

UNIVERSITÀ degli STUDI di NAPOLI «Federico II» DOTTORATO di RICERCA in FISICA – PhD program in Physics

- Physics PhD course catalog -

38th cycle, and till active cycles

(last updated on June, 2022)

n.b. **SUPRA** courses are those ones offered (on-line) in the frame of the *Southern Universities Physics Research Agreement*, involving the University of Naples "Federico II", University of Campania "L. Vanvitelli" - Caserta, University of Bari, University of Salento - Lecce

1. Theoretical Physics of Fundamental Interactions

- 1.2. <u>Fundamental interactions: QCD and BSM</u> (SUPRA) <u>Perturbative QCD</u> <u>Teoria di Regge</u> <u>BSM</u>
- 1.3. Phenomenology of particle interactions <u>Introduction to Neutrino physics</u> <u>Heavy Flavour Physics</u> <u>Effective Theories and Flavour Physics</u>

1.1. Advanced topics in Theoretical Physics

1.4. Advanced theoretical/mathematical physics <u>Supersymmetry, String and Branes</u> <u>Topics on Non-Perturbative Quantum Field Theory</u> <u>Geometric and Topological methods in Theoretical Physics</u> (F. Lizzi)

(F. De Fazio - UniBa) (C. Corianò - UniSalento) (F. De Fazio - UniBa)

> (G. Ricciardi) (P. Santorelli) (G. D'Ambrosio)

(F. Pezzella – R. Marotta) (L. Rosa) (P. Vitale)

2. Astrophysics, Astroparticle and Cosmology

 2.1. Di Girolamo Multi-messenger and particle astrophysics of compact objects
 (SUPRA)

 Compact objects
 (F. De Paolis - UniSalento)

 Neutrino Oscillations
 (D. Montanino - UniSalento)

 Supernova Neutrinos
 (A. Mirizzi - UniBa)

 Gravitation, Relativity and Black Holes
 (M. De Laurentis)

 Physics and evolution of supermassive Black Holes
 (M. Paolillo)

 Gravitational Waves and Gamma-Ray Bursts
 (T. Di Girolamo)

 2.2. Experimental High-Energy Astroparticle Physics
 (SUPRA)

Experimental Techniques in Astroparticle Physics HE and VHE Observations from Extragalatic Sources HE Transients and the Multimessenger Context Indirect Dark Matter Searches (G. Marsella - UniPa) (L. Perrone – UniSalento) (E. Bissaldi – UniBa) (F. Loparco – UniBa)

2.3. Extended theories of Gravity and the problem of Dark Energy and Dark Matter

(S. Capozziello)

3. Nuclear and Particle Physics

- 3.1. Particle Detectors, Trigger and DAQ (SUPRA) Particle detectors Photo-detection Trigger and DAQ for Particle Physics Detection methods for nuclear astrophysics and applications Nuclear Physics in low-background conditions
- 3.2. <u>Signals formation and treatment in particle detectors</u> (SUPRA) <u>Signal formation</u> <u>Signals treatment</u>
- 3.3. Unified theory of nuclear reactions

4. Physics of Matter

4.1. Advanced topics in experimental physics of matter Advanced Spectroscopies in strongly correlated systems (G. De Luca) (A. Andreone) Electrodynamic properties of novel materials and devices **Organic conductors** (A. Cassinese) Ultrafast processes and femtosecond laser pulses (A. Rubano) Physics and applications of Superconducting and Spintronic Devices (G.P. Pepe) 4.2. A general overview of the Physics of Surfaces and Interfaces (R. Di Capua) 4.3. Statistical Physics for Complex Systems (SUPRA) **Active Matter and Complex Fluids** (G. Gonnella – A. Lamura - UniBa) **Statistical Mechanics of Complex Systems** (A. De Candia) **Stochastic Processes and Analysis of Correlations** (E. Lippiello - UniCampania)

5. Artificial Intelligence and Computing

- 5.1. <u>Artificial Intelligence and Machine Learning</u> (SUPRA) <u>Machine Learning: basics and applications</u> <u>Approximate reasoning and evolutionary computation</u> <u>Causality analysis of time series</u> <u>Data Modelling</u>
- (G. De Nunzio, G. Palma UniBa) (G. Acampora – F. Di Martino – A. Vitiello) (S. Stramaglia – UniBa) (N. Amoroso - UniBa)

- 5.2. <u>Quantum Computing and Artificial Intelligence</u>
- 5.3. Evolutionary Computation and Applications

6. Biomedical Physics

- 6.1. Biophysics for Health and Environment (SUPRA)
 (SUPRA)

 Biophysical mechanisms and therapeutic implications of human exposure to ionising radiation (L. Manti)
 (L. Manti)

 Bio-photonics for clinics and environment (M. Lepore UniCampania)
 (M. Lepore UniCampania, et al.)
- 6.2. Advanced computational tools in Medical Physics
- 6.3. Biosensors

(G. Mettivier)

(G. Acampora) (A. Vitiello)

(B. Della Ventura and R. Velotta)

(M. Primavera - UniSalento) (E. Bissaldi - UniBa) (M. Della Pietra) (R. Buompane – UniCampania (A. Best)

> (M. Abbrescia - UniBa) (A. Aloisio)

> > (G. La Rana)

7. General Formation

- 7.1. Statistical Methods for Data Analysis
- 7.2. Introduction to Inverse Problems
- 7.3. Waves and Interactions in Nonlinear Media
- 7.4. Scientific writing
- 7.5. How to boost your PhD

(A.O.M. lorio) (A. Emolo) (R. Fedele) (P. Russo) (A. Marino)

Advanced computational tools in Medical Physics			
Lecturer	Prof. Giovanni Mettivier	(giovanni.mettivier@unina.it)	
Credits (planned)	2		
Planned hours	12		
Planned schedule			
Prerequisites:	Medical Physics background, Programming skills (C, python, Matlab)		
Description:	of Monte Carlo simulations proce their application in the Medical code, like Geant4, allows to dosimetric and radiation-matt medical apparatus or medical pr study of AI algorithms (Machin autonomy models are the basis of learning and reasoning. In the	lectures introduce to some basic aspects and concepts of the use onte Carlo simulations procedures and Artificial Imaging tools for r application in the Medical Physics field. The use of simulation e, like Geant4, allows to students to implement and study metric and radiation-matter interaction problems related to lical apparatus or medical procedure (Virtual Clinical Trials). The dy of AI algorithms (Machine Learning and Deep Learning) and bnomy models are the basis for understand the basic of automatic ning and reasoning. In this course, the students will have portunity to design and develop such systems as part practical ons	

