

Physics PhD courses catalogue

- 39th cycle, and till active ones -

(last updated on Sept. 1st, 2023)

n.b. **SUPRA** courses are those ones offered (on-line) in the frame of the *Southern Universities Physics Research Agreement*, involving the University of Naples "Federico II", University of Campania "L. Vanvitelli" - Caserta, University of Bari, University of Salento - Lecce

1. Theoretical Physics of Fundamental Interactions

1.1.	Selected	topics	in	Theoretical	Physics

- 1.2. Fundamental interactions: QCD and BSM (IV SUPRA 2023)
 Perturbative QCD
 Teoria di Regge
 Weak decays and effective Hamiltonian in the Standard Model and Beyond
- 1.3. Phenomenology of particle interactions Introduction to Neutrino physics

Effective Theories and Flavour Physics

Heavy Flavour Physics

(G. Ricciardi - Unina) (P. Santorelli - Unina) (G. D'Ambrosio – INFN/Unina)

(G. Mangano, F. Lizzi -- Unina)

(F. Tramontano - Unina)

(F. De Fazio - UniBa)

(C. Corianò - UniSalento)

1.4.	Advanced theoretical/mathematical physics	
	Supersymmetry, String and Branes	(F. Pezzella, R. Marotta – Unina / INFN)
	Topics on Non-Perturbative Quantum Field Theory	(L. Rosa - Unina)
	Geometric and Topological methods in Theoretical Physics	(P. Vitale - Unina)

2. Astrophysics, Astroparticle and Cosmology

2.1. Multi-messenger and particle astrophysics of compact objects (III - SUPRA 2023)	
Compact objects	(F. De Paolis - UniSalento)
Neutrino Oscillations	(D. Montanino - UniSalento)
Supernova Neutrinos	(A. Mirizzi - UniBa)
Gravitation, Relativity and Black Holes	(M. De Laurentis - Unina)
Physics and evolution of supermassive Black Holes	(M. Paolillo - Unina)
Gravitational Waves and Gamma-Ray Bursts	(T. Di Girolamo - Unina)
2.2. Experimental High-Energy Astroparticle Physics (VII SUPRA 2023)	
Experimental Techniques in Astroparticle Physics	(G. Marsella - UniPa)
HE and VHE Observations from Extragalatic Sources	(L. Perrone – UniSalento)
HE Transients and the Multimessenger Context	(E. Bissaldi – UniBa)
Astrophysics with ultra-high-energy neutrinos and Neutrino Telescopes	(F. Loparco – UniBa)
Experimental techniques in Space Science	(B. Panico - Unina)
Dark Matter in cosmology and astrophysics	(F. locco - Unina)

2.3. Extended theories of Gravity and the problem of Dark Energy and Dark Matter

(S. Capozziello - Unina)

3. Nuclear and Particle Physics

- 3.1. Particle Detectors, Trigger and DAQ (I SUPRA 2023) Particle detectors Photo-detection Trigger and DAQ for Particle Physics Detection methods for nuclear astrophysics and applications
- 3.2 Nuclear Physics in low-background conditions
- **3.2.** Signals formation and treatment in particle detectors (II SUPRA 2023) Signal formation Signals treatment
- 3.3. Unified theory of nuclear reactions

4. Physics of Matter

4.1.	Advanced topics in experimental physics of matter	
	Advanced Spectroscopies in strongly correlated systems	(G. De Luca - Unina)
	Electrodynamic properties of novel materials and devices	(A. Andreone - Unina)
	Organic conductors	(A. Cassinese - Unina)
	Ultrafast processes and femtosecond laser pulses	(A. Rubano - Unina)
	Physics and applications of Superconducting and Spintronic Devices	(G.P. Pepe - Unina)
4.2.	A general overview of the Physics of Surfaces and Interfaces	(R. Di Capua - Unina)
4.3.	Statistical Physics for Complex Systems (VIII - SUPRA 2023)	
	Active Matter and Complex Fluids	(G. Gonnella, A. Lamura - UniBa)
	Statistical Mechanics of Complex Systems	(A. De Candia - Unina)

5. Artificial Intelligence and Computing

Stochastic Processes and Analysis of Correlations

- 5.1. Artificial Intelligence and Machine Learning (V- <u>SUPRA 2023</u>) Machine Learning: basics and applications<u></u> Data Modelling Artificial Intelligence for Social Good
- 5.2. Quantum Computing and Artificial Intelligence
- 5.3. Evolutionary Computation and Applications

6. Biomedical Physics

- 6.1. Biophysics for Health and Environment (IX- SUPRA 2023)
 Biophysical mechanisms and therapeutic implications of human exposure to ionising radiation(L. Manti Unina)

 Bio-photonics for clinics and environment
 (M. Lepore UniCampania)
- 6.2. Advanced computational tools in Medical Physics

(G. Mettivier - Unina)

6.3. Biosensors

(M. Primavera - UniSalento) (E. Bissaldi - UniBa) (M. Della Pietra - Unina) (R. Buompane – UniCampania)

(A. Best - Unina)

(M. Abbrescia - UniBa) (A. Aloisio - Unina)

(G. La Rana - Unina)

(E. Lippiello - UniCampania)

(G. De Nunzio, G. Palma – UniBa)

(N. Amoroso - UniBa)

(L. Bellantuono – UniBa)

(G. Acampora - Unina) (A. Vitiello - Unina)

7. Other Formation

- 7.1. Statistical Methods for Data Analysis
- 7.2. Computational Geophysics
- 7.3. Waves and Interactions in Nonlinear Media
- 7.4. <u>Scientific writing</u>
- 7.5. How to boost your PhD

(A.O.M. Iorio - Unina) (A. Scala - Unina) (R. Fedele - Unina) (P. Russo - Unina) (A. Marino – Unina /ISASI-CNR)

Advanced computational tools in Medical Physics

Lecturer	Prof. Giovanni Mettivier	(giovanni.mettivier@unina.it)
Credits (planned)	2	
Planned hours	12	
Planned schedule		
Prerequisites:	Medical Physics background, Programm	ning skills (C, python, Matlab)
Description:	The lectures introduce to some basic as of Monte Carlo simulations procedures their application in the Medical Physic code, like Geant4, allows to studen dosimetric and radiation-matter inte medical apparatus or medical procedur study of AI algorithms (Machine Learn autonomy models are the basis for unde learning and reasoning. In this cou opportunity to design and develop su lessons.	and Artificial Imaging tools for is field. The use of simulation its to implement and study fraction problems related to be (Virtual Clinical Trials). The ning and Deep Learning) and erstand the basic of automatic irse, the students will have

