

Dottorato internazionalizzato in **Quantum Technologies**

International PhD program in Quantum Technologies

Università degli Studi di Napoli "Federico II"

PhD in Quantum Technologies courses - 40th cycle and till active cycles

University of Naples "Federico II" - University of Camerino - CNR - National Council of Researches, Florence

Apart from the courses listed below, every year a PhD Quantum Technologies Summer School is organized:

- in 2019 the School was organized by the Napoli node
- in 2020 it was organized, in remote, by the CNR Florence node: for the program go the link
- in 2021, again in remote, the School was organized by the QT group at Camerino
- in 2022, the School was held at Catania, organized by the Neapolitan QT group
- in 2023, the School was held at Trieste, under the responsibility of the QT CNR group at Florence

• Courses proposed from the University of Camerino

1c) Quantum Computation

by Stefano Mancini - stefano.mancini@unicam.it

given originally for the Laurea Magistrale at Camerino during the first semester AY 2024/25 Lectures for 42 hours and 6 credits.

[Interested graduate students can follow the set of recorded lectures.] Graduate students will agree with the teacher about a specific topic (related with those described in the lectures), which the students will have to elaborate on and summarize in a written report.

2c) Quantum Information

by Stefano Mancini - stefano.mancini@unicam.it

given originally for the Laurea Magistrale at Camerino during the first semester AY 2023/2024 Lectures for 42 hours and 6 credits.

[Interested graduate students can follow the set of recorded lectures.] Graduate students will agree with the teacher about a specific topic (related with those described in the lectures), which the students will have to elaborate on and summarize in a written report.

Dipartimento di Fisica "Ettore Pancini"

Compl. universitario Monte S. Angelo, Via Cintia – 80126 Napoli (Italy)

ph. +39 / 081 676870 fax +39 / 081 676974 e-mail: giovannipiero.pepe@unina.it

3c) Quantum Annealing, Monte Carlo Simulations and machine learning Algorithms

by Sebastiano Pilati – sebastiano.pilati@unicam.it

Lectures for 6 hours and 1 credit. Scheduled for the first half of July 2024.

4c) Dynamics of open quantum systems

by David Vitali – david.vitali@unicam.it

given specifically in Camerino for the Unina – Unicam - CNR PhD program in Quantum Technologies approx. schedule: 2 hours per week, starting on Friday Jan 19th – till April 2024:

Lectures for 24 hours and 4 credits.

Available via Webex and lectures will be recorded.

Graduate students will agree with the teacher about a specific topic, related with those described in the lectures, which the students will have to elaborate on and summarize in a written report.

• Courses proposed from the University of Naples & CNR - SPIN, Naples

1n) Quantum Algorithms

by Giovanni Acampora – giovanni.acampora@unina.it and by Autilia Vitiello – autilia.vitiello@unina.it

Theoretical Computer Science, The Leap from Classical to Quantum Computation, Quantum Architectures, Quantum Algorithms

Lectures for 30 hours and 5 credits: the course is also proposed to all the PhD students in Computational Intelligence

2n) Introduction to Quantum Information

by Rosario Fazio - rosario.fazio@unina.it

Basics (qubits, quantum gates and simple protocols), Decoherence and dissipation in quantum systems, Accuracy and control of quantum protocols, Quantum simulators - intro, Quantum information and statistical mechanics

Lectures for 15 hours and 2 credits

3n) <u>Quantum Superconducting Technologies: Principles, Engineering &</u> <u>Interfaces - part 1</u>

by Francesco Tafuri <u>– francesco.tafuri@unina.it</u> Davide Massarotti – davide.massarotti@unina.it Domenico Montemurro – domenico.montemurro@unina.it

to be given in late Spring 2024 Lectures for 24 hours and 3 credits.

4n) Quantum Superconducting Technologies: Principles, Engineering & Interfaces - part 2

by Giampiero Pepe – giovannipiero.pepe@unina.it

Lectures for 24 hours and 3 credits.

