

Three generations of matter (fermions)

≡

Leptons

Ð

(Southern Universities Physics Research Agreement) SUPRA

Coordinators of the courses:

- Vincenzo Canale vincenzo.canale@na.infn.it (U. of NAPLES)
- Francesca Crispo francesca.crispo@unicampania.it (UniCampania, CASERTA)
- Claudio Coriano claudio.coriano@le.infn.it claudio.coriano@unisalento.it (UNISALENTO)
- Giuseppe Gonnella giuseppe.gonnella@ba.infn.it (U. of BARI)

Emails of the Faculty members coordinating for subjects I- to I X

- 8) Giuseppe Gonnella <u>giuseppe.gonnella@ba.infn.it</u> 6) Luigi Martina 4) Fulvia De Fazio 3) Maurizio Paolillo 2) Marcello Abbrescia 7) Elisabetta Bissaldi <u>elisabetta.bissaldi@poliba.it</u> 5) Giovannio Acampora <u>giovanni.acampora@unina.it</u> 1) Margherita Primavera <<u>margherita.primavera@le.infn.it</u>> uigi.martina@le.infn.it> <fulvia.defazio@ba.infn.it> <<u>maurizio.paolillo@unina.it></u> marcello.abbrescia@uniba.it
- 9) Maria Lepore maria.lepore@unicampania.it

10) Luca Girlanda girlanda@le.infn.it

I. Particle Detectors-Trigger/DAQ

Description	<u>Schedule</u> Prerenuisites	Planned	Planned hours	Lecturer	Module 3	Description	Prerequisites	Planned schedule	Planned hours	Lecturer	Module 2		Prerequisites	Planned schedule	Planned hours	Lecturer		Module 1
Introduction to trigger and data acquisition system for experimental physics. Basic elements and definitions: trigger latency and trigger rate. Connection between trigger e data acquisition: dead time and busy status. Multilevel trigger systems, trigger for High Energy Physics at colliders. Integration of Trigger - DAQ and related systems Event building, Run Control, Online data quality. Description of most relevant trigger system for tect-been HED: the trigger system of the LHC experiments. Trigger systems for fixed target experiments and for tect-been	Experimental particle physics background		10	Massimo Della Pietra (Univ. Federico II NAPOLI)	Trigger and DAQ for Particle Physics	This course aims to provide the student with advanced knowledge of radiation measurements and detection techniques, from classic scintillation detectors to Silicon Photomultiplier devices. It requires an elementary background in radiation measurements, radiation matter interactions and basic electronics. The program includes Photon-matter interactions; Organic and Inorganic scintillators; Optical coupling; Solid-state photodetectors; SiPM technologies, properties and Applications.Part of the course will be devoted to laboratory sessions.	Experimental particle physics background	1 lecture per week two hours each	16	Elisabetta Bissaldi (Politecnico di Bari)	Photodetection	Generalities on gaseous detectors. Joinzation and transport piterioniena in gases. Amplification in gases. Gaseous detectors: ionization chambers, proportional counters, MultiWire Proportional Chambers, Drift chambers, TPC, Geiger counters, streamer tubes, Resistive Plate Counters. Calorimetry. Electromagnetic and hadronic calorimeters. Calorimeter calibration and monitoring. Cherenkov detectors: DISC, RICH, DIRC.	Charged particles interactions with matter		22	ואמיטוופרונע רדוווועיפרע (ווארוע בפככפ)	Marabarita Drimonara (INEN Lapon)	Particle Detectore

Module 4	Detection methods for nuclear astrophysics and applications
Lecturer	R. Buompane (Università della Campania «Luigi Vanvitelli»)
Planned hours	20
Planned	
schedule	
Prerequisites	Basic notion of detectors and nuclear reactions.
Descripion	The course aims to introduce the detection methods used in nuclear astrophysics and in the applied nuclear
	physics.
	Modern techniques developed for nuclear astrophysics and their use in applied physics, as the
	characterization of targets and/or materials, will be presented.
	Low energy accelerators. Recoils Mass separators. Underground measurements. Accelerator Mass
	Spectrometry (AMS). Time of Flight (ToF). Micro Channel Plate (MCP). Position sensitive detectors. Setup and
	detection for the Ion Beam Analysis (IBA) characterization of targets/materials.

II. Signals Formation and Treatment in Particle Detectors

III. Multi-Messenger and Particle Astrophysics of Compact Objects

Module 1	Compact Objects
Lecturer	Francesco De Paolis (Università del Salento)
Planned hours	σ
Planned schedule	
Prerequisites	Basic Astrophysics
Description	 Last stages of stellar evolution and formation of the compact objects
	 Phenomenological properties of neutron stars and pulsars
	Selected recent topics on the physics of the compact objects
Recommended	 Slides of the lecturer and texts suggested during the lectures
texts	
Assessment	Short essay on one of the topics developed during the lectures
Module 2	Neutrino Oscillations
Lecturer	Daniele Montanino (Università del Salento)
Planned hours	6-8
Planned schedule	
Prerequisites	Particle physics
Description	 Introduction to the neutrino masses, mixing and oscillations in vacuum and matter
	Phenomenology of neutrino oscillations from terrestrial experiments and astrophysical sources, in
	particular solar neutrinos
Recommended	 Giunti, Kim, "Fundamentals of neutrino Physics and Astrophysics" (Oxford University Press, 2007)
texts	Slides of the lecturer
Assessment	Short essay on one of the topics developed during the lectures or written test
methods	

Module 3	Supernova Neutrinos
Lecturer	Alessandro Mirizzi (Università di Bari)
Planned hours	σ
Planned schedule	
Prerequisites	Particle physics
Description	Supernova (SN) explosion mechanism
	SN 1987A neutrino observation
	Future SN neutrino observations
	Neutrino oscillations in dense SN medium
Recommended	G. Raffelt, "Stars as Laboratories for Fundamental Physics" (University of Chicago Press, 1996)
texts	Slides of the lectures
Assessment	Short essay on one of the topics developed during the lectures

Module 4	Gravitation, Relativity and Black Holes
Lecturer	Mariafelicia De Laurentis (Università di Napoli)
Planned hours	6-8
Planned schedule	
Prerequisites	analytical mechanics, general relativity
Description	Rotating black holes: Kerr Spacetime and its global properties. Kerr black hole in Boyer-Lindquist coordinates Zero-mass limit Kerr-Schild form of the Kerr solution Eroosphere and Horizon (Infinite redshift
	surface, Surface gravity, Surface geometry of horizon and ergo surface) Particle and Light Motion in Equatorial Plane. Matter accretion and black hole parameters change. Evolution in the black hole parameter space. Geodesics in Kerr Spacetime: General Case. Light Propagation. Black hole shadow. Generic
	properties of the rotating black hole shadows (Asymmetry, Flattening etc). Image of Black Holes with the Event Horizon Telescope.
Recommended	Slides of the lectures
texts	
Assessment	Short essay on one of the topics developed during the lectures or written test
methods	

Assessment	Recommended texts	Prerequisites Description	Planned schedule	Planned hours	Module 6 Lecturer	Assessment methods	Recommended texts	Planned schedule Prerequisites Description	Lecturer Planned hours	Module 5
Short essay on one of the topics developed during the lectures	Shapiro & Teukolsky, "Black Holes, White Dwarts and Neutron Stars"	Basic astrophysics and particle physics Generation of Gravitational Waves (GWs). Binary Black Holes (BBHs) as sources of GWs. Detection of GWs. Observations of GWs from BBHs. Gamma Ray Bursts (GRBs): observations and theoretical models. GRB progenitors. Black holes as central engines and final products of GRBs.		0 -8	Gravitational waves and Gamma-Ray Bursts Tristano Di Girolamo (Università di Napoli)	Short essay on one of the topics developed during the lectures	Lecture slides; "Exploring the X-ray Universe", Seward & Charles,2010)	 Basic classical physics and gravitation. Useful but not required: Module "Gravitation, Relativity and Black Holes", Introductory astrophysics, Physics of Galaxies The Discovery of Active Galactic Nuclei; Taxonomy of AGNs; clues to the interpretation: variability, luminosity and efficiency; steps toward unification: Eddington luminosity, Eddington mass and accretion rate; accretion efficiency. The Unified Model; AGN physical scales; broadband emission in AGNs; accretion disk spectrum; X-ray corona and other components. Observational evidence of the Unified Model: Quasar host galaxies; dynamical and reverberation mapping mass measurements; evidence of hidden BLR in Sy2; relativistic distortion in Fe lines; the Milky Way nuclear BH. AGN evolution from multi-wavelength studies of AGN populations optical, X-ray and infrared; luminosity function and number counts; AGN activity and number density evolution; resolving the Cosmic X-ray Background; Soltan argument: how to derive the current Black Hole mass density of the Universe; The link between Supermassive Black Holes and galaxy evolution; Evidences of AGN feedback in galaxies. 	Demetra De Cicco & Maurizio Paolillo (Università di Napoli) 6-8	Physics and Evolution of Supermassive Black Holes

IV. Fundamental Interactions: QCD and BSM

Module 1	Perturbative QCD
Lecturer	Francesco Tramontano (NAPOLI)
Planned hours	12
Planned	
schedule	2 lectures per week two hours each
Prerequisites	Particle physics background
Description	The lectures introduce to some basic aspects and concepts of perturbative QCD: running coupling and
	asymptotic freedom, the parton model, infrared divergences and the factorization theorem, parton densities and
	and hadron-hadron collisions are discussed.

Modulo 0	Hooris di Bosso
Lecturer	Giovanni Chirilli (Regensburg) ref. Claudio Corianò
Planned hours	10
Planned	
schedule	
Prerequisites	Particle physics background
Description	Regge Theory; High parton density; small x evolution equations and Wilson lines formalism; Background fie method; High-energy Operator Product Expansion; High-energy factorization for scattering amplitudes;

Module 3	Weak decays and effective Hamiltonians in the Standard Model and beyond
Lecturer	Fulvia De Fazio (BARI)
Planned hours	16
Planned	
schedule	
Prerequisites	Particle physics background
Description	I describe in detail the effective Hamiltonians for weak decays of mesons constructed using the operator product expansion
	and the renormalization group methods.
	Applications to rare decays in the Standard Model and beyond will be considered.

V. Artificial Intelligence and Machine learning

Descripti	Prerequis	schedule	Planned	Planned	Lecturer	Module 1
9	sites			nours		
Introduction: graph theory. Different graph models. Nodal and edge characterization. Local and global properties. Community detection. Learning: Basic definitions, bias, variance and cross-validation. Supervised Models. Deep Learning. Unsupervised models: Clustering.				10	Nicola Amoroso (UniBA)	Data Modelling

Module 2	Machine Learning: Basis and Applications
Lecturer	Giorgio De Nunzio & Giuseppe Palma
Planned hours	10
Planned	
schedule	
Prerequisites	
Description	ML taxonomy: supervised, reinforcement, unsupervised; Regression: linear regression, GLM. Classification:
	scores (confusion matrix and related measures; ROC curve; calibration; cross entropy, Brier score), class imbalance. Bias-Variance tradeoff: underfitting, overfitting. Perceptrons and Shallow Feed-Forward Neural Networks. Applications of regression and classification: case studies in Physics and Medicine with synthetic and public access data (python).

Module 3	Artificial Intelligence for Social Good
Lecturer	Loredana Bellantuono (UniBA)
Planned hours	16
Planned	8 Class lectures during Spring
Prerequisites	
Description	Artificial Intelligence for Social Good (AI4SG) is a new research field, that tackles important social, environmental,
	and public health challenges by using methods of complex system analysis, such as network models and
	machine learning. Using a top-down approach, Al4SG aims at delivering positive social impact in accordance
	with the priorities outlined in the United Nations' 17 Sustainable Development Goals (SDGs).
	The course has an application-oriented approach and is organized in tutorials focused on the analysis of relevant case studies related to the achievement of SDGs.
	Programme:
	 Artificial Intelligence for Social Good (AI4SG): why and how. A primer on the main approaches to AI4SDG.
	The Python toolbox for big data analysis and visualization.
	systems.
	 Case study 1 – Towards a more equitable education system (SDGs 4, 10). A complex network model to
	measure structural inequalities and territorial bias in the access to quality education.
	Case study 2 – Social psychiatry (SDG 3). Investigating the impact of societal and environmental factors on
	the incidence of psychiatric disorders.
	 Machine Learning: predicting continuous variables with regression analysis.
	 Case study 3 – Al for the most vulnerable: interplay between hunger and climate change (SDGs 1, 2, 3, 13). Predicting food insecurity across sub-Saharan Africa with multivariate regression on data concerning prices.
	assets, and climate.
	 Natural Language Processing: preprocessing of text data, topic detection and sentiment analysis.
	 Case study 4 – The language of sustainability on social media (all SDGs). Topic modelling and sentiment analysis to unveil information from sustainability speech on Twitter.
	Recommended texts:
	Sebastian Raschka, Vahid Mirjalili, "Python Machine Learning" – Packt Publishing Ltd (2017). Dmitry Zinoviev, "Complex Network Analysis in Python" – The Pragmatic Programmers 11 C (2018)
	Recommended texts:

Seminar on a selected topic or presentation of a project concerning Artificial Intelligence for Social Good

VI. Quantum Information and Quantum Technologies

Modulo 1	Developed Cohorence and Correlation Eunctions
Lecturer	Saverio Pascazio (UniBA) (NOT DELIVERED in 2023)
Planned hours	16
Planned	Eight two-hour lectures
schedule Prerequisites	Background in guantum theory, technologies and applications
Description	Optical Fluctuations and Coherence. Classical and Quantum theory. The Radiation field. Experimental
	milestones. Measuring correlation functions. Equilibrium equal-time (spatial) correlation functions Equilibrium
Module 2	Introduction to Quantum Computation
Lecturer	Luigi Martina (UniSalento)
Planned hours	16
Planned schedule	Eight two-hour lectures
Prerequisites	Quantum Mechanics and Statistical Mechanics
Description	Since at least a couple of decades, the Physics of Information and Computation has been a recognized as an autonomous discipline. In fact, the latter fields should be linked to the study of the underlying physical processes,
	namely of the quantum mechanical universe. But the intrinsic probabilistic character of the quantum measurements and the non-commutative algebra of the observables induce important modifications in the
	central results of classical information theory, including: quantum parallelism, compression of quantum information sent information sent
	over a noisy quantum channel, efficient quantum algorithms and quantum complexity. The course will touch the
Module 3	Quantum imaging
Lecturer	Milena D'Angelo (UniBA) Cosmo Lupo (PoliBa)
Planned hours	16
Planned schedule	Eight two-hour lectures
Prerequisites	Background in quantum theory and optics. Attendance of either one of the two above modules is suggested.
Description	From classical to quantum imaging. Klyshko advanced wave model. Ghost imaging and diffraction, from first protocols to recent advances (differential GI, computational GI, compressive GI,). Single-pixel imaging. Super-resolution: NOON states, and Quantum Fisher information. Sub-shot-noise imaging. Imaging by undetected
	in a firm minainlanta namilantiana

VII. Experimental High-Energy Astroparticle Physics

Module 1	Experimental Techniques in Astroparticle Physics
Lecturer	Giovanni Marsella (Palermo)
Planned hours	16
Planned schedule	
Prerequisites	Basic particle physics, astrophysics and detectors
Description	Description of the principal experimental techniques in Astroparticle Physics
	Introduction to Cosmic Ray (CR) sources
	 Primary CRs, acceleration mechanism, propagation
	Secondary CRs, atmospheric showers
	 Detection techniques in Space, Extensive Air Shower arrays and
	underground detectors
	 Presentation of the principal experiments and recent results
Recommended texts	
Assessment methods	
Module 2	HE and VHE Observations from Extragalatics Sources
Lecturer	Lorenzo Perrone et al. (Lecce)
Dianned hours	-1-O

Module 2	HE and VHE Observations from Extragalatics Sources
Lecturer	Lorenzo Perrone et al. (Lecce)
Planned hours	5-10
Planned schedule	
Prerequisites	Basic particle physics, astrophysics and detectors
Description	The lectures intend to cover the description of the detection techniques of ultra-high energy cosmic rays (Pierre Auger Observatory, Telescope Array) and the current status of the art (result and perspectives) in the field.
Recommended texts	Review papers and journal papers.
Assessment methods	Lessons, final report, hands-on session

Module 3	HE Transients and the Multimessenger Context
Lecturer	Elisabetta Bissaldi (Politecnico di Bari)
Planned hours	16
Planned schedule	
Prerequisites	Basic astrophysics, Detectors
Description	 Transient phenomena in the gamma-ray sky: Gamma-Ray Bursts (GRBs), Soft Gamma Repeaters, Terrestrial Gamma-Ray Flashes; Solar Flares. Temporal and spectral characteristics; Multi-frequency and Multi-messenger studies; LIGO/Virgo gravitational wave (GW) events and follow-up observations; The case of GRB 170817A / GW 170817; IceCube neutrino events and follow-up observations; The case of TXS 0506+056; Other recent discoveries in the field.
Recommended texts	 Longair - "High-energy astrophysics" De Angelis & Pimenta - "Introduction to Particle and Astroparticle Physics" Recent Publications
Assessment methods	Lessons, final report

Module 4	Experimental Techniques in Space Science
Lecturer	Beatrice Panico (Unina)
Planned hours	10
Planned schedule	
Prerequisites	Basic of cosmic ray physics, Detectors
Description	The course will present the experimental techniques applied in the observation of cosmic rays from space. An overview on the next generation of space-based instrument for cosmic rays measurements will be provided. The course is designed for students performing doctoral studies in experimental astroparticle physics.
	Summary: 1) Open scenarios on the basic physical processes involving low energy cosmic rays, coming from astrophysical accelerators in high-density regions and from Dark Matter. 2) Methods and observing techniques to study cosmic rays from space 3) Current research in multimessenger astroparticle physics and in Space Wheather.
	4) UHECRs from space 5) Extracting a spectral energy distribution from data provided by different experiment
	During the course some practical experiences with students are foreseen: from data handling to software design and development, statistical analysis. In specific cases students are allowed and invited to investigate in-depth topics and to discuss during lectures.
Recommended texts	To be defined
Assessment methods	Students will be evaluated based on a final short seminar on an article or a modern research topic selected according to their interest.

Module 5	Dark Matter in cosmology and astrophysics
Lecturer	Fabio locco (Unina)
Planned hours	14 in 7 lectures
Planned schedule	
Prerequisites	Basic of particle and particle physics
Description	 1-2) Evidence of a non-electromagnetically interacting compomenet in astrophysical systems. (*Dark *matter in the CMB, Galaxy clusters, local disk galaxies). 3) Properties of the non EM-interacting component (Dark matter, DM) from other astrophysical probes (Lymanalpha forest, etc.) 4) Candidates of Dark Matter: non-exotic forms of matter and the search for it. 5) Candidates of Dark Matter: beyond the standard model of particle physics. 6) Search for specific candidates: the WIMP. Direct and indirect searches. 7) Alternatives to DM, the problems of LCDM paradigm.
Recommended texts	to be defined
Assessment methods	To be defined

Module 6	Astrophysics with ultra-high-energy neutrinos and Neutrino Telescopes
Lecturer	P. Migliozzi (INFN-Napoli)
Planned hour	8
Planned schedule	
Prerequisites	Basic astrophysics and particle physics
Description	Meson production, atmospheric neutrinos, the discovery of high-energy neutrinos, Sources of astrophysical neutrinos, Cosmic neutrino flux estimates, Neutrino detection principle and event topologies, The need for km3 neutrino telescopes, Water and ice properties, Operating neutrino telescopes, Results from neutrino telescopes
Recommended texts	M. Spurio, "Particle and Astrophysics" T. Stanev, "High-Energy Cosmic Rays"
Assessment methods	Short essay on one of the topics developed during the lectures

VIII. Statistical Physics for Complex Systems

Module 1	Active Matter and Complex Fluids
Lecturer	Giuseppe Gonnella (UniBA) – Antonio Lamura (CNR-Bari)
Planned hours	16
Planned schedule	Eight two-hour lectures
Prerequisites Goal	Background in classical physics and statistical mechanics The purpose of these lectures is to give an introductory overview to recent research developments in the field of applications of statistical and theoretical physics to complex fluids, soft matter and biological systems.
Description	Statistical physics and biological systems. Active matter: basic particle and continuous models. The phase diagram of passive and active colloids. Topological transitions. Complex fluids: theoretical modeling. Polymers: static and dynamical properties in dilute conditions. Ternary mixtures with surfactant: self-aggregation, active and double emulsions. Basic rheological behavior of complex fluids. The yielding transition. Simulations methods in soft and active matter. Molecular dynamics, Multi-Particle Collison Methods, Lattice Boltzmann Methods.

Module 3	Stochastic Processes and Analysis of Correlations
Lecturer	Eugenio Lippiello (University of Campania "Luigi Vanvitelli")
Planned hours	16
Planned schedule	Eight two-hour lectures
Prerequisites	Background in classical statistical mechanics.
Goal	The purpose of these lectures is to give a simple mathematical introduction to the description of stochastic processes with innovative applications in the field of epidemiology and earthquake data time- series analysis.
Description	Markov processes. Master and Fokker Plank equations. Stochastic energetics. Branching processes. Watson- Galton model. Application to genetics. Epidemic models. Applications to epidemiology and earthquake occurrence. Analysis of correlations in stochastic signals. Detrended Fluctuation Analysis. Power spectrum of a signal.

IX. Biophysics for Health and Environment

Module 1	Biophysical mechanisms and therapeutic implications of human exposure to ionising radiation
Lecturer	Lorenzo Manti (Università Federico II Napoli)
Planned hours	20
Planned schedule	10 lectures of 2 hours each
Prerequisites	Fundamentals of radiation-matter interaction
Description	The aim of the course is to provide an overview of the unique biological action exerted by ionizing radiation (IR).
	The ensuing effects at cellular and tissue level are governed by the spatio-temporal mode with which energy
	complex biomolecular responses. The course will therefore illustrate the main biophysical principles on which
	modern radiotherapy (RT) relies. New approaches will be also discussed such as the use of accelerated particle beams (hadrontherapy) and the exploitation of nuclear fusion reactions where physics can give an eccential
Module 2	Biophotonics for clinics and environment
Lecturer	Maria Lepore (Università della Campania «Luigi Vanvitelli») - Ines Delfino (Università della Tuscia)
Planned hours	20
Planned	
schedule	
Prerequisites	Basic concepts of optical techniques
Description	The course will deal with the application of optical techniques to the development of new diagnostic strategies and environment monitoring tools. Vibrational and fluorescence spectroscopies will be used for investigating biofluids, human tissues, radioesposed cells and enzymes in order to monitor biological processes and to
	develop sensor devices.

X. Nuclear Theory and Fundamental Interactions

I Particle Physics urbative QCD, with special reference gebra techniques and soft pion theoresed.

Module 2	Theory of Nuclear Forces and Nuclear Matter
Lecturer	Luigi Coraggio (UniCampania)
Planned hours	20
Planned	
schedule	
Prerequisites	
Description	The goal of this course is to introduce PhD students to our present knowledge of the theory of nuclear forces
	and, as its application, of infinite nuclear matter. First, the basic phenomenological features of the nuclear
	potential are presented, and their connection to the main aspects of strong force. Then, we start to follow the
	path that from the Yukawa potential, through models based on the meson theory, historically leads to the
	present approach to the derivation of two- and three-body nuclear forces which are rooted in the QCD by way
	of the effective field theory. Last section is devoted to study the nuclear environment that is considered the best
	testing ground for models of nuclear forces, that is the infinite nuclear matter. To this end, basic knowledge of
	the derivation of the equation of state of nuclear matter in terms of the Brueckner theory will be provided to the
	students.
	This topic may be of interest also for those scholars that are interested in astrophysical systems such as the
	neutron stars, whose structure may be described in terms of the equation of state infinite nuclear matter.