
Università degli Studi di Napoli
“Federico II”

Scuola Politecnica e delle Scienze di Base
Area Didattica di Scienze Matematiche Fisiche e Naturali

Dipartimento di Fisica

Identification of photo-z outliers with ML methods

Relatori: Candidato:
Prof. Giuseppe Longo Matteo Rossi
Dott. Michele Delli Veneri Matricola:
Dott. Stefano Cavuoti N85000247

A.A. 2020/2021



But I also know that “the powers of instruction are of very little efficacy except in
those happy circumstances in which they are practically superfluous”

- Richard Feynman
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Introduction

In order to understand the intrinsic properties of many astronomical objects, it is
necessary to measure their distances. Since at this scale direct measures are imprac-
tical, the estimation of the distance presents itself as a complex task. While many
techniques were developed to measure distances for a specific scale, none of them
could be adopted at all ranges encountered in astronomy.

This lets us introduce the Distance Ladder, a collection of methods developed to
measure distances based on the luminous source type and the distance range. Stellar
Parallax, which relays on principles of trigonometry, was the first used to measure
distances of stars close to the solar system. As the Earth orbits the Sun, nearby
stars appear to slightly shift in position when compared to the more distant ones.
Thus, by measuring the shift entity when the Earth is in two different orbit positions
the distance of the nearby star can be calculated. However, for remote stars, the
parallax angle is too small to accurately measure distance and non-direct methods
of distance determination are required. Further developed techniques to measure
distances will then rely on the magnitude of the source observed. A standard candle
is an astronomical object that has a known absolute magnitude, thus we can deter-
mine its distance by measuring its apparent magnitude. Two examples of this kind
of object are the Cepheid variable stars and the Type Ia supernovae. Cepheids are
horizontal branch stars that lie in the instability strip of the Hertzsprung-Russell
diagram. Instabilities cause size and temperature periodic variation, also reflecting
on their luminosity. Henrietta Leavitt established a relationship between the period
of a star’s pulsation and its average apparent magnitude, and later Hertzsprung used
properties of the Cepheids’ light curves and statistical parallax to arrive at an esti-
mated distance to the Magellanic clouds. The furthest Cepheid measured so far, with
the use of the Hubble Space Telescope, is up to a distance of 108 light-years. Greater
distances make individual stars undetectable, so astronomers switch the focus to one
of the brightest events in the universe: the supernovae. In particular, Type Ia occurs
when a white dwarf belonging to a binary system accretes matter from its companion
to the point of instability, which happens when the Chandrasekar limit is exceeded.
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Type Ia supernovae therefore all start at essentially the same mass and produce the
same light curve with a known absolute magnitude at various stages of the event.
Thus by examining its light curve and measuring the supernova’s maximum apparent
magnitude, because their maximum absolute magnitude is known, the distance to
the supernova can be determined.

However, for objects far over the billion light-years, the previously mentioned
techniques are inefficient and observations must be used in conjunction with the
theory of cosmological expansion, in particular the Hubble Law. The Hubble con-
stant reflects the rate at which the universe is expanding, thus, to determine an
object’s distance we only need to know its velocity, which is measurable due to the
shift of the source’s spectral lines also known as redshift. Redshifts lay at the base
of almost all studies of the extragalactic universe and in many scientific research
fields such as astronomical sources classification or to understand the cosmic large
scale structure. Historically, redshifts have been measured with spectroscopy and
several spectroscopic surveys have been done in the past with some being still ac-
tive nowadays (zCOSMOS [1], VANDELS [2]). These surveys, however, are very
time consuming and cannot follow up today modern precision cosmology which is
based on samples of many millions of galaxies, with the redshift estimation through
multi-band photometry (hereafter photometric redshift or photo-z [3]) becoming an
indispensable tool [4]. However, this greatly increased redshift estimation capability
comes at a price, namely their much lower accuracy with respect to spectroscopic
measurements. Many methods and techniques for photo-z estimation have been
tested on a large variety of all-sky multi-band surveys (see for istance KiDS [5, 6],
DES [7]). These methods are broadly split into two large groups: physical template
models fitting the Spectral Energy Distributions or the empirical exploration of the
photometric parameter space (defined mainly by fluxes and derived colors). At the
core, they create a mapping between photometrical parameters such as magnitudes,
fluxes or colors and the redshift in order to obtain the redshift solution and its associ-
ated Probability Distribution Function (PDF), but the way in which they build this
mapping is very different. Template methods operate by comparing the observed
features with template models and selecting the model which best fit the observed
features. For example a redshift estimation could be taken by properly shifting a
model spectral energy distribution over the observed one. Their main advantage is
the understendability of the results but they are bound by the physical assumptions
about the observed galaxies. Machine Learning methods, on the other side, are not
based on any physical assumption and the mapping is obtained by learning it di-
rectly from the data. Among the several factors which influence the quality of the
produced photometric redshifts, the algorithmic and physical choices are for sure of
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great importance. For such a reason, to understand the impact of these choices on the
photo-z quality, over the years, many data challenges have been designed [8, 9, 10].
To cite one remarkable example we briefly introduce the Euclid survey and data
challenge. The Euclid survey is a photometric and spectroscopic survey, that during
its nominal mission of 6 years, will survey 15,000 deg2 of extragalactic sky with a 1.2
m-diameter space telescope. The main scientific goal is to investigate the Universe’s
accelerating expansion through two main probes, baryonic acoustic oscillations and
weak-lensing tomography. The Euclid photo-z challenge [10], was designed to test
the performances of 13 different models on the simulated data product of the Euclid
survey [11] and to evaluate if said methods will be capable of providing redshifts
with the required precision. Given that the Euclid data product is not yet available,
the challenge designers have modified images provided by COSMOS [12] in order
to resemble the EUCLID data product. The data was then split equally into two
subsets, with the first being used for the calibration of the different methods and
the second one being used to assess their performances. The results of the challenge
showed that each method has its advantages and disadvantages, and thus performs
efficiently in different regimes. Machine-learning methods are based on a training
sample and their results depend strongly on the quality of this training. Template-
fitting methods do not have this problem and perform relatively well for sources in
regions of the color space with a sparse redshift coverage. This work was inspired
by the results of this challenge and its scope is to study the possibility of combining
some models in an automatic way in order to increase the overall accuracy of the
photometric redshift estimation. Given that the direct optimization of the PDFs was
a problem too complex to fit in the time frame of a Bachelor Thesis, we decided to
tackle a much easier but needed problem of determining if the point estimations qual-
ity could be optimized. With point estimation, or photometric redshift, we indicate
the highest probability value for each PDF. The initial idea on how to improve the
estimation was to try and see if specific parts of the photometric parameter space ex-
ist in which one or a combination of models performs better than others. If one could
individuate such sections, for each galaxy, in an automatic way and using only the
galaxy photometry, then, the most suitable model could be assigned to said galaxy
in order to receive the best possible estimation of its redshift. On the other side, in
reality, the redshift for most galaxies tends to be correctly classified by most models,
so, in order to improve the overall accuracy of the estimations, we decided to turn
the logic around and see if we could find the regions of the photometric parameter
space were model performs badly. This requires, first, to distinguish outliers (galax-
ies that received incorrect photometric redshift estimations) from galaxies for which
the redshifts were correctly regressed on the basis of their photometry and then to
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recognize which model produced the outliers (from one specific to all models) in order
to substitute them with correct predictions from other models. We thus investigated
the possibility of solving this problem with two Multi-Layer Perceptrons.
The presented work is organized as follows:

in Chapter 1, we introduce the basic concepts of Machine Learning necessary
to develop our pipeline, we describe the Multi-Layer Perceptron architecture, the
concept of activation and loss functions, the concept of gradient descent, and the
Error backpropagation algorithm. The chapter is concluded by the section Other
Methods (Sec. 1.2) in which we make a brief overview of the Machine Learning
and Template Fitting methods that produced the photometric redshift estimations
analyzed in this work.