Description	The aim of this course is to give an outline of the characteristic of the most important spectroscopy's techniques and to provide to the PhD student the necessary basis to plan or to develop its own spectroscopy experiment using synchrotron light and/or scanning probe microscopy. Advanced spectroscopies are the most powerful experimental tools to investigate the electronic and magnetic properties of complex materials. These techniques are based on the study of the
	interaction of the matter with radiation, being typically X-rays or electrons. Modern X-rays spectroscopy's takes advantages from the high brilliance third generation synchrotron sources. These techniques can achieve high momentum and energy resolution, but they are
	typically unable to get spatially resolved information. Scanning tunneling microscopy's/Spectroscopy's are on the other hand based on the extremely high spatial resolution achieved by probing the tunneling electronic current coming from a tip in close proximity with a sample. These combined techniques can probably offer the largest possible number of information about the electronic properties of the solids. Examples of application of these techniques to different undisclosed issues in condensed matter physics will be given during the course, like the microscopic mechanism of superconductivity in the High Critical Temperature Superconductors and Novel oxides Interfaces, Proximity effect in Ferromagnetic/Superconducting heterostructures and Multiferroicity (coexistence of more of two ferroic orders).
	 The detailed program will include: 1) Introduction to the Physics of complex, strongly correlated materials 2) Electrons and X-rays as probes of the electronic density of states
	 3) Introduction to the synchrotron light a. X-ray Absorption and X-ray Photoemission Spectroscopies b. Examples: HTS and other metal transition oxides c. Resonant Inelastic X-ray Scattering d. Angle resolved Photoemission Spectroscopy

Advanced To	opics in Theoretical Physics	
Lecturer	Prof. Fedele Lizzi (fedele.lizzi@unina.it)	
Credits	4-6 (to be agreed with the students)	
(planned)		
Planned hours	24-36	
Planned		
schedule Prerequisites	usual courses of a physics meater degree	
Description	usual courses of a physics master degreeThe course will be a must for theoretical physics students, but can be also useful for the other students. Its main aim is to cover important topics, which should be in the baggage of every theoretical physicist, though are not necessarily covered in the usual core study. Some 	
	Topological solitons: Kinks, defects, monopoles, Skyrmions)	
	Nonlinear evolution equations and dynamical solitons (Sine Gordon, solutions of the Burger, Sine-Gorgon, Kortweg de Vires equations)	
	Caotic Systems: (logistic equation, Lorenz equation, strange attractors).	
	Renormalization	
	The theory of groups and Lie algebras (including quantum groups)	
	Advanced method in quantum field theory (heath kernel expansion, spacetime approach to qft)	
	Phase transitions in quantum field theory.	
	Quantum mechanics and measurement (Bell's Theorem)	
	Approaches to quantum spacetime (noncommutative geometry)	

A general or	verview of the Physics of Surfaces and Interfaces
Lecturer	Dr. Roberto Di Capua roberto.dicapua@unina.it
Credits	6
(planned)	
Planned hours	36 hours (18 lectures, 2 hours each)
Planned	the detailed schedule can be arranged with students
schedule	
Prerequisites	Basic knowledge of classical general physics and quantum mechanics. One or two lectures will be devoted to the few needed basic concepts of solid-state physics.
Description	The course aims to provide the foundation of physics of surfaces and interfaces. It is conceived to be of potential interest not only for Ph.D. students working in the physics of matter, but also for those involved in other fields, due to the development of fundamental issues and methodologies of wide application.
	The lectures are intended as an ideal prosecution of the general concepts provided from the master degree in physics on quantum mechanics, atomic-scale and many-bodies physics, structure of matter, interaction between matter and radiation: such concepts will be developed and applied to the study of solid surfaces and interfaces, a subject which is gaining more and more importance in Physics and in many other fields.
	One or two lectures, depending on the background of the students, will be devoted to the introduction of the few basic concepts of solid-state physics needed for the understanding of some arguments. Then, the main body of the course will be organized along the following three lines. 1) Illustration of basic phenomenological and theoretical aspects of the physics of surfaces: electronic states, charge distribution at surfaces and interfaces, the importance of strain and defects, thermodynamic aspects of the equilibrium, role of collective excitations and related states and interactions. 2) Interface phenomena: arising of new functionalities and properties at interfaces between different materials, interplay between electronic, magnetic and crystal properties, applications and perspectives of nanotechnology and engineering at atomic-scale, illustration of some current research results in this field.
	3) Description of the main experimental techniques, and underlying physics, for probing and measuring the properties of surfaces and interfaces: atomic force microscopy and related techniques, scanning tunnelling microscopy and spectroscopy, diffraction analysis, photoemission spectroscopy techniques, synchrotron-based techniques.

Artificial Intelligence and Machine Learning

First module	Machine Learning: basics and applications	
Lecturers	Giorgio De Nunziogiorgio.denunzio@unisalento.itGiuseppe Palmagiorgio.denunzio@unisalento.it	
Credits (planned) Planned hours	tbd 10	
Planned schedule Prerequisites	5 lessons / 2 hrs lesson	
Description	 ML taxonomy: supervised, reinforcement, unsupervised Regression: linear regression, GLM Classification: scores (confusion matrix and related measures; ROC curve; calibration; cross entropy, Brier score), class imbalance; Bias-Variance tradeoff: underfitting, overfitting. Perceptrons and Shallow Feed-Forward Neural Networks Regression and Classification in Matlab+Toolboxes Applications of regression and classification: case studies in Physics and Medicine with synthetic and public access data (Matlab) Applications of regression and classification: case studies in Physics and Medicine with synthetic and public access data (Matlab) 	

Second module	Approximate reasoning and evolutionary computation	
Lecturers	Giovanni Acampora (giovanni.acampora@unina.	
	Ferdinando Di Martino	(fdimarti@unina.it)
	Autilia Vitiello	(autilia.vitiello@unina.it)
Credits	tbd	
(planned)		
Planned hours	10 (5 lessons, 2 hrs each)	
Planned		
schedule		
Prerequisites		
Description	• Introduction (1 hour) Prof. Giovanni Acampora	
	• Approximate reasoning (5 hours) Lecture 1: Fuzzy sets and fuzzy relations Fuzzy operators: t-norm, s-norm Fuzzy membership functions and	m, residuum

The extension principle	
Fuzzy partitions and Linguistic variables	
Lecture 2:	
Fuzzy inference systems: fuzzy rule set inference systems	
Mamdani fuzzy inference model	
Tagaki-Sugeno- Fuzzy inference model	
Type2 fuzzy sets: intervsl type2 fuzzy sets	
Interval type2 fuzzy systems	
• Evolutionary computation (4 hours) Prof.ssa Autilia Vitiello Lecture 1: Introduction to the Evolutionary Computation and its motivations	
The main scheme of an Evolutionary algorithm	
Lecture 2:	
Different evolutionary algorithms: Genetic Algorithms, Differential Evolution and Particle Swarm Optimization. Design issues for evolutionary algorithms: parameter tuning and performance measures.	