Advanced Spectroscopies in strongly correlated systems

Lecturer	Prof. Gabriella Maria De Luca (gabriellamaria.deluca@unina.it)
Credits (planned):	4/5
Planned hours:	24
	12 lectures, 2 hours each
Planned schedule:	October / November 2022
Prerequisites:	None. One or two lessons (depending on the students background) will be dedicated to the few needed concepts of solid state physics.
Description	The aim of this course is to give an outline of the characteristic of the most important spectroscopy's techniques and to provide to the PhD student the necessary basis to plan or to develop its own spectroscopy experiment using synchrotron light and/or scanning probe microscopy.
	Advanced spectroscopies are the most powerful experimental tools to investigate the electronic and magnetic properties of complex materials. These techniques are based on the study of the interaction of the matter with radiation, being typically X-rays or electrons.
	Modern X-rays spectroscopy's takes advantages from the high brilliance third generation synchrotron sources. These techniques can achieve high momentum and energy resolution, but they are typically unable to get spatially resolved information. Scanning tunneling microscopy's/Spectroscopy's are on the other hand based on the extremely high spatial resolution achieved by probing the tunneling electronic current coming from a tip in close proximity with a sample. These combined techniques can probably offer the largest possible number of information about the electronic properties of the solids. Examples of application of these techniques to different undisclosed issues in condensed matter physics will be given during the course, like the microscopic mechanism of superconductivity in the High Critical Temperature
	Superconductors and Novel oxides Interfaces, Proximity effect in
	Ferromagnetic/Superconducting heterostructures and
	Multiferroicity (coexistence of more of two ferroic orders).
	The detailed program will include:1) Introduction to the Physics of complex, strongly correlated materials
	2) Electrons and X-rays as probes of the electronic density of states
	 3) Introduction to the synchrotron light a. X-ray Absorption and X-ray Photoemission
	Spectroscopies b. Examples: HTS and other metal transition oxides
	c. Resonant Inelastic X-ray Scattering
	d. Angle resolved Photoemission Spectroscopy

Lecturer	Prof. Fedele Lizzi@unina.it
Credits (planned)	6-8 (to be agreed with the students)
Planned hours	24-36
Planned schedule	
Prerequisites	usual courses of a physics master degree
Description	Part I Generalities on the theory of groups Representation of a group The euclidean group in 2 and 3 dimensions SO(3) and SU(2) and their representations Lie groups and Lie algebras The Lorentz group and its representations The Poincare' group Classification of semi-simple Lie algebras Part II Discrete dynamical systems Stability, periodicity, bifurcations, chaos Continuous non linear systems, Attractors Perturbations of Hamiltonian systems KAM theory Continuous systems with infinite dimensions: Klein-Gordon, Sine Gordon, Kink. Non linear equations: Burger, Kdv. Topological solitons

A general overview of the Physics of Surfaces and Interfaces

Lecturer	Prof. Roberto Di Capua roberto.dicap	oua@unina.it
Credits (planned)	6	
Planned hours	36 hours (18 lectures, 2 hours each)	
Planned schedule	the detailed schedule can be arranged with students	
Prerequisites	Basic knowledge of classical general physics and quantu One or two lectures will be devoted to the few needed bas solid-state physics.	
Description	The course aims to provide the foundation of physics o interfaces. It is conceived to be of potential interest not students working in the physics of matter, but also for th other fields, due to the development of fundamenta methodologies of wide application.	only for Ph.D. ose involved in
	The lectures are intended as an ideal prosecution of concepts provided from the master degree in physics mechanics, atomic-scale and many-bodies physics, struct interaction between matter and radiation: such con- developed and applied to the study of solid surfaces an subject which is gaining more and more importance in the many other fields.	s on quantum eture of matter, acepts will be d interfaces, a
	 One or two lectures, depending on the background of the be devoted to the introduction of the few basic concepts physics needed for the understanding of some argume main body of the course will be organized along the follow 1) Illustration of basic phenomenological and theoretical physics of surfaces: electronic states, charge distribution and interfaces, the importance of strain and defects, the aspects of the equilibrium, role of collective excitation states and interface phenomena: arising of new function properties at interfaces between different materials, interface phenomenal crystal properties, app perspectives of nanotechnology and engineering at illustration of some current research results in this field. 3) Description of the main experimental techniques, a physics, for probing and measuring the properties of interfaces: atomic force microscopy and related techniques. 	s of solid-state nts. Then, the ing three lines. aspects of the on at surfaces hermodynamic as and related ionalities and erplay between lications and atomic-scale, and underlying surfaces and
	tunnelling microscopy and spectroscopy, diffract photoemission spectroscopy techniques, sync techniques.	ion analysis, chrotron-based

Artificial Intelligence and Machine Learning

First module	Machine Learning: basics and applica	tions
Lecturers	Giorgio De Nunzio Giuseppe Palma	giorgio.denunzio@unisalento.it
Credits (planned)	tbd	
Planned hours	10	
Planned schedule	5 lessons / 2 hrs lesson	
Prerequisites		
Description	ML taxonomy: supervised, reinforcement,Regression: linear regression, GLM	unsupervised
	- Classification: scores (confusion matrix ar calibration; cross entropy, Brier score), cla tradeoff: underfitting, overfitting.	
	 Perceptrons and Shallow Feed-Forward Network Regression and Classification in Matlab+T 	
	- Applications of regression and classification Medicine with synthetic and public access	÷
	- Applications of regression and classification Medicine with synthetic and public access of	č

Second module	Approximate reasoning and evolution	utionary computation
Lecturers	Giovanni Acampora Ferdinando Di Martino Autilia Vitiello	(giovanni.acampora@unina.it) (fdimarti@unina.it) (autilia.vitiello@unina.it)
Credits (planned)	tbd	
Planned hours	10 (5 lessons, 2 hrs each)	
Planned schedule		
Prerequisites		
Description	 Introduction (1 hour) Prof. Giovanni Acampora Approximate reasoning (5 hours) Prof. Ferdinando Di Martino Lecture 1: Fuzzy sets and fuzzy relations 	
	Fuzzy operators: t-norm, s-norm Fuzzy membership functions an	

The extension principle Fuzzy partitions and Linguistic variables
Lecture 2: Fuzzy inference systems: fuzzy rule set inference systems Mamdani fuzzy inference model Tagaki-Sugeno- Fuzzy inference model Type2 fuzzy sets: intervsl type2 fuzzy sets Interval type2 fuzzy systems
 • Evolutionary computation (4 hours) Prof.ssa Autilia Vitiello Lecture 1: Introduction to the Evolutionary Computation and its motivations The main scheme of an Evolutionary algorithm
Lecture 2: Different evolutionary algorithms: Genetic Algorithms, Differential Evolution and Particle Swarm Optimization. Design issues for evolutionary algorithms: parameter tuning and performance measures.

Third module	Causality analysis of time series data
Lecturer	Sebastiano Stramaglia
	(sebastiano.stramaglia@uniba.it)
Credits (planned)	tbd
Planned hours	10 (5 lessons, 2 hrs each)
Planned schedule	
Prerequisites	
Description	Lecture 1: Complex Networks. Small world networks: Watts-Strogatz model. Scale free networks: Albert-Barabasi model. Communities in complex networks. Applications. Lecture 2: The problem of inference of Complex Networks from multivariate time series data. Time Series. Stationarity. Linear correlations and the power spectrum. Cross-correlation and coherence between time series. Prediction. Applications. Lecture 3: Introduction to Information Theory. Shannon's Entropy. Mutual Information. Maximum Entropy methods. Transfer Entropy. Applications. Lecture 4: Vector autoregressive models. Granger causality and its relation with transfer entropy. Applications. Lecture 5: Decomposition of Granger causality in frequency and time. Higher order dynamical networks. Synergy and redundancy. Applications.

