.0 1

feature 2

104

0.5 1

0.8 10 12 14 16 18
feature 1

Figure 1.1: Representation of instances with two features, belonging to two different
classes. In this example there are 10 instances per class

If we want to predict the class C; x* belongs to (for any ' ¢), we can
think that for suitable values of x; and x,, « belongs to a specific class C, so we
can draw some sort of decision margins to geometrically classify the instances;
obiviously this can be generalized to any dimension of the feature space.

30
25
*,

20 +
N 5 + +
E + *

*

wm 15
ki *

10

0s

0.8 10 12 14 16 18
feature 1

Figure 1.2: In this example all instances with feature values belonging to a determined
range share the same label

Fixing the geometry of the boundaries is fixing the hypotesis class H from which
we believe C is determined , while running the algorithm on the training set and
choosing its "optimal configuration" from the validation set, we are fixing a par-
ticular A € H. The aim is to find an / as close as possible to C (unknown) such
that :

hx) = o . .
0 if x is classified as belonging to C5
So it is possible to obtain a first (rough) evaluation of the precision of the
algorithm evaluationg the error £ (assuming the validation set composed of NV
instances) as

1 if ¢ is classified as belonging to C

N = 30 Onatyat (L.1)

N .
We can immediatly notice that , cause of the limitate number of instances in the
dataset, there could be different hipoteses h; € H in agreement with collected
data and they could reproduce the same error E(h | x) , but they have different
properties of generalization. We define S the minimal hypotesis and G the max-
imal one, with S;G € H . The best hypotesis h, the one which will generalize
the best, is expected to lie somewhere between these two classes, i.e. h € [S, G|:
this is to increase the margin, which is the distance between the boundary and
the instances closest to it. To choose between these algorithms the definition of
another type of "error" is required: it is called loss function and penalizes not only
misclassifications but also the distance from the margins of the hypotesis A.

E(h]|x) =

3.0
254
¥4

201 o -

. + * *
+ —

w 15 1
ki +

10 4

0.5 A

0 14 12 14 16 18
feature 1

Figure 1.3: Different hypoteses (rectangles) from the minimal,in red, to the maximal, in
green, can be choosen. The one in the middle (in gray) is preferred because
it maximizes margins, so it is expected to generalize better than the others.

There is still a big question we haven’t dealt with jet: fixed H, how can we be sure
that we are also considering our real (and unknown!) hypotesis C', i.e. how can
we be sure that C' € H ? To answer this question the concept of capacity of an
algorithm is introduced. Obviously, according to 1.1, if

CeH=3heH:Eh|x)=0

If there is no such A, then the class of hipoteses h is said to have no sufficient
capacity. The capacity of a class of hipoteses H can be measured using the Vapnik-
Chervonenkis (VC) dimension of H. Taken a dataset y of N instances x!, each
labelled by r* € {—1,1} , 2V different learning problems can be defined. If
for any of these problems an hipotesis h € H separating positive from negative
examples can be found, than it is said that H shatters N points and VC(H) = N.
This means than any learning problem definable by N examples can be learned
with no error by a hypotesis from H. For example, we can see from 1.4 that fixing
H as a class of rectangles, we have VC'(H) = 4.

3.0
251
D)
201
.
o -
5 O -
m 15 1
&L
O
10 4
054
08 14 12 14 16 18
feature 1

Figure 1.4: [2]The hypotesis class of "rectangles" can shutter four elements. In this
picture only rectangles covering two points are shown

Given the usual training set y := {x!,r'}!=V, x's are always referred to as inde-
pendent and identical distributed (iid) variables. The aim is to obtain

Thvedicted = Teapectea TOT @NYy t, 50 a model g(x" | @) directly dependent on some
parameters is defined to put 1}, sicq = 9(x' |) := 7. We can immediatly
notice that g(-) defines H and 6 fixes h, so g(+) is defined from the algorithm de-
signer and h is chosen from the algorithm running on the set x.To choose the best

configuration of the parameters, the loss function is defined as:
N
E@|x) =Y L(r' g(z'0)) (1.2)
t=1

4

where L(r!, g(x',0)) computes the difference between the desired and predicted

label for «'. Then parameters 8’ = (0}, ...,6’) can be found computing
OE® | x)
—— =0 1.3
o |, (13)

In simple models, this optimization problem can be analitically solved, while for
more complex models the optimal @ is evaluated using gradient-based methods or
genetical algorithms.

If for example we have a feature space of dimension d = 2 and two possible
classes, then explicitly ' = (2%, 2%),7" € {0,1} , we define

] (1.4)
0 otherwise

_ {1 if P(C=1]af,24) > P(C=0]|af,ab)
so the posterior probability P(C' |) , i.e. the probability that a class C is associ-
ated to some fixed features x;, must be known. Using Bayes’ rule, the problem is
reformulated as:

PC)p(z | C)
p(z)
P(C) is called the prior probability and is the probability that C takes a fixed value
regardless of the x value. p(x | C) is the class likelihood and is the conditional
probability that an event belonging to C' has the associated features of x. p(x)
is the evidence, the marginal probability that an observation @ occurs, regardless
the class it belongs to. It now appears clear that the model g(-) must be somehow

linked to the posterior probability (1.5) , so according to (1.4) we will say that

P(C | @) = (1.5)

xeC; if g(x)= m&xgk(w) (1.6)

gi(x),i=1...kare called discriminant functions , so the feature space is divided
in k decision regions.

One approach to face this kind of classification problem (or, in general, of su-
pervised learning problem) is using a parametric model : all x's from the dataset
are assumed to follow a determined distribution, the best evaluation of the mo-
ments of theses distributions (before called 6;s) is computed with the maximum
likelihood approach and then the loss function is extimated. In this way, explicit
(and strong) hypoteses about p(x | C;) are made and this method is called likeli-
hood based. In this paper we will describe another approach to the same problem,
called discriminant based .

1.2 Linear discrimination

In linear discrimination instances from a class are assumed to be linearly separable
from instances from other classes (i.e. we assume we can always find hyperplanes
separating decision regions) and explicit hypotesis about the form of boundaries
separating classes are made, so a model g;(x | ¢;) is defined for each class C;
(note the direct dependence from parameters) and the algorithm is expected to
optimize ¢ running on the training set. Let us start from the most simple example:
having a feature space of dimension d we can think about a discriminant linear in
T as

d
gi(x | wi, wy) = sz’j%‘ + wio (L.7)
=

so the output is a weighted sum of the inputs, where some features may be much
more determining to choose che class the instance belongs to. Without loss of
generality (we will later see why), it can be treated as a Two classes classification
problem. In two classes problems discriminant functions of the two classes C'
and (' are combined to define one global discriminant function:

g9(x) = gi(x) — g2(x) = (wy — w2)TCU — (w10 — wao)

SO
g(x) == (w'z + wy) (1.8)

and according to (1.6) we choose
if
) = Cy, 1 g(x >0)
CQ, if g(il)' < O)

It appears clear its geometrical interpretation

30

(=0
%) =
al \\

25 i

hY
hS
\\

20 gix) <0 A
4 = ,
U hY
= +
.E 15 + * \\
i + b
v RS

+ - ~
.
10 *
+ .
+ \\
+
+ N
05 A
kY

08 10 12 14 16 18
feature 1

Figure 1.5: In a two classes problem, g(x) = 0 represents the separating hyperplane.
Instances are classified according to g(x) values

Considering x; and x, lying on that hyperplane we have w’ (x; —) = 0 and so
w, as expected, defines the orientation of the decision surface. If we now proceed
decomposing x in its parallel and normal components (referred to the hyperplane),

ie. x =x +x, =+ 7"”1“’0—” and since g(xz|) = 0, we immediatly obtain
r= ﬁ, indicating distance from hyperplane. Its distance from the origin (x = 0)
is then rg = ﬁ

The model developed in this paragraph is designed only for two classes problems,
so why did we say it is a general approach to a classification problem? According
to the so called one vs all approach, if all classes are mutually separable, it is
always possible to reformulate the problem of k classes as k problems of two
classes. Infact in this situation % discriminant functions g;(x),i = 1...k can be
defined and (assuming parameters w;, w;o known) they will reproduce as results:

>0, ifxed;

9:(@ | wi, wio) {< 0, otherwise . (19)
Here is evident the linear separable hypotesis: for each class C; there exists an hy-
perplane H; such that all z € C; lie on its positive side and all the other z; ¢ C; lie
on its negative side. So ideally, for each x; there should exist one only ¢ such that
gi(z;) > 0.Cause of noise and other factors (for example the hypotesis choosen
is too simple for the facing problem) this doesn’t happen and the usual approach
is to assume « € C; if g;(x) = max” g;(x). Remembering the meaning of g(x)
and assuming ||w;|| similar for any 4, this means we attribute an instance to the
class to whose hyperplane the point is most distant.
Analogously the pairwise or one vs one approach could be used : the % class prob-
lem is re-formulated as (]2“) two classes problems. The main difference between
these two approaches regards the dimension of training set used : the one vs one
approach solves more classification problems, but with smaller training set. This
is why the one vs one approach is usually preferred.

