

Physics PhD courses catalogue

- 39th cycle, and till active ones -

(last updated on May 21st, 2024)

n.b. **SUPRA** courses are those ones offered (on-line) in the frame of the *Southern Universities Physics Research Agreement*, involving the University of Naples "Federico II", University of Campania "L. Vanvitelli" - Caserta, University of Bari, University of Salento - Lecce

1. Theoretical Physics of Fundamental Interactions

1.1.	Selected topics in Theoretical Physics	(G. Mangano, F. Lizzi Unina)
1.2.	Fundamental interactions: QCD and BSM (IV - SUPRA 2024)	
	Perturbative QCD	(F. Tramontano - Unina)
	Teoria di Regge	(C. Corianò - UniSalento)
	Weak decays and effective Hamiltonian in the Standard Model and Beyond	(F. De Fazio - UniBa)
1.3.	Phenomenology of particle interactions	
	Introduction to Neutrino physics	(G. Ricciardi - Unina)

(G. Ricciardi - Unina) (P. Santorelli - Unina) (G. D'Ambrosio – INFN/Unina)

(F. Pezzella, R. Marotta – Unina / INFN)

1.4. Advanced theoretical/mathematical physics Supersymmetry, String and Branes

Effective Theories and Flavour Physics

Heavy Flavour Physics

2. Astrophysics, Astroparticle and Cosmology

2.1. Multi-messenger and particle astrophysics of compact objects (III - SUPRA 2024)
Compact objects	(F. De Paolis - UniSalento)
Neutrino Oscillations	(D. Montanino - UniSalento)
Supernova Neutrinos	(A. Mirizzi - UniBa)
Gravitation, Relativity and Black Holes	(M. De Laurentis - Unina)
Physics and evolution of supermassive Black Holes	(M. Paolillo - Unina)
Gravitational Waves and Gamma-Ray Bursts	(T. Di Girolamo - Unina)
2.2. Experimental High-Energy Astroparticle Physics (VII - SUPRA 2024)	
Experimental Techniques in Astroparticle Physics	(G. Marsella - UniPa)
HE and VHE Observations from Extragalactic Sources	(L. Perrone – UniSalento)
HE Transients and the Multimessenger Context	(E. Bissaldi – UniBa)
Astrophysics with ultra-high-energy neutrinos and Neutrino Telescopes	(F. Loparco – UniBa)
Experimental techniques in Space Science	(B. Panico - Unina)
Dark Matter in cosmology and astrophysics	(F. locco - Unina)

2.3. Extended theories of Gravity and the problem of Dark Energy and Dark Matter (S. Cape

(S. Capozziello - Unina)

3. Nuclear and Particle Physics

3.1. Particle Detectors, Trigger and DAQ (I - SUPRA 2024)	
Particle detectors	(M. Primavera - UniSalento)
Photo-detection	(E. Bissaldi - UniBa)
Trigger and DAQ for Particle Physics	(M. Della Pietra - Unina)
Detection methods for nuclear astrophysics and application	ns (R. Buompane – UniCampania)
3.2 Nuclear Physics in low-background conditions	(A. Best - Unina)
3.3. Signals formation and treatment in particle detectors (II - SI	JPRA 2024)
Signal formation	(M. Abbrescia - UniBa)
Signals treatment	(A. Aloisio - Unina)
3.4. <u>Unified theory of nuclear reactions</u>	(G. La Rana - Unina)
3.5. <u>Higgs Boson and beyond at LHC</u> (II - SUPRA 2024)	
Higgs boson discovery and measurements at LHC	(E. Rossi - Unina)
Searches beyond Standard Model at LHC	(F. Cirotto - Unina)

4. Physics of Matter

4.1.	Advanced topics in experimental physics of matter	
	Advanced Spectroscopies in strongly correlated systems	
	Electrodynamic properties of novel materials and devices	
	Organic conductors	
	Ultrafast processes and femtosecond laser pulses	
	Physics and applications of Superconducting and Spintronic Devices	

- 4.2. A general overview of the Physics of Surfaces and Interfaces
- 4.3. Statistical Physics for Complex Systems (VIII SUPRA 2024) **Active Matter and Complex Fluids Statistical Mechanics of Complex Systems Stochastic Processes and Analysis of Correlations**

5. Artificial Intelligence and Computing

- 5.1. Artificial Intelligence and Machine Learning (V- SUPRA 2024) Machine Learning: basics and applications_ **Data Modelling Artificial Intelligence for Social Good**
- 5.2. Quantum Computing and Artificial Intelligence
- 5.3. Evolutionary Computation and Applications

6. Biomedical Physics

- 6.1. Biophysics for Health and Environment (IX- SUPRA 2024) Biophysical mechanisms and therapeutic implications of human exposure to ionising radiation(L. Manti - Unina) **Bio-photonics for clinics and environment** (M. Lepore - UniCampania)
- 6.2. Advanced computational tools in Medical Physics

(G. De Luca - Unina) (A. Andreone - Unina) (A. Cassinese - Unina) (A. Rubano - Unina) (G.P. Pepe - Unina)

(R. Di Capua - Unina)

(G. Gonnella, A. Lamura - UniBa) (A. De Candia - Unina) (E. Lippiello - UniCampania)

(G. De Nunzio, G. Palma – UniBa) (N. Amoroso - UniBa) (L. Bellantuono – UniBa)

> (G. Acampora - Unina) (A. Vitiello - Unina)

6.3. Biosensors

(G. Mettivier - Unina)

7. General Formation, or specific toipics

- 7.1. Statistical Methods for Data Analysis
- 7.2. <u>Computational Geophysics</u>
- 7.3. <u>Waves and Interactions in Nonlinear Media</u>
- 7.4. Physics of the climate change
- 7.5. <u>Scientific writing</u>
- 7.6. How to boost your PhD
- 7.7. Introduction to Labview Programming

(A.O.M. Iorio - Unina) (A. Scala - Unina) (R. Fedele - Unina) (A. Sannino - Unina) (P. Russo - Unina) (A. Marino – Unina /ISASI-CNR) (D. Rapagnani)

Lecturer	Prof. Giovanni Mettivier	(giovanni.mettivier@unina.it)
Credits (planned)	2	
Planned hours	12	
Planned schedule		
Prerequisites:	Medical Physics background, Program	nming skills (C, python, Matlab)
Description:	The lectures introduce to some basic of Monte Carlo simulations procedure their application in the Medical Physicode, like Geant4, allows to study dosimetric and radiation-matter in medical apparatus or medical proced study of AI algorithms (Machine Lea autonomy models are the basis for ur learning and reasoning. In this co- opportunity to design and develop a lessons.	aspects and concepts of the use es and Artificial Imaging tools for sics field. The use of simulation ents to implement and study interaction problems related to lure (Virtual Clinical Trials). The arning and Deep Learning) and inderstand the basic of automatic ourse, the students will have such systems as part practical

Advanced computational tools in Medical Physics

Advanced Spectroscopies in strongly correlated systems

Lecturer	Prof. Gabriella Maria De Luca (gabriellamaria.deluca@unina.it)	
Credits (planned):	4/5	
Planned hours:	24	
	12 lectures, 2 hours each	
Planned schedule:	October / November 2024	
Prerequisites:	None. One or two lessons (depending on the students background) will be dedicated to the few needed concepts of solid state physics.	
Description	The aim of this course is to give an outline of the characteristic of the most important spectroscopy's techniques and to provide to the PhD student the necessary basis to plan or to develop its own spectroscopy experiment using synchrotron light and/or scanning probe microscopy. Advanced spectroscopies are the most powerful experimental tools to investigate the electronic and magnetic properties of complex materials	
	These techniques are based on the study of the interaction of the matter with radiation, being typically X-rays or electrons.	
	Modern X-rays spectroscopy's takes advantages from the high brilliance third generation synchrotron sources. These techniques can achieve high momentum and energy resolution, but they are typically unable to get spatially resolved information. Scanning tunneling microscopy's/Spectroscopy's are on the other hand based on the extremely high spatial resolution achieved by probing the tunneling electronic current coming from a tip in close proximity with a sample. These combined techniques can probably offer the largest possible number of information about the electronic properties of the solids. Examples of application of these techniques to different undisclosed issues in condensed matter physics will be given during the course, like the microscopic mechanism of superconductivity in the High Critical Temperature	
	Superconductors and Novel oxides Interfaces, Proximity effect in	
	Ferromagnetic/Superconducting heterostructures and	
	Multiferroicity (coexistence of more of two ferroic orders).	
	 The detailed program will include: 1) Introduction to the Physics of complex, strongly correlated materials 2) Electrons and X-rays as probes of the electronic density of states 	
	3) Introduction to the synchrotron light	
	a. X-ray Absorption and X-ray Photoemission	
	b. Examples: HTS and other metal transition oxides	
	c. Resonant Inelastic X-ray Scattering	
	d. Angle resolved Photoemission Spectroscopy	

