

Dottorato internazionalizzato in **Quantum Technologies**

International PhD program in Quantum Technologies

Università degli Studi di Napoli "Federico II"

PhD in Quantum Technologies courses - 39th cycle

University of Naples "Federico II" - University of Camerino - CNR - National Council of Researches, Florence

Apart from the courses listed below, every year a PhD Quantum Technologies Summer School is organized:

- in 2019 the School was organized by the Napoli node
- in 2020 it was organized, in remote, by the CNR Florence node: for the program go the link
- in 2021, again in remote, the School was organized by the QT group at Camerino
- in 2022, the School was held at Catania, organized by the Neapolitan QT group
- in 2023, the School was held at Trieste, under the responsibility of the QT CNR group at Florence

• Courses proposed from the University of Camerino

1c) Quantum Computation

by Stefano Mancini – stefano.mancini@unicam.it

given originally for the Laurea Magistrale at Camerino during the first semester AY 2024/25 Lectures for 42 hours and 6 credits.

[Interested graduate students can follow the set of recorded lectures.] Graduate students will agree with the teacher about a specific topic (related with those described in the lectures), which the students will have to elaborate on and summarize in a written report.

2c) Quantum Information

by Stefano Mancini – stefano.mancini@unicam.it

given originally for the Laurea Magistrale at Camerino during the first semester AY 2023/2024 Lectures for 42 hours and 6 credits.

[Interested graduate students can follow the set of recorded lectures.] Graduate students will agree with the teacher about a specific topic (related with those described in the lectures), which the students will have to elaborate on and summarize in a written report.

Dipartimento di Fisica "Ettore Pancini"

Compl. universitario Monte S. Angelo, Via Cintia – 80126 Napoli (Italy)

ph. +39 / 081 676870 fax +39 / 081 676974 e-mail: giovannipiero.pepe@unina.it

3c) Quantum Annealing, Monte Carlo Simulations and machine learning Algorithms

by Sebastiano Pilati – sebastiano.pilati@unicam.it

Lectures for 6 hours and 1 credit. Scheduled for the first half of July 2024.

4c) Dynamics of open quantum systems

by David Vitali – david.vitali@unicam.it

given specifically in Camerino for the Unina – Unicam - CNR PhD program in Quantum Technologies approx. schedule: 2 hours per week, starting on Friday Jan 19th – till April 2024:

Lectures for 24 hours and 4 credits.

Available via Webex and lectures will be recorded.

Graduate students will agree with the teacher about a specific topic, related with those described in the lectures, which the students will have to elaborate on and summarize in a written report.

• Courses proposed from the University of Naples & CNR - SPIN, Naples

1n) Quantum Algorithms

by Giovanni Acampora – giovanni.acampora@unina.it and by Autilia Vitiello – autilia.vitiello@unina.it

Theoretical Computer Science, The Leap from Classical to Quantum Computation, Quantum Architectures, Quantum Algorithms

Lectures for 30 hours and 5 credits: the course is also proposed to all the PhD students in Computational Intelligence

2n) Introduction to Quantum Information

by Rosario Fazio - rosario.fazio@unina.it

Basics (qubits, quantum gates and simple protocols), Decoherence and dissipation in quantum systems, Accuracy and control of quantum protocols, Quantum simulators - intro, Quantum information and statistical mechanics

Lectures for 15 hours and 2 credits

3n) <u>Quantum Superconducting Technologies: Principles, Engineering &</u> <u>Interfaces - part 1</u>

by Francesco Tafuri <u>– francesco.tafuri@unina.it</u> Davide Massarotti – davide.massarotti@unina.it Domenico Montemurro – domenico.montemurro@unina.it

to be given in late Spring 2024 Lectures for 24 hours and 3 credits.

4n) Quantum Superconducting Technologies: Principles, Engineering & Interfaces - part 2

by Giampiero Pepe – giovannipiero.pepe@unina.it

Lectures for 24 hours and 3 credits.

Lectures for 6 hours and 1 credit.

