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Introduction

Information is physical. The development of Quantum Theory was the
turning point of the 20th century and it was born as the explanation of
the counter intuitive behavior of subatomic particles and the phenomenon
of entanglement. Later on, it came up that quantum theory is not only
suitable for atoms and molecules, but also for bits and logic operation
in a computer. Here follows a revolution. So now we wonder: how
can Quantum Theory improve theory of information? Information is
something we can encode and store in the state of a physical system,
more specifically in a quantum state. The field of quantum information
science is based on three central ideas, which are quantum entanglement,
quantum computing and quantum error correction.
In the 1960’s, thanks to the work of John Bell, quantum entanglement
arose as something potentially useful that we could use to study a
system as a whole made of non-locally correlated parts. Quantum
entanglement is a physical phenomenon occurring when two or more
particles interact in such a interconnected way that the quantum state
of a single particle cannot be described if not considering the state of
the others, whatever the distance separating the particles is.
Furthermore, the power of a quantum computer lies in a property called
superposition for which a qubit can represent the states |0〉, |1〉 or a
linear combination of both.
The impact of quantum theory on computation was firstly demonstrated
in principle by Peter Shor in 1994. He showed that a quantum computer
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can factor a large number efficiently. This problem belongs to a class
of problems whose solution is very difficult to find, although easy to
verify once found. For example, taken two large prime numbers p
and q, their product n = pq is easily calculable, but this is not valid
at all if we know n and want to find p and q : the time needed is
superpolynomial in log (n). Shor found that a quantum computer can
factor in polynomial time, hence it would be able to factor a 400 digit
number in less than three years! [17, 22, 10]

Purpose

Before getting started, I would like to look at two counter intuitive
principles of quantum physics in order to set up the point of view for
the following. First of all, a physical system in a definite state can still
be random. Secondly, two systems that are far away from each other
can behave randomly individually, but still be highly connected.
Therefore, the purpose is to follow this logical path:

1. providing an introduction to the subject of quantum computing;

2. studying errors and consequently Quantum Error Correction (QEC)
giving some examples;

3. analyzing quantum circuits and some important algorithms; finally
describing the IBM Quantum Experience by reporting simulations
and critically discussing the results.
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Chapter 1

Quantum computing
fundamentals

1.1 What’s a qubit?

Unlike binary bits of classical information, the corresponding carrier
of quantum information is the quantum bit or qubit. The qubit is a
vector in a two-dimensional complex vector space with inner product.
The elements of an orthonormal basis in this space are designated |0〉
and |1〉 and a normalized vector can be represented as follows:

|Ψ〉 = a |0〉+ b |1〉,

where a and b are complex numbers satisfying |a|2 + |b|2 = 1.
A qubit can be in state |0〉, |1〉 or in a linear combination of both
states. A quantum state of N qubits can be expressed as a vector in
a Hilbert space of dimension 2N , thus by a linear superposition of its
orthonormal basis states.
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Figure 1.1: Evolution of a qubit state vector after applying a series
of gates

Let’s choose an orthonormal basis for this Hilbert space in which
each qubit has a definite value, either |0〉 or |1〉, so that we can expand

a general normalized vector as
∑2N−1

0 ax|x〉. ax’s are complex numbers
satisfying

∑
x |ax|2 = 1. Now, we can shortly describe a quantum

computation. It consists of assembling N qubits, preparing them in a
standard initial state and then applying a unitary transformation U.
After that, we can measure all the qubits by projecting them onto
the {|0〉, |1〉} basis. Besides, quantum algorithms are probabilistic
and so a probability distribution of possible outcomes is generated.
Except where a = 0 and b = 0, the measurement disturbs the state.
However, after the measurement, the qubits have been prepared in
a known state different from their previous state. Probabilities can
add up in unexpected ways because of a phenomenon called quantum
interference. To make an example, we may interpret a qubit as a
spin −1

2 object, and its quantum state is characterized by a unit
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vector (spin’s direction) in three dimensions. A unitary transformation
rotates the spin and the measurement of an observable can give two
results: the spin is either up or down along a specified axis. Anyways,
not every two-level system transforms as a spinor under spacial rotations.
A classical computer can simulate a quantum computer until the number
of qubits at stake does not increase significantly. But, as John Bell
concluded, there is no local probabilistic algorithm that can reproduce
the conclusions of quantum mechanics. Moreover, qubits can exhibit
quantum entanglement. From a more practical perspective, qubits are
particles that have some probability of being in each of two states
|0〉 and |1〉 simultaneously. And when qubits interact, they become
inevitably interdependent, plus the more operations are carried out,
the more interconnected the qubits become. So, both the power and
the weakness of a quantum computer lies in this exponentially growing
number of possibilities. Qubits are very susceptible to errors, which we
will see being of different types, so that even the weakest stimulus can
cause them to under-go bit-flips or phase flips. So, in order to make
a quantum computer work, ways to prevent the system from being
corrupted by errors have to be developed. Correcting errors does not
imply measurements leading to a collapse of the wave function. Qubits
can be built by using any two level quantum mechanical system. Some
examples are given: polarization encoding, electronic spin, electron
number, superconducting flux qubit.
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1.2 The density operator

Taken a Hilbert space H, the axioms of quantum mechanics establish
that:

1. a state is a ray in H ;

2. an observable is a self-adjoint operaror on H ;

3. a measurement is an orthogonal projection;

4. time evolution is unitary.

But, if we consider just a part of a larger system, these axioms are
violated. Instead, a quantum state is described by a density operator
ρ rather than by a ray. Let’s take into consideration a two-qubit system
in which we observe only one of the qubits. We can use {|0〉A, |1〉A}
and {|0〉B, |1〉B} as orthonormal bases for qubits A and B respectively.
A quantum state of the two-qubits system in which qubits A and B
are correlated is:

|ψ〉AB = a|0〉A ⊗ |0〉B + b|1〉A ⊗ |1〉B.