1.3 Supervised learning: a brief introduction

Studying the phenomenon z, a big number N of instances x is collected to con-
struct the dataset Y = {x,r'}!=N. Then Y is divided in two different sets',
namely training set and validation set.

1. Training set: the algorithm predicts 7 for any x* and adjustes its parameters
to have as much 7' = r? as possible (usually it is better not to have 100%

!Actually, y is almost always divided in three parts : training , validation and test set. This
is because the error evaluated on the validation set is part of the algorithm itself, while accuracies
and othet metrics are evaluated on the test set. Often these two sets are equal.

7

of correct predictions because this often brings to overfitting problems. We
will discuss about them later).

2. Validation set: using the best parameters found running on the training set,
the algorithm predicts 7 for any x* in this set, so the ability of the algorithm
to generalize, to "learn from data", is evaluated.The best configuration of the
parameters is assumed as the one with the lowest error (notice that we still
haven’t defined any form of "error" yet).

This is the general structure of a supervised learning algorithm, such as an SVM
used as classier, a polinomial regression or a neural network.

1.4 Optimizing parameters: Gradient Descent and
hinge loss
To find the best parameters for the algorithm it can used the gradient descent

method: defined the error E(w | x) committed by the algorithm with parameters
w running on the training set y, we look for

w' : 2B
w
w/
Considering the gradient vector V,E = (§% ... §2)" w is randomly ini-
tialied, then Aw; = —n% is evaluated and w; is updated as

wi = w; + Aw; Vi 177 is called learning factor and determines how much
the algorithm "corrects" w along that direction ;. The algorithm stops reaching
Vu(E) = 0, which means we are in a minimum, but we don’t kow whether is it a
local or global minimum. Also, the choice of 7 is determinant because big values
could cause great oscillations and even divergence, while small values could cause

a too slow convergence.

E (w)

V E>o

v E <0 ositive gradient

Negavg\ve gradient

W

Figure 1.6: Parameters are updated sucht thath they will reach the optimal configuration,
minimizing the error (or, in general, the loss function)

Then it is possible to find the optimal w for the discriminant using (1.3) through
gradient descent method. First of all, a loss function must be defined. Indicating
the rough output of w” ! + wy as y(x!) and recalling the role of r* as in (1.11), it
is possible to define

0 if y(xh)rt >1

1 —y(x')r" otherwise

penalizig both misclassified and well classified (but within the margin) instances,
each one with its weight. Total loss function can be rewritten as

Ly =Y 1= max(0,1—y(z')r') (1.10)
t t

L =

Before applying gradient descent method, (1.10) should be "smoothed" to make
sure it is differentiable.

=2.0 -15 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

Figure 1.7: Comparison between the hinge loss and the "0/1" error function for an in-
stance ! belonging to C. On the abscissa runs y(x').Hinge loss penalizes
x! even if well classified, but within the margin

1.5 Support Vector Machine

We have now developed all necessary instruments to implement our classificator
on a preprocessed dataset (we will see how to preprocess data in section 1.7). To
do this, we need to define specific objective and loss functions, making specific
assumptions: this defines the inductive bias of the algorithm. In this section we
will describe the implementation of a supervised learning model for linear classi-
fication called SVM : support vector machine. The same algorithm can be used
even to solve regression problems. It is a method which has become very popular
in recent years thanks to different properties:

1. Itis a disctriminant based method, so it isn’t needed to evaluate the distribu-
tion of &, while only assumptions about the boundaries of decision regions
are made, so, in general, it is a simpler model.

2. The only parameters relevant to evaluate the weight vector w are the ones
related to a subset of instances in the dataset, called support vectors. This
leads to a computational advantage.

3. using the kernel trick, a non linearly separable problem can be mapped in an
higer dimensional feature space, making it linearly separable and allowing
to use the same SVM algorithm for a large gamma of classification problem.

4. Thanks to kernel functions the same SVM algorith can be used not only to
classify events represented as vectors, but also to different formats of data
(such as texts or graphs)

5. Kernel algorithms are convex optimization problems, so they have one only
analitical solution.

We can start considering the usual two classes classification problem: given the
training set x = {a’, r'}, it is defined :

1 ifxt € C
pl = et (1.11)
—1 ifxt e C,.
and
> 1 if rt = +1
! :szct—l—w =q
9(') "< -1 ifrt= 1.
resumed as
ri(wlx" +we) >1 Wt (1.12)

Note the difference from (1.9): here we want the instance distant from the sepa-
rating hyperplane to obtain a better generalization.The distance between the hy-
perplane and the instance is called margin and the aim in the SVM algorithm is to
maximize it.

10

30

25 1

201

15 A1

feature 2

10 A

05 1

0.8 140 12 14 15 18
feature 1

Figure 1.8: Among all possible discriminants, the one that maximizes margins is
choosen for a better generalization

It recalls what we introduced in section 1.1. The hyperplane g(x | w’,wy) = 0
satisfying these conditions is called optimal separating hyperplane. Let’s find
this hyperplane. Remembering that the distance between a point and a plane can

T
be evaluated as d(z', g(x | w’,wy) = 0) = —r— that according to 1.12
becomes

d(z', g(x | wh,w) =0) = (1.13)
with the condition d(x!, g(x | w?,wy)) > p Vt. The aim is to maximize p,
since it is now clear that the margin is 2p. Considering the infinite number of w
defining the same plane, of course there would be infinite solutions. p|lw| = 1
is fixed, so maximizig p implies minimizing ||w||. Then the problem has now
become

1
min §H'w\|2 subject to 7' (w’x' +wy) > 1Vt (1.14)

and the margin has now become 2p. This linear programming optimization prob-
lem can be solved using Karush-Kuhn-Tucker (KKT) conditions . The primal
problem is written as a Lagrange problem (subject to equalities constraint), lead-
ing to:

N
1
L, = §Hw||2 =) o[(w'E 4 wp) — 1]
t=1
SO
N
L, :—||w|| Zar met+w0)+Zat

t=1

11

and explicitly

N N N
1
L, = é(wT)'w —w’ ; alrte’ — w ; alrt + t_zl o (1.15)

where o' > 0 are Lagrange multipliers. Now the dual problem must be solved,
i.e. £, is maximized with respect to o' with constraints imposed by the resolution
of the primal problem:

oL N
TE=0, =w=y, aora’

ow

8 =0 =y art=0 (1.16)

at>0 VvV ot
Then substituting (1.16) in (1.15) the dual problem is obtained:

N

N N
Z Z alatr'ri (@) et +) o (1.17)

t=1

l\DI»—t

subject to the same constraints. Solving in o we will find that only a small number
of instances ' have associated lagrange multipliers o’ # 0: such vectors are
called support vectors. They are very important because we can clearly see that
they are the only instances which define the decision boundary.

Found the optimal hyperplane, g(x) is evaluated for any x in the dataset and
then they are labelled with 7' = +1 if g(x) > 0 or 7' = —1if g(x) < 0, as
discussed before.

What about the case of a non separable dataset? How do we choose between a
wide margin with numerous misclassifications or a narrow margin with a mini-
mum number of misclassifications? How good will our algorithm generalize what
it learnt from the training set?