Fourth module	Data modelling
Lecturer	Nicola Amoroso
	(sebastiano.stramaglia@uniba.it)
Credits (planned)	tbd
Planned hours	10 hrs (5 lectures, 2 hrs each)
Planned schedule	
Prerequisites	

Description	Introduction: graph theory. Different graph
	models. Nodal and edge characterization.
	Local and global properties.
	Community detection.
	Learning: Basic definitions, bias, variance and
	cross-validation.
	Supervised Models. Deep Learning.
	Unsupervised models: Clustering

First module	Biophysical mechanisms and therapeutic implications of human exposure to ionising radiation
Lecturer	prof. Lorenzo Manti lorenzo.manti@unina.it
Credits (planned)	4
Planned hours	20
Planned schedule	10 lectures of 2 hr each-preferably in the Fall (e.g. October/November) but can be modified according to students' needs/requests
Prerequisites	Fundamentals of radiation-matter interaction
Description	The aim of the course is to provide an overview of the unique biological action exerted by ionizing radiation (IR). The ensuing effects at cellular and tissue level are governed by the spatio- temporal mode with which energy deposition occurs at the nanometer level (i.e., at the scale of the DNA) and are influenced by a cascade of complex biomolecular responses. The course will therefore illustrate the main biophysical principles on which modern radiotherapy (RT) relies. New approaches will be also discussed such as the use of accelerated particle beams (hadrontherapy) and the exploitation of nuclear fusion reactions where physics can give an essential contribution to IR-based cancer therapy

Second module	Biophotonics for clinics and environment	
Lecturer	Maria Lepore (maria.lepore@unicampania.it)	
Credits (planned)	4	
Planned hours	24	
Planned schedule		
Prerequisites	Basic concepts of optical techniques	
Description	The course will deal with the application of optical techniques to the development of new diagnostic strategies and environment monitoring tools. Vibrational and fluorescence spectroscopies will be used for investigating biofluids, human tissues, radioexposed cells and enzymes in order to monitor biological processes and to develop sensor devices.	

Third module	Numerical Methods for Data Analysis	s in Optical Spectroscopy
Lecturers	Ines Delfino Carlo Camerlingo Maria Lepore	(delfino@unitus.it) (carlo.camerlingo@spin.cnr.it) (maria.lepore@unicampania.it)
Credits (planned)	3	
Planned hours	18	
Planned schedule		
Prerequisites	Basic notions of a programming language	
Description	The course aims to introduce numerical m analysis of spectral data with particular att noise reduction and quantitative application multivariate analysis (PCA, Principal Compo- will be discussed and applied in the analy interest.	ention to background subtraction, ns (chemometrics). Univariate and onent Analysis), wavelet algorithms

Biosensors

Lecturers	Dr. Bartolomeo Della Ventura Prof. Raffaele Velotta	(bartolomeo.dellaventura@unina.it) (raffaele.velotta@unina.it)
Credits (planned)	2	
Planned hours	12	
Planned schedule	tbd	
Prerequisites	Physics background	
Description	currently used in realizing biosensor the physical mechanisms underly laboratory demonstrations of some described. Piezoelectric biosen Electrochemical biosensors: volt-am techniques. Fundamentals of plasm	dent with the most widespread techniques rs. Lectures will include the discussion of ying the transduction processes and devices. The following biosensors will be sors: quartz-crystal microbalances. perometric and impedance spectroscopy nonics: surface plasmon resonance and nance. Plasmonic-based biosensors: biosensors.

Black Holes		
Lecturers	Mariafelicia De Laurentis Tristano Di Girolamo Maurizio Paolillo	(mariafelicia.delaurentis@na.infn.it) (tristano.digirolamo@unina.it) (maurizio.paolillo@unina.it)
Credits (planned)	4	
Planned hours	24 (12 lectures, 2 hours each)	
Planned schedule	t bd	
Prerequisit es		

Description	This class is intended to offer to the students a boad view of Black Holess, from the theoretical aspects of gravitational physics, through the observational evidences of their properties, all the way to their astrophysical and cosmological manifestations.
	Part I : Gravitation, Relativity and Black Holes (<i>Mariafelicia De Laurentis</i>) Rotating black holes: Kerr black holes, Kerr black hole in Boyerè Lindquist coordinates, Uniqueness of the Kerr solution, Global Properties of the Kerr metric, On the conformal structure of the Kerr solution. The four laws of black hole evolution, Surface gravity and angular velocity of the horizon, First law of black hole dynamics, Rotational Energy of Astrophysical Black Holes, Time-Evolution of black holes Quasi-stationary evolution of accreting black holes, Merging of black holes, The first "image" of a Black Hole with the Event Horizon Telescope
	Part II: Gravitational Waves and Gamma Ray Bursts (Tristano di Girolamo)
	Gravitational waves (GWs). Black holes as sources of GWs. Detection of GWs. Observations of GWs from black holes. Gamma Ray Bursts (GRBs): observations and theoretical interpretation. GRB progenitors. Black holes as centrale engines and final products of GRBs.
	Part III : Physics and evolution of supermassive Black Holes in the Universe <i>(Maurizio Paolillo)</i> The Discovery of Active Galactic Nuclei; Taxonomy of AGNs; clues to the interpretation: variability, luminosity and efficiency; steps toward unification: Eddington luminosity, Eddington mass and accretion rate; accretion efficiency. The Unified Model; AGN physical scales; broadband emission in AGNs; accretion disk spectrum; X-ray corona and other components. Observational evidence of the Unified Model: Quasar host galaxies; dynamical mass measurements; circumnuclear disks, dusty nuclear disks; reverberation mapping mass measurements; evidence of hidden BLR in Sy2; relativistic distortion in Fe lines; the Milky Way nuclear BH. AGN evolution from multi-wavelength studies of AGN populations optical, Xray and infrared; luminosity function and number counts; AGN activity and number density evolution; resolving the Cosmic X-ray Background; Soltan
	argument: how to derive the current Black Hole mass density of the Universe; The link between Supermassive Black Holes and galaxy evolution; Evidences of AGN feedback in galaxies.

Di Girolamo Multi-messenger and particle astrophysics of compact objects

Module 1	Compact objects	
Lecturer	Francesco De Paolis (francesco.depaolis@unisalento.it)	
Planned hour	6	
Planned schedule		
Prerequisites	Basic Astrophysics	
Description	Last stages of stellar evolution and formation of the compact objects	
	Phenomenological properties of neutron stars and pulsars	
	Selected recent topics on the physics of the compact objects	
Recommended texts	• Slides of the lecturer and texts suggested during the lectures	
Assessment methods	Short essay on one of the topics developed during the lectures	

Module 2	Neutrino Oscillations
Lecturer	Daniele Montanino (daniele.montanino@unisalento.it)
Planned hour	6-8h
Planned schedule	
Prerequisites	Particle physics
Description	 Introduction to the neutrino masses, mixing and oscillations in vacuum and matter Phenomenology of neutrino oscillations from terrestrial experiments and astrophysical sources, in particular solar neutrinos
Recommended texts	• Giunti, Kim, "Fundamentals of neutrino Physics and Astrophysics" (Oxford University Press, 2007) • Slides of the lecturer
Assessment methods	Short essay on one of the topics developed during the lectures

