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Introduction

The discovery of the Higgs boson [1] in 2012, by the ATLAS [2] and CMS [3]

experiments at the Large Hadron Collider (LHC) at CERN, constitutes a break-

through in particle Physics and the confirmation of the predictions of the Higgs

mechanism about the Electroweak Symmetry Breaking (EWSB). Higher preci-

sion studies are required to test further predictions of the Standard Model on

the couplings of the Higgs boson with itself and with all the other elementary

particles [4].

The Higgs boson decays mainly into bb quarks, with a Branching Ratio of 58%

for mH = 125 GeV. Because the next-to-leading order (NLO) correction to the

decay process is significant [5], we may expect a non negligible contribution also

from the next-to-next-leading-order (NNLO) correction. In this thesis work we

recompute the NLO correction and outline a subtraction formalism in order to

obtain differential distributions of jet observables in the Higgs boson decay into

massive quarks. We then compute analytically the NNLO Yukawa correction via

top triangle to the Higgs decay into a bb pair. We build an analytic form for this

amplitude exploiting the technique presented in [6]: first, we reduce the ampli-

tude to a linear combination of a minimal set of integrals, then we derive a system

of partial differential equations (PDEs) with the set of integrals as unknowns and

finally, we find a solution to the system of PDEs in terms of Goncharov Poly-

logarithms (GPLs) [7]. Because there are fast libraries to numerically evaluate

up to the desired precision the GPLs [8], they are a good candidate of special

functions to be used into our simulation programs. In the literature we can find

a full massless NNLO computation of H → bb [9] and an approximated result

for our specific contribution [10]. A full analytical computation of the NNLO top

iii
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Yukawa contribution with massive b is presented here for the first time.

The thesis is structured as follows. In the first chapter we present a brief

introduction to the mechanism of EWSB and an overview of the Higgs boson

phenomenology at LHC. Next we calculate the fully differential partial decay

width of the Higgs boson into bottom quarks up to the first order in QCD. In

particular, we first compute the fully inclusive result and then build a subtraction

scheme needed to regularize the divergent integrations. To perform the integrals

over the phase space numerically and reconstruct the distributions of exclusive

observables, we use Monte Carlo techniques [11].

In the second chapter we present the techniques we have employed to ad-

dress our two loop calculation starting from the method to find a minimal set of

integrals to be computed, the master integrals (MI), exploiting Lorentz and inte-

gration by parts identities [12]. As previously mentioned, these integrals can be

brought to unknowns of a system of partial differential equations [6] and analyt-

ically solved in terms of Goncharov Polylogarithms (GPLs) [7]. At this purpose,

the system needs to be transformed to a canonical form [13], that we obtain using

the Magnus series expansion [14].

In the third chapter we apply the methods discussed above to the computation

of the top Yukawa contribution to the Higgs decay into a bb̄ pair and compare

our result with an approximated formula derived by Chetyrkin and Kwiatkwoski

[10]. Finally, we evaluate the impact of our calculation on the distributions of

exclusive observables.

The exact computation of the top Yukawa contribution to the Higgs boson

decay into bottom quarks at both inclusive and differential level is the original

part of the present work.

We remark that the techniques employed in the present thesis work are ap-

plicable for a large class of computations with massive internal and external

particles, relevant for the phenomenology of the experiments at the LHC.



Chapter 1

The Higgs Boson and the bb

decay mode

1.1 Higgs and the Standard Model

In the Standard Model [15, 16, 17] (SM) the electroweak interactions are described

by a gauge filed theory invariant under SU(2)L × U(1)Y symmetry group. The

mechanism of electroweak symmetry breaking (EWSB) [1] provides a general

framework to preserve the gauge structure of this interactions at high energies

and still generate the observed masses of W and Z bosons. The scale of EWSB

is set by the vacuum expectation value (VEV) of an SU(2) scalar doublet, the

Higgs field. The masses of all fermions are postulated to exist because of a Yukawa

coupling with the Higgs field.

The EWSB mechanism breaks the weak gauge SU(2)L × U(1)Y into U(1)em,

and the generators satisfy the well known Gell-Mann-Nishijima formula

Q = T3 +
Y

2
(1.1)

where Q is the electric charge, T3 the third component of the Isospin and Y the

Hypercharge. We introduce a complex SU(2) doublet Φ of hypercharge Y = 1,

1
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the Higgs field

Φ =

 φ+

φ0

 (1.2)

where φ+ is the positive charged component and φ0 the neutral one. In the SM

the scalar potential reads

V (Φ) = µ2Φ†Φ + λ(Φ†Φ)2 (1.3)

In order the EWSB to occur we need µ2 < 0 and λ > 0 and imposing the

spontaneous symmetry breaking with residual symmetry U(1)em we have

〈φ〉0 =

 0

v√
2

 with v =
|µ|
λ

(1.4)

Among the four generators of the SU(2)L × U(1)Y symmetry, three are spon-

taneously broken, implying the existence of three Goldstone bosons. The Higgs

field couples to the gauge bosons through the covariant derivative term

LHiggs = (DµΦ)†(DµΦ)− V (Φ) (1.5)

where

Dµ = ∂µ +
ig√

2
(t+W

+
µ + t−W

−
µ ) + eQAµ +

g

cosθw
(t3 − xw)Zµ (1.6)

Here e is the electric charge and xw = sin2 θw with θw the Weinberg angle. Ex-

panding the Higgs field about 〈φ〉0 we obtain the mass terms for the gauge fields

W± and Z and the masses

mW =
gv

2
mZ =

mW

cosθw
(1.7)

The fourth generators remains unbroken since Q 〈φ〉0 = 0.

From the initial four degrees of freedom of the Higgs field, three are absorbed

as longitudinal components of the massive gauge bosons, while the untouched
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degree of freedom is the physical Higgs boson, a new scalar particle. The Higgs

boson is neutral under Q and colorless, hence does not couple at tree level with

photons and gluons.

The fermions of the SM acquire mass trough renormalizable Yukawa interac-

tions between the Higgs field and the fermions

LYukawa = −hdij q̄LiΦdRj − huij q̄LiΦ̃uRj − h`ij ¯̀LiΦeRj + h.c. (1.8)

where Φ̃ = it2Φ∗ and qL (`L) and uR, dR (eR) are the quark (lepton) SU(2)L

doublets and singlets, respectively. Each term is parametrized by a 3× 3 matrix

in family space. Once the Higgs acquires a VEV and performing a rotation in

the basis of the mass eigenstates where the interaction matrix becomes diagonal

hfij → hfiδij, the fermions will acquire masses

mfi = hfi
v

2
(1.9)

1.2 Higgs phenomenology

The main production mechanisms of the Higgs boson at the LHC, in order of

decreasing cross section, are: gluon fusion, weak-boson fusion, associated pro-

duction with a gauge boson and associated production with a pair of tt̄ quarks.

In figure 1.1 the lowest-order diagrams for these processes are showed.

The proton proton center of mass energy dependence of the different produc-

tion cross sections is reported in figure 1.2 [18, 19, 20, 21]. The knowledge of

the production mechanisms is not sufficient to effectively detect the Higgs boson

since we also need a distinct signature for the events related to its successive de-

cay. Despite the large branching ratio of the bb̄ production (figure 1.3), the main

production channel, gluon fusion, is not the preferred one to detect this decay

due to the presence of a large source of background from the direct production

of a bb pairs via the QCD interaction.

Indeed the dominant decay modes are H → bb̄, being the heaviest particle

accessible, and H → WW , followed by H → gg and H → τ+τ−. In order
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Figure 1.1: Leading order Feynamn diagrams for the main contribution to Higgs production at hadron collider.

(a) Gluon fusion. (b) Vector bosons fusion. (c) Associated production with vector bosons. (d) Associated

production with tt̄.
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Figure 1.2: The SM Higgs boson production cross sections as function of the c.o.m. energy
√
s in pp collision.

In the whole range of energy considered the main production mechanism is the gluon fusion via top triangle.

to measure the mass of the observed state, the ATLAS and CMS experiments

combine results for the two high resolution decay channels, h → γγ and h →

ZZ → 4`. In figure 1.4 [22] is reported the summary of the mass measurements

for the ATLAS and CMS experiments.

Only during this year both the CMS and ATLAS collaborations, have reported

about the direct measurement of the Higgs coupling to the bottom quark [23, 24].

The search channel used is the VH production that, with the successive decay into
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Figure 1.3: In figure the Brancing Ratios of the Higgs boson decay. As shown the main one is the bb̄ production.