In this case we prefer to misclassify a restricted number of instances to mantain a
sufficiently wide margin. We define slack variables £' > 0: they are used to store
information about the deviation of an instance x' from the margin. So condition
(1.12) is relaxed in

(1.18)

ri(wla! +we) > 1-¢& WVt
¢ >0 vt

where
1. & = 0if ' is correctly classified and lies beyond the margin

2. & € (0,1) if ' is correctly classified but lies within the margin

12

3. & > 1if ' is misclassified

This allows to define the soft error Zi\i , &'+ the aim is now to contemporary max-
imize the magin and to minimize the soft error, so the following convex function
must be minimized:

N
1
§||'w||2 + Ctz;gf C €R, subjectto (1.18)
and to do this the Lagrangian problem is solved again using the KKT approach:
:—HwH —l—Cth Za (whx" +wy) — 1+ ¢ Zuft (1.19)

with the obvious introduction of the Lagrangian multipliers. Going on as in pre-
vious section leads to:

%fv 0 =>w= Ziv Lalrtat
6w0 =0 = Zt) atrt =0 (1.20)
=0 =C—-a'—p'=0

and substituting in equation (1.19):

N
Ly = Z af — % Z Z ooty ()T’ (1.21)
t=1

s=1 t=1

Solving in o' using the last two constraints from (1.20) we obtain the so called
soft margin hyperplane. As in the separable case, all instances x! associated to
o' > 0 are defined support vectors . We also have to notice that the form of
the discriminants depends now on the hyperparameter C, given "by hand" by the
algorithm designer. It is now possible to answer the questions asked before: tuning
C, we can decide the weight of misclassifications in determining the hyperplane,
but we have to be very careful: a high value of C' leads to a discriminant which
well fits the dataset used, but doesn’t generalize well (overfitting); on the other
hand a small value of C' leads to a more general model, but it could be too simple
(underfitting). C can be fine tuned using cross-valitation techniques.

1.6 The "Kernel trick"

Until now we always used the SVM on linearly separable datasets, the ones the
algorithm is designed for. Is this really the most general approach to a classifica-
tion problem? Let us consider the case of a feature space of dimension d = 2 and

13

a dataset y = {«, y ... } whose instances are not linearly separable. For example,
we could define amap @ : ¢ € R? — ®(x) = (22 + 23,71, 72,) € R? and we
can apply the SVM algorithm on ®(x) rather than on x itself. Looking at (1.17)
and considering the form of w from (1.20), such that

g(x’) =w- ®(x°) = Zatrt{)(a:t) - P(xf)

we see that the only relevant quantities are the inner products

®(x') - ®(x?) Vi,j € {1,2}. This means that the only piece of information
which has to be stored in the memory is the value of inner products between these
maps, saving lots of computational resources; these quantities are called kernel
functions: K(x,y) = ®(x) - ®(y). Notice that in this way the problem has
become linearly separable in the trasformed space (see figure 1.9), i.e. it can be
defined a linear discriminant g(®(x)) = >, w;®(x;), where g(x) is nonlinear.
The idea behind the kernel trick is now clear: instances are mapped from a non
linearly separable problem in a space of different dimension using a suitable map
® which linearizes the problem. Actually, since there are no guarantees that the
problem is linearly separable in this new space, we look for the soft margin hy-
perplane repeating the same passages from (1.19) with x replaced by ®.

20
. . @ . 15
.%7:]...‘ nw-.’
Tl ¥ m g
o ot {W;“ 1
—_ ——"—— 05 23
Rk

X, o0

Joo

=05

-L5, p051013

00500 05 19 ;515107050
% Z

[T} s 10 15
X
1
l ¢-1
15

.,
X2 00| .

X

Figure 1.9: [3]A typical example of the Kernel trick. Via the feature map ®, the problem
becomes linearly separable

Now the natural question is: for which spaces # there exists a map ® : RY — R™
such that K (xz,y) = ®(x) - ®(y) Vax,y € H ? Le. when we define a ker-
nel function, are we sure we are really mapping our features in another (Hilbert)

14

space? First of all, we want
K:RIxRISR

to replace an inner product, so it surely must be a symmetric bilinear positively
defined form . Then representing the associated matrix respect to any basis, it
must be symmetric, i.e. defining (K);; = K(z',2’) then K;; = K;, This
matrix is called Gram matrix. Explicitly:

(@(x))|®(x!)) (D(x))|®(2?) ... (B(z))|®(x"))

(@) @(x!) ((z?)|®(2?)) ... (B(2)|®(x"))

K (1.22)

(@(@V)|®(z) ((zV)|®(x?) ... (B(z")[P(xY))

Gram matrix is invertible iff functions defining its elements are independent.
Since K must be symmetric, it is always possible to find an orthogonal trans-
formation V' such that K = VAV ™!, with A diagonal matrix of eigenvalues
A1 ... g for K and columns of V' composed of eigenvectors v of K. Defining a
map as[20]

.2’ e R = &(x') = VA, ...V} eR?

and computing (®(z')|®(x’)) = 27, Awiv it is immediatly noticed that
(®(x")|®(x?)) = (VAV), ; = K(x',27). We are starting noticing the strong
relation between a kernel function and eigenvalues/eigenvectors from Gram ma-
trix. This link is formally expressed by Mercer’s theorem, here reported in its

simple version[20]:

Theorem. Let x be a compact set, x C R". Suppose k is a continuous symmetric
function such that the integral operator Ty, : La(x) — Lo(x) defined by

(Th)() = / k(- 2)f (@) da

X

is positive, which here means
// f(2)k(z,z)f(x)dedz >0 VYf e Lyx)
XXX

then k(x, z) can be expanded in a uniformly convergent series in terms of Ty ’s
eigenfunctions \; € Ly(x), normalized so that ||¢||,, = 1, and positive associ-
ated eigenvalues \; > 0,

k(z,z) = Z Aji(x);(2).

15

To sum up, in this way we are sure that defining a kernel functions with the
properties discussed below (symmetric and generating a positively semidefinite
matrix), this represents an inner product in the space given by the map

®:xecR— &)= [VI(x),. . V().]

as we observed before the theorem with the example. Now that we know what
conditions must be satisfied by a kernel function, let’ s see the most famous ones
used in literature:

1. polynomial kernel: k(x,y) = (y - + 1)? where ¢ is selected by the user

2
2. radial basis function (x,y) = exp [__||m2 Qy”]
s

1 — e 20v@y+r)

3. sigmoid kernel (x,y) = with 7 and v parameters

1+ e—2(v@-y+r)

When a kernel is coosen and its parameters are fixed for an algorithm, we must
keep in mind that it has the same role as an inner product, so it must somehow
weigh differences and similarities between the most relevant features for the fac-
ing problem.

1.7 Data preprocessing : standardization and PCA

Since the complexity of a classifier scales with the number of inputs, it could
require a huge amount of resources to classify big datasets. This is why some
methods of dimensionality reduction have been developed , trying to reduce the
number of features (i.e. reducing the dimensionality d of the feature space). To
improve algorithm prestations, it is also better to work with standardized datasets,

i . o x' —
substituting each variable ' with z; = “.

o
In this section we will focus on a particular method of feature extraction , called
Principal Component Analysis (PCA) . Given the usual dataset with samples x; €
X ,With a d dimensional feature space, it can represented as

1 1 1
Ty Ty ... @
2 o ... o
X =
n n n
xl :L'2 ... xk

and then the mean value for each feature is defined as
pi=FElz]=(<x > - <x), >)., while 0;; = (X);; := E[(x—p)(z—p)"];;

16

is defined as the covariance between two features, obtaining its best extimation as

_ 1 n h h . o, . .
Oij = + >y (¥} — pi) (@]} — ;) . In a vectorial form it is written as
O'% 012 ... O1k
2
021 09 ... O
X=1. o . (1.23)

2

Okt Ok2 ... O

Eigenvectors of (1.23) individuate new independent directions in the feature space,
while associated eigenvalues are the variances around that axes. Since most im-
portant vectors are the ones with the higest variance (a high variance means that
different classes of instances have different values of that feature), the dimension-
ality k of the feature space is reduced to d < k, taking as base vectors the ones
associated to the d eigenvalues with higer magnitude.

17

Chapter 2

Quantum computing and IBM Q
EXPERIENCE

As said in the previous chapters, machine learning tecniques require to deal with
big amounts of data, then to train our algorithms we need huge memory resources.
To solve this problem, we would need an harware able to manage multiple infor-
mation contemporaneously. The best solution to this problem seems to arrive
from quantum mechanical systems, since they "live" in high dimensional Hilbert
spaces and they can be in multiple status at the same time.In this chapter we want
to introduce the main concepts about quantum computing and its improvements
compared to classical computers. We first start describing qubits (building blocks
of quantum computers) and how to perform operations with quantum gates. Then
the IBM Q EXPERIENCE platform will be presented, talking about how to pro-
vide access to a real quantum computer. Eventually, IBM QX processors will be
briefly described.