In Chapter 2, we outline all the astrophysics concept required to understand the
data: the photometric redshift (Sec.2.1), what it is and why its estimate’s optimiza-
tion is a major objective, as well as the concept of magnitudes (Sec. 2.2) and color
index (Sec. 2.3). The astronomical surveys that gathered the data used by both us
and by the methods to produced the redshift estimations are described in Sec. 2.4.
We show the data properties in the Data Collection section (Sec. 2.5) and in Data
Pruning (Sec. 2.6) we outline the data cleaning procedures applied before feeding it
to our pipeline. In Chapter 3, we outline the experiments: in the Data Preparation
section (Sec. 3.1), we present the subset of features selected to train our model,
along with the criteria adopted to define the two sets of classes for the classifications
tasks and the evaluation metrics needed to assess the models’ performances over the
photometric redshift estimations. Moreover we outline the Multi-Layer Perceptrons’
training procedures. In the Experiments section (Sec. 3.2), we overview the models’
setup and their training phase, and we analyze the results obtained on the valida-
tion and test sets. This section also describes the labels aggregation, introduced to
overcome the class imbalance affecting our data, and the implementation of the out-
liers hierarchical replacement strategy developed to substitute outliers with correct
predictions made by other models. This thesis ends with the Conclusion chapter, in
which we recapitulate the workflow of our experimental procedure, briefly summarize
our findings and we outline future prospects.

7



Chapter 1

Methods

In this section, we are first going to make a brief review of the main concepts of
machine learning needed to explain the implementational choices of the models em-
ployed to solve the scientific problem discussed in this work, i.e. two Multi-Layer
Perceptrons [13, 14]. Furthermore, a brief explanation of the other techniques used
in this work for exploratory analysis is also provided.

The main focus of machine learning is making decisions or predictions based on
data. As machine learning (ML) methods have improved in their capability and
scope almost any application that involves understanding data or signals that come
from the real world can be addressed using ML. Great examples are remote sensing
[15], speech recognition [16], and many kinds of language-processing tasks [17].
Machine learning models are named after the type of problems which they tackle, in
particular, supervised models use a set of examples to learn the functional mappings
between a set of inputs variable and a set of target variables (discrete for classification
and continuous for regression). When this functional mapping is learnt, through
the minimization of a loss function, the model can be used to predict the target
variable for unseen instances. In particular, in this work, we focus on the problem
of classification.

1.1 The Multi-Layer Perceptron

The basic idea for a ML model inspired by neurons goes way back to 1943 [13]. There
were good training methods (e.g., perceptron) for linear functions, and interesting
examples of non-linear functions, but no good way to train non-linear functions from
data. Interest in the model was lightened up in the 1980s when several people came
up with a way to train neural networks with “back-propagation”, a specific form of
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gradient descent [18]. The Multi-Layer Perceptron architecture is one of the most
typical feed-forward neural network models. The perceptron (depicted in Figure 1.1),
also known as neuron since was inspired by its biological counterpart, is the basic
block of the MLP and represents a mathematical function that takes the weighted
sum of the inputs and passes it through a nonlinear activation function.

a = f(z) = f

(
n∑

j=1

wjxj + w0

)
(1.1)

where j = 1, ....., n, wj are the weights and w0 is the bias. The quantities a is known
as activations and f is a differentiable, non linear activation function. Neurons are
organized into layers, where each neuron can be connected to the neurons of the next
layer but not to the neurons of the same layer. The expression feed-forward identifies
the fact that in this neural network model, the impulse is always propagated in the
same direction, e.g. from the input layer to the output layer, passing through one or
more hidden layers, by combining the sum of weights associated to all neurons except
the input ones. To “learn” how to classify instances, the network must be trained
by comparing iteratively the outputs of the network with “truth” (target variables).
The error between the output of the MLP and the target variable is generally referred
to as loss. To train the network, the weights are changed to minimize a loss function
and the way the minimization is actually performed is by propagating back the
loss through the network (backpropagation), changing the network’s weights in the
direction that maximizes the gradient of the loss function.

Figure 1.1: Graphical representation of Eq. 1.1 showing the flow of data through a
neuron.

With matrix notation, we can rewrite the latter equation for the l-th layer as

Al = f l(Z l) = f l(W lTAl−1 +W l
0) (1.2)
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where l ∈ (1, ..., L) is the layer index, W is the weight matrix, and A is the
activation for said layer. In order to reduce the loss, the gradient of the loss function
with respect to the weights is computed and thereafter the weights are modified
accordingly. First, we want to display how the loss depends on the weights of the
final layer WL. Since the loss function takes as input the activation of the last layer,
AL = fL(ZL) and ZL = WLT

AL−1 through the application of the chain rule, we get:

∂loss

∂WL
=

∂loss

∂AL

∂AL

∂ZL

∂ZL

∂WL
(1.3)

Which, for the generic layer l, can be written as:

∂loss

∂W l
= Al−1

(
∂loss

∂Z l

)T

(1.4)

In order to find the gradient of the loss with respect to the weights in the subsequent
layers of the network, we need to compute ∂loss/∂Z l which, again, can be evaluated
with the chain rule. This chain continues up to the input layer.

∂loss

∂Z1
=

∂loss

∂AL

∂AL

∂ZL

∂ZL

∂AL−1

∂AL−1

∂ZL−1
. . .

∂Z2

∂A1

∂A1

∂Z1
(1.5)

∂loss

∂Z1
=

∂loss

∂A1

∂A1

∂Z1
(1.6)

For the generic layer l the relation between the loss and the pre-activation of the
layer is expressed by:

∂loss

∂Z l
=

∂Al

∂Z l
·W l+1∂A

l+1

∂Z l+1
. . .WL−1 · ∂A

L−1

∂ZL−1
·WL · ∂A

L

∂ZL
· ∂loss
∂AL

(1.7)

The gradient of the loss with respect to the weights is then obtained by combining
Eq. 1.7 and 1.4. We are now able to express how the weights affect the loss and use
this information to update the weights of the network in order to minimize the loss.
The update criteria is showed below:

Wnew = W − η∇loss (1.8)

or for a specific layer:

W l = W l − η
∂loss

∂W l
(1.9)

where the η parameter is a scalar value defined as learning rate that determines the
step size at each iteration while moving toward a minimum of a loss function.
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Figure 1.2: Error back-propagation example

For all the models used in this work, the nodes in the hidden layers share a
common activation function, the Rectified Linear Unit (ReLU, [19]) which has been
proven effective in many ML problems and is considered a standard in the field [20]:

ReLU(z) =

{
0 if z < 0

1 otherwise
= max(0, z) (1.10)

As activation function of the output layer of the MLP for the binary classification
problem (detection of outliers), we used the sigmoid function:

σ(z) =
1

1 + e−z
(1.11)

The output of the sigmoid, also known as the logistic function, lies in the [0, 1] range
and can be interpreted as a class probability.