A general overview of the Physics of Surfaces and Interfaces

Lecturer	Prof. Roberto Di Capua	roberto.dicapua@unina.it
Credits (planned)	6	
Planned hours	36 hours (18 lectures, 2 hours each)	
Planned schedule	the detailed schedule can be arrange	ed with students
Prerequisites	Basic knowledge of classical general One or two lectures will be devoted to solid-state physics.	physics and quantum mechanics. o the few needed basic concepts of
Description	The course aims to provide the four interfaces. It is conceived to be of po- students working in the physics of ma- other fields, due to the developm methodologies of wide application.	ndation of physics of surfaces and otential interest not only for Ph.D. atter, but also for those involved in nent of fundamental issues and
	The lectures are intended as an concepts provided from the master mechanics, atomic-scale and many-b interaction between matter and r developed and applied to the study subject which is gaining more and n many other fields.	ideal prosecution of the general r degree in physics on quantum podies physics, structure of matter, radiation: such concepts will be of solid surfaces and interfaces, a more importance in Physics and in
	 One or two lectures, depending on the be devoted to the introduction of the physics needed for the understanding main body of the course will be organs. 1) Illustration of basic phenomenologic physics of surfaces: electronic state and interfaces, the importance of states and interface phenomena: arising properties at interfaces between different electronic, magnetic and crystate perspectives of nanotechnology and illustration of some current research 3) Description of the main experiment physics, for probing and measuring interfaces: atomic force microscopy tunnelling microscopy and spectroscopy tunnelling microscopy tunnelling micros	he background of the students, will e few basic concepts of solid-state ing of some arguments. Then, the lized along the following three lines. gical and theoretical aspects of the es, charge distribution at surfaces train and defects, thermodynamic collective excitations and related ing of new functionalities and erent materials, interplay between 1 properties, applications and nd engineering at atomic-scale, results in this field. mental techniques, and underlying g the properties of surfaces and and related techniques, scanning ectroscopy, diffraction analysis, techniques, synchrotron-based

Artificial Intelligence and Machine Learning

First module	Machine Learning: basics and applications	
Lecturers	Giorgio De Nunzio Giuseppe Palma	giorgio.denunzio@unisalento.it
Credits (planned)	tbd	
Planned hours	10	
Planned schedule	5 lessons / 2 hrs lesson	
Prerequisites		
Description	ription - ML taxonomy: supervised, reinforcement, unsupervised - Regression: linear regression, GLM	
	- Classification: scores (confusion matrix ar calibration; cross entropy, Brier score), cla tradeoff: underfitting, overfitting.	nd related measures; ROC curve; ass imbalance; - Bias-Variance
	 Perceptrons and Shallow Feed-Forward Network Regression and Classification in Matlab+T 	eural Networks `oolboxes
	- Applications of regression and classification Medicine with synthetic and public access	on: case studies in Physics and s data (Matlab)
	- Applications of regression and classification Medicine with synthetic and public access of	on: case studies in Physics and lata (Matlab)

Second module	Approximate reasoning and evolutionary computation	
Lecturers	Giovanni Acampora	(giovanni.acampora@unina.it)
	Ferdinando Di Martino	(fdimarti@unina.it)
	Autilia Vitiello	(autilia.vitiello@unina.it)
Credits (planned)	tbd	
Planned hours	10 (5 lessons, 2 hrs each)	
Planned schedule		
Prerequisites		

Description	Introduction (1 hour) Prof. Giovanni Acampora	
	• Approximate reasoning (5 hours) Prof. Ferdinando Di Martino Lecture	
	Fuzzy sets and fuzzy relations Fuzzy operators: t-norm, s-norm, residuum Fuzzy membership functions and fuzzy numbers	
	The extension principle Fuzzy partitions and Linguistic variables	
	Lecture 2: Fuzzy inference systems: fuzzy rule set inference systems Mamdani fuzzy inference model Tagaki-Sugeno- Fuzzy inference model Type2 fuzzy sets: intervsl type2 fuzzy sets Interval type2 fuzzy systems	
	• Evolutionary computation (4 hours) Prof.ssa Autilia Vitiello Lecture 1: Introduction to the Evolutionary Computation and its motivations The main scheme of an Evolutionary algorithm	
	Lecture 2: Different evolutionary algorithms: Genetic Algorithms, Differential Evolution and Particle Swarm Optimization. Design issues for evolutionary algorithms: parameter tuning and performance measures.	

Third module	Causality analysis of time series data
Lecturer	Sebastiano Stramaglia
	(sebastiano.stramaglia@uniba.it)
Credits (planned)	tbd
Planned hours	10 (5 lessons, 2 hrs each)
Planned schedule	
Prerequisites	
Description	Lecture 1: Complex Networks. Small world networks: Watts-Strogatz model. Scale free networks: Albert-Barabasi model. Communities in complex networks. Applications. Lecture 2: The problem of inference of Complex Networks from multivariate time series data. Time Series. Stationarity. Linear correlations and the power spectrum. Cross-correlation and coherence between time series. Prediction. Applications. Lecture 3: Introduction to Information Theory. Shannon's Entropy. Mutual Information. Maximum Entropy methods. Transfer Entropy. Applications. Lecture 4: Vector autoregressive models. Granger causality and its relation with transfer entropy. Applications. Lecture 5: Decomposition of Granger causality in frequency and time. Higher order dynamical networks. Synergy and redundancy. Applications.

Fourth module	Data modelling
Lecturer	Nicola Amoroso
	(sebastiano.stramaglia@uniba.it)
Credits (planned)	tbd
Planned hours	10 hrs (5 lectures, 2 hrs each)
Planned schedule	
Prerequisites	
Description	Introduction: graph theory. Different graph models. Nodal and edge characterization. Local and global properties. Community detection. Learning: Basic definitions, bias, variance and cross-validation. Supervised Models. Deep Learning. Unsupervised models: Clustering

First module	Biophysical mechanisms and therapeutic implications of human exposure to ionising radiation
Lecturer	prof. Lorenzo Manti lorenzo.manti@unina.it
Credits (planned)	4
Planned hours	20
Planned schedule	10 lectures of 2 hr each-preferably in the Fall (e.g. October/November) but can be modified according to students' needs/requests
Prerequisites	Fundamentals of radiation-matter interaction
Description	The aim of the course is to provide an overview of the unique biological action exerted by ionizing radiation (IR). The ensuing effects at cellular and tissue level are governed by the spatio- temporal mode with which energy deposition occurs at the nanometer level (i.e., at the scale of the DNA) and are influenced by a cascade of complex biomolecular responses. The course will therefore illustrate the main biophysical principles on which modern radiotherapy (RT) relies. New approaches will be also discussed such as the use of accelerated particle beams (hadrontherapy) and the exploitation of nuclear fusion reactions where physics can give an essential contribution to IR-based cancer therapy

Second module	Biophotonics for clinics and environment	
Lecturer	Maria Lepore(maria.lepore@unicampania.it)	
Credits (planned)	4	
Planned hours	24	
Planned schedule		
Prerequisites	Basic concepts of optical techniques	
Description	The course will deal with the application of optical techniques to the development of new diagnostic strategies and environment monitoring tools. Vibrational and fluorescence spectroscopies will be used for investigating biofluids, human tissues, radioexposed cells and enzymes in order to monitor biological processes and to develop sensor devices.	