Lectures for 6 hours and 1 credit.

5n) Quantum Communication

by Alberto Porzio - alberto.porzio@unicas.it

Specifically thought for graduate students a general introductory part is followed by a focus on optical experimental quantum communication.

The course consists of Lectures for 20 hours and 3 credits, to be given according to the requests by the PhD students.

6n) <u>Static and Dynamics of Quantum Phase transitions in closed an open</u> <u>systems</u>

by Vittorio Cataudella – vittorio.cataudella@unina.it Antonio De Candia – antonio.decandia@unina.it Giulio de Filippis – giulio.defilippis@unina.it Carmine Antonio Perroni – carmineantonio.perroni@unina.it

7n) Solid State qubits

by Procolo Lucignano – procolo.lucignano@unina.it Gabriele Campagnano – gabriele.campagnano@spin.cnr.it

n.b.: this undergraduate course (with lectures for 30 hours and 5 credits) is offered in the frame of the **MSc course in Quantum Science and Engineering**

8n) Fuzzy models and approximate reasoning in data analysis

by Ferdinando Di Martino – ferdinando.dimartino@unina.it

• CNR - Florence

1f) Quantum photonic technologies

by CostanzaToninelli – costanza.toninelli@ino.cnr.it Marco Bellini – marco.bellini@ino.cnr.it Alessandro Zavatta – alessandro.zavatta@ino.cnr.it

Lectures for 18 hours and 3 credits during the second semester (June - July 2024)

Graduate students will agree with the teachers about a specific topic (related with those described in the lectures), which the students will have to elaborate on and summarize in a written report.

2f) Quantum Simulations with Atoms

by Giacomo Roati – giacomo.roati@ino.cnr.it Alessia Burchianti – burchianti@lens.unifi.it Jacopo Catani – jacopo.catani@ino.cnr.it Chiara D'Errico – chiara.derrico@ino.cnr.it Luca Tanzi – tanzi@lens.unifi.it

Lectures for 18 hours and 3 credits. Beginning scheduled from the 2nd week of March 2024 Graduate students will agree with the teachers about a specific topic (related with those described in the lectures), which the students will have to elaborate on and summarize in a written report.

3f) Quantum metrology and sensing

by Luca Pezzé - luca.pezze@ino.cnr.it Nicole Fabbri - nicole.fabbri@ino.cnr.it

Lectures for 18 hours and 3 credits, scheduled on next February – March 2024 (dr. Pezzi), on April – May (dr. Fabbri)

Graduate students will agree with the teachers about a specific topic (related with those described in the lectures), which the students will have to elaborate on and summarize in a written report.

4f) **Quantum paradoxes**

by Augusto Smerzi – augusto.smerzi@ino.it

Lectures for 12 hours and 3 credits during the first semester (from the beginning of October – till end of December 2024)

Graduate students will agree with the teachers about a specific topic (related with those described in the lectures), which the students will have to elaborate on and summarize in a written report or seminar.

Lecturer	David Vitali@unicam.it	
Credits (planned)	4	
Planned hours	24	
Planned schedule	From January 19th, 2024: each Friday, 2 hours	
and location		
Prerequisites	Quantum mechanics basic mechanics statistical, physics	
Description	The course aims at providing the basic tools for describing driven dissipative systems in which the interaction with a reservoir cannot be neglected. Master equations, Langevin equations will be derived and discussed. Application to a set of quantum technology platforms will be studied	