The recognition of the model related to the outlier photo-z’s estimation can be
designed as a multi-class classification task. In this case, we utilized the softmax
function which is an extension of the sigmoid in case of multiple classes:

softmax(z) =

exp (z1)/
∑

i exp (zi)
...

exp (zn)/
∑

i exp (zi)

 (1.12)

As loss function, we have chosen the Negative Log-Likelihood (NLL) which can
be written as:

L(y) = −log(y) (1.13)
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where y is the feedforward output. Supposing that the classification problem contains
j classes, if we define f as the vector of class scores for a given input, then we can
rewrite the softmax output as:

pk =
efk∑
j e

fj
(1.14)

where fk is an element for a given class k in all j classes, and the negative log-
likelihood as:

Li = −log(pyi) (1.15)

where Li is the loss for the i-th input and pyi is the output of the model. To perform
backpropagation, we compute how the loss changes with respect to the output of the
network and through the chain rule we get:

∂Li

∂fk
=

∂Li

∂pk

∂pk
∂fk

= − 1

pk
(pk ∗ (1− pk)) = (pk − 1) (1.16)

which is the derivative of the negative layer with respect to the softmax output. Fur-
ther derivatives are computed with the chain rule and network weights are updated.

The last piece needed to train the network regards the step size value η for the
gradient descent. So far we have decided in which direction to update the weights
but we have still to decide how big this change should be. If it’s too small, then
convergence is slow (chances are to get stuck in a local minimum) and if it’s too
large, then we risk divergence or slow convergence due to oscillation. This choice is
crucial in order to reach our goal, to find the global minima of the loss and avoid
possible local minima. The choice of a single global step size may be dangerous in
a multi-layered network such as the MLPs employed in our experiments. This is
because the magnitude of the gradient ∂loss

∂WL may differ (by a considerable amount)
between the first and the last layer. Adam [21] solves this problem by selecting an
independent step size parameter for each weight matrix which is proportional to the
mean and variance of the gradient in said layer. In particular, the weights at layer j
are updated through the following equation:

Wt,j = Wt−1,j −
η√

v̂t,j + ϵ
m̂t,j (1.17)

Where ϵ is very small value introduced to avoid dividing by zero, t is the index of
the iteration, W are the weights matrices and mtj and vtj are the estimated mean
and variance of the gradient at layer j.

m̂t,j =
mt,j

1−Bt
1

(1.18)
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v̂t,j =
vt,j

1−Bt
2

(1.19)

In the original work authors proposed the following values for the parameters: B1 =
0.9, B2 = 0.99, ϵ = 10−8.

1.2 Other Methods

Hereafter we briefly describe all the photometric redshift producing methods, di-
vided into SED fitting method, like LePhare and Phosphoros, and ML methods, like
METAPHOR, Random Forest and AdaBoost.

1.2.1 AdaBoost

AdaBoost [22] is a ML method based on ensemble learning, which combines several
base algorithms to form one optimized predictive algorithm. Ensemble Learning
methods are distinguished mostly by the way they combine weak learners. Several
combination strategies such as bagging, boosting and stacking have been developed
over the years [23, 24, 25]. AdaBoost is based on the boosting techniques in which
different models are generated sequentially and the mistakes of previous models are
learned by their successors. This aims at exploiting the dependency between models
by giving the mislabeled examples higher weights. The models are defined as weak
classifier, a definition which identifies models performing better at random guessing
than correctly predicting objects. These weak classifiers are grouped in a way that
each model learn from the previous model miss-classified object in order to build a
better performing model. In the first step a weak classifier (e.g. a decision stump) is
made on top of the training data based on the weighted samples. Here, the weights
of each sample indicate how important it is to be correctly classified. Initially, for
the first stump, we give all the samples equal weights. In the second step, after
a weak classifier is created for each variable, the algorithm check how well each
model classifies samples to their target classes. More weight is then assigned to the
incorrectly classified samples so that they’re classified correctly in the next model.
Weight is also assigned to each classifier based on its accuracy, meaning that high
accuracy it’s translated into higher weight. Lastly the process come back to the
second step until all the data points have been correctly classified, or the maximum
iteration level has been reached.
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1.2.2 LePhare

LePhare [26] is a template fitting method for photo-z estimation. The LePhare code
is based on the χ2 method described in [27]. The χ2 merit function is defined as
the sum over the different filters for the squared difference between the observed and
the predicted fluxes divided by the error. The photometric redshift is then estimated
from the minimization of χ2 as a function of the parameters z (redshift), T (Template
at redshift z) and a normalization factor A.

1.2.3 METAPHOR

The Machine-learning Estimation Tool for Accurate PHOtometric Redshifts (METAPHOR,
[28]) is based on the Multi Layer Perceptron with Quasi Newton Algorithm model
(MLPQNA, [29, 30]) and designed to produce the redshift point estimations and the
PDFs. Given a data sample, it performs a random shuffle-split into a train and test
set, with the photometry of the latter also being perturbed in order to return an
arbitrary number N of modified test sets (by variable photometric noise contamina-
tion). The model then produces N+1 estimations for a specific photo-z, and after
that, computes the probability that a given photo-z belongs to each bin with the
resulting PDF being the set of all the probabilities obtained.

1.2.4 Random Forest

Random Forest [31] is another example of Ensemble Learning model based on bag-
ging. Bagging operates by sampling from the training dataset uniformly and with
repetitions in order to create m training datasets out of the original one. As weak
learners, the Random Forest utilizes Decision Trees [32]. Decision Trees (DTs) are a
non-parametric models composed of two elements: nodes and branches. Each node
represent a question made about a data feature, and each branch the outcome of that
decision. An instance is passed through the three generating a path from the input
node to a final leaf which represent the target variable. A decision tree is trained by
optimizing the paths in order to capture patterns in the data. In Random Forest,
several subsets of data and features are created from the given dataset, so each DT
has its own set of features allocated to it. The randomly split dataset is distributed
among all the trees with each tree focusing on the data that it has been provided.
In classification, votes are collected from each tree, and the most popular class is
chosen as the final output, whereas in regression an average is taken over all the
outputs and is considered as the final result. Unlike Decision Trees, where the best
performing features are taken as the split nodes, in Random Forest, these features
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are selected randomly. Only a selected bag of features are taken into consideration,
and a randomized threshold is used to create the Decision tree. After training, pre-
dictions for unseen samples can be made by averaging the predictions from all the
individual regression trees on the new data or by taking the majority of vote in the
case of classification trees.

1.2.5 Phosphoros

Phosphoros [33] is a Bayesian template fitting tool. Bayesian inference derives the
posterior probability as a consequence of a prior probability and a “likelihood func-
tion” derived from a statistical model for the observed data.
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Chapter 2

Astrophysical Background and
Data

In this chapter we lay down the basic astrophysical concepts which are needed in
order to understand our analysis, we briefly review the data sources (surveys) from
which the data was extracted, and outline the data preparation for the experiments
performed in this thesis.

2.1 Photometric Redshifts

Electromagnetic radiation consists of waves of the electromagnetic field, propagating
through space, carrying radiant energy. While a wave travels through the space,
if the relative distance between observer and source of emissions changes, also a
wavelength variation is observed and with it a variation of frequency and photon
energy. In astronomy and cosmology the main causes of electromagnetic redshift
are:

• relativistic Doppler effect

• gravitational redshift

• cosmological redshift

The latter occurs because, due to the expansion of the universe, the distances of
galaxies from us is increasing. In particular the Hubble Law states that galaxies are
receding away from Earth with a speed proportional to their distance. By observing
the emissions of galaxies, the shifts of the emissions and absorption lines of known
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elements can be directly connected to the velocities of their sources and thus, through
the Hubble law, to their distances. If one of said lines can be detected on the
spectrum, its shift from its theoretical counterpart consists in a multiplicative factor
(1 + z), with z being the redshift:

z =
λobs − λemit

λemit

→ 1 + z =
λobs

λemit

Modern precision cosmology is however based on samples of many millions of
galaxies and Spectroscopic surveys are very time expensive (in terms of telescope
observing time and data reduction). In response to these needs an alternative is
provided by Photometric redshifts (or photo-zs) which are based on photometry,
and while they measure distance with higher uncertainty, photo-zs offer several ad-
vantages over their spectroscopic counterparts with the main one being the obser-
vational time effectiveness. While Spectrographs need long observational times and
have small field of view, Photometric redshifts are derived from broadband imaging.
Nowadays, photo-zs are used in many different research fields such as distance cal-
ibration measurements, the study of the cosmic time evolution of galaxy properties
[34], the search for primordial galaxies [35], and the study of the relation between
galaxy properties and their dark matter halos [36].