Figure 1.4: A sum up of the Higgs boson mass measurements by the CMS and ATLAS experiments.

leptons of the vector boson, allows to purify the signal. The recent measurements

are still consistent with the SM predictions and don’t show signals of new physics

(figure 1.5).

1.3 Higgs into massive quarks at NLO

The H → bb decay mode offers a direct measurement of the Higgs coupling with

fermions and with its BR of 58% at mH = 125 Gev constitutes the prevalent

decay channel, so its detection allows to make a fundamental test of the SM.
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Figure 1.5: The measurements for the bb mode at CMS and ATLAS. They are consistent with the SM predictions.

Moreover this channel can also be used to search for signal of new physics that

can manifest as distortion of the observed spectra with respect to the predictions.

In this section we derive a well known result, the massive NLO correction to

H → bb̄ [5, 25], re-obtaining the analytical expression for the full inclusive decay

rate.

We start evaluating the Born amplitude that can be directly calculated as

squared modulus of the diagram in figure 1.6.

H

b

b̄

Figure 1.6: Born diagram

Its expression is given by

B = 2CAy
2
b

(
s− 4m2

b

)
(1.10)

where CA is the number of colors and yb = −imbe/2MW sin(θw) is the Yukawa

coupling of Higgs to fermion. From this expression we easily get the decay rate
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at LO

Γ0 =
1

8π
CAy

2
b

√
s

(
1− 4

m2
b

s

)3/2

(1.11)

Going to the next order, the Kinoshita-Lee-Nauenberg (KLN) theorem [26, 27]

requires that we need to sum both the real and virtual contribution to the decay

rate. Using the on shell renormalization scheme [28] the virtual contribution to

consider will be only the vertex correction (figure 1.7) to be interfered with the

the Born diagram (figure 1.6).

H

b

b̄

Figure 1.7: Vertex correction, the virtual NLO contribution

Concerning the real contributions, the NLO correction, g2 order, is given by

the emission of an extra gluon in the final state. The amplitude to compute will

be given by the squared modulus of the sum of the two diagrams in figure 1.8

H

b

b̄

g
H

b

b̄

g

Figure 1.8: Gluon emission, real contribution.

1.3.1 Virtual contribution

The expression of the unrenormalized amplitude of the vertex correction (figure

1.7) in the kinematic H(p) → b(b)b̄(a) can be easily obtained performing basic

Dirac algebra, we can then reduce to the computation of just three scalar integrals

simply expressing the terms in the numerator in terms of denominators. In terms
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of the three scalar integrals, the virtual amplitude is:

Mv =

= 4iCACFy
2
bg

2
(
(8m4

b − 6m2
bs+ s2)I3 + (−4(−1 + ε)m2

b + εs)I2 + (4m2
b − 2s)I1

)
(1.12)

where ε is the parameter of the dimensional regularization (that we use through-

out this thesis with d = 4 − 2ε), CF = 4/3 is the Casimir of the fundamental

representation of the color group, CA = 3 is the dimension of the fundamental rep-

resentation. The integrals I1, I2 and I3, in our region of interest 4m2
b < s = m2

H ,

are given by

I1 =

∫
dd`

(2π)d
1

[`2][(`+ b)2 −m2
b ]

=
i

(16π2)

(
4πµ2

m2
b

)ε(
1

ε
+ 2− γ

) (1.13)

I2 =

∫
dd`

(2π)d
1

[(`− a)2 −m2
b ][(`+ b)2 −m2

b ]

=
i

(16π2)

(
4πµ2

m2
b

)ε(
1

ε
+ 2− γ + β

(
log

1− β
1 + β

+ iπ

)) (1.14)

I3 =

∫
dd`

(2π)d
1

[(`− a)2 −m2
b ][(`+ b)2 −m2

b ][`
2]

=
Γ(1 + ε)

sβ

(
4πµ2

m2
b

)ε(
log(x)

ε
+ log2

(
1− β

2β

)
− 1

2
log2 (x)− 2

3
π2

+2Li2

(
β − 1

β + 1

)
− iπ

(
1 + 2 log

(
1− β

2β

)
− log(x)

)) (1.15)

with

β =

√
1− 4m2

b

s
x =

1− β
1 + β

(1.16)

and µ the renormalization scale. To deal with Ultra-Violet (UV) divergences we

need to use a renormalization scheme. We choose the on shell scheme [28]. The



CHAPTER 1. THE HIGGS BOSON AND THE BB DECAY MODE 9

renormalized lagrangian is given by

L = ψ̄(i/∂ −mb)ψ −
mb

v
Hψ̄ψ + ψ̄(i/∂δψ −mbδmb)ψ −mb

δmb
v
Hψ̄ψ (1.17)

where we have used that at the lowest order in g no renormalization of the Higgs

field is required. So the counter term of the Yukawa coupling depends only on

δmb . The 1PI contribution to the propagator corrections Σψ(/p) is given by

−iΣψ(/p) =

`+ p

`

+

=(−ig)2τ 2
a

∫
dd`

(2π)d
1

`2
γµ

1

(/̀+ /p−mb)
γµ + i(/pδψ −mbδmb)

(1.18)

The parameters δψ and δmb can be determined fixing the renormalization pre-

scription. We use

Σψ(/p)
∣∣
/p=mb

= 0

d

d/p
Σψ(/p)

∣∣∣∣
/p=mb

= 0
(1.19)

Performing the integrals in dimensional regularization to deal with both IR and

UV divergences, up to order o(ε0), we get

δψ =
CFg

2

16π2

(
−3

ε
− 4 + 3γ + 3 log

(
m2
b

4πµ2

))
+ o(ε0)

δmb =
CFg

2

8π2

(
−3

ε
− 4 + 3γ + 3 log

(
m2
b

4πµ2

))
+ o(ε0)

(1.20)

We can then write the vertex counter event as

Mc = = 2δmbB (1.21)



CHAPTER 1. THE HIGGS BOSON AND THE BB DECAY MODE 10

The renormalized virtual contribution, defined as the sum of the virtual correction

and the vertex counter term, is then

Mv +Mc

N
=

=
1

ε

(
log

(
2

β + 1
− 1

)(
2m2

b − s
)
− βs

)
+ 4m2

b

(
log

(
β − 1

β

)
− log

(
1

β
+ 1

))
+

1

β

(
12m2

b + log(mb)(−16m2
b − 6β2s+ 4s) + 4β2s− 3s

)
+

1

3sβ2

((
8m4

b − 6m2
bs+ s2

)(
6Li2

(
1

2

(
sβ

4m2
b − s

+ 1

))
+3 log2

(
− βs

8m2
b − 2s

− 1

2

)
− 6 log

(
2

β + 1
− 1

)
log(mb) + π2

))
(1.22)

where the normalization factor is N = Γ(1 + ε)BCFg2
s(4πµ

2)ε(4π2sβ). Because

the counter event cancels the UV divergence, the remaining ε pole is related to

the IR divergence.

1.3.2 Real contribution

The real contribution can be computed straightforwardly:

Mr = + +

= CFg
2
sµ

2ε

(
B
(
−4m2

b

sag2
− 4m2

b

sbg2 +
4sab

sagsbg

)
+ CAy

2
b (ε− 1)

(
−4sag

sbg
− 4sbg

sag
− 8

))
(1.23)

where

sab = 2a · b sag = 2a · g sbg = 2b · g (1.24)

In the expression above the factor that multiplies B is divergent in the limit of

g soft. When computing the inclusive decay rate, its pole will cancel the IR
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divergence of the virtual contribution.

1.3.3 Inclusive decay rate

Now that we have calculated both the real and the virtual contributions, we can

perform the integration over the phace space and obtain the inclusive decay rate.

