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Introduction

One of the compelling topics that have captured the attention of researchers
is the detection of dark matter. Since the beginning of the last century,
increasing evidence of the presence of this unknown type of matter that
permeates the universe arose. In particular, it results that only 5% of the
matter is baryonic, and the remaining part is somehow “dark” since it does
not interact electromagnetically. About 27% turns out to be dark matter
whose presence has been shown through gravitational interactions and the
remaining 68% is dark energy, today still completely unknown.
Weak Interacting Massive Particles (WIMPs) are one of the favourite candi-
dates of dark matter because they are cold, i.e. not relativistic, interact only
through weak and gravitational forces and are massive.
For the detection of dark matter there is a large number of experiments based
on the direct detection and, in particular, on the detection of nuclear recoils
induced by the scattering of WIMP particles off target nuclei. Moreover, an
unambiguous proof of the galactic origin of dark matter would come from the
observation of the direction of the WIMP induced nuclear recoils.
This thesis work was carried out within the NEWSdm experiment, which
aims at detecting WIMP induced nuclear recoils in a solid target made of
new generation nuclear emulsions, called Nano Imaging Trackers (NIT).
In the aforementioned detector, tracks are of the order of a few hundred
nanometers. Nuclear emulsions allow reconstructing these tracks with optical
microscopes. So NIT are scanned with optical microscopes that, although
limited by optical resolution, are currently the best scanning devices.
To overcome the diffraction limit and reconstruct tracks in the bi-dimensional
plane, the resonance effect of polarized light was exploited, according to which
metal grains respond differently when illuminated by light with different
polarization angles.
In spite of this improvements on the bi-dimensional plane, the axial resolution
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remains limitated by the diffraction. Objects are well reconstructed if their
distance from the focal plane is of the order of the Depth of Focus, while are
badly reconstructed if they are close by. The idea of using a double focal
plane was exploited in order to have the object out of focus at least at one of
the planes.
The aim of this work is to achieve a nanometric accuracy in the tri-dimensional
track reconstruction, by means of a convolutional neural network which
improves significantly the accuracy on the z-cordinate.
This work is organized into five chapters:

⬩ Chapter1: includes the path that brought evidence for dark matter
into our Universe, a description of WIMPs and an overview of dark
matter experiments focusing on direct detection and the potential of
directionality;

⬩ Chapter 2: dedicated to the description of the new nuclear emulsions,
the NEWSdm experiment, the main background sources for this experi-
ment and the readout strategy for nuclear emulsions through optical
microscopes;

⬩ Chapter 3: reports the study of the resonance effect of polarized light
carried out on 70 nm NIT exposed to carbon ions;

⬩ Chapter 4: for a brief description of artificial intelligence, machine
learning, deep learning and of convolutional neural network;

⬩ Chapter 5: setting the problem of z-coordinate reconstruction at nano-
metric scale, details of the convolutional neural network used on purpose
and the results obtained.



Chapter 1

Dark matter: first evidences
and detection

From the early twentieth century first hints of an unknown type of matter
permeating the Universe arose. This new entity was called “dark matter”
since it showed to feel only gravitational force. Despite all efforts and progress
made by the scientific community so far, the dark matter intrinsic nature is
still a big puzzle and therefore many experiments keep looking for a compelling
evidence of its existence.
This chapter is focused on the description of evidences that suggest the
presence of dark matter in the Universe, on the derivation of a quantitative
estimate of its amount and on the description of the most promising dark
matter candidate. Finally, an overview of techniques used for dark matter
search is given, mainly focusing on the direct search and in particular on the
directionality as a smoking gun in the discovery of dark matter from galactic
origin.

1.1 First evidences of dark matter
In 1933 Fritz Zwikcky [1], observing the Doppler effect of galactic spectra
of the Coma cluster, calculated the velocity dispersion of single galaxies
belonging to the cluster. In order to estimate the mass of the cluster, he
employed the virial theorem

⟨T ⟩ = −1
2⟨U⟩

3
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where ⟨T ⟩ and ⟨U⟩ are the average kinetic energy and potential energy,
respectively. The mass of the cluster resulted to be four-hundred times larger
than the observed luminous mass.
Approximately 40 years later Vera Rubin [2, 3] made a study about rotation
curves of spiral galaxies, providing a further evidence about the large amount
of non-luminous matter in the Universe. Spiral galaxies contain the majority
of luminous matter in the galattic center.
Considering a star at distance r from the galactic center and equalizing
gravitational and centrifugal forces

G
mM(r)
r2 =

mv
2

r (1.1)

it is possible to obtain its velocity as

v =

√
GM(r)

r (1.2)

where M(r) is the mass of the galaxy within the radius r. If the star is in the
galactic center M(r) ∝ r

3 and therefore v ∝ r while in the disc M = cost
and the velocity is expected to show a Keplerian behavior, namely v ∝ 1√

r
.

Rubin found a completely different behavior: the rotation curves are flat for
high r -values, as shown in Figure 1.1, requiring the presence of a huge amount
of “dark matter” in the halos surrounding galaxies. These studies provide a
further evidence of the large amount of non-luminous matter in the Universe.
Remarkable information about the presence of missing matter is also given
by the deflection of photon trajectories due to gravitational lensing [5, 6]
which was observed for the first time in 1979 by Walsh [7]. The gravitational
deflection of photons passing through a point mass M is:

α =
4GM
c2b

(1.3)

where b is the impact parameter of the light scattering process due to the
gravitational field [8]. If the light source is strictly behind the point mass
one can observe it as a ring otherwise it appears as a distorted image. This
phenomenon is observed for very large objects like galaxies or galaxy clusters
while for stars an amplification of the brightness intensity, called microlensing,
is observed [9]. Studying stars in the Large Magellanic Cloud it was observed
that the amplitude of blue and red spectra have the same amplidute, thus
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Figure 1.1: Red-dots represent the measured rotation speed of the HI regions
in NGC 3198 while the dashed line idealizes the Keplerian behaviour [4].

indicating that the deflection ∆p/p is independent on the wavelength. If the
photon has a momentum p, its gravitational mass will be p/c 1 and therefore
it will receive a transverse momentum ∆p ∝ p leading to the mentioned
property.
Microlensing is a very powerful tool to investigate the Massive Compact
Halo Objects (MACHOs) which includes neutron stars, brown dwarfs, black
holes and unassociated planets that would emit very little or no radiation
[10]. MACHOs were conceived as the natural baryonic candidates to explain
the missing mass. Several collaborations used the microlensing effect to
study the Great Magellanic Cloud [11–13]. However, many observations like
those made by the MACHO Collaboration [11] found only 13-17 possible
microlensing events on 11.9 million stars studied. These results suggest that

1A photon with momentum p has an energy equal to p ⋅ c. Since for a dimensional
reason the energy has to be divided for c

2 we obtain that the effective gravitation mass of
the photon is p/c.
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the contribution provided by MACHOs is negligible since it accounts for just
a few percent of the mass needed to explain the above mentioned evidence.
At the same time the hypothesis of a dark matter made by undiscovered
parlicles began to make its way.
The clearest evidence for non baryonic dark matter is reported by the Bullet
Cluster which describes the collision of two clusters as shown in Figure 1.2 [14].
Two magenta clumps represent the interaction of baryonic matter emitting in
the X-ray spectrum while in blu are indicated regions where the majority of
the mass is inferred by gravitational lensing. The separation between the mass
measured with the gravitational lensing and the X-ray emission is considered
as one of the overwhelming evidence for a dark matter made by undiscovered
particles.

Figure 1.2: Composite image of galaxy cluster 1E0657-56 [15]. Hot gas
distributions are shown in magenta, dark matter halos in blue.

In 1965 Penzias and Wilson [16] discovered that the Universe is irradiated by an
isotropic and uniform microwave radiation corresponding to the temperature of
a black-body of ∼ 3k. This radiation, known as Cosmic Microwave Background
(CMB), gives information about the composition of the Universe and it is
one of the most important proof for the Big Bang Theory. According to this
model, the whole Universe was concentrated in a space-time singularity and
after a violent explosion it expanded and cooled down.
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The matter was initially grouped in a plasma formed by photons, leptons and
quarks. The cooling down led the quarks to form protons that subsequently
bound to electrons to form neutral atoms. Photons that until then were
trapped in the plasma because of the scattering with free electrons (scattering
Thomson) were free to travel in the Universe. The CMB is an imprint of that
period called Recombination epoch since it makes it possible to retrieve the
last scattering surface (i.e. the Universe when the photons separated from
everything else) through the photon energy spectrum. The small anisotropies
observed O(10−6) [17–19] are interpreted as fluctuations of mass density in the
Universe when the astrophysical structures seen nowadays were originated.

Figure 1.3: The CMB power spectrum as a function of the angular scale.
Red line is the best fit to the model, and the grey band represents the cosmic
variance[20].

The angular power spectrum of the CMB (see Figure 1.3), especially the
position and width of peaks, provides important information about the baryon
density and other cosmological parameters. The position of the first peak
gives the total mass-energy density Ω ∼ 1: it rapresents the geometry of a
flat Universe; the ratio between the first and the second peak provides the
baryonic density Ωb ∼ 0.04.
With the Big Bang Nucleosynthesis Theory (BBN) it is possible to obtain,
in a different way, the baryonic density parameter [21]. BBN is the period
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after the Big Bang where the first light elements were formed from the fusion
between protons and neutrons, starting with deuterium, helium and small
amounts of lithium. The deuterium formed in the stars is rapidly converted
into 4

He, so the huge amount of deuterium in the first second after the big
bang follows the same behavior. Using nuclear physics and known reaction
rates, BBN elemental abundances can be calculated, and so the ratio D/H
heavily depends on the component of baryons in the Universe. Two values
of ΩBh

2, depending on the amount of Deuterium have been calculated by
Cyburt [22]:

Ωbh
2
= 0.0229 ± 0.0013

Ωbh
2
= 0.0216+0.0020

−0.0021

Using the value h = 0.674 ± 0.005 from recent observations for the reduced
Hubble parameter [23], Ωb = 0.0484 ± 0.0010, therefore only a small fraction
of the matter is baryonic.
As discussed only 5% of the Universe turns to be known and the radiation
contribution is negligible. This brought the development of the ΛCDM model,
also known as the cosmology standard model, based on the presence of dark
energy and cold dark matter, as well as radiation and ordinary matter. This
model, through measurements on the CMB and other observations such as
BBN, SNIa and baryon acoustic oscillations (BAO) is the model that best fits
observations and provides a mass-energy content for components of Ωb = 0.049,
ΩCDM = 0.265 and ΩΛ = 0.686 [24] for baryon, cold dark matter and dark
energy respectively.

1.2 WIMPs
Altough the existence of dark matter is supported by many observational
evidences, its nature remains one of the unresolved questions in particle and
astroparticle physics.
In addition to evidences suggesting a large component of dark matter in the
Universe, its presence becomes crucial to explain the formation of structures
on cosmological scales. Several studies based on numerical simulations show
that a cold dark matter is required to reproduce the astrophysical structures
as seen today [25]. According to numerical models, smaller-scale structures are
initially formed and then large structures like galaxies (bottom-up formation).
On the contrary, hot dark matter implies a top-down formation.
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The ideal non-baryonic dark matter candidate should therefore have the
following properties:

• cold, to give rise to the formation of the large-scale structure;

• neutral, since it does not interact electromagnetically, but only through
gravitation;

• “collisionless”, with a very low interaction cross-section because they
are still unobserved;

• massive, to take into account the total amount of matter in the Universe;

• stable, to be in such quantity, nowadays, to explain dynamics of galaxies.

In the Standard Model (SM) there are no particles that have these character-
istics and the nature of dark matter is still unknown. It is possible to have a
complete review of the candidates referring to [26, 27].
One of the favorite candidates for dark matter are Weakly Interacting Massive
Particles (WIMPs) so the focus will be on this hypotesis. As pointed out,
to describe the development of the structure of the Universe, we are looking
for cold dark matter, that is non-relativistic at the time of decoupling with
the rest of the matter “freeze-out”. This happens when the annihilation rate
becomes smaller than the expansion one [8]:

N⟨σv⟩ ≤ H (1.4)

where N is the WIMP density, v is the relative velocity of particles and
antiparticles, σ is the WIMP–antiWIMP annihilation cross-section, and H
is the Hubble parameter at the time of freeze-out. The density of a specific
particle at the freeze-out is called relic density. From that moment, its
abundance remains constant. This density can be theoretically calculated,
so the candidate of dark matter must have the relic density according to the
abundance reported at the end of the previous section 1.1.
Since WIMPs are massive and non-relativistic, their density will be given by
Boltzman’s law:

N(T ) = (MT
2π )

3/2

e
−M/T (1.5)
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The density of particles evolves with time according to the Friedman’s equation
of fluid in the non-relativistic case:

dn

dt
= −3Hn − ⟨σv⟩(n2

− n
2
eq) (1.6)

where n is the density of the particle, H is the Hubble expansion rate, ⟨σv⟩ is
the thermally averaged total cross section for annihilation of a particle with
its anti-particle times the relative velocity of the two particles in the center of
mass frame and neq is the equilibrium thermal density. The exact value of the
annihilation cross-section is not known, and the equation is not analytically
solvable, but there exists a fairly simple analytic approximation that yields a
solution with an accuracy of about 10% for an annihilation cross-section with
a rather arbitrary dependence on energy [28]:

Ωcdmh
2
=
mχnχ
ρc

≃
3 × 10−27

cm
3
s
−1

⟨σv⟩
(1.7)

where χ is a generic dark matter particle. The cross-section necessary to
observe the current dark matter density is of the order of the weak interaction
scale.
The reason why WIMPs are considered as reasonable particles is found in
equation (1.7). Indeed, if there is a new particle with weak scale interactions
and masses from a few GeV/s to several TeV/s, as assumed for WIMPs, it
can be estimated that it has an annihilation cross-section times velocities
⟨σv⟩ = 10−25cm3s−1 . This value provides a relic density close to the abundance
of dark matter reported.
One of the most important parameters for determining the expected event rate
for a direct detection experiment is the local dark matter density. Therefore
several models arose to describe the WIMPs profile density distribution
according to the observed rotation curves in galaxies. Usually, dark matter
halos are parametrised with a pseudo-isothermal sphere with the following
density

ρ(r) = ρ0

1 + ( r

r0
)

2 (1.8)

where ρ0 is the local WIMP density that can vary in the range (0.2 − 0.4)
GeV/c2 [29] and r0 is the core radius [30].
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Despite its success, the Standard Model (SM) does not contain any particle
that could act as the dark matter. The only stable, electrically neutral, and
weakly interacting particles in the SM are neutrinos. However, there are two
main reasons why neutrinos cannot account for all of the Universe’s dark
matter

1. neutrinos are relativistic, a neutrino-dominated Universe would have
inhibited structure formation and caused a “top-down” formation [31];

2. neutrinos are ruled out by cosmological observations because they could
account only for a small fraction of dark matter [21, 32].

Although the identity of WIMPs remains a mystery, the best motivated and
theoretically developed WIMP candidate comes from new theories proposed
to extend the standard model. The most promising theory beyond SM is
supersymmetry (SUSY)[33], which also yields a viable WIMP candidate called
the neutralino or lightest supersymmetric particle (LSP).

1.3 Search for dark matter
The search for dark matter can be performed with three complementary
approaches, as schematically represented in Figure 1.4

◦ production of dark matter at particle colliders;

◦ indirect detection;

◦ direct detection.

In this section will briefly describe the first two items, while a whole section
will be focused on the third one.
Dark matter can be produced in high energy interactions at particle colliders.
Since dark matter does not interact electromagnetically, its presence can only
be revealed in events with missing transverse momentum and energy. This
search is carried out at the Large Hadron Collider at CERN with the ATLAS
[35, 36] and CMS [37, 38] experiments. Those experiments are looking for
signatures of new particles produced in collisions especially in the low mass
region (< 1GeV).
The indirect detection [39] consists of searching for the annihilation or the
decay of dark matter particles. This technique is based on the measurement
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Figure 1.4: Schematic plot to highlight direct detection, indirect detection
and collider detection of dark matter. The arrows indicate the direction of
reaction. [34]

of the flux of particles produced during the annihilation of WIMPs in the
galactic halo or near celestial bodies. Particularly interesting for indirect
dark matter search are γ−rays and neutrinos since they preserve spectral
information and point back to the source.
Search for γ−rays are usually carried out through experiments on satellite
telescopes, as the Earth’s atmosphere is opaque to gamma rays; it is notewor-
thy to mention Fremi-LAT [40] and EGRET [41, 42]; otherwise, ground-based
telescopes are used and since the flow of gamma rays decreases rapidly with
increasing energy, such detectors are required to have a very large effective
area, like HESS [43]. The detection of astrophysical neutrinos generally
implies the use of detectors composed of large volumes of water or ice that
allow the study of the Cherenkov light produced in the detector medium
as the products of neutrino interactions passes through it. This research is
performed by experiments such as Ice Cube [44], ANTARES [45] and Super-
Kamiokande [46]. Another indirect manifestation of the presence of WIMPs
could be through their annihilation with the production of electron-positron
pairs. The PAMELA [47, 48] experiment observed an excess of positrons in
the range from 10 GeV to 250 GeV, this overabundance was then confirmed
by AMS-2 [49] and Fermi [50]. However, there are also other interpretations
of the observed signal such as the collision of cosmic rays with the interstellar
medium or the production by pulsar [51].
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1.4 Direct detection
Direct detection concern the scattering on both nucleons and electrons. Since
the level of background is lower for the nucleons, usually direct detection
aims to measure nuclear recoils produced by elastic scattering of WIMPs off
target nuclei of the detector:

χN⟶ χN (1.9)

where χ is a dark matter particle and N represents the target nucleus. For
10− 100 GeV/c2 WIMP masses a recoil energy in the range 1− 100 keV [29] is
expected. The differential recoil spectrum resulting from WIMP interactions
can be written as:

dR

dE
(E, t) = ρ0

mχmN
∫

vmax

vmin

vf(v, t) dσ
dE

(E, v)d3
v (1.10)

where mχ and mN are dark matter and nucleus masses, rispectively, ρ0 is the
local WIMP density, v is the dark matter velocity defined in the rest frame
of the detector and f(v, t) represents the WIMP velocity distribution in the
detector rest frame, finally dσ

dE
(E, v) is the WIMP-nucleus cross section. The

velocity distribution is time dependent due to the revolution of the Earth
around the Sun and it is usually described by an isotropic Maxwel-Boltzman
distribution, which is truncated at velocities exceeding the escape velocity
[52]:

f(v, t) = 1√
2πσ

exp(− v
2

2σ2) (1.11)

where σ = vc
√

3
2 is the velocity dispersion with vc the local circular velocity,

vc ∼ 220 km/s. This value is averaged from different analyses [53]. For the
elastic scattering the transferred momentum is

q
2
= 2m2

rv
2(1 − cosθ∗)

where mr = mχmN/(mχ +mN) is the reduced mass and θ
∗ is the scattering

angle in the center of mass frame. Hence, the recoil energy in the non-
relativistic regime is:

E =
q

2

2mN
=
m

2
rv

2(1 − cosθ∗)
mN

(1.12)
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The minimum velocity of the WIMP that can give a recoil energy E, is
obtained for cosθ∗ = −1:

vmin =

√
EmN

2m2
r

(1.13)

whereas the maximum velocity, vmax, is the escape velocity of the WIMPs in
the halo [29]. According to [54] the escape velocity is within the range 498
km/s < vmax < 608 km/s and the commonly used value is 544 km/s.
The WIMP-nucleus elastic scattering depends on how the WIMP couples
with the nucleon and, in the non-relativistic limit, it can be divided into two
classes: the spin-independent (SI) and spin-dependent (SD).
The former represents the simplest case of interaction where the WIMP
couples equally with neutrons and protons, the amplitude of each one adds
in phase and the scattering results as a coherent process. The latter, instead,
takes into account the spin of neutrons and protons. Since coupled nucleons
will give a zero contribution to the amplitude, only the non coupled ones will
contribute: this is why targets with an odd number of protons or neutrons
are needed to detect SD interactions.
For spin independent interactions, the cross-section at zero momentum transfer
is:

σ
SI
0 =

4m2
r

π [Zfp + (AZ)fn]2 (1.14)

where fp and f
n are the effective copuling factors of WIMPs on protons

and neutrons, rispectively, Z is the atomic number and A-Z the number of
neutrons. Usually, fp ≃ fn and therefore the cross-section is proportional to
A

2.
Instead for the spin-dependent case the cross-section at zero momentum
transfer is:

σ
SD
0 =

32
π G

2
Fm

2
r[ap⟨Sp⟩ + an⟨Sn⟩]2J + 1

J
(1.15)

where G2
F is the Fermi coupling constant, J the total nuclear spin, ap,n are the

effective spin coupling of spin with protons and neutrons and ⟨Sp,n⟩ are the
expectation values of the nuclear spin content due to the proton and neutron
group.
In order to write the differential cross-section it is necessary to take into
account the finite size of the nucleus with the form factor F 2(q) which in the
case of SI is commonly described with the Helm parameterisation, while for
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SD it is written in terms of spin structure function

F
2(q) = S(q)

S(0) (1.16)

and normalized so that F (0) = 1. The differential cross-section is:

dσ

dE
=

mN

2m2
rv

2 (σ
SI
0 F

2
SI(E) + σSD0 F

2
SD(E)) (1.17)

Besides, Earth’s motion around the Sun produces a seasonal modulation in
the total number of events expected [55]. During July, there is a component of
Earth motion around the Sun parallel to the Sun’s motion around the galactic
center, while in January, this component is antiparallel and reduces Earth’s
velocity relative to the halo. For this reason there is an annual modulation
of the event count rate that shows a maximum in July and a minimum in
January.
Directionality is another dark-matter signature which can be employed for
its detection as the direction of the nuclear recoils resulting from WIMP
interactions has a strong angular dependence [56]. This dependence is clearly
evident if the differential rate is written as a function of the angle γ defined
by the direction of the nuclear recoil relative to the mean direction of the
solar motion

d
2
R

dEdcosγ
∝ exp[−((vE + v⊙)cosγ − vmin

v2
c

)
2

] (1.18)

where vE is the Earth’s velocity, v⊙ the velocity of the Sun around the galactic
centre, vmin the minimum WIMP velocity and vc the halo circular velocity.

1.5 Detectors for direct search
In the direct search for dark matter, the elastic scattering induced by a WIMP
transfers to the target nucleus an energy that can be detected with three
different signals, which depend on the detector technology in use. These
effects can be:

• the production of heat (phonons in a crystal);

• scintillation photons due to de-excitation of the target nucleus;
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• direct ionisation of the target atoms.

Some experiments involve a single detection channel while others combine
two of the three effects mentioned. In the following the focus will be on
scintillator crystals, bolometers and liquid noble-gas detectors.

1.5.1 Bolometers
Bolometers are detectors capable of measuring the energy deposited by the
incoming particle in form of phonons, i.e. vibrations of the crystal lattice.
Phonons produced by the dissipated energy can be separated in thermal
and athermal phonons. Thermal phonons can be measured by the induced
temperature rise with typically ∆T = E/C ∼ 1µK, where E is the released
energy and C the detector’s heat capacity. Athermal ones are a fraction of the
initial phonons not at equilibrium and can provide information on the energy
and the position of the recoil. In addition to the phonon signal, cryogenic
bolometers can also perform particle discrimination exploiting the charge or
the scintillation signal.
The CDMS II experiment [57] at Soudan Underground Laboratory is made
of nineteen Germanium and eleven Silicon detectors of 230 g and 110 g,
respectively. The signal detection is based both on phonon excitation and
ionization. This experiment has not found any evidence for an annual mod-
ulation of the event rate [58]; this result disagrees in particular with the
observation of the CoGeNT experiment which also uses a germanium target
[59]. A follow-up experiment is SuperCDMS [60] which currently set the
most sensitive exclusion limits at low WIMP masses [61]. The CRESST-II
experiment, at LNGS with a detector based on scintillating crystals at very
low temperature (mK) [62] used the combination of phonon and scintillation
signals to detect the WIMP-nucleus interaction. With a total exposure of
730 kg from 2009 to 2011, it observed an excess of events corresponding to a
significance of 4.7σ [63]. In the 2013, after an improvement of the background
detection efficiency, with an exposure of 29.35 kg the previous signal was
disproved. An exclusion limit was set on spin-independent WIMP-nucleon
scattering which probes a new region of parameter space for WIMP masses
below 3 GeV/c2 [64].
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1.5.2 Liquid noble-gas detector
Liquid noble-gas detectors, when crossed by radiation, show an high scintilla-
tion and ionisation. Currently, liquid argon (LAr) and liquid xenon (LXe)
detectors are used as detector media. To distinguish the main background
due to γ and e

− interactions (electronic recoils, ER) from the interactions of
WIMPs with nuclei (nuclear recoils, NR), two methods can be applied in liquid
noble-gas detectors: pulse-shape discrimination (PSD) and charge-to-light
signal ratio.
The luminescence in these materials is produced by two different states: the
singlet which has a fast decay time (tf) and the triplet having slow decay
time (ts). This results in a differentiation of the shape between ER and NR
because for the first ts is prevalent whereas for the second tf . This technique
gives large separation power in liquid argon since tf ∼ 6ns and ts ∼ 1.6µs [65].
However, pulse shape discrimination provides a good separation only for a
large number of measured photons and therefore, a higher energy threshold
has to be considered. In liquid Xenon, the values for the decay constants
are too close to each other, tf ∼ 4ns and ts ∼ 22ns [66], giving less rejection
power.
The above mentioned liquid noble-gas detectors can work with two different
technologies:

• single phase if the noble element is used only in the liquid state;

• double phase when both the gaseous and liquid state of the element are
employed.

Single phase detectors consist typically of a spherical target, containing the
liquid medium, surrounded by photo-detectors. The main advantage is the full
coverage with photo-multipliers (PMT) which results in a larger light output
compared to detectors which are only partially covered. The distribution and
timing of the photons at the PMT can be used to determine the position of
the event.
Double phase detectors allow to detect both the scintillation light and the
charge signal from ionisation produced by energy deposition [67]. In this
case the charge-to-light ratio depends on the particle type and allows to
separate signal-like events from background. This category of detectors has a
cylindrical shape with PMTs located on top and bottom surfaces. Their task is
to detect both the prompt light signal and ionised electrons. Ionised electrons
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are drifted upwards to the liquid-gas surface and amplified via proportional
scintillation in the gas phase [68]. Therefore, double phase detectors are
operated as a Time Projection Chambers (TPCs). The difference between
the scintillation signal and the charge signal provides the z position and the
information provided by PMT allows to identify the x-y plane position, thus
allowing the reconstruction of the event.
Experiments using liquid-Ag in single-phase are DEEP [69] and CLEAN
[70] at the SNO laboratory in Canada, whereas in Japan, at the Kamioka
Observatory, the XMASS experiment [71] employs the same technology with
liquid-Xe.
The first experiment using liquid-Ar in double-phase was WARP [72], at
the LNGS laboratory. Other dual-phase experiments with Argon are: the
DarkSide [73] which has reached 50 kg of active mass and is planning a
multi-ton detector, ArDM [74] detector that was first tested at CERN and
then moved to the Canfranc underground laboratory. Experiments using
double-phase detectors are XENON at LNGS with 1ton active mass[75],
LUX at the Sanford underground laboratory in the US, operates a LXe TPC
with an active mass of 250 kg [76]; ZEPLIN [77], which operated at the
Boulby underground laboratory, achieving a high separation between signal
and background by using a flat detector geometry allowing to increase the
electric field in the liquid to a maximum of almost 9 kV/cm and PandaX [78]
which is operated at the Jin-Ping underground laboratory initially with a
target volume of 120 kg, then increased to 500 kg. [79]. LUX and ZEPLIN
experiments have joined to build the multi-ton LZ detector hosting about 7
tons of liquid xenon in the target volume [80, 81].

1.5.3 Scintillator
When particles pass through a scintillating material, atoms or molecules of
the medium are excited and the subsequent de-excitation causes the emission
of photons. For dark matter research NaI(Tl) and CsI(Tl) crystals are mainly
used. Usually, such detectors are used for acquisitions over several years but
in these crystals it is possible to acquire only the scintillation signal, thus, it
is not possible to discriminate between particles, except to exclude multiple
hits in different crystals, since WIMPs are expected to produce only one hit.
To identify dark matter in these experiments annual signal modulation can
be used, but a sufficiently low background is required, which can be obtained
with high purity crystals and active vetoes.



1.5 Detectors for direct search 19

The DAMA experiment and its successor DAMA/LIBRA, located at the
LNGS underground laboratory is using ultra low-radioactive NaI(Tl) cristals
to detect dark matter. This experiment has collected 1.33 ton × y exposure
showing an annual-modulated single-hit rate in the energy range (2-6) keVee

(keV electronic recoil equivalent). Its maximum is compatible within 2σ CL
with the expected phase for dark matter interactions [56] and the significance
of this signal is at 9.3σ over a measurement of 14 annual cycles [82]. In
addition, recent results of DAMA/LIBRA phase2 have confirmed the 9.5σ
annual modulation of CL in the 1-6 keV range.

Figure 1.5: Residual rate for single-hit scintillations measured by DAMA/
LIBRA-phase1 and DAMA/LIBRA-phase2 in the (2-6) keV energy interval
[83].

If the DAMA signals are interpreted as due to the WIMP-nucleus scattering,
there will be two possible regions: at (10 − 15) GeV/c2 for scattering off
sodium and (60 − 100) GeV/c2 for scattering off iodine [84].
The signal observed by DAMA has not actually been confirmed by other
experiments and moreover, the annual modulation can be explained in several
ways that exclude dark matter [85]. The signal could be related to atmospheric
muons, whose rate is modulated annually due to temperature variations in
the stratosphere [86], or to combinations of muons and modulated neutrinos
caused by the varying Sun-Earth distance [87] or by the seasonal variation of
the neutron background [88].
In order to perform independent cross-check of the DAMA signal, several
experiments, were proposed. The SABRE experiment [89] was supposed to
place two similar detectors based on NaI(Tl) crystals, one at the LNGS in
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the northern hemisphere and another one in the southern hemisphere at the
Stawell Underground Physics Laboratory (SUPL), Australia. The double
measurement could allow to reduce the background due to muons that have
an opposite seasonal modulation in the two hemispheres. They have recently
reported a difficulty in producing pure crystals.

1.6 Direct detection experiment general re-
sult

Figure 1.6: Typical representation of the results obtained by direct dark
matter detectors: cross-section with matter as a function of the WIMP mass.
The black line shows a limit and signal for reference, while the coloured limits
illustrate the variation of the upper limit due to differences in the detector
design or properties. [52]

Direct dark matter experiments usually represent their results in the WIMP
mass cross-section plane as shown in Figure 1.6. Closed lines represent regions
where an eventual observation is claimed while open lines represent the upper
limit if no signal is detected. Different factors influence the sensitivity curve
of an experiment:
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• a lower energy threshold corresponds to a sensitivity at lower WIMP
masses (blue line);

• a longer exposure time corresponds to a lower explored cross-section
(green line);

• smaller target nuclei reduce the overall sensitivity (red line).
Furthermore, other effects may play a role in detector sensitivity such as
uncertainties in hypothetical models and/or systematic errors in experimental
procedures.
The current spin-independent and spin-dependent landscapes, where strict
upper limits exist for higher mass WIMPs are shown in Figure 1.7a and 1.7b,
1.7c respectively. The hints for WIMP signals measured by DAMA/LIBRA
and CoGeNT are represented as closed contours while the cross-section limits
provided by other experiments are reported as curves in the parameter space.

Since detectors for the direct dark matter search are increasing their sensitivity,
reaching masses of the order of tons, they will begin to encounter what is
known as the “neutrino floor”. The latter is due to Solar, atmospheric and
diffuse supernovae neutrinos which undergo coherent scattering off nuclei.
Neutrino induced recoils cannot be distinguished from those induced by
WIMP.

1.7 Directionality
Detectors capable of measuring the direction of WIMP-induced nuclear recoils
can provide an unambiguous identification of dark matter and at the same
time allow to overcome the limit imposed by coherent neutrino scattering.
The motion of the Solar System through the galaxy generates an apparent
wind of dark matter particles, as observed in the Earth’s frame, blowing
from a preferred direction that corresponds approximately to the Cygnus
constellation as shown in Figure 1.8.
Since main background sources are expected to be isotropic, the detection of
a signal peaked in the direction of the Earth’s motion could provide a clear
proof of the galactic origin of dark matter.
Directional detectors are supposed to measure the direction of WIMP-induced
recoils with a good angular resolution to discriminate them from the isotropic
background.
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(a) Spin-independent

(b) Spin-dependent (c) Spin-dependent

Figure 1.7: Signal indications (closed curves) and exclusion limits (open
curves) for WIMP mass in (a) spin-indipendent case and spin-dipendent case:
(b) WIMP-proton interactions, (c) WIMP-neutron interactions.[90]

So far, low-pressure gas detectors, as NEWAGE [91], DMTPC [92], MIMAC
[93], DRIFT [94], D3 [95] have been used where expected track lengths of
WIMP-induced recoils are of the order of the millimeter. However, such
detectors cannot easily increase their mass up to the ton-scale as the most
competitive experiments.
Experiments with a dense target such as ADAMO [96], DCaNT [97] and
SCENE [98] are not able to reconstruct the track of the recoil but are able to
measure its angle with a specific direction for each detector. In particular:
the axis of the crystal in ADAMO, the axis of the nanotube in DCaNT and
the direction of the electric field in SCENE.
For a solid detector, expected track lengths of WIMP-induced recoils are
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Figure 1.8: Schematic representation of the Earth motion through the Milky
Way.

of the order of few hundred nanometers, making their reconstruction very
challenging. The use of nuclear emulsions as a tracking detector with the
highest spatial resolution could allow both to easily scale the detector mass
and to reconstruct tracks in the sub-micrometric range.

1.7.1 Nuclear Emulsion
Nuclear emulsions are made of silver halide crystals embedded in a gelatine
matrix. When ionizing particles pass through it, energy is released to silver
bromide crystals leaving a latent image. The size of silver halide crystals in
standard emulsion ranges from 0.1 µm to 1 µm.
The use of nuclear emulsions [99] for the study of particles, originated in
1896 when Becquerel first observed the blackening of photographic plates
on contact with uranium salts. Such emulsions allowed the discovery of
numerous particles starting from 1947, when Powell, Lattes and Occhialini
[100] observed events in which a heavy meson (π) decayed into a light and
penetrating lepton (µ).
Subsequently, the birth of the Emulsion Cloud Chamber (ECC) technique
[101] made by the alternation of nuclear emulsions and passive material,
and the development of automatic scanning systems allowed the study of
cosmic rays to observe the first mechanisms of production and decay of
particles containing the charm quark. The first experiment in which large-
scale automatic scanning systems of nuclear emulsions were used is CHORUS
[102], but it is the OPERA experiment, which studied neutrino oscillations
νµ → ντ [103], that marked a turning point in the use of emulsions in high
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energy physics.
The use of a solid target for directional dark matter searches would overcome
the limitation of gaseous detectors, due to low scalability to large masses,
thus allowing to reach a high sensitivity in low cross-section sectors of the SI
case. However, in a solid medium, the track of the WIMP-scattered nuclear
recoil will have a path length of the order of a few hundred nanometers.
Therefore nuclear emulsions with smaller crystals and an innovative optical
scanning system are required to observe the signal. NEWSdm will be the
first experiment to search for dark matter with a directional approach using
a solid target made of a new generation of nuclear emulsions, as it will be
described in the following chapter.



Chapter 2

The NEWSdm experiment

The NEWSdm experiment proposes an innovative approach for WIMP search
with directional measurement. Key elements to fulfil this challenging task
are the production of new generation nuclear emulsions, the development of
new readout systems and the background rejection. All these aspects will be
discussed in detail in the present chapter.

2.1 Nano Imaging Trackers
As mentioned in the previous chapter, nuclear emulsions have been widely
used as vertex and tracking detector in the search for new particles with
unrivalled spatial and angular resolution. However, standard emulsions used
for the OPERA experiment use crystals with ∼200 nm size which are not
suitable for dark matter search, since WIMP induced nuclear recoils produce
tracks a few hundred nanometers long.
Since 2007 an R&D activity was performed at Nagoya University leading to
the production of new emulsion films with crystals from 80 nm down to 20
nm. In particular, the following nuclear emulsions were produced:

(i) Nano Imaging Trackers (NIT) with crystals of 44.4 nm of diameter and
a linear density of 11 crystals per µm [104];

(ii) Ultra-Nano Imaging Trackers (U-NIT) with crystals of 24.8 nm of
diameter and a linear density of 29 crystals per µm [105].

These new kind of emulsions make it possible to reconstruct trajectories with
path lengths down to 100 nm when analyzed with an optical microscopes

25
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with enough resolution. Distributions of the crystal diameter measured with
an electron microscope for NIT and U-NIT emulsions are shown in Figure
2.1.

(a) (b)

Figure 2.1: Distribution of the crystal diameter measured with an electron
microscope for NIT (a) and U-NIT (b) emulsions. [106]

The production of NIT crystals and emulsion films is based mainly on three
steps using a dedicated machine:

1. AgBr formation process, mixing in a thermostatic bath AgNO3 and
NaBr according to the following reaction

AgNO3 +NaBr⟶ AgBr +Na
+
+NO

−
3 (2.1)

thus forming AgBr crystals. Furthermore, polyvinyl alcohol (PVA) and
NaI are added to ensure the uniformity of the crystal size and to increase
quantum activation efficiency;

2. desalination process: AgBr crystals are mixed with gelatin and the resid-
ual ions Na+ and NO−

3 are extracted by a reduction process. Moreover,
in order to have an uniform distribution of the crystals, this mixture is
centrifuged at a speed of 1000 rpm and a temperature of 50◦C;

3. pouring process: the emulsion gel obtained is mixed with ultra-pure
water and poured on a rigid plastic or glass support.
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Constituent Mass Fraction
AgBr-I 0.78
Gelatin 0.17

PVA 0.05

Table 2.1: Constituents of NIT emulsions.