2.2 Magnitudes

The study of the light emitted by stars, galaxies and objects beyond the Solar Sys-
tem represents a large part of the accessible information about the universe, and
quantitative measurements of the intensity and polarization of light in each part of
the electromagnetic spectrum is a fundamental part for developing modern theories.
Apparent magnitude is a unitless measure of the brightness of a star or other astro-
nomical object observed from Earth. An object’s apparent magnitude depends on
its intrinsic luminosity and its distance from the observer. Given that the luminosity
is the energy emitted by the source per second, we can define the flux F as the ratio
of the luminosity and the unit area oriented perpendicular to the light. Taking the
assumption that light emitted by the source, travels through space as a spherical
shell of radius r, luminosity and flux are connected by the inverse square law for
light:

F =
L

4πr2
(2.1)

Magnitude is a unitless measurement for historic reasons and nowadays is formulated
as the ratio of the flux of a source with respect to a reference source. Stars, infact,
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were extensively observed before the advent of the scientific method and the first
magnitude scale was developed by Hipparchus. His scale has been extended by far
in both directions thanks to the advent of generations of telescopes with increasing
resolving power and today it goes from m = −26.83 for the Sun to approximately
m = 30 for the faintest object detectable (so that the lower is m, the brightest
is the source). A difference of 1 magnitude corresponds to a brightness ratio of
1001/5 ≃ 2.512. Thus a first-magnitude star appears 2.512 times brighter than a
second-magnitude star, 2.5122 = 6.310 times brighter than a third-magnitude star,
and 100 times brighter than a sixth-magnitude star. The total range of magnitudes
corresponds to over 10057/5 = (102)11.4 ≃ 1023 for the ratio of the apparent brightness
of the Sun to that of the faintest star or galaxy yet observed. Given two sources
with apparent magnitudes m1 and m2, their difference in magnitudes is empirically
connected to the ratios of their fluxes through the equation:

100m1−m2 =
F2

F1

(2.2)

By applying the logarithm in base 10 to both sides, and rearranging we get:

m1 −m2 = −2.5 log10

(
F1

F2

)
(2.3)

By using a reference source magnitude m2, then we can define the magnitude as:

m = mref − 2.5 log10

(
F1

Fref

)
(2.4)

The absolute magnitude M is defined as the apparent magnitude that a source would
have if positioned at a distance of 10 pc from the observer and it is connected to the
apparent magnitude through the following equation:

d = 10(m−M+5)/5pc (2.5)

So, in order to estimate the absolute magnitude and fairly compare different sources,
is required to derive their distances.

2.3 Color Index

In order to characterize astronomical sources, it is useful to limit the observed light to
specific regions. This is achieved by the utilization of photometric filters. The range
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in frequency of a filter is known in astrophysics as photometric band. The difference
between magnitudes related to two different bands is known as color index. Utilizing
equation 2.3, we can define the color index between band U and B as:

CU−B = mU −mB = −2.5 log10

(∫∞
0

FU(λ)SU(λ) dλ∫∞
0

FB(λ)SB(λ) dλ

)
(2.6)

where mU and mB are the apparent magnitudes in the U and B bands, FU(λ) and
FB(λ) are the fluxes emitted at the wavelength λ and SU(λ) and SB(λ) are the two
filters response functions. By capturing the ratios between the fluxes in two bands,
colors have been proven useful for astrophysicists in defining source properties given
that the amount of light emitted in specific bands can be used as a tracer for source
properties such as chemical composition and, in case of galaxies, of gas and stellar
abundances.

2.4 Surveys

An astronomical survey is a collection of astronomical observations that share com-
mon features such as position in the sky or frequency of observation. The data
product of a survey, a catalog, represents the fundamental data basis for astronomy.
We may classify surveys in regard to their scientific motivation and strategy, their
wavelength regime, ground-based vs. space-based, the type of observations (e.g.
imaging, spectroscopy, etc.), their area coverage and depth, and their temporal char-
acter (one-time vs. multi-epoch). Hereafter, we describe the astronomical surveys
from which the data, needed to carry out the proposed research, was extracted. We,
then, outline the procedural steps to clean the extracted data and finally we describe
how the data was divided into several sets in order to receive fair redshift prediction
from all the models tested during the challenge.

2.4.1 The Kilo-Degree Survey

The Kilo-Degree Survey (KiDS, [6]), is an ongoing optical wide field imaging survey at
the the European Southern Observatory (ESO) Very Large Telescope (VLT) survey
telescope, the VST. KiDS was designed as a cosmological survey in order to study
galaxies population up to z ∼ 1, and among other scientific goals, measure weak
gravitational lensing events. The KiDS images were processed with two independent
pipelines to produce stacked images in the four bands, from which the photometric
properties of sources were extracted in order to produce a catalogue. KiDS covers
about 1350 deg2 of extragalactic sky, within in the four bands: u, g, r and i.
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2.4.2 The VISTA Kilo-degree Infrared Galaxy survey

The VISTA Kilo-degree Infrared Galaxy Public Survey (VIKING, [37]) is one of the
six survey conducted at the Visible and Infrared Survey Telescope for Astronomy
(VISTA), which is part of the ESO’s Paranal observatory. It is a wide area (area of
1350 deg2), intermediate-depth near-infrared imaging survey, in the five broadband
filters Z, Y, J, H, Ks. The sky coverage has maximum overlap with KiDS in the
optical bands.

2.4.3 The Galaxy And Mass Assembly survey

The Galaxy And Mass Assembly (GAMA, [38, 39]) survey is a spectroscopic redshift
and multi-wavelength photometrict survey. GAMA was originally designed to survey
regions of the space that match the KiDS and VIKING survey.

2.5 Data Collection

The original dataset is composed by objects gathered from the images provided by
the fourth Data Release (DR) of the KiDS and VIKING surveys, and thereafter
cross-matched with the GAMA DR3 survey in order to retrieve the spectroscopic
redshift of the galaxies. To compare the PDF producing method performances in a
fair manner, the dataset of 150, 000 galaxies was divided into three subsets. While
the first contained both photometric and spectroscopic information in order for the
models to be trained and tested, the second was a blind test set containing only the
photometry. Each group was asked to produce photometric redshifts for the blind
dataset and send the predictions back. In this thesis we will work only with the
50, 000 objects belonging to the blind test set. In the next section, we explain how
the received predictions were selected in order to create a common dataset on which
predictions for all sources from all the models can be trusted, i.e. the predictions are
not flagged as untrustworthy from any of the models.

2.6 Data Pruning and Splitting

The predictions received from the participating models (AdaBoost, LePhare, METAPHOR,
Random Forest, Phosphoros, introduced in Sec.1.2) contained 50, 000 sources and the
following features:

• ID: an unique identifier describing each object;
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• Quality Flag: given by each method team in order to indicate the quality of
the produced PDFs (0: superior quality, 1: standard quality, 2: lower quality)

• Photometric Redshift: the point-like estimation of the redshift

• Bins: each one pointing the probability that the true redshift value falls into
that particular bin. 350 bins of width (0.02), with z ∈ [0, 7]

All objects for which at least one method provided a value of 2 in the flag column,
were excluded. The number of surviving objects went from 50, 000 to 45, 971.
LePhare method produced an ulterior flag named Type FLAG separating galaxies
from stars: all objects marked as STAR in the LePhare Type FLAG were excluded
bringing the number of surviving number of objects from 45, 971 to 44, 464.
Figure 3.3, which shows the scatter plots between the spectroscopic redshifts and
the photometric ones produced by all methods, shows that all methods have poor
performances on galaxies with spectroscopic redshift higher than 4. For that reason,
all the objects outside the closed spectroscopic redshift interval [0.01, 4] were excluded
from the analysis. The number of surviving objects went from 44, 464 to 43, 878; The
final spectroscopic redshifts distribution is shown in Figure 2.1 with the high redshift
cut highlighted in purple.