First of all we need the expressions of the phace spaces in 2 and 3 particles,

φ2 and φ3, in dimensional regularization. Remembering that we are dealing with

a decay 1→ 2 or 1→ 3, φ2 can be integrated freely over the entire volume, while

the real contribution will have just 2 independent parameters. φ2 is then

φ2 =
πεΓ(1− ε)

√
1− 4m2

b

s

(
4

s−4m2
b

)ε
(8π)Γ(2− 2ε)

(1.25)

Considering the decay of a particle of momentum P into three particles of

momenta p1, p2 and p3, we can define the variables

xi =
2P · pi
P 2

(1.26)

so that their sum x1 + x2 + x3 = 2 by momentum conservation. Specifying the

momenta to our case: p2
1 = p2

2 = m2
b and p2

3 = 0, the phase space φ3 is then:

φ3 =
3∏
i=1

∫
ddpi

(2π)d
(2π)dδ(d)

(
P −

3∑
j=1

pj

)
δ(p2

1 −m2
b)δ(p

2
2 −m2

b)δ(p
2
3)

=
1

(2π)2d−3

2∏
i=1

∫
dd−1pi

2Ei
δ((P − p1 − p2)2)

(1.27)

We can then express each dd−1pi as

dd−1pi = dd−3 |pi| |pi|2 dΩ
(i)
d−2 (1.28)

where the solid angle in n dimension is such that

Ωn = 2nπn/2
Γ(1

2
m)

Γ(m)
(1.29)
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The delta function fixes a constraint on the angle between the particles 1 and 2

trough the relation

0 = (P−p1 − p2)2

= s+ 2m2
b − 2P · p1 − 2P · p2 + 2p1 · p2

= s+ 2m2
b − 2P · p1 − 2P · p2 + 2E1E2 − 2 |p1| |p1| cosθ12

(1.30)

So we can change the angle variables and integrate completely one of the dΩ
(i)
d−2

with 1.29. The integration over θ12 can be performed using that

∫
dΩn = 2πn/2

1

Γ(1
2
m)

∫ π

0

dθi(sin θi)
n−1 (1.31)

Expressing everything in terms of the parameters x1 and x2 we obtain the follow-

ing result, in accordance with reference [29]

φ3 = H

∫ 1

√
r

dx1

∫ x2+

x2−

dx2

(
4
(
x2

1 − r
) (
x2

2 − r
)
−
(
2r − x2

1 + (−x1 − x2 + 2)2 − x2
2

)2
)−ε

(1.32)

where

r =
4m2

b

s
H =

s
(

16π
s

)2ε

(27π3) Γ(2− 2ε)
(1.33)

and the bounds of integration are specified by

x2± =
(x1 − 2) (r − 2(x1 − 1))± 2(x1 − 1)

√
x2

1 − r
−r + 4x1 − 4

(1.34)

We can know perform the integration of the real amplitude Mr 1.23 over x1

and x2. In terms of our integration variables we have

Mr = CFg
2
sµ

2

(
B
(

4 (s(x1 + x2 − 1)− 2m2
b)

s2(1− x1)(1− x2)
− 4m2

b

s2(1− x1)2
− 4m2

b

s2(1− x2)2

)
+CA(ε− 1)y2

b

(
−4(1− x1)

1− x2

− 4(1− x2)

1− x1

− 8

))
(1.35)
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Referring to equation 1.32 we define

J = 4
(
x2

1 − r
) (
x2

2 − r
)
−
(
2r − x2

1 + (−x1 − x2 + 2)2 − x2
2

)2
(1.36)

Because the problem is symmetric in the exchange of x1 and x2, when performing

the integration of Mr over φ3, we can reduce to the calculation of 5 integrals of

which only 2 with IR divergences. We then define the following integrals

I1 =

∫ 1

√
r

dx1

∫ x2+

x2−

dx2J
−ε 1

(1− x1)2
(1.37)

I2 =

∫ 1

√
r

dx1

∫ x2+

x2−

dx2J
−ε 1

(1− x1)(1− x2)
(1.38)

I3 =

∫ 1

√
r

dx1

∫ x2+

x2−

dx2
1− x2

1− x1

(1.39)

I4 =

∫ 1

√
r

dx1

∫ x2+

x2−

dx2 (1.40)

I5 =

∫ 1

√
r

dx1

∫ x2+

x2−

dx2
1

1− x1

(1.41)

where in the last three integrals we already set ε = 0 being finite. Their value

is given in appendix A. In terms of them the real contribution to the decay rate

∆Γr can be written as

∆Γr = CFg
2
s(µ

2)ε
(
B
s

(
4

(
I2

(
1− 2m2

b

s

)
− 2I5

)
− 8I1m

2
b

s2

)
+CA(ε− 1)y2

b (−8I3 − 8I4)
)

;

(1.42)

The virtual contribution ∆Γv is easily obtained multiplying Mr + Mc of

equation 1.22 by the φ2 volume 1.25

∆Γv = (Mr +Mc)φ2 (1.43)

Summing real and virtual contributions and expanding in ε we observe the can-

cellation of the ε pole. The NLO correction to the decay of Higgs into bb̄,

∆Γnlo = ∆Γr + ∆Γv, is then:
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∆Γnlo = Γ0
1

384π2
√
s (s− 4m2

b)
3/2(

−3s2

(
12
(
β3 + β

)
+
(
−3β4 − 2β2 + 5

)
log

(
(β + 1)2

(β − 1)2

)
− 16 log

(
−β + 1

β − 1

))
+ 16

(
4m2

b − s
)(
−12m2

b log2

(
1

2

(
1

β
− 1

))
+ 6m2

b log2

(
1− β
β + 1

)
− 24m2

b log

(
β + 1

1− β

)
− 24m2

b log(2) log

(
1− β
β + 1

)
− 24m2

b log

(
1− β
β + 1

)
+ 12

(
s− 2m2

b

)
Li2

(
β − 1

2β

)
+ 12(1 + log(8))

(
log

(
1− β
β + 1

)(
2m2

b − s
)
− βs

)
+ 6

(
log

(
s

m2
b

)
− 2 log(β)

)(
log

(
1− β
β + 1

)(
s− 2m2

b

)
+ βs

)
+ 8π2m2

b + 18βs+ 6s log2

(
1

2

(
1

β
− 1

))
− 3s log2

(
1− β
β + 1

)
+ 12βs log(2)

+ 12s log

(
1− β
β + 1

)
+ 12s log(2) log

(
1− β
β + 1

)
− 4π2s

+
6m2

b

1− β2

(
2
(
β2 + 3

)
log
(
−(β − 1)3

)
+ 8β log

(
2β2
)
− 2

(
β2 − 1

)
log(β + 1)

+
(
β2 − 1

)
log
(
1− β2

)
− 2

(
β2 + 3

)
log
(
1− β2

)
+ 4β

(
log

(
− 64

β2 − 1

)
+ 2 log

(
1−

√
1− β2

)
+ 2 log(β)− 2

)
+ 2

(
β2 + 3

)
log

((√
1− β2 − 2

)2
)
− 2

(
β2 − 1

)
log

(√
1− β2

(√
1− β2 − 2

)2
)

−8 log

(√
1− β2

(√
1− β2 − 2

)2
)
− 8β log

(
β2 +

√
1− β2 − 1

))
+ 6

(
β2 − 1

)
s tanh−1

(
2β

β2 + 1

)
− 12βs+ 12s log

(
β + 1

1− β

)
.

− 1

2

(
2m2

b − s
) (

24 log2
(√

1− β2 − β + 1
)
− 24 log2

(√
1− β2 + β + 1

)
− 12 log(16) log

(√
1− β2 − β + 1

)
− 36 log

(√
1− β2 + 1

)
log
(√

1− β2 − β + 1
)

+ 6 log

(
(β − 1)2

(β + 1)2

)
log
(
4− 4β2

)
+ 12 log

(
(β − 1)2

(β + 1)2

)
log
(

1−
√

1− β2
)

+ 48 log(2) log
(√

1− β2 + β + 1
)

+ 36 log
(√

1− β2 + 1
)

log
(√

1− β2 + β + 1
)

− 6 log

(
4β

(β − 1)2

)
log

(
(β + 1)2

(β − 1)2

)
− 12Li2

(
1

2

(
β −

√
1− β2 + 1

))
+ 132Li2

(
β√

1− β2 + 1

)
− 132Li2

(
− β√

1− β2 + 1

)
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+ 12Li2

−β
(
−β +

√
1− β2 + 1

)
2
(√

1− β2 + 1
)


+ 132Li2

(
−β +

√
1− β2 + 1

2
√

1− β2 + 2

)
− 132Li2

(
β +

√
1− β2 + 1

2
√

1− β2 + 2

)

−6Li2

(
− 4β

(β − 1)2

)
+ 12Li2(−β)− 12Li2(β)− 6Li2

(
(β − 1)2

(β + 1)2

)
+ π2

)))
(1.44)

The result has been compared to the one of Braaten et al [25] finding a perfect

numerical agreement up to any number of digits and it determines a correction

of about 20% on the LO decay rate.

1.4 Subtraction scheme

In this section we outline the features of a QCD differential calculation in the

subtraction formalism [30].