Let’s assume we measure A. |a|2 is the probability to get the result |0〉A
and the measurement prepares the state |0〉A ⊗ |0〉B. The probability
to obtain |1〉A is |b|2 and here the prepared state is |1〉A ⊗ |1〉B. Then,
if we measure qubit B we have a 100% probability to find |0〉B if we
have found |0〉A from the previous measurement; the same goes for
|1〉B if we have already found |1〉A. This means that the outcomes of
the measurements are correlated in the state |ψ〉AB.
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At this point, let’s consider an observable acting on qubit A only,
that can be expressed as:

MA ⊗ 1B.

The expectation value of the observable can be written in the form:

〈MA〉 = tr(MAρA),

where tr() is the trace and ρA is called the density operator or density
matrix for qubit A. This operator is self-adjoint, positive and it has
unit trace. So, for any observable acting on a certain qubit, it is likely
to interpret ρA as an ensemble of possible quantum states, each one
occurring with a specified probability. Furthermore, because of its
properties, it follows that ρA can be diagonalized, the eigenvalues are
real, nonnegative and they sum to one.
Density operator represents a state. If the state of the subsystem is a
ray, we call the state pure; otherwise the state is mixed. If the state is
a pure state |ψ〉A, the density matrix ρA = |ψ〉AA〈ψ| is the projection
onto the one-dimensional space spanned by |ψ〉A. So, a pure density
matrix has the property ρ2 = ρ.
In general, a density matrix expressed in the basis in which it is
diagonal, has the following form:

ρA =
∑

a pa|ψa〉〈ψa|,

where 0 < pa ≤ 1 and
∑

a pa = 1.
Yet, if the state is not pure, more terms appear in the sum and ρ2 6= ρ.
In this case, ρ is an incoherent superposition of the states.
When a quantum system A interacts with another system B, they
become entangled, i.e. correlated. Therefore, the entanglement breaks
the coherence of a superposition of states and this means that some
of the phases in the superposition are inaccessible if we consider one
state at a time.
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Density matrix of a qubit A qubit is a quantum system with a
two-dimensional Hilbert space. The most general density matrix of a
qubit takes the form:

ρ(~P ) = 1
2

(
1 + ~P · ~σ

)
,

where ~P is a 3-component vector of length |~P | ≤ 1.

Ensembles The density operators on a Hilbert space form a convex
set and the external points of the set are the pure states. A mixed
state of a certain system A can be prepared as an ensemble of pure
states. If we have a mixed state ρA of system A, any ensemble of pure
states can be prepared by making a measurement in another system B
entangled with A.

1.3 Quantum entanglement

The entanglement is a property of quantum systems comprised of more
than one subsystem. It establishes an important difference between
quantum information and classical information. Entangled states are
interdependent and do not have a classical analog. Plus, an entangled
state cannot be written as product of subsystem states. Consider two
qubits A and B and suppose we trace over B in order to find the
density operator %a of qubit A. Thus, we get a multiple of the identity
operator %a = tr (|φ+〉ABAB〈φ+|) = 1

2IA and the same for ρB. This
means that the state of the two qubits is maximally entangled. If we
measure locally A or B we won’t obtain any information about the
state. A bipartite pure state can be expressed through the Schmidt
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decomposition:

|ψ〉AB =
∑
i

√
pi|i〉A|i′〉B, (1.1)

and the expansion is written in terms of orthonormal basis HA and
HB. For instance, |ψ〉AB and |ϕ〉AB ∈ HA⊗HB cannot simultaneously
be expanded in the Schmidt decomposition. Now that we have defined
the Schmidt decomposition, we can associate the Schmidt number
(the number of nonzero eigenvalues in ρA) to any bipartite pure state,
namely the number of terms in the Schmidt decomposition above. The
reason why it is important to define Schmidt number is that it provides
us with a parameter to establish whether a bipartite pure state is
entangled or not. Indeed, |ψ〉AB is entangled if its Schmidt number is
greater than one. A separable, or unentangled, pure state is a direct
product of pure states in HA and HB expressed by the formula:

|ψ〉AB = |ϕ〉A
⊗
|χ〉B.

A state that cannot be expressed this way is then entangled and the
density operators are mixed.

1.4 Which role entropy plays?

Imagine to have a source that prepares messages of n letters, each of
which is taken among an ensemble of quantum states. The tools at our
disposal to transmit the signal are a set of quantum states ρx having a
known a priori probability px. The probability of any outcome, stated
that the observer has no information about which state was settled, is
given by ρ =

∑
x pxρx. For any density matrix we can define the Von

Neumann entropy [15], the concept of entropy in quantum statistical
mechanics. It is given by:
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S (p) = −tr (ρ log ρ).

Von Neumann entropy plays a triple role. It quantifies quantum information
content per letter of the ensemble, defining the minimum number of
qubits per letter needed for the information to be encoded efficiently.
Then it also quantifies classical information content and, last but not
least, it quantifies the entanglement of a bipartite pure state.

Mathematical properties of Von Neumann entropy In order
to better understand the significance of entropy in quantum statistical
mechanics, let’s bear in mind some important properties of Von Neumann
entropy.