Element Mass Fraction
Ag 0.44
Br 0.32
I 0.019
C 0.101
O 0.0.074
N 0.027
H 0.016
S 0.003

Table 2.2: Chemical composition of NIT emulsions.

The mass fraction of NIT constituents and the chemical composition of NIT
emulsions are shown in Tables 2.1 and 2.2.
The presence of both heavy nuclei, as silver and bromine, and light nuclei, as
carbon, oxygen and nitrogen, allow to have a good sensitivity to high and
low WIMP masses. WIMPs with masses of the order of 100 GeV/c2 and
higher prefer heavy Ag and Br atoms at a target, while WIMPs with masses
of the order of 10 GeV/c2 and below prefer lighter nuclei since the energy
transferred is maximum when both particles in the scattering process have
similar masses.
After having packed NIT films into under vacuum in Aluminum foil bags,
NIT films are ready to be exposed. After the exposure, in order to analyze
emulsions with fully automated optical microscopes, the development process
is performed. Through this process, the latent image contained in an emulsion
is made visible by the reduction of silver ions in the silver halide crystal to
metallic silver. Silver halide crystals without a latent image center are not
modified during the development process and are then dissolved by a fixing
solution.
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2.2 Layout of the NEWSdm detector
The NEWSdm experiment proposes an innovative approach for the directional
detection of dark matter using NIT emulsions that act both as a target and as
a tracking device. NIT emulsion allow to reach a very high spatial resolution
and, in addition, a solid-state detector does not suffer from any limitations
for scaling up in mass.
The bulk of NIT is surrounded by a sphere of polyethylene acting as a shield
against external backgrounds. The emulsion target will be enclosed in a
sealed plexiglass box maintained in High Purity (HP) Nitrogen atmosphere
in slight overpressure with respect to the external environment to prevent
radon contamination. The actual configuration foresees the use of 1m-thick
polyethylene shield. A schematic representation of the detector layout is
reported in Figure 2.2.
Since the average WIMP wind is expected to come from the Cygnus constel-
lation, the detector will be placed on an equatorial telescope to compensate
for the daily rotation of the Earth and keep the orientation fixed towards the
expected incoming direction.
Besides, NIT films will be placed always parallel to the galactic plane.
The detector is usually mounted on two axes:

the Polar Axis, parallel to the Earth’s axis of rotation, pointed toward the
north celestial pole and rotated at a constant speed opposite to the
Earth’s rotation to cancel out the apparent motion of celestial objects;

the Declination Axis, perpendicular to the polar axis, points towards a
fixed position of the sky e.g. the constellation of the Cygnus.

Both axes will be equipped with precise encoders to constantly control the
position of the mechanics with high precision and the direction will be
maintained with an accuracy better than 1 degree.
A detector of 10 kg of NIT can be made of thin films of 50 µm assembled in
a block of 389 planes with a surface of 25 × 30 cm2 and a height of 20 cm.
As shown in the Figure 2.3, the 2D track reconstruction is performed in the
plane (XY) parallel to the nuclear emulsion films with the x-axis opposite to
the Cygnus constellation direction. In this reference system the angle of the
nuclear recoil is defined as the angular difference between its projection in
the xy plane and the x-axis.
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Figure 2.2: Schematic representation of the experimental set-up for an
exposure of 10 kg per year. The equatorial telescope is represented by the
gray arm, the shield of 1 m polyethylene by the cyan cylinder and the NIT
stack in blue.

The angular distribution of WIMP-induced recoils is expected to be Gaussian
and peaked at zero, with standard deviation increasing as the mass of the
WIMP increases. The lighter the WIMP, the stronger the angular anisotropy.
Indeed, for low WIMP masses the recoil energy is rather low and the track
length threshold selects only a small fraction of the spectrum, characterised
by the largest fractional energy transfer to the recoiled nucleus.
The detector sensitivity is strongly dependent on the minimum detectable
track length which depends on the kinetic energy of the scattered nucleus.

2.2.1 Technical test
A technical test with 10g of NIT emulsions was done to measure the detectable
background from environmental and intrinsic sources. The information of a
negligible background allows the construction of the pilot experiment with a
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Figure 2.3: The 2D reconstruction is performed in the xy-plane. The x-axis
is directed opposite to the Cygnus constellation and θ is the angle between
the x-axis and the projection of the nuclear recoil in the xy-plane. [107]

ten kilogram per year exposure mass capable to explore the DAMA region.
The experimental setup was installed in February 2017 in the Hall B of the
LNGS. A schematic picture of the shielding and the picture of the experimental
setup installed in Hall B are reported in Figure 2.4. NIT emulsions have been
stored in a cryostat (LAUDA RP 890C) to ensure the required temperature
(below -40◦C) to reduce thermal excitation and fading. The shielding is made
of 40 cm thick polyethylene plates, to absorb environmental and cosmogenic
neutrons, and 10 cm thick lead bricks, to absorb environmental gamma.

2.3 Expected background
In order to unambiguously identify WIMP-induced recoil, all the physical
sources and instrumental effects that may influence this measurement should
be known and reduced. NIT emulsions are insensitive to minimum ionizing
particles (MIP) since they do not produce enough electrons to form a latent
image [108]. Signal-like events are characterized as a sequence of at least
two or more aligned grains with a distance of less than 100 nm, therefore a
background event can mimic the signal if it produces at least two grains in
NIT.
Background sources for the NEWSdm experiment can be divided into three
main categories: (i) external backgrounds from neutrons, γ−rays and muons,
that can be reduced placing the detector underground and using a suitable
shield; (ii) intrinsic radioactivity of detector components, that is an irreducible
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Figure 2.4: Schematic (left) and real (right) picture of the shielding for the
technical test installed in underground Gran Sasso laboratory.

source of radiation and can be reduced only by using very high purity materials
for the construction of the detector and of the shield; (iii) the instrumental
background, not linked to any physical source but related to the emulsion
film production, development and analysis processes.

2.3.1 External background
External background sources affecting underground laboratories are: environ-
mental gammas and neutrons which essentially depend on the materials inside
the experimental hall and the surrounding rock; muon and cosmogenic neutron
flux which strongly depend on the site depth; diffuse neutrino background
which becomes particularly dangerous for a ton-scale mass experiment.
Environmental gammas originate from decays in Thorium and Uranium chains
whose products are strong gamma emitters, the energy of those γ−rays ranges
from tens of keV up to 2.6 MeV [109]. The main interaction process of γ−rays
with matter are the photoelectric effect, dominant for low energies, up to a
few hundred keV, the pair production, dominant above a few MeV, and the
Compton scattering which is the most probable process for the energies in
the range between the other two. All of them produce electrons with energies
of few keV which can produce a latent image on the surface of AgBr crystals.
Since the environmental gamma flux at LNGS is 0.35 cm−2s−1 [109] it can be
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suppressed using shields made of dense materials, such as lead and copper, or
large water tanks.
Neutrons induced by the environmental radioactivity at LNGS halls are
produced by the spontaneous fission and the (α, n) reaction, whose energy is
of the order of the MeV. The flux at LNGS is 8.7×10−7 cm−2s−1 [110]. The
neutron background from environmental radioactivity can be reduced by using
a passive shield, usually made of hydrogen-containing materials since the
most effective moderators are elements with low atomic number. Since mean
free paths of fast neutrons in inexpensive materials such as water, concrete,
and paraffin, are of about tens of centimeters, thicknesses of 1 m or more
are required to slow down neutrons. Once neutrons have been moderated,
they can be absorbed through capture reactions, that are enhanced by adding
elements with high neutron capture cross-section, as boron and lithium. Such
elements can either be homogeneously mixed with the moderator or can be
present as an absorbing layer near its inner surface.

Figure 2.5: Total muon-induced neutron flux at different underground sites
[111].

To reduce the number of muon-induced neutrons dark matter detectors are
usually placed in underground laboratories. Cosmogenic neutrons with an
energy spectrum extending up to the GeV are induced by muons penetrating
underground through the rock, hence the yield depends on the depth of the
underground laboratory. As shown in Figure 2.5, the deeper the site, the
higher the reduction of the cosmogenic neutron flux. LGNS are located at
1.4 km under the mountain, an equivalent vertical depth of (3.1 ± 0.2) km
water equivalent (k.w.e.). At these depths, the muon flux amounts to 1 muon
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m−2h−1, six orders of magnitude lower than the value measured at the surface,
and the mean muon energy is of about 250 − 300 GeV [112]. There are three
dominant processes of neutron production by muons underground:

◦ muon electromagnetic interaction with a nucleus, producing a nuclear
disintegration and thus neutrons (direct muon spallation) [113];

◦ production of an electromagnetic cascade, in which high energy photons
can cause spallation reactions;

◦ production of hadronic cascade, in which generated hadrons (π±, K±,0,
n, p) can also cause spallation reactions [114].

Figure 2.6: The differential energy specttrum for muon-induced neutrons at
different underground sites [111].

The muon-induced neutrons energy spectrum extends up to several GeV and
can penetrate to significant depth both in the surrounding rock and in the
detector shielding materials as can be seen in Figure 2.6 from the FLUKA
simulation [115]. The total muon-induced neutron flux emerging from the
rock in the cavern at LNGS is 7.3 × 10−10 cm−2s−1 and the average energy is
91 MeV [111]. Cosmogenic neutrons can be partially reduced by shielding the
detector with several meters of hydrogen-containing materials. Furthermore,
muons interacting in the shielding produce additional neutrons which can be
rejected in the detector only via topological cuts.
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Detectors for direct dark matter search are sensitive only to energy depositions
but are unable to reconstruct the direction of the impinging dark matter
particle. In scaling up their mass, they are becoming sensitive to solar,
atmospheric, and diffuse supernova neutrinos. The neutrino-nucleus coherent
scattering produces recoils which cannot be distinguished from dark matter
interactions; therefore it is an irreducible background for such experiments
whose sensitivity will be limited by the so-called neutrino floor.

2.3.2 Intrinsic background
The intrinsic background induced by the contamination of the materials is
extremely dangerous for the observation of rare events since it is produced
inside the detector without the possibility to be shielded. Thus, it is crucial
using highly purified materials for detector and shield. The presence of the 14C
isotope which undergoes β−decay and radiogenic neutrons from the decays
of long-lived radioisotopes (e.g. U, Th) in NIT constituents is an intrinsic
background sources for the NEWSdm detector.
With proper chemical treatments, it is possible to optimise the emulsion
response, in terms of the number of latent images produced per unit path
length (i.e. sensitivity), thus reducing the NIT sensitivity to the electrons [116].
A recent study carried out in Japan has shown that the emulsion sensitivity to
electrons is strongly reduced at low temperatures [117]. Since γ−rays produce
electrons when interacting with matter this cryogenic approach would present
the big advantage of making also the γ−induced background negligible. The
Collaboration is also exploring the possibility to cancel out the electron
background from intrinsic 14C content, by replacing organic gelatine with
synthetic polymers. Moreover, the electron discrimination can be improved
by exploiting the different response of the resonant effect of the polarized
light.
Radiogenic neutrons produced in the detector due to its intrinsic radioactive
contaminants would be responsible for an irreducible neutron yield. Starting
from the U and Th activities of the emulsion and measured with Inductively
Coupled Plasma Mass Spectrometry (ICP MS) [118] and with γ−spectrometry,
the neutron yield has been estimated through a dedicated MC simulation
based on the SOURCES code [119] at a value of (1.2± 0.4) neutron yr−1kg−1.
The neutron energy spectrum, as calculated with SOURCES, was then used as
the input for a GEANT4-based simulation to estimate the fraction of neutrons
interacting in emulsion and laying in the signal region. The detectable neutron-
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induced background would be 0.06 yr−1kg−1 [120].

2.3.3 Instrumental background
The instrumental background is not related to physical interactions between
incoming particles with the target nuclei and it is due to: (i) dust particles
which are formed mainly during the production process of emulsion when
not done in a clean room; (ii) fog grains produced by the thermal excitation.
These sources of background are generated during the gel production and in
chemical treatments. The current dust level is about 5× 10−2 grains/(10µm)3

but it can be strongly reduced by operating the NIT production in a clean
room. Moreover, dust grains usually show very irregular shapes or brightness
saturation; thus they can be discriminated during the analysis by applying
appropriate selections. The probability of random coincidences of two or
more fog grains can mimic a WIMP-induced nuclear recoil. The current level
of fog density in NIT samples is about 0.1 grains/(10µm)3. The number of
tracks produced by chance coincidences depends on the minimum number of
grains required to build a track (2) and increases with maximum allowed gap
between two consecutive grains in a track. To achieve a negligible background
induced by fog grains, a fog density of 10−3 grains per 1000 cubic micrometer
is required [106]. Several studies are ongoing to lower the fog density level:
(i) the use of purified gelatin that makes it possible to reduce by one order
of magnitude the current fog density level; (ii) operating with a detector at
low temperature to decrease the thermal excitation. Moreover, the resonance
effect of polarised light can help distinguish between events due to fog and
those due to the signal.

2.4 Optical microscope
After the exposure and the development, in order to analyze the whole target
volume over a time scale comparable with the exposure time, it is necessary
the use of a fully automatic high-speed scanning system.
These read-out systems have focal lengths of the order of one micron and are
capable of moving continuously the focal plane allowing the scanning of the
whole emulsion thickness and provide a 3D recontruction of the tracks. As a
consequence, we obtain a series of tomographic images captured at different
equally spaced depth levels. The images are digitized, converted to grayscale
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and analyzed to recognize aligned cluster sequences forming the 3D structure
of a track.
The large data flow from fast digital cameras requires high hardware perfor-
mance, image processing and efficient computational algorithms.
Optical microscopes for automatic scanning of nuclear emulsions are based
on the European Scanning System (ESS) framework [121].
The first prototype of the ESS made in 2004 in the laboratories of Naples
reached a speed of 20 cm2/h and with a spatial resolution of about 1 µm and
an angular resolution of about 1 mrad.
The microscope of the ESS consists of:

• a rigid support table capable of dampening any vibrations;

• scanning plate consisting of two motors that allow the displacements in
the horizontal plane (X, Y);

• glass plate placed above the scanning plate, used as a support for the
nuclear emulsion placement. This plate is equipped with an air intake
system that allows the adherence of the emulsion;

• a granite arm supporting the lens;

• a focusing plate mounted vertically (in the Z plane) on the granite arm.

• digital camera installed on the vertical plate useful for the acquisition
pictures.

• illumination system located below the scanning plate.

By implementing LASSO software modules on this hardware configuration,
two different methods can be applied to the scanning system: stop and go
(SG) and continuous motion (CM). With the SG mode the scanning speed
could not exceed 24 cm2/h limited by the mechanical performance of the
horizontal motion stage of the microscope, while with the CM mode it is
possible to exceed this limit and reach the scanning speed of 40 cm2/h with
the same hardware [122, 123].
The SG mode is the basic scanning technique used by all fast automatic
scanning systems. Data acquisition is performed during movement along the
vertical axis while the horizontal axes remain static. A work cycle lasts 180
ms, where 55 ms is spent on frame grabbing and up to 125 ms to reach the
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next position in the view. This includes the time required for acceleration,
horizontal displacement, deceleration, and vibrations to discharge. With the
LASSO system the hardware speed limit of 24 cm2/h is reached by optimising
the work cycle reduced to 150 ms.
In the CM mode the images are grabbed in a constant movement along both
vertical and horizontal directions, without stopping the stage. In this case
the reset time is no longer determined by a horizontal movement but only by
the vertical movement, i.e. the time required for a vertical axis to return to
its original position. The vertical reset time of the ESS is 25 ms which allows
to reduce the work cycle to 80 ms thus the scanning speed is two times faster
[124]. When using the CM mode the stack of frames is inclined and no longer
vertical as in the SG case. Therefore, data processing is more sophisticated,
as most tracks will cross neighboring views as clusters belonging to the same
track appear in different positions within an image. Therefore, processing
must take into account the effects of optical distortion, vibration and view
misalignment.
The work cycle of the ESS in SG mode is characterised by two phases: (1) DAQ
movement and (2) reset movement. During the first phase, a set of images is
acquired with the lens moving at a constant speed (vz) proportional to the
camera frame rate (f) and the sampling distance between two consecutive
frames acquired (s) is defined as vz = sf . The fastest camera frame rate
and the largest possible sampling distance are chosen to increase the lens
speed. The maximum sampling distance is, however, limited by the focal
depth of the lens. Choosing lenses with a greater focal depth will allow a
larger sampling range to be used but, at the same time, will produce images
with shadows from distant grains and, therefore, increase the processing load
and decrease purity by raising the combinatorial background level. During
the reset movement the lens is moved to the next field of view (adjacent in
XY). This represents the dead time of a scanning system where no images
are captured. Then, the reset movement is performed at maximum possible
speed and acceleration compatible with the stage performances.
The scanning speed could be improved using a wider field of view since a same
area would be covered in shorter time. To increase the field of view without
losing image quality, a lens with a lower magnification is used together with
a camera with a smaller sensor pixel size and therefore a larger number of
pixels. Smaller sensor pixels are needed to maintain the pixel-to-micron ratio
at the same level (∼ 0.3 µm/pixel, usually called optical pixel size) allowing
the use of existing algorithms for image processing.
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The LASSO [123] software, used for data collection and track reconstruction,
has a modular structure which makes it flexible to update the system following
technological progress. The hardware components with the best features for
a new generation of high-speed microscopes have been chosen.
In recent years, a research and development programme aimed at improving
the performance of the ESS has been carried out by INFN teams, leading to
prototypes with improved scanning performance by an order of magnitude,
reaching a speed of almost 200 cm2/h [125]. Ongoing studies of the novel
Inclined Motion scanning techniques coupled with multiple camera setups
show the potentiality to increase the ESS performance by one or two orders
of magnitude reaching scanning speeds of at least several thousands cm2/h
[126]. Moreover, a new system (the Super-Ultra Track Selector) is under
development in Japan, which aims to increase the scanning speed up to 5000
cm2/h [127].