In order to asses the model performances in estimating the photometric redshifts,
the following metric was introduced:

|∆znorm| =
|zspec − zphot|
1 + zspec

(2.7)

with zspec being the spectroscopic redshift and zphot being the photometric one.
This is the normalized difference between the two redshifts.
The final cleaned dataset contained, for each galaxy, the following features:

• ID: unique identifier for the object;

• MAG GAAP: The Gaussian aperture and Photometry (GAaP) magnitudes
have been measured on Gaussian-weighted apertures, which are modified per-
source and per-image, in the following bands: u, g, r, i, z, Y, J, H, Ks;

• Fluxes GAAP: fluxes for the following bads: u, g, r, i, z, Y, J, H, Ks;

• Errors : photometric errors for all magnitudes and fluxes listed above;

• Spectroscopic Redshifts : the spectroscopic redshifts;
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• Photometric redshifts : the photometric redshifts produced by the methods
(0:AdaBoost, 1:Lephare, 2:Metaphor, 3:Phosphoros, 4:Random Forest).
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Figure 2.1: Spectroscopic redshift distribution of the sample, in purple there is the
highlight for the cut performed to separate high redshift objects
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Chapter 3

Experimental Procedure

This project aims to build a pipeline of MLPs trained to identify model outliers and
substitute them with better predictions from other models. The overall process can
be broken into two main steps: the first MLP identifies outliers from the rest of
the sources, then feeds these outliers to a second MLP which identifies the methods
that produced said outliers. This identification lets us substitute the outliers with
better predictions made by other models. To achieve this goal and train the MLPs we
divided the process into two experiments: in the first one, the Outlier Identifier MLP
will be fed with the raw data discovering possible outliers related to any unspecified
method, while, in the second, a MLP will be trained to predict the method to which
an outlier belongs to. In the latter, we also explore the possibility to improve the
performance of the MLP by aggregating all the less populated classes into macro-
classes. This modification tries to solve the problem of class imbalance in the data.
In the Test phase, the two MLPs are chained one after the other. The first one
identifies the outliers which are then fed to the second MLP in order to recognize
the method to which they belong and substitute them with better predictions from
the remaining models.

3.1 Data Preparation and Discovery

In order to train the MLPs, guided by our previous knowledge about the physics of
the problem and the nature of the photometrical features, we selected the following
set of features among the available ones in the cleaned 43, 878 sources dataset (see
Sec. 2.6):

• Photometric Redshifts: produced by the five methods: photo 0, photo 1,
photo 2, photo 3, photo 4
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• Magnitudes: MAG GAAP u, MAG GAAP g, MAG GAAP r,
MAG GAAP i, MAG GAAP Z, MAG GAAP Y, MAG GAAP J,
MAG GAAP H, and MAG GAAP Ks;

• Colors: col U-G, col G-R, col R-I, col I-Z, col Z-Y, col Y-J,
col J-H and col H-Ks

for a total of 22 photometric features. The index near the photo-z feature is related
to the method that produced it. In particular:
0:AdaBoost, 1:LePhare, 2:METAPHOR, 3:Phosphoros, 4:Random Forest.

The dataset was divided into a Train, Validation and Test set. The train set is
used to train the model, the validation set to check for overfitting during training
and the test set, as the name suggests, to assess the performance of the model on
unseen instances. Data is split using the following criteria: 55% for the Train set,
20% for the Validation set, and 25% for the Test set.

Different sets of labels have been prepared, binary labels for the first experiment
(outliers vs non-outliers) and multi-class labels for the second.

Binary labels:

The binary labels for the first experiments are created using Eq. 2.7. Given a source,
if the |∆znorm| between any of the estimated photo-zs (by the five participating
models) for that source and its spectroscopic redshift, is higher than 0.15, then it is
labeled with a 1 (outlier) otherwise with 0 (non-outlier).

Multi-class labels:

In this case, each instance is labeled by an acronym made up of the capital letters
related to all the methods for which |∆znorm| > 0.15 (e.g. an outlier for all the
methods is identified by ALMPR1, or an outlier for A and R as AR). The set of
unique labels is transformed into a set of integers for the purpose of training the
MLP. The initial class distribution, shown in Figure 3.4, contains 31 unique classes.
As it can be seen, there is a high variance in the size of the classes’ supports, a
phenomenon which is called class imbalance. Class imbalance has a deep impact on
classificators’ performances [40, 41, 42], and several techniques have been proposed
to address this problem such as undersampling, oversampling and synthetic data
generation with algorithms such as SMOTE [43] or AdaBoost [22]. Several of these
techniques have been tried to improve the MLP performance on those low support

1A - AdaBoost; L - LePhare; M - METAPHOR; P - Phosphoros; R - Random Forest
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classes, and, in the end, we settled for an aggregation strategy that groups under the
same label all the objects related to a specific class of interest. Figure 3.4 displays the
aggregation for the classes related to the AdaBoost method, with the total number of
classes decreasing from 31 to 17. We focus on AdaBoost because from our preliminary
analysis shown in Table 3.2, it is recognized as the best performing method among the
participants, and thus, successfully predicting its outliers, would bring the highest
boost in combined classification performance. To check the gain in performance due
to class aggregation, the second experiment is repeated on the aggregated classes.

Principal Component Analysis

In order to visualize the data in lower dimensions, we performed a Principal Compo-
nent Analysis (PCA). This technique is implemented to reduce the dimensionality of
a dataset and to gain insights on the class separability. PCA calculates the covari-
ance matrix of all the features and then generates the eigenvectors and eigenvalues
from the matrix. Then, the covariance matrix is multiplied by the eigenvectors to
create principal components. These principal components are the new features based
on our original features and their importance in terms of explaining the variability in
the dataset is given by its eigenvalues. The dimensionality of the problem can be thus
reduced by ranking the principal components by their explained variance and select-
ing only the top n. By retaining a high explained variance, the new synthetic set of
features should encompass the same information contained in the original features at
the expense of interpretability of the results. In fact, the principal components have
no physical meaning (to the contrary of the photometric features selected to train
our MLPs). From our experiments, we can see that 98% of the variation within the
dataset can be captured using only the first six principal components which seems
to suggest that some of the chosen features are redundant. Two scatter plots using
the first three components and with samples colored by their assigned labels (for
both the binary and multi-class experiments) are shown respectively in Figure 3.1
and Figure 3.2. In the latter only the seven most populated classes (representing
∼ 80% of the overall outliers population) are displayed. These figures show that,
inside the parameter space of the principal components, both these sets of labels are
separated which suggests that the MLPs should be able to find suitable hyper-planes
to separate the classes.
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Figure 3.1: 3D scatterplot over the first three principal components for binary labeled
data
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Figure 3.2: 3D scatterplot over the first three principal components for the seven
most populated labels (before and after aggregation) for the multi-class set of labels
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Statistical Estimators

Here we introduce all the statistical estimators used to assess models’ performances
in estimating photometric redshifts and to evaluate the MLPs’ performances.