• Purity: a pure state ρ = |φ〉〈φ| has S (ρ) = 0

• Invariance: the entropy is unchanged by unitary change of
basis, because of S (ρ) depending only on ρ

• Maximum: randomness in choosing quantum state maximizes
entropy. S (ρ) 6 logR

• Concavity The more we ignore the way the state has been
prepared, the more entropy grows.This property is so called because
of the convexity of logarithm function. For λ1, λ2, ..., λn ≥ 0 and
λ1 + λ2 + ...+ λn = 1 we have:

S (λ1ρ1 + λ2ρ2 + ...+ λnρn) ≥ λ1S (ρ1) + ...+ λnS (ρn)

• Entropy of measurement it is possible to minimize the randomness
of the measurement by measuring an observable which commutes
with the density matrix

• Entropy of preparation Mixing nonorthogonal pure states, it
won’t be possible to distinguish the former state anymore.
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• Subadditivity Entropy is additive if the systems are not correlated.
Otherwise the total entropy is smaller than the sum of the entropies
of the single parts;

• Strong subadditivity AB and BC are two overlapping subsystems;
the entropy of their union plus the entropy of the intersection
never exceeds the sum of the entropies of the subsystems AB
and BC

• Araki-Lieb inequality Consider a bipartite system AB. This
formula can be applied: S (ρAB) ≥ |S (ρA)− S (ρB)|. This,
again, means that we can only deduce information from the
whole and will make completely random and unpredictable any
outcome of measurement over separate subsystems. And that is
how information is encoded in nonlocal quantum correlations.
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Chapter 2

Quantum Error
Correction

The qubits are delicate systems susceptible to errors.
A complex Hamiltonian describing the evolution of a system leads to
errors and modifies information. This information can be recovered
through a time-reversed dynamics which can also correct a damage
due to a local measurement that causes a disturbance of the quantity
gauged. Quantum Error Correction (QEC) is a subject emerging from
the intersection of quantum mechanics and classical theory of error
correcting codes [15, 23, 6]. QEC has to do with communication and
information storage in the presence of noise [17, 6].
Error correction is important in different areas, but most of all in
quantum computers because, the more efficient an algorithm is, the
more it makes large-scale use of quantum interference, which is very
inclined to inaccuracies. If there were no error correcting codes, large
scale quantum computation would have been forbidden. The first
quantum error correcting codes were discovered independently by Shor
and Steane. Shor [4, 20, 19, 17] demonstrated that 9 qubits can be
used to protect a single qubit against general errors. Steane described
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a general code construction whose simplest example does the same
job using 7 qubits. Knill and Laflamme, Bennett and others [23, 13,
11] described requirements for quantum error correcting codes and
measures of fidelity of corrected states. Bennett et. al. [2, 1], and
independently Laflamme et. al. [12], discovered the perfect 5-qubit
code. The three central ideas on which QEC is based are:

• digitization of noise;

• manipulation of error operators and syndromes;

• quantum error correcting code (QECC) construction.

A quantum error correction code protects quantum information by
encoding it non-locally, namely by spreading it among many qubits.

2.1 Environment and errors

Nonlocal correlations among different parts of a physical system are
fragile and this is a problem to deal with if we think that in reality
a quantum system is constantly correlated to its environment. So,
we must take into consideration also the nonlocal correlations existing
between a quantum apparatus and its environment. To be clearer, the
environment becomes part of the system upholding the information
itself. The contact between quantum computer and its environment is
called decoherence and it causes errors. Decoherence is described by
two phenomena: energy relaxation and dephasing [7].
Energy relaxation happens when a qubit decays from the high energy
state to the low energy state, meanwhile dephasing refers to the phase
relation between |0〉 and |1〉 states in a superposition degenerating.
Errors are equivalent to quantum information spoiled. Thus, correcting
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these errors makes a quantum computer be actually reliable. Before
getting to the heart of the matter, let’s see the difficulties we may
encounter.

• Bit-flips and phase errors
Bit-flip errors are like:
|0〉 → |1〉
|1〉 → |0〉
While phase errors make the state 1√

2
[|0〉+ |1〉] flip to the orthogonal

state 1√
2

[|0〉 − |1〉].
No classical code corrects this type of error.

Figure 2.1: Bit-flips
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Figure 2.2: Qubit state, bit-flip error and phase-flip error

• Small errors
Besides decoherence, other errors of order ε may occur. The
quantum gates that the computer executes are unitary transformations
that operate on a few qubits at a time. If we call U0 the theoretical
transformation, the actual one will be: U = U0 (1 +O (ε)). Even
though these errors are small, after 1

ε gates are executed, they
accumulate and end up being one big error.

• No disturbance, no measurement
As anticipated, measurement causes disturbance and makes quantum
information, encoded among the qubits, fall.
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• No cloning
In classical error correction coding, the strategy is to make extra
copies of the information to avoid it to be ruined definitely. But
in QEC this strategy fails because quantum information can’t be
copied with the same fidelity.

2.2 The 3-qubit code

The most simple quantum error correcting code is the 3-qubit code
[17, 23, 18, 25]. Suppose we have a noisy communication channel (no
real channel is noise-free) through which a source A wants to transmit
quantum information to a receiver B. But how does the noise act on
the single qubit? The noise acts on each single qubit independently
and its effect is chosen randomly between leaving the state of the qubit
unchanged and applying a Pauli σx operator.

Figure 2.3: 3-qubit error correcting code scheme

The simplest quantum error correction method is shown in the
previous figure. By convention, the source is called Alice and the
receiver is Bob. The state of any qubit that Alice wants to transmit is
a|0〉+ b|1〉. Alice prepares two further qubits in the state |0〉, thus the
initial state will be a|000〉+ b|000〉. Alice now operates a C-NOT gate
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from the first qubit to the second, producing a|000〉 + b|110〉. Then,
another C-NOT gate is operated from the first qubit to the third giving
the result a|000〉 + b|111〉. At this point, Alice sends all three qubits
down the channel. Bob receives the three qubits, but the noise of the
channel has acted on them. The qubits can be in one of eight possible
states, each one with some probability.