Suppose we have n partons in the final state with on shell momenta Φn =

{ki}ni=1 constrained by the momentum conservation

q = k1 + . . . kn (1.45)

where q is the initial momentum. With dΦn we denote the n particles phase space

dΦn =
n∏
i=1

d3ki
(2π)32Ei

(2π)4δ

(
q −

n∑
i=1

ki

)
(1.46)

At NLO the total cross section is given by the sum of the virtual and real contri-

butions, the first integrated over dΦn phase space, the latter over dΦn+1 because

it concerns the emission of another parton. According to the KLN theorem, the

real contribution is required to cancel the IR divergences. Denoting with B the

LO amplitude, with V and R the virtual and real ones, we have

σNLO =

∫
dΦn[B(Φn) + V(Φn)] +

∫
dΦn+1R(Φn+1) (1.47)
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More in general we can consider an observable O, function of the kinematic

configuration Φn. We only refer to infrared-safe observables in the sense that

their expectation values does not show IR divergences. The expectation value of

an observable O is then

〈O〉 =

∫
dΦnO(Φn)[B(Φn) + V(Φn)] +

∫
dΦn+1O(Φn+1)R(Φn+1) (1.48)

The integrals above can not in general be performed analytically so a numerical

approach needs indeed to be used. We can think that our events, specified by the

final momenta configuration, are weighted by B + V for Φn and by R for Φn+1.

The KLN theorem ensures that the inclusive cross section is finite, but because

the real and virtual terms live in different phase spaces the numerical integration

can be performed only if the integrands are both made finite in a consistent way.

From the KLN theorem we deduce that in the IR divergent regions a real

configuration is not distinguishable from a Born one. We can then imagine to

subtract the singular events from the real configuration and add them back to

the Born one achieving, in this way, the cancellation the IR divergences. This

can be realized introducing, in the singular regions, configurations with negative

weights, called real counter events. The whole procedure that follows constitutes

the subtraction formalism [30].

For each singular region labeled with α we introduce a function Cα, the counter

event, and a mapping M (α)

M (α)Φn+1 = Φ
(α)

n (1.49)

that maps a real configuration into a Born one. The mapping needs to be smooth

near the singular limit and performing the limit it must reduce to the identity.

The counter events Cα have to be chosen in such a way the function

O(Φn+1)R(Φn+1)−O(M (α)Φn+1)C(α)(Φn+1) (1.50)

has at most integrable singularities in the real phase space.
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In our case, being the b quark considered as massive, there is only a soft

singularity.

If we add and subtract the counter event to the expectation value of the

observable O we get

〈O〉 =

∫
dΦnO(Φn)[B(Φn) + V(Φn)] +

∑
α

∫
dΦn+1O(Φ̄n)C(α)(Φn+1)

+

∫
dΦn+1

(
O(Φn+1)R(Φn+1)−

∑
α

O(Φ̄n)C(α)(Φn+1)

) (1.51)

The last integral is then well defined and suitable for numerical computation

being completely free of divergences in d = 4 dimension. The integral over the

Born configuration is instead still divergent, to make it finite we need to properly

factorize the Born phase space of the counter event and then add it to the Born

integrand. With obvious meaning of the subscript, we can write

dΦn+1 = dΦ̄(α)
n dΦ

(α)
rad (1.52)

Demanding that the counter events Cα and the mapping are chosen such that

C(α)(Φn+1) is integrable over dΦ
(α)
rad in D = 4 − 2ε dimension, we can add it

coherently to the Born integrand canceling the IR divergences of the virtual

matrix element. Defining

C(α)
(Φ) =

∫
dΦ

(α)
radC

(α)(Φn+1) (1.53)

indeed, we can make the virtual term finite

V (Φn) = V(Φn) +
∑
α

C(α)
(Φ)

∣∣∣∣∣
Φn=Φn

(1.54)

If we define the real integrand as

R(Φn+1) = O(Φn+1)R(Φn+1)−
∑
α

O(Φ̄n)C(α)(Φn+1) (1.55)
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the expected value of an observable will be given by

〈O〉 =

∫
dΦnO(Φn)[B(Φn) + V (Φn)] +

∫
dΦn+1R(Φn+1) (1.56)

where thanks to the subtraction we made both terms finite and numerically com-

putable.

1.4.1 Application to the Higgs decay at NLO

To apply the formalism outlined above to our NLO calculation we have to choose

a valid mapping from the 3 partons kinematic to the Born one of 2 particles. We

recall that our transformation needs to reduce to the identity for the soft gluon

and that has to preserve the on-shell condition over the new momenta. We start

by considering a Lorentz boost. Fixing the real kinematic configuration as

p = a+ b+ g (1.57)

where a and b are the momenta of b̄ and b quarks and g is the gluon momentum,

in the c.o.m. frame we have

~a+~b+ ~g = 0 (1.58)

where the arrows indicate three momenta. Because we want to map our config-

uration into a Born one, the resulting four-momenta ã and b̃ will have to satisfy

the following conditions

p = ã+ b̃ ã2 = b̃2 = m2
b (1.59)

The boost can be performed imagining to “absorb” the g momentum into the

b one, in view of this we can define the momenta krec = a and k = b + g. We

can then perform the boost Λ(β) of a along the ~krec = −~k direction, so that

ã = Λ(β)a and ã2 = a2 = m2
b . The β value can be determined demanding that

the momentum, that absorbs the gluon radiation, satisfies the on-shell condition
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of the Born configuration

b̃2 = (p− Λ(β)krec)
2 = m2

b (1.60)

This mapping trivially reduces to the identity in the limit of a soft gluon

radiation. Performing the boost we obtain the following equation that fixes the

value of β

(
β|~k|√
1− β2

− k0
rec√

1− β2
+mH

)2

−

(
|~k|√

1− β2
− βk0

rec√
1− β2

)2

= m2
b (1.61)

And choosing the positive root we get

β =
4
∣∣∣~krec

∣∣∣k0
recp

2 +
√
p8 − 4m2

bp
6

p2
(
4k0

rec
2 − 4m2

b + p2
) (1.62)

Furthermore, we need to choose a counter event to cancel the soft divergence.

We subtract the whole soft divergent factor:

C(Φ3) = CFg
2
sµ

2εB
(
−4m2

b

sag2
− 4m2

b

sbg2 +
4sab

sagsbg

)
(1.63)

As explained in the previous section, the counter event will be subtracted to the

real contribution and its integral over the gluon radiation variables added to the

virtual contribution.

Now we need the expression of the integrated counter event over the radiation

variables. To proper factor the 2 particles phase space we can just take the

expression of dΦ3 1.32 and divide it by the Φ2 volume 1.25.

Recalling that r = 4m2
b/s and defining N = 16π2Γ(1 + ε)(πµ2)ε/(

√
(1− r)),

the integrated counter event is then

C(α)
(Φ)

N
=

1

εrs

(
4(r(s− 2m2

b) log

(
r

−r + 2
√

1− r + 2

)
+ 4m2

b

√
1− r)

)
− 1

rs
4
(
r(2m2

b − s)(−Li2
(
−
√

1− r
)

+ Li2
(√

1− r
)

+ Li2

(
1

2
(
√

1− r −
√
r + 1)

)
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− 11Li2

(√
1− r√
r + 1

)
+ 11Li2

(
−
√

1− r√
r + 1

)
− Li2

(
(
√

1− r −
√
r − 1)

√
1− r

2(
√
r + 1)

)
− 11Li2

(
−
√

1− r +
√
r + 1

2
√
r + 2

)
+ 11Li2

(√
1− r +

√
r + 1

2
√
r + 2

)
+

1

2

(
Li2

(
− r + 2

√
1− r − 2

−r + 2
√

1− r + 2

)
+ Li2

(
4
√

1− r
r + 2

√
1− r − 2

)
− log

(
− r + 2

√
1− r − 2

−r + 2
√

1− r + 2

)
(log(4r) + 2 log

(
1−
√
r
)
)

+ log

(
r − 2(

√
1− r + 1)

r + 2
√

1− r − 2

)
log

(
− 4

√
1− r

r + 2
√

1− r − 2

)
− π2

6

)
− 2 log2(−

√
1− r +

√
r + 1) + 2 log2(

√
1− r +

√
r + 1)

+ log(16) log
(
−
√

1− r +
√
r + 1

)
+ 3 log

(√
r + 1

)
log
(
−
√

1− r +
√
r + 1

)
− 4 log(2) log

(√
1− r +

√
r + 1

)
− 3 log

(√
r + 1

)
log
(√

1− r +
√
r + 1

)
)

− (− log

(
1

s− 4m2
b

)
+ 2 log

(
1

s

)
+ log(64))(r(s− 2m2

b) log

(
r

−r + 2
√

1− r + 2

)
+ 4m2

b

√
1− r) +m2

b

(
2(r − 4) log(r)− r log(r)− 8

√
1− r log

(√
r − r

)
− 2(r − 4) log

(
r(
√

1− r − 3)− 4
√

1− r + 4
)

+ 2r log
(√

1− r + 1
)

− 2(r − 4) log
(
(
√
r − 2)2

)
+ 2r log

(
(
√
r − 2)2

√
r
)
− 8 log

(
(
√
r − 2)2

√
r
)

+ 4
√

1− r(log(−64(r − 1))− log(r) + 2 log
(
1−
√
r
)
− 2)

+8
√

1− r log(2− 2r)
)

+rs

(
−2
√

1− r + 2 log

(
− r

r + 2
√

1− r − 2

)
+ r tanh−1

(
2
√

1− r
r − 2

)))
(1.64)

We can know perform the numerical integration of the decay rate ∆Γnlo, using

the vegas algorithm [11]. As a test of the implementation we have verified that

the sum of the real and virtual integration perfectly agrees with the inclusive

formula in equation 1.44.
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1.4.2 JADE algorithm

In the following we will reconstruct jets using the JADE algorithm [31, 32, 33].