• Mean(x) =
∑n

i xi

n

• Median(x) = xn
2

• StandardDeviation(x) = σ(x) =

√∑n
i [xi−

∑n
i

xi
n

]2

n

• SEM = σ√
n

• nMAD(x) = 1.48×Median(|x|)

• Outliers% = nout

ntot
· 100, nout = |∆znorm| > 0.15

where n is the total number of samples, SEM is the Standard Error of the Mean
and the nMAD is the normalized Median Absolute Deviation.

The confusion matrix is a N×N matrix used for evaluating the performance of a
classification model, where N is the number of target classes. The matrix compares
the actual target values (represented by the columns) with those predicted by the
ML model (represented by the rows). If we consider a binary classification problem,
with a positive class and a negative class, we can define the following possibilities for
the prediction of a given instance:

True Positive (TP): the instance is correctly predicted as positive;

False Positive (FP): the correct class is negative, but the model predicted the
instance as positive;

True Negative (TN): the instance is correctly predicted as negative;

False Negative (FN): the correct class is positive, but the model predicted the
instance as negative.

These values are summarized in Table 3.1, which refers to the binary classification
but can then be easily extended to the multi-class case. We can use these definitions
to count the number of TPs, TNs, FPs and FNs predictions and produce the following
classification metrics:
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True Class
Positive Negative

Predicted Class
Positive TP FP
Negative FN TN

Table 3.1: Example of a binary confusion matrix.

Accuracy: is the fraction of correct predictions over the total number of predictions.

Accuracy =
TP + TN

TP + TN + FP + FN
(3.1)

Precision: is the ability of a classifier not to label as positive an instance that is
actually negative.

Precision =
TP

TP + FP
(3.2)

Recall: express the classifier capability to find all the positive instances.

Recall =
TP

TP + FN
(3.3)

F1 score: is the weighted harmonic mean of Precision and Recall.

F1score =
2 ·Recall · Precision

Recall + Precision
(3.4)

Preliminary Models’ Performance Analysis

In this subsection, we want to measure the models’ performances in estimating the
photo-zs and understand the maximum gain in performance we would gain if we
were able to eliminate all the outliers for each model. To estimate the models’
performances, we computed the |∆znorm| (see Eq. 2.7) for all the instances of each
model and produced descriptive statistics which are shown in Table 3.2. We also
produced, for each model, the scatter plots of the predicted photo-zs against the
true spectroscopic redshifts. The plots are shown in Figure 2.1. All the points falling
outside the orange highlighted area are deemed as outliers. The plots show the
majority of the spectroscopic redshift belongs to the range z ∈ [0.01, 4] and that
all models have poor performances on instances characterized by z > 4. For that
reason, all sources with z > 4 are excluded from the analysis. From Table 3.2, we
can see that the metrics for all the methods are comparable, with the models based
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on ML performing slightly better than those based on template fitting. We also can
see, by comparing, for each model, the metrics before and after outliers removal, that
there is a potential ample gain in performance if outliers are correctly identified and
removed.

Model Outliers Objects Mean σ SEM Median nMAD Outliers %

AdaBoost
included 4.39e+04 2.54e-02 7.73e-02 3.69e-04 1.35e-02 1.28e-02 1.60
not included 4.32e+04 1.79e-02 1.75e-02 8.41e-05 1.32e-02 1.24e-02 0.00

LePhare
included 4.39e+04 6.64e-02 1.76e-01 8.39e-04 3.28e-02 3.12e-02 6.33
not included 4.11e+04 3.81e-02 3.14e-02 1.55e-04 3.03e-02 2.78e-02 0.00

METAPHOR
included 4.39e+04 2.83e-02 7.41e-02 3.54e-04 1.58e-02 1.48e-02 1.86
not included 4.31e+04 2.11e-02 2.07e-02 9.96e-05 1.55e-02 1.43e-02 0.00

Phosphoros
included 4.39e+04 5.96e-02 1.98e-01 9.44e-04 2.38e-02 2.30e-02 4.98
not included 4.17e+04 3.08e-02 2.87e-02 1.40e-04 2.23e-02 2.11e-02 0.00

Random Forest
included 4.39e+04 3.31e-02 8.47e-02 4.05e-04 1.40e-02 1.35e-02 4.03
not included 4.21e+04 1.97e-02 2.19e-02 1.07e-04 1.32e-02 1.25e-02 0.00

Table 3.2: Models’ statistical estimators comparison for the Test set. Each row
shows, for a given model, the statistical estimators (columns) of the distribution of
|∆znorm| for the prediction of that model.
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Figure 3.3: Spectroscopic redshift versus Photometric redshift scatter plots for the
photo-z estimation related to each model. On the X axis are shown the spectroscopic
redshifts, on the Y the photometric ones. The red dotted line is the bisector of the
quadrant, points lying on the line are perfect predictions. Points outside the orange
area, are deemed as outliers by Eq. 2.7.
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Figure 3.4: Outliers labels distribution (pre-post aggregation).
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3.2 Experiments

The MLPs for the two Experiments share the same structure, which consists of
five layers and differs for the number of units in the output layer. The input layer
consisting of Nf neurons where Nf is the number of input features (Nf = 22), the
first hidden layer consisting of 2Nf +1 neurons, the second hidden layer consisting of
Nf−1 neurons and the third hidden layer consisting of Nf/2 neurons. For the binary
classification problem, the output layer consists of a single neuron (scalar), while for
the multi-class classification problem, the number of neurons equals the number of
classes in the problem, i.e. 31 for the original outliers’ class distribution, 17 after the
class aggregation. A dropout layer is inserted within any couple of hidden layers.

Experiment 1: Outlier Identifier (OI)

Figure 3.5: Training metrics for the OI MLP over the validation Set. In this plot
the X axis shows the number of epochs, and the Y axis is the loss/accuracy value

The binary classifier training results are reported in Figure 4.5, which display
that loss values, over the training and validation sets, decrease rapidly in the first
epochs to a point of stability with a minimal gap between the two final values. These
curves can also be used to address two different types of problems that arise dur-
ing the training process: overfitting and unrepresentativeness of the validation set,
which means validation data are not very representative of the training data due to
their insufficient numbers. Overfitting can be spotted by the loss curves reaching a
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precision recall f1-score support

0.0 0.98 0.99 0.99 8270
1.0 0.89 0.86 0.88 945
accuracy 0.98 9215

Table 3.3: Classification metrics for the OI MLP over the Validation Set; the table displays
the precision, recall, f1 score and support size for the two classes (see Section 3.1) and
the total classification accuracy.

minimum value and then raising again, which doesn’t occur at any time during the
training and validation process, while the good representativeness of the validation
set is identified by both the curves being almost similar, without any offset between
them and a stable val loss curve. To assess the classification performance of the
MLP over the validation/Test Set, we use to the Statistical estimators introduced in
Sec. 3.1 and reported in Table 3.3 and Table 3.4. These tables show almost identical
estimators’ values, thus the following considerations can be extended to both sets: a
high precision score related to the 0 class describes the classifier’s capability to rarely
label a good photo-z estimation as a potential outlier, while the recall score related
to the 1 class highlight that it underperforms in terms of capability to detect all the
positive instances (actual outlier for any method).

precision recall f1-score support

0.0 0.98 0.99 0.99 11779
1.0 0.95 0.84 0.89 1385
accuracy 0.98 13164

Table 3.4: Classification metrics for the OI MLP over the Test Set; the table displays the
precision, recall, f1 score and support size for the two classes (see Section 3.1) and the
total classification accuracy.