2.1 Qubits and computational basis

We know that classical computers store information by bits, each assuming value
0 or 1.Then we encode information in sequence of bits stored in a RAM and pro-
cessed by logic gates . We remark that with N bits we can represent 2 different
numbers and /V operations are needed to extract this sequence from the memory.
By analogy, we define qubit the foundamental entity in which we store informa-
tion in a quantum computer. They are two levels physical systems, so we can

(1)1 for each i'" qubit

and without loss of generality we can describe its state on the Bloch sphere (fig

always find a basis of two eigenvectors |0) := é 1) =

18

2.1) as:

i) = Cosg 0) + ¢ sin(g) 1) 6 € [0,7] ¢ € [0, 27| (2.1)

e |

X

Figure 2.1: We can represent a pure state |¢)) of a two level system as a vector on the
surface of the Bloch sphere, according to 2.1

Here lies the great advantage of quantum computation : each qubit can be in a
superposition of all possible states, so even if measuring it causes the collapse of
the state on an eigenstate (i.e. we will always have a final result of |0) or |1), as a
classical bit), our quantum computer will perform on both states simultaneously.
Situation becomes much more intrigate (and much more advantageous) dealing
with two or more qubits. Let there be /N qubits, described by the wave function
|4), then |¢) € H = H; ® Hy ® --- ® Hy . Since our new complexive Hilbert

space is n = 2V dimensional, we can span it with a new basis {|0),[1),...|n)}
with
1 0 0
0 1 0
) =1.1, = - In=].
0 0 1

the so called computational basis. This is where real improvements from quantum
mechanics come in : the state of our sistem can be an entangled state, meaning
that we can’t find |¢;) € H;,i = 1... N such that [¢)) = ®;¢; [¢;) ¢ € C. This
means that our quantum system can represent much more states than its classical
counterpart : while for a N qubit system we need 2(2 — 1) parameters to fix
our state, for a NV bit system we just need N parameters. It now appears clear
why quantum computing should lead to an exponential speed up of classical algo-
rithms. Now we need to develop a model to encode information on our qubit; then
in the next section we will describe how to implement logic operations on them.

First of all we need to "choose" how to switch from classical representation of
information (i.e. a bit string) to a quantum one. We represent the /V bit string

19

x as {z;}0"", 2; € {0,1} with a system of N qubit , prepared in the state[25]
1Y) = \/LN SV |:) ,where |x;) encodes for the state with the i qubit in the
state codified by the value of the bit x;. For example if we have two bit strings

1 0
= 8 and 22 = 1 , we encode this as |V) = \/LE(|10()1> +10110)) with a
1 0

four qubit system.Then we project this state on the computational basis, obtaining
its final representation. This encoding method is called amplitude encoding . We
will later see how an initial state [00...0) = (10...0)7 can be transformed in
such a state.

2.2 Quantum gates and quantum circuits

Given physical systems with the properties of a qubit, we want to perform logical
operations on them. Extending the analogy with classical computers, this mean
we want to develop logic gates. We can simply represent them as unitary operators
U on the 2V Hilbert space of our system. First of all, U must be unitary to preserve
the norm of our state, but this implies that it must be invertible. This is a great
difference from classical computation, since according to Landauer’s principle
deleting a bit of information releases an amount of energy £ > KT log 2[5] ,so
classical computers are intrinsically disadvantageous under energetical aspects’.

Let’s focus our attention about one qubit gates. They can be represented as 2 x 2
matrices, allowing us to move the state of our qubit along the surface of the Bloch
sphere (the U(2) group). The most important operators are (omitting the”symbol):

1 1
_ 1
e The Hadamard gate H = 7 [1 1 }

e The phase shift gate R.(0) = [(1] 6(35 }

e Pauli matrices o, 0, 0, forming a basis for our operators (with the identity
matrix)

Now we want to underline some important features about these gates. First of
all, fixed the measurement axis as z, we immediatly note that o, |0) = |1) and

'Even for classical computers it is possible to define reversible gates, which must have the
same number of inputs and outputs. Such a gate can be implemented using control or ancilla
bits. The universal reversible logic gate is the Toffoli gate. Reversible computing is a form of
unconventional computing.

20

o, |1) =]0), i.e. o, acts as a single qubit NOT. Then , fixed the same axis, we
interpre the phase shift gate as a rotation around this axis on the Bloch sphere.
Infact according to 2.1 we obtain:

R.(6) |¥) = cos (g) 1 i(6+9) Sin(g)

The Hadamard gate generates superimposed states from eigenstates, i.e.

V2 V2

It is important to note that we can generate every single qubit state from |¢)) just
applying a suitable succession of H and R, gates. Infact given an initial state

1960, o)) , then
R.(5 + 6)HR.(6: — 60) HR.(—5 — é0) [¢:(60,60)) = [¢:(61,61)) (22)

Now we want to introduce two foundamental two-qubit gates : the C-NOT and the
SWAP. The controlled-NOT (C-NOT) gate can generate a two-qubit entangled
state starting from a separable one. Its representation on the computational basis
is

CNOT =

_ o O O

0 0
1 0
0 1
0 0

o O O

For example, C’NOT[\%(|0> + 1)1 10) = %(!0@ + |11)). Resuming its truth
table we just obtain
CNOT |z) |y) = |z} [z S y)

where @ represents the mod2 sum. In this particular implementation we always
leave |z) unchanged and, according to its value, we change or not |y) state: that’s
why we call them control and target qubits, respectively. The SWAP gate "swaps"
the states of the involved qubits; we can represent it in the computational basis as

0
0
SWAP = 1
0

o O O
OO = O
_ o O O

We can notice that, defined as C NOT;; the gate with control 7 and target j and
SW AP;; the exchange of state between them, then

21

To represent the actual action of these operators on our qubits, we use a circuital
model : we represent the qubit state as a line with temporal axes running on the
abscissa, then we just draw a "black box" on that line for our operator. In figure
2.2 we can see two qubit in initial states |0) (they are respectiveli go and ¢;).The
Hadamard gate is applied to the first qubit , then a CNOT gate with ¢y as control
and ¢; as target is applied. A set of gates that consists of all one-bit quantum
gates (U(2)) and the two-qubit CNOT gate is universal in the sense that all unitary
operations on arbitrarily many qubits n can be expressed as compositions of these
gates. This is why we measure the complexity of an algorithm by the number of
elementay gates it needs to perform its task.

From the figure 2.2 it appears clear the circuital model of a quantum computer,
even if we still haven’ t discussed about how to extract information from it. To
obtain the results of our "quantum programm", we have to measure the state of
our qubits. We recall that performing measurements, the system will collapse on
its eigenstates, so for each qubit we will obtain |0) or |1): this means we can store
this string of binary digits on a classical register; for analogy we call the first part
of our quantum circuit the quantum register.

g 0: 0> H (—8——7

g 1: |0

c 0: 0 ||
c 1l: O

Figure 2.2: The first two line represent the quantum register composed of two qubit, g
and ¢;. The middle zone represents the measumentent operation. Obtained
values (M) are stored in ¢y and ¢y, the classical register.

Now we have all the necessary instruments to understand, with an easy example,
the great advantage of working with entangled states : let S be a system of three
qubits in the states |®) = |®;P,) for the first two and |0) for the last one. Let O
be a quantum gate performing on S such that O |®0) = |® f(®)) , with a generical
function f. If we have |®) = 0+ & 941) (¢ o applying an Hadamard gate on

each of them before our quantum circuit) ,then we obtain

0|20) = %(IUOf(OOW + 017 (01)) + [10£(10)) + [11f(11)))

with one execution of our algorithm we evaluated f in all its possible configu-
rations. Now we have to focus about the second main difference from classical
computation : while a classical (deterministic) computer will always give us the

22

same "response" when a program is executed with the same parameters (it works
with transistors operating in well defined states), a quantum computer will prob-
ably give us different responses due to its intrinsecal probabilistic nature. We
know infact that given the system wave function |¢/) = 3", ¢; |i) , then |c,|” is the
probability to find the system in the |n) state , so if for example |n) encodes for
the right solution of our problem, we won’t always measure it as our final state
(even performing our algorithm in the same conditions). To deal with this "intrin-
sic imprecision" we perform our algorithm several times and then we assume as
the correct answer the one encoded from the state which occurred with the major
frequency.

2.3 Qiskit

On 6" March 2017 IBM announced the releasing of IBM Quantum Experience, a
platform connected to real quantum processors obtained with superconductive ma-
terials. Through this platform it is possible to execute programs on these devices
via Cloud. After signin up with an account, the user can access public quantum
devices and simulators to run his code on. Nowadays there are several software
stacks that allow us to access quantum computers, such as Qiskit, installable as
a Python module. Qiskit enables us to manage with our quantum circuit, real or
simulated, with a graphical interface: to build it we just have to drag and drop
the gates we want on the line representing the qubit. This is mainly a didactic
approach to quantum computing cause it gives us direct access to the state of the
system obtained after the measure (repeated several times). In this chapter we will
describe another way to manage with quantum processors, using a programming
lenguage called QASM (quantum assembly lenguage).