The first step of the jet algorithm is to define a distance function between two

clusters i, j in terms of their four-momenta pi, pj. The distance function of the

JADE algorithm dij is defined as

d2
ij = 2EiEj(1− cos θij) (1.65)

where θij is the angle between the three-momenta ~pi, ~pj. More often used is the

scaled expression yij of the distance

yij =
d2
ij

E2
CM

=
2EiEj(1− cos θij)

E2
CM

(1.66)

with ECM the energy in center of mass frame.

The algorithm starts from a list of particles, that we consider the initial set

of clusters. If the two clusters with minimum distance yij have a distance that

is below a chosen cut-off scale ycut, they are merged together. The algorithms is

looped until the remaining clusters have a distance above the cut-off scale.

The role of the jet algorithm is very important to our simulations; the distance

defined in equation 1.66 collects, in the same jet event, the real contribution in

the unresolved (soft) limit and the corresponding virtual contribution obtained

removing the soft radiation. For this reason the algorithm is said to be infrared

safe.

It is worth mentioning that a central role is played by the choice of the cut-

off scale ycut: if we choose to be too exclusive, with a tiny cut-off scale, we end

up with unbalanced cancellation among the real and virtual contributions; this

may result even into the unphysical prediction of a negative cross sections for the

lowest (2 in our case) jet rate.
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1.5 Phenomenological study

Thanks to the subtraction we can now make differential predictions of jet ob-

servables. For illustrative purposes we consider an Higgs factory, as could be a

muon collider operating at a center of mass energy of 125GeV. Further, we do

not include any Electroweak corrections that would be mandatory for a precise

estimate of the event yield. In figure 1.9 we present the percentage of 2 and 3

particle events selected by the JADE jet-algorithm: the ycut parameter chooses

the minimum “distance” between two jets to be considered as distinguishable,

the more the ycut the more the 2 jets events.

Figure 1.9: Percentage of 2 and 3 particle events selected by the JADE jet-algorithm. The distributions are

normalized dividing by the total decay rate σT .

For the following plots we fix the value of ycut = 0.1. In figure 1.10 we plot

the distribution of the jet with maximum energy for two jets events divided by

the Higgs mass . This is an interesting observable both from an experimental and

theoretical point of view. In fact it can be measured indeed and it is an index of

the reliability of the subtraction method: near the Emax = 0.5 region both virtual

and real events contribute to the weights then, thanks to the subtraction method,
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we can make a finite prediction and be exclusive on the 2 particles events.

Figure 1.10: Emax distribution with NLO correction, the band is determined plotting the observable at renor-

malization scale µ ∈ (0.5, 2)mH . The value of ycut is fixed at 0.1 to ensure a non-instantly vanishing distribution.

Near 0.5 the dependence on the QCD scale is quite large, this is caused by the presence of very large virtual

and real weights in the region of interest.

With the same spirit we plot in figure 1.11 the absolute value of y rapidity

of the jet with highest energy. Here the absolute value is necessary because near

yh = 0 the numerical precision might create instability. In fact, because the

kinematic 1 → 2 has two jets with equal energy mH/2, due to the numerical

precision, jets with a fixed sign rapidity might prevail and be selected as the ones

of maximum energy. The result would be an asymmetry in the distribution. The

rapidity is moreover an observable of great theoretical interest; in fact, because

the Born kinematic has a non trivial distribution, the effect of the subtraction is

manifest in the whole plot and not only in a specific region like the Emax case.



CHAPTER 1. THE HIGGS BOSON AND THE BB DECAY MODE 24

Figure 1.11: Absolute value of y rapidity for the jet with highest energy. The band is determined plotting the

observable at renormalization scale µ ∈ (0.5, 2)mH and ycut = 0.1.



Chapter 2

Multiloop calculation

When computing a multi-loop process, the best strategy (due to the complexity

and the great amount) is to reduce at minimum the number of integrals necessary

for the calculation. We refer to this minimal set as Master Integrals (MI). In this

chapter we show which are the identities that can be exploited to reconstruct

such a basis and one of the most useful methods to try and find an analytical

solution to these integrals.

2.1 Setting up the environment

Our first attempt is to obtain a general form for a multi-loop integral in terms of

the involved momenta, in order to have a uniform notation to work with. Suppose

we have E independent external momenta (pi) and L momenta of integration (kj),

we call each propagator Di = (q2
i −m2

i ), where qi is its momentum. By definition,

a scalar multi-loop integral has the following general structure:

I(n) =

∫ L∏
i=1

ddki
1

Dα1
1 Dα2

2 · · ·D
αN
N

(2.1)

where αj states for the power of the j-th denominator (positive or negative)

and n represents the vector of the dependencies (external momenta and scalar

parameters). Dealing with a Feynman diagram, we would like to express any term

contributing as a scalar integral. At one-loop level our aim is easily obtained using

25
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just the denominators already appearing in the amplitude.

Example. Consider the one loop correction to the photon propagator

p
p+ k

k

p

∝
∫
ddkTr

γα(/p+ /k +m)γβ(/k +m)

((p+ k)2 −m2)(k2 −m2)
(2.2)

where we can identify D1 = (p+ k)2−m2 and D2 = k2−m2. The scalar product

p · k can be expressed as

p · k =
1

2

(
(p+ k)2 − p2 − k2

)
=

1

2

(
D1 −D2 − p2

) (2.3)

When the number of loops is greater than one, it is never possible to express

all the scalar products, appearing in the amplitude, in terms of the physical

denominators. As we will see in the further calculation, the problem can be solved

by the introduction of auxiliary topologies: to restore the form 2.1, we enlarge

the number of propagators so that all the scalar products can be expressed in

terms of them. A set of propagators which span all the scalar products is called

integral family. A topology instead is defined as a set of propagators that occur

in the integral with only positive powers.

2.2 Identities

Once we have put all integrals in the scalar form, we can go on reducing the

expression in terms of MI. The procedure involves the use of two kinds of iden-

tities, that we will analyze in detail in this paragraph. As it will be clear soon,

the number of identities that can be written is very large, so we always deal with

a redundant system of dependent equations. As expected the choice of MI is

not unique but can become quite relevant when it comes to the methods used

to compute the integrals. We now focus simply on the identities and leave the

choice of the most convenient basis to the following sections.
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2.2.1 Lorentz Identities

The first kind of identities is known as Lorentz Identities LI and it is based on

symmetry properties of the integrals. A general Feynman Integral FI is invari-

ant under Lorentz transformations of its external momenta. So considering the

infinitesimal transformation

pµi → ωµνpiν (2.4)

where ωµν is a general antisymmetric tensor with |ωµν |� 1 ∀µ, ν, at the first

order in ωµν a scalar multi-loop integral transforms as

I(n)→

(
1 + ωµν

∑
i

piν
∂

∂pµi

)
I(n) (2.5)

Using the antisymmetry of ωµν we get the identity

∑
i

(
piν

∂

∂pµi
− piµ

∂

∂pνi

)
I(n) = 0 (2.6)

Contracting with antisymmetric tensors built with external momenta, for instance

pkph − phpk, we get all possible Lorentz Identities (LI). If we consider a Feyn-

man diagram with Z external legs, in d dimensions, the number of independent

external momenta is Nind = min(d, Z − 1), because of the overall momenta con-

servation joined with the maximum number of linearly independent momenta in

the space. The number of independent LI is then Nind(Nind − 1)/2 that is the

number of antysymetric rank 2 tensors that we can build in the space Nind×Nind.

2.2.2 Integration by parts identities

We refer to the second kind of identities as the integration by parts identities IBP.