Experiment 2: Outlier Class Identifier (OCI)

The OCI MLP is trained on the instances labeled as outliers in the OI MLP training
set. This is done to follow the project workflow in which the outliers found by the
first MLP are then classified by the second. As previously discussed, the MLP is
trained first with all 31 labels, and then with the aggregated 17 in order to mitigate
class imbalance.
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Figure 3.6: Training metrics for the OCI MLP over the validation Set. In this plot
the X axis shows the number of epochs, and the Y axis is the lossand accuracy value

Figure 3.7: Training metrics for the OCI MLP over the validation Set after label
aggregation. In this plot the X axis shows the number of epochs, and the Y axis is
the loss and accuracy value.

Figure 3.6 and Figure 3.7 show the trends with number of training epochs, of
the training loss, validation loss, training accuracy and validation accuracy using
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respectively 31 and 17 labels (labels aggregation). The curves described in these
Figures, as per the training results of the binary classifier, do not show overfitting
and that both validation sets are representatives of the related training sets. While
the accuracy does not improve remarkably after class aggregation, the technique
brought further minimization of the loss values which is reflected in the betterment
of the classification metrics outlined in Table 3.6 and Table 3.7. Still, the MLPs’
performances on the multi-class classification do not reach the same levels obtained on
the binary classification. Table 3.8 and Table 3.9 report the classification performance
metrics for the Test set, and display comparable values with the ones previously
reported in Table 3.6 and Table 3.7. In particular, if one compares the precision,
recall and f-score on the A outliers which in the left table are split among several
classes, and on the right are combined in a single class, one can see a substantial
increase in all metrics. That being said, the final performance shows that the MLP is
not able to reliably identify outliers for A and M, while it shows good performances
on L, P and R outliers. After outliers are classified, to improve the total classification
performance, we need to substitute outliers with the predictions made by the best
performing model for which the instances are not outliers. For that reason, we
introduced a hierarchical replacement approach based on models performances on
the photometric redshifts estimation (see Table. 3.2)

A → M → R → P → L

An instance which is identified as outlier for some models is replaced with the photo-
z prediction of the first method (in the ranking) for which it is not an outlier. e.g.
an instance which is an outlier for A is replaced by the estimation made by M if the
instance is not also classified as an outlier for M, otherwise by R and so on.

Table 3.5 shows the photometric redshift estimation metrics for the AdaBoost
model. The first row reports the performances on the original dataset, the second
reports the best possible performances obtainable if perfect outlier classification was
obtained, the third shows the performances after the instances classified as outliers by
OI MLP are removed, the third shows the performances after the instances classified
as AdaBoost outliers by OCI MLP are removed and, the fourth shows the perfor-
mances after the instances classified as AdaBoost outliers are substituted, through
the hierarchical substitution (hereafter HS), with the photo-z estimation of the best
model for which that instance is a non-outlier. The performances in all but the first
row are reported as percentile variation with respect to the original values. As it can
be seen, the best increase is obtained through the OI outlier removal which removes
88% of outliers (174 out of 198) but also 1050 correctly predicted instances. The
further improvement of metrics over the theoretical best removal (second row) could
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objects mean σ SEM Median nMAD Outliers %

original 13164 2.52e-02 7.67e-02 6.69e-04 1.35e-02 1.28e-02 1.50

No Outliers -1.50% -28.49% -76.77% -76.53% -1.83% -2.56% -100.00
OI -9.30% -30.30% -71.68% -70.25% -3.97% -5.22% -88.27
OCI -1.49% -17.84% -35.85% -35.43% -1.23% -1.68% -52.70
HS -0.93% -13.17% -23.39% -23.02% -0.79% -1.05% -40.70

Table 3.5: Comparison of AdaBoost |∆znorm| statistical estimators over the test set:
the first row is related to the unaltered original performance (see Table 3.2), while all
the other estimators are expressed in terms of percentage variation with respect to
the original values. The second is related to the theoretical best, the third is related
to OI outlier removal, the forth to the OCI AdaBoost outlier removal and the last
to the HS substitution.

be explained by the fact that the outlier selection role (|∆znorm| > 0.15) is based on
a hard threshold, and many instances could be close to that threshold but still not
identified as outliers. However, as can be seen in Figure 3.8, while the number of
sources that have a |∆znorm| ∼ 0.15 is non-negligible, this observation alone seems
not sufficient to justify the improvements. Regarding the OCI and HS performances,
they still can remove around half the outliers but with a much lower cost on the
number of correctly removed instances. The hierarchical substitution still removes
0.93% of instances because they are classified as outliers for all models.

The removal of the outliers, for the test set, at each step of the pipeline is sum-
marized in Figure 3.9 and Table 3.10. The latter reports the total number of true
outliers (first column, “P”), the number of instances predicted as outliers (second
column, “TP+FP”) and the number and fraction of said predictions which are TPs
(third column). As it can be seen, OI MLP is capable of identifying 95% of the test
set outliers. The second row shows the total number of outliers for AdaBoost in the
test set after being processed by the OI MLP and thus passed as input to the OCI
MLP, the number of outliers classified as A by OCI MLP, the number of correctly
predicted AdaBoost outliers and their fraction over the number of actual AdaBoost
outliers. From the low number of TPs and the similar number of FPs, we confirm
that the OCI MLP is not able to reliably identify AdaBoost outliers. The third
row shows the results of the hierarchical substitution, starting from 74 of the 196
predicted outliers that are not recognized as outliers for at least one of the remaining
model. Of these 74 roughly only 50% is correctly substituted with non-outlier. This
behavior is to be connected to the poor performance of the OCI MLP classifier.
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Figure 3.8: AdaBoost removed outliers |∆znorm| values
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Figure 3.9: AdaBoost identified outliers for each stage of the workflow. In these
plots, the instances flagged as outlier are reported in red, while sources deemed as
non-outliers are colored in blue.
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precision recall f1-score support
A 0.00 0.00 0.00 6.00
AL 0.00 0.00 0.00 1.00
ALM 0.00 0.00 0.00 1.00
ALMP 0.00 0.00 0.00 14.00
ALMPR 0.20 0.22 0.21 50.00
ALMR 0.00 0.00 0.00 10.00
ALP 0.00 0.00 0.00 8.00
ALPR 0.50 0.05 0.09 21.00
ALR 0.31 0.67 0.42 6.00
AM 0.00 0.00 0.00 1.00
AMP 0.00 0.00 0.00 2.00
AMPR 0.00 0.00 0.00 4.00
AMR 0.00 0.00 0.00 13.00
AP 0.00 0.00 0.00 5.00
APR 0.25 0.17 0.20 6.00
AR 0.50 0.46 0.48 13.00
L 0.88 0.97 0.92 292.00
LM 0.00 0.00 0.00 6.00
LMP 0.00 0.00 0.00 10.00
LMPR 0.00 0.00 0.00 14.00
LMR 0.00 0.00 0.00 4.00
LP 0.58 0.80 0.68 86.00
LPR 0.61 0.80 0.69 59.00
LR 0.50 0.48 0.49 23.00
M 0.00 0.00 0.00 18.00
MP 0.00 0.00 0.00 3.00
MPR 0.00 0.00 0.00 3.00
MR 0.75 0.21 0.33 14.00
P 0.84 0.99 0.91 143.00
PR 0.64 0.50 0.56 28.00
R 0.68 0.96 0.79 99.00
accuracy 0.71 963.00

Table 3.6: Classification metrics for the
OCI MLP over the validation set

precision recall f1-score support
A 0.57 0.69 0.62 111.00
L 0.89 0.96 0.92 292.00
LM 0.00 0.00 0.00 6.00
LMP 0.00 0.00 0.00 10.00
LMPR 0.00 0.00 0.00 14.00
LMR 0.00 0.00 0.00 4.00
LP 0.64 0.76 0.69 86.00
LPR 0.68 0.58 0.62 59.00
LR 0.38 0.39 0.38 23.00
M 0.33 0.06 0.10 18.00
MP 0.00 0.00 0.00 3.00
MPR 0.00 0.00 0.00 3.00
MR 1.00 0.07 0.13 14.00
P 0.89 0.94 0.91 143.00
PR 0.59 0.61 0.60 28.00
R 0.70 0.97 0.81 99.00
Z 0.39 0.14 0.21 50.00
accuracy 0.75 963.00