Dynamics of open quantum systems

Fuzzy models and approximate reasoning in data analysis

Lecturer	Ferdinando Di Martinoferdinando.dimartino@unina.it
Credits (planned)	6
Planned hours	42 (the course is jointly proposed with the PhD program in Computational Intelligence)
Planned schedule	March - July 2024
	Modules:
	 Fuzzy sets and extension principle. Characteristic functions. Type of fuzzy sets. Fuzzy numbers. Examples. Fuzzy relations. Triangular norm operators. Projections and Cylindrifications. Examples. Fuzzy relation equations. Fuzzy relation equation systems Examples in physics. Direct and Inverse Fuzzy transform Examples. Fuzzy clustering concepts Fuzzy partitional clustering. Fuzzy c-means and its variations. Examples. Approximate reasoning concepts. Linguistic variables and fuzzy rules. Fuzzification and defuzzification models. Generating fuzzy rules from numerical and categorical data. The Wang & Mendel model. Examples. Fuzzy systems. Inference process. Mamdani and Takagi-Sugeno models. Examples Type-2 fuzzy sets. The e footprint of uncertainty. Interval Type-2 fuzzy sets and their implementation. IT2 Fuzzy Systems. Type-reduction process. Examples.
Prerequisites	Set theory, Boolean logic, statistical treatment of observational data
Description	The course will deal with fuzzy set theory, fuzzy transform, approximate reasoning, fuzzy systems and its applications in physics. In physics it is often necessary to deal with vague or imprecise information for the analysis of experimental data. One type of imprecision is that managed in the statistics of experimental data through statistical inference approaches and uncertainties estimation. These approaches, however, have a not negligible computational complexity and are unsuitable for managing sets of vague and imprecise information which, on the other hand, constitute the knowledge base of human reasoning processes. Fuzzy set theory allows us to manage qualitative and fuzzy information in a formal and rigorous way in order to create models for data analysis and data mining and approximate reasoning frameworks through the use of inferential rules that translate and model human reasoning. This course initially introduces fuzzy set theory and then explores fuzzy-based methods and models of data analysis, data mining and approximate reasoning. Finally, the type-2 fuzzy sets and their implementation in the construction of intelligent systems will be treated. During the course various examples of fuzzy-based methods and techniques of data analysis applied to fields of physics will be made.

Introduction to Quantum Information

Lecturer	Rosario Fazio	rosario.fazio@unina.it
Credits (planned)	2	
Planned hours	15	

Planned schedule and location Prerequisites	beginning scheduled around February/March 2024 Quantum Mechanics
Description	 Elements of Quantum Mechanics Density matrix formalism, Bloch sphere for spin-1/2, reduced density matrix, Schmidt decomposition, purification <u>Quantum Measurement</u> projective measurement, POVM <u>Open quantum systems</u> CPT maps, Quantum Operations, Master Equation, Examples <u>Entanglement</u> Bell and GHZ states, Measures of Entanglement <u>Quantum computation</u> Quantum gates, Basics of Quantum algorithms. Quantum Error Correction <u>Entanglement in Many-Body systems</u> <u>Entanglement and critical phenomena</u> <u>Physical implementations of a quantum computer</u>

Quantum Algorithms

Lecturers	Giovanni Acampora	giovanni.acampora@unina.it
	Autilia Vitiello	autilia.vitiello@unina.it
Credits (planned)	4-6	
Planned hours	20hrs to 30hrs	
Planned schedule	after the Summer school	
and location	Napoli Monte S. Angelo	
Prerequisites	Linear Algebra, Foundations of Computer Sci	ence
Description	Introduction (3-5 hours)	
	Theoretical Computer Science (5-7 hours)	
	The Leap from Classical to Quantum Com	putation (3-5 hours)
	Quantum Architectures (3-5 hours)	
	Quantum Algorithms (6-8 hours)	
	This module introduces the basic cond algorithms. Specifically, the module d introduction to Hilbert spaces; difference a and quantum systems; a brief introduction the qubit to quantum gates; introduction Josza algorithms, Simon's periodicity algo Shor's factoring algorithm; theoretical of problem complexity; an overview of quan libraries. Exam will be conducted by re- project on the implementation of quantum	eals with the following topics: among deterministic, probabilistic on to quantum architecture: from to quantum algorithms: Deutsch- orithm, Grover's search algorithm, computer science and classes of tum programming languages and equiring students to carry out a

Quantum Communication		
Alberto Porzio	alberto.porzio@unicas.it	
4/6		
20h to 24h		
	Alberto Porzio 4/6	

Planned schedule	Second semester 2023	
Prerequisites	Quantum mechanics; Quantum Optics (basic)	
Description	The program overviews: a) basic principles of quantum information (entanglement, Bell inequalities, no-cloning theorem, measurement theory in QM, coherence and de-coherence); b) the concepts of fidelity and state reconstruction (with experimental aspects); c) q-bit and Continuous Variable QI (with examples of physical implementations); d) simple quantum protocols (quantum cryptography and teleportation); e) intrinsic and technological limits of QI.	