2.4.1 Super-resolution microscope for dark matter
search

To reach the sensitivity competitive with other dark matter experiments, the
reconstruction of track lengths down to 100 nm is an important requirement
[128].
This could take place with an X-ray microscope, but this choice would lead to
a significant slowing down of the analysis phase. To avoid these limitations,
a super-resolution optical microscope was developed in Napoli which exploits
the local surface plasmon resonance (LSPR) phenomenon. This optical effect
occurs when the wavelength of the incident light is comparable with the
size of conductive nanoparticles (Ag grains) dispersed in a dielectric medium
(organic gelatin) [129]. A picture of one of that microscopes assembled in
Naples is shown in Figure 2.7.
The optical system is composed of:

• a high magnification(100×) and high numerical aperture (N.A. = 1.45)
Nikon Oil Objective Lens, Plan. Apo. which provides good image
flatness over the entire field of view, with corrected chromatic aberration
over the entire visible spectrum. The larger numerical aperture and
magnification are used to optimize the response near the optical limit
(∼ 190 nm);
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Figure 2.7: A picture of the developed microscope prototype (left) and the
technical scheme of its setup (right). [130]

• A 4 Megapixel resolution high-speed camera with a field of view of
65 × 48 µm2 and a digital resolution of ∼ 27 nm/pixel is placed at the
end of the optical tube;

• epi-lighting mode which provides illumination and detection on one side
of the sample (by reflection) in order to further decrease the amount of
light entering the lens and increase the contrast. The illuminating light
source is a UV LED with λ = 406 nm;

• liquid crystal polarization rotator coupled with a linear polarizing
filter used to rotate the polarization state of an input beam linearly
polarized through more than 180◦, to take advantage of the polarization
dependence of the LSPR effects.

The optical resolution of the microscope is estimated to be 207 nm, the
angular resolution, measured through the elliptical fit of grains belonging to
a long tracks, is 235 mrad (13◦). The accuracy position in both coordinates
in the emulsion plane is about 10.5 nm [129].
Another microscope equipped with a color camera (Mikroton EoSens 4CXP
MC-4087) was assembled to exploit the LSPR effect when different wavelengths
are used.
The longer nano-rods (120 nm) show a red shift of the resonance wavelength
while the shorter ones (80 nm) show a blue shift (see Figure 2.8). A large
energy loss of a particle usually occurs soon before it is absorbed in a material
(Bragg peak). Grains belonging to the end of a track are expected to be
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Figure 2.8: Optical microscope with color camera (top) and TEM (bottom)
images of nano-rods of 45×80 nm2 (left) and 45×120 nm2 (right) [106].

seen with a red nuance since larger energy loss results in an higher ionizazion
which increase the grain size. This technique is expected to allow for head-tail
discrimination in NITs.

2.5 Candidate Selection
In order to reconstruct tracks with lengths up to a few hundred nanometers
the NEWSdm experiment adopt a two-step approach for the analysis:

1. shape analysis performed with an optical microscope for the candidate
selection;

2. candidate validation performed with a new optical microscope, assembled
in Napoli University, which allows extending the reconstruction of tracks
beyond the optical limit by exploiting the resonance effect of polarized
light [130, 131].

Tracks produced by dark matter interactions with nuclei in NIT emulsions are
expected to be a few hundred nanometers long. Given the optical resolution
limit (∼200 nm) most of the tracks would appear as single clusters instead of
sequences of aligned grains.
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Through the shape analysis it is possible to distinguish the clusters produced
by a single grain (fog) due to thermal excitation, that have a spherical shape,
from clusters formed by several grains that instead have an elliptical shape
with the major axis along the effective direction of the trajectory of nuclear
recoils.

Figure 2.9: Kr ions implanted on NIT films. The image is taken with an
optical microscope and the selection of candidate tracks is based on the elliptic
fit of the clusters. [106]

Therefore a first selection of signal events is done using this technique. To
test the efficiency and the resolution of the shape analysis and simulate the
detector response to WIMP-induced recoils a test beam with low-speed ions
implanted in NIT emulsions was performed.
Kr ions with energies of 200 and 400 keV [132, 133] and C ions with energies
of 60, 80 and 100 keV were used since they produce in NIT emulsions tracks
in the length range of a few hundred nm.
The submicrometric tracks produced by the Kr and C ions, are not resolved
and appear as a single cluster when analysed by the optical microscope. On
the other hand, the elliptical shape of clusters is clearly visible (see Figure
2.9). An elliptical fit is therefore performed to distinguish the signal events
from the spherical fog [132] .
Figure 2.10 reports the scatter plot of major and minor axes for the sample
with 400 keV Kr-ion implanted (left) and the reference sample (right). The
red and blue dots represent the population of cluster with ellipticity larger
than 1.5 for each sample. Typically for signal tracks a threshold on the
ellipticity of 1.25 or higher is set.
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Figure 2.10: Major axis versus minor axis for the 400 keV Kr-ion sample
(left) and not exposed sample (right). Red and blue dots represent clusters
with an ellipticity larger than 1.5.

Moreover, the intrinsic angular resolution was estimated using NIT samples
exposed to a 2.8 MeV neutron beam at the Fusion Neutron Source (FNS)
in Japan. Since hydrogen has an higher neutron scattering cross-section
than the other elements of NIT emulsion, the track length distribution of
neutron-induced proton recoils ranges up to a few hundred micrometres.
Tracks of few tens of micrometers and formed by a sequence of clusters
have been selected (see Figure 2.11a). For long tracks the scattering can be
neglected. The intrinsic angular resolution (∆θ) was estimated studying the
angular difference between the direction of the major axis of elliptical clusters
and the direction of the fitted track. Figure 2.11b shows the distribution ∆θ
which has a Gaussian shape, with a width equal to 230 mrad. This value
represents the intrinsic angular resolution achieved with fully automated
scanning systems, which is by far the best resolution achieved with direction-
sensitive detectors in this energy range.

2.6 Candidate Validation
An X-ray microscope [134] was used to validate the tracks selected with the
shape analysis measuring the efficiency achievable with optical microscopy.
This microscope has a higher resolution (of the order of 60 nm) but a slower
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(a) (b)

Figure 2.11: (a) Graphical representation of the method used for the evalua-
tion of the intrinsic angular resolution. (b) Intrinsic angular resolution of the
optical scanning system.

scanning speed than the optical microscope, in fact, the analysis of 100 µm
× 100 µm requires about 100 s.

Figure 2.12: Comparison between reconstructed tracks of a few hundred
nanometers length with the optical microscope and with the X-ray microscope.
[106]

As shown in Figure 2.12, the high resolution of the X-ray microscope (70
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nm [134]) allows resolving grains belonging to submicrometric tracks, thus
providing the final discrimination between signal and background.
To evaluate the efficiency, multigrain tracks with the X-ray microscope have
been selected, then scanned with the optical microscope and finally analyzed
using the shape analysis. The global efficiency is 90% and it reaches 100%
for tracks longer than 180-200 nm.
Therefore, X-ray microscopy can exceed the resolution of the optical micro-
scope, which allows reconstructing tracks down to 200 nm, but it is slow
compared to automated optical systems.
Since the scanning speed is a key point for high mass detectors, X-ray
microscopes are not suitable for the second phase of the strategy, i.e. for the
validation of candidates. Moreover, X-ray microscopes damage the sample,
so that it could no longer be analyzed.
Hence, in order to overcome the limit of optical microscopes without decreasing
too much the scanning speed, the candidate validation is performed exploiting
the effect of plasmonic resonance that occurs when nanometric metallic grains
are dispersed in a dielectric medium [131]. The free conduction electrons are
driven in oscillation due to the strong coupling with the incident light in the
visible ultraviolet band (UV-Vis) [135].
The coupling affects the optical properties of nano-particles producing a
resonance effect in the scattered light. The dependence on the polarization of
the resonance frequencies strongly reflects the nanoparticle shape anisotropy
and can be used to infer the presence of non-spherical nanometric silver grains.
The effect of localized surface plasmon resonance (LSPR) can be exploited
in NIT emulsions where nanometric Ag grains are immersed in the organic
gelatin. In the Figure 2.13, effects of resonant light scattering from single
nanoparticles of Ag [131] are shown; one can see that the LSPR is sensitive
to the shape of grains. Spherical particles do not show any different response
depending on the incident polarization while a deformed sphere is sensitive
to polarization.
The LSPR allows to infer the structure of a cluster in NIT emulsions beyond
the optical resolution. Indeed multiple measurements of the same cluster with
different polarization angles results in a displacement of the barycentre. The
analysis of these displacements allows to distinguish clusters composed of
single grain from those made of two or more grains. In this way, it is possible
to obtain a measurement of the direction of the track and the length of the
barycenter shift. In figure 2.14 an example of analysis performed on a cluster
with ellipticity 1.27 from a 100 keV C-ion sample is shown.
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Figure 2.13: Scattered-light spectra from individual Ag particles with spher-
ical (left) and spheroidal (right) shape [131]. Arrows indicate the polarization
of the incident light. A dependence of the response on the light polarization
is observed for particles with ellipsoidal shape.

Figure 2.14: Resonance light effect exploited using different polarization
angles of the incident light on a cluster with ellipticity 1.27 from a 100 keV
C-ion sample. (left) dx and dy displacements of the cluster barycenter versus
the polarization angle. (right) the barycenter shift in the xy-plane.[106]

The LSPRs effect has been studied in NIT emulsions using samples exposed
to C-ions of different energies and obtaining an unprecedented accuracy in
cluster position (< 10 nm).
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Exploiting the LSPR effect the validation of the candidates identified by the
shape analysis will be performed in the same scanning laboratory, without
moving the samples to a dedicated laboratory for X-ray analysis and the
scanning speed is much higher.
Moreover, it is possible to exploit the LSPRs wavelength dependency on the
grain size, thus adding a new source of information to the Plasmon analysis,
which looks at the cluster properties when observed with different polarization
of incident light. Indeed, different nanometric grain size correspond to different
wavelengths in the plasmon resonance response.



Chapter 3

Reconstruction of nanometric
tracks

Directionality is an unambiguous proof of the intrinsic nature of WIMP dark
matter. NIT emulsions are the best detector for this purpose as they allow to
reconstruct tracks down to 100 nm. Optical microscopes, although limited
by optical resolution, are currently the best scanning devices. However, the
observation of track lengths below the diffraction limit is crucial for the
NEWSdm experiment. In order to observe such tracks, the resonance effect of
polarized light can be exploited: nanometric metallic grains behave differently
when illuminated by light with different polarization angles. This chapter
summarises the results obtained in the present thesis work about the analysis
of NIT samples exposed to Carbon ions and scanned in the Napoli Emulsion
Laboratory.

3.1 Scanning process
As we have seen in the previous chapter, the NEWSdm experiment follows a
two-step read-out strategy for the data analysis: the candidate selection with
the shape analysis and the candidate validation with the plasmon analysis.
The scanning procedure for NIT emulsions is divided in the following steps:

• the area to scan is divided into overlapping (4 ÷ 5µm) fields of view
with dimensions of 60 × 45 µm2;

47
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• for each field of view, the optical system moves along the thickness of
the emulsion driving the focal plane with 250 nm steps;

• several 2D layers are therefore scanned and the corresponding images
appear, due to the epi-illumination mode, as white pixels on a dark
background. In case of plasmon analysis, each layer is scanned with
eight different polarization angles of the incident light with 22.5◦ steps.

• the image processor reconstructs 2D clusters if pixels exceed a certain
brightness threshold (clustering process);

• reconstructed clusters are then collected before moving to the next field
of view.

The clustering is then followed by the graining process where the reconstruction
of 3D grains from 2D clusters is performed.
Reconstructed 3D grains represent physical grains formed by latent images
in NIT emulsions and made visible by chemical treatments. The grain
reconstruction is performed as follows:

1. for each layer images of 2D clusters corresponding to different polariza-
tion angles are averaged to get the so called 2D merged cluster ;

2. 2D merged clusters in the same or consecutive layers are merged to form
the 3D grain if they are found within an angular acceptance defined by
a truncated cone;

3. the brightest 2D merged cluster is referred to as the best focus cluster
and the corresponding layer is called the best focus layer ;

4. polarized clusters reconstructed in the best focus layer are defined as
best focus polarized clusters.

In Figure 3.1 it is reported a schematic representation of the grain recon-
struction process. The polarization information, as the barycenter shift and
its direction, for each reconstructed grain is retrieved from its best-focused
clusters.
Reconstructed data are usually divided into two classes: (i) micro-tracks,
made of two or more adjacent and distinct grains, (ii) isolated events. The
last category includes both single grain clusters (background-like) and clusters
made by two or more unresolved grains (signal-like). The polarisation analysis
is indeed aimed at distinguishing these two cases.



3.2 Analysis of NIT exposed to Carbon ions 49

Figure 3.1: Schematic illustration of the grain reconstruction process. 2D
merged clusters are represented in red and the best-focus cluster in blue. 2D
merged clusters are merged to form the reconstructed grain represented in
green.

3.2 Analysis of NIT exposed to Carbon ions
Several exposures are made with carbon ions that produce in NIT tracks of
lengths comparable to those expected from WIMP-induced recoils; therefore
they give both the possibility to calibrate the detector response and to test
signal efficiency. In this work, a sample made of carbon ions implanted in
NIT films made of 70 nm diameter crystals has been analyzed.
Carbon ions with energies of 100, 60 and 30 keV have been implanted on NIT
with an inclination of about 10◦ with respect to the emulsion surface.
The average range calculated by SRIM software [136] is estimated to be 240,
150 and 80 nm, respectively. These samples are expected to contain elliptical
clusters.
The analysis aims at the reconstruction of the direction of carbon ion. In
particular, the goal is to evaluate the performance of the plasmon analysis in
the reconstruction of directionality beyond the optical resolution limit where
the shape analysis becomes ineffective.
The samples have been scanned without polarized light to perform the shape
analysis and then varying the polarization of the incident light to study the
plasmon resonance in NIT emulsions.
In order to evaluate the accuracy of the optical microscope, 30 keV carbon
ions implanted in the NIT films with an inclination of about 80◦ from the
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emulsion plane are used. Since such low energy vertically implanted Carbon
ions sensitize only one grain, the measurement of the barycenter shift of the
cluster can provide an estimation of the position uncertainty.

3.3 Shape analysis
The shape analysis is carried out on isolated grains where a fit is made with
a two-dimensional Gaussian distribution. From this fit five parameters are
obtained:

• µx and µy, i.e. the x and y positions of the clusters;

• σx and σy corresponding to the major and minor axes of the ellipse,
respectively;

• the correlation factor ρ related to the cluster orientation.

The plots in Figures 3.2 show angular distributions, estimated by the elliptical
fit of the clusters, for the 100, 60 and 30 keV samples. The distribution in
Figure 3.2a and 3.2b are fitted with a Gaussian plus a constant. The constant
is necessary to fit the plateau which represents the non-directional component
according to the shape analysis.
The plateau is rather high because a large fraction of tracks are shorter than
the optical resolution and therefore the recoil direction cannot be inferred.
The directionality is well reconstructed for the 100 keV sample where longer
tracks are expected, it is hardly visible in 60 keV sample and not at all in the
30keV since tracks are shorter.
It is possible to evaluate the efficiency of the reconstruction through the shape
analysis as the ratio between the area under the Gaussian and the total area:

εshape =
NGaus

Ntot
(3.1)

where Ntot = NGaus + NFlat represents the sum of number of events with a
preferred direction (NGaus) and a random direction (NFlat). In table 3.1 are
reported the values to obtain the directional efficiency εshape = (25.0 ± 0.2)%
for the sample of 100keV.
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(a) 100 keV (b) 60 keV

(c) 30 keV

Figure 3.2: Distributions of track angles measured by shape analysis of 70nm
NIT samples. The distribution in (a) is fitted with a Gaussian plus a constant.

3.4 Plasmon analysis
The shape analysis allows to perform a directional measurement of nuclear
recoils with track lengths close to the microscope optical resolution (∼190
nm). To further decrease the threshold in the track length reconstruction the
plasmon analysis is used by exploiting the barycenter displacement of the
clusters.
The plasmon analysis is effective to study the nano-tracks appearing as
isolated grains and several variables are used to exploit the resonance effect
induced by the polarized light:

• Npol is the number of best focus polarized clusters (BFPC) for each
grain, ranging from 1 to 8 which is the maximum number of polarisation
angles;
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Samples 100 keV
NGaus 10092
Ntot 40301
εshape 25%

Table 3.1: Values need to obtain the efficiency for the 100 keV sample.

• α is the polarization angle of the best focus polarized clusters, it ranges
from 0 to 180° in steps of 22.5°;

• xα, yα are the coordinates of the BFPCs;

• xbfc, ybfc are the coordinates of the barycentre of the BFPCs;

• ∆sbfc is the maximum distance between two BFPCs belonging to the
same grain and representing for each grain the maximum barycenter
displacement of its BFPCs;

• φbfc is the direction of the track in the xy plane, obtained from the line
connecting the two extreme displacements of the BFPCs;

• ∆sthr is the threshold above which a displacement can be ascribed to
the plasmon resonance effect.

Figure 3.3 shows the position in the XY plane of the barycenter of the BFCPs
for the different polarization angles. Figure 3.3a shows a background grain
that exhibits a rotational movement of the barycenter, with a displacement
of ∼ 10 nm, while in the figure 3.3b a signal grain for which the barycenter
displacement of ∼ 66.2 nm occurs with a direction of ∼ 25◦.
Isolated grains could be made of unresolved nanotracks. Isolated grains are
divided in static events (∆s < ∆sthr) and moving events (∆s > ∆sthr). In
the latter category there are actually single clusters (1peak) or clusters with
multiple brightness peaks (npeak).

3.4.1 Accuracy
To determine the threshold for the barycentre shift, it is useful to evaluate
the position accuracy achieved in the emulsion plane (XY) by the optical
microscope assembled in Napoli University.
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(a) Static Grain (b) Moving Grain

Figure 3.3: XY scatter plot of BFPCs positions for a static grain (a) and a
moving grain (b).

To perform this measurement, the NIT film vertically exposed to 30 keV
can be used as a reference sample for two main reasons: (i) the angular
distribution of nuclear induced recoil is expected to be flat; (ii) the barycenter
shift for n-crystals is expected to be small and comparable with the expected
fluctuation in the cluster position. The position accuracy is defined for each
coordinate as the standard deviation of BFPCs coordinates (xα, yα), from
BFPCs barycenter coordinates (xbfc, ybfc). The accuracy is reported in Figure
3.4 where ∼ 11 nm are obtained for both x and y coordinates respectively.
The threshold on the barycenter shift (∆sthr) has been defined as:

∆sthr = 3σxy = 3
√
σ2
x + σ

2
y ∼ 47nm (3.2)

Therefore, clusters having a barycentre shift larger than 47 nm are considered
signal like events.

3.4.2 Npeaks
When the distance between two grains is slightly smaller than the diffraction
limit, they are still unresolved in unpolarized light. The variation of cluster
brightnesses introduced by the LSPR effect caused by the polarization rotation
may lead to the situation where these two grains become resolved at some
polarization angles and are visible as separate clusters. For such a situation
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(a) (b)

Figure 3.4: Position accuracy for the x (a) and y (b) coordinates.

an event class called npeaks is defined. This class represents intermediate
events that are too short to be resolved by ordinary microscopes but can be
treated as microtracks with the help of the plasmon analysis. Therefore, the
length and the direction of npeak events are measured as a distance and the
orientation of the two most distant clusters in resolved images.
Figure 3.5 shows the track length with respect to the angle φ for the npeaks
analyzed samples of 100 (3.5a), 60 (3.5b) and 30 (3.5c)keV.
A clear peak in the beam direction is observed for 100 keV and 60 keV samples
exposed horizontally in the npeaks region, i.e. with track lengths shorter than
350 nm. On the other hand, no angular correlation is visible for longer track
lengths that are therefore interpreted as chance coincidence. This result shows
that the npeaks grains are connected to the same carbon ion and therefore
represent signal-like events.
The 2D angular distributions of the npeaks event are shown in Figure 3.6 for
each sample. In the 30 keV sample (see 3.6c) the signal is not visible since the
traks are too short, while for the other two samples it is much more evident.
In particular, for the 100 keV sample (3.6a) a Gaussian plus a constant fit
was made and it returns a value of σ = (0.31 ± 0.012) rad while for the 60
keV sample (3.6b) it returns σ = (0.29 ± 0.06) rad.
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(a) 100keV (b) 60keV

(c) 30keV

Figure 3.5: Track length versus the angle φ of npeaks events in 100, 60 and
30 keV samples.