Third module	Causality analysis of time series data	
Lecturer	Sebastiano Stramaglia	(sebastiano.stramaglia@uniba.it)
Credits (planned)	tbd	
Planned hours	10 (5 lessons, 2 hrs each)	
Planned schedule		
Prerequisites		
Description	Lecture 1: Complex Networks. Small world networks: Watts-Strogatz model Scale free networks: Albert-Barabasi model. Communities in complex networks. Applications.	
	Lecture 2: The problem of inference of Complex Networks from multivariate time series data. Time Series. Stationarity. Linear correlations and the power spectrum. Cross-correlation and coherence between time series. Prediction. Applications.	
	Lecture 3: Introduction to Information Information. Maximum Entropy metho	5 15
	Lecture 4: Vector autoregressive mode with transfer entropy. Applications.	els. Granger causality and its relation
	Lecture 5: Decomposition of Granger c order dynamical networks. Synergy an	

Fourth module	Data modelling
Lecturer	Nicola Amoroso (nicola.amoroso@uniba.it)
Credits (planned)	tbd
Planned hours	10 (5 lessons, 2 hrs each)
Planned schedule	
Prerequisites	
Description	Introduction: graph theory. Different graph models. Nodal and edge characterization. Local and global properties. Community detection. Learning: basic definitions, bias, variance and cross-validation. Supervised models. Deep Learning. Unsupervised models: clustering

Biophysics for Health and Environment

First module	Biophysical mechanisms and therapeutic implications of human exposure to ionising radiation	
Lecturer	Lorenzo Manti (lorenzo.manti@unina.it)	
Credits (planned)	3	
Planned hours	20 (10 lessons, 2 hrs each)	
Planned schedule		
Prerequisites	Fundamentals of radiation-matter interaction	
Description	The aim of the course is to provide an overview of the unique biological action exerted by ionizing radiation (/IR). The ensuing effects at cellular and tissue level are governed by the spatio-temporal mode with which energy deposition occurs at the nanometer level (i.e., at the scale of the DNA) and are influenced by a cascade of complex biomolecular responses. The course will therefore illustrate the main biophysical principles on which modern radiotherapy (RTR) relies. New approaches will be also discussed such as the use of accelerated particle beams (hadrontherapy) and the exploitation of nuclear fusion reactions where physics can give an essential contribution to IR-based cancer therapy.	

Second module	Biophotonics for clinics and environment	
Lecturer	Maria Lepore(maria.lepore@unicampania.it)	
Credits (planned)	4	
Planned hours	24	
Planned schedule		
Prerequisites	Basic concepts of optical techniques	
Description	The course will deal with the application of optical techniques to the development of new diagnostic strategies and environment monitoring tools. Vibrational and fluorescence spectroscopies will be used for investigating biofluids, human tissues, radioexposed cells and enzymes in order to monitor biological processes and to develop sensor devices.	

Third module	Numerical Methods for Data Analysis in Optical Spectroscopy	
Lecturers	Ines Delfino	(delfino@unitus.it)
	Carlo Camerlingo	(carlo.camerlingo@spin.cnr.it)
	Maria Lepore	(maria.lepore@unicampania.it)
Credits	3	
(planned)		
Planned hours	18	
Planned		
schedule		
Prerequisites	Basic notions of a programming language	
Description	The course aims to introduce numerical methods particularly useful for the analysis of spectral data with particular attention to background subtraction, noise reduction and quantitative applications (chemometrics). Univariate and multivariate analysis (PCA, Principal Component Analysis), wavelet algorithms will be discussed and applied in the analysis of practical cases of students' interest.	

Biosensors	5	
Lecturers	Dr. Bartolomeo Della Ventura	(bartolomeo.dellaventura@unina.it)
	Prof. Raffaele Velotta	(raffaele.velotta@unina.it)
Credits	2	
(planned)		
Planned	12	
hours		
Planned	tbd	
schedule		
Prerequisites	Physics background	
Description	currently used in realizing biosensors. the physical mechanisms underlyin laboratory demonstrations of some de described. Piezoelectric biosenso Electrochemical biosensors: volt-ampe techniques. Fundamentals of plasmo	nt with the most widespread techniques Lectures will include the discussion of ag the transduction processes and evices. The following biosensors will be rs: quartz-crystal microbalances. erometric and impedance spectroscopy nics: surface plasmon resonance and nce. Plasmonic-based biosensors: osensors.

Black Holes

Lecturers	Mariafelicia De Laurentis	(mariafelicia.delaurentis@na.infn.it)
Lecturers	Tristano Di Girolamo	(tristano.digirolamo@unina.it)
	Maurizio Paolillo	(maurizio.paolillo@unina.it)
Credits	4	(maurizio.paolino@umna.n)
(planned)		
Planned	24 (12 lectures, 2 hours each)	
hours		
Planned	tbd	
schedule		
Prerequisites		
Description	This class is intended to offer to the students a boad view of Black Holess, from the theoretical aspects of gravitational physics, through the observational evidences of their properties, all the way to their astrophysical and cosmological manifestations.	
	Rotating black holes: Kerr black coordinates, Uniqueness of the metric, On the conformal structu The four laws of black hole evol- the horizon, First law of black Astrophysical Black Holes, Tim	ution, Surface gravity and angular velocity of ack hole dynamics, Rotational Energy of ac-Evolution of black holes Quasi-stationary s, Merging of black holes, The first "image" of
	Part II: Gravitational Waves and	Gamma Ray Bursts <i>(Tristano di Girolamo)</i>
	Observations of GWs from b observations and theoretical inte	k holes as sources of GWs. Detection of GWs. black holes. Gamma Ray Bursts (GRBs): erpretation. centrale engines and final products of GRBs.
	(Maurizio Paolillo) The Discovery of Active Galact interpretation: variability, lumin Eddington luminosity, Eddingtor The Unified Model; AGN phys accretion disk spectrum; X-ray of Observational evidence of the Ur mass measurements; circumnuc mapping mass measurements; distortion in Fe lines; the Milky AGN evolution from multi-wavel ray and infrared; luminosity fur number density evolution; reso argument: how to derive the cur	nified Model: Quasar host galaxies; dynamical clear disks, dusty nuclear disks; reverberation evidence of hidden BLR in Sy2; relativistic

Di Girolamo Multi-messenger and particle astrophysics of compact objects

Module 1	Compact objects	
Lecturer	Francesco De Paolis(francesco.depaolis@unisalento.it)	
Planned hour	6	
Planned schedule		
Prerequisites	Basic Astrophysics	
Description	 Last stages of stellar evolution and formation of the compact objects Phenomenological properties of neutron stars and pulsars Selected recent topics on the physics of the compact objects 	
Recommended texts	Slides of the lecturer and texts suggested during the lectures	
Assessment methods	Short essay on one of the topics developed during the lectures	

