Towards the Construction of the First Cosmological Relic Neutrino Telescope with PTOLEMY

Chris Tully Princeton University

INFN, NAPLES, 23 OCTOBER 2019

2015 Targeted Grant Award from the SIMONS FOUNDATION

Cosmic Neutrino Background

Dicke, Peebles, Roll, Wilkinson (1965)

Number density: $n_{y} = 112/cm^{3}$ **Temperature:** T_v~<u>1.95K</u> Time of decoupling: $t_v \sim 1$ second neutron/proton ratio @start of nucleosynthesis Velocity distribution: $< v_{v} > ~ T_{v} / m_{v}$

Non-linear distortions Villaescusa-Navarro et al (2013) 2

Early-Late Universe Evolution

Onset of a "constant" Dark Energy during the last doubling of the Universe is less certain

Tension between CMB determined Hubble Expansion (~x1100) and last ~15% are in 4-6σ disagreement and differ by ~9%

Massive neutrinos transition to non-relativistic during this time

CNB Today

Large Scale Structure Signals of Neutrino Decay

1)

Measure neutrino mass & lifetime

Chacko, Dev, Du, Poulin, YT (in preparation, preliminary)

Something not expected??

→ CNB Direct Detection would need to resolve this

Cosmic Neutrino Telescope Step 1: Quality of Lens Surface

- Choice: Graphene atomic flatness
- Hosts "Lepton $v \rightarrow e^-$ shifting material" (tritium ³H)
- Low binding energy (<3 eV)
- Ferromagnetic at 50% coverage

Cold Plasma Loading

XPS Hydrogenation Results from Princeton

Cosmic Neutrino Telescope Step 2: Geometric Focus

- Choice: Reflector Electrons guided by EM fields
- Reflection by voltage potential for electron pinned on magnetic field lines
- Angular deflection by ExB drift across B field lines

Cosmic Neutrino Telescope Step 2: Geometric Focus

- Choice: Reflector Electrons guided by EM fields
- Reflection by voltage potential for electron pinned on magnetic field lines
- Angular deflection by ExB drift across B field lines

EM-optics

Cosmic Neutrino Telescope Step 3: Dynamic Aperature

- Choice: RF tracking system Project 8
- Estimates total momentum (ω_0/γ) , p_{\perp} , p_{\parallel} to ~ 3eV

Dynamical Simulation of RF Signal

V/m 3e-5 -

2e-5 -1e-5 -

0 ◄

-2e-5 -

Initial calculations using CST RF modeling tools:
 → Antenna configured to transition from
 Parallel Plate Waveguide to Rectangular Waveguide
 → Working on FPGA-accelerated parameter fitting

Electron moves in cyclotron motion

between plates Type Mo 5.8e+07 [S/m] Electric cond 8930 [kg/m^3] Transparent for particles no (auto) Thermal cond 401 [W/K/m] 0.39 [kJ/K/kg] leat capacity 0.000115141 [m^2/s] Diffusivity Young's modulu 120 [kN/mm^2] Poisson's ratio 0.33 17 [1e-6/K hermal expa

e-field (t=0..end(0.1)) [pic] 🌣

250.000 mr

0.000355

Sample

Cross section

Cutplane at 7

P_{signal}~0.1 fW

Normalization to Project 8 (https://arxiv.org/abs/1703.02037

RF Tracking System

Calorimeters

Electron Trajector

Transverse Drift Filter

RF Antennas

Cosmic Neutrino Telescope Step 4: Fine Adjust

Choice: Transverse Drift Filter – New Concept

Auke Pieter Colijn (PATRAS 2019)

Transverse Filtering

PTOLEMY: Transverse drift filter

Important Properties for Calorimeter Stage: Low magnet field, Small Area

Calorimeters

Transverse Drift Filter

RF Anter

Tritium Target

Transverse Filtering

PTOLEMY: Transverse drift filter

Important Properties for Calorimeter Stage: Low magnet field, Small Area

alorimeter

Electron Trajector

Transverse Drift Filter

Tritium Target

Magnetic Fields for Transverse Drift

0.5

1 Arc length (m)

1.5

Cosmic Neutrino Telescope Step 5: Eye Piece

- Choice: TES Microcalorimeter ~22meV resolution
- World-record resolution on IR photons
- ~10 nm of material to stop eV electrons

Thin sensors:
~1 eV electron
can be stopped
with very small CFast time
response:Time response (τ)

also small (<µsec)

MicroCalorimeter R&D

Now: 0.11 eV @ 0.8 eV and 106 mK and 10x10 μm² TiAuTi 90nm [Ti(45nm) Au(45nm)] (τ ~137 ns)

 $E_e = e(V_{cal} - V_{target}) + E_{cal} + RF_{corr}$

RF Antennas Tritium Target c) b)

Design Goal (PTOLEMY): $\Delta E_{FWHM} = 0.05 \text{ eV} @ 10 \text{ eV}$ translates to $\Delta E \propto E^{\alpha} (\alpha \leq 1/3)$ $\Delta E_{FWHM} = 0.022 \text{ eV} @ 0.8 \text{eV}$

Now: 0.11 eV @ 0.8 eV and 106 mK and 10x10 µm² TiAuTi 90nm [Ti(45nm) Au(45nm)]

Constructing the 1st CyB Telescope

Full end-to-end EM transport with detailed RF signal simulation in CST software → Design to be ported to mechanical CAD

 Converting current sheets to realistic coils
 Tilting electrodes
 to be parallel to B field
 Computing fringe field and iron

yoke shape

Circular Geometry w/microcalorimeter at center

24

Inflation -> Hot Big Bang

Baumann (TASI 2012)

Inflation -> Hot Big Bang

Ratz (Erice 2017)

ADDITIONAL SLIDES

Graphene DM Targets:Two ConceptsPTOLEMY-G3PTOLEMY-CNT

Self-instrumented with G-FETs

Anisotropy of aligned CNTs

Principles of Operation:

- Tunable meV band gap set by nanoribbon width (E_{gap} ~ 0.8eV/width[nm])
 Large jump in conductivity (~10¹⁰ charge
- Large jump in conductivity (~10¹⁰ charge carriers) relative to charge neutrality point under the field-effect from a single electron scatter

Scalability to Interdigitated Capacitor

V_{bg} (meV) 5

curve rescaled)

-5

0

Origin of Large Scale Structure

Baumann (TASI 2012)

Sticking Probability of H on Graphene

This technique repeated for ³He and ³H would provide data on final-state T-Graphene → ³He-Graphene molecular smearing.

New ideas for magnetic transfer!

Imaging covalent bond formation by H atom scattering from graphene, Jiang et al., Science 364, 379–382 (2019) 26 April 2019.

Polarized Tritium Target

Lisanti, Safdi, CGT, 2014.

Point at the Sky with Tritium Nuclear Spin

Hydrogen doping on graphene reveals magnetism

Gonzalez-Herrero, H. *et al.* Atomic-scale control of graphene magnetism by using hydrogen atoms. *Science (80).* **352,** 437–441 (2016).

Tritium β-decay (12.3 yr half-life)

Neutrino capture on Tritium

Challenges: Resolution and Backgrounds

Neutrino physics with the PTOLEMY project, M.G. Betti et al., JCAP **07** (2019) 047 <u>DOI: 10.1088/1475-7516/2019/07/047</u> 35 e-Print: <u>arXiv:1902.05508</u>

KArlsruhe TRItium Neutrino (KATRIN)

Difference in Scales

KATRIN ~1200m³

~1m³

Difference in Scales

Stereo 27 GHz RF feeds → Digitally select endpoint electrons

Detection Concept: Neutrino Capture

 Basic concepts¹ for relic neutrino detection were laid out in a paper by Steven Weinberg in **1962** [*Phys. Rev.* 128:3, 1457]

¹Finite neutrino mass, tritium and other isotopes studied for relic neutrino capture in this paper: JCAP **06** (2007) 015, <u>DOI: 10.1088/1475-7516/2007/06/015</u> by Cocco, Mangano, Messina 39

Neutrino Masses from Oscillations

The absolute neutrino masses are not known.

It's not known at this time whether neutrinos masses are "Normal" or "Inverted".

Neutrino Sky

$m_v < 0.00001 \text{ eV}$

m_v ~ 0.001 eV

Hannestad, Brandbyge (2009)

$m_v \sim 0.01 \, eV$

m_v ~ 0.1 eV

Target Geometry

- Collect electrons over a large target area (end-on view in orange, normal to magnetic field yellow).
- Electrons are accelerated into a high magnetic flux region that is an order of magnitude smaller in cross section green.
- Through reflections and transverse drift (EM optics) e^{-'}s enter the RF region (out of the screen).

Target Geometry

- Collect electrons over a large target area (end-on view in orange, normal to magnetic field yellow).
- Electrons are accelerated into a high magnetic flux region that is an order of magnitude smaller in cross section green.
- Through reflections and transverse drift (EM optics) e^{-'}s enter the RF region (out of the screen).

Magnetic Fields for Transverse Drift

Proposed configuration using Iron Return Yoke w/ small gap

MicroCalorimeter R&D

Calorimete

Transverse Drift Filte

RF Antennas

 $E_e = e \left(V_{cal} - V_{target} \right) + E_{cal} + RF_{corr}$

Linearly Repeating Geometry suitable for underground tunnel

Repeated to reach $10mg \rightarrow -100$ meters

Recent Publications [PTOLEMY COLLABORATION]

Experiment Design:

A design for an electromagnetic filter for precision energy measurements at the tritium endpoint, M.G. Betti et al., Prog.Part.Nucl.Phys. **106** (2019) 120-131, DOI: 10.1016/j.ppnp.2019.02.004, e-Print: arXiv:1810.06703

Physics Program (CNB, Mass, Sterile,..): Neutrino physics with the PTOLEMY project, M.G. Betti et al., JCAP **07** (2019) 047,<u>DOI: 10.1088/1475-7516/2019/07/047</u> e-Print: <u>arXiv:1902.05508</u>

http://ptolemy.lngs.infn.it

Neutrino Mass Sensitivity

Neutrino physics with the PTOLEMY project, M.G. Betti et al., JCAP **07** (2019) 047 <u>DOI: 10.1088/1475-7516/2019/07/047</u> 48 e-Print: <u>arXiv:1902.05508</u>

3+1 Sterile Sensitivity

Neutrino physics with the PTOLEMY project, M.G. Betti et al., JCAP **07** (2019) 047 <u>DOI: 10.1088/1475-7516/2019/07/047</u> 49 e-Print: <u>arXiv:1902.05508</u>

PTOLEMY R&D at LNGS

PonTecorvo Observatory for Light, Early-universe, Massive-neutrino Yield

Small but intense R&D effort hosted at the Gran Sasso National Laboratory in Italy

Exploring possible future sites that can host telescope operation with a 10mg tritium target

PTOLEMY World-Wide Collaboration

2015 Targeted Grant Award from the SIMONS FOUNDATION