The API (Application Programming Interface) is the set of classes, functions and
data structures for interfacing with devices and simulators, and running experi-
ments. In the internal framework of Qiskit we can identify four macro areas; we
report their definitions from the official Qiskit "API DOCUMENTATION" [17] :

1. Qiskit Terra: "Terra provides a bedrock for composing quantum programs
at the level of circuits and pulses, to optimize them for the constraints of a
particular device, and to manage the execution of batches of experiments
on remote-access devices [...]"

2. Qiskit Aqua : "Aer provides a high performance simulator framework for
quantum circuits using the Qiskit software stack. It contains optimized C++
simulator backends for executing circuits compiled in Terra. Aer also pro-
vides tools for constructing highly configurable noise models for performing

23

realistic noisy simulations of the errors that occur during execution on real
devices."

3. Qiskit Ignis : "This includes better characterization of errors, improving
gates, and computing in the presence of noise [...] Ignis provides code for
users to easily generate circuits for specific experiments given a minimal set
of user input parameters."

4. Qiskit Aer : "Aqua is where algorithms for quantum computers are built.
These algorithms can be used to build applications for quantum computing.
[...] To address the needs of the vast population of practitioners who want to
use and contribute to quantum computing at various levels of the software
stack, we have created Qiskit Aqua."

Each of these element comes with internal modules. In this thesis we mainly fo-
cused on the "Aqua element" to implement quantum machine learning algorithms.
Programs written in giskit follow a fixed workflow, based on three high level steps:

1. Building circuit
2. Executing the program
3. Analyzing results

To execute this workflow, Quiskit manages three main objects[17] : the provider,
the backend and the job. The provider gives us access to a group of dif-
ferent backends to choose from to lunch our algorithm. By the AER provider
we can have access to different simulators, while IBM allows the access to real
quantum chips via the IBMQ module. In this work we used both of them. Back-
ends are responsable of running quantum circuits and returning results. They take
a gobj as input and return a BaseJob object. Each execution is identified by an
unique address, accessible by the Job object; it finds out the execution state at a
given point in time (for example, if the job is queued, running, or has failed) and
also allow control over the job. We can resume the managing of the workflow as
in figure

24

QuantumCircuit Transpiler Qobj

~| compile(circuit, backend) >

\
Provider Backend Job Result

get_backend('backend') run(Qobj) result()

Figure 2.3: Qiskit workflow

2.4 1IBM QX processors

2.4.1 Getting access to quantum processors

To perform our experiment on a real backend, we first need to create an Account
on the IBM Q Experience platform; we will be provided of a personal API TO-
KEN, connected to our account, and of 15 credits. Our circuit will be divided
in jobs and any time we perform a job on the real backend, we get queued
and some credits are subtracted from our account. After 24 hours, they will be
restored.

At the current time we are allowed to acess four different quantum computers with
different characteristics: they distinguish for number of qubits and inner topology.

2.4.2 Transmons : basic concepts

We previously said that a qubit is a system with only two eigenvectors, so we could
implement it using any (even approximatively) two levels quantum-mechanical
system. Then there could be several ways to implement and control such a system,
like spin % particles or polarized photons. IBMQ X processors are implemented
by superconductive systems. The basic idea is to reduce an LC circuit to a two
level systems. Infact writing the Hamiltonian of the system, defining) and ¢ as
the charge and the concatenate flux, we obtain
Q2 CI)Q

/H:Z/{C—FUL:%—Fﬁ

25

where C' and L are the capacity and inductance of the circuit. It can be showed
that, applying the corrispondence rule, the operators associated to () and ¢ are
conjiugate variables , i.e [®,()] = ih. We see the Hamiltonian has the same
form of one associated to an harmonic oscillator , so we can solve it in the same
manner, obtaining eigenvalues

1
E, = hw(n + 5) with w = (2.4)

1
Vv LC
Then energy levels result equally spaced, so it still isn’t a good two level sys-
tem. To solve this problem, we introduce a Josephson junction, a non linear non
dissipating inductor with characteristic[7]

_hde
© 2eddt

with .. :=critical current of the junction , ® = 27‘(‘% the reduced flux and &, = z_he
the superconductive magnetic flux quantum. Substituting the Josephson junction
to the inductor causes an unevenly separation of energy levels. This means we
can address selective transition exciting our system with well defined frequencies,
just as happens for electrons in an hydrogenoid atom: that’s why this device is
often referred to as artificial atom. Of course we must keep under control the
environment to use it as a two level system, i.e. we must ensure that

kyT < hw. This model is at the base of the implementation of the transmon qubit
(transmission line shunted plasma oscillation qubit), the one used to build IBM
QX processors.

I = I.sin(®)

w

wun

Transmon
4 — 4
EP i;
5 21z
E 2 E g a 8 ‘1‘}
* YlE §{ :
o o
U
0| @10 o~ @
-r 72 0 2 s =T -T2 0 w2 s
Superconducting phase.qﬁ Superconducting phase,¢

Figure 2.4: [7]The Josephson junction (the cross) introduces anharmonicity in the sys-
tem. Energetic levels are now unevenly separated

26

Of course several sources of noise are present in our system, so they must be
taken into account to develop a working processor. First of all we know that given
the transition rates I'g_,; and I';_,o between the basis states, the thermodynamic

equilibrium leads to[7] I'g_; = ef’v%ljl_)o. Typical values are 1" ~ 20m K and
5= ~ 5G Hz, so "exciting" transitions are strongly suppressed. Both processes
bring to a depolarization of the qubit, so we can define a relaxation time (i.e.
decoherence) T| = oo 141rF such that e~*/7t will account for the relaxation of
the qubit[1][7]. Then 31m11arly T, the dephasing time, is defined to take into
account stochastic fluctuations of qubit frequency.

2.4.3 IBM quantum-chips

Accessing to our personal IBM Q account, we can see all public backends pro-
vided by IBM and we have access to their characteristics. We resume them in the
table 2.1

Table 2.1
Name ‘ Number of qubit ‘ Basic gate implemented ‘
ibmq 5 yorktown - ibmgx2 v2.0.0) ul,u2,u3, cx,id
ibmq vigo v1.0.0 5 ul,u2, u3, cx,id
ibmq ourense v1.0.0) ul,u2,u3, cx,id
ibm 16 melbourne v1.0.0 16 ul,u2,ud, cx,id

where the gates u1, u2 and u3 are represented by the operators[18]

cos(g) e sin(g)

Us(0, ¢, A) = e?sin(4) A cos(8)

U2(¢7)‘) = U3(ga Qb, >‘)
Ui(A) = Us(0,0,\)

and ic, cx are respectively the Identity and the CNOT gates. When building a
circuit, these gates can implement the other ones described above. For example :

1. Us|0) = cos(%)]0) + €sin(%) , i.e. we can iniziatilaze any state starting
from a |0) state

2. Us(0,7) = H

27

3. Uy = R.(\)

But we have to remind about the topology of the quantum chip we are using,
since not all qubits are connected each other. The implementation of these gates
is obtained via microwave resonators, then they could be a source of systematic
error. We can’t introduce parameters to correct these errors, so IBM calibrates
its devices two times a day to reduce their influence. For each gate it is defined a
fidelity factor simply as the squared module of the inner product between the state
we expected and the one we obtain: if they form a § "angle", then v = cos?() is
the fidelity factor. Then we can simply obtain the error rate as 1 — « ; error rates
are avaiable on the IBM Q website. Main characteristics are summarized in the
following table.

Tenerife Tokyo Poughkeepsie IBM Q
(IBM Q Experience) [(IBM Q (IBM Q Network) System One
Network) (In preparation for the
IBM Q Network)

Relaxation (T1) in microseconds S1.1 84.3 73.2 73.9

mean 57.7 148.5 123.3 132.9

best 42.3 42.2 394 38.2

[worst

Dephasing (T2) in microseconds 25.9 49.6 66.2 69.1

mean 40.2 78.4 123.6 100.8

best 10.6 24.3 10.8 39.2

[worst

Two-qubit (CNOT) error rates x10-2 4.02 2.84 2.25 1.69

mean 2.24 1.47 111 0.97

best 5.76 7.12 6.61 2.85

[worst

Single-qubit error rates x10-3 1.65 1.99 1.07 0.41

mean 0.69 0.64 0.52 0.19

best 3.44 6.09 2.77 0.82

[worst

Figure 2.5: fundamental metrics of the quantum devices in four recent IBM Q
systems. Source :https://www.ibm.com/blogs/research/2019/03/power-
quantum-device/

28

Chapter 3

Quantum machine learning : gSVM

The art of developing algorithms for a potential quantum computer is to use ele-
mentary gates in order to create a quantum state that has a relatively high ampli-
tude for states that represent solutions for the given problem. A measurement in
the computational basis then produces such a desired result with a relatively high
probability. In this chapter we will present different prototypes of quantum hard-
ware implementations to improve classical algorithms performances. In particular
the quantum SVM implemented by IBM will be discussed in detail.