Module 3	Supernova neutrinos
Lecturer	Alessandro Mirizzi (alessandro.mirizzi@uniba.it)
Planned hour	6
Planned schedule	
Prerequisites	Particle physics
Description	 Supernova (SN) explosion mechanism SN 1987A neutrino observation Future SN neutrino observations Neutrino oscillations in dense SN medium
Recommended texts	 G. Raffelt, "Stars as Laboratories for Fundamental Physics" (University of Chicago Press, 1996) Slides of the lectures
Assessment methods	Short essay on one of the topics developed during the lectures

Module 4	Gravitation, Relativity and Black Holes
Lecturer	Mariafelicia De Laurentis (mariafelicia.delaurentis@unina.it)
Planned hour	6-8
Planned schedule	
Prerequisites	analytical mechanics, general relativity
Description	Rotating black holes: Kerr Spacetime and its global properties. Kerr black hole in Boyer-Lindquist coordinates. Zero-mass limit. Kerr-Schild form of the Kerr solution. Ergosphere and Horizon (Infinite redshift surface, Surface gravity, Surface
	geometry of horizon and ergo surface) Particle and Light Motion in Equatorial Plane. Matter accretion and black hole parameters change. Evolution in the black hole parameter space. Geodesics in Kerr Spacetime: General Case. Light Propagation. Black hole shadow. Generic properties of the rotating black hole shadows (Asymmetry, Flattening etc). Image of Black Holes with the Event Horizon Telescope.
Recommended texts	Slides of the lectures
Assessment methods	Short essay on one of the topics developed during the lectures

Module 5	Physics and evolution of supermassive Black Holes	
Lecturer	Maurizio Paolillo	(maurizio.paolillo@unina.it)
Planned hour	6-8	

Planned schedule	
Prerequisites	Basic classical physics and gravitation. Useful but not required: Module " Gravitation, Relativity and Black Holes ", Introductory astrophysics, Physics of Galaxies
Description	The Discovery of Active Galactic Nuclei; Taxonomy of AGNs; clues to the interpretation: variability, luminosity and efficiency; steps toward unification: Eddington luminosity, Eddington mass and accretion rate; accretion efficiency. The Unified Model; AGN physical scales; broadband emission in AGNs; accretion disk spectrum; X-ray corona and other components. Observational evidence of the Unified Model: Quasar host galaxies; dynamical and reverberation mapping mass measurements; evidence of hidden BLR in Sy2; relativistic distortion in Fe lines; the Milky Way nuclear BH. AGN evolution from multi-wavelength studies of AGN populations optical, X-ray and infrared; luminosity function and number counts; AGN activity and number density evolution; resolving the Cosmic X-ray Background; Soltan argument: how to derive the current Black Hole mass density of the Universe; The link between Supermassive Black Holes and galaxy evolution; Evidences of AGN feedback in galaxies.
Recommended texts	Lecture slides; "Exploring the X-ray Universe", Seward & Charles, 2010
Assessment methods	Short essay on one of the topics developed during the lectures

Module 6	Gravitational Waves and Gamma-Ray Bursts	
Lecturer	Tristano Di Girolamo (tristano.digirolamo@unina.it)	
Planned hour	6-8	
Planned schedule		
Prerequisites	Basic astrophysics and particle physics	
Description	Generation of Gravitational Waves (GWs). Binary Black Holes (BBHs) as sources of GWs. Detection of GWs. Observations of GWs from BBHs. Gamma Ray Bursts (GRBs): observations and theoretical models. GRB progenitors. Black holes as central engines and final products of GRBs.	
Recommended texts	Shapiro & Teukolsky, "Black Holes, White Dwarfs and Neutron Stars"	
Assessment methods	Short essay on one of the topics developed during the lectures	

Effective theories and flavour physics

Lecturer	Dr. Giancarlo D'Ambrosio	gdambros@na.infn.it
Credits (planned)	5	
Planned hours	24	
Planned schedule		
Prerequisites		
Description	 weak interactions, V-A structure Phenomenology of strong intera Goldstone mode spontaneous an Higgs mechanism Standard model of particle physic Flavour theory, quark and me Maskawa matrix and determination 	n tests: Lamb shift and g-2 i eak interactions, parity violation in es, effective theories ctions, Goldstone theorem, pion as nd explicit symmetry breaking ics eson mixing, Cabibbo Kobayashi tion of matrix elements, absence of ts, GIM mechanism and minimal

Electrodynamic properties of novel materials and devices		
Lecturer	Prof. Antonello Andreone (antonello.andreone@unina.it)	
Credits (planned)	4	
Planned hours	24	
Planned schedule		
Prerequisites		
Contents and topics	- Electrodynamics of metals, superconductors and dielectric media: basic principles	
	- A short introduction to artificial materials: metamaterials and photonic band gap crystals and quasicrystals	
	- Transformation optics: a new approach to defining the light geometry using metamaterials	
	- Cutting edge THz technology	
	- Plasmonics and plasmonic structures	
	 Some exemplary applications of "natural" and "artificial" materials: from microwave systems to optical devices and sensors, cloaking, solar cells 	

Evaluation	All participants are required to make an oral presentation or write an
	essay on a selected subject after the course. The participants may suggest
	a topic related to their own research subject.

Evolutionary Computation and Applications

Lecturer	Autilia Vitiello a	utilia.vitiello@unina.it
Credits (planned)	3/4	
Planned hours	20 hours (10 lectures of 2h)	
Planned schedule		
Prerequisites	Basic concepts of computer science	
Description	Evolutionary computation is a subfield of the cor which includes a group of problem-solving te principles rely on the theory of biological e computation methods are characterized by high range of problem settings.	echniques whose basic evolution. Evolutionary performance in a wide
	The goal of the course is to give an overvie evolutionary algorithms and show practical appl scientific and engineering fields.	

Experimental High-Energy Astroparticle Physics

Module 1	Experimental Techniques in Astroparticle Physics	
Lecturer	Giovanni Marsella	(giovanni.marsella@unipa.it)
Credits	2-3	
Planned hours	16	
Planned schedule		
Prerequisites	Basic particle physics, astrophysics and detectors	

Description	Description of the principal experimental techniques in Astroparticle Physics. Contents:
	 Introduction to Cosmic Rays (CR) sources Primary CRs, acceleration mechanism, propagation Secondary CRs, atmospheric showers Detection techniques in Space, Extensive Air Shower arrays and underground detectors
	Presentation of the principal experiments and recent results

Module 2	Experimental and VHE Observations from Extragalactic Sources	
Lecturers	Lorenzo Perrone et al. (lorenzo.perrone@unisalento.it)	
Credits	1-2	
Planned hours	5 - 10	
Planned schedule		
Prerequisites	Basic particle physics, astrophysics and detectors	
Description	Basic particle physics, astrophysics and detectorsThe lectures intend to cover the description of the detection techniques of ultra-high energy comic rays (Pierre Auger Observatory, Telescope Array) and the current status of the art (results and perspectives) in the field. Recommended texts: review papers and journal papers	