At this stage, Bob introduces two more qubits, referred to as ancilla
qubits, prepared in the state |00〉. Their function is to gather information
about the noise. The receiver operates C-NOTs from the first and
second received qubits to the first ancilla and then from the first and
third received qubits to the second ancilla. The total state of all five
qubits is given by eight possible states, each one with some probability.

Finally, Bob measures the two ancilla qubits in the basis {|0〉, |1〉}
and he gets two classical bits of information. The latter is called the
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error syndrome which is helpful in diagnosing the error in the received
qubits and consequently correct it . The follow-up action depends on
the measured syndrome. If this one is 00 no action will be made. If
the syndrome is 01, 10, 11, then Bob will apply σx to third, second and
first qubit respectively. For instance, if measurements give 10, the state
of the received qubits must be either a|010〉 + b|101〉 with probability
p (1− p)2 or a|101〉 + b|010〉 with probability p2 (1− p). Here Bob
applies a σx to the second qubit in order to correct the state. Thus, Bob
obtains either a|000〉+ b|111〉 which is more likely, or a|111〉+ b|000〉.
Finally, to extract the qubit sent by Alice, the receiver applies a C-
NOT gate from the first qubit to the second and third obtaining either
(a|0〉 + b|1〉)|00〉 or (a|1〉 + b|0〉)|00〉. The method has a probability
greater than 1 − p to succeed, even if the receiver doesn’t know if he
has the very same qubit that has been sent or this qubit operated on
by σx. The failure probability coincide with the probability that at
least two qubits are damaged by the noise and it is given by 3p2− 2p3.
To sum up, Alice transmits a single qubit by expressing its state as
a unified state of three qubits. As Bob receives the three qubits, he
first applies error correction, then extrapolates a single qubit state.
Incidentally, using more qubits, but still following the same ideas just
shown, it is possible to achieve a by far better deletion of the noise
along the channel. The error probability is reduced by a factor ∼ 1

3p
using three times as many qubits.

2.3 The 9-qubit code

The 9-qubit error correcting code [10, 25, 15, 6] is based on the repetition
of the 3-qubit code and is the first full quantum error correcting code.
It was firstly introduced by Shor and his simple idea was to use nine
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physical qubits to encode one logical qubit.This idea is shown in the
following picture.

Figure 2.4: 9-qubit error correcting code scheme

It is worth pointing out briefly that a physical qubit is two-state
quantum system device, practically implemented as a component of
a quantum processor. A logical qubit is a programming unit that
logically performs the quantum algorithm and consists of one or more
physical qubits. Since, in practice, the 9-qubit code would require a
large number of physical qubits, later on other codes were invented,
some of which used five physical qubits instead. Thereafter, the codes
started to become more sophisticated introducing other qubits whose
function is to protect the logical qubit.

The 9-qubit code is a single error correcting code and can recover
any of the nine qubits from either one bit-flip, one phase error or both
at the same time. Bit-flips and phase errors require different correction
circuits to be detected and canceled.

The correction circuit for bit-flips is identical to the 3-qubit code,
applied to each block of three qubits. Whilst the approach to correct
phase errors consists of an analysis of the sign differences between the
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three blocks. The 9-qubit code is degenerate, this means that different
types of error on any qubit in a block of three have the same effect.

2.4 What about noise?

Digitization of noise [22, 23, 6] is based on the fact that any interaction
between a set of qubits and another system can be expressed in the
following form:

|φ〉|ψ0〉e →
∑
i

(Ei|φ〉) |ψi
〉e,

where Ei, the error operator, is a tensor product of Pauli operators
acting on the qubits, |φ〉 is the initial state of the qubits and |ψi〉e are
states of the environment. Thus, general noise and decoherence are
expressed in terms of Pauli operators σx, σy, σz acting on the qubits,
written as X ≡ σx, Z ≡ σz, Y ≡ −iσy = XZ. It emerges that
correction of X and Z errors is sufficient to correct the most general
possible noise expressed in the last formula. Noise usually affects all
qubits all the time. The probability that an error occurs is equivalent
to the probability that the syndrome extraction projects the state on
another state that differs from the noise-free state by error operator.
If we re-express the interaction between a system of qubits and its
environment as HI =

∑
iEi

⊗
He

i , we can calculate this probability.
We can divide HI up into a sum of terms having error operators of
different weight. When only weight 1 terms are present, it means
that the environment acts on the qubits independently not producing
correlated errors directly. QEC recovers the terms in the density
matrix with errors of weight ≤ t = (d− 1) /2. So, the fidelity of the
corrected state, in the uncorrelated noise model, can be one minus the
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probability for the noise to generate an error of weight t + 1, i.e. one
minus P (t+ 1). Thus, QEC works very well when t is large. Another
case in which QEC is successful is when a set of correlated errors,
named burst errors, influence the system-environment coupling, but
there is a stabilizer including all these correlated errors. This is rather
error avoiding, because no correction is made on the logical state. A
combined approach is nice in practice. Hence, first step is discovering
correlated contributions of the noise in the system and outline a first
layer of encoding. Second step is putting on a second layer optimized
for minimum-distance coding. The recursive process of encoding one
bit in several is called code concatenation.