3.1 Quantum machine learning

Talking about quantum machine learning, we mean a new interdisciplinary re-
search area between quantum physics and informatics. It mainly concernes the
possibility to apply quantum hardwares to obtain faster (or, in general, better)
implementations of machine learning algorithms. Infact as seen before, the main
problem about classical machine learning is the big amount of data and resourches
we need to train our model. This limitation is connected to the sequential nature
of classical computation, not able to perform parallel operations'. Since quantum
mechanical systems of N qubits "live" in a 2 dimensional Hilbert spaces with
finite linear operators defined on them, the most natural way to face this problem
seems to compute it in this "quantum space". Before proceeding with the tracta-
tion, an important specification must be done : saying quantum machine learning
we mean quantum enhanced machine learning, i.e. the execution of a quantum
version of an algorithm on classical data (properly encoded). Infact there isn’t
nowadays a full quantum computer: they only exist hybrid architecture, integrat-

! Actually, there exist different tecniques of parallel computing using "classical" logic. Rather
than execute an algorithm as an ordered succession of instruction to solve a problem, they divide
the same problem in multiple independent parts, solved in parallel.

29

ing both quantum and classical processors. For example a quantum device could
have access to data differently form classical computers, implementing a qRAM
(quantum RAM, so called to underline its analogous function to clasical RAM).
Given n bits, we can access N = 2" different memory cells identified with an
univocal code. With qubits the situation is very similar (information is stored in
different cells addressed by binary strings), but given a superimposed state as in-
put, we can obtain a superposition of addressed registers as output. To make an
example[16], if we denote a the access register and |j),, one of its states associ-
ated to a stored address, then if) . v, |j), is the input of the qRAM, the output
will be 374 17), |Dj), » where |D;) , id the j** state from the data register d.
If the memory array (both clasical or quantum) is disposed in a d dimensional
lattice, then O(+/N)[16] actions are required to access the memory address. Ac-
tually such an architecture would be computationally expansive and noisy due to
decoherence times. Despite this, it is possible to implement a gqRAM that requires
Olog(N) operations to address a memory address.

—
—

root no

raph levels

o

I el b o—

Figure 3.1: [16]A RAM can be represented as a graph. The lowest level represents the
data register. At each node "0/1" can be interpretes as "go left/right", so n
nodes can address 2™ memory cells. In a qRAM it is possible to cross more
paths at the same time

But quantum machine learning algorithms don’t only benefit of a different mem-
ory addressign system : the main difference from the classical ones is that they
are based on soubroutines which act as oracles (i.e. black boxes) and perform nu-
merous tasks in less time than any classical program. Some of them are :quantum
Fourier transformation (QFF) , Detush-Jozsa algorithm* or Groover algorithm®
:all of them perform task a classical computer can do, but in reduced times. We
have to inform the reader about the existence of some quantum algorithm which
can perform in polynomial time tasks resulting P or NP — C for classical ones
(at the "state of the art") : for example, with Shor’s algorithm we can perform the
integer factorization in polynomial time.

2Given a constant or balanced function f : {0,1}™ — {0, 1}, the algorithm can determine if
f was constant or balanced from the output

SRoughly speaking, if a function y = f(z) can be evaluated on a quantum computer, Grover’s
algorithm calculates = when given y

30

32 ¢SVM

3.2.1 ¢SVM implementations

In literature it is posible to find different possible implementations of the SVM
classificator using a quantum hardware. For example, a first implementation
prensented in the early 2000’s was mainly based on a variant of Grover search
algorithm[21].

Alternatively it could be possible to differently formulate the SVM problem form
1.17 : rather than use KKT conditions, one can solve a linear system[22]: it is
called LS-SVM. Then a quantum algorithm to solve linear systems could be used,
leading to the implementation of a quantum LS-SVM, which requires a gRAM[23].
Also IBM implemented two different versions of the classificator[11]: a quantum
variational algorithm and a Quantum kernel estimation[12].

3.2.2 IBM qSVM

Now we focus our attention on the guantum kernel extimation methon introduced
above and implemented by Qiskit. It is a quantum enhanced algorithm, which
requires classical data to perform (i.e. it doesn’t need a qRAM). It is implemented
using an integrated classical/quantum circuit. In this chapter we describe its quan-
tum circuit.

The biggest difference from the classical counterpart lies in the algorithm itself :
given a N dimensional feature space and M samples, a classical SVM , according
to 1.17, has to compute w scalar products to build the kernel matrix (each
one of them requirung O(N) operations) , then it requires O(M?) [25]operations
to solve the quadratic problem in the dual space. Eventually, we have to [25]
O(log(e 'poly(N, M))) (fixed an accuracy €) operations to train our classical
SVM. On the other hand, a qSVM can perform "naturally" scalar products (eval-
uating the Kernel matrix) in parallel ,endig up with a total of O log,(N M) [25].
To perform the scalar product, we use the SWAP TEST ROUTINE implementing

the circuit in figure 3.2.

0) —fH]
|a)

o) — ——

Figure 3.2: The SWAP test is implemented with two Hadamard gates applied to the
control qubit and a C-SWAP (controlled SWAP). Controlled gates perform
the operation between the target qubits if the control qubit state is |1)

31

Given a system of three qubits, respectively in the states |0) , |a) , |b) , at the stage
2 we obtain |¥V) = \%(|0ab) + |lab)) . Now the C-SWAP gate leads us to the
superposition of : = [0ab) — 75 [0ab) and 5 |Lab) — [1ba) . Now we apply the
second H gate to the first qubit and the final state becomes :

W) = £10) [|lab) + |ba)] + 5 |1) [lab) — |ba)] . This means we can evaluate
P(|0)) = [(0]¥)]* = z+ %](a\b)\Q. Then we can have a direct misure (repeating
the cycle several times) of |(a|b)|. Another way to implement the same idea (the
one adopted by IBM) consists in encoding each "classical" string of bit with
a suitable map ®(x). Let’s say « is an element of ur test set, then we apply the
feature map ® () and we can perform on it an unitary transformation of the form
Us(z) and then we can implement it all as

Us(z) = Up(w) H*"Up(x) H*" n = number of qubits (3.1)

such that the state associated to these qubits will be |®(z)) = Up(z) |0)*". In the
same way we can encode on a second qubit another element from the sample, let’s
say z, and then we can define its feature map Uy (-). Then if we want to evaluate
the module of the inner product |(®(z)|®(x))| = [(0]*" L{;)(Z)L{q)(x) 10)¥"], we
just have to implement the right circuit (see fig. 3.3). This means that, as with
the SWAP TEST, we can extimate the module of the inner product between our
vectors ®(x) and ®(z) (i.e. the Kernel matrix) just measuring the frequency of
the state |0)®" at the end of our circuit (assuming |0)*" as initial state).

0) ={H}- H HEH HEH==
(U 7 IR o U7 N o IR s 7 o RS o V]

|0:> —H I:’ - e b _— ‘tﬁ k- I&}-’ -—{ & _.-.::::::
1 _ =¥ A ;_l\e' —l-: {"T. LA _!_564 i
e ~ ~ -
|D> __.m_ __ ~ e I T :f ""::::::
|0) - - - i [Jog = {5 __.::::::

Figure 3.3: [12]Given a map Uy z,) for any classical input z;, it is possible to perform

2

the inner product between them.

Currently, it is possible to implement the following feature maps from 3.1.
Us(z) = exp{(i Y_gcpn Ps(®)) [Leg Zi} » with :

1. FirstOrderExpansion :S € {0,1,...n — 1}, so ®;(x) = x;

32

2. SecondOrderExpansion: S € {0,1,...n—1,(0,1),(0,2)...(n—2,n—1)}
and q>l<33) = Ty, CI)(CU)Z] = (7T — [EZ)(T — ZL’j)

3. PauliZExpansion: S € {(}) combinations ,k =1...n} and
Pg(x) = z;if k=1, Pg(x) = [[g(m — z;),j € Sotherwise

From S we can see that only interactions between couples of qubits are im-
plemented. The corresponding circuit between the qubits 7 and j can be seen in
figure .