3.4.3 Isolated grains
The dataset for each sample analyzed is mainly composed of isolated events,
since the majority of induced recoils are unresolved by the optical microscope.
Figure 3.7 shows the barycenter displacement for the horizontal samples of
the three different energies, the average value is 45.2 nm for the 100 keV,
38.1 nm for the 60 keV, 39.5 nm for the 30 keV samples rispectively. The
barycenter displacement is expected to increase as the energy increases, as
seen for 100 keV sample. The barycenter displacement of clusters plays a
key role of the discrimination between signal-like and background like event.
The direction of the displacement of the barycentre provides the 2D angular
distribution shown in Figure 3.8 where the moving events are in red and the
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(a) 100keV. (b) 60keV.

(c) 30keV.

Figure 3.6: Angular distribution of npeaks grains obtained by plasmon
analisys for the 100keV, 60keV, 30keV samples. The plot in (a) and (b) are
fitted with a Gaussian plus a constant.

static ones in blue; their fraction is reported in Table 3.2.
As expected, moving grains have a peak in the incoming direction of carbon
ions, while the static ones show flat angular distribution. For the moving
grain, a Gaussian plus a constant fit was made this returning a value of
σ = (0.35 ± 0.02) rad, for the 100 keV sample (3.8a) and σ = (0.29 ± 0.05)
rad for the 60 keV sample (3.8b), that re comparable within errors
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(a) 100keV (b) 60keV

(c) 30keV

Figure 3.7: Distributions of the barycenter displacement for the three sam-
ples.

3.5 Plasmon efficiency
The efficiency of the plasmon analysis can be evaluated considering that
npeaks and moving grains represents signal-like events. This efficiency can
be defined as:

εpl =
Nnpeaks +Nmoving

Ntot
(3.3)

where Nnpeaks and Nmoving are the numbers of npeaks and moving grains,
respectively, and Ntot is the total number of events. In table 3.3 are reported
the plasmon efficiencies: εpl ∼ (34.7 ± 0.2)% for 100 keV sample and εpl ∼
(26.1 ± 0.3)% for 60 keV sample.
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Samples 100 keV 60 keV 30 keV
Moving 0.32 0.24 0.27
Static 0.68 0.76 0.73

Table 3.2: Fraction of moving events and static events for 100, 60 and 30
keV samples.

Samples 100 keV 60 keV
Nnpeaks 3004 797
Nmoving 9984 4586
Ntot 37380 20643
εpl 34.7% 26.1%

Table 3.3: Numbers of npeaks, moving grains and the total number of events
for the 100 keV and 60 keV sample.
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(a) 100keV (b) 60keV

(c) 30keV

Figure 3.8: 2D angular distribution of moving grains (red) and static ones
(blue) for the three different samples. The red distribution of moving grain
for the 100 keV (a) and 60 keV (b) are fitted with a Gaussian plus a constant.



Chapter 4

Deep Learning and
Convolutional Neural Network

This chapter will be dedicated to a description of artificial intelligence, starting
from the basic principles of machine learning and then moving on to deep
learning and convolutional neural networks. Reference used for this chapter
are [137–139].

4.1 Artificial intelligence and Machine Learn-
ing

Artificial intelligence (AI) was born in the fifties when the still unresolved
question was asked: “Can machines think?”. AI is a wide-ranging branch
of computer science concerned with building smart machines capable of
performing tasks that typically require human intelligence. AI is a general
field that includes machine learning and deep learning (see section 4.2, Figure
4.1), but this also includes many other approaches that do not involve learning
at all.
Originally many experts believed that artificial intelligence at the human
level could be achieved by having programmers who made a sufficiently large
set of explicit rules for manipulating knowledge. This approach is known as
symbolic artificial intelligence and has been the dominant paradigm in AI
from the 1950s to the late 1980s. Symbolic artificial intelligence proved to be
suitable to solve well-defined logical problems, such as playing chess. Instead,
it proved intractable to understand the explicit rules to solve more complex

60
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Figure 4.1: Schematic of Artificial intelligence, machine learning and deep
learning.

and confusing problems, such as image classification and voice recognition.
Thus giving rise to a new approach, namely machine learning.
Alan Turing in his historic 1950 article “Computing Machinery and Intel-
ligence” [140] introduced the Turing test and the key concepts that would
shape AI. He on whether computers could be capable of learning and he came
to the conclusion that they could. Automatic learning stems from wondering
if a computer could automatically learn rules by looking at the data; question
that opens the door to a new programming paradigm. In classical program-
ming, the paradigm of symbolic artificial intelligence, man inserts the rules
(a program) and the data to be processed according to these rules, and the
answers come out (Figure 4.2). With automatic learning, human beings insert
the data and the answers expected from the data, and here come the rules.
These rules can then be applied to new data to produce original answers. A
machine-learning system is trained rather than explicitly programmed. It is
fed with many examples relevant to a task, and it finds statistical structure
in these examples that eventually allows the system to come up with rules
for automating the task.
Machine-learning algorithms generally fall into three broad categories:

Supervised learning is by far the most common, consists of learning to
map input data to known targets, given a set of examples. In general,
almost all deep learning applications, such as character recognition,
speech recognition, image classification and language translation belong
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Figure 4.2: Classical programming vs Machine learning.

to it. It consists mostly of classification and regression;

Unsupervised learning consists of finding interesting transformations of
input data without the help of any targets, in order, for example, to
better understand the correlations present in the data. Clustering is
one of the best known categories, i.e. from non-labelled data searching
to find patterns or sets of points that have common characteristics;

Reinforcement learning according to which an agent receives information
about its environment and learns to choose actions that will maximize
some reward. Currently, this is mostly a research area and hasn’t yet
had significant practical successes beyond games.

In machine learning, the goal is to achieve models that generalize well to
never-before-seen data, and the biggest obstacle is the overfitting, i.e. the
prediction corresponds too closely or exactly to a particular set of data, and
may therefore fail to fit additional data or predict future observations reliably.
Therefore turn to be fundamental splitting the datset into training and test:
the former is necessary for the network to learn how to perform the task for
which it was conceived, minimizing the cost function; the latter is needed to
test the performance and therefore the generalizations that the network makes
on new data. Strategies commonly used for minimizing the cost function are
Gradient Descent [138] and ADAM [141].

4.1.1 Classification and Regression problem
Classification in machine learning is a supervised learning approach in which
the algorithm learns from the data given to it and make new observations or
classifications.
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This is a process of categorizing a given set of data into classes, that starts
with predicting the class of given data points. The classes are often referred
to as target, label or categories.
Classification consist of approximating the mapping function from input
variables to discrete output variables. The main goal is to identify in which
class/category the new data will fall into.

Figure 4.3: Schematic representation of binary classification (left) and multi-
class classification (right) [142].

The goal of classification problems is to predict a single discrete label of an
input data point. There are binary classification i.e. classifying instances into
one of two classes and multi-class classification with more than two classes
(see 4.3).
Examples of the former are movie reviews as positive or negative, based on
the text content of the reviews; medical testing to determine if a patient has
a certain disease or no; email-spam and so on. While, the latter includes, the
most common application of deep learning of these days, such as handwritten
character recognition, speech recognition, image classification and language
translation.
Another common type of machine-learning problem is regression, which con-
sists of predicting a continuous value instead of a discrete label: for instance,
predicting tomorrow temperature, given meteorological data; estimating the
price of a house, given real-estate data.
So giving some predictor variables and a continuous response variable, regres-
sion try to find a relationship between those variables that allows to predict
an outcome.
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Figure 4.4: Linear regression [138].

The Figure 4.4 illustrates the concept of linear regression. Given a predictor
variable x and a response variable y, a straight line fit to this data so that
minimizes the distance, most commonly the average squared distance, between
the sample points and the fitted line. The intercept and slope learned from
this data can be used to predict the outcome variable of new data.
Linear regression is just one of the simplest case of regression.

4.2 Deep Learning
Deep learning is a sub-field of machine learning that emphasizes learning
successive layers of increasingly meaningful representations. Modern deep
learning often involves tens or even hundreds of successive layers of represen-
tation and they are all learned automatically from exposure to training data.
Meanwhile, other approaches to machine learning tend to focus on learning
only one or two layers of representations of the data.
In deep learning, these layered representations are learned via models called
neural networks, structured in layers stacked on top of each other. Deep
learning is a framework for learning representations from data.
The training of a neural network always depends on the following objects:

• layers, which are combined into a network;

• the input data and corresponding targets;

• the loss function, which defines the feedback signal used for learning;
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• the optimizer, which determines how learning proceeds

Figure 4.5: Relationship between the network, layers, loss function, and
optimizer [137].

In Figure 4.5 it is shown how they interact: the network, composed of layers
that are chained together, maps the input data to predictions. The loss
function then compares these predictions to targets, producing a loss value:
a measure of how well the network’s predictions match what was expected.
The optimizer uses this loss value to update the network’s weights.
The most common techniques of deep learning are convolutional neural
network for image processing and recurrent neural networks for sequence
processing.
For this work a convolutional neural network will be used, so a full section is
dedicated to it while here it is given a hint of how recurrent neural network
works.
A recurrent neural network (RNN) processes sequences by iterating through
the sequence elements and maintaining a state containing information relative
to what it has seen so far. The simplest possible RNN is composed of just
one neuron receiving inputs, producing an output, and sending that output
back to itself, as shown in Figure 4.6(left). At each time step t, this recurrent
neuron receives the inputs x(t) as well as its output from the previous time
step, y(t − 1), a representation of this network in function of the time is
shown in Figure 4.6(right). From this small network, it is possible to create a
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Figure 4.6: A recurrent neuron (left), unrolled through time (right)[143].

layer of recurrent neurons, where now input and output are vectors instead
of scalar Figure 4.7.

Figure 4.7: A layer of recurrent neurons (left), unrolled through time (right)
[143].

4.3 Convolutional Neural Network
A convolutional neural network (CNN) is a feed-forward type of neural network
inspired by the organization of the visual cortex.
CNNs are one of the most popular categories of neural networks, especially
for high dimension data like images. CNNs work very similarly to standard
neural networks. A fundamental difference, however, is that each unit in a
layer of CNN is a filter that is convoluted with the input of that layer. CNN
filters have a similar, but smaller spatial shape than input images and use
parameter sharing to significantly reduce the number of learning variables.
One of the first forms of CNN was the Neocognitron model proposed by
Kunihiko Fukushima [144]. It consisted of several levels that automatically
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learned a hierarchy of abstractions of features for model recognition. The
Neocognitron was motivated by the seminal work of Hubel and Wiesel [145]
on the primary visual cortex which showed that neurons in the brain are
organized in the form of layers. These layers learn to recognize visual patterns
by first extracting local features and then combining them to obtain higher-
level representations. Network training was performed using a reinforcement
learning rule. An important improvement compared to Neocognitron was the
LeNet model proposed by LeCun et al. [146], where the parameters of the
model were learned by using the error back-propagation. This CNN model
was successfully applied to recognize handwritten figures.
CNNs are used for both supervised and unsupervised learning paradigms.
In the mechanism of supervised learning, the input to the system and the
desired outputs (true labels) are known and the model learns a mapping
between the two. In the mechanism of unsupervised learning, the true labels
for a given set of input are not known and the model aims to estimate the
underlying distribution of the input data samples. CNN learns to map a
given image in its corresponding category by detecting a series of abstract
representations of the characteristics, ranging from simple to more complex
ones. These discriminating characteristics are then used within the network
to predict the correct category of an incoming image.
Convolutional neural networks are made of:

• an input, i.e. pictures

• one or more hidden layer, that compute with activation functions

• output layer that carries out the classification

A CNN is composed of several basic building blocks, called the CNN layers.
Some of these layers implement functionalities such as normalization, pooling,
convolution, and fully connected layers. The main difference from other
neural networks is the convolutional layer. Convolution layers are the most
important component of a CNN, since they extract features of the images
through the use of filters which are convolved with a given input to generate
an output feature map.
A filter is used to detect the presence of specific features or patterns present
in the original image (input). It is usually an array of discrete numbers with
a smaller dimension but the same depth as the input file. The weights of each
filter (the numbers in the grid) are learned during the training of CNN. This
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learning procedure involves a random initialization of the filter weights at the
start of the training.

Figure 4.8: Representation of the pooling layer behavior: (left) Max pooling;
(right) Average pooling.

The Pooling layer can be seen between Convolution layers in a CNN architec-
ture. This layer reduces the number of parameters and computation in the
network, controlling overfitting by progressively reducing the spatial size of
the network. Similar to the convolution layer, we need to specify the size of
the pooled region and the stride. Pooling may compute a max or an average.
Max pooling uses the maximum value from each of a cluster of neurons at
the prior layer [147, 148]. Average pooling uses the average value from each
of a cluster of neurons at the prior layer [149]. Figure 4.8 (left) shows the
max pooling operation, where the maximum activation is chosen from the
selected block of values, while Figure 4.8 (right) shows the average pooling
operation, where the average activation is chosen from the selected block of
values. The pooling operation effectively down-samples the input feature
map. Such a downsampling process is useful for obtaining a compact feature
representation which is invariant to moderate changes in object scale, pose,
and translation in an image [150].
Fully connected layers correspond essentially to convolution layers with filters
of size 1×1. Each unit in a fully connected layer is densely connected to
all the units of the previous layer. In a typical CNN, full-connected layers
are usually placed toward the end of the architecture. However, some suc-
cessful architectures are reported in the literature which use this layer at an
intermediate location within a CNN (e.g., NiN [151]).
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4.3.1 Hyperparameters
Similarly to all neural networks, also for convolutional ones, there are hyper-
parameters, values that characterize one model from the other and affect the
functioning and the performance of the model itself.
The optimization of hyperparameters is a complex problem whose solution,
sometimes, is empirical and usually requires comparison with numerous
variants of the model to select the best one.
For an optimal process of training and evaluation of the model, at least two
phases are necessary for which a division of the dataset is carried out. During
the training, some instances are provided to the model for the optimization of
the parameters and to compute the objective function, while during the test
phase the final performance of the system and the degree of generalization
achieved are evaluated.
The division of the dataset is necessary in order to avoid overestimating
performance and limit overfitting. This is because if the test set is a subset of
the training set, it means that the examples provided during the evaluation
have already been seen and “learned” from the model and will therefore
provide good results. If the test set contains examples never seen before
by the model, a good response from the model will indicate a good level of
generalization achieved during training.
Hyperparameters can be divided into two types: (i) that determines the
network structure; (ii) that determines the network training. In the first class
there are items such as:

• the size of the filter known as kernel Size;

• stride i.e. the rate at which the kernel pass over the input image;

• Padding surrounds the layer with zeros-valued pixels, thus preventing
shrinking in the feature maps when multiple convolutional layers are
used;

• hidden layer are the layers between input and output layer;

• activation functions allows the model to learn nonlinear prediction
boundaries.

Instead in the second class there are:
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• learning rate, the amount of parameter update or the size of the update
step;

• epochs, the number of times we feed our network with the entire dataset;

• Batch size, the number of samples that will be propagated through the
network after which weights are updated;

• loss function to measure the success of the prediction.

In the following chapter the aim of this work and the structure of the convo-
lutional neural network made for that goal will be exposed.



Chapter 5

Convolutional Neural Network
for the reconstruction of
z-coordinates

5.1 z-coordinate reconstruction
The observation of tracks in emulsions is performed by optical microscopes.
The highest achievable point-to-point resolution that can be obtained with
an optical microscope is governed by a fundamental set of physical laws
that cannot be easily overcome by rational alternations in objective lens or
aperture design. A point object in a microscope, generates an image at the
intermediate plane that consists of a diffraction pattern created by the action
of interference. The diffraction pattern of this point source is referred to as
Airy pattern. The resolution limit of a microscope is defined as the distance
of the two point sources at which their images show a separation such that
the peak of one Airy pattern coincides with the first dark ring of the other.
This is referred to as the Rayleigh’s Criterion for resolution. The numerical
expression of Rayleigh’s Criterion is as follows:

RRayleigh = 0.6 λ

NA
(5.1)

where λ is the wavelength of the illuminating light and NA is the so-called
numerical aperture of objective lens. For the axial resolution the formula
changes to:

RAxial =
2λ
NA2 (5.2)

71
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The limit is basically a result of diffraction processes and the wave nature of
light. The high frequency components that give an image its sharpness are
lost by the finite numerical aperture of the lens that collects the light. This
results in a blurry appearance of the captured image. The resulting image is
a convolution of the actual object with the so-called point spread function
(PSF) of the optical system.

(a)

(b)

Figure 5.1: (a) The idea is to use two focal planes separated by a small
distance (∼DoF) so that the object will always be out of focus at one of the
planes. (b) Simulated PSFs of a point-like source at different Z positions in a
two-plane microscope setup. The planes are 500 nm apart. Zero of the Z-axis
coincides with the Focal plane 1

However, under ideal conditions with the most powerful objective lenses, the
resolution is still limited to relatively modest levels approaching 200 to 250
nm due to transmission characteristics of glass at wavelengths beneath 400
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nm and the physical constraints on numerical aperture.
Though the optical resolution of a conventional microscope is limited by
diffraction, and diameter of a small pinhole cannot be measured directly,
the position of the pinhole center can be calculated with an extremely high
precision if only one measurement is concerned. Due to the presence of thermal
noise on the camera sensor and leakage of vibrations from the outer world into
the scanning system, two consecutive measurements of the pinhole’s center
will not yield exactly the same result, thus limiting the spatial resolution.
Nevertheless, it is still much higher than the optical one. As reported in [130]
the spatial resolution of a conventional microscope is as high as 3 nm.
The same approach does not work in case of the axial coordinate measurement
since the only available observable in this case is the 2D cross-section of the
3D point spread function, which shape strongly depends on the distance
to the focal plane and does not allow precise localization of the object. A
possible solution could be to scan in depth with finer sampling and fit the
depth profile but this would significantly reduce the overall scanning speed.
The distance from the plane of best focus at which an object is still seen as
focused is referred to as the depth of focus (DoF). The DoF of a microscope
can be estimated with a formula:

DoF =
λn

NA2 +
ne

MNA
(5.3)

where n is the refraction index of the media and e is the dimension of the
sensor pixel. For the NA = 1.45 and the blue light it gives DoF ∼ 400 nm. As
shown in Figure 5.1b, in the vicinity of the focal plane 1, inside the DoF, the
PSF does change noticeably (red zone), leading to the localization problem:
when an object is focused its axial coordinate is known with the precision not
better than the DoF.
When the object goes out of focus and resides at the distance greater than
the DoF from the focal plane, the PSF starts to change rapidly and new rings
of varying radii appear, as it is shown in Figure 5.1b in green zone, allowing
good axial localization of the object.
The combination of two focal planes at the distance greater than the DoF in
the same microscope (shown in Figure 5.1a) allows overcoming the localization
problem and enables precise measurements of the axial coordinate. Indeed,
considering the Figure 5.1b, with such a configuration the object never gets
focused simultaneously in focal plane 1 and 2. It is clearly visible that when
the source is closer than 250 nm to either of the planes its PSF looks almost
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the same. However, the PSF seen on the opposite plane changes significantly.
Analyzing the difference in PSFs visible simultaneously at both planes, one
can estimate the Z coordinate of the object.
In [152] this strategy was performed analytically, while in this work we have
a dedicated neural network and trained it to estimate of the Z coordinate
using two input PSF images of the object visible at both planes.