Module 3	HE Transients and the Multimessengers Context	
Lecturer	Elisabetta Bissaldi (elisabetta.bissaldi@uniba.it)	
Credits	2-3	
Planned hours	16	
Planned schedule		
Prerequisites	Basic astrophysics, detectors	
Description	 Basic astrophysics, detectors Transient phenomena in the gamma-ray sky: Gamma-Ray Bursts (GRBs), Soft Gamma Repeaters. Terrestrial GammaRay Flashes; Solar Flares. Temporal and spectral characteristics Multi-frequency and Multi-messenger studies; LIGO/Virgo gravitational wave (GW) events and follow-up observations; The case of GRB 170817A/GW 170817; IceCube neutrino events and follow-up observations; The case of TXS 0506+056; Other recent discoveries in the field. 	
	 Longair, "High-energy astrophysics" De Angelis & Pimenta, "Introduction to Particle and 	
	Astroparticle Physics"	
	3. Recent publications	
	Assessment methods: lessons, final report	

Module 4	Indirect Dark Matter Searches	
Lecturer	Francesco Loparco	(francesco.loparco@uniba.it)
Credits	2-3	
Planned hours	16	
Planned schedule		
Prerequisites	Basic particle physics and detectors	

Description	Dark Matter models Dark matter distribution in galaxies WIMPs as dark matter searches with gamma rays and charged particles Searches dark matter from the Sun
	Recent publications, some textbooks, slides from the lecturer <i>Assessment method: final report</i>

Experimental techniques in Space Science

Lecturer:	Beatrice Panico (U	niv. of Naples,	beatrice.panico@unina.it)
Credits (planned):	2		
Planned hours:	10		
Planned schedule:	tbd		
Prerequisites:			
Description:	The course will present the observation of cosmic rays from An overview on the next general rays measurements will be pro The course is designed for se experimental astroparticle phy Summary: 1. Open scenarios on the basis cosmic rays, coming from as regions and from Dark Matter. 2. Methods and observing tech 3. Current research in multime Weather. 4. UHECRs from space 5. Extracting a spectral ene different experiment During the students are foreseen: from development, statistical analyse and invited to investigate in-det Assessment: students will be en an article or a modern research	n space. ttion of space-b vided. students perfo sics. c physical pro- strophysical ac niques to stud ssenger astrop rgy distribution te course some data handlin sis. In specific pth topics and valuated based	based instrument for cosmic orming doctoral studies in cesses involving low energy ceclerators in high-density y cosmic rays from space article physics and in Space on from data provided by e practical experiences with g to software design and cases students are allowed to discuss during lectures.

Extended theories of Gravity and the problem of Dark Energy and Dark Matter

Lecturer:	Prof. Salvatore Capozziello	
	(University of Naples, capozziello@na.infn.it)	
Credits (planned):	2	
Planned hours:	12	
Planned schedule:	April / May	
Prerequisites:	General Relativity, Cosmology, Quantum Field Theory	
Description:	Abstract: Extended theories of gravity can be related to several unification approaches and fundamental theories of interactions. They have recently attracted a lot of interest as alternative candidates to explain the observed cosmic acceleration, the flatness of the rotation curves of spiral galaxies, the gravitational potential of galaxy clusters, and other relevant astrophysical phenomena. Very likely, what we call "dark matter" and "dark energy" are nothing else but signals of the breakdown of General Relativity at large scales. Furthermore, PPNparameters deduced from Solar System experiments do not exclude, a priori, the possibility that such theories could give small observable effects also at these scales. I review these results giving the basic ingredients of such an approach.	
	Topics:	
	 Observational cosmology: an overview Dark Energy and dark Matter from the observations Physical and Mathematical Foundations of Extended Theories of Gravity Dark Energy and Dark Matter as Curvature Effects Probing Extended Theories of Gravity at Fundamental Level Advanced issues: GRBs to discriminate among Cosmological Models 	
	References: S. Capozziello, V. Faraoni " <i>Beyond Einstein Gravity</i> " Fundamental Theories of Physics, Springer, Dordrecht 2010	

Fundamental interaction: QCD and BSM

Module 1	Perturbative QCD		
Lecturer	Francesco Tramontano (francesco.tramontano@unina.it)		
Credits	2		
Planned hours	12 (2 lectures per week, 2 hours each)		
Planned schedule	tbd		
Prerequisites	Particle physics background		
Description	The lectures introduce to some basic aspects and concepts of perturbative QCD: running coupling and asymptotic freedom, the parton model, infrared divergences and the factorization theorem, parton densities and parton evolution, colour coherence. Applications to e+e-annihilation, deep inelastic lepton-nucleon scattering and hadron-hadron collisions are discussed.		

Module 2	Teoria di Regge	
Lecturer	Giovanni Chirilli (Regensburg) ref. Claudio Corianò	
Credits (planned)	2	
Planned hours	10	
Planned schedule	tbd	
Prerequisites	Particle physics background	
Description	Regge Theory; High parton density; small x evolution equations and Wilson lines formalism; Background field method; Highenergy Operator Product Expansion; High-energy factorization for scattering amplitudes	

Module 3	BSM	
Lecturer	Fulvia De Fazio	(Università di Bari)
Planned hours	16	
Planned schedule		
Prerequisites	Particle physics background	
Description	Physics beyond the Standard Model - Reasons to go beyond the Standard Model - Models based on extended gauge groups - Models introducing extra dimensions - Aspects of supersymmetry - Extension of the effective hamiltonians in New Physics Models	

Geometric and topological methods in Theoretical Physics

Lecturer	Prof.ssa Patrizia Vitale (patrizia.vitale@unina.it)	
Credits (planned)	3	
Planned hours	20	
Planned schedule		
Prerequisites	Background in theoretical/mathematical physics	
Description	Differential calculus on manifolds Topological invariants (homology, cohomology and homotopy groups) Lie groups and Lie algebras Riemannian geometry Fiber bundles	

Heavy Flavour Physics

Lecturer:	Prof. Pietro Santorelli (pietro.santorelli@unina.it)	
Credits (planned)	2-3	
Planned hours	14-16	
Planned schedule		
Prerequisites:	Basic concepts of Quantum Field Theory. Suitable for theorists and experimentalists	
Description:	This course will provide an introduction to effective field theory of the QuantumChromoDynamics for heavy quarks and its application to weak decays of heavy mesons. The following arguments will be discussed:	
	 A very short review of the Standard Model Integrating out heavy particles, scale separation, radiative corrections Heavy Quark Effective Theory Semileptonic and rare decays of B mesons Non-leptonic two body decays of B and D mesons CP Violation 	

How to boost your PhD

Lecturer	Dr. Antigone Marino (CNR–ISASI, antigone.marino@unina.it)	
Credits (planned)	2	
Planned hours	12	
Planned schedule		
Prerequisites	none	
Description	Nowadays, the scientific researcher profession requires a plurality of skills, on which we rarely stop to think about. Which ones are they? Above all, how to acquire them to turbo boost your PhD? The course is focused on this aspect of the scientific carriers.	
	• Soft Skills - The technical skills of a person are the first ingredients for a successful career, but often the competition with others is played on other skills, which are more related to the character of the person. This does not mean owning them or not. A good training action will widen the spectrum of these skills as well as technical ones.	
	• Scientific Communication – A large amount of researcher's work is now devoted to communication. Mostly through posters, slides, papers and reports. We will see what are the channels of communication and how to treat them properly.	
	• Digital Reputation - Once upon a time, there was a file in every scientist's computer called curriculum dot something. Nowadays, this file is not enough to promote your career. Society is collecting all the information in the biggest database we have ever had, internet. The care of our digital records can be a fundamental key for our work. The digital reputation of a scientist is defined by his/her behaviour in the online environment and by the content he/she posts about him/her self and others. Tips to analyse and control your digital presence will be given.	
	• Outreach - Political institutions are now asking us to bring our work to the attention of journalists, citizens and stakeholders. That is why outreach is playing an important role in scientific careers. Organizing a good outreach event needs a little bit of experience and a welldefined project. We will see which the conditions that make the outreach event effective are.	