2.5 Error operators, stabilizer, syndrome
extraction

The set {I,X, Y, Z} includes the identity I and the three Pauli operators.
Error operators are, in this section, products of Pauli operators and
may play the role of an error or a parity check. For n qubits in the
system, the length of the error operators will be n. Whilst, the weight
of an error operator is the number of terms not equal to I. Let’s
consider a set of commuting error operators, thus having simultaneous
eigenstates, and refer to it as H = {M}. Let C = {|u〉} be an
orthonormal set of simultaneous eigenstates with eigenvalue +1. So
we have M |u〉 = |u〉 ∀u ∈ C, ∀M ∈ H. The set C is a quantum
error correcting code and H is called its stabilizer. The states |u〉
are code vectors. Using stabilizer formalism to depict quantum error
correction codes is very convenient and consists of describing quantum
states in terms of operators rather than states. A state |ψ〉 is said
stabilized by some operators K if it is a +1 eigenstate of K and,
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furthermore, each stabilizer squares to the identity. In the case H
is a group, C has 2k members that form a 2k dimensional subspace
of the 2n dimensional Hilbert space of the system. Thus, C encodes
k qubits. An encoded state or logical state is a general state of this
subspace and is given by |φ〉L =

∑
u∈C au|u〉. Each quantum error

correcting code (QECC) only corrects a set of correctable errors. Error
operators in the stabilizer are all correctable and if they are the only
terms in the noise we are analyzing, then the QECC is said a noise-
free subspace. The set of correctable errors can be called S and it
can be any set of errors {Ei} such that whatever product of two
elements E1E2 is still in H, or at least commutes with an element
of H. Eventually, in order to extract the syndrome, all the observable
in the stabilizer are to be measured, actually measuring any set of
n− k linearly independent M in H. In this way a projection of a noisy
state onto an eigenstate of each M is operated with eigenvalue ±1.
The syndrome is the string of n − k eigenvalues. E1 and E2 have
different syndromes so that they are distinguishable. Finally the error
can be derived from the syndrome and then recovered applying the
error to the system again. Practically speaking, the extraction can be
done adding an n− k ancilla qubit to the system and storing it in the
eigenvalues using a sequence of CNOTs and Hadamard rotations. How
to disentangle the system from its environment and restore the initial
state? Well, supposing that the errors have all different syndromes and
making a projective measurement of the ancilla, the result will simply
be the specific syndrome si. Ei is, then, easily found and re-applied to
the system, because there is only one error with syndrome extracted.
Thereby, the ancilla is a control qubit on which the noise is reversed
in order to free the system up. But, in reality is not always true that
the errors have different syndromes. Hence, it is necessary correcting
only one error among a certain set of errors having same syndrome.
Only one exception arises: E1E2 ∈ H, namely two errors with same
syndrome, so both correctable.
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2.6 How to construct a code?

The stabilizer is completely described by any n−k linearly independent
error operators and its elements all commute. The whole stabilizer is
defined by:

H (Hx|Hz)

where Hx and Hz are (n− k) × 2n binary matrices. Here we recall
some important definitions. The number of non-zero components of a
binary vector is called the weight and the number of coordinates by
which two vectors differ is called the Hamming distance. Taken any
two vectors u and v, their distance is given by weight (u+ v). Let’s
introduce the efficient so-called CSS (Calderbank, Shor, Steane) codes.
Named G the set of error operators generated by the generator matrix
G (the matrix whose k rows are any k vectors building the space)
and containing H, we report an observation. If all the members of
G have at least a weight d (minimum distance of the code), all error
operators weighting less than d anticommute with a member of H
and are recognisable. As a result, the code construction is equivalent
to finding binary matrices H satisfying HxG

T
z + HzG

T
x = 0 and for

which the generator matrices G have large weights. This last condition
coincides with HxG

T
z + HzG

T
x = 0. So, now we can construct a code

combining classical binary error correcting codes:

H =

(
H2 0
0 H1

)
G =

(
G1 0
0 G2

)
where Hi is the check matrix. Hence, HiG

T
i = 0 and the large weight

condition is satisfied. Secondly, to satisfy commutativity we state that
H1H

T
2 = 0.
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At this point of the construction, given the codes parameters [n, k1, d1]
and [n, k2, d2], the quantum code size is k = k1 + k2 − n.

2.7 Is spacetime a quantum error correcting
code?

What has been said so far could surprisingly be a reading key to better
know space-time, woven on a network of quantum particles. Two ideas
from mid-1990’s are maybe closely related: holographic principle and
quantum error correction [14]. Although quantum error correction
codes are still being improved, evidence of a close connection between
quantum error correction and the fabric of space, time and gravity
has been found. According to general relativity, gravity is an effect
of space-time curvature, but there may be something more. Gravity
can have a quantum origin, from which then depends the structure of
space-time. This evidence emerges from the work on a toy universe
called a Anti-de Sitter space working like an hologram. The idea is:
geometry emerges from entanglement. Physical variables of a quantum
code reside on the boundary, while logical operators reside in the bulk.
Thus, local operators in the bulk are linked to highly nonlocal operators
located on the boundary.
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Figure 2.5: Toy Model for bulk/boundary correspondence

Figure 2.6: AdS/CFT correspondence

The holographic quantum error correcting codes provide toy models
to know space-time deeper. So, exactly like an hologram, the structure
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of space-time inside the universe comes up to be a projection of the
entangled quantum particles located on the boundary of the universe.
Calculations have been made suggesting that the holographic nature of
space-time works like a quantum error-correcting code. Hence, at least
is holographic universes, space-time is a QECC. The point now would
be finding the code that space-time implements. Notice that Anti-de
Sitter (AdS) space is characterized by a negative vacuum energy. As a
consequence, the spacial dimension gradually get smaller and smaller,
until disappearing, as we go from the center of the AdS space to its
outer boundary. It has been noticed that any point inside the AdS
space could be built as a quantum error-correcting code. For example
simple code consists of three qutrits, particles existing in any of three
states, placed at equidistant points around a circle. The qutrits are
entangled and encode one logical qutrit. Stated that this qutrit is a
single space-time point, the code protects this point against the erasure
of any of the qubits.
Lately, another holographic code has been found called the HaPPY
code (Harlow, Preskill, Pastawski, Yoshida) that is more explanatory
than a single point can be. With this code the space is a connection of
five-sided building blocks, where each block is a space-time point. To
approximately visualize this, the role of the blocks can be compared
to that of a single element in an Escher tiling [24, 14], as in the case
of the fish in the artwork shown in the following figure.
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Figure 2.7: The hyperbolic geometry, Circle Limit III, Escher 1959

The interior of space-time is called entanglement wedge and is
crucial because, everything belonging to this region can be reconstructed
starting from the boundary adjacent qubits. Nevertheless, our universe
is a de Sitter (dS) space, this means that it has a positive vacuum
energy and no boundary; these features make it far more complex
then the AdS space, which anyway has many properties in common
with a dS space. Both spaces respect Einstein’s theory, they only
curve in different directions. A common feature of these two universes
are black holes and this is why understanding which code space-time
implements could be useful to learn more about black hole’s interior.