5.1.1 CNN architecture
The Convolutional Neural Network suitable for this work should implement a
regression and not a classification since it is necessary to have a real number
as output. In order to construct this CNN Keras [153] and Tensorflow [154]
library were used. In Figure 5.2 a schematic representation of the built CNN
architecture is shown.

Figure 5.2: Schematic representation of CNN architecture.

For each filter adopted (16, 32, 64), the network follow the scheme:

CONV => RELU => BN => POOL

The convolutional layer use a kernel size of (3 × 3) and the function padding
“same” since the reduction is made in the following. Then the ReLU activation
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function is used, which takes an input and returns either the same value, or
zero if the input value is negative. This can be represented as follows:

frelu(x) = max(0, x) (5.4)

The ReLU activation is motivated by the processing in the human visual
cortex [155]. The Batch Normalization (BN) layer applies a transformation
that maintains the mean output close to 0 and the output standard deviation
close to 1. The pooling layer downsamples the input representation by taking
the maximum (or average) value over the window defined by pool size (2× 2)
for each dimension along the features axis.
Then there is the flattern layer necessary to rearrange the three dimensional
data, output of the last pooling layer, in a one dimensional vector since the
next fully connected layers only accept one dimensional vector of numbers.
The one dimensional vector is fed into the fully connected layer followed by
the ReLU activaction function and a batch normalization layer. A DropOut
Layer is added in order to randomly sets input units to 0 (removing neurons)
with a frequency of rate (0.5) at each step during training time, which helps
prevent overfitting.
Another FullyConnected Layer is added with the RelU activaction function.
Finally the last FullyConected Layer with a linear activaction funcion is added
to perform the regression.

5.1.2 Image dataset
The input dataset fed into the CNN is composed of images of a sample of
60 nm diameter sferical nanoparticles acquired with the optical microscope.
In particular, to select images of interest several cuts were made on grain
parameters:

1. the difference between the frame First and frame Last have to be larger
than 4 (for the last dataset to increase statistics this value was set at
2);

2. the minor axis should be smaller than 155.4 nm;

3. the ellipticity must be smaller than 2.

In particular 2. and 3. were applied to select round events in order to be
sure that are due to single nanoparticles. If grain features satisfy such cuts,
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(a) z = −794.2 nm (b) z = −550.4 nm (c) z = −294.2 nm

(d) z = −0.4 nm (e) z = 205.8 nm (f) z = 405.8 nm

Figure 5.3: Set of images of grains acquired at different z with step of ∼ 250
nm.

images are saved, in size of (90 pixel × 90 pixel). For each grain different
images are obtained with a z distance of about 250 nm, as shown in Figure
5.3.
Such dataset was fed into the CNN, after the following operations have been
performed.
Images are taken from the input path and resized to a dimension of (32 pixel
× 32 pixel). Subsequently, for each grain, images with a distance of about
500 nm are grabbed together to form an image of size (32 pixel × 64 pixels),
ready for the Network (Figure 5.4).
Figure 5.5 shows three different datasets used for this work, in particular,
these histograms represent the smallest z, used as a reference, of the two
merged images. The smallest z values saved in a dataframe are fundamental
to predict the correct one at the end of the network.
Histograms in figure 5.5a (small dataset with peaks) and 5.5b (big dataset
with peaks) show 5 peaks due to the acquisition method of microscopes, which
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(a) (b) (c) (d) (e) (f)

Figure 5.4: Set of images of grains acquired at different z with step of ∼ 250
nm. Pictures with the same edge colour have a distance of ∼ 500 nm and are
grabbed together to form the input image for the CNN.

grab images with steps of 250 nm. The difference between them is due only
to the increased number of entries, consequence of a more strict selection
with the cut on the difference between the first frame and the last frame.
While the histogram in Figure 5.5c (uniform dataset) was obtained to test the
CNN on a uniform distribution. In order to remove the peaks from the large
dataset, a cut at 230 entries was applied obtaining the uniform distribution.
During this study, datasets have been split in 80% as the sample of training
and the 20% for the test.

5.2 Results
In order to obtain the best accuracy and overcome the diffraction limit, several
runs were made on the Convolutional Neural Network described in the section
above. As it is known, achieving optimal results with Machine Learning
technique requires finding the best parameters for the model.
A tuning on hyper-parameters that determine the network training was made;
in particular the following parameters were considered: epochs, batch size and
drop out, using the values [30, 200, 250 , 400, 600], [4, 8, 16, 32, 64] and [0.4,
0.5, 0.6], respectively. Moreover, another parameter was changed, the loss
function. It was tested only on the small dataset with peaks, since using the
mean squared error (MSE), suitable for regression problem, instead of mean
absolute percentage error (MAPE) shows evident improvement. The mean
absolute percentage error compute the error between true z value (z true)
and the predicted z value (z pred) as:

loss = 100 × abs(z true − z pred)
z true
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(a) (b)

(c)

Figure 5.5: Three datasets that represent the smallest z, used as a reference
and necessary for the prediction of z-coordinates, of the two merged image.
(a) small dataset with peaks, (b) big dataset with peaks, (c) uniform dataset.

While the mean squared error computes the mean of squares of errors between
z true and z pred following:

loss = square(z true − z pred)

5.2.1 Small dataset with peaks
The difference between the frame First and frame Last larger than 4 was
selected to obtain the small dataset with 5 peaks. Some of the tests made on
this dataset are reported in table 5.1. In that table, it is possible to observe
that larger values correspond to the loss function MAPE while the smaller
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Epochs Batch size Drop out loss function σ [nm]
400 8 0.4 MAPE 53.8 ± 1.4
400 32 0.4 MAPE
400 4 0.4 MAPE 84.5 ± 3.6
400 8 0.4 MSE 49.1 ± 0.7
400 8 0.4 MSE 48.5 ± 0.7
400 16 0.4 MSE 45.6 ± 0.6

Table 5.1: Resolution as a function of different parameters for the dataset
five peaks.

ones to the MSE.
Figure 5.6 shows plots obtained on the small dataset using 400 epochs, batch
size of 8, drop out of 0.4 and the mean absolute percentage error as the loss
function.
Histogram 5.6a represent the 20% of the histogram in 5.5a since these per-
centage was chosen as test, while histogram 5.6b shows the corresponding
values predicted from the CNN. It is evident that even if there are some peaks
these are not in the correct position. This is even more evident in the scatter
plot, the difference between values predicted and values of test is computed
as: ∆z = zpred − ztest and is plotted versus z tested values. Here a straight
line parallel to x-axis is expected but not obtained with these parameters
(see 5.6c). Finally ∆z values are reported in the histogram (Figure 5.6d).
∆z distribution is expected to be Gaussian while in Figure 5.6d a partial
Gaussian fit provided a value of σ = (53.8 ± 1.4) nm.
Using the same dataset, the MSE loss function, 400 epochs, batch size of 16
and drop out of 0.4 the plot shown in Figure 5.7 are obtained. Significant
improvements are observed in all these plots, starting from z predicted
histogram (see 5.7b) the five peaks are visible, then in the scatter plot 5.7c a
straight line parallel to x-axes is evident. Finally ∆z distribution (see 5.7d)
is Gaussian and the fit returns σ = (45.6 ± 0.6) nm.
Other plots for the remaining parameters tested on the small dataset are
reported in the Appendix.
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Epochs Batch size Drop out loss function σ [nm]
400 16 0.4 MSE 58.3 ± 0.9
400 16 0.5 MSE 57.0 ± 0.8
400 16 0.6 MSE 63.6 ± 1.1
30 16 0.5 MSE 74.0 ± 0.6
250 16 0.5 MSE 59.5 ± 1.9
400 64 0.5 MSE 72.9 ± 1.9
600 64 0.5 MSE

Table 5.2: Resolution as a function of different parameters for the dataset
five peaks big.

5.2.2 Large dataset with peaks
Moving to the dataset with the increased statistic, several tests made are
reported in table 5.2. The difference between the frame First and frame Last
larger than 2 was selected to obtain this dataset. Since the improvement
obtained with the MSE loss function was significant, this parameter was not
changed anymore.
Figure 5.8 shows plots obtained using 400 epochs, 16 batch size and drop
out 0.5. The histogram of z predicted in Figure 5.8b shows the five peaks
even if there is a huge bin. The linearity in the scatter plot of ∆z versus z
tested was respected (Figure 5.8c) since the straight line parallel to x-axes
is visible and the observed trend reflects the expected one. Even in this
case ∆z distribution, shown in Figure 5.8d is Gaussian and the fit returns
σ = (57.0 ± 0.8) nm.
For plots obtained with the other parameters, it is possible to have a look in
the Appendix.

5.2.3 Uniform dataset
To test the performance of the CNN on a dataset not influenced by the
acquisition scanning method, the uniform dataset was obtained. All the test
made are reported in the Appendix, while in Figure 5.9 are reported the plot
achieved with 200 epochs, batch size of 16 and a drop out of 0.4. Also here the
histogram of z test in Figure 5.9a is the 20% of the dataset in Figure 5.5c. In
Figure 5.9b, the peak in the leftmost bin of the histogram can be attributed
to the insufficiently good prediction of the network since the picture contrast
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Epochs Batch size Drop out loss function σ [nm]
400 16 0.5 MSE
200 16 0.5 MSE 62.3 ± 1.6
200 32 0.5 MSE 61.3 ± 1.6
200 8 0.5 MSE 62.6 ± 1.4
200 16 0.4 MSE 57.4 ± 1.3
200 32 0.4 MSE 68.1 ± 2.2

Table 5.3: Resolution as a function of different parameters for the uniform
dataset.

rapidly decreases with the distance to the focal plane. Correlation scatter
plot in Figure 5.9c preserved the expected linearity. Finally, ∆z distribution
is Gaussian (see 5.9d) and the fit returns a value of σ = (57.4 ± 1.4) nm.
Afterwards, other tests were performed changing this time a layer of the
convolutional neural network. In particular, the max-pooling layer was
replaced by the average pooling layer, since input images for this study can
have some brighter pixel not due to the physics.
This test was performed for two-run, the first on the uniform dataset and
the second on the big dataset with peaks. For both of them the parameters
granting the best performance were used. The corresponding plots are reported
for the former in Figure 5.10 and for the latter in Figure 5.11.
Using that layer, the performances of the network seem to be overall improved.
On the uniform dataset a σ = (57.1± 1.3) nm was obtained, and for the large
dataset with peaks σ = (56.6 ± 0.8) nm.
Other tests are currently under study since it is known that to obtain the best
results with machine learning techniques it is fundamental tuning parameters.
The number of tests made is influenced also by the computational time
necessary to get the results, this time depends both on the network structure
and on the size of the dataset used.

5.3 Improvements obtained by CNN
The Convolutional Neural Network configuration that returns the best per-
formances include:

• batch size of 16;
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• 200 epochs for the small dataset and 400 epochs for the bigger ones;

• drop out in the range [0.4 ; 0.5];

• mean squared error as loss function;

• average pooling layer.

With these parameters the best accuracy, obtained for each of the three
datasets, results:

1. on the small dataset with peaks

σ = (45.6 ± 0.6)nm

with an efficiency ε = 99.9%;

2. on the large dataset with peaks

σ = (57.0 ± 0.8)nm

with an efficiency ε = 99.4%;

3. on the uniform dataset

σ = (57.4 ± 1.3)nm

with an efficiency ε = 99.9%.

In conclusion, the accuracy achieved with this convolutional neural network
overcome the one limited by diffraction by one order of magnitude.
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(a) z test (b) z predicted

(c) ∆z vs z test (d) ∆z

Figure 5.6: Plots obtained on the small dataset with peaks with the parame-
ters: epochs 400, batch size 8, drop out 0.4 and mean absolute percentage
error as loss function. (a) z values of test, (b) z values predicted from the
CNN, (c) the difference between values predicted and values of test (∆z)
versus z tested and (d) ∆z.
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(a) z test (b) z predicted

(c) ∆z vs z test (d) ∆z

Figure 5.7: Plots obtained on the small dataset with peaks with the parame-
ters: epochs 400, batch size 16, drop out 0.4 and mean squared error as loss
function. (a) z values of test, (b) z values predicted from the CNN, (c) the
difference between values predicted and values of test (∆z) versus z tested
and (d) ∆z.
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(a) z test (b) z predicted

(c) ∆z vs z test (d) ∆z

Figure 5.8: Plots obtained on the dataset big with peaks with the parameters:
epochs 400, batch size 16, drop out 0.5 and mean squared error as loss function.
(a) z values of test, (b) z values predicted from the CNN, (c) the difference
between values predicted and values of test (∆z) versus z tested and (d) ∆z.
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(a) z test (b) z predicted

(c) ∆z vs z test (d) ∆z

Figure 5.9: Plots obtained with the uniform dataset with the parameters:
epochs 200, batch size 16, drop out 0.4 and mean squared error as loss function.
(a) z values of test, (b) z values predicted from the CNN, (c) the difference
between values predicted and values of test (∆z) versus z tested and (d) ∆z.
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(a) z test (b) z predicted

(c) ∆z vs z test (d) ∆z

Figure 5.10: Plots obtained with the Average layer, uniform dataset and the
parameters: epochs 200, batch size 16, drop out 0.4 and mean squared error
as loss function. (a) z values of test, (b) z values predicted from the CNN,
(c) the difference between values predicted and values of test (∆z) versus z
tested and (d) ∆z.
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(a) z test (b) z predicted

(c) ∆z vs z test (d) ∆z

Figure 5.11: Plots obtained with the Average layer, big dataset with peaks
and the parameters: epochs 400, batch size 16, drop out 0.5 and mean squared
error as loss function. (a) z values of test, (b) z values predicted from the
CNN, (c) the difference between values predicted and values of test (∆z)
versus z tested and (d) ∆z.



Conclusion

The aim of NEWSdm (Nuclear Emulsion for WIMP Search with directional
measurements) is the detection of dark matter by measuring the direction
of WIMP-induced nuclear recoils. The development of new emulsion films
with 40 nm AgBr crystals, named Nano Imaging Trackers (NIT), paves the
way for the detection and reconstruction of sub-micrometric tracks similar to
those produced by a WIMP interaction with the emulsion target.
The super-resolution optical microscope allows a first step of the track recon-
struction with the “shape analysis”, i.e. to distinguish the clusters produced
by a single grain (fog) due to thermal excitation, showing a spherical shape,
from clusters formed by several grains showing, instead, an elliptical shape
with the major axis along the actual direction of the trajectory of nuclear
recoils. The second step of the analysis is performed employing a new optical
microscope which allows extending the reconstruction of tracks beyond the
diffraction limit by exploiting the resonance effect of polarized light with an
accuracy better than 10 nm.
In this work 70 nm diameter grains NIT emulsion, implanted with Carbon
ions with energies of 100, 60 and 30 keV, have been analyzed using both the
shape analysis for the candidate selection and the plasmon analysis for the
validation. With the plasmon analysis an angular accuracy of σ = 0.35± 0.02
rad was obtained with a corresponding efficiency of 35% for the 100 keV
sample.
In order to perform a 3d reconstruction of the track also a high accuracy for
z-coordinates is needed. Actually, under ideal conditions, the accuracy is of
the order of ∼ 400 nm. The axial resolution is limited by both the diffraction
process and the wave nature of the light. In particular, an object is still seen
in focus if it is within the depth of focus, moreover, near the focal plane
the point spread function (PSF) shows very small variations, thus providing
a bad z localization while out of focus PSF changes rapidly and a good z
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localization is obtained.
From here the idea of combining two focal planes with a distance larger than
the Depth of Focus (DoF) in order to always have the object in focus in one
of the planes. Analyzing the difference in PSFs visible simultaneously at both
planes, one can estimate the z coordinate of the object.
This work was made with the use of a suitable convolutional neural network.
A tuning on the hyperparameters both that determines the network structure
and that determines the network training was made.
The best accuracy that has been obtained is of σ = (45.6 ± 0.6) nm with
an efficiency of 99.9% so overcoming the diffraction limit by one order of
magnitude.