Module 2	Neutrino Oscillations	
Lecturer	Daniele Montanino (daniele.montanino@unisalento.it)	
Planned hour	6-8h	
Planned schedule		
Prerequisites	Particle physics	
Description	 Introduction to the neutrino masses, mixing and oscillations in vacuum and matter Phenomenology of neutrino oscillations from terrestrial experiments and astrophysical sources, in particular solar neutrinos 	
Recommended texts	 exts Giunti, Kim, "Fundamentals of neutrino Physics and Astrophysics" (Oxford University Press, 2007) Slides of the lecturer 	
Assessment methods	Short essay on one of the topics developed during the lectures	

Module 3	Supernova neutrinos
Lecturer	Alessandro Mirizzi (alessandro.mirizzi@uniba.it)
Planned hour	6
Planned schedule	
Prerequisites	Particle physics
Description	 Supernova (SN) explosion mechanism SN 1987A neutrino observation Future SN neutrino observations Neutrino oscillations in dense SN medium
Recommended texts	 G. Raffelt, "Stars as Laboratories for Fundamental Physics" (University of Chicago Press, 1996) Slides of the lectures
Assessment methods	Short essay on one of the topics developed during the lectures

Module 4	Gravitation, Relativity and Black Holes	
Lecturer	Mariafelicia De Laurentis (mariafelicia.delaurentis@unina.it)	
Planned hour	6-8	
Planned schedule		
Prerequisites	analytical mechanics, general relativity	
Description	Rotating black holes: Kerr Spacetime and its global properties.	
_	Kerr black hole in Boyer-Lindquist coordinates. Zero-mass	
	limit. Kerr-Schild form of the Kerr solution. Ergosphere and	
	Horizon (Infinite redshift surface, Surface gravity, Surface	

	geometry of horizon and ergo surface) Particle and Light Motion in Equatorial Plane. Matter accretion and black hole parameters change. Evolution in the black hole parameter space. Geodesics in Kerr Spacetime: General Case. Light Propagation. Black hole shadow. Generic properties of the rotating black hole shadows (Asymmetry, Flattening etc). Image of Black Holes with the Event Horizon Telescope.	
Recommended texts	Slides of the lectures	
Assessment methods	Short essay on one of the topics developed during the lectures	

Module 5	Physics and evolution of supermassive Black Holes
Lecturer	Maurizio Paolillo (maurizio.paolillo@unina.it)
Planned hour	6-8
Planned schedule	
Prerequisites	Basic classical physics and gravitation. Useful but not required: Module " Gravitation, Relativity and Black Holes ", Introductory astrophysics, Physics of Galaxies
Description	The Discovery of Active Galactic Nuclei; Taxonomy of AGNs; clues to the interpretation: variability, luminosity and efficiency; steps toward unification: Eddington luminosity, Eddington mass and accretion rate; accretion efficiency. The Unified Model; AGN physical scales; broadband emission in AGNs; accretion disk spectrum; X-ray corona and other components. Observational evidence of the Unified Model: Quasar host galaxies; dynamical and reverberation mapping mass measurements; evidence of hidden BLR in Sy2; relativistic distortion in Fe lines; the Milky Way nuclear BH. AGN evolution from multi-wavelength studies of AGN populations optical, X-ray and infrared; luminosity function and number counts; AGN activity and number density evolution; resolving the Cosmic X-ray Background; Soltan argument: how to derive the current Black Hole mass density of the Universe; The link between Supermassive Black Holes and galaxy evolution; Evidences of AGN feedback in galaxies.
Recommended texts	Lecture slides; "Exploring the X-ray Universe", Seward & Charles, 2010
Assessment methods	Short essay on one of the topics developed during the lectures

Module 6	Gravitational Waves and Gamma-Ray Bursts
Lecturer	Tristano Di Girolamo (tristano.digirolamo@unina.it)
Planned hour	6-8
Planned schedule	
Prerequisites	Basic astrophysics and particle physics
Description	Generation of Gravitational Waves (GWs). Binary Black Holes (BBHs) as sources of GWs. Detection of GWs. Observations of GWs from BBHs. Gamma Ray Bursts (GRBs): observations and theoretical models. GRB progenitors. Black holes as central engines and final products of GRBs.
Recommended texts	Shapiro & Teukolsky, "Black Holes, White Dwarfs and Neutron Stars"
Assessment methods	Short essay on one of the topics developed during the lectures

Effective th	eories and flavour physics
Lecturer	Dr. Giancarlo D'Ambrosio gdambros@na.infn.it
Credits	5
(planned)	
Planned hours	24
Planned	
schedule	
Prerequisites	
Description	 Cross sections, decay widths, calculation of Feynman diagrams Quantum electrodynamics, precision tests: Lamb shift and g-2 Gauge theories, Yang Mills Fermi theory, beta decay, muon decay, universality of weak interactions, parity violation in weak interactions, V-A structures, effective theories Phenomenology of strong interactions, Goldstone theorem, pion as Goldstone mode spontaneous and explicit symmetry breaking Higgs mechanism Standard model of particle physics Flavour theory, quark and meson mixing, Cabibbo Kobayashi Maskawa matrix and determination of matrix elements, absence of flavor changing neutral currents, GIM mechanism and minimal flavor violation (MFV)
	Effective field theories, chiral perturbation theory

Electrodynamic properties of novel materials and devices

Lecturer	Prof. Antonello Andreone(antonello.andreone@unina.it)
Credits	4
(planned)	
Planned hours	24
Planned	
schedule	
Prerequisites	
Contents and	- Electrodynamics of metals, superconductors and dielectric media:
topics	basic principles
	- A short introduction to artificial materials: metamaterials and photonic band gap crystals and quasicrystals
	- Transformation optics: a new approach to defining the light geometry using metamaterials
	- Cutting edge THz technology
	- Plasmonics and plasmonic structures
	- Some exemplary applications of "natural" and "artificial" materials:
	from microwave systems to optical devices and sensors, cloaking,
	solar cells
Evaluation	All participants are required to make an oral presentation or write an
	essay on a selected subject after the course. The participants may suggest
	a topic related to their own research subject.

Evolutionary	y Computation and Applicatio	ns
Lecturer	Autilia Vitiello	autilia.vitiello@unina.it
Credits	3/4	
(planned)		
Planned hours	20 hours (10 lectures of 2h)	
Planned		
schedule		
Prerequisites	Basic concepts of computer science	
Description	Evolutionary computation is a subfield which includes a group of problem- principles rely on the theory of bi computation methods are characterize range of problem settings.	solving techniques whose basic iological evolution. Evolutionary
	The goal of the course is to give a evolutionary algorithms and show prace scientific and engineering fields.	