_ otZ — iplm) 02,2, —
Zp=¢ © = _ o -

Figure 3.4: [12]Two qubit operations from the feature map Ug) are implemented with
CNOT and Z gates.

33

Chapter 4

Experiments

We have now developed all necessary instruments to implement a quantum sup-
port vector machine algorithm both on a real and simulator backend. We will test
its performances on the benchmark datasets Iris , Wine and Digits, avaiable on-
line on the UCI Repository. For each of them we measured the accuracy scored
by both classical and quantum implementations of the algorithm on the same set.
Then we analyzed differences between simulated and real results obtained with
the gSVM. All algorithms are implemented using Python 3.7.4. qSVM has
been implemented by Qiskit.aqua.0.6.0 module, SVM by
scikit-learn 0.21.3 module.

4.1 Datasets

We decided to use three different datasets[24] for different motivations :

1. Iris dataset is a benchmark dataset to classify iris flower starting from mea-
surements of petal dimensions.It is a very simple dataset. It contains a small
number of attributes and instances, so it is a good starting point to test a
classification algorithm.

2. Wine dataset consists of measures about physical properties from three dif-
ferent types of wine (alcohol levels, magnesium concentration, ...). It con-
tains a restricted numeber of classes, but each instance has several features
associated. It could give us important informations about algorithm ability
to manage big feature spaces !.

!Actually, as said before and as will be better explained later, each dataset has been prepro-
cessed via PCA reducing the number of features to two. What we really tested is indeed the ability
of the algorithm to find the correct hyperplane even if some information is lost

34

3. Digits dataset is the "hardest one" used. This dataset contains handwritten
digits. Each instance originates from a block of 32x32 bitmaps, divided into
nonoverlapping blocks of 4x4. The number of "on" pixels is counted in each
bloch, so we reduced to a 8x8 matrix as instance. The aim is to recognize
the input digit. It contains a big amount of instances, several features per
one and numerous classes. With this dataset we could have a 360 degree
overview of the (q)SVM performances.

We resume in detail their characteristics in the following table :

Instances Classes Features Trainign set Test set
Iris 150 3 4 35x3 45
Wine 178 3 13 40 x3 40
Digits 5620 10 64 10 x10 40

Figure 4.1: Characteristics of used datasets. In this table we also reported the dimension
of the trainig set and the test set used for our experiments

4.2 Experiment setting

First of all, whe had to preprocess datasets. Currently IBM processors can im-
plement only two/tree features qSVM, due to internal topology, as evident from
figure of a quantum processor. For our experiment, we used a two features imple-
mentation (i.e. we set | S| < 2 from feature maps described in section 3.2).

Figure 4.2: [12]The internal structure of a 5 qubit quantum processor used by IBM. No
more than three qubit can be connected. In our experiments we only used
two qubits, to be coherent with figure 2.2.

To do so, we applied PCA to all datasets and reduced the number of features to
two; results are shown figure 4.3

35

PCA dim. reduced Wine dataset Iris dataset PCA dim. reduced Digits dataset
[T

100 . Loo . . .
.
075 P 05 - 04 s .
050 ¢ . LA e 050 ¢ . 0z o .
. Swg ® . k4 . Ll
. (4 - & . e o
" e® o 025 . oe o e »
025 ' IRV 1) 8 % o Lrr .
000 s » o . . ouo .g .. :.‘ N 21 e -, :: o b o 3
. L - .
025 Sy 04 . © . 2ee ” 2
0.5 .o . -« 0 . ®
—a.5a L) L] -
050 - -6 .
a7
0.75 o8
100
1.00 E

T T T T T T T T T 01— T T T T v T y
100 -0.75 -050 -0.25 000 025 050 075 100 -10a 475 050 025 000 025 050 0% 100 1o 08 88 -04 02 OpF 02 04

Figure 4.3: Feature distribution of the three dataset after the application of PCA.

For each dataset different kernels (with different parameters) have been tested.For
the gSVM, due to the long times of execution, this "parameter testing" has been
executed using the StatevectorSimulator, one of the simulators imple-
mented by Qiskit Aer. It is faster than the others cause it doesn’t take in account
any source of noise and/or error, then it only performs the circuit once and returns
the probability of final states. It provides a good idea about the scoring of param-
eters, even if it isn’t absolutely reliable to measure the accuracy of the quantum
chip. For classical SVM we looked for the best configuration among (referring to
section 1.6):

1. Polynomial kernel of degree n, n € [1, 10]

2. Radial basis function kernel (RBF) in the form
K(x!, x?) = exp(—v”wi — wj||2> C € [1072,10',~ € [107%,10%]. For
each of them 13 evenly spaced values have been tested. C comes from 1.20.

In the same way we tested different configurations for the qSVM among kernels
presented in section 3.2 and the following entangler maps :

1. full entangler map : all qubits are entangled, according to the topology of
the processor used

2. linear entangler map : each qubit is entanged with the next one

3. [0, 1] only g and ¢; qubits are entangled

The best configurations found for each dataset are reported in the following table:

Classical SVM qSVM |
Kernel type C X n Feature map Entangler map
Iris RBF 1008 0,01 / SecondOrder [0,1]
Wine Polynomial / / 1 SecondOrder linear
Digits RBF 10 10 / SecondOrder [0,1]

Figure 4.4: Kernel configurations which scored the best accuracy on each dataset. We
used these parameters in our experiments.

Fixed the algorithms, they have been trained and tested on the same sets, then
accuracies achieved have been compared.

36

4.3 Results and discussion

Both algoriths have been used on the same datasets, each one with the best pa-
rameters provided by fig 4.4. Accuracies scored by simulators, quantum chips
and local CPU (classical SVM) are resumed in figure 4.5

statevector simulator gasm_simulator ibmgx2 ibmqg_16_melbourne local cpu
I 500 shots 1024 shots 1024 shots 1024 shots I/
Iris 67% 80% 69% 76% / 84%
Wine 85% 80% 78% 70% 55% 100%
Digits 60% 45% 43% 48% / 55%

Figure 4.5: Accuracies obtained on each dataset for each implementation of the algo-
rithm. We also reported results from simulators as sources of interesting
considerations. statevector simulator (as well as classical SVM)
executes the algorithm just one time

First of all, it is evident the great difference between results from the two different
simulatos: we remark that we used statevector_simulator only to get an
idea about the accuracy of the current configuration of the algorithm, since it is
much faster than gasm_simulator. Infact, just to get an idea, the first one
required, on average, about 6 minutes, while the second took about 3h (averaged
on 1024 shots). This evidences the exponential time required by a classical com-
puter to simulate a quantum one, since the classical SVM required lesser than one
second.

From the difference between accuracies scored on the same simulator but in-
creasing the number of repetitions, we see that results strongly change. It is proba-
bly due to the presence of final |0) states with low probability of occurrence, then
a great number of repetitions is needed to accurately extimate it measuring the
frequency. This leads to a strange situation, since for the wine and digits dataset
it could seem that accuracy scored with 1024 run is worse than the one obtained
with 500 run. This probably depends on the fact that the gqSVM algorithm tries to
approximate the probability measuring a frequeny (see section 3.2), which fluc-
tuates around this value (Bernoulli theorem). Then it finds a "wrong" hyperplane
for the training instances, but a "lucky" one for the validation set. That’s why we
only executed 1024 times the algorithm on real backends.

It seems that the system used to simulate errors and noise isn’t too accurate :
results from qasm_simulator and real backends are quite different. For the
Iris dataset this led again to a strange situation cause of the same motivations told
before: the wrong hyperplane found during the trainig phase works fine on the
specific training set, even if it is just a fortuity. This strange result can be a great
starting point to impove quantum systems, cause good simulation of a real system
means a deep understanding of all causes of noise and error.

37

Then another big difference arises among quantum processors: it is evident
that ibmg_16_melbourne is less accurate than ibm_qgx2: this is probably
because our algorithm is explicitly designed to work on a five qubit architecture,
so the 9 unused qubits are just source of noise.

Now we look at the differences between accuracy performances between clas-
sical and quantum SVM implemented on the classical and quantum CPU. First of
all, some specifications should be done about the datasets used: they are bench-
mark datasets composed of little amounts of instances, so a serious statistical
analysys can’t be done (we are trying to evaluate the global accuracy of our classi-
ficator basing the result on just up to 40 instances), but the obtained results surely
are a good starting point to get an idea about the state of the art of quantum com-
puters. Excpet for the wine dataset, accuracy results are comparable, even if the
gSVM is less accurate on average. This can be due to inner noises and errors
or to the fact that the feature map used is just inappropriate: real advantages of
gSVM become evident when the suitable feature map is too hard to be classically
evaluated.