27



Chapter 3

Algorithms and
Applications

3.1 A qubit in the making

As introduced in the first chapter, the qubits are the building blocks
of a Quantum Computer, determining its superior computing power.
Practically speaking, there are various objects that can be used as
qubits, for example an electron, a single photon, trapped ions, neutral
atoms, quantum dots. For instance, the quantum computers the user
interacts with in IBM Quantum Experience use a physical qubit called
superconducting transmon qubit made of superconducting materials
such as Aluminum and Niobium and put on a silicon substrate. This
artificial qubit is built by isolating two levels of energy, the difference
between which sets the characteristic frequency f of the qubit as:

∆E = hf (3.1)

generally around 5 GHz.
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Figure 3.1: Qubit scheme [21] - two pieces of superconductor are
very weakly coupled. In practice, two superconducting electrodes are
separated by a thin barrier which is an insulating layer.This Josephson
Junction combined with a capacitor made out of superconducting
material, act like a qubit.

All the superconducting circuits share a Josephson Junction which
is a circuit element that behaves as a non-linear and non-dissipative
inductor.

3.2 How does a Quantum Computer work?

Let’s take an electron as a qubit.The spin property of the electron
makes it tend to align with a magnetic field in which the electron is
placed. Now, the electron is in the lowest energy state, spin down (|0〉),
and it will take some energy to bring it to the highest energy state,
spin up (|1〉). Although this case is basically similar to the classical
bit, what’s new is the fact that if we measure the spin it will be either
up or down, but before the measurement the electron is in a quantum
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superposition. A quantum computer can process exponentially many
logical states at once. The coefficient of the basis states is the relative
probability of finding the electron in one state or the other. Thus,
for two qubits, there are four basis states, which classical bits can be
in, given by |00〉, |10〉, |01〉, |11〉, but infinitely many states formed by
superpositions or combinations of the basis states. Each operation is
performed by a quantum gate that changes the state of the qubits.
Just for example, applying a quantum gate to |00〉, we can find the

superposition
√

1
2 · |01〉+

√
1
2 · |10〉 and this means that there is a 50%

probability of being in |01〉 state and the same for |10〉. In general,
the superposition emerging depends on the gate we use. One qubit
is represented as 2-dimensional vectors, two qubits as 4-dimensional
vectors and so on. In particular, these 4-dimensional vectors point
to a spot on the unit sphere in 4-dimensional space. If we have N
qubits, then there are 2N basis states and the quantum state is a
vector on a sphere in a 2N - dimensional space. So, changing the state
of a system is equivalent to moving the state vector around the sphere.
Each quantum gate is a different unitary matrix. Quantum computing
is potentially powerful because it only takes few steps, hence little
time, to find a state, while a classical computer would have taken
thousands. This is due to the fact that classical computer can only
be in a basis state at a time , while quantum computers process
the algorithm overall, namely many classical states in parallel. But
a superposition is not measurable because once we measure the qubits
they fall into a basis state and the information about the preexistence
of the state is lost. So, the final result has to be something measurable
and once the wave function has collapsed, what we observe is a single
basis state. Note that quantum computers are not a replacement of
classical computers because they are not faster at everything.

30



3.3 IBM Quantum Experience

IBM Quantum Experience is an online platform that offers access via
the cloud to IBM’s quantum computers. This platform constantly
evolves and is frequently improved and updated. The processors are
located in a dilution refrigerator. The latter is needed because for
quantum effects to be evident, quantum computer have to be cooled
down to very low temperature such that kBT � hf . The one shown
in the following picture is know as chandelier and it’s a supercharged
refrigerator that gets colder with each layer down.

Figure 3.2: The chandelier - IBM dilution refrigerator

Its action is necessary for, as we have seen earlier, qubits need
to be efficiently isolated from noise (heat, vibration or stray atoms).
Thanks to IBM Quantum Experience it is possible from a classical
terminal to develop quantum programs and use both quantum circuits
and classical computations. The core of the experience is an intuitive
drag and drop interface to built, inspect and visualize in different ways
quantum circuits. Then, one can run the circuits on real IBM quantum
systems or simulators. Furthermore, it is also possible to write a code
using IBM Quantum Lab which is a cloud-enabled Jupyter notebook
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environment.The user can also write programs in the OpenQASM -
language. Among the tools available to the user there is the Quantum
Composer which is a graphic user interface (GUI) designed by IBM.
Both quantum and classical operations are available to manipulate
qubits, build circuits and run them on a simulator or real quantum
hardware. Specifically a quantum gate is a reversible (unitary) operation
applied to one or more qubits in order to change their states.

Figure 3.3: Quantum Gates available on IBM Quantum Composer.
The red one is the Hadamard gate and it is a π rotation about the X+Z
axis and has the effect of changing computation basis from |0〉,|1〉 to
|+〉,|−〉 and vice-versa. The dark blue are classical gates. Light blue
ones are phase gates.Grey ones are non-unitary operations.Purple ones
are quantum gates.