Experimental High-Energy Astroparticle Physics

Module 1	Experimental Techniques in Astroparticle Physics		
Lecturer	Giovanni Marsella (giovanni.marsella@unipa.it)		
Credits	2-3		
Planned hours	16		
Planned schedule			
Prerequisites	Basic particle physics, astrophysics and detectors		
Description	Description of the principal experimental techniques in Astroparticle Physics.		
	Contents:Introduction to Cosmic Rays (CR) sources		
	 Primary CRs, acceleration mechanism, propagation Secondary CRs, atmospheric showers 		
	 Detection techniques in Space, Extensive Air Shower arrays and underground detectors 		
	• Presentation of the principal experiments and recent results		

Module 2	Experimental and VHE Observations from Extragalactic Sources
Lecturers	Lorenzo Perrone et al. (lorenzo.perrone@unisalento.it)
Credits	1-2
Planned hours	5 - 10
Planned schedule	
Prerequisites	Basic particle physics, astrophysics and detectors
Description	The lectures intend to cover the description of the detection techniques of ultra-high energy comic rays (Pierre Auger Observatory, Telescope Array) and the current status of the art (results and perspectives) in the field. <i>Recommended texts: review papers and journal papers</i>

Module 3	HE Transients and the Multimessengers Context			
Lecturer	Elisabetta Bissaldi (elisabetta.bissaldi@uniba.it)			
Credits	2-3			
Planned hours	16			
Planned schedule				
Prerequisites	Basic astrophysics, detectors			
Description	 Transient phenomena in the gamma-ray sky: Gamma-Ray Bursts (GRBs), Soft Gamma Repeaters. Terrestrial Gamma-Ray Flashes; Solar Flares. Temporal and spectral characteristics Multi-frequency and Multi-messenger studies; LIGO/Virgo gravitational wave (GW) events and follow-up observations; The case of GRB 170817A/GW 170817; IceCube neutrino events and follow-up observations; The case of TXS 0506+056; Other recent discoveries in the field. Longair, "High-energy astrophysics" 			

2.	De	Angelis	&	Pimenta,	"Introduction	to	Particle	and
	Ast	roparticle	e Ph	ysics"				
3. Recent publications								
Assessment methods: lessons, final report								

Module 4	Indirect Dark Matter Searches		
Lecturer	Francesco Loparco(francesco.loparco@uniba.it)		
Credits	2-3		
Planned hours	16		
Planned schedule			
Prerequisites	Basic particle physics and detectors		
Description	Dark Matter models		
	Dark matter distribution in galaxies		
	WIMPs as dark matter searches with gamma rays and charged		
	particles		
	Searches dark matter from the Sun		
	Recent publications, some textbooks, slides from the lecturer		
	Assessment method: final report		

Extended theories of Gravity and the problem of Dark Energy and Dark Matter

Lecturer:	Prof. Salvatore Capozziello		
	(University of Naples, capozziello@na.infn.it)		
Credits	2		
(planned):			
Planned	12		
hours:			
Planned schedule:	April / May 2021		
Prerequisites:	General Relativity, Cosmology, Quantum Field Theory		
Description:	 Abstract: Extended theories of gravity can be related to several unification approaches and fundamental theories of interactions. They have recently attracted a lot of interest as alternative candidates to explain the observed cosmic acceleration, the flatness of the rotation curves of spiral galaxies, the gravitational potential of galaxy clusters, and other relevant astrophysical phenomena. Very likely, what we call "dark matter" and "dark energy" are nothing else but signals of the breakdown of General Relativity at large scales. Furthermore, PPN-parameters deduced from Solar System experiments do not exclude, a priori, the possibility that such theories could give small observable effects also at these scales. I review these results giving the basic ingredients of such an approach. Topics: 1. Observational cosmology: an overview 2. Dark Energy and dark Matter from the observations 3. Physical and Mathematical Foundations of Extended Theories of Gravity 4. Dark Energy and Dark Matter as Curvature Effects 5. Probing Extended Theories of Gravity at Fundamental Level 6. Advanced issues: GRBs to discriminate among Cosmological Models 		
	References: S. Capozziello, V. Faraoni " <i>Beyond Einstein Gravity</i> " Fundamental Theories of Physics, Springer, Dordrecht 2010		

Fundamental interaction: QCD and BSM

Module 1	Perturbative QCD		
Lecturer	Francesco Tramontano (francesco.tramontano@unina.it)		
Credits	2		
Planned hours	12 (2 lectures per week, 2 hours each)		
Planned schedule	tbd		
Prerequisites	Particle physics background		
Description	The lectures introduce to some basic aspects and concepts of perturbative QCD: running coupling and asymptotic freedom, the parton model, infrared divergences and the factorization theorem, parton densities and parton evolution, colour coherence. Applications to e+e-annihilation, deep inelastic lepton-nucleon scattering and hadron-hadron collisions are discussed.		

Module 2	Teoria di Regge	
Lecturer	Giovanni Chirilli (Regensburg) ref. Claudio Corianò	
Credits (planned)	2	
Planned hours	10	
Planned schedule	tbd	
Prerequisites	Particle physics background	
Description	Regge Theory; High parton density; small x evolution equations and Wilson lines formalism; Background field method; High- energy Operator Product Expansion; High-energy factorization for scattering amplitudes	

Module 3	BSM	
Lecturer	Fulvia De Fazio	(Università di Bari)
Planned hours	16	
Planned schedule		
Prerequisites	Particle physics background	
Description	Physics beyond the Standard Model	
	- Reasons to go beyond the Standard Mod	
	- Models based on extended gauge groups	
	- Models introducing extra dimensions	
	- Aspects of supersymmetry	
	- Extension of the effective hamiltonians	in New Physics Models

Geometric and topological methods in Theoretical Physics				
Lecturer	Prof.ssa Patrizia Vitale	(patrizia.vitale@unina.it)		
Credits (planned)	3			
Planned hours	20			
Planned schedule				
Prerequisites	Background in theoretical/mathemati	cal physics		
Description	Differential calculus on manifolds			
_	Topological invariants (homology, coho	omology and homotopy groups)		
	Lie groups and Lie algebras			
	Riemannian geometry			
	Fiber bundles			

Heavy Flavour Physics			
Lecturer:	Prof. Pietro Santorelli (pietro.	santorelli@unina.it)	
Credits (planned)	2-3		
Planned hours	14-16		
Planned schedule			
Prerequisites:	Basic concepts of Quantum Field Theory. Suitable for experimentalists	or theorists and	
Description:	 This course will provide an introduction to effective QuantumChromoDynamics for heavy quarks and its decays of heavy mesons. The following arguments wi 1. A very short review of the Standard Model 2. Integrating out heavy particles, scale separation, r 3. Heavy Quark Effective Theory 4. Semileptonic and rare decays of B mesons 5. Non-leptonic two body decays of B and D mesons 6. CP Violation 	application to weak ll be discussed:	