Quantum Computation

Lecturer	Stefano Mancini	stefano.mancini@unicam.it
Credits (planned)	6	
Planned hours	42	
Planned schedule	Camerino	
and location	First semester	
	Lectures transmitted via streaming and record	ded on WEBEX
Prerequisites	Quantum mechanics formalism	
Description	Quantum circuits	
	Universal sets of logical quantum gates	
	Random number generation	
	Deutsch-Josza and Simon algorithms	
	Quantum Fourier transform	
	Factorization and Shor algorithm	
	Hidden subgroup problem	
	Searching and Grover algorithm	
	Black box Boolean functions evaluation	

Quantum Information

Lecturer	Stefano Mancini	stefano.mancini@unicam.it
Credits (planned)	6	
Planned hours	42	
Planned schedule	Camerino	
and location	First semester	
	Lectures transmitted via streaming and record	led on WEBEX
Prerequisites	Quantum mechanics formalism; basics of probability theory	
Description	Information and entropy: classical view	
	Mixed quantum states	
	Information and entropy: quantum view	
	Channel maps	
	Data compression	
	Information transmission	
	Error correcting codes	
	Channel capacities	
	Quantum cryptography	

Quantum Paradoxes

Lecturer	Augusto Smerzi	augusto.smerzi@ino.it
Credits (planned)	3	
Planned hours	12	
Planned schedule	Firenze, First semester – September-December	r 2024
and location	Lectures transmitted via streaming and notes	
Prerequisites	Quantum Mechanics	
Description	 The quantum theory of weak and strong mea Contextuality and the Kocken-Specker theory The Einstein-Podolski-Rosen paradox - 1 hr Non-locality, realism and free will - 2 hrs No-signaling, no-cloning - 1 hr The GHZ paradox and Hardy's impossibility - The Bohm, Everett and Copenhagen interprete The statistical interpretation and the PBR the The several friends of Wigner - 2 hrs Lecture notes are available on request. 	em – 1 hr – 1 hr etations – 1 hr

Quantum Sensing and Metrology

T and man	L D.	1
Lecturer	Luca Pezzè	luca.pezze@ino.cnr.it
	Nicole Fabbri	nicole.fabbri@ino.cnr.it
Credits (planned)	3	
Planned hours	18	
Planned schedule	Firenze	
and location	First semester – September-December	
	Lectures transmitted via streaming and	
Prerequisites	Quantum mechanics formalism; basics	* <u>v</u> v
Description	Theory of quantum sensing and metro	<u>logy</u> (12 hrs)
	• Parameter estimation (Cramer-Rao, estimation) - 3 hrs	Maximum Likelihood, Bayesian
	• Fundamental bounds on phase sens	ativity (Heisenberg limit, quantum
	Fisher information, Bayesian bounds)	
	• Statistical speeds and entanglement	- 3 hrs
	• Useful entanglement in quantum me	trology - 2 hrs
	• Multipartite entanglement – 1 hr	
	• Metrological entanglement in experim	nents - 1.5 hrs
	Quantum sensing experiments (6 hrs)	
	 Overview on quantum sensing platfor A nanoscale quantum sensor: the dia 	rms and operational definitions - 1 hrs amond NV center - 2 hrs
	- General introduction on colour center	
	- Diamond Material Engineering	
	- NV sensing applications	
	• Sensing by quantum coherence - 3 h	rs
	- Ramsey protocol	
	- Decoherence and the fundamental lin	nit to sensitivity
	- Dynamical decoupling	-
	- Noise spectroscopy	
	- Quantum optimal control for quantum	m sensing
	Lecture notes are available on request.	