Eventually, we must talk about the strong limitation imposed on the number

of features: this led to the loss of big amounts of information about the dataset
(e.g. for the Digits we tried to "resume" 64 features in just two. Even from figure
4.1 was clear that it wasn’t enough to distinguish all classes).
One final consideration must be done about times taken from these two implemen-
tations: even if the quantum speed up is surely achievede thanks to this "direct
evaluation" of the kernel matrix, the user can’t benefit of this. Infact, as explained
before, IBM Q processors are public, so the access is provided with a system of
queueing and personal credits, then each implementation of the qSVM required
several days to be performed.

38

Conclusions and future
developments

In this short thesis we presented main concepts about machine learning and su-
pervised learning, presenting an implementation of a multiclass classifier with the
SVM algorithm. We did it because these tecniques are wideley used in reasearch
(high energy, astrophysics, new materials, chemistry...) and then we presented
a possible improvement of them using a quantum computer. So we presented
basic concepts about quantum computation theory and why it should exponen-
tially speed up execution time of classical algorithms (or even perform tasks not
possible to a classical computer). In particular, a detailed discussion about the
gSVM has been done, explaining the circuit implemented by IBM. Nevertheles,
with a simple experiment, we found that we are still far away from a quantum
computer able to perform "real life" tasks , even if leading companies in the sec-
tor such as Google, Microsoft or NASA (as well as IBM) are collaborating with
academic researchers to find new ways to power up their quantum computers (to
achieve a better controll of the qubits, a better isolation from the environment,
bigger number of qubits per chip ...). This means that contemporaneous tecnolo-
gies aren’t still enough advanced to manage a full working superconductive qubit,
with very small times of coherence. Then maybe a change of paradigma could
occurr (we remark that the transmon isn’t the only existing implementation of the
qubit. Trapped ions, polarized photons, atomic spins of molecules... are valid the-
orical alternatives, even if the transmon presents the advantage of being tunable
with simple electronic devices) But this is a field in continuous evolution: IBM
has already announced the first commercial line of 20 qubit quantum computers
(IBM Q System One), while on 18 September 2019 it announced that it will soon
make avaiable a 53 qubit system on IBM Q Network. With such a system it could
be possible to demonstrate the quantum supremacy®. Industries and researchers
will benefit of the advantage of a computer able to manage with huge amounts of

2Quantum supremacy is achieved when a formal computational task is performed with an ex-
isting quantum device, but the same task cannot be performed using any known algorithm running
on an existing classical supercomputer in a reasonable amount of time

39

data and to simulate real quantum system. Chemistry, biology as well as physics
will surely benefits of these properties.

40

Bibliography

[1] Dr. Christine Corbett Moran. Mastering Quantum Computing with IBM QX.
Packt publishing, 2019.

[2] Ethem Alpaydin. Introduction to Machine Learning, Second Edition. The
MIT Press, 2010.

[3] Sebastian Raschka, Vahid Mirjalili. Python Machine Learning, Second Edi-
tion. Packt publishing, 2017.

[4] David McMahon. Quantum computing explained. IEEE Computer Society,
2007.

[5] Benenti Giuliano, Giulio Casati, Giuliano Strini. Principles Of Quantum

Computation And Information - Volume I: Basic Concepts. World Scientific
Publishing, 2004.

[6] B.J. Chelliah, S. Shereyasi, A. Pandey, K. Singh. Experimental Comparison
of Quantum and Classical Support Vector Machines. IJITEE. ISSN: 2278-
3075, Volume-8 Issue-6, April 2019

[7] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, W. D. Oliver.
A quantum engineer’s guide to superconducting qubits. Appl. Phys. Rev. 6,
021318 (2019).
https://doi.org/10.1063/1.5089550

[8] Havenstein, Christopher; Thomas, Damarcus; and Chandrasekaran, Swami.
Comparisons of Performance between Quantum and Classical Machine
Learning." SMU Data Science Review: Vol. 1 : No. 4, Article 11, 2018.
https://scholar.smu.edu/datasciencereview/voll/iss4/11

[9] J. Eisert, M.M. Wolf. Quantum computing, 2006.
arXiv:quant-ph/0401019

41

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

M. Schuld, I. Sinayskiy, F. Petruccione. An introduction to quantum machine
learning, 2014.
arXiv:1409.3097

Seth Lloyd, Masoud Mohseni, Patrick Rebentrost. Quantum algorithms for
supervised and unsupervised machine learning, 2013.
arXiv:1307.0411

Vojtech Havlicek, Antonio D. Cércoles, Kristan Temme, Aram W. Harrow,
Abhinav Kandala, Jerry M. Chow, Jay M. Gambetta. Supervised learning
with quantum enhanced feature spaces, 2018.

arXiv:1804.11326

Patrick J. Coles, Stephan Eidenbenz, Scott Pakin, Adetokunbo Adedoyin,
John Ambrosiano, Petr Anisimov, William Casper, Gopinath Chennu-
pati, Carleton Coffrin, Hristo Djidjev, David Gunter, Satish Karra, Nathan
Lemons, Shizeng Lin, Andrey Lokhov, Alexander Malyzhenkov, David
Mascarenas, Susan Mniszewski, Balu Nadiga, Dan O’Malley, Diane Oyen,
Lakshman Prasad, Randy Roberts, Phil Romero, Nandakishore Santhi,
Nikolai Sinitsyn, Pieter Swart, Marc Vuffray, Jim Wendelberger, Boram
Yoon, Richard Zamora, Wei Zhu Quantum Algorithm Implementations for
Beginners, 2018.

arXiv:1804.03719

David C. McKay, Thomas Alexander, Luciano Bello, Michael J. Biercuk,
Lev Bishop, Jiayin Chen, Jerry M. Chow, Antonio D. Cércoles, Daniel Eg-
ger, Stefan Filipp, Juan Gomez, Michael Hush, Ali Javadi-Abhari, Diego
Moreda, Paul Nation, Brent Paulovicks, Erick Winston, Christopher J.
Wood, James Wootton, Jay M. Gambetta Qiskit Backend Specifications for
OpenQASM and OpenPulse Experiments, 2018

arXiv:1809.03452

A. Barenco (Oxford), C. H. Bennett (IBM), R. Cleve (Calgary), D. P. DiVin-
cenzo (IBM), N. Margolus (MIT), P. Shor (AT&T), T. Sleator (NYU),
J. Smolin (UCLA), H. Weinfurter (Innsbruck) Elementary gates for quantum
computation, 1995

arXiv:quant-ph/9503016

Vittorio Giovannetti, Seth Lloyd, Lorenzo Maccone Quantum random ac-
cess memory, 2007
arXiv:0708.1879

Qiskit API documentation, 2019 :
https://giskit.org/documentation/

42

[18] Learn Quantum Computation using Qiskit, 2019
https://community.giskit.org/textbook/

[19] A collection of Jupyter notebooks showing how to use Qiskit that is synced
with the IBM Q Experience , 2019
https://github.com/Qiskit/giskit-igx—-tutorials

[20] Cynthia Rudin. Kernels, MIT 15.097 Course Notes.
https://ocw.mit.edu/courses/sloan-school-of-management
/15-097-prediction-machine-learning-and-statistics-spring-2012/
lecture-notes/MIT15_097S12_lecl3.pdf

[21] Davide Anguita, Sandro Ridella, Fabio Rivieccio, Rodolfo Zunino Quantum
optimization for training support vector machines, Neural Networks Volume
16, Issues 576, 2003, Pages 763-770, ISSN 0893-6080,
https://doi.org/10.1016/50893-6080(03)00087-X

[22] Suykens, Johan, Vandewalle, Joos Least Squares Support Vector
Machine Classifiers. Neural Processing Letters ,1999 9. 293-300.
10.1023/A:1018628609742.

[23] Li Zhaokai, Liu Xiaomei, Xu Nanyang, Du jiangfeng Experimental Realiza-
tion of Quantum Artificial Intelligence ,2014
arXiv:1410.1054

[24] Dua, Dheeru and Graft, Casey UCI Machine Learning Repository. Irvine,
CA: University of California, School of Information and Computer Science

,2019
http://archive.ics.uci.edu/ml

[25] Patrick Rebentrost, Masoud Mohseni, Seth Lloyd Quantum support vector
machine for big data classification, 2014.
arXiv:1307.0471

43