How to boost	t your PhD		
Lecturer	Dr. Antigone Marino	(CNR–ISASI, antigone.marino@unina.	
Credits (planned)	2		
Planned hours Planned schedule	12		
Prerequisites Description	skills, on which we rarely	researcher profession requires a plurality of stop to think about. Which ones are they them to turbo boost your PhD? The course is the scientific carriers.	
	 Soft Skills - The technical skills of a person are the first ingredients for a successful career, but often the competition with others is played on other skills, which are more related to the character of the person. This does not mean owning them or not. A good training action will widen the spectrum of these skills as well as technical ones. Scientific Communication - A large amount of researcher's work is now devoted to communication. Mostly through posters, slides papers and reports. We will see what are the channels or communication and how to treat them properly. 		
	scientist's computer ca this file is not enough all the information in internet. The care of our our work. The digital re behaviour in the onlin	nce upon a time, there was a file in ever alled curriculum dot something. Nowadays to promote your career. Society is collecting the biggest database we have ever have r digital records can be a fundamental key for eputation of a scientist is defined by his/he he environment and by the content he/sh self and others. Tips to analyse and contro- ill be given.	
	to the attention of journ outreach is playing an ir a good outreach event	titutions are now asking us to bring our wor halists, citizens and stakeholders. That is wh mportant role in scientific careers. Organizin needs a little bit of experience and a wel ill see which the conditions that make th e are.	

Introduction to Inverse Problems

T			
Lecturer	Prof. Antonio Emolo(antonio.emolo@unina.it)		
Credits (planned)	2		
Planned hours	12		
Planned schedule			
Prerequisites	Familiarity with linear algebra, differential equations, probability and		
	statistics, and calculus.		
Description	The course aims at providing fundamental understanding of parameter estimation and inverse problem philosophy and methodology, specifically regarding such key issues as uncertainty, ill-posedness, regularization, bias, and resolution. Theoretical come with illustrative examples implemented numerically. Main topics covered in the course are: inverse problems characterization, L_2 and L_1 linear regression, Singular Value Decomposition, Tikhonov regularization, numerical optimization techniques.		

Introduction to Neutrino Physics

Lecturer	Prof.ssa Giulia Ricciardi (giulia.ricciardi2@unina.it)
Credits (planned)	4-6
Planned hours	24-36
Planned schedule	
Prerequisites	basics of particle physics
Description	This course aims at providing the basics of the theory of neutrino physics and their oscillations. Some recent experimental results are also discussed. It can be extended to include the basics of leptogenesis.

Mathematical aspects of gauge theories

Lecturer	Prof.ssa Patrizia Vitale	(patrizia.vitale@unina.it)	
Credits	3		
(planned)			
Planned hours	20		
Planned			
schedule			
Prerequisites	background in theoretical/mathematical physics		
Description	Principal G-bundles and associated vector bundles		
	Gauge connections		
	• Abelian and non-Abelian gauge theories as theories of connections on fiber bundles		

Organic conductors

Lecturer	Antonio Cassinese	antonio.cassinese@unina.it
Credits (planned)	3	
Planned hours	8 - 10 lectures, 2 hours each	
Planned schedule	tbd	
Prerequisites	(like semiconductors, condu- interest for electronic and opt	
Description	Both fundamental aspects and practical application will be described Organic semiconductors, working principles and applications:- Injection and Electrical conductivity in organic semiconductors and I/O hybrids. P-type and n-type semiconductors- Experimental techniques for the realization of organic and I/O hybrid films and single crystal and devices Organic compounds with different functionalities (conductors, ferroelectric, electrical bistable and superconductors- Electro –optical techniques for the characterization of organic and 	

Particle Detectors-Trigger/DAQ

Module 1	Particle Detectors
Lecturer	Margherita Primavera (margherita.primavera@le.infn.it)
Planned hours	22
Planned schedule	
Prerequisites	Charged particles interactions with matter
Description	Generalities on gaseous detectors. Ionization and transport phenomena in gases. Amplification in gases. Gaseous detectors: ionization chambers, proportional counters, MultiWire Proportional Chambers, Drift chambers, TPC, Geiger counters, streamer tubes, Resistive Plate Counters. Calorimetry. Electromagnetic and hadronic calorimeters. Calorimeter calibration and monitoring. Cherenkov detectors: DISC, RICH, DIRC. Transition radiation detectors. Micropattern detectors, dual readout calorimeters.

Module 2	Photodetection	
Lecturer	Elisabetta Bissaldi (elisabetta.bissaldi@ba.infn.it)	
Planned hours	16	
Planned schedule	1 lecture per week two hours each	
Prerequisites	Experimental particle physics backs	ground
Description	This course aims to provide the knowledge of radiation measurement from classic scintillation detectors devices. It requires an elementar measurements, radiation matter electronics. The program includes Organic and Inorganic scintillators; photodetectors; SiPM technologies, Part of the course will be devoted to	ats and detection techniques, s to Silicon Photomultiplier y background in radiation c interactions and basic Photon-matter interactions; Optical coupling; Solid-state properties and Applications.

Module 3	Trigger and DAQ for Particle Physics
Lecturer	Massimo Della Pietra (massimo.dellapietra@unina.it)
Planned hours	10
Planned schedule	
Prerequisites	Experimental particle physics background
Description	Introduction to trigger and data acquisition system for experimental physics. Basic elements and definitions: trigger latency and trigger rate. Connection between trigger e data acquisition: dead time and busy status. Multilevel trigger systems, trigger for High Energy Physics at colliders. Integration of Trigger - DAQ and related systems Event building, Run Control, Online data quality. Description of most relevant trigger system for collider HEP: the trigger system of the LHC experiments. Trigger systems for fixed target experiments and for test-beam setup. Triggerless DAQ systems for particle and astroparticle physics. The impact of the trigger system efficiency on a physical measurement.

Module 4	Nuclear Physics in low-background conditions		
Lecturer	Dr. Andreas Best (andreas.best@unina.it)		
Credits (planned):	3-4		
Planned hours:	16-24		
Planned schedule:	To be arranged in discussion with stude	nts	
Prerequisites:	Basic knowledge of nuclear physics.		
Description:	This course aims to give an overview of the challenges and specific characteristics of experimental nuclear physics in low-background conditions, in particular in reference to nuclear astrophysics deep underground. We will discuss the main differences between "traditional" laboratories and underground ones; the motivations for wanting to measure in low-background environments; main sources of backgrounds and their rejection via passive and active methods; examples of currently active low-background laboratories; intrinsic backgrounds in common materials; methods to achieve similar or closely similar conditions on the surface.		
	Course outline Introduction • Background sources in nuclear physics, intrinsic and extrinsic • Signal to noise in nuclear astrophysics Backgrounds and suppression thereof • Deep-underground environments		
	 Passive shielding Active shielding, pulse shape discr 	imination	
	 <u>Real-world examples</u> Operational deep-underground lab Low-background measurements or Possible site visit at INFN-LNGS (to 	n the surface	
	The students can give indication for topic be part of the program of the course.	cs of their interest that could	