Computational Geophysics

Lecturer	Dr. Antonio Scala; University of Naples, Federico II; antonio.scala@unina.it	
Credits (planned)	3	
Planned hours	20	
Planned schedule	the detailed schedule can be arranged with students	
Prerequisites	Basic knowledge of classical physics and continuum mechanics. Basic knowledge of earth physics and seismology	
Description	Several problems of concern in Geophysics, such as seismic and the tsunami waves within the Earth or the evolution of winds and precipitations in the atmosphere, are modelled through the momentum balance in the framework of the continuum mechanics with specific constitutive equations. In this course we present 1) the basic equations for elastodynamics and fluid dynamics within the Earth system and couple them with frictional conditions to simulate earthquake rupture generation and propagation.	
	 2) Finite differences methods to solve the elastodynamic equation, convergence, stability. 3) Variational formulation of the elastodynamics, Finite and Spectral Element Methods (FEM and SEM respectively) and consistent boundary conditions to model the Earth free surface and the earthquake rupture. 	
	At the end of the course the student is expected to be familiar with the main principles of the presented techniques and able to understand which approach to use and how to do it in different contexts.	

Introduction to Neutrino Physics

Lecturer	Prof.ssa Giulia Ricciardi (giulia.ricciardi2@unina.it)		
Credits (planned)	4-6		
Planned hours	24-36		
Planned schedule			
Prerequisites	basics of particle physics		
Description	This course aims at providing the basics of the theory of neutrino physics and their oscillations. Some recent experimental results are also discussed. It can be extended to include the basics of leptogenesis.		

Mathematical aspects of gauge theories

Lecturer	Prof.ssa Patrizia Vitale	(patrizia.vitale@unina.it)
Credits (planned)	3	
Planned hours	20	
Planned schedule		
Prerequisites	background in theoretical/mathematical physics	
Description	 Principal G-bundles and associated vector bundles Gauge connections Abelian and non-Abelian gauge theories as theories of connections on fiber bundles 	

Organic conductors

Lecturer	Antonio Cassinese	antonio.cassinese@unina.it
Credits (planned)	3	
Planned hours	8 - 10 lectures, 2 hours each	1
Planned schedule	tbd	
Prerequisites	(like semiconductors, condu interest for electronic and op	ic compounds with different functionalities actors, ferroelectrics, superconductors) of otoelectronic application. nd practical application will be described.
Description	 Injection and Electrical of I/O hybrids. P-type and r Experimental techniques 	for the realization of organic and I/O
	ferroelectric, electrical bis - Electro –optical technique	different functionalities (conductors, stable and superconductors es for the characterization of organic and
	 I/O hybrid materials. Organic Field effect trans application Organic/Inorganic and O 	istor (OFET) basic issues and practical rganic/Organic interface
	- Emerging Routes in Orga	

Particle Detectors-Trigger/DAQ

Module 1	Particle Detectors
Lecturer	Margherita Primavera (margherita.primavera@le.infn.it)
Planned hours	22
Planned schedule	
Prerequisites	Charged particles interactions with matter
Description	Generalities on gaseous detectors. Ionization and transport phenomena in gases. Amplification in gases. Gaseous detectors: ionization chambers, proportional counters, MultiWire Proportional Chambers, Drift chambers, TPC, Geiger counters, streamer tubes, Resistive Plate Counters. Calorimetry. Electromagnetic and hadronic calorimeters. Calorimeter calibration and monitoring. Cherenkov detectors: DISC, RICH, DIRC. Transition radiation detectors. Micropattern detectors, dual readout calorimeters.

Module 2	Photodetection	
Lecturer	Elisabetta Bissaldi	(elisabetta.bissaldi@ba.infn.it)
Planned hours	16	
Planned schedule	1 lecture per week two hours each	
Prerequisites	Experimental particle physics background	
Description	This course aims to provide knowledge of radiation measurement from classic scintillation detecto devices. It requires an elemental measurements, radiation matte electronics. The program includes Organic and Inorganic scintillators photodetectors; SiPM technologies Part of the course will be devoted to	ents and detection techniques, rs to Silicon Photomultiplier ary background in radiation er interactions and basic s Photon-matter interactions; s; Optical coupling; Solid-state s, properties and Applications.

Module 3	Trigger and DAQ for Particle Physics
Lecturer	Massimo Della Pietra (massimo.dellapietra@unina.it)
Planned hours	10
Planned schedule	
Prerequisites	Experimental particle physics background
Description	Introduction to trigger and data acquisition system for experimental physics. Basic elements and definitions: trigger latency and trigger rate. Connection between trigger e data acquisition: dead time and busy status. Multilevel trigger systems, trigger for High Energy Physics at colliders. Integration of Trigger - DAQ and related systems Event building, Run Control, Online data quality. Description of most relevant trigger system for collider HEP: the trigger system of the LHC experiments. Trigger systems for fixed target experiments and for test-beam setup. Triggerless DAQ systems for particle and astroparticle physics. The impact of the trigger system efficiency on a physical measurement.

Module 4	Nuclear Physics in low-backgrou	nd conditions
Lecturer	Prof. Andreas Best	(andreas.best@unina.it)
Credits (planned):	3-4	
Planned hours:	16-24	
Planned schedule:	To be arranged in discussion with stu	dents
Prerequisites:	Basic knowledge of nuclear physics.	
Description:	This course aims to give an overview characteristics of experimental nucle conditions, in particular in reference underground. We will discuss the "traditional" laboratories and undergr wanting to measure in low-backgroun of backgrounds and their rejection viexamples of currently active low-back backgrounds in common materials; a closely similar conditions on the surfact closely similar closely sinteres closely sinteres closely similar clo	ar physics in low-background to nuclear astrophysics deep e main differences between ound ones; the motivations for id environments; main sources a passive and active methods; kground laboratories; intrinsic methods to achieve similar or ace. physics, intrinsic and extrinsic ohysics $\frac{f}{s}$ scrimination aboratories on the surface (to be determined)

Physics and applications of Superconducting and Spintronic Devices

Lecturer	Prof. G.P. Pepe	(giovannipiero.pepe@unina.it)
Credits (planned)	4 /5	
Planned hours	about 30 (2-3 hours/week)	
Planned schedule		
Prerequisites	basic knowledge of solid state p	hysics and electronics
Description	applied aspects related to the nanosized regime, including cryogenics, diagnostic tools SQUIDbased microscopy) and the detectors and nonequilibrum p in spintronics (mainly containing presented and discussed.	ish competences on both fundamental and e superconducting electronics mainly in deposition techniques, nano-patterning, for advanced microscopy (AFM, MFM, me resolved spectrometry, superconducting hysics. Moreover, the recent achievements ng superconducting structures) will be also
	A brief overview of the program	is the following:
	GinzburgLandau theory, weak some nonequilibrium effects	luctivity: linear electrodynamics, The superconductivity, the Josephson effect, in superconductors, superconducting tivity in low dimension systems.
	nano-litography, the self-ass	eposition and characterization, top-bottom sembling processes in nanotechnology, o-scale (AFM, STM, advanced microscopy).
		ntronics: magnetism and nanostructures, to-optics mainly in superconducting based
		ent seminars on topics related to the above ts using general templates as proposed by