Appendix A

In this section are reported the other plot obtained, changing parameter, to
test the network. In Figure 5.12, 5.13, 5.14 and 5.15 are shown plots from the
small dataset with five peaks. For the dataset big with peaks the graphs are
in Figure 5.16, 5.17, 5.18, 5.19, 5.20 and 5.21. Finally, in Figure 5.22, 5.23,
5.24, 5.25 and 5.26 are displayed the results on the dataset uniform.
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(a) z test (b) z predicted

(c) ∆z vs z test (d) ∆z

Figure 5.12: Plots obtained with the parameters: epochs 400, batch size
32, drop out 0.4 and mean absolute percentage error as loss function. (a) z
values of test, (b) z values predicted from the CNN, (c) the difference between
values predicted and values of test (∆z) versus z tested and (d) ∆z.
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(a) z test (b) z predicted

(c) ∆z vs z test (d) ∆z

Figure 5.13: Plots obtained with the parameters: epochs 400, batch size
4, drop out 0.4 and mean absolute percentage error as loss function. (a) z
values of test, (b) z values predicted from the CNN, (c) the difference between
values predicted and values of test (∆z) versus z tested and (d) ∆z.
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(a) z test (b) z predicted

(c) ∆z vs z test (d) ∆z

Figure 5.14: Plots obtained with the parameters: epochs 400, batch size 8,
drop out 0.4 and mean squared error as loss function. (a) z values of test, (b)
z values predicted from the CNN, (c) the difference between values predicted
and values of test (∆z) versus z tested and (d) ∆z.
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(a) z test (b) z predicted

(c) ∆z vs z test (d) ∆z

Figure 5.15: Plots obtained with the parameters: epochs 400, batch size 8,
drop out 0.4 and mean squared error as loss function. (a) z values of test, (b)
z values predicted from the CNN, (c) the difference between values predicted
and values of test (∆z) versus z tested and (d) ∆z.
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(a) z test (b) z predicted

(c) ∆z vs z test (d) ∆z

Figure 5.16: Plots obtained with the parameters: epochs 400, batch size 16,
drop out 0.4 and mean squared error as loss function. (a) z values of test, (b)
z values predicted from the CNN, (c) the difference between values predicted
and values of test (∆z) versus z tested and (d) ∆z.
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(a) z test (b) z predicted

(c) ∆z vs z test (d) ∆z

Figure 5.17: Plots obtained with the parameters: epochs 400, batch size 16,
drop out 0.6 and mean squared error as loss function. (a) z values of test, (b)
z values predicted from the CNN, (c) the difference between values predicted
and values of test (∆z) versus z tested and (d) ∆z.
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(a) z test (b) z predicted

(c) ∆z vs z test (d) ∆z

Figure 5.18: Plots obtained with the parameters: epochs 30, batch size 16,
drop out 0.5 and mean squared error as loss function. (a) z values of test, (b)
z values predicted from the CNN, (c) the difference between values predicted
and values of test (∆z) versus z tested and (d) ∆z.
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(a) z test (b) z predicted

(c) ∆z vs z test (d) ∆z

Figure 5.19: Plots obtained with the parameters: epochs 250, batch size 16,
drop out 0.5 and mean squared error as loss function. (a) z values of test, (b)
z values predicted from the CNN, (c) the difference between values predicted
and values of test (∆z) versus z tested and (d) ∆z.
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(a) z test (b) z predicted

(c) ∆z vs z test (d) ∆z

Figure 5.20: Plots obtained with the parameters: epochs 400, batch size 64,
drop out 0.5 and mean squared error as loss function. (a) z values of test, (b)
z values predicted from the CNN, (c) the difference between values predicted
and values of test (∆z) versus z tested and (d) ∆z.
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(a) z test (b) z predicted

(c) ∆z vs z test (d) ∆z

Figure 5.21: Plots obtained with the parameters: epochs 600, batch size 64,
drop out 0.5 and mean squared error as loss function. (a) z values of test, (b)
z values predicted from the CNN, (c) the difference between values predicted
and values of test (∆z) versus z tested and (d) ∆z.
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(a) z test (b) z predicted

(c) ∆z vs z test (d) ∆z

Figure 5.22: Plots obtained with the parameters: epochs 400, batch size 16,
drop out 0.5 and mean squared error as loss function. (a) z values of test, (b)
z values predicted from the CNN, (c) the difference between values predicted
and values of test (∆z) versus z tested and (d) ∆z.



5.3 Improvements obtained by CNN 103

(a) z test (b) z predicted

(c) ∆z vs z test (d) ∆z

Figure 5.23: Plots obtained with the parameters: epochs 200, batch size 16,
drop out 0.5 and mean squared error as loss function. (a) z values of test, (b)
z values predicted from the CNN, (c) the difference between values predicted
and values of test (∆z) versus z tested and (d) ∆z.
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(a) z test (b) z predicted

(c) ∆z vs z test (d) ∆z

Figure 5.24: Plots obtained with the parameters: epochs 200, batch size 32,
drop out 0.5 and mean squared error as loss function. (a) z values of test, (b)
z values predicted from the CNN, (c) the difference between values predicted
and values of test (∆z) versus z tested and (d) ∆z.
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(a) z test (b) z predicted

(c) ∆z vs z test (d) ∆z

Figure 5.25: Plots obtained with the parameters: epochs 200, batch size 8,
drop out 0.5 and mean squared error as loss function. (a) z values of test, (b)
z values predicted from the CNN, (c) the difference between values predicted
and values of test (∆z) versus z tested and (d) ∆z.
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(a) z test (b) z predicted

(c) ∆z vs z test (d) ∆z

Figure 5.26: Plots obtained with the parameters: epochs 200, batch size 32,
drop out 0.4 and mean squared error as loss function. (a) z values of test, (b)
z values predicted from the CNN, (c) the difference between values predicted
and values of test (∆z) versus z tested and (d) ∆z.



Bibliography

[1] Fritz Zwicky. “The redshift of extragalactic nebulae”. In: Helvetica
Physica Acta 6 (1933), pp. 110–127 ( p. 3).

[2] Vera C Rubin and W Kent Ford Jr. “Rotation of the Andromeda nebula
from a spectroscopic survey of emission regions”. In: The Astrophysical
Journal 159 (1970), p. 379 ( p. 4).

[3] Vera C Rubin. “Dark matter in spiral galaxies”. In: Scientific American
248.6 (1983), pp. 96–109 ( p. 4).

[4] KG Begeman. “HI rotation curves of spiral galaxies. I-NGC 3198”. In:
Astronomy and Astrophysics 223 (1989), pp. 47–60 ( p. 5).

[5] Richard Massey, Thomas Kitching, and Johan Richard. “The dark
matter of gravitational lensing”. In: Reports on Progress in Physics
73.8 (2010), p. 086901 ( p. 4).

[6] Matthias Bartelmann. “Gravitational lensing”. In: Classical and Quan-
tum Gravity 27.23 (2010), p. 233001 ( p. 4).

[7] Dennis Walsh, Robert F Carswell, and Ray J Weymann. “0957+ 561 A,
B: twin quasistellar objects or gravitational lens?” In: Nature 279.5712
(1979), pp. 381–384 ( p. 4).

[8] Donald H Perkins. Particle astrophysics. 10. Oxford University Press,
2009 ( pp. 4, 9).

[9] Bohdan Paczynski. “Gravitational microlensing by the galactic halo”.
In: The Astrophysical Journal 304 (1986), pp. 1–5 ( p. 4).

[10] Patrick Tisserand et al. “Limits on the Macho Content of the Galactic
Halo from the EROS-2 Survey of the Magellanic Clouds”. In: Astron-
omy & Astrophysics 469.2 (2007), pp. 387–404 ( p. 5).

107



Bibliography 108

[11] Charles Alcock et al. “The MACHO project: microlensing results from
5.7 years of Large Magellanic Cloud observations”. In: The Astrophys-
ical Journal 542.1 (2000), p. 281 ( p. 5).

[12] N Miyake et al. “A sub-Saturn mass planet, MOA-2009-BLG-319Lb”.
In: The Astrophysical Journal 728.2 (2011), p. 120 ( p. 5).

[13] Andrzej Udalski. “The optical gravitational lensing experiment. Real
time data analysis systems in the OGLE-III survey”. In: arXiv preprint
astro-ph/0401123 (2004) ( p. 5).

[14] Douglas Clowe et al. “A direct empirical proof of the existence of dark
matter”. In: The Astrophysical Journal Letters 648.2 (2006), p. L109 (
p. 6).

[15] M Markevitch, D Clowe, et al. “The matter of the bullet cluster”. In:
NASA. gov, Aug 26 (2006) ( p. 6).

[16] Arno A Penzias and Robert Woodrow Wilson. “A measurement of
excess antenna temperature at 4080 Mc/s.” In: The Astrophysical
Journal 142 (1965), pp. 419–421 ( p. 6).

[17] George F Smoot et al. “Structure in the COBE differential microwave
radiometer first-year maps”. In: The Astrophysical Journal 396 (1992),
pp. L1–L5 ( p. 7).

[18] Gary Hinshaw et al. “Five-year wilkinson microwave anisotropy probe*
observations: data processing, sky maps, and basic results”. In: The
Astrophysical Journal Supplement Series 180.2 (2009), p. 225 ( p. 7).

[19] Peter AR Ade et al. “Planck 2013 results. XVI. Cosmological parame-
ters”. In: Astronomy & Astrophysics 571 (2014), A16 ( p. 7).

[20] D Larson et al. “Seven-year wilkinson microwave anisotropy probe
(WMAP*) observations: power spectra and WMAP-derived parame-
ters”. In: The Astrophysical Journal Supplement Series 192.2 (2011),
p. 16 ( p. 7).

[21] David N Spergel et al. “Three-year Wilkinson Microwave Anisotropy
Probe (WMAP) observations: implications for cosmology”. In: The
Astrophysical Journal Supplement Series 170.2 (2007), p. 377 ( pp. 7,
11).



Bibliography 109

[22] Richard H Cyburt. “Primordial nucleosynthesis for the new cosmology:
Determining uncertainties and examining concordance”. In: Physical
Review D 70.2 (2004), p. 023505 ( p. 8).

[23] N Aghanim et al. “Planck 2018 results. VI. Cosmological parameters”.
In: arXiv preprint arXiv:1807.06209 (2018) ( p. 8).

[24] Peter AR Ade et al. “Planck 2015 results-xiii. cosmological parameters”.
In: Astronomy & Astrophysics 594 (2016), A13 ( p. 8).

[25] K Garrett and G Duda. “Dark matter: a primer, Adv. Astron. 2011
(2011) 968283”. In: arXiv preprint arXiv:1006.2483 () ( p. 8).

[26] Gianfranco Bertone, Dan Hooper, and Joseph Silk. “Particle dark
matter: Evidence, candidates and constraints”. In: Physics reports
405.5-6 (2005), pp. 279–390 ( p. 9).

[27] Lars Bergström. “Dark matter candidates”. In: New Journal of Physics
11.10 (2009), p. 105006 ( p. 9).

[28] Gerard Jungman, Marc Kamionkowski, and Kim Griest. “Supersym-
metric dark matter”. In: Physics Reports 267.5-6 (1996), pp. 195–373
( p. 10).

[29] JD Lewin and PF Smith. Review of mathematics, numerical factors,
and corrections for dark matter experiments based on elastic nuclear
recoil. Tech. rep. SCAN-9603159, 1996 ( pp. 10, 13, 14).

[30] Lars Bergström, Piero Ullio, and James H Buckley. “Observability of
γ rays from dark matter neutralino annihilations in the Milky Way
halo”. In: Astroparticle Physics 9.2 (1998), pp. 137–162 ( p. 10).

[31] J Richard Bond, George Efstathiou, and Joseph Silk. “Massive neutri-
nos and the large-scale structure of the universe”. In: Physical Review
Letters 45.24 (1980) ( p. 11).

[32] N Jarosik et al. “Seven-year wilkinson microwave anisotropy probe
(WMAP*) observations: sky maps, systematic errors, and basic results”.
In: The Astrophysical Journal Supplement Series 192.2 (2011), p. 14 (
p. 11).

[33] Stephen P Martin. “A supersymmetry primer”. In: Perspectives on
supersymmetry II. World Scientific, 2010, pp. 1–153 ( p. 11).

[34] Xiao-Jun Bi, Peng-Fei Yin, and Qiang Yuan. “Status of dark matter
detection”. In: Frontiers of Physics 8.6 (2013), pp. 794–827 ( p. 12).



Bibliography 110

[35] Georges Aad et al. “Search for dark matter candidates and large extra
dimensions in events with a jet and missing transverse momentum
with the ATLAS detector”. In: Journal of High Energy Physics 2013.4
(2013), p. 75 ( p. 11).

[36] ATLAS collaboration et al. “The ATLAS Experiment at the CERN
Large Hadron Collider, JINST 3 (2008) S08003”. In: Cited on (2008),
p. 24 ( p. 11).

[37] Serguei Chatrchyan et al. “Search for Dark Matter and Large Extra
Dimensions in p p Collisions Yielding a Photon and Missing Transverse
Energy”. In: Physical review letters 108.26 (2012), p. 261803 ( p. 11).

[38] CMS Collaboration et al. The CMS experiment at the CERN LHC.
2008 ( p. 11).

[39] Jennifer M Gaskins. “A review of indirect searches for particle dark
matter”. In: Contemporary Physics 57.4 (2016), pp. 496–525 ( p. 11).

[40] LAT Collaboration et al. “Search for gamma-ray spectral lines with
the Fermi large area telescope and dark matter implications”. In: arXiv
preprint arXiv:1305.5597 (2013) ( p. 12).

[41] G Kanbach et al. “The project EGRET (energetic gamma-ray experi-
ment telescope) on NASA’s Gamma-Ray Observatory GRO”. In: Space
Science Reviews 49.1-2 (1989), pp. 69–84 ( p. 12).

[42] Wim de Boer et al. “EGRET excess of diffuse galactic gamma rays as
tracer of dark matter”. In: Astronomy & Astrophysics 444.1 (2005),
pp. 51–67 ( p. 12).

[43] HESS Collaboration et al. “Search for dark matter annihilation signa-
tures in HESS observations of Dwarf Spheroidal Galaxies”. In: arXiv
preprint arXiv:1410.2589 (2014) ( p. 12).

[44] MG Aartsen et al. “Search for annihilating dark matter in the Sun
with 3 years of IceCube data”. In: The European Physical Journal C
77.3 (2017), p. 146 ( p. 12).

[45] Silvia Adrián-Mart́ınez et al. “Limits on dark matter annihilation in
the sun using the ANTARES neutrino telescope”. In: Physics Letters
B 759 (2016), pp. 69–74 ( p. 12).



Bibliography 111

[46] K Choi et al. “Search for neutrinos from annihilation of captured
low-mass dark matter particles in the Sun by Super-Kamiokande”. In:
Physical review letters 114.14 (2015), p. 141301 ( p. 12).

[47] O Adriani et al. “Observation of an anomalous positron abundance
in the cosmic radiation”. In: arXiv preprint arXiv:0810.4995 (2008) (
p. 12).

[48] O Adriani et al. “New measurement of the antiproton-to-proton flux
ratio up to 100 GeV in the cosmic radiation”. In: Physical Review
Letters 102.5 (2009), p. 051101 ( p. 12).

[49] M Aguilar et al. “First result from the Alpha Magnetic Spectrometer on
the International Space Station: precision measurement of the positron
fraction in primary cosmic rays of 0.5–350 GeV”. In: Physical Review
Letters 110.14 (2013), p. 141102 ( p. 12).

[50] Markus Ackermann et al. “Measurement of separate cosmic-ray electron
and positron spectra with the Fermi Large Area Telescope”. In: Physical
Review Letters 108.1 (2012), p. 011103 ( p. 12).

[51] Kfir Blum, Boaz Katz, and Eli Waxman. “AMS-02 results support the
secondary origin of cosmic ray positrons”. In: Physical review letters
111.21 (2013), p. 211101 ( p. 12).

[52] Teresa Marrodan Undagoitia and Ludwig Rauch. “Dark matter direct-
detection experiments”. In: Journal of Physics G: Nuclear and Particle
Physics 43.1 (2015), p. 013001 ( pp. 13, 20).

[53] Frank J Kerr and Donald Lynden-Bell. “Review of galactic constants”.
In: Monthly Notices of the Royal Astronomical Society 221.4 (1986),
pp. 1023–1038 ( p. 13).

[54] Martin C Smith et al. “The RAVE survey: constraining the local
galactic escape speed”. In: Monthly Notices of the Royal Astronomical
Society 379.2 (2007), pp. 755–772 ( p. 14).

[55] David N Spergel. “Motion of the Earth and the detection of weakly
interacting massive particles”. In: Physical Review D 37.6 (1988),
p. 1353 ( p. 15).

[56] Andrzej K Drukier, Katherine Freese, and David N Spergel. “Detecting
cold dark-matter candidates”. In: Physical Review D 33.12 (1986),
p. 3495 ( pp. 15, 19).



Bibliography 112

[57] CDMS II Collaboration et al. “Dark matter search results from the
CDMS II experiment”. In: Science 327.5973 (2010), pp. 1619–1621 (
p. 16).

[58] Z. Ahmed et al. “Search for annual modulation in low-energy CDMS-II
data”. In: (Mar. 2012). arXiv: 1203.1309 [astro-ph.CO] ( p. 16).

[59] Craig E Aalseth et al. “CoGeNT: A search for low-mass dark matter
using p-type point contact germanium detectors”. In: Physical Review
D 88.1 (2013), p. 012002 ( p. 16).

[60] R Agnese et al. “Search for low-mass weakly interacting massive
particles with SuperCDMS”. In: Physical review letters 112.24 (2014),
p. 241302 ( p. 16).

[61] R Agnese et al. “New results from the search for low-mass weakly
interacting massive particles with the CDMS low ionization threshold
experiment”. In: Physical review letters 116.7 (2016), p. 071301 ( p. 16).

[62] G Angloher et al. “Limits on WIMP dark matter using scintillating
CaWO4 cryogenic detectors with active background suppression”. In:
Astroparticle Physics 23.3 (2005), pp. 325–339 ( p. 16).

[63] Godehard Angloher et al. “Results from 730 kg days of the CRESST-
II Dark Matter Search”. In: The European Physical Journal C 72.4
(2012), p. 1971 ( p. 16).

[64] G Angloher et al. “Results on light dark matter particles with a low-
threshold CRESST-II detector”. In: The European Physical Journal C
76.1 (2016), pp. 1–8 ( p. 16).

[65] Mark G Boulay and Andrew Hime. “Technique for direct detection of
weakly interacting massive particles using scintillation time discrimina-
tion in liquid argon”. In: Astroparticle Physics 25.3 (2006), pp. 179–182
( p. 17).

[66] Akira Hitachi et al. “Effect of ionization density on the time dependence
of luminescence from liquid argon and xenon”. In: Physical Review B
27.9 (1983), p. 5279 ( p. 17).

[67] AI Bolozdynya. “Two-phase emission detectors and their applications”.
In: Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment
422.1-3 (1999), pp. 314–320 ( p. 17).

https://arxiv.org/abs/1203.1309


Bibliography 113

[68] Alain Lansiart et al. “Development research on a highly luminous
condensed xenon scintillator”. In: Nuclear Instruments and Methods
135.1 (1976), pp. 47–52 ( p. 18).

[69] Boulay for the DEAP Collaboration et al. “DEAP-3600 Dark Matter
Search at SNOLAB”. In: arXiv preprint arXiv:1203.0604 (2012) (
p. 18).

[70] Keith Rielage et al. “Update on the MiniCLEAN dark matter experi-
ment”. In: arXiv preprint arXiv:1403.4842 (2014) ( p. 18).

[71] K Abe et al. “XMASS detector”. In: Nuclear Instruments and Methods
in Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment 716 (2013), pp. 78–85 ( p. 18).

[72] P Benetti et al. “First results from a Dark Matter search with liq-
uid Argon at 87 K in the Gran Sasso Underground Laboratory”. In:
Astroparticle Physics 28.6 (2008), pp. 495–507 ( p. 18).

[73] Pl Agnes et al. “First results from the DarkSide-50 dark matter exper-
iment at Laboratori Nazionali del Gran Sasso”. In: Physics Letters B
743 (2015), pp. 456–466 ( p. 18).

[74] A Badertscher et al. “ArDM: first results from underground commis-
sioning”. In: Journal of Instrumentation 8.09 (2013), p. C09005 (
p. 18).

[75] Elena Aprile. “The X enon 1T Dark Matter Search Experiment”. In:
Sources and Detection of Dark Matter and Dark Energy in the Universe.
Springer, 2013, pp. 93–96 ( p. 18).

[76] Daniel S Akerib et al. “First results from the LUX dark matter ex-
periment at the Sanford Underground Research Facility”. In: Physical
review letters 112.9 (2014), p. 091303 ( p. 18).