Table 3.7: Classification metrics for the
OCI MLP over the validation set (post A
label aggregation)
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precision recall f1-score support
A 0.00 0.00 0.00 3.00
AL 0.00 0.00 0.00 3.00
ALM 0.00 0.00 0.00 0.00
ALMP 0.00 0.00 0.00 18.00
ALMPR 0.23 0.23 0.23 52.00
ALMR 0.00 0.00 0.00 7.00
ALP 0.00 0.00 0.00 7.00
ALPR 0.00 0.00 0.00 22.00
ALR 0.20 0.17 0.18 6.00
AM 0.00 0.00 0.00 1.00
AMP 0.00 0.00 0.00 3.00
AMPR 0.00 0.00 0.00 18.00
AMR 0.00 0.00 0.00 16.00
AP 0.00 0.00 0.00 1.00
APR 0.25 0.33 0.29 3.00
AR 0.00 0.00 0.00 17.00
L 0.79 0.97 0.87 327.00
LM 0.00 0.00 0.00 12.00
LMP 0.00 0.00 0.00 19.00
LMPR 0.00 0.00 0.00 15.00
LMR 0.00 0.00 0.00 10.00
LP 0.49 0.78 0.60 109.00
LPR 0.47 0.36 0.41 78.00
LR 0.36 0.56 0.43 36.00
M 0.00 0.00 0.00 7.00
MP 0.00 0.00 0.00 12.00
MPR 0.00 0.00 0.00 8.00
MR 0.00 0.00 0.00 23.00
P 0.67 0.96 0.79 137.00
PR 0.82 0.36 0.50 50.00
R 0.57 0.99 0.72 144.00
accuracy 0.62 1164.00

Table 3.8: Classification metrics for the
OCI MLP over the test set

precision recall f1-score support
A 0.41 0.65 0.50 125.00
L 0.84 0.96 0.89 327.00
LM 0.00 0.00 0.00 12.00
LMP 0.00 0.00 0.00 19.00
LMPR 0.00 0.00 0.00 15.00
LMR 0.00 0.00 0.00 10.00
LP 0.51 0.53 0.52 109.00
LPR 0.40 0.49 0.44 78.00
LR 0.64 0.50 0.56 36.00
M 0.00 0.00 0.00 7.00
MP 0.00 0.00 0.00 12.00
MPR 0.00 0.00 0.00 8.00
MR 0.00 0.00 0.00 23.00
P 0.66 0.95 0.78 137.00
PR 0.56 0.48 0.52 50.00
R 0.74 0.92 0.82 144.00
Z 0.00 0.00 0.00 52.00
accuracy 0.65 1164.00

Table 3.9: Classification metrics for the
OCI MLP over the test set (post A label
aggregation)

P TP+FP TP Precision %

OI 1385 1224 1164 95.0%

OCI 125 196 81 41.3%

HS 125 74 39 52.8%

Table 3.10: Detection of AdaBoost Outlier at various stages in the workflow.
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Chapter 4

Conclusion

In this work we built a pipeline of MLPs to identify outliers found among the photo-
metric redshift estimations produced by five different models over a set of common
sources. These models’ estimations are based on the sole photometry and to assess
their performances we introduced a quality measure that takes into account the nor-
malized difference between the spectroscopic and photometric redshift prediction of
each source, also used to formalize the outlier definition. We noted that, for all these
models, a certain percentage of the photometric redshift point estimations could be
defined as outliers and designed two different classification tasks approached by two
separate MLPs. The first identifies sources for which at least one of the models per-
formed a poor estimation, and the second identifies the specific method/s for which
the photometric estimation is an outlier. To mitigate the class imbalance in the sec-
ond multi-class classification, we implemented an aggregation strategy for the labels,
and evaluated the performances on both classification problems (original 31 classes
and the aggregated 17). Given the better performances of the AdaBoost model over
the other models, we focus our analysis on the AdaBoost outliers. The aggregation
of all the classes containing AdaBoost outliers improves the detection of the aforesaid
class but still doesn’t affect the MLP capability to predict other classes, even if their
total number is almost halved. The Z class (namely ALMPR before the labels ag-
gregation, containing outliers for all methods is never recognized properly regardless
of the support size. By comparing performances on the photometric estimation of
the AdaBoost model after outliers removal with different strategies (see Table 3.5),
it can be seen that the best improvement is obtained by the removal of all outliers
by the OI MLP along ∼ 8% of non-outliers, but still significant improvements can
be obtained through the OCI MLP removal and the hierarchical substitution at a
much lower price in terms of number of non-outliers removed. We think it would be
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worth to inspect the removed instances in order to understand if they could be also
deemed as outliers if a relaxation or a modification of the outliers assignment crite-
rion (|∆znorm| > 0.15). Furthermore, the classification metrics shown in Table 3.9
show that the model is correctly classifying pure outliers for L, P and R, a strategy
could be implemented for removing these outliers first and then try and classify the
remaining instances. This work was deemed outside the scope of this thesis, which
has to be concluded at some point, but we intend to carry out these trials and after
further improvements try to tackle, in the future, the same approach on the PDFs.
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[1] S. Lilly, O. Le Fèvre, A. Renzini, G. Zamorani, M. Scodeggio, T. Contini, C. M.
Carollo, G. Hasinger, J.-P. Kneib, A. Iovino, et al., “zcosmos: a large vlt/vimos
redshift survey covering 0¡ z¡ 3 in the cosmos field,” The Astrophysical Journal
Supplement Series, vol. 172, no. 1, p. 70, 2007.

[2] B. Garilli, R. McLure, L. Pentericci, P. Franzetti, A. Gargiulo, A. Carnall,
O. Cucciati, A. Iovino, R. Amorin, M. Bolzonella, et al., “The vandels eso
public spectroscopic survey-final data release of 2087 spectra and spectroscopic
measurements,” Astronomy & Astrophysics, vol. 647, p. A150, 2021.

[3] W. A. Baum, “Photoelectric magnitudes and red-shifts,” in Problems of Extra-
Galactic Research, vol. 15, p. 390, 1962.

[4] M. Salvato, O. Ilbert, and B. Hoyle, “The many flavours of photometric red-
shifts,” Nature Astronomy, vol. 3, no. 3, pp. 212–222, 2019.

[5] J. T. De Jong, G. A. V. Kleijn, D. R. Boxhoorn, H. Buddelmeijer, M. Capaccioli,
F. Getman, A. Grado, E. Helmich, Z. Huang, N. Irisarri, et al., “The first
and second data releases of the kilo-degree survey,” Astronomy & Astrophysics,
vol. 582, p. A62, 2015.

[6] K. Kuijken, C. Heymans, A. Dvornik, H. Hildebrandt, J. de Jong, A. Wright,
T. Erben, M. Bilicki, B. Giblin, H.-Y. Shan, et al., “The fourth data release of
the kilo-degree survey: ugri imaging and nine-band optical-ir photometry over
1000 square degrees,” Astronomy & Astrophysics, vol. 625, p. A2, 2019.

[7] D. E. S. Collaboration et al., “The dark energy survey,” arXiv preprint astro-
ph/0510346, 2005.

[8] H. Hildebrandt, S. Arnouts, P. Capak, L. Moustakas, C. Wolf, F. B. Abdalla,
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