Quantum Computing and Artificial Intelligence		
Lecturer	Prof. Giovanni Acamporagiovanni.acampora@unina.it	
Credits (planned)	4/6	
Planned hours	20 to 24	
Planned schedule		
Prerequisites	Foundations of Computer Science and Computer Programming	
Description	The program overviews: a) concepts of Artificial Intelligence; b) Machine Learning; c) Implementation of Machine Learning algorithms in Python; d) Quantum Computing; e) Quantum Architectures; f) Quantum Algorithms; g) An embryonic view on Quantum Machine Learning.	

Quantum Information, Quantum Computation and Quantum Imaging

Module 1	Physical Coherence and Correlation Functions	
Lecturer	Saverio Pascazio (Università di Bari)	
Planned hours	16	
Planned schedule	Eight two-hour lectures between February and July	
Prerequisites	Background in quantum theory, technologies and applications	
Description	Optical Fluctuations and Coherence. Classical and Quantum theory. The Radiation field. Experimental milestones. Measuring correlation functions. Equilibrium equal-time (spatial) correlation functions Equilibrium equal-position (temporal) correlation functions. Beyond equilibrium. Phase transitions and correlation functions.	

Module 2	Introduction to Quantum Computat	tion
Lecturer	Luigi Martina	(Università del Salento)
Planned hours	16	
Planned schedule	Eight two-hour lectures between Febr	uary and July
Prerequisites	Quantum Mechanics and Statistical Mechanics	
Description	Since at least a couple of decades, the and Computation has been a recogn discipline. In fact, the latter fields show of the underlying physical processes, mechanical universe. But the intrinsi of the quantum measurements and algebra of the observables induce im the central results of classical inform quantum parallelism, compression of bounds on classical information encode bounds on quantum information sem channel, efficient quantum algor complexity. The course will touch the	ized as an autonomous ald be linked to the study namely of the quantum c probabilistic character d the non-commutative portant modifications in nation theory, including: f quantum information, led in quantum systems, it over a noisy quantum rithms and quantum

Module 3	Quantum imaging	
Lecturer	Milena D'Angelo (Università di Bari)	
Planned hours	16	
Planned schedule	Eight two-hour lectures between June and July	
Prerequisites	Background in quantum theory and optics. Attendance of either one of the two above modules is suggested.	
Description	From classical to quantum imaging. Klyshko advanced wave model. Ghost imaging and diffraction, from first protocols to recent advances (differential GI, computational GI, compressive GI,). Single-pixel imaging. Super-resolution: NOON states, and Quantum Fisher information. Sub-shot-noise imaging. Imaging by undetected photons. Imaging through turbulence and scattering media, and imaging around corners. Correlation plenoptic imaging: from principles to applications.	

Scientific writing

Lecturer	Prof. Paolo Russo	(paolo.russo@unina.it)
Credits (planned)	5	
Planned hours	30 2 (hrs per lecture, 2 lectures per week)	
Planned schedule		
Prerequisites	none	
Description	The course provides basic intro to the profe publication in international journals, with ref publishing, scientific journal selection, writi manuscript editing, revision and proofs correspondence. Moreover, the following a description of the basic aspects of the Editoria Journal (Editor, associate editors, editorial bo journal manager); basic aspects of the man methods for manuscript review; understan bibliometrical indices. The course evaluation will be based on exerci on selected aspects of the course material.	erence to motivations for ing style, ethical issues, as reading, manuscript spects will be covered: al structure of a scientific pard members, publisher, nuscript review process; ading and evaluation of

Signals formation and treatment in particle detectors

Module 1	Signals formation	
Lecturer	Marcello Abbrescia marcello.abbrescia@uniba.it	
Planned hours	10	
Planned schedule	5 lectures of 2 hours each	
Prerequisites	Basic notions of electromagnetism and of particle detector physics	
Description	 physics Electrostatics-Principles-Reciprocity-Induced currentsInduced voltages - Ramo-Shockley theorem - Mean value theorem - Capacitance matrix - Equivalent circuits; Signals in: - Ionization chambers - Liquid argon calorimeters - Diamond detectors - Silicon detectors GEMs (Gas Electron Multiplier) - Micromegas (Micromesh gas detector) - APDs (Avalanche Photo Diodes) - LGADs (Low Gain Avalanche Diodes) - SiPMs (Silicon Photo Multipliers) - Strip detectors - Pixel detectors - Wire Chambers - Liquid 	

Module 2	Signals treatment	
Lecturer	Alberto Aloisio (alberto.aloisio@unina.it)	
Planned hours	10	
Planned schedule		
Prerequisites		
Description	Sistemi di schermatura e di guardia nella lettura di sensori e rivelatori	
	 Cenni sul noise di componenti attivi e passivi Uso del simulatore analogico per l'analisi di alcuni casi di studio: rumore di alcune configurazioni base degli amplificatori operazionali, effetto della capacità del rivelatore sul noise gain 	

Statistical Methods for Data Analysis		
Lecturer	Dr. Alberto Orso M. Iorio (albertoorsomaria.iorio@unina.it)	
Credits (planned)	2-3	
Planned hours	12-18	
Planned schedule		
Prerequisites	Basic knowledge of the concept of probability. Examples and exercises will be done in C++, so basic knowledge of computer programming is recommended.	
Description		
	RooFitTMVA	

Module 1	Active Matter and Complex F	luids
Lecturers:	Giuseppe Gonnella Antonio Lamura	(giuseppe.gonnella@uniba.it)
Credits (planned)	2-3	
Planned hours	16 (8 two hrs lectures)	
Planned schedule		
Prerequisites	Background in classical physics as	nd statistical mechanics
Description	Statistical physics and biological systems. Active matter: basic particle and continuous models. The phase diagram of passive and active colloids. Topological transitions. Complex fluids: theoretical modelling. Polymers: static and dynamical properties in dilute conditions. Ternary mixtures with surfactant: self -aggregation, active and double emulsions. Basic rheological behavior of complex fluids. The yielding transitions. Simulations methods in soft and active matter. Molecular dynamics, Multi-Particle Collision Methods, lattice Boltzmann Methods	
Module 2	Statistical Mechanics of Complex Systems	
Lecturer:	Prof. Antonio De Candia	(antonio.decandia@unina.it)
Credits (planned)	2-3	
Planned hours	16 (8 lectures, two hrs each)	
Planned schedule		
Prerequisites	basic knowledge of statistical meel	hanics
Description	Sherrington - Kirkpatrick model for spin-glasses. Replica - symmetric solution. The Parisi solution. The p-spin model. The cavity method. Dynamics and Mode - Coupling theory. TAP equations. The spin - glass on the Bethe lattice. Reconstruction on trees and point - to - set correlations.	