[77] D Yu Akimov et al. “The ZEPLIN-III dark matter detector: Instrument
design, manufacture and commissioning”. In: Astroparticle Physics
27.1 (2007), pp. 46–60 ( p. 18).

[78] XiGuang Cao et al. “PandaX: a liquid xenon dark matter experiment
at CJPL”. In: Science China Physics, Mechanics & Astronomy 57.8
(2014), pp. 1476–1494 ( p. 18).



Bibliography 114

[79] Xiang Xiao et al. “Low-mass dark matter search results from full
exposure of the PandaX-I experiment”. In: Physical Review D 92.5
(2015), p. 052004 ( p. 18).

[80] DC Malling et al. “After LUX: the LZ program”. In: arXiv preprint
arXiv:1110.0103 (2011) ( p. 18).

[81] DS Akerib et al. “LUX-ZEPLIN (LZ) conceptual design report”. In:
arXiv preprint arXiv:1509.02910 (2015) ( p. 18).

[82] Rita Bernabei et al. “Final model independent result of DAMA/ LIBRA
-phase1”. In: The European Physical Journal C 73.12 (2013), p. 2648 (
p. 19).

[83] Rita Bernabei et al. “First model independent results from DAMA/LI-
BRA -phase2”. In: Universe 4.11 (2018), p. 116 ( p. 19).

[84] Christopher Savage et al. “Compatibility of DAMA/LIBRA dark
matter detection with other searches”. In: Journal of Cosmology and
Astroparticle Physics 2009.04 (2009), p. 010 ( p. 19).

[85] Richard W Schnee. “Introduction to dark matter experiments”. In:
Physics of the Large and the Small: TASI 2009. World Scientific, 2011,
pp. 775–829 ( p. 19).

[86] Kfir Blum. “DAMA vs. the annually modulated muon background”.
In: arXiv preprint arXiv:1110.0857 (2011) ( p. 19).

[87] Jonathan H Davis. “Fitting the annual modulation in DAMA with
neutrons from muons and neutrinos”. In: Physical review letters 113.8
(2014), p. 081302 ( p. 19).

[88] John P Ralston. “One Model Explains DAMA/LIBRA, CoGENT,
CDMS, and XENON”. In: arXiv preprint arXiv:1006.5255 (2010) (
p. 19).

[89] Emily Shields, Frank Calaprice, and Jingke Xu. “SABRE: A new NaI
(T1) dark matter direct detection experiment”. In: Phys. Procedia 61
(2015), pp. 169–178 ( p. 19).

[90] Marc Schumann. “Direct Detection of WIMP Dark Matter: Concepts
and Status”. In: J. Phys. G 46.10 (2019), p. 103003. doi: 10.1088/
1361-6471/ab2ea5. arXiv: 1903.03026 [astro-ph.CO] ( p. 22).

https://doi.org/10.1088/1361-6471/ab2ea5
https://doi.org/10.1088/1361-6471/ab2ea5
https://arxiv.org/abs/1903.03026


Bibliography 115

[91] T. Ikeda et al. “Results of a directional dark matter search from the
NEWAGE experiment”. In: J. Phys. Conf. Ser. 1468.1 (2020). Ed. by
Masayuki Nakahata, p. 012042. doi: 10.1088/1742-6596/1468/1/
012042 ( p. 22).

[92] Cosmin Deaconu et al. “Measurement of the directional sensitivity
of Dark Matter Time Projection Chamber detectors”. In: Physical
Review D 95.12 (2017), p. 122002 ( p. 22).

[93] Y. Tao et al. “Dark Matter Directionality Detection performance of the
Micromegas-based µTPC-MIMAC detector”. In: (Mar. 2020). arXiv:
2003.11812 [physics.ins-det] ( p. 22).

[94] E. Daw et al. “Long-term study of backgrounds in the DRIFT-II di-
rectional dark matter experiment”. In: JINST 9 (2014), P07021.
doi: 10 . 1088 / 1748 - 0221 / 9 / 07 / P07021. arXiv: 1307 . 5525
[physics.ins-det] ( p. 22).

[95] I. Jaegle et al. “Simulation of the Directional Dark Matter Detector
(D3) and Directional Neutron Observer (DiNO)”. In: EAS Publ. Ser.
53 (2012). Ed. by F. Mayet and D. Santos, pp. 111–118. doi: 10.1051/
eas/1253014. arXiv: 1110.3444 [astro-ph.IM] ( p. 22).

[96] Vincenzo Caracciolo et al. “The ADAMO Project and developments”.
In: J. Phys. Conf. Ser. Vol. 718. 2016, p. 42011 ( p. 22).

[97] DCaNT: DIRECTIONAL WIMP DETECTION WITH CARBON
NANOTUBES. url: https://web.infn.it/cygnus/dcant/ ( p. 22).

[98] Huajie Cao et al. “Measurement of scintillation and ionization yield
and scintillation pulse shape from nuclear recoils in liquid argon”. In:
Physical Review D 91.9 (2015), p. 092007 ( p. 22).

[99] Christian W Fabjan. Particle Physics Reference Library: Volume 2:
Detectors for Particles and Radiation. Vol. 2. Springer Nature, 2020 (
p. 23).

[100] Giuseppe PS Occhialini and CF Powell. “Nuclear disintegrations pro-
duced by slow charged particles of small mass”. In: Nature 159.4032
(1947), pp. 186–190 ( p. 23).

[101] MF Kaplon et al. “The Absorption Mean Free Path of the High-Energy
Nucleonic Component of Cosmic Radiation”. In: Physical Review 91.6
(1953), p. 1573 ( p. 23).

https://doi.org/10.1088/1742-6596/1468/1/012042
https://doi.org/10.1088/1742-6596/1468/1/012042
https://arxiv.org/abs/2003.11812
https://doi.org/10.1088/1748-0221/9/07/P07021
https://arxiv.org/abs/1307.5525
https://arxiv.org/abs/1307.5525
https://doi.org/10.1051/eas/1253014
https://doi.org/10.1051/eas/1253014
https://arxiv.org/abs/1110.3444
https://web.infn.it/cygnus/dcant/


Bibliography 116

[102] Giovanni De Lellis. “Charm physics with neutrinos”. In: Nuclear
Physics B-Proceedings Supplements 142 (2005), pp. 109–114 ( p. 23).

[103] N. Agafonova et al. “Final Results of the OPERA Experiment on ντ
Appearance in the CNGS Neutrino Beam”. In: Phys. Rev. Lett. 120.21
(2018). [Erratum: Phys.Rev.Lett. 121, 139901 (2018)], p. 211801. doi:
10.1103/PhysRevLett.120.211801. arXiv: 1804.04912 [hep-ex] (
p. 23).

[104] M Natsume et al. “Low-velocity ion tracks in fine grain emulsion”.
In: Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment 575.3
(2007), pp. 439–443 ( p. 25).

[105] Tatsuhiro Naka et al. “Fine grained nuclear emulsion for higher res-
olution tracking detector”. In: Nuclear Instruments and Methods in
Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment 718 (2013), pp. 519–521 ( p. 25).

[106] A Aleksandrov et al. “NEWS: Nuclear emulsions for WIMP search”.
In: arXiv preprint arXiv:1604.04199 (2016) ( pp. 26, 35, 40, 41, 43,
45).

[107] N Agafonova et al. “Discovery potential for directional Dark Matter
detection with nuclear emulsions”. In: The European Physical Journal
C 78.7 (2018), p. 578 ( p. 30).

[108] Tadaaki Tani and Tatsuhiro Naka. “Nuclear emulsions for dark matter
detection”. In: Radiation Measurements 95 (2016), pp. 31–36 ( p. 30).

[109] Marijke Haffke et al. “Background measurements in the gran sasso
underground laboratory”. In: Nuclear Instruments and Methods in
Physics Research Section A: Accelerators, Spectrometers, Detectors
and Associated Equipment 643.1 (2011), pp. 36–41 ( p. 31).

[110] E Aprile et al. “Xenon100 collaboration”. In: arXiv preprint arXiv:
1104.2549 (2011) ( p. 32).

[111] D-M Mei and A Hime. “Muon-induced background study for under-
ground laboratories”. In: Physical Review D 73.5 (2006), p. 053004 (
pp. 32, 33).

[112] Michelangelo Ambrosio et al. “Measurement of the residual energy of
muons in the Gran Sasso underground laboratories”. In: Astroparticle
physics 19.3 (2003), pp. 313–328 ( p. 33).

https://doi.org/10.1103/PhysRevLett.120.211801
https://arxiv.org/abs/1804.04912


Bibliography 117

[113] A Lindote et al. “Simulation of neutrons produced by high-energy
muons underground”. In: Astroparticle Physics 31.5 (2009), pp. 366–
375 ( p. 33).

[114] VA Kudryavtsev, NJC Spooner, and JE McMillan. “Simulations of
muon-induced neutron flux at large depths underground”. In: Nuclear
Instruments and Methods in Physics Research Section A: Accelera-
tors, Spectrometers, Detectors and Associated Equipment 505.3 (2003),
pp. 688–698 ( p. 33).

[115] Alfredo Ferrari et al. FLUKA: a multi-particle transport code. Tech. rep.
Stanford Linear Accelerator Center (SLAC), 2005 ( p. 33).

[116] T Habu et al. “High contrast effects of tetrazolium compounds in
silver halide photography”. In: Journal of imaging science 35.3 (1991),
pp. 202–205 ( p. 34).

[117] Mitsuhiro Kimura et al. “WIMP tracking with cryogenic nuclear emul-
sion”. In: Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equipment
845 (2017), pp. 373–377 ( p. 34).

[118] Robert S Houk et al. “Inductively coupled argon plasma as an ion
source for mass spectrometric determination of trace elements”. In:
Analytical Chemistry 52.14 (1980), pp. 2283–2289 ( p. 34).

[119] W Betal Wilson et al. “Sources: a code for calculating (α, n), sponta-
neous fission, and delayed neutron sources and spectra”. In: Radiation
protection dosimetry 115.1-4 (2005), pp. 117–121 ( p. 34).

[120] A Alexandrov et al. “Intrinsic neutron background of nuclear emulsions
for directional Dark Matter searches”. In: Astroparticle Physics 80
(2016), pp. 16–21 ( p. 35).

[121] N Armenise et al. “High-speed particle tracking in nuclear emulsion by
last-generation automatic microscopes”. In: Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment 551.2-3 (2005), pp. 261–270 (
p. 36).



Bibliography 118

[122] A Aleksandrov and V Tioukov. “A novel approach for fast scanning of
nuclear emulsions with continuous motion of the microscope stage”.
In: Nuclear Instruments and Methods in Physics Research Section A:
Accelerators, Spectrometers, Detectors and Associated Equipment 718
(2013), pp. 184–185 ( p. 36).

[123] A Alexandrov et al. “A new fast scanning system for the measurement
of large angle tracks in nuclear emulsions”. In: Journal of Instrumen-
tation 10.11 (2015), P11006 ( pp. 36, 38).

[124] A Alexandrov, V Tioukov, and M Vladymyrov. “Further progress for a
fast scanning of nuclear emulsions with Large Angle Scanning System”.
In: J. Instrumentation 9 (2014), p. C02034 ( p. 37).

[125] Andrey Alexandrov et al. “The continuous motion technique for a
new generation of scanning systems”. In: Scientific reports 7.1 (2017),
pp. 1–10 ( p. 38).

[126] Andrey Alexandrov, Giovanni De Lellis, and Valeri Tioukov. “A Novel
optical scanning technique with an Inclined Focusing plane”. In: Sci-
entific Reports 9.1 (2019), pp. 1–10 ( p. 38).

[127] K Morishima and T Nakano. “Development of a new automatic nuclear
emulsion scanning system, S-UTS, with continuous 3D tomographic
image read-out”. In: Journal of Instrumentation 5.04 (2010), P04011 (
p. 38).

[128] Nicola D’Ambrosio et al. “Nuclear emulsions as a very high resolution
detector for directional dark matter search”. In: Journal of Instrumen-
tation 9.01 (2014), p. C01043 ( p. 38).

[129] A Alexandrov et al. “Development of a super-resolution optical mi-
croscope for directional dark matter search experiment”. In: Nuclear
Instruments and Methods in Physics Research Section A: Accelera-
tors, Spectrometers, Detectors and Associated Equipment 824 (2016),
pp. 600–602 ( pp. 38, 39).

[130] Andrey Alexandrov et al. “Super-resolution high-speed optical mi-
croscopy for fully automated readout of metallic nanoparticles and
nanostructures”. In: Scientific Reports 10.1 (2020), pp. 1–12 ( pp. 39,
40, 73).



Bibliography 119

[131] Hiroharu Tamaru et al. “Resonant light scattering from individual
Ag nanoparticles and particle pairs”. In: Applied physics letters 80.10
(2002), pp. 1826–1828 ( pp. 40, 44, 45).

[132] M Kimura and T Naka. “Submicron track readout in fine-grained nu-
clear emulsions using optical microscopy”. In: Nuclear Instruments and
Methods in Physics Research Section A: Accelerators, Spectrometers,
Detectors and Associated Equipment 680 (2012), pp. 12–17 ( p. 41).

[133] F Mayet et al. “R&D status of nuclear emulsion for directional dark
matter search”. In: European Astronomical Society Publications Series
53 (2012), pp. 51–58 ( p. 41).

[134] T Naka et al. “Analysis system of submicron particle tracks in the
fine-grained nuclear emulsion by a combination of hard x-ray and
optical microscopy”. In: Review of Scientific Instruments 86.7 (2015),
p. 073701 ( pp. 42, 44).

[135] Jules L Hammond et al. “Localized surface plasmon resonance as
a biosensing platform for developing countries”. In: Biosensors 4.2
(2014), pp. 172–188 ( p. 44).

[136] James F Ziegler, Matthias D Ziegler, and Jochen P Biersack. “SRIM–
The stopping and range of ions in matter (2010)”. In: Nuclear Instru-
ments and Methods in Physics Research Section B: Beam Interactions
with Materials and Atoms 268.11-12 (2010), pp. 1818–1823 ( p. 49).

[137] Francois Chollet. Deep Learning mit Python und Keras: Das Praxis-
Handbuch vom Entwickler der Keras-Bibliothek. MITP-Verlags GmbH
& Co. KG, 2018 ( pp. 60, 65).

[138] Sebastian Raschka. Python machine learning. Packt publishing ltd,
2015 ( pp. 60, 62, 64).

[139] Salman Khan et al. “A guide to convolutional neural networks for com-
puter vision”. In: Synthesis Lectures on Computer Vision 8.1 (2018),
pp. 1–207 ( p. 60).

[140] Alan M Turing. “Computing machinery and intelligence (1950)”. In:
The Essential Turing: The Ideas that Gave Birth to the Computer Age.
Ed. B. Jack Copeland. Oxford: Oxford UP (2004), pp. 433–64 ( p. 61).

[141] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic
optimization”. In: arXiv preprint arXiv:1412.6980 (2014) ( p. 62).



Bibliography 120

[142] Multi-Class classification. url: https://medium.com/@b.terryjack/
tips-and-tricks-for-multi-class-classification-c184ae1c8
ffc ( p. 63).

[143] Recurrent neural network. url: https://www.oreilly.com/library/
view/neural-networks-and/9781492037354/ch04.html ( p. 66).

[144] K Fukushima and S Miyake. Neocognitron: A self-organizing neu-
ral network model for a mechanism of visual pattern recognition In:
Competition and cooperation in neural nets. 1982 ( p. 66).

[145] David H Hubel and Torsten N Wiesel. “Receptive fields of single
neurones in the cat’s striate cortex”. In: The Journal of physiology
148.3 (1959), p. 574 ( p. 67).

[146] Yann LeCun et al. “Backpropagation applied to handwritten zip code
recognition”. In: Neural computation 1.4 (1989), pp. 541–551 ( p. 67).

[147] Ibtesam M Dheir et al. “Classifying Nuts Types Using Convolutional
Neural Network”. In: (2020) ( p. 68).

[148] Dan Ciregan, Ueli Meier, and Jürgen Schmidhuber. “Multi-column deep
neural networks for image classification”. In: 2012 IEEE conference on
computer vision and pattern recognition. IEEE. 2012, pp. 3642–3649 (
p. 68).

[149] Sparsh Mittal. “A survey of FPGA-based accelerators for convolutional
neural networks”. In: Neural computing and applications (2020), pp. 1–
31 ( p. 68).

[150] Ian Goodfellow. “NIPS 2016 tutorial: Generative adversarial networks”.
In: arXiv preprint arXiv:1701.00160 (2016) ( p. 68).

[151] Min Lin, Qiang Chen, and Shuicheng Yan. “Network in network”. In:
arXiv preprint arXiv:1312.4400 (2013) ( p. 68).

[152] Sripad Ram et al. “High accuracy 3D quantum dot tracking with
multifocal plane microscopy for the study of fast intracellular dynamics
in live cells”. In: Biophysical journal 95.12 (2008), pp. 6025–6043 (
p. 74).

[153] Keras library. url: https://keras.io/ ( p. 74).
[154] Tensorflow library. url: https://www.tensorflow.org/ ( p. 74).

https://medium.com/@b.terryjack/tips-and-tricks-for-multi-class-classification-c184ae1c8ffc
https://medium.com/@b.terryjack/tips-and-tricks-for-multi-class-classification-c184ae1c8ffc
https://medium.com/@b.terryjack/tips-and-tricks-for-multi-class-classification-c184ae1c8ffc
https://www.oreilly.com/library/view/neural-networks-and/9781492037354/ch04.html
https://www.oreilly.com/library/view/neural-networks-and/9781492037354/ch04.html
https://keras.io/
https://www.tensorflow.org/


Bibliography 121

[155] R Hahnloser et al. “Digital selection and analog amplification co-exist
in an electronic circuit inspired by neocortex”. In: Nature 405.6789
(2000), pp. 947–951 ( p. 75).


	Introduction
	Dark matter: first evidences and detection
	First evidences of dark matter 
	WIMPs
	Search for dark matter
	Direct detection
	Detectors for direct search
	Bolometers
	Liquid noble-gas detector
	Scintillator

	Direct detection experiment general result
	Directionality
	Nuclear Emulsion


	The NEWSdm experiment
	Nano Imaging Trackers
	Layout of the NEWSdm detector
	Technical test

	Expected background
	External background
	Intrinsic background
	Instrumental background

	Optical microscope
	Super-resolution microscope for dark matter search

	Candidate Selection
	Candidate Validation

	Reconstruction of nanometric tracks
	Scanning process
	Analysis of NIT exposed to Carbon ions
	Shape analysis
	Plasmon analysis
	Accuracy
	Npeaks
	Isolated grains

	Plasmon efficiency

	Deep Learning and Convolutional Neural Network
	Artificial intelligence and Machine Learning
	Classification and Regression problem

	Deep Learning
	Convolutional Neural Network
	Hyperparameters


	CNN for reconstruction of z-coordinates
	z-coordinate reconstruction
	CNN architecture
	Image dataset

	Results
	Small dataset with peaks
	Large dataset with peaks
	Uniform dataset

	Improvements obtained by CNN

	Conclusion
	Appendix A
	Bibliography