Following [34, 35], a FI is invariant under the substitution of its integral momenta

ki → Aijkj +Bijpj (2.7)



CHAPTER 2. MULTILOOP CALCULATION 28

Considering an infinitesimal transformation ki → ki + βijqj, where q = (k1 . . . kL,

p1 . . . pE), the integral measure changes as

ddki → ddki + βijδijd (2.8)

where δij is the Kronecker delta, d the dimension of integration; the Einstein

convention of summations over repeated index is meant only for the j index. So,

imposing the invariance, we have that

I(n) =

∫ L∏
i=1

(
1 + βij

(
dδij + qµj

∂

∂qµi

))
ddki

Dα1Dα2 · · ·DαN
=∫ (

1 +
∂

∂qµi
qµj

)
ddki

Dα1Dα2 · · ·DαN

(2.9)

It is possible to associate the structure of a Lie Algebra to the operator Oij =

∂
∂qµi
qµj , in fact with direct computation we find:

[Oij, Okl] = δilOkj − δkjOil (2.10)

The shift invariance can be thus expressed with the formula:

∫
∂

∂qµi
qµj

ddki
Dα1Dα2 · · ·DαN

= 0 (2.11)

So performing the derivatives it is clear how to obtain all possible sets of Inte-

gration by Parts Identities (IBP). It is also instructive to understand that these

identities is consistent with the fact that, in dimensional regularization, the inte-

gral of the derivative vanishes. Using Gauss theorem, we’re left with the flux on

the boundaries of integration region; in dimensional regularization, we can mod-

ify the dimension of the surface on which we are performing the flux obtaining

0.

Example: 1-loop massive tadpole.

k ∝
∫
ddk

1

k2 −m2
(2.12)
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It is clear that dealing with only one momentum among the qi previously defined,

we can write only the IBP with respect to this momentum, k; performing all the

steps:

0 =

∫
ddk

∂

∂kµ

(
kµ

1

k2 −m2

)
=

∫
ddk

(
d

k2 −m2
− 2k2

(k2 −m2)2

)
=

∫
ddk

(
d− 2

k2 −m2
− 2m2

(k2 −m2)2

) (2.13)

We finally obtain ∫
ddk

(k2 −m2)2
=
d− 2

2m2

∫
ddk

k2 −m2
(2.14)

This simple example shows how, using the IBP, we can express integrals belonging

to the same family in terms of each other. Once evaluated the simple tadpole,

multiplying by a constant factor, we obtain the integral with the second power.

Example: 1-loop massive bubble:

We consider the family integral with 2 propagators D1 = k2−m2 D2 = (k+p)2−

m2, which includes all the 1-loop bubble diagrams:

Iα1α2 =

∫
ddk

Dα1
1 Dα2

2

(2.15)

Of the two possible identities (w.r.t. k or p) let us compute the IBP with respect

to k, for the bubble integral (α1 = α2 = 1). We get the following identity:

I11(d− 3)− 2m2I21 − I02 − (2m2 − p2) = 0 (2.16)

Using the equality Iα1α2 = Iα2α1 , due to the shift k → k − p, and the previous

IBP (2.14) for which

I20 =
d− 2

2m2
I10 (2.17)
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we can choose the master integrals of our family to be I11 and I10. From (2.16).

We can finally express I21 in terms of them:

I21 =
d− 3

4m2 − p2
I11 −

d− 2

2m2(4m2 − p2)
I10 (2.18)

2.3 Get the Master Integrals

We now have a very large number of identities, a subset of them can be considered

to constitute a homogeneous system with the integrals as unknowns. Unfortu-

nately, as we previously said, the identities are not independent, so there exists a

minimal set of integrals that have to be computed. The great amount of identities,

growing vary fast with the number of propagators and loops, requires automated

procedures to get the master integrals. One of the most applied algorithms is

the Laporta’s one [36]. This algorithm is distinguishable from the others mainly

because of two aspects:

• It starts from e pre-defined subset of IBP and LI

• It presents great efficiency in time due to an optimal ordering of the integrals

We limit the number of denominators with positive and negative powers, choosing

two integers r and s. This first step allows us to write down a finite number of

IBP and LI that constitute our pre-defined subset. The algorithm then proceeds

computing the identities and using Gauss method of substitution to get the MI.

At each step of iteration, we start from a new identity
∑

i ciWi = 0 and we rewrite

it in terms of the other integrals W
′
i , already selected from the previous identities.

To each integral W
′
i , we assign a weight based on, in order of importance:

• number of denominators

• combination of denominators

• exponents

and the integral with greatest weight W
′

l is selected. The identity is then written

in the form W
′

l =
∑

i 6=l c
′
iW

′
i allowing further substitutions and it is added to
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database. Whilst the extraction of the integrals is performed top bottom with the

weights order, the identities (IBP and LI) are computed bottom up. These allows

minus computing time due to the lower number of substitutions required. It is

worth mentioning that selecting a finite number of identities does not guarantee

that we reach the minimum number of integrals, so it is important to always give

a certain margin to the r and s values.

Laporta’s algorithm has been implemented in software like Reduze2 [37] for

parallel computing e speed up performances.

2.4 Differential equations for master integrals

We now have reduced the problem to the solution of a limited number of inte-

grals (the Master Integrals). However a direct analytical solution is often not

applicable. One of the most successful and current methods is the method of

differential equations ; in recent years this method has been applied with success

to a vast class of problems. Firstly proposed by Kotikov [38] and the extended

to all invariants by Gehrmann and Remiddi [39], this method consists in deriv-

ing an homogeneous system of differential equations in which the unknowns are

the master integrals. With a particular choice of the basis (as we’ll see in the

following sections) the problem can be greatly simplified, making the method of

differential equation really effective.

2.4.1 Derive the differential equations

We can derive the differential equations for MI simply differentiating the integrals

with respect to kinematics invariants. The effect of such differentiation will be to

change the power of denominators of the integrals. For an internal mass mi we

simply have:

∂m2
i

∫ L∏
j=1

ddki
1

Dα1
1 · · ·D

αi
i · · ·D

αN
N

= αi

∫ L∏
j=1

ddki
1

Dα1
1 · · ·D

αi+1
i · · ·DαN

N

(2.19)
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where Di = qi −m2
i . If we derive with respect to a general kinematic invariant

Xj, we can express the differential operator in terms of derivatives w.r.t. external

momenta, that appear in the integrals, using the chain rule:

pµk∂pµ,i =
∑
j

pµk
∂Xj

pµ,i
∂Xj (2.20)

The left hand operators are not all independent because they are related by

Lorentz Identities. The number of independent equations we can write is given

by:

N2
ind −

Nind(Nind − 1)

2
=

(Nind − 1)(Nind − 2)

2
(2.21)

where Nind is the number of independent external momenta. In fact, we have

to subtract to the total number of possible contraction pµk∂pµ,i the number of

constraints given by the LI. The result corresponds to the number of independent

kinematics invariants.

The system 2.20 can be solved and all derivatives with respect to Xi can be

expressed in terms of pi. We now recall the fact that we can always express all

the remaining factors, which appear after performing the derivatives, in terms

of denominators. In these differential equations for the master integrals, the

integrals appearing to the right hand side belong to the same sector or sub-sectors

of the ones to the left hand side: this leads to a differential relation among our MIs

and other integrals that can be expressed again in terms of the MIs. Performing

the derivatives of each MI w.r.t a set of independent kinematic invarinats, we

finally end up with an homogeneous system of partial differential equations in

which the unknowns are the MIs.

Example: 1-loop bubble. We want to compute the differential equation for

the integral I11 we already introduced (equation 2.15). The first step is computing

the derivative of I11 with respect to the invariant p2. Using that

pµ
∂

∂pµ
= 2p2 ∂

∂p2
(2.22)
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we obtain:

dI11

dp2
=

1

2p2

∫
ddk

(
pµ

∂

∂pµ
1

D1D2

)
= − 1

2p2
I11 −

1

2
I12 +

1

2p2
I02

(2.23)

With (2.18) and (2.17), we can express everything in terms of the two MI I11 and

I10 :
d

dp2
I11 = −4p2 − 4m2 − p2d

2p2(p2 − 4m)
I11 −

d− 2

p2(p2 − 4m2)
I10 (2.24)

We obtained this way a differential equation that, solved, gives the expression for

I11 when I10 is known. The problem of computing amplitudes can so be turned

into the solution of a system of differential equations. In the following section

we present a method to solve a typical system that appears when dealing with

physical integrals.

2.4.2 Canonical basis

In the previous sections we have seen that, using IBPs and LIs it is possible to find

a basis for our integrals (the MIs); then differentiating by kinematic invariants

it is possible to write a system of differential equations with MIs as unknowns.