Third module	Numerical Methods for Data Analysi	s in Optical Spectroscopy
Lecturers	Ines Delfino Carlo Camerlingo	(delfino@unitus.it)
	Maria Lepore	(maria.lepore@unicampania.it)
Credits (planned)	3	
Planned hours	18	
Planned schedule		
Prerequisites	Basic notions of a programming language	
Description	The course aims to introduce numerical methods particularly useful for the analysis of spectral data with particular attention to background subtraction, noise reduction and quantitative applications (chemometrics). Univariate and multivariate analysis (PCA, Principal Component Analysis), wavelet algorithms will be discussed and applied in the analysis of practical cases of students' interest.	

Biosensors

Lecturers	Dr. Bartolomeo Della Ventura	(bartolomeo.dellaventura@unina.it)
	Prof. Raffaele Velotta	(raffaele.velotta@unina.it)
Credits (planned)	2	
Planned hours	12	
Planned schedule	tbd	
Prerequisites	Physics background	
Description	The course aims at providing the studen currently used in realizing biosensors. I the physical mechanisms underlying laboratory demonstrations of some dev described. Piezoelectric biosensors Electrochemical biosensors: volt-amper techniques. Fundamentals of plasmon localized-surface plasmon resonan colorimetric and fluorescence-based bio	t with the most widespread techniques Lectures will include the discussion of g the transduction processes and ices. The following biosensors will be s: quartz-crystal microbalances. rometric and impedance spectroscopy ics: surface plasmon resonance and ice. Plasmonic-based biosensors: sensors.

Black Holes

Lecturers	Mariafelicia De Laurentis Tristano Di Girolamo Maurizio Paolillo	(mariafelicia.delaurentis@na.infn.it) (tristano.digirolamo@unina.it) (maurizio.paolillo@unina.it)
Credits (planned)	4	
Planned hours	24 (12 lectures, 2 hours each)	
Planned schedule	t bd	
Prerequisit es		
Description	This class is intended to offer to the student the theoretical aspects of gravitational evidences of their properties, all the cosmological manifestations.	dents a boad view of Black Holess, from al physics, through the observational he way to their astrophysical and
	Part I : Gravitation, Relativity and Black Rotating black holes: Kerr black holes coordinates, Uniqueness of the Kerr s metric, On the conformal structure of t The four laws of black hole evolution, s the horizon, First law of black hole Astrophysical Black Holes, Time-Evolu- evolution of accreting black holes, Merg a Black Hole with the Event Horizon Te	k Holes (Mariafelicia De Laurentis) s, Kerr black hole in Boyerè Lindquist solution, Global Properties of the Kerr he Kerr solution. Surface gravity and angular velocity of ole dynamics, Rotational Energy of ution of black holes Quasi-stationary ging of black holes, The first "image" of elescope
	Part II: Gravitational Waves and Gamm	na Ray Bursts <i>(Tristano di Girolamo)</i>
	Gravitational waves (GWs). Black holes Observations of GWs from black b observations and theoretical interpretations GRB progenitors. Black holes as central	as sources of GWs. Detection of GWs. holes. Gamma Ray Bursts (GRBs): tion. tle engines and final products of GRBs.
	Part III : Physics and evolution of sup <i>(Maurizio Paolillo)</i> The Discovery of Active Galactic Nuc interpretation: variability, luminosity at Eddington luminosity, Eddington mass The Unified Model; AGN physical so accretion disk spectrum; X-ray corona Observational evidence of the Unified M mass measurements; circumnuclear di mapping mass measurements; eviden distortion in Fe lines; the Milky Way nu AGN evolution from multi-wavelength st and infrared; luminosity function an number density evolution; resolving t argument: how to derive the current BI The link between Supermassive Black of AGN feedback in galaxies.	ermassive Black Holes in the Universe elei; Taxonomy of AGNs; clues to the nd efficiency; steps toward unification: and accretion rate; accretion efficiency. cales; broadband emission in AGNs; and other components. Model: Quasar host galaxies; dynamical sks, dusty nuclear disks; reverberation ace of hidden BLR in Sy2; relativistic aclear BH. tudies of AGN populations optical, Xray d number counts; AGN activity and he Cosmic X-ray Background; Soltan ack Hole mass density of the Universe; Holes and galaxy evolution; Evidences

Di Girolamo Multi-messenger and particle astrophysics of compact objects

Module 1	Compact objects	
Lecturer	Francesco De Paolis (francesco.depaolis@unisalento.it)	
Planned hour	6	
Planned schedule		
Prerequisites	Basic Astrophysics	
Description	 Last stages of stellar evolution and formation of the compact objects Phenomenological properties of neutron stars and pulsars Selected recent topics on the physics of the compact objects 	
Recommended texts	• Slides of the lecturer and texts suggested during the lectures	
Assessment methods	Short essay on one of the topics developed during the lectures	

Module 2	Neutrino Oscillations	
Lecturer	Daniele Montanino (daniele.montanino@unisalento.it)	
Planned hour	6-8h	
Planned schedule		
Prerequisites	Particle physics	
Description	• Introduction to the neutrino masses, mixing and oscillations in vacuum and matter	
	• Phenomenology of neutrino oscillations from terrestrial experiments and astrophysical sources, in particular solar neutrinos	
Recommended texts	• Giunti, Kim, "Fundamentals of neutrino Physics and Astrophysics" (Oxford University Press, 2007) • Slides of the lecturer	
Assessment methods	Short essay on one of the topics developed during the lectures	

Module 3	Supernova neutrinos	
Lecturer	Alessandro Mirizzi (alessandro.mirizzi@uniba.it)	
Planned hour	6	
Planned schedule		
Prerequisites	Particle physics	
Description	 Supernova (SN) explosion mechanism SN 1987A neutrino observation Future SN neutrino observations Neutrino oscillations in dense SN medium 	
Recommended texts	 G. Raffelt, "Stars as Laboratories for Fundamental Physics" (University of Chicago Press, 1996) Slides of the lectures 	
Assessment methods	Short essay on one of the topics developed during the lectures	

Module 4	Gravitation, Relativity and Black Holes
Lecturer	Mariafelicia De Laurentis (mariafelicia.delaurentis@unina.it)
Planned hour	6-8
Planned schedule	
Prerequisites	analytical mechanics, general relativity
Description	Rotating black holes: Kerr Spacetime and its global properties. Kerr black hole in Boyer-Lindquist coordinates. Zero-mass limit. Kerr-Schild form of the Kerr solution. Ergosphere and Horizon (Infinite redshift surface, Surface gravity, Surface
	geometry of horizon and ergo surface) Particle and Light Motion in Equatorial Plane. Matter accretion and black hole parameters change. Evolution in the black hole parameter space. Geodesics in Kerr Spacetime: General Case. Light Propagation. Black hole shadow. Generic properties of the rotating black hole shadows (Asymmetry, Flattening etc). Image of Black Holes with the Event Horizon Telescope.
Recommended texts	Slides of the lectures
Assessment methods	Short essay on one of the topics developed during the lectures

Module 5	Physics and evolution of supermassive Black Holes	
Lecturer	Maurizio Paolillo	(maurizio.paolillo@unina.it)
Planned hour	6-8	
Planned schedule		
Prerequisites	Basic classical physics and Module " Gravitation, Relat astrophysics, Physics of Gal	l gravitation. Useful but not required: tivity and Black Holes", Introductory laxies
Description	The Discovery of Active Gala to the interpretation: varial toward unification: Edding accretion rate; accretion effi Unified Model; AGN physica accretion disk spectrum; X Observational evidence of th dynamical and reverberat evidence of hidden BLR in the Milky Way nuclear BH. studies of AGN populations function and number coun evolution; resolving the argument: how to derive th the Universe; The link bet galaxy evolution; Evidences	actic Nuclei; Taxonomy of AGNs; clues bility, luminosity and efficiency; steps ton luminosity, Eddington mass and iciency. The l scales; broadband emission in AGNs; X-ray corona and other components. the Unified Model: Quasar host galaxies; tion mapping mass measurements; Sy2; relativistic distortion in Fe lines; AGN evolution from multi-wavelength optical, X-ray and infrared; luminosity tts; AGN activity and number density Cosmic X-ray Background; Soltan the current Black Hole mass density of ween Supermassive Black Holes and of AGN feedback in galaxies.
Recommended texts	Lecture slides; "Exploring the 2010	he X-ray Universe", Seward & Charles,
Assessment methods	Short essay on one of the to	ppics developed during the lectures