5n) Quantum Communication

by Alberto Porzio - alberto.porzio@unicas.it

Specifically thought for graduate students a general introductory part is followed by a focus on optical experimental quantum communication.

The course consists of Lectures for 20 hours and 3 credits, to be given according to the requests by the PhD students.

6n) <u>Static and Dynamics of Quantum Phase transitions in closed an open</u> <u>systems</u>

by Vittorio Cataudella – vittorio.cataudella@unina.it Antonio De Candia – antonio.decandia@unina.it Giulio de Filippis – giulio.defilippis@unina.it Carmine Antonio Perroni – carmineantonio.perroni@unina.it

7n) Solid State qubits

by Procolo Lucignano – procolo.lucignano@unina.it Gabriele Campagnano – gabriele.campagnano@spin.cnr.it

n.b.: this undergraduate course (with lectures for 30 hours and 5 credits) is offered in the frame of the **MSc course in Quantum Science and Engineering**

8n) Fuzzy models and approximate reasoning in data analysis

by Ferdinando Di Martino – ferdinando.dimartino@unina.it

• CNR - Florence

1f) Quantum photonic technologies

by CostanzaToninelli – costanza.toninelli@ino.cnr.it Marco Bellini – marco.bellini@ino.cnr.it Alessandro Zavatta – alessandro.zavatta@ino.cnr.it

Lectures for 18 hours and 3 credits during the second semester (June - July 2024)

Graduate students will agree with the teachers about a specific topic (related with those described in the lectures), which the students will have to elaborate on and summarize in a written report.

2f) Quantum Simulations with Atoms

by Giacomo Roati – giacomo.roati@ino.cnr.it Alessia Burchianti – burchianti@lens.unifi.it Jacopo Catani – jacopo.catani@ino.cnr.it Chiara D'Errico – chiara.derrico@ino.cnr.it Luca Tanzi – tanzi@lens.unifi.it

Lectures for 18 hours and 3 credits. Beginning scheduled from the 2nd week of March 2024 Graduate students will agree with the teachers about a specific topic (related with those described in the lectures), which the students will have to elaborate on and summarize in a written report.

3f) Quantum metrology and sensing

by Luca Pezzé - luca.pezze@ino.cnr.it Nicole Fabbri - nicole.fabbri@ino.cnr.it

Lectures for 18 hours and 3 credits, scheduled on next February – March 2024 (dr. Pezzi), on April – May (dr. Fabbri)

Graduate students will agree with the teachers about a specific topic (related with those described in the lectures), which the students will have to elaborate on and summarize in a written report.

4f) **Quantum paradoxes**

by Augusto Smerzi – augusto.smerzi@ino.it

Lectures for 12 hours and 3 credits during the first semester (from the beginning of October – till end of December 2024)

Graduate students will agree with the teachers about a specific topic (related with those described in the lectures), which the students will have to elaborate on and summarize in a written report or seminar.

Lecturer	David Vitali david.vitali@unicam.it
Credits (planned)	4
Planned hours	24
Planned schedule	From January 19th, 2024: each Friday, 2 hours
and location	
Prerequisites	Quantum mechanics basic mechanics statistical, physics
Description	The course aims at providing the basic tools for describing driven dissipative
	systems in which the interaction with a reservoir cannot be neglected. Master
	equations, Langevin equations will be derived and discussed. Application to a
	set of quantum technology platforms will be studied