Physics and applications of Superconducting and Spintronic Devices

Lecturer	Prof. G.P. Pepe	(giovannipiero.pepe@unina.it)
Credits	4 /5	
(planned)		
Planned hours	about 30 (2-3 hours/week)	
Planned		
schedule		
Prerequisites	basic knowledge of solid state phy	
Description	applied aspects related to the nanosized regime, including de cryogenics, diagnostic tools for ad based microscopy) and time re detectors and nonequilibrum phy	a competences on both fundamental and superconducting electronics mainly in eposition techniques, nano-patterning, vanced microscopy (AFM, MFM, SQUID- esolved spectrometry, superconducting sics. Moreover, the recent achievements superconducting structures) will be also
	A brief overview of the program is	the following:
	Landau theory, weak supercondu	: linear electrodynamics, The Ginzburg- ctivity, the Josephson effect, some non- ctors, superconducting quantum devices, n systems.
	nano-litography, the self-assen	osition and characterization, top-bottom abling processes in nanotechnology, cale (AFM, STM, advanced microscopy).
	-	onics: magnetism and nanostructures, optics mainly in superconducting based
	-	seminars on topics related to the above using general templates as proposed by

Quantum Computing and Artificial Intelligence

Lecturer	Prof. Giovanni Acampora	giovanni.acampora@unina.it
Credits	4/6	
(planned)		
Planned hours	20 to 24	
Planned		
schedule		
Prerequisites	Foundations of Computer Science	and Computer Programming
Description	The program overviews: a) concep	ots of Artificial Intelligence; b) Machine
_	Learning; c) Implementation of Ma	achine Learning algorithms in Python;
		uantum Architectures; f) Quantum
	Algorithms; g) An embryonic view	on Quantum Machine Learning.

Quantum Information, Quantum Computation and Quantum Imaging

Module 1	Physical Coherence and Correlation Functions		
Lecturer	Saverio Pascazio (Università di Bari)		
Planned hours	16		
Planned schedule	Eight two-hour lectures between February and July 2021		
Prerequisites	Background in quantum theory, technologies and		
	applications		
Description	Optical Fluctuations and Coherence. Classical and Quantum theory. The Radiation field. Experimental milestones. Measuring correlation functions. Equilibrium equal-time (spatial) correlation functions Equilibrium equal-position (temporal) correlation functions. Beyond equilibrium. Phase transitions and correlation functions.		

Module 2	Introduction to Quantum Computa	tion
Lecturer	Luigi Martina	(Università del Salento)
Planned hours	16	
Planned schedule	Eight two-hour lectures between Febr	ruary and July 2021
Prerequisites	Quantum Mechanics and Statistical M	Mechanics
Description	Eight two-hour lectures between February and July 2021Quantum Mechanics and Statistical MechanicsSince at least a couple of decades, the Physics of Information and Computation has been a recognized as an autonomous discipline. In fact, the latter fields should be linked to the study of the underlying physical processes, namely of the quantum mechanical universe. But the intrinsic probabilistic character of the quantum measurements and the non-commutative algebra of the observables induce important modifications in the central results of classical information theory, including: quantum parallelism, compression of quantum information, bounds on classical information sent over a noisy quantum channel, efficient quantum algorithms and quantum	

Module 3	Quantum imaging	
Lecturer	Milena D'Angelo	(Università di Bari)
Planned hours	16	
Planned schedule	Eight two-hour lectures between June and July 2021	
Prerequisites	Background in quantum theory and optics.	
_	Attendance of either one of the two above a	modules is
	suggested.	
Description	From classical to quantum imaging. Klys model. Ghost imaging and diffraction, fro recent advances (differential GI, computation GI,). Single-pixel imaging. Super-resolut and Quantum Fisher information. Sub- Imaging by undetected photons. Imaging and scattering media, and imaging Correlation plenoptic imaging: from princip	om first protocols to onal GI, compressive ation: NOON states, shot-noise imaging. through turbulence around corners.

Scientific writing

Lecturer	Prof. Paolo Russo	paolo.russo@unina.it)	
		paolo.russo@ullilla.itj	
Credits (planned)	5		
Planned hours	30 2 (hrs per lecture, 2 lectures per week)	30 2 (hrs per lecture, 2 lectures per week)	
Planned schedule			
Prerequisites	none		
Description	The course provides basic intro to the professi publication in international journals, with refere publishing, scientific journal selection, writing manuscript editing, revision and proofs correspondence. Moreover, the following aspe description of the basic aspects of the Editorial s Journal (Editor, associate editors, editorial board journal manager); basic aspects of the manus methods for manuscript review; understandin bibliometrical indices. The course evaluation will be based on exercises on selected aspects of the course material.	ence to motivations for s style, ethical issues, reading, manuscript ects will be covered: structure of a scientific d members, publisher, script review process; ng and evaluation of	

Signals formation and treatment in particle detectors

Module 1	Signals formation	
Lecturer	Marcello Abbrescia	marcello.abbrescia@uniba.it
Planned hours	10	
Planned schedule	5 lectures of 2 hours each	
Prerequisites	Basic notions of electromagnetism and of particle detector	
	physics	
Description	U I	

Module 2	Signals treatment	
Lecturer	Alberto Aloisio (alberto.aloisio@unina.it)	
Planned hours	10	
Planned schedule		
Prerequisites		
Description	Sistemi di schermatura e di guardia nella lettura di sensori e rivelatori - Cenni sul noise di componenti attivi e passivi	
	- Uso del simulatore analogico per l'analisi di alcuni casi di studio: rumore di alcune configurazioni base degli amplificatori operazionali, effetto della capacità del rivelatore sul noise gain	

Statistical Methods for Data Analysis		
Lecturer	Dr. Alberto Orso M. Iorio (albertoorsomaria.iorio@unina.it)	
Credits (planned)	2-3	
Planned hours Planned schedule	12-18	
Prerequisites	Basic knowledge of the concept of probability. Examples and exercises will be done in C++, so basic knowledge of computer programming is recommended.	
Description	 recommended. Statistical methods for data analysis: Statistics and probability distributions Parameter estimates and maximum likelihood (ML) and extended ML methods The Bayes theorem: frequentistic and Bayesian approaches Computation of upper limits Combining measurements Monte Carlo techniques Fit quality with Toy Monte Carlo Multivariate discrimination methods Artificial Neural Networks 	
	Introduction to statistics application frameworks based on ROOT toolkit: • RooFit • TMVA	