Module 6	Gravitational Waves and Gamma-Ray Bursts	
Lecturer	Tristano Di Girolamo	(tristano.digirolamo@unina.it)
Planned hour	6-8	
Planned schedule		
Prerequisites	Basic astrophysics and particle	physics

Description	Generation of Gravitational Waves (GWs). Binary Black Holes (BBHs) as sources of GWs. Detection of GWs. Observations of GWs from BBHs. Gamma Ray Bursts (GRBs): observations and theoretical models. GRB progenitors. Black holes as central engines and final products of GRBs.
Recommended texts	Shapiro & Teukolsky, "Black Holes, White Dwarfs and Neutron Stars"
Assessment methods	Short essay on one of the topics developed during the lectures

Computational Geophysics

Lecturer	Dr. Antonio Scala; University of Naples, Federico II; <u>antonio.scala@unina.it</u>	
Credits (planned)	3	
Planned hours	20	
Planned schedule	the detailed schedule can be arranged with students	
Prerequisites	Basic knowledge of classical physics and continuum mechanics. Basic knowledge of earth physics and seismology	
Description	 20 the detailed schedule can be arranged with students Basic knowledge of classical physics and continuum mechanics. Basic knowledge of earth physics and seismology Several problems of concern in Geophysics, such as seismic and the sunami waves within the Earth or the evolution of winds and precipitations in the atmosphere, are modelled through the momentum balance in the framework of the continuum mechanics with specific constitutive equations. In this course we present 1) the basic equations for elastodynamics and fluid dynamics within the Earth system and couple them with frictional conditions to simulate earthquake rupture generation and propagation. 2) Finite differences methods to solve the elastodynamic equation, convergence, stability. 3) Variational formulation of the elastodynamics, Finite and Spectral Element Methods (FEM and SEM respectively) and consistent boundary conditions to model the Earth free surface and the earthquake rupture. At the end of the course the student is expected to be familiar with the main principles of the presented techniques and able to understand which approach to use and how to do it in different contexts. 	

Effective theories and flavour physics

Lecturer	Dr. Giancarlo D'Ambrosio	gdambros@na.infn.it
Credits (planned)	5	
Planned hours	24	
Planned schedule		
Prerequisites		
Description	Cross sections, decay widths, calcul Quantum electrodynamics, precisio Gauge theories, Yang Mills Ferm theory, beta decay, muon decay, universality of we weak interactions, V-A structure Phenomenology of strong intera Goldstone mode spontaneous ar Higgs mechanism Standard model of particle physi Flavour theory, quark and m Maskawa matrix and determina flavor changing neutral curren flavor violation (MFV) Effective field theories, chiral per	lation of Feynman diagrams n tests: Lamb shift and g-2 ni eak interactions, parity violation in es, effective theories actions, Goldstone theorem, pion as nd explicit symmetry breaking ics eson mixing, Cabibbo Kobayashi tion of matrix elements, absence of its, GIM mechanism and minimal

Electrodynamic properties of novel materials and devices

Lecturer	Prof. Antonello Andreone	(antonello.andreone@unina.it)
Credits (planned)	4	
Planned hours	24	
Planned schedule		
Prerequisites		
Contents and topics	- Electrodynamics of metals, superc basic principles	onductors and dielectric media:
	- A short introduction to artificial m photonic band gap crystals and qu	aterials: metamaterials and asicrystals
	- Transformation optics: a new appr using metamaterials	oach to defining the light geometry
	- Cutting edge THz technology	
	- Plasmonics and plasmonic structu	res
	 Some exemplary applications of "n from microwave systems to optical cells 	atural" and "artificial" materials: devices and sensors, cloaking, solar
Evaluation	All participants are required to make essay on a selected subject after the co a topic related to their own research s	e an oral presentation or write an urse. The participants may suggest ubject.

T	A	1 •	
Evolutionary	Computation	and Ap	plications

Lecturer	Autilia Vitiello	autilia.vitiello@unina.it
Credits (planned)	3/4	
Planned hours	20 hours (10 lectures of 2h)	
Planned schedule		
Prerequisites	Basic concepts of computer science	
Description	Evolutionary computation is a subfield of the which includes a group of problem-solving principles rely on the theory of biologica computation methods are characterized by h range of problem settings.	computational intelligence g techniques whose basic al evolution. Evolutionary igh performance in a wide
	evolutionary algorithms and show practical a scientific and engineering fields.	pplication examples in the

Experimental High-Energy Astroparticle Physics

Module 1	Experimental Techniques in Astroparticle Physics	
Lecturer	Giovanni Marsella (giovanni.marsella@unipa.it)	
Credits	2-3	
Planned nours	10	
Planned schedule		
Prerequisites	Basic particle physics, astrophysics and detectors	
Description	Description of the principal experimental techniques in Astroparticle Physics. Contents:	
	 Introduction to Cosmic Rays (CR) sources 	
	Primary CRs, acceleration mechanism, propagation	
	 Secondary CRs, atmospheric showers 	
	• Detection techniques in Space, Extensive Air Shower arrays and underground detectors	
	• Presentation of the principal experiments and recent results	

Module 2	Experimental and VHE Observations from Extragalactic Sources
Lecturers	Lorenzo Perrone et al. (lorenzo.perrone@unisalento.it)
Credits	1-2
Planned hours	5 - 10
Planned schedule	
Prerequisites	Basic particle physics, astrophysics and detectors
Description	The lectures intend to cover the description of the detection techniques of ultra-high energy comic rays (Pierre Auger Observatory, Telescope Array) and the current status of the art (results and perspectives) in the field. <i>Recommended texts: review papers and journal papers</i>

Module 3	HE Transients and the Multimessengers Context		
Lecturer	Elisabetta Bissaldi	(elisabetta.bissaldi@uniba.it)	
Credits	2-3		
Planned hours	16		
Planned schedule			
Prerequisites	Basic astrophysics, detectors		

Description	• Transient phenomena in the gamma-ray sky: Gamma-Ray Bursts (GRBs), Soft Gamma Repeaters. Terrestrial GammaRay Flashes; Solar Flares. Temporal and spectral characteristics
	 Multi-frequency and Multi-messenger studies; LIGO/Virgo gravitational wave (GW) events and follow-up observations; The case of GRB 170817A/GW 170817; IceCube neutrino events and follow-up observations; The case of TXS 0506+056; Other recent discoveries in the field. Longeir "High energy extremby according"
	1. Longan, Therefore a strophysics
	2. De Angelis & Pimenta, "Introduction to Particle and Astroparticle Physics"
	3. Recent publications Assessment methods: lessons, final report

Module 4	Indirect Dark Matter Searches	
Lecturer	Francesco Loparco	(francesco.loparco@uniba.it)
Credits	2-3	
Planned hours	16	
Planned schedule		
Prerequisites	Basic particle physics and detectors	8
Description	Dark Matter models Dark matter distribution in galaxies WIMPs as dark matter searches wit particles Searches dark matter from the Sun Recent publications, some textboo Assessment method: final report	s h gamma rays and charged oks, slides from the lecturer

Experimental techniques in Space Science

Lecturer:	Beatrice Panico (Univ	v. of Naples,	beatrice.panico@unina.it)
Credits (planned):	2		
Planned hours:	10		
Planned schedule:	tbd		
Prerequisites:			
Description:	The course will present the ex observation of cosmic rays from s An overview on the next generatio rays measurements will be provid The course is designed for stu experimental astroparticle physic	perimental to pace. n of space-ba led. dents perfor s.	echniques applied in the ased instrument for cosmic ming doctoral studies in
	Summary: 1. Open scenarios on the basic p cosmic rays, coming from astro- regions and from Dark Matter. 2. Methods and observing technic 3. Current research in multimesse Weather. 4. UHECRs from space 5. Extracting a spectral energy different experiment During the o students are foreseen: from da development, statistical analysis. and invited to investigate in-depth Assessment: students will be eval an article or a modern research to	ohysical proce ophysical acc ques to study enger astropa r distribution course some ta handling In specific c n topics and to uated based opic selected	esses involving low energy celerators in high-density cosmic rays from space rticle physics and in Space n from data provided by practical experiences with to software design and cases students are allowed to discuss during lectures. on a final short seminar on according to their interest.