Quantum Superconducting Technologies: Principles, Engineering & Interfaces -- part 1

Lecturer	Francesco Tafuri Davide Massarotti Domenico Montemurro	francesco.tafuri@unina.it davide.massarotti@unina.it domenico.montemurro@unina.it
Credits (planned) Planned hours Planned schedule Prerequisites Description	Domenico Montemurro 3 24 May/June 2024 Elementary Quantum Mechanics and S Quantum hardware is what transfe computation and communication i control, couple, transmit and read ou with great precision, and in a technol at illustrating some aspects of this hardware and technology, focusing hardware. Some key notions on a introduced as a bridge to standard c Description by keywords: Introduction to Mesoscopic with Sup in Condensed Matter Macroscopic Quantum Phenomena, Superconducting Devices, the Jo conversion, Andreev reflection, intr and noise, macroscopic quantum dynamics, correlation and response, Topological defects, vortex pairs and topological quantum numbers in non Nanoscale Processing for Advanced I Superconducting and hybrid qubits,	domenico.montemurro@unina.it Solid State Physics orms the novel concepts of quantum into reality. The key challenge is to at the fragile stage of quantum systems ologically viable way. This course aims a key challenge in realizing quantum g on solid state and superconducting advanced solid state physics will be courses. Derconductivity, Order and Excitations broken symmetry variables orduction to dissipation, decoherence tunneling and its foundations on diffusion and Langevin theory notes on vortex matter and dynamics, nrelativistic physics Devices principles of superconducting design, from transmon to fluxonium (from Rabi oscillations and more) UIDs and qubit read-out tum memories
	with quantum optics experiments	, F, Horacon, Horaco

Solid State qubits				
Lecturers	Procolo Lucignano	procolo.lucignano@unina.it		
	Gabriele Campagnano	gabriele.campagnano@spin.cnr.it		
Credits (planned)	5			
Planned hours	30h			
Planned schedule	Second semester 2024			
and location	Napoli Monte S. Angelo (this course is offered in the frame of the			
	undergraduate MSc course in Quantum Science and Engineering)			
Prerequisites	Solid State physics, Quantum Mechanics			
Description	Solid State Universal quantum gates (10-14h)			
	- Spins in double quantum dots			
	- Spin Defects in Solids			

- Superconducting qubits
Adiabatic quantum computation (4-6 h)
- Quantum annealing with superconducting qubits
- Dissipative Landau-Zener
- Experimental implementation
Topological quantum computation (6-10 h)
- One dimensional superconducting systems and Majorana Fermions
- Majorana Braiding and fusion

Static and Dynamics of Quantum Phase transitions in closed an open systems

Lecturer	Vittorio Cataudella Antonio De Candia	vittorio.cataudella@unina.it antonio.decandia@unina.it		
	Giulio De Filippis	giulio.defilippis@unina.it		
	Carmine Antonio Perroni	carmineantonio.perroni@unina.it		
Credits (planned)	3			
Planned hours	24			
Planned schedule	October / November 2024			
Prerequisites				
Description	Aim of the course is to characterize the transitions between different quantum phases both from theoretical and experimental point of view. First we will review thermal continuous phase transitions, like the Berezinskii-Kosterlitz- Thouless one, then we will concentrate on quantum phase transitions, like those in quantum XY and spin-boson models, at zero and finite but small temperature. Finally, we will focus on a different type of quantum phase transitions that occur on intermediate time scales, known as dynamical quantum phase transitions. These equilibrium and non-equilibrium transitions will be analyzed not only in the case of closed but also open systems, where the role of the environment can be active into the modification of the order, the nature and the occurrence of these phenomena. The presence of these transitions typically impacts the behavior of quantum materials, such two-dimensional ones, with varying the applied gate voltage and magnetic field.			