Statistical Physics for Complex Systems

Module 1	Active Matter and Complex Fluids	
Lecturers:	Giuseppe Gonnella(giuseppe.gonnella@uniba.it)Antonio Lamura	
Credits (planned) Planned hours	2-3 16 (8 two hrs lectures)	
Planned schedule		
Prerequisites	Background in classical physics and statistical mechanics	
Description	Statistical physics and biological systems. Active matter: basic particle and continuous models. The phase diagram of passive and active colloids. Topological transitions. Complex fluids: theoretical modelling. Polymers: static and dynamical properties in dilute conditions. Ternary mixtures with surfactant: self -aggregation, active and double emulsions. Basic rheological behavior of complex fluids. The yielding transitions. Simulations methods in soft and active matter. Molecular dynamics, Multi-Particle Collision Methods, lattice Boltzmann Methods	

Module 2	Statistical Mechanics of Complex Systems	
Lecturer:	Prof. Antonio De Candia	(antonio.decandia@unina.it)
Credits (planned)	2-3	
Planned hours	16 (8 lectures, two hrs each)	
Planned schedule		
Prerequisites	basic knowledge of statistical mechan	nics
Description	solution. The Parisi solution. The Dynamics and Mode - Coupling the	r spin-glasses. Replica - symmetric p-spin model. The cavity method. eory. TAP equations. The spin - glass on on trees and point – to - set

Module 3	Stochastic Processes and Analysis of Correlations	
Lecturer:	Prof. Eugenio Lippiello(eugenio.lippiello@unicampania.it)	
Credits (planned)	2-3	
Planned hours	16 (8 two hrs lectures)	
Planned schedule		
Prerequisites	Background in classical statistical mechanics.	
Description	 The purpose of these lectures is to give a simple mathematical introduction to the description of stochastic processes with innovative applications in the field of epidemiology and earthquake data time- series analysis. Markov processes. Master and Fokker Plank equations. Stochastic energetics. Branching processes. Watson-Galton model. Application to genetics. Epidemic models. Applications to epidemiology and earthquake occurrence. Analysis of correlations in stochastic signals. Detrended Fluctuation Analysis. Power spectrum of a signal 	

Supersymmetries, Strings and branes

Lecturers	Dr. Franco Pezzella	(INFN, pezzella@na.infn.it)
	Dr. Raffaele Marotta	(INFN, lmarotta@na.infn.it)
Onelite		
Credits	4	
(planned):		
Planned	24	
hours:		
Planned		
schedule		
Prerequisites	General Relativity, Quantum Field Theory	
Description	1) Supersymmetry in two space-	time dimensions (D=2):
	2) Superstring Theories	
	3) N=1,2 in D=4 Supersymmetry	
	4) N=1 in D=6 and D= 10 Supers	symmetry
	5) A Brief introduction to superg	ravity theories
	6) Aspects of duality	
	, 1 5	superstrings are discussed together
		string dualities and more recent
	developments in String Theory.	

Topics in Non-Perturbative Quantum Field Theory (from two to four dimensions)

Lecturer	Prof. Luigi Rosa (luigi.rosa@unina.it)
Credits (planned)	4
Planned hours	30
Planned schedule	
Prerequisites	theoretical physics background
Description	 NON-PERTURBATIVE METHODS IN TWO-DIMENSIONAL FIELD THEORY: From massless scalar field to conformal field theories. TWO- DIMENSIONAL NON-PERTURBATIVE GAUGE DYNAMICS: Fundamental aspects of gauge theories in two dimensions. FROM TWO TO FOUR DIMENSIONS: Conformal invariance in four-dimensional field theories and in QCD. From two-dimensional solitons to four- dimensional magnetic monopoles. Instantons in QCD GAUGE THEORIES: The gauge principle; Functional quantization of gauge theories. BRST symmetry and physical states. Realizations of symmetry; Ward-Takahashi identities. Spontaneous symmetry breaking; Continuous global symmetry; The Goldstone's theorem; the Higgs mechanism; Casimir energy and the cosmological constant problem. NON ABELIAN GAUGE FIELDS: the Gribov ambiguity; path integral in QCD; Instantons; confinement and dual superconductivity; 't Hooft- Polyakov magnetic monopoles

Ultrafast processes and femtosecond laser pulses

Lecturer		
Credits (planned)		
Planned hours	18	
Planned schedule		
Prerequisites	Basic knowledge of Solid-state Physics would be helpful. Linear Optics and basics of Quantum Physics are required.	
Description		

Unified theory of nuclear reactions	
Lecturer	Prof. Giovanni La Rana (Giovanni.larana@na.infn.it)
Credits (planned):	4
Planned hours:	20
	10 lectures, 2 ours each
Planned schedule:	To be agreed with students
Prerequisites:	Basic knowledge of nuclear physics and quantum mechanics.
Description:	This course aims to deepen the study of nuclear reactions induced by light and heavy ions at low energy (E / A <10 MeV / A). Starting from phenomenology and the main nuclear models, the final goal is to present and discuss the unified theory due to H. Feshbach. This theory, based on the projection operator technique, provides an important framework for understanding the physics and modelling nuclear processes, from direct mechanisms to the formation of compound nuclei. Part of the course makes use of advanced quantum mechanics concepts applied to nuclear physics, the basic elements of which will be introduced during the lectures.
	<u>Course outline</u>
	 Phenomenology of nuclear reactions at low energy (E/A < 10 MeV/A): direct and compound nucleus processes, giant resonances, fluctuations in the cross section. Nuclear models: single particle potential model for nuclear scattering, theory of the compound nucleus in the discrete and continuum region, Statistical Model, Optical model. Brief review of scattering and reactions theory: cross section and T matrix, Green operator, Lippmann Schwinger equation, Born development and approximate methods. Unified Theory of nuclear reactions: prompt and time-delayed processes, the projection operator technique, general expression of the transition amplitude, resonance theory. Derivation of the generalized Optical-Model potential. Intermediate structure in nuclear reactions: 'doorway states'.
	ReferencesG.R. Satchler: Introduction to nuclear reactionsD.F. Jackson: Nuclear ReactionsP. Roman: Advanced Quantum TheoryF.S. Levin/H. Feshbach: Reaction Dynamics

Waves and Interactions in Nonlinear Media		
Lecturer	Prof. Renato Fedele (renato.fedele@unina.it)	
Credits (planned) Planned hours	4 25	
Planned schedule		
Prerequisites	Classical Electrodynamics, Fundamentals of Quantum Mechanics, Fundamentals of Statistical Mechanics	
Description:	The course is interdisciplinary and gives a general description of the propagation of waves in nonlinear media and their interactions (three and four waves parametric processes). Some physical examples in nonlinear optics (Kerr media, optical fibers), surface gravity waves (ocean waves), large amplitude waves in plasmas (Langmuir wave packets) and matter waves physics (Bose-Einstein condensates) are given. From these examples, a unified description modelled by suitable nonlinear Schrödinger equations is extrapolated. Such a description is then extended to phase space by means of the Wigner quasi-distribution. Particular attention is devoted to both theoretical and experimental aspects of the modulational instability and the related stabilizing role of the Landau damping for an ensemble of partially incoherent waves.	