Extended theories of Gravity and the problem of Dark Energy and Dark Matter

Lecturer:	Prof. Salvatore Capozziello (University of Naples, capozziello@na.infn.it)	
Credits (planned):	2	
Planned hours:	12	
Planned schedule:	April / May	
Prerequisites:	General Relativity, Cosmology, Quantum Field Theory	
Description:	Abstract: Extended theories of gravity can be related to several unification approaches and fundamental theories of interactions. The have recently attracted a lot of interest as alternative candidates to explain the observed cosmic acceleration, the flatness of the rotation curves of spiral galaxies, the gravitational potential of galaxy clusters and other relevant astrophysical phenomena. Very likely, what we can "dark matter" and "dark energy" are nothing else but signals of the breakdown of General Relativity at large scales. Furthermore PPNparameters deduced from Solar System experiments do not exclude a priori, the possibility that such theories could give small observable effects also at these scales. I review these results giving the base ingredients of such an approach.	
	Topics:	
	 Observational cosmology: an overview Dark Energy and dark Matter from the observations Physical and Mathematical Foundations of Extended Theories of Gravity Dark Energy and Dark Matter as Curvature Effects Probing Extended Theories of Gravity at Fundamental Level Advanced issues: GRBs to discriminate among Cosmological Models 	
	References: S. Capozziello, V. Faraoni " <i>Beyond Einstein Gravity</i> " Fundamental Theories of Physics, Springer, Dordrecht 2010	

Fundamental interaction: QCD and BSM

Module 1	Perturbative QCD	
Lecturer	Francesco Tramontano (francesco.tramontano@unina.it)	
Credits	2	
Planned hours	12 (2 lectures per week, 2 hours each)	
Planned schedule	tbd	
Prerequisites	Particle physics background	
Description	The lectures introduce to some basic aspects and concepts of perturbative QCD: running coupling and asymptotic freedom, the parton model, infrared divergences and the factorization theorem, parton densities and parton evolution, colour coherence. Applications to e+e-annihilation, deep inelastic lepton-nucleon scattering and hadron-hadron collisions are discussed.	

Module 2	Teoria di Regge
Lecturer	Giovanni Chirilli (Regensburg) ref. Claudio Corianò
Credits (planned)	2
Planned hours	10
Planned schedule	tbd
Prerequisites	Particle physics background
Description	Regge Theory; High parton density; small x evolution equations and Wilson lines formalism; Background field method; Highenergy Operator Product Expansion; High-energy factorization for scattering amplitudes

Module 3	BSM	
Lecturer	Fulvia De Fazio	(Università di Bari)
Planned hours	16	
Planned schedule		
Prerequisites	Particle physics background	
Description	 Physics beyond the Standard Model Reasons to go beyond the Standard Mode Models based on extended gauge groups Models introducing extra dimensions Aspects of supersymmetry Extension of the effective hamiltonians ir 	el n New Physics Models

Heavy Flavour Physics

Lecturer:	Prof. Pietro Santorelli	(pietro.santorelli@unina.it)
Credits (planned)	2-3	
Planned hours	14-16	
Planned schedule		
Prerequisites:	Basic concepts of Quantum Field Theory. experimentalists	Suitable for theorists and
Description:	This course will provide an introduction QuantumChromoDynamics for heavy quar decays of heavy mesons. The following arg	to effective field theory of the ks and its application to weak uments will be discussed:
	 A very short review of the Standard Mod Integrating out heavy particles, scale set Heavy Quark Effective Theory Semileptonic and rare decays of B meso Non-leptonic two body decays of B and CP Violation 	del eparation, radiative corrections ons D mesons

	Higgs Boson and Beyond at LHC
Module (a)	Higgs Boson Discovery and Measurements at LHC
Lecturer	Prof.ssa Elvira Rossi (elvira.rossi@unina.it)
Credits	2
Planned hours	12-16
Planned schedule	May – July 2024
Prerequisites	Experimental particle physics background
Description	The course introduces the phenomenology of the recently discovered Higgs boson at LHC. An introduction to the LHC experiments and physics of the Higgs boson in the Standard Model (Higgs boson production and decay modes) will be given. The Knowledge Discovery in Database (KDD) approach in Particle Physics will be applied. KDD refers to the overall process of discovering useful knowledge from data and of the nontrivial extraction of implicit, previously unknown and potentially useful information from data. This method, largely used in Data Science, gives the basis of extracting useful information from large datasets and using it to make predictions or better decision-making. Moreover, the students will acquire the necessary background to learn about the main experimental methods used in the Higgs boson hunting as: statistical approach to search and discover a new particle; setting upper limits; how to measure the main properties of a new particle (mass, signal strength, spin-parity, couplings,): classical approaches and most up-to-date Machine Learning techniques. Hands-on sessions can be provided.
Module (b)	Beyond Standard Model Searches at LHC
Lecturer	Dr. Francesco Cirotto (francesco.cirotto@unina.it)
Credits	2
Planned hours	12-16
Planned schedule	May - July 2024
Prerequisites	Experimental particle physics background
Description	Although Higgs discovery at the LHC completed the Standard Models puzzle, there are still many open questions. The LHC Beyond Standard Mode (BSM) Physics programme covers a wide range of theoretical models: Supersymmetry, Dark Matter and others.
	overview on most recent results.
	There are several approaches to these searches, based on the complexity of the theoretical model under investigation and the energy available at colliders. The course offers to students an overview on typical analysis strategies developed in these searches

with the presentation of model dependent and independent results. Moreover, the most
recent approaches with Machine Learning will be discussed, showing its application in several cases, from background estimation to signal region definition.
Hands-on sessions provided can lead students to a deeper comprehension of these searches.

Module	Beyond Standard Model Searches at LHC
Lecturer	Francesco Cirotto (Univ. Federico II NAPOLI)
Credits	2
Planned hour	12-16
Planned schedule	May-July
Prerequisites	Experimental particle physics background
Description	Although Higgs discovery at the LHC completed the Standard Models puzzle, there are still many open questions. The LHC Beyond Standard Mode (BSM) Physics programme covers a wide range of theoretical models: Supersymmetry, Dark Matter and others.
	The course offers an introduction to the BSM phenomenology at the LHC, with an overview on most recent results.
	There are several approaches to these searches, based on the complexity of the theoretical model under investigation and the energy available at colliders. The course offers to students an overview on typical analysis strategies developed in these searches with the presentation of model dependent and independent results. Moreover, the most recent approaches with Machine Learning will be discussed, showing its application in several cases, from background estimation to signal region definition.
	Hands-on sessions provided can lead students to a deeper comprehension of these searches.

How to boost your PhD		
Lecturer	Dr. Antigone Marino	(CNR-ISASI, antigone.marino@unina.it)
Credits (planned)	2	
Planned hours	12	
Planned schedule		
Prerequisites	none	

Description	Nowadays, the scientific researcher profession requires a plurality of skills, on which we rarely stop to think about. Which ones are they? Above all, how to acquire them to turbo boost your PhD? The course is focused on this aspect of the scientific carriers.
	• Soft Skills - The technical skills of a person are the first ingredients for a successful career, but often the competition with others is played on other skills, which are more related to the character of the person. This does not mean owning them or not. A good training action will widen the spectrum of these skills as well as technical ones.
	• Scientific Communication – A large amount of researcher's work is now devoted to communication. Mostly through posters, slides, papers and reports. We will see what are the channels of communication and how to treat them properly.
	• Digital Reputation - Once upon a time, there was a file in every scientist's computer called curriculum dot something. Nowadays, this file is not enough to promote your career. Society is collecting all the information in the biggest database we have ever had, internet. The care of our digital records can be a fundamental key for our work. The digital reputation of a scientist is defined by his/her behaviour in the online environment and by the content he/she posts about him/her self and others. Tips to analyse and control your digital presence will be given.
	• Outreach - Political institutions are now asking us to bring our work to the attention of journalists, citizens and stakeholders. That is why outreach is playing an important role in scientific careers. Organizing a good outreach event needs a little bit of experience and a welldefined project. We will see which the conditions that make the outreach event effective are.