There are different circuits to entangle qubits; for example, Bell
test on two qubits demonstrates that measurements of an entangled
state cannot be explained by any local theory and so that there are
non-classical correlations. Furthermore, other ways to entangle three
qubits are GHZ state and W state examples. In the following sections
some experiments run on IBM Quantum Experience will be reported
with results and comments. Visualizations show different views of how
a state of qubits is affected by the operations and are taken from a
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single-shot statevector simulator. The latter generates random result
based on a seed which is the initial value written in the algorithm.
Each time the circuit is closed and then re-opened the seed has a new
value, thus the result of the run will be different. The simulator seed
can be changed at will to observe the consequent changes.

3.4 Grover’s algorithm

Grover’s algorithm [5, 8, 9] is a quantum mechanical algorithm for fast
database search and it can speed up an unstructured search problem
quadratically. What does it mean? Well, imagine we have a list of
N items including an item with a special feature, the winner, that
we want to spot. In a classical computation it would take on average
N/2 checks to find the winner, while on a quantum computer we can
do it using

√
N operations. This algorithm solves oracles that add a

negative phase to the solution states. The oracle is a diagonal matrix,
where the entry that corresponds to the marked item has a negative
phase. It is used to find the input value x0 of an oracle function f (x)
with f (x0) = 1 and f (x) = 0 for all the other values of x. Thus, for

N possible input values, the algorithm only takes O
(√

N
)

estimates

of the oracle. The algorithm can be divided into five steps:

1. Initialization
The qubits are set in |0〉 state and arranged to be in superposition
using Hadamard gate. This gate is used to put a qubit into a
superposition of |1〉 and |0〉 such that when one measures the
qubit it will be |1〉 or |0〉 with the same probability. The states
all have amplitude 1√

N
;
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2. Oracle
The oracle function marks the searched item using phase gates
and, in general, recognizes solutions based on a given problem.
It performs a phase flip which inverts the amplitude of the state
turning it into −1

4 ;

3. Amplification circuit
Also called diffuser or amplitude purification, it has the function
of increasing the amplitude of the winner and reducing that of
the other items;

4. Measurement
The qubits are measured by a gate that projects the qubit’s state
onto the basis |0〉 and |1〉. This stage is necessary to extract a
result computation.

Figure 3.4: Grover’s Algorithm structure

The oracle function can be also encoded in an operator, namely a
series of quantum gates, and negates the probability amplitude of the
input |x〉 if and only if f (x) = 1. This means that the oracle circuit
flips the sign of an ancilla qubit if and only if the input is a solution to
the problem. Furthermore, the internal structure of the oracle is not
that important since it only has the function of spotting the solutions
[3, 10]. The ensemble of the oracle and the diffuser is also referred to
as Grover operator.
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Notations

• The Hadamard gate H can be defined as the matrixH = 1√
2

(
1 1
1 −1

)
or as the states |0〉 → 1√

2
(|0〉+ |1〉) and |1〉 → 1√

2
(|0〉 − |1〉)

Figure 3.5: H gate

• X is the classical NOT gate, or Pauli X matrix, defined asX =

(
0 1
1 0

)

Figure 3.6: NOT gate

• Z is the phase shift gate, or Pauli Z matrix defined asX =

(
1 0
0 −1

)

Figure 3.7: Z gate

• CNOT is the controlled NOT gate which applies a NOT on the
second bit (the target) if the first bit (the control) is 1. This gate
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is represented by the matrix CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0



Figure 3.8: CNOT gate

A series of generic examples of Grover’s algorithm are reported
above with circuits, results and comments. Note that in the results
histogram, the vertical axis labels the measurement probabilities, while
the horizontal axis labels the computational basis states. The probabilities
are related to the amplitudes αi of the computational basis states |i〉
according to:

Pi = |αi|2 . (3.2)

Figure 3.9: 2-qubit Grover’s Algorithm, example 1
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Figure 3.10: Initialization graphs: measurement probabilities, q-
sphere, state vector

This algorithm has been run many times and, as shown in the
following sample histograms, results are always consistent with expectation:
at each run there is always a very high probability of getting the marked
state.

Figure 3.11: Sample results histograms of 2-qubit Grover’s Algorithm
example 1
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Hereafter, another example of 2-qubits Grover’s Algorithm that has
been tested on IBM Quantum Experience. It still confirms what said
about the previous one.

Figure 3.12: 2-qubit Grover’s Algorithm, example 2

Figure 3.13: Initialization graphs: measurement probabilities, q-
sphere, state vector
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Figure 3.14: Sample results histograms of 2-qubit Grover’s Algorithm
example 2

It is possible to implement all kinds of oracle functions managing
phase gates depending on what one is looking for. In the cases above,
the circuits aim to find the winner state |11〉. This algorithm has been
run many times and, as shown in the sample results histograms, in both
examples, results are consistent with expectations: at each run on a
real device the probability of getting the state |11〉 is considerably high
and satisfactory compared to other states. Thus, in the majority of
the iterations that state hidden in the oracle is found by the algorithm.
The little probabilities on the other states are due to errors, but for the
present purpose they are negligible. If we run the same circuit using
simulators, we will get 100% chance of measuring the state |11〉. Below
is reported one among the various 3-qubit Grover’s algorithms tested
on IBM Quantum Experience. Still the stages are the same described
above. In this specific case the oracle operator negates the amplitude
of the input if and only if the input is in the state |110〉. It jumps out
that as the number of qubits increases, the errors get bigger. So, even
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though the results clearly indicate the specific state requested in the
oracle, the probability on that state is significantly reduced compared
with the previous results and this fact highlights the need for more
iterations.
In the following 3-qubit Grover’s algorithm circuits, the states marked
by the oracle are chosen to be |011〉 and |110〉, but other combinations
have been tested as well. Notice that the barriers have been put in
such a way as to make the execution order of the circuit unequivocal.
Additionally, the CCZ gate has been recreated in two different but
analogous ways because it was not possible to simply apply Z plus the
single controls on the other two qubits in the circuit composer.