Module 3	Stochastic Processes and Analysis of Correlations	
Lecturer:	Prof. Eugenio Lippiello	(eugenio.lippiello@unicampania.it)
Credits (planned)	2-3	
Planned hours	16 (8 two hrs lectures)	

Planned schedule		
Prerequisites	Background in classical statistical mechanics.	
Description	 The purpose of these lectures is to give a simple mathematical introduction to the description of stochastic processes with innovative applications in the field of epidemiology and earthquake data time- series analysis. Markov processes. Master and Fokker Plank equations. Stochastic energetics Branching processes. Watson-Galton model. Application to genetics. Epidemic models. Applications to epidemiology and earthquake occurrence. Analysis of correlations in stochastic signals. Detrended Fluctuation Analysis Power spectrum of a signal 	

Supersy	ymmetries,	Strings	and	branes

Lecturers	Dr. Franco Pezzella Dr. Raffaele Marotta	(INFN, pezzella@na.infn.it) (INFN, lmarotta@na.infn.it)
Credits (planned):	4	
Planned hours:	24	
Planned schedule		
Prerequisites	General Relativity, Quantum Field Theory	
Description	 Supersymmetry in two space-time dimensions (D=2): Superstring Theories N=1,2 in D=4 Supersymmetry N=1 in D=6 and D= 10 Supersymmetry A Brief introduction to supergravity theories Aspects of duality Classical and quantum aspects of superstrings are discussed together with the properties of D-branes, string dualities and more recent developments in String Theory. 	

Topics in Non-Perturbative Quantum Field Theory (from two to four dimensions)

Lecturer	Prof. Luigi Rosa	(luigi.rosa@unina.it)
Credits (planned)	4	
Planned hours	30	
Planned schedule		
Prerequisites	theoretical physics background	
Description	 NON-PERTURBATIVE METHODS IN TWO-D THEORY: From massless scalar field to conf DIMENSIONAL NON-PERTURBATIVE Fundamental aspects of gauge theories in tw TO FOUR DIMENSIONS: Conformal invari field theories and in QCD. From two- fourdimensional magnetic monopoles. Instat GAUGE THEORIES: The gauge principle; F gauge theories. BRST symmetry and physic symmetry; Ward-Takahashi identities. breaking; Continuous global symmetry; The Higgs mechanism; Casimir energy and th problem. NON ABELIAN GAUGE FIELDS: the Gribov a QCD; Instantons; confinement and du HooftPolyakov magnetic monopoles 	Formal field theories. TWO- GAUGE DYNAMICS: o dimensions. FROM TWO ance in four-dimensional dimensional solitons to ntons in QCD Functional quantization of cal states. Realizations of Spontaneous symmetry Goldstone's theorem; the ne cosmological constant

Ultrafast processes and femtosecond laser pulses

.	
Lecturer	Prof. Andrea Rubano (andrea.rubano@unina.it)
Credits (planned)	3
Planned hours	18
Planned schedule	
Prerequisites	Basic knowledge of Solid-state Physics would be helpful. Linear Optics and basics of Quantum Physics are required.
Description	 The PhD Course will introduce the students to the realm of Ultrafast Processes, with a special focus on optical pulses and their interaction with matter. The introduction will give broad overview about pulsed light, pulsed sources, and especially commercial femtosecond lasers. Theoretical and technical description about the most common ways to produce and amplify short pulses will be given in some detail. In the main part, different applications of ultrafast pulses will be described as follows: 1) Metrology: How to measure optical frequencies? Frequency Comb, optical clockwork. 2) Nonlinear Optics: New frequencies, new probes? Nonlinear lightmatter interaction, principles and main applications. Sum and difference frequency generation. Frequency doubling. Extreme cases: THz and X-rays generation schemes. 3) Novel states: How to access non-equilibrium states? Scanning microscopy approaches: two-photon microscopy, stimulated emissiondepletion microscopy. 4) Fs-spectroscopy: How to resolve ultrafast dynamics? Overview about the general Pump&Probe experimental scheme. Examples: coherent phonon control, isomerization and structural transitions, charge transfer and separation, hot-electron dynamics in metals. 5) Fs-photonics: How to control light with light? Spectral lenses in photonic crystals. The aim of the Course is to give a wide panorama on today's available techniques using ultrashort laser pulses and to provide technical skills and theoretical background to the student which intends to work within this field of research. The actual layout of the course can be extended in some aspects and reduced in others, depending on the student's interests and motivations.

Unified theory of nuclear reactions

Lecturer	Prof. Giovanni La Rana (Giovanni.larana@na.infn.it)	
Credits (planned):	4	
Planned hours:	20	
	10 lectures, 2 ours each	
Planned schedule:	To be agreed with students	
Prerequisites:	Basic knowledge of nuclear physics and quantum mechanics.	
Description:	This course aims to deepen the study of nuclear reactions induced by light and heavy ions at low energy (E / A <10 MeV / A). Starting from phenomenology and the main nuclear models, the final goal is to present and discuss the unified theory due to H. Feshbach. This theory, based on the projection operator technique, provides an important framework for understanding the physics and modelling nuclear processes, from direct mechanisms to the formation of compound nuclei. Part of the course makes use of advanced quantum mechanics concepts applied to nuclear physics, the basic elements of which will be introduced during the lectures.	
	<u>Course outline</u>	
	 Phenomenology of nuclear reactions at low energy (E/A < 10 MeV/A): direct and compound nucleus processes, giant resonances, fluctuations in the cross section. Nuclear models: single particle potential model for nuclear scattering, theory of the compound nucleus in the discrete and continuum region, Statistical Model, Optical model. 	
	 Brief review of scattering and reactions theory: cross section and T matrix, Green operator, Lippmann Schwinger equation, Born development and approximate methods. Unified Theory of nuclear reactions: prompt and time-delayed processes, the projection operator technique, general expression of the transition amplitude, resonance theory. Derivation of the generalized Optical-Model potential. Intermediate structure in nuclear reactions: 'doorway states'. 	
	References G.R. Satchler: Introduction to nuclear reactions D.F. Jackson: Nuclear Reactions P. Roman: Advanced Quantum Theory F.S. Levin/H. Feshbach: Reaction Dynamics	

Waves and Interactions in Nonlinear Media

Lecturer	Prof. Renato Fedele(renato.fedele@unina.it)
Credits (planned)	4
Planned hours	25
Planned schedule	
Prerequisites	Classical Electrodynamics, Fundamentals of Quantum Mechanics, Fundamentals of Statistical Mechanics
Description:	The course is interdisciplinary and gives a general description of the propagation of waves in nonlinear media and their interactions (three and four waves parametric processes). Some physical examples in nonlinear optics (Kerr media, optical fibers), surface gravity waves (ocean waves), large amplitude waves in plasmas (Langmuir wave packets) and matter waves physics (Bose-Einstein condensates) are given. From these examples, a unified description modelled by suitable nonlinear Schrödinger equations is extrapolated. Such a description is then extended to phase space by means of the Wigner quasi-distribution. Particular attention is devoted to both theoretical and experimental aspects of the modulational instability and the related stabilizing role of the Landau damping for an ensemble of partially incoherent waves.