Introduction to Labview Programming

Lecturer	Prof. David Rapagnani	(david.rapagnani@unina.it)
Credits (planned)	2	
Planned hours	16	
Planned schedule	To be planned in discussion with students	

Description:This course aims to give a LabVIEW basic programming knowledge, with some hands-on activities.The LabVIEW environment will be presented with a particular emphasis on the language peculiarities and strengths. Standard programmingstrategies (e. g., sequential and state programming) will be described for proper applications design. Also communication with hardware devices will be illustrated, to make students able to operate their own devices More advanced programming features will also illustrate for the implementation of complex and multi-level applications. A few examples will be proposed to illustrate how to implement LabVIEW for automation and data acquisition.A final test consisting in the realization (design, development and test) or	Description:This course aims to give a LabVIEW basic programming knowledge, with some hands-on activities.The LabVIEW environment will be presented with a particular emphasis on the language peculiarities and strengths. Standard programmingstrategies (e. g., sequential and state programming) will be described for proper applications design. Also communication with hardware devices will be illustrated, to make students able to operate their own devices.
 a controlling software will be agreed together with the students. Course Outline Introduction to LabVEW The LabVIEW Environment Data Flow, Data Type and Data Structure 	 More advanced programming features will also illustrate for the implementation of complex and multi-level applications. A few examples will be proposed to illustrate how to implement LabVIEW for automation and data acquisition. A final test consisting in the realization (design, development and test) of a controlling software will be agreed together with the students. Course Outline
 Building simple VIs • Loops Error Handling Decision-Making Structures 	 Introduction to LabVEW The LabVIEW Environment Data Flow, Data Type and Data Structure Building simple VIs • Loops Error Handling Decision-Making Structures
Data Flow, Data Type and Data Structure	Introduction to LabVEW The LabVIEW Environment Deta Place Data Transmission
 The LabVIEW Environment Data Flow, Data Type and Data Structure 	Introduction to LabVEW

Introduction t	o Neutrino Physics	
Lecturer	Prof.ssa Giulia Ricciardi	(giulia.ricciardi2@unina.it)
Credits (planned)	4-6	

Planned hours	24-36
Planned schedule	
Prerequisites	basics of particle physics
Description	This course aims at providing the basics of the theory of neutrino physics and their oscillations. Some recent experimental results are also discussed. It can be extended to include the basics of leptogenesis.

Organic conductors

Lecturer	Prof. Antonio Cassinese	antonio.cassinese@unina.it
Credits (planned)	3	
Planned hours	8 - 10 lectures, 2 hours each	
Planned schedule	tbd	
Prerequisites	Introductory course to organic compounds with different functionalities (like semiconductors, conductors, ferroelectrics, superconductors) of interest for electronic and optoelectronic application. Both fundamental aspects and practical application will be described.	
Description	 Organic semiconductors, working Injection and Electrical conductivi I/O hybrids. P-type and n-type sen Experimental techniques for the re hybrid films and single crystal and Organic compounds with different ferroelectric, electrical bistable and Electro –optical techniques for the I/O hybrid materials. Organic Field effect transistor (OF application Organic/Inorganic and Organic/O Emerging Routes in Organic Electric 	principles and applications: ity in organic semiconductors and miconductors ealization of organic and I/O d devices. functionalities (conductors, d superconductors e characterization of organic and ET) basic issues and practical Organic interface ronics

Particle Detectors-Trigger/DAQ

Module 1	Particle Detectors		
Lecturer	Margherita Primavera	(margherita.primavera@le.infn.it)	
Planned hours	22		
Planned schedule			
Prerequisites	Charged particles interactions with matter		
Description	Charged particles interactions with matter Generalities on gaseous detectors. Ionization and transport phenomena in gases. Amplification in gases. Gaseous detectors: ionization chambers, proportional counters, MultiWire Proportional Chambers, Drift chambers, TPC, Geiger counters, streamer tubes, Resistive Plate Counters. Calorimetry. Electromagnetic and hadronic calorimeters. Calorimeter calibration and monitoring. Cherenkov detectors: DISC, RICH, DIRC. Transition radiation detectors. Micropattern detectors, dual raadout calorimeters		

Module 2	Photodetection	
Lecturer	Elisabetta Bissaldi	(elisabetta.bissaldi@ba.infn.it)
Planned hours	16	
Planned schedule	1 lecture per week two hours each	L
Prerequisites	Experimental particle physics background	
Description	This course aims to provide knowledge of radiation measurement from classic scintillation detecto devices. It requires an elementat measurements, radiation matte electronics. The program includes Organic and Inorganic scintillators photodetectors; SiPM technologies Part of the course will be devoted to	the student with advanced ents and detection techniques, rs to Silicon Photomultiplier ary background in radiation er interactions and basic s Photon-matter interactions; s; Optical coupling; Solid-state a, properties and Applications. to laboratory sessions.

Module 3	Trigger and DAQ for Particle Physics		
Lecturer	Prof. Massimo Della Pietra	(massimo.dellapietra@unina.it)	
Planned hours	10		
Planned schedule			
Prerequisites	Experimental particle physics background		
Description	Introduction to trigger and experimental physics. Basic ele latency and trigger rate. Conn acquisition: dead time and b systems, trigger for High Energy of Trigger - DAQ and related Control, Online data quality. Des system for collider HEP: the experiments. Trigger systems fo for test-beam setup. Triggerless astroparticle physics. The impac on a physical measurement.	data acquisition system for ements and definitions: trigger ection between trigger e data usy status. Multilevel trigger Physics at colliders. Integration systems Event building, Run scription of most relevant trigger trigger system of the LHC or fixed target experiments and DAQ systems for particle and t of the trigger system efficiency	

Module 4	Nuclear Physics in low-background conditions	
Lecturer	Prof. Andreas Best	(andreas.best@unina.it)
Credits (planned):	3-4	
Planned hours:	16-24	
Planned schedule:	To be arranged in discussion with students	8
Prerequisites:	Basic knowledge of nuclear physics.	
Prerequisites: Description:	Basic knowledge of nuclear physics. This course aims to give an overview of th characteristics of experimental nuclear physics. Conditions, in particular in reference to n underground. We will discuss the ma "traditional" laboratories and underground wanting to measure in low-background environments of backgrounds and their rejection via pase examples of currently active low-background backgrounds in common materials; methodosely similar conditions on the surface. Course outline Introduction • Backgrounds and sources in nuclear physic • Signal to noise in nuclear astrophysic Backgrounds and suppression thereof • Deep-underground environments • Passive shielding • Active shielding, pulse shape discrimed	the challenges and specific hysics in low-background uclear astrophysics deep ain differences between ones; the motivations for vironments; main sources asive and active methods; and laboratories; intrinsic ods to achieve similar or accs, intrinsic and extrinsic cs
	 Operational deep-underground labora Low-background measurements on the Possible site visit at INFN-LNGS (to be 	atories ne surface e determined)
	The students can give indication for topics be part of the program of the course.	of their interest that could