As we already said, our aim is to determine the solution by finding a primitive

for these functions; moreover we will need to fix the constants of integration by

imposing appropriate boundary conditions. In order to simplify the problem, we

can exploit the arbitrariness of the basis choice to rewrite the system in a more

convenient form. In these section we define the canonical form that, if found,

always lets us perform the first step of integration and find the primitive.

Consider a fixed complete set of independent kinematic invariants Xi and

choose one invariant XQ. We notice that the dependence on it can be recon-

structed with the mass dimension of the integrals. If we call f̃i the N master

integrals, referring to the dimensionless quantities

fi = (XQ)− dim(f̃i)/dim(XQ)f̃i (2.25)
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we can drop the dependence on XQ and reduce by one the number of parameters.

At this point we need to define a new set of independent kinematic invariants

and the easiest choice could be to build it from the previous one introducing for

i 6= Q the dimensionless ratios

xi =
Xi

X
dim(Xi)/dim(XQ)
Q

(2.26)

Working in d = 4− 2ε dimensions, the set of equations takes the form

∂mf(ε, ~x) = Am(ε, ~x)f(ε, ~x) (2.27)

where ~x denotes the vector of kinematic invariants, ∂m = ∂
∂xm

and Am is an N×N

matrix. The following integrability conditions have to be satisfied:

∂nAm − ∂mAn + [An, Am] = 0 (2.28)

In practice we are always interested in an Laurent expansion of the MIs near

ε = 0. The problem is easily solved if we can find a suitable basis in which the

system assumes a canonical form, firstly proposed by Henn [13]. Under a change

of basis f = Bg, Am transforms as

Am → B−1AmB −B−1∂mB (2.29)

The system is said to be in the canonical form if, in the new basis, Am has a

factorized dependence on ε

∂mg(ε, ~x) = εAm(~x)g(ε, ~x) (2.30)

Now the integrability conditions are

∂nAm − ∂mAn = 0, [An, Am] = 0 (2.31)
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The system can be expressed in a complete differential form in the following way

dg(ε, ~x) = εdA(~x)g(ε, ~x) (2.32)

where dA is the differential form

dA =
M∑
m=1

Am(~x)dxm (2.33)

and it is exact because of the relation 2.31. Furthermore, having factorized the

dependence on ε, we can perform the integration recursively order by order. If

we rescale each gi by an appropriate ε factor, we can always write:

g(ε, ~x) = g(0)(~x) + εg(1)(~x) + ε2g(2)(~x) + . . . (2.34)

The system 2.32 can be rewritten in terms of the g(n) in the following form:

dg(0)(~x) = 0

dg(1)(~x) = dA(~x)g(0)(~x)

dg(2)(~x) = dA(~x)g(1)(~x)

...

(2.35)

All the g
(0)
i will be constants (to be fixed); then known g(n−1) we can integrate and

find g(n). The general solution of the canonical system of differential equations

can be given in terms of Chen’s iterated integrals [40]

g(ε, ~x) =

(
1 +

∫
γ

dA+

∫
γ

dAdA+ . . .

)
g(ε, ~x0) (2.36)

where g(ε, ~x0) is a vector of arbitrary constants and γ is a path, going from ~x0

to ~x, in the domain of A. The solution is then completely iterative and from a

formal point of view completely determined. In particular, we will see that the

symbolic integration of the system is easily performed in terms of Goncharov

polylogarithms GPL [7] if the system is in a d-log canonical form which occurs,
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by definition, if the differential form dA can be written as

dA(~x) =
K∑
i=1

Ãid log(Li(~x)) (2.37)

where Ãi are N ×N constant matrices and Li(~x) are K rational functions of the

invariants ~x. We commonly call this set of functions the alphabet of the system

and Li(~x) the letters.

2.4.3 Goncharov polylogarithms

From a practical point of view, we want our solution to be possibly expressed in

terms of functions that easily can be numerically evaluated. For the Goncharov

polylogarithms there exists a library in the GiNac framework [8], so they are

a very good candidate for our purpose. A GPL is defined in terns of iterated

integrals in the following way:

G(z1, . . . , zk;x) =

∫ x

0

dt
1

t− z1

G(z2, . . . , zk; t) (2.38)

for (z1, . . . , zk) 6= ~0k. The variables zi are called indices while x is the argument

of the GPL. The number of iterated integration defines the weight of the GPL.

The empty index is defined as

G(;x) = 1 (2.39)

Instead when all the k indices are zero we have:

G(0, . . . , 0;x) =
1

k!
logk(x) (2.40)

It can be easily checked that a GPL, G(z1, . . . , zk;x), is divergent whenever z1 =

x. Similarly G(z1, . . . , zk;x) is analytic at x = 0 if zk 6= 0. If the rightmost index

is zk 6= 0 then the GPL satisfies a scaling propriety for each w ∈ C

G(z1, . . . , zk;x) = G(wz1, . . . , wzk;wx) (2.41)
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One of the most useful proprieties of GPL is that we can write the product of

two GPLs with equal integration limit as a linear combination of GPL.

If we consider two GPL of weight one we have:

G(a;x)G(b;x) =

∫ x

0

dt1
t1 − a

∫ x

0

dt2
t2 − b

=

∫∫
S

dt1dt2
(t1 − a)(t2 − b)

(2.42)

where in the last step S is the square of corners (0, 0),(0, x),(x, 0) and (x, x). If

then we split the integration over the square in two integration one over above

the diagonal the other below , we have:

G(a;x)G(b;x)

=

∫∫
0≤t2≤t1≤x

dt1dt2
(t1 − a)(t2 − b)

+

∫∫
0≤t1≤t2≤x

dt1dt2
(t1 − a)(t2 − b)

=

∫ x

0

dt1
t1 − a

∫ t1

0

dt2
t2 − b

+

∫ x

0

dt2
t2 − a

∫ t2

0

dt1
t1 − a

= G(a, b;x) +G(b, a;x)

(2.43)

We can extend the same argument for GPL of higher weights, we end up with a

propriety common to all nested integrals. The product of two GPL of weight k1

and k2 with equal integration limit can be written as linear combination of GPLs

of weight k1 + k2, their indices are obtained as shuffle product of the starting

indices

G(~m, x)G(~n;x) =
∑

~s=~mtt~n

G(~s;x) (2.44)

where ~mtt~n denotes the shuffle product of m and n. It is defined as all possible

combinations that can be obtained from the indices m and n that separately

preserve the order of the two sets. To clarify we can imagine to shuffle together

two decks of cards. The result will preserve the starting order of each deck.

2.4.4 Integrating in terms of polylogarithms

We present here how to integrate in terms of polylogarithms with an instructive

example. Consider the one-loop-bubble and the differential equation 2.24. We

remark that in this case we have a single independent invariant p2 or s and two
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master integrals I11 ans I10. I10 being completely independent on s has derivative

∂sI10 = 0. So we can’t extract any further information on the integral from the

differential equation and we need to compute it analytically. Luckily it is very

easy and using measure

d̃dk = −
(
m2

µ2

)ε
ddk

Γ(1 + ε)iπd
(2.45)

it is given by

f̃1 = I10 = m2 Γ(−1 + ε)

Γ(1 + ε)
(2.46)

We can completely eliminate the dependence on m as seen above, then we choose

the following scaling factors to remove the ε poles.

f1 = f̃1ε(−2− 2ε)

f2 = f̃2ε(−1− 2ε)
(2.47)

The system of two equation is then

∂sf1 = 0

∂sf2 =
−1 + 2ε

(−4 + s)s
f1 +

2− εs
(−4 + s)s

f2

(2.48)

we recognize the matrix A(ε, s)

A(ε, s) =

 0 0

−1+2ε
(−4+s)s

2−εs
(−4+s)s

 (2.49)

Using the invariant s, the equations in canonical form will present squareroots.

These can be eliminated with the substitution

s→ −(1− x)2

x
(2.50)
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and w.r.t. x the derivatives are

∂xf1 = 0

∂xf2 =
(1− 2ε)f1

(x2 − 1)s
+

(
−2

x2 − 1
+
ε(1− x)

x+ x2

)
f2

(2.51)

The canonical form is achieved thanks to equation 2.29 where the matrix B is

B =

 1 0

1
1−x

1+x
1−x

 (2.52)

Next we will see how to compute the matrix B, the main purpose of this example

is to show how to perform the integration in terms of GPL. The basic ideas will

apply with slight generalization to more complex problems.