Figure 3.15: 3-qubit Grover’s Algorithm example 1
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Figure 3.16: Sample results histograms of the 3-qubit Grover’s
Algorithm example 1

Figure 3.17: 3-qubit Grover’s Algorithm example 2
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Figure 3.18: Sample results histograms of the 3-qubit Grover’s
Algorithm example 2

As expected, there is a higher chance of measuring the marked
states |110〉 and |011〉. As seen before, the other results are linked to
errors in the quantum computation.

3.5 The 3-qubit code

A good introduction to QEC is the 3-qubit code, as seen in section 2.
This is not a complete quantum code because it cannot correct bit-flip
and phase flip simultaneously, but a repetition of it creates the 9-qubit
quantum code Shor used to demonstrate the consistence of quantum
error correction. The 3-qubit code encodes a single logical qubit into
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three physical qubits and it can correct for a single bit-flip error. The
two basis states are defined as |0〉 = |000〉 and |1〉 = |111〉. So, first of
all we prepare the |0〉 state for the 3-qubit code. An arbitrary single
qubit state q0 is coupled to two ancilla qubits q1 and q2, using CX gate,
to prepare a logical state. The implementation of the 3-qubit code on
the circuit composer looks like:

Figure 3.19: 3-qubit code with a bit flip on q2 and ancilla qubits
measurement

The circuit above shows the stages of the 3-qubit code: encoding,
eventual bit-flip, error detection and correction, measurement of the
ancilla qubits. This measurement makes continuous errors discrete.

Why is this 3-qubit code correcting only one bit-flip error? The
point is that the distance between the states is binary. In fact three
bit-flips are necessary to make up the problem |0〉 ↔ |1〉 . The number
of error that can be corrected is given by the formula n = [(d− 1) /2]
where d is the distance between two states. Here d = 3, hence n = 1.
At this point, we need to correct the error making no measurements
on the logical states. To do this, we add two more initialized ancilla
qubits q3 and q4 to the previous code and we use them to highlight
syndrome information without being specific about the single qubits.
Let’s imagine that either a single bit-flip occurs on one of the three
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qubits or none and that an error can only happen between encoding
and correction steps. Then we apply a sequence of CX gates to check
the parity between the qubits. After that, the q3 and q4 ancilla qubits
are measured and from the result we can understand if and where an
error has taken place. In this experience, run times varied from a few
minutes to a couple of hours at most, depending on the queue and
the changes being made to the IBM processors at the time of the run.
Since only a single error can occur, the system can be restored because
the resulting state is still closer to the right logical state. The code fails
when more than one error occurs, so our wrong interpretation would
lead to a wrong correction.

Figure 3.20: Sample results histograms of the 3-qubit code

A 3-qubit code is sufficient to protect against a single bit-flip. But,
as quantum bits are subject to both bit-flips and phase flips, the 3-qubit
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clusters are then repeated three times in order to protect also against
phase errors [16]. The idea is that if a phase error occurs on one of the
nine qubits, it is possible to detect the affected cluster measuring the
two 6-qubit observables X1X2X3X4X5X6 and X4X5X6X7X8X9. The
effect of the phase error on a particular cluster is to change its value
relative to the other three clusters. Once the cluster has been identified,
the error is corrected by applying a Z gate to one of the qubits in that
specific cluster. The 3-qubit code acts first measuring a product of
X’s and then measuring the ancilla qubit in the 1√

2
(|0〉 ± |1〉) basis.

A single error occurring on one of the nine qubits causes a reversible
damage, but two bit-flips in a single cluster lead to a misunderstanding
in the diagnosis, thus will cause irreversible damage. Moreover, the
effect of two bit-flips in a single cluster is a phase error in the logical
qubit. Still the information is damaged if phase error occurs in two
different clusters. That is why a phase error in the third cluster is
introduced in order to recover from the errors globally. Different codes
to correct both bit-flips and phase flips errors have been studied. Just
for instance, CSS (Calderbank, Shor, Steane) codes have the special
property of dividing the recovery procedure into two different stages
one to correct bit-flips and the other to correct phase flips.

The 3-qubit code is based on the idea of correcting without decoding
by just locating the flipped qubit and flip it back.

Furthermore, if one qubit flips the phase it is possible to find it and
then correct it by applying a Z gate. But, when both bit-flip and phase
flip occur at the same time, the 3-qubit code is no longer satisfactory.
We would need the 9-qubit Shor’s code as protection from such errors.
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Conclusions

The aim pursued in this study was to introduce quantum computing
and particularly the subject of quantum error correction in order to
investigate why its development is so relevant. It has been shown that
in the real implementation of a quantum computer, errors must always
be taken into account as a natural part of the information transmission
process and, generally, when executing an algorithm.
Consequently, the search for methods of error correction is the basis for
a practical implementation of the theory of quantum computing to be
effective. Finally, in a more application-oriented section, a report of the
IBM Quantum Experience was made, showing some of the algorithms
implementations made, with graphs and run results. Through simple
examples and by means of real IBM quantum processors it was possible
to practically interface with the object of study and obtain proof of the
efficacy of some algorithms or, on the contrary, of their unreliability
under certain conditions. In conclusion, henceforth, further insights
into quantum computing, with particular attention to strategies for
quantum error correction, will have to be done, in order to fully exploit
the theoretical potential of a quantum computer. At the same time,
one can focus even more on the possible applications of QEC and, also,
investigate its analogies with other fields of knowledge.
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