Physics and applications of Superconducting and Spintronic Devices

Lecturer	Prof. G.P. Pepe	(giovannipiero.pepe@unina.it)
Credits (planned)	4 /5	
Planned hours	about 30 (2-3 hours/week)	
Planned schedule		
Prerequisites	basic knowledge of solid state phys	sics and electronics
Description	 The aim of the course is to furnish competences on both fundamen applied aspects related to the superconducting electronics mananosized regime, including deposition techniques, nano-patt cryogenics, diagnostic tools for advanced microscopy (AFM, SQUIDbased microscopy) and time resolved spectrometry, supercond detectors and nonequilibrum physics. Moreover, the recent achieve in spintronics (mainly containing superconducting structures) will presented and discussed. A brief overview of the program is the following: 	
	The physics of superconduct GinzburgLandau theory, weak su some nonequilibrium effects is quantum devices, superconductivity	tivity: linear electrodynamics, The aperconductivity, the Josephson effect, n superconductors, superconducting ty in low dimension systems.
	Nanotechnologies: thin films depo nano-litography, the self-assem advanced imaging on the nano-so Cryogenic techniques.	sition and characterization, top-bottom abling processes in nanotechnology, cale (AFM, STM, advanced microscopy).
	Materials and devices for spintro magneto-resistance and magneto-o systems.	onics: magnetism and nanostructures, optics mainly in superconducting based
	Students will be asked to present program, producing final reports u international scientific journals.	seminars on topics related to the above using general templates as proposed by

Physics of the climate change

Lecturer	Dr. Alessia Sannino (alessia.sannino@unina.it)
Credits (planned)	3
Planned hours	18-20
Planned schedule	To be planned with students
Prerequisites	Basic knowledge of classical thermodynamic physics
Description:	The course provides the basis of physics applied to the global warming and the ongoing climate change, paying particular attention to the main atmospheric and biosphere constituents, their sources, interactions and processes. During the course, the Earth's radiative balance and the different factors that play in this balance will be studied in detail, such as trace gases, atmospheric aerosols and their compounds. The main terrestrial cycles (water cycle and carbon cycle) will be studied and their role in the ecosystem and the possible consequences of their disturbance will be examined. Finally, the current state of knowledge of these phenomena will be analyzed, trough the experimental basics of the climatological models used, the possible scenarios to which they lead and the research centers involved. The course will consist of a total of max 20 (min 18) hours The program will include: 1) Introduction (2h) 2) Thermal radiation and terrestrial radiative balance (6h) 3) Climatological models (2h) 4) Earth cycles (4h) 5) The limit of 3°C (2h) 6) Current situation and possible scenarios (4h)

C	Duantum	Computing	and Artificial	Intelligence

Lecturer	Prof. Giovanni Acampora	giovanni.acampora@unina.it
Credits (planned)	4/6	
Planned hours	20 to 24	
Planned schedule		
Prerequisites	Foundations of Computer Science	and Computer Programming
Description	The program overviews: a) concep Learning; c) Implementation of Ma d) Quantum Computing; e) Q Algorithms; g) An embryonic view	ots of Artificial Intelligence; b) Machine achine Learning algorithms in Python; uantum Architectures; f) Quantum on Quantum Machine Learning.

Quantum Information, Quantum Computation and Quantum Imaging

Module 1	Physical Coherence and Correlation Functions	
Lecturer	Prof. Saverio Pascazio	(Università di Bari)
Planned hours	16	
Planned schedule	Eight two-hour lectures between February and July	
Prerequisites	Background in quantum theory, technologies and applications	
Description	Optical Fluctuations and Coherence. Cl theory. The Radiation field. Expe Measuring correlation functions. Eq (spatial) correlation functions Equili (temporal) correlation functions. Beyor transitions and correlation functions.	lassical and Quantum rimental milestones. Juilibrium equal-time brium equal-position and equilibrium. Phase

Module 2	Introduction to Quantum Computation	
Lecturer	Luigi Martina	(Università del Salento)
Planned hours	16	
Planned schedule	Eight two-hour lectures between Febru	uary and July
Prerequisites	Quantum Mechanics and Statistical M	lechanics
Description	Quantum Mechanics and Statistical MechanicsSince at least a couple of decades, the Physics of Information and Computation has been a recognized as an autonomous discipline. In fact, the latter fields should be linked to the study of the underlying physical processes, namely of the quantum mechanical universe. But the intrinsic probabilistic character of the quantum measurements and the non-commutative algebra of the observables induce important modifications in the central results of classical information theory, including: quantum parallelism, compression of quantum information, bounds on classical information sent over a noisy quantum channel, efficient quantum algorithms and quantum	

Module 3	Quantum imaging	
Lecturer	Milena D'Angelo	(Università di Bari)
Planned hours	16	
Planned schedule	Eight two-hour lectures between June and July	
Prerequisites	Background in quantum theory and optics. Attendance of either one of the two above modules is suggested.	

Description	From classical to quantum imaging. Klyshko advanced wave model. Ghost imaging and diffraction, from first protocols to recent advances (differential GI, computational GI, compressive GI,). Single-pixel imaging. Super-resolution: NOON states, and Quantum Fisher information. Sub-shot-noise imaging. Imaging by undetected photons. Imaging through turbulence and scattering media, and imaging around corners.
	Correlation plenoptic imaging: from principles to applications.

Scientific writing

Lecturer	Prof. Paolo Russo	(paolo.russo@unina.it)
Credits (planned)	5	
Planned hours	30 2 (hrs per lecture, 2 lectures per week)	
Planned schedule		
Prerequisites	none	
Description	The course provides basic intro to the profe publication in international journals, with re publishing, scientific journal selection, writ manuscript editing, revision and proof correspondence. Moreover, the following a description of the basic aspects of the Editori Journal (Editor, associate editors, editorial be journal manager); basic aspects of the ma methods for manuscript review; understan bibliometrical indices. The course evaluation will be based on exerc on selected aspects of the course material.	essional task of scientific ference to motivations for ing style, ethical issues, is reading, manuscript aspects will be covered: al structure of a scientific bard members, publisher, inuscript review process; anding and evaluation of ises assigned to attendees

Selected Topics in Theoretical Physics

Lecturer	Prof. Fedele Lizzi Prof. Gianpiero Mangano	(fedele.lizzi@unina.it) (gianpiero.mangano@unina.it)
Credits (planned)	6	
Planned hours	24	
Planned schedule	September – October 2024	
Prerequisites	usual courses of a physics master degree	

Description	Part I – Group Theory [3 FCs] (prof. Mangano)
	Generalities on groups, Lie groups, Lie algebras, representations. Classification of simple algebras, covering groups, fundamental groups. Lorentz and Poincaré groups, applications to physical systems
	Part II – Elements of Non-Linear Dynamical Theories [3 FCs] (prof. Lizzi)
	Autonomous discrete dynamical systems of first order. Continuous dynamical systems. Autonomous systems of first order. Non autonomous elementary systems. Oscillators, Stabilitym Strange attractors, Fractals.

Signals formation and treatment in particle detectors

Module 1	Signals formation	
Lecturer	Marcello Abbrescia	marcello.abbrescia@uniba.it
Planned hours	10	
Planned schedule	5 lectures of 2 hours each	
Prerequisites	Basic notions of electromagnetis physics	m and of particle detector
Description	 Electrostatics-Principles-RecurrentsInduced voltages Mean value theorem - Cap circuits; Signals in: - Ionization calorimeters - Diamond dete (Gas Electron Multiplier) - detector) - APDs (Avalanche Gain Avalanche Diodes) - Si - Strip detectors - Pixel detec Argon TPCs. 	ciprocity-Induced - Ramo-Shockley theorem - bacitance matrix - Equivalent chambers - Liquid argon ectors - Silicon detectors GEMs Micromegas (Micromesh gas e Photo Diodes) - LGADs (Low PMs (Silicon Photo Multipliers) ctors - Wire Chambers - Liquid

Module 2	Signals treatment	
Lecturer	Alberto Aloisio (alberto.aloisio@unina.it)	
Planned hours	10	
Planned schedule		
Prerequisites		
Description	Sistemi di schermatura e di guardia nella lettura di sensori e rivelatori	
	- Cenni sul noise di componenti attivi e passivi	
	- Uso del simulatore analogico per l'analisi di alcuni casi di studio: rumore di alcune configurazioni base degli amplificatori operazionali, effetto della capacità del rivelatore sul noise gain	

Statistical	Methods	for Data	Analysis
Scacificat	moundas	IOI Ducu	1111ary 010

	(and a tool solitar la.lot lo@uffifia.lt)
2-3	
12-18	
Basic knowledge of the concept of will be done in C++, so basic knowledge.	f probability. Examples and exercises owledge of computer programming is
 will be done in C++, so basic knowledge of computer programming is recommended. Statistical methods for data analysis: Statistics and probability distributions Parameter estimates and maximum likelihood (ML) and extended ML methods The Bayes theorem: frequentistic and Bayesian approaches Computation of upper limits Combining measurements Monte Carlo techniques Fit quality with Toy Monte Carlo Multivariate discrimination methods Artificial Neural Networks Introduction to statistics application frameworks based on ROOT toolkit: 	
	 2-3 12-18 Basic knowledge of the concept o will be done in C++, so basic knowledge of the concept o will be done in C++, so basic knowledge. Statistical methods for data analystical methods for data analystical methods for data analystical methods. Statistics and probability disting the methods. The Bayes theorem: frequents. Computation of upper limits. Combining measurements. Monte Carlo techniques. Fit quality with Toy Monte Carlo. Multivariate discrimination m. Artificial Neural Networks. Introduction to statistics application. TMVA

Statistical Physics for Complex Systems

Module 1	Active Matter and Complex Fluids	;
Lecturers:	Giuseppe Gonnella Antonio Lamura	(giuseppe.gonnella@uniba.it)
Credits (planned)	2-3	
Planned hours	16 (8 two hrs lectures)	
Planned schedule		
Prerequisites	Background in classical physics and sta	atistical mechanics
Description	Statistical physics and biological systems. Active matter: basic particle and continuous models. The phase diagram of passive and active colloids. Topological transitions. Complex fluids: theoretical modelling. Polymers: static and dynamical properties in dilute conditions. Ternary mixtures with surfactant: self -aggregation, active and double emulsions. Basic rheological behavior of complex fluids. The yielding transitions. Simulations methods in soft and active matter. Molecular dynamics, Multi-Particle Collision Methods.	
Module 2	Statistical Mechanics of Complex	Systems
Lecturer:	Prof. Antonio De Candia	(antonio.decandia@unina.it)
Credits (planned)	2-3	
Planned hours	16 (8 lectures, two hrs each)	
Planned schedule		
Prerequisites	basic knowledge of statistical mechanic	s
Description	Sherrington - Kirkpatrick model for solution. The Parisi solution. The p Dynamics and Mode - Coupling theory the Bethe lattice. Reconstruction on tre	spin-glasses. Replica - symmetric o-spin model. The cavity method. TAP equations. The spin - glass on es and point – to - set correlations.

Module 3	Stochastic Processes and Analysis of Correlations	
Lecturer:	Prof. Eugenio Lippiello (eugenio.lippiello@unicampania.it)	
Credits (planned)	2-3	
Planned hours	16 (8 two hrs lectures)	
Planned schedule		
Prerequisites	Background in classical statistical mechanics.	
Description	 Background in classical statistical mechanics. The purpose of these lectures is to give a simple mathematical introduction to the description of stochastic processes with innovative applications in the field of epidemiology and earthquake data time- series analysis. Markov processes. Master and Fokker Plank equations. Stochastic energetics Branching processes. Watson-Galton model. Application to genetics. Epidemic models. Applications to epidemiology and earthquake occurrence. Analysis of correlations in stochastic signals. Detrended Fluctuation Analysis Power spectrum of a signal 	

Supersymmetries, Strings and branes

Lecturers	Dr. Franco Pezzella Dr. Raffaele Marotta	(INFN, pezzella@na.infn.it) (INFN, lmarotta@na.infn.it)
Credits (planned):	4	
Planned hours:	24	
Planned schedule		
Prerequisites	General Relativity, Quantum Field Theo	ry
Description	 Supersymmetry in two space-time dimensions (D=2): Superstring Theories N=1,2 in D=4 Supersymmetry N=1 in D=6 and D= 10 Supersymmetry A Brief introduction to supergravity theories Aspects of duality Classical and quantum aspects of superstrings are discussed together with the properties of D-branes, string dualities and more recent developments in String Theory 	

Ultrafast processes and femtosecond laser pulses

Lecturer	Prof. Andrea Rubano(andrea.rubano@unina.it)
Credits (planned)	3
Planned hours	18
Planned schedule	
Prerequisites	Basic knowledge of Solid-state Physics would be helpful. Linear Optics and basics of Quantum Physics are required.
Description	 The PhD Course will introduce the students to the realm of Ultrafast Processes, with a special focus on optical pulses and their interaction with matter. The introduction will give broad overview about pulsed light, pulsed sources, and especially commercial femtosecond lasers. Theoretical and technical description about the most common ways to produce and amplify short pulses will be given in some detail. In the main part, different applications of ultrafast pulses will be described as follows: 1) Metrology: How to measure optical frequencies? Frequency Comb, optical clockwork. 2) Nonlinear Optics: New frequencies, new probes? Nonlinear lightmatter interaction, principles and main applications. Sum and difference frequency generation. Frequency doubling. Extreme cases: THz and X-rays generation schemes. 3) Novel states: How to access non-equilibrium states? Scanning microscopy approaches: two-photon microscopy, stimulated emissiondepletion microscopy. 4) Fs-spectroscopy: How to resolve ultrafast dynamics? Overview about the general Pump&Probe experimental scheme. Examples: coherent phonon control, isomerization and structural transitions, charge transfer and separation, hot-electron dynamics in metals. 5) Fs-photonics: How to control light with light? Spectral lenses in photonic crystals.

Unified theory of nuclear reactions

Lecturer	Prof. Giovanni La Rana (giovanni.larana@na.infn.it)
Credits (planned):	4
Planned hours:	20 10 lectures, 2 ours each
Planned schedule:	To be agreed with students
Prerequisites:	Basic knowledge of nuclear physics and quantum mechanics.
Description:	This course aims to deepen the study of nuclear reactions induced by light and heavy ions at low energy (E / A <10 MeV / A). Starting from phenomenology and the main nuclear models, the final goal is to present and discuss the unified theory due to H. Feshbach. This theory, based on the projection operator technique, provides an important framework for understanding the physics and modelling nuclear processes, from direct mechanisms to the formation of compound nuclei. Part of the course makes use of advanced quantum mechanics concepts applied to nuclear physics, the basic elements of which will be introduced during the lectures.
	<u>Course outline</u>
	 Phenomenology of nuclear reactions at low energy (E/A < 10 MeV/A): direct and compound nucleus processes, giant resonances, fluctuations in the cross section. Nuclear models: single particle potential model for nuclear scattering, theory of the compound nucleus in the discrete and continuum region, Statistical Model, Optical model. Brief review of scattering and reactions theory: cross section and T matrix, Green operator, Lippmann Schwinger equation, Born development and approximate methods. Unified Theory of nuclear reactions: prompt and time-delayed processes, the projection operator technique, general expression of the transition amplitude, resonance theory. Derivation of the generalized Optical-Model potential. Intermediate structure in nuclear reactions: 'doorway states'.
	<u>References</u> G.R. Satchler: Introduction to nuclear reactions D.F. Jackson: Nuclear Reactions P. Roman: Advanced Quantum Theory F.S. Levin/H. Feshbach: Reaction Dynamics

Waves and Interactions in Nonlinear Media		
Lecturer	Prof. Renato Fedele (renato.fedele@unina.it)	
Credits (planned)	4	
Planned hours	25	
Planned schedule		
Prerequisites	Classical Electrodynamics, Fundamentals of Quantum Mechanics, Fundamentals of Statistical Mechanics	
Description:	The course is interdisciplinary and gives a general description of the propagation of waves in nonlinear media and their interactions (three and four waves parametric processes). Some physical examples in nonlinear optics (Kerr media, optical fibers), surface gravity waves (ocean waves), large amplitude waves in plasmas (Langmuir wave packets) and matter waves physics (Bose-Einstein condensates) are given. From these examples, a unified description modelled by suitable nonlinear Schrödinger equations is extrapolated. Such a description is then extended to phase space by means of the Wigner quasi-distribution. Particular attention is devoted to both theoretical and experimental aspects of the modulational instability and the related stabilizing role of the Landau damping for an ensemble of partially incoherent waves.	