Dynamics of open quantum systems

Fuzzy models and approximate reasoning in data analysis

Lecturer	Ferdinando Di Martino	
Credits (planned)	6	
Planned hours	42 (the course is jointly proposed with the PhD program in Computational Intelligence)	
Planned schedule	 March - July 2024 Modules: Fuzzy sets and extension principle. Characteristic functions. Type of fuzzy sets. Fuzzy numbers. Examples. Fuzzy relations. Triangular norm operators. Projections and Cylindrifications. Examples. Fuzzy relation equations. Fuzzy relation equation systems Examples in physics. Direct and Inverse Fuzzy transform Examples. Fuzzy clustering concepts Fuzzy partitional clustering. Fuzzy rules. Fuzzification and defuzzification models. Generating fuzzy rules. Fuzzification and defuzzification models. Generating fuzzy rules from numerical and categorical data. The Wang & Mendel model. Examples. Fuzzy systems. Inference process. Mamdani and Takagi-Sugeno models. Examples Type-2 fuzzy sets. The e footprint of uncertainty. Interval Type-2 fuzzy sets and their implementation. IT2 Fuzzy Systems. Type-reduction process. Examples 	
Prerequisites	Set theory, Boolean logic, statistical treatment of observational data	
Description	Set theory, Boolean logic, statistical treatment of observational data The course will deal with fuzzy set theory, fuzzy transform, approximate reasoning, fuzzy systems and its applications in physics. In physics it is often necessary to deal with vague or imprecise information for the analysis of experimental data. One type of imprecision is that managed in the statistics of experimental data through statistical inference approaches and uncertainties estimation. These approaches, however, have a not negligible computational complexity and are unsuitable for managing sets of vague and imprecise information which, on the other hand, constitute the knowledge base of human reasoning processes. Fuzzy set theory allows us to manage qualitative and fuzzy information in a formal and rigorous way in order to create models for data analysis and data mining and approximate reasoning frameworks through the use of inferential rules that translate and model human reasoning. This course initially introduces fuzzy set theory and then explores fuzzy-based methods and models of data analysis, data mining and approximate reasoning. Finally, the type-2 fuzzy sets and their implementation in the construction of intelligent systems will be treated. During the course various examples of fuzzy-based methods and techniques of data analysis applied to fields of physics will be made.	

Introduction to Quantum Information

Lecturer	Rosario Fazio	rosario.fazio@unina.it
Credits (planned)	2	
Planned hours	15	

Planned schedule and location	beginning scheduled around February/March 2024		
Prerequisites	Quantum Mechanics		
Description	 <u>Elements of Quantum Mechanics</u> Density matrix formalism, Bloch sphere for spin-1/2, reduced density matrix, Schmidt decomposition, purification <u>Quantum Measurement</u> projective measurement, POVM <u>Open quantum systems</u> CPT maps, Quantum Operations, Master Equation, Examples <u>Entanglement</u> Bell and GHZ states, Measures of Entanglement <u>Quantum computation</u> Quantum gates, Basics of Quantum algorithms. Quantum Error Correction <u>Entanglement in Many-Body systems</u> <u>Entanglement and critical phenomena</u> <u>Physical implementations of a quantum computer</u> 		

Quantum Algorithms

Lecturers	Giovanni Acampora	giovanni.acampora@unina.it	
	Autilia Vitiello	autilia.vitiello@unina.it	
Credits (planned)	4-6		
Planned hours	20hrs to 30hrs		
Planned schedule	after the Summer school		
and location	Napoli Monte S. Angelo		
Prerequisites	Linear Algebra, Foundations of Computer Scien	се	
Description	Introduction (3-5 hours)		
	Theoretical Computer Science (5-7 hours)		
	The Leap from Classical to Quantum Compu	itation (3-5 hours)	
	Quantum Architectures (3-5 hours)		
	Quantum Algorithms (6-8 hours)		
	This module introduces the basic concep algorithms. Specifically, the module deal introduction to Hilbert spaces; difference am and quantum systems; a brief introduction the qubit to quantum gates; introduction to Josza algorithms, Simon's periodicity algorit Shor's factoring algorithm; theoretical com problem complexity; an overview of quantum libraries. Exam will be conducted by requ project on the implementation of quantum a	ts of the design of quantum ls with the following topics: and deterministic, probabilistic to quantum architecture: from quantum algorithms: Deutsch- thm, Grover's search algorithm, nputer science and classes of m programming languages and airing students to carry out a lgorithms.	