Performing the transformation, the system is in canonical form and the matrix

A(x) will be

Ax(x) =

 0 0

1
x
− 1

1+x
1
x
− 2

1+x

 (2.53)

We can put everything in full differential form as 2.32

d

 g1

g2

 =

ε

 0 0

1 1

 g1

g2

 d log(x) + ε

 0 0

−1 −2

 g1

g2

 d log(1 + x)

(2.54)

We notice that this is a d-log canonical form with alphabet (x, 1 + x). The

integration can now be made in terms of GPL. We work in the unphysical region

0 < x < 1 or s < 0 where the GPL are real. The solution can be then analytically

continued with the substitution s→ s+ iε.

Expanding g in ε we get, as previously seen dg(0) = 0. These constants need

to be determined. We already know g1 from the direct integration of f1 and the

equation g = B−1f :

g1 = 2 (2.55)
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We have then g
(0)
1 = 2. The other constant g

(0)
2 could be determined if we knew

g2 in a particular x limit. We can exploit the fact that both f1 and f2 are finite in

the limit x→ 1 or s→ 0. In fact f1 is it self a constant, while f2 is the massive

1 loop bubble, so performing an s cut, we immediately understand that it has a

brunch cut at s → 4m2 so it is finite at s → 0. With this information in mind

and the equation g = Bf , we write g2 in terms of fi

g2 = − 1

1 + x
f1 −

−1 + x

1 + x
f2 (2.56)

Both f1 and f2 are finite at x→ 1 so, evaluating 2.56 in this limit, we get

g2|x=1 = − f1

2

∣∣∣∣
x=1

(2.57)

Equation 2.57 is valid at each order in ε. So in particular we have g
(0)
2 = −1.

We can now write equation 2.54 at the first order in ε

d

 g
(1)
1

g
(1)
2

 =

 0 0

1 1

 2

−1

 d log(x) + ε

 0 0

−1 −2

 2

−1

 d log(1 + x)

(2.58)

The integration in terms of GPL is performed according to the their definition.

We simply get

g
(1)
1 = C1

g
(2)
2 = C2 +G(0;x)

(2.59)

Again C1 can be determined from equation 2.55 and C2 from equation 2.57. We

get

C1 = 0 C2 = 0 (2.60)

With the same technique we can evaluate next orders and thanks to equation

f = Bg we can go back to physical integrals. Up to the second order in ε we get
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f2 = − 1

(x− 1)(2ε− 1)(
(x+ 1)

(
ε2
(

1

3
π2G(−1; , x)− 1

6
π2G(0; , x) +

4G(−1,−1, 0; , x)− 2G(−1, 0, 0; , x)− 2G(0,−1, 0; , x) +G(0, 0, 0; , x)− 2ζ(3)

)
+ ε

(
−2G(−1, 0; , x) +G(0, 0; , x)− π2

6

)
+G(0; , x)− 1

)
+

2

ε

)
(2.61)

2.4.5 Find a canonical form

If we are able to find a canonical form, chances are we can find a solution to

our problem. There might still be difficulties in determining the boundaries, but

at least the symbolic integration is easily performed. At the actual state of art,

nothing guarantees that we can always find a canonical form. Several algorithms

exist and all request a precise previous manipulation of the basis to be applied.

There are different implementation of these algorithms, for instance Fuchsia [41]

based on Roman Lee algorithm [35] or Canonica [42] by C.Meyer. In this work

we applied a method based on the Magnus series, proposed by Argeri et al [14]

[43].

This method relies on a basis of master integrals obeying a liner system of

differential equation in ε parameter. Following [14], suppose we have a system

∂xf(ε, x) = A(ε, x)f(ε, x) (2.62)

where f is the vector of MI, x a variable depending on kinematic invariants and

A is a matrix linear in ε

A(ε, x) = A0(x) + εA1(x) (2.63)

The basic idea is to remove the dependence on A0 by a ”rotation” of the basis

of MI, the way we eliminate the dependence on the known kernel in quantum

mechanics with the interaction picture. Let’s start considering the Schrödinegr
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equation with an Hamiltonian H(t) = H0(t) + εH1(t) linear in ε

ih̄∂t |Ψ(t)〉 = H(t) |Ψ(t)〉 (2.64)

we can make disappear the solvable kernel H0 from the equation with the inter-

action picture. Defining the operator U so that |Ψ(t)〉 = U |Ψ(t)〉I , if U obeys

the following equation

ih̄∂tU = H0(t)U (2.65)

than in the basis |Ψ(t)〉 the Schrödinegr equation becomes

ih̄∂t |Ψ(t)〉I = εH1I(t) |Ψ(t)〉I (2.66)

where H1I = U †H1U is the operator in the interaction picture. Following the

same concept, we can change variable in equation 2.62, according to f = Bg,

where B satisfies

∂xB = A0(x)B (2.67)

and we end up with the following equation

∂xg(ε, x) = εÃ1(x)g(ε, x) (2.68)

where Ã1(x) = B−1A1(x)B. So if we are able to provide a solution for equation

2.67 and compute the matrix B we can put our system in canonical form.

The solution of equation 2.67 can be given as Magnus Series expansion accord-

ing to the Magnus theorem [44]. Given a linear system of differential equation

[45]

∂xY (x) = A(x)Y (x), Y (x0) = Y0 (2.69)

in the general case of A(x) not commuting with its integral
∫ x
x0
dτA(τ) we can

use the Magnus Theorem to give a solution to equation 2.69

Y (x) = eΩ(x,x0)Y (x0) ≡ eΩ(x)Y0 (2.70)
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where Ω(x) is a series called Magnus Expansion

Ω(x) =
∞∑
n=1

Ωn(x) (2.71)

The first terms of the Magnus Expansion are listed below

Ω1(x) =

∫ x

x0

dτ1A(τ1)

Ω2(x) =
1

2

∫ x

x0

dτ1

∫ x

x0

dτ2 [A(τ1), A(τ2)]

Ω3(x) =
1

6

∫ x

x0

dτ1

∫ x

x0

dτ2

∫ x

x0

dτ3 [A(τ1), [A(τ2), A(τ3)]] + [A(τ3), [A(τ2), A(τ1)]]

(2.72)

We notice that if the integrals commutes, then only the first term is not 0. Of

course in general that’s not the case, but we can equivalently give a solution to

equation 2.69 in terms of Dyson series. In reference [45] is given a proof of the

equivalence between Magnus and Dyson expansion.

Y (x) = Y0 +
∞∑
n=1

Yn(x), Yn(x) ≡
∫ x

x0

dτ1 · · ·
∫ τn−1

x0

dτnA(τ1) · · ·A(τn)Y0 (2.73)

The Dyson series then terminates whenever the repeated product of matrix A

by itself is null. We can exploit the proprieties of the two representations of the

solution to try and compute matrix B of equation 2.67.

First of all we split matrix A0(x) in diagonal and off-diagonal part

A0(x) = D0(x) +N0(x) (2.74)

Using the fact that diagonal matrices commutes, we can at first perform a trans-

formation that eliminates D0 from equation 2.62. In fact in the basis g1, so that

f = B1g1, equation 2.62 assumes the form (see 2.29)

∂xg1(ε, x) = B−1
1 (N0(x) + εA1(x)B1 − ∂xB) g1(ε, x) (2.75)
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If B1 satisfies

∂xB1 = D0(x)B1 (2.76)

then

∂xg1(ε, x) = (N0,1(x) + εA1,1(x)) g1(ε, x) (2.77)

where N0,1 = B−1
1 N0B and A1,1 = B−1

1 A1B. Because D0 is diagonal, using the

Magnus Expansion 2.72, B1 will be given by

B1 = e
∫ x
x0
dτD0(τ)

(2.78)

where only the first term of the expansion appears and the computation is ex-

tremely simplified. To remove N0 from equation 2.75 we can make use of the

Dyson representation. In fact matrix N0 is usually a sparse matrix in x, so it is

very likely that its Dyson series will be finite. In the basis g2, with g1 = B2g2

and matrix B2 computed as

B2 = N0,1(x0) +
∞∑
n=1

∫ x

x0

dτ1 · · ·
∫ τn−1

x0

dτnN0,1(τ1) · · ·N0,1(τn) (2.79)

equation 2.75 will be in canonical form

∂xg2(ε, x) = εÃ(x)g2(ε, x) (2.80)

where Ã(x) = B−1A(x)B and matrix B is given by

B = B1B2 = eΩ([D0])eΩ([N0,1]) (2.81)

The Magnus Series expansion is a very effective method whenever we are able

to manipulate our base of MI and end up with a linear system of differential

equation in ε. We remark that, despite the example given for one variable, the

method is valid also for multivariate problems without any limitation.

For instance, if we have two variables x and y, all we have to do is first compute

matrix B1 and B2 that eliminate Ax0 from Ax = Ax0 + εAx1. The x derivative
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is now in canonical form. We transform Ay according to 