Quantum Communication		
Lecturer	Alberto Porzio	alberto.porzio@unicas.it
Credits (planned)	4/6	
Planned hours	20h to 24h	

Planned schedule	Second semester 2023		
Prerequisites	Quantum mechanics; Quantum Optics (basic)		
Description	Quantum mechanics; Quantum Optics (basic)The program overviews: a) basic principles of quantum information (entanglement, Bell inequalities, no-cloning theorem, measurement theory in QM, coherence and de-coherence); b) the concepts of fidelity and state reconstruction (with experimental aspects); c) q-bit and Continuous Variable QI (with examples of physical implementations); d) simple quantum protocols (quantum cryptography and teleportation); e) intrinsic and technological limits of QI.		

Quantum Computation

Lecturer	Stefano Mancini	stefano.mancini@unicam.it
Credits (planned)	6	
Planned hours	42	
Planned schedule	Camerino	
and location	First semester	
	Lectures transmitted via streaming and recorded	l on WEBEX
Prerequisites	Quantum mechanics formalism	
Description	Quantum circuits	
	Universal sets of logical quantum gates	
	Random number generation	
	Deutsch-Josza and Simon algorithms	
	Quantum Fourier transform	
	Factorization and Shor algorithm	
	Hidden subgroup problem	
	Searching and Grover algorithm	
	Black box Boolean functions evaluation	

Quantum Information

Lecturer	Stefano Mancini	stefano.mancini@unicam.it
Credits (planned)	6	storano marcina (ganeta marcina)
Planned hours	42	
Planned schedule	Camerino	
and location	First semester	
	Lectures transmitted via streaming and recorded	l on WEBEX
Prerequisites	Quantum mechanics formalism; basics of probability theory	
Description	Information and entropy: classical view	
	Mixed quantum states	
	Information and entropy: quantum view	
	Channel maps	
	Data compression	
	Information transmission	
	Error correcting codes	
	Channel capacities	
	Quantum cryptography	

Quantum Paradoxes

Lecturer	Augusto Smerzi	augusto.smerzi@ino.it
Credits (planned)	3	
Planned hours	12	
Planned schedule	Firenze, First semester – September-December	2024
and location	Lectures transmitted via streaming and notes	
Prerequisites	Quantum Mechanics	
Description	 The quantum theory of weak and strong meas Contextuality and the Kocken-Specker theorem The Einstein-Podolski-Rosen paradox - 1 hr Non-locality, realism and free will - 2 hrs No-signaling, no-cloning - 1 hr The GHZ paradox and Hardy's impossibility - The Bohm, Everett and Copenhagen interpreta The statistical interpretation and the PBR theorem The several friends of Wigner - 2 hrs Lecture notes are available on request. 	surements – 2 hrs m – 1 hr 1 hr ations – 1 hr orem - 1 hr

Quantum Sensing and Metrology

Lecturer	Luca Pezzè	luca pezze@ino.cnr.it		
Doctaron	Nicole Fabbri nicole.fabbri@ino.cnr.it			
Credits (planned)	3			
Planned hours	18			
Planned schedule	Firenze			
and location	First semester – September-December 2024			
	Lectures transmitted via streaming and recor	ded on WEBEX		
Prerequisites	Ouantum mechanics formalism: basics of pro	bability theory		
Description	Theory of quantum sensing and metrology (12)	2 hrs)		
	Parameter estimation (Cramer-Rao, Maxim)	um Likelihood, Bayesian		
	estimation) - 3 hrs			
	• Fundamental bounds on phase sensitivity	(Heisenberg limit, quantum		
	Fisher information, Bayesian bounds) - 1.5 h	rs		
	• Statistical speeds and entanglement - 3 hrs			
	• Useful entanglement in quantum metrology	- 2 hrs		
	• Multipartite entanglement – 1 hr			
	• Metrological entanglement in experiments - 1.5 hrs			
	Quantum sensing experiments (6 hrs)			
	 Overview on quantum sensing platforms and operational definitions - 1 hrs A nanoscale quantum sensor: the diamond NV center - 2 hrs 			
	- General introduction on colour centers in diamond			
	- Diamond Material Engineering			
	- NV sensing applications			
	• Sensing by quantum coherence - 3 hrs			
	- Ramsey protocol			
	- Decoherence and the fundamental limit to s	ensitivity		
	- Dynamical decoupling	, c		
	- Noise spectroscopy			
	- Quantum optimal control for quantum sens	ing		
	Lecture notes are available on request.			

Quantum Superconducting Technologies: Principles, Engineering & Interfaces -- part 1

Lecturer	Francesco Tafuri Davide Massarotti Domenico Montemurro	francesco.tafuri@unina.it davide.massarotti@unina.it domenico.montemurro@unina.it
Credits (planned)	3	
Planned hours	24	
Planned schedule	May/June 2024	lid State Dhusies
Description	 Elementary Quantum Mechanics and So Quantum hardware is what transfor computation and communication in control, couple, transmit and read out with great precision, and in a technolo at illustrating some aspects of this is hardware and technology, focusing of hardware. Some key notions on ad introduced as a bridge to standard con Description by keywords: Introduction to Mesoscopic with Supe in Condensed Matter Macroscopic Quantum Phenomena, bis Superconducting Devices, the Jose conversion, Andreev reflection, introd and noise, macroscopic quantum dynamics, correlation and response, of Topological defects, vortex pairs and n topological quantum numbers in nonn Nanoscale Processing for Advanced Do Superconducting and hybrid qubits, p phase-, charge- and flux qubits, fi macroscopic quantum tunneling to Ra Josephson bifurcation amplifier, SQU Sensors at the quantum limit, quantu Superconducting single photon detect with quantum optics experiments 	Ind State Physics ms the novel concepts of quantum to reality. The key challenge is to the fragile stage of quantum systems ogically viable way. This course aims key challenge in realizing quantum on solid state and superconducting vanced solid state physics will be urses. rconductivity, Order and Excitations roken symmetry variables ephson effect and dissipationless duction to dissipation, decoherence tunneling and its foundations on liffusion and Langevin theory totes on vortex matter and dynamics, relativistic physics evices orinciples of superconducting design, rom transmon to fluxonium (from abi oscillations and more) IDs and qubit read-out im memories ors, principles of operation, interface

Solid State qubits				
Lecturers	Procolo Lucignano	procolo.lucignano@unina.it		
	Gabriele Campagnano	gabriele.campagnano@spin.cnr.it		
Credits (planned)	5			
Planned hours	30h			
Planned schedule	Second semester 2024			
and location	Napoli Monte S. Angelo (this course is offered in the frame of the			
	undergraduate MSc course in Quantum Science and Engineering)			
Prerequisites	Solid State physics, Quantum Mechanics			
Description	Solid State Universal quantum gates (10-14h)			
	- Spins in double quantum dots			
	- Spin Defects in Solids			

- Superconducting qubits
Adiabatic quantum computation (4-6 h)
- Quantum annealing with superconducting qubits
- Dissipative Landau-Zener
- Experimental implementation
Topological quantum computation (6-10 h)
- One dimensional superconducting systems and Majorana Fermions
- Majorana Braiding and fusion

Static and Dynamics of Quantum Phase transitions in closed an open systems

Lecturer	Vittorio Cataudella	vittorio.cataudella@unina.it
	Antonio De Candia	antonio.decandia@unina.it
	Giulio De Filippis	giulio.defilippis@unina.it
	Carmine Antonio Perroni	carmineantonio.perroni@unina.it
Credits (planned)	3	
Planned hours	24	
Planned schedule	October / November 2024	
Prerequisites		
Description	Aim of the course is to characterize the transitions between different quantum phases both from theoretical and experimental point of view. First we will review thermal continuous phase transitions, like the Berezinskii–Kosterlitz– Thouless one, then we will concentrate on quantum phase transitions, like those in quantum XY and spin-boson models, at zero and finite but small temperature. Finally, we will focus on a different type of quantum phase transitions that occur on intermediate time scales, known as dynamical quantum phase transitions. These equilibrium and non-equilibrium transitions will be analyzed not only in the case of closed but also open systems, where the role of the environment can be active into the modification of the order, the nature and the occurrence of these phenomena. The presence of these transitions typically impacts the behavior of quantum materials, such two-dimensional ones, with varying the applied gate voltage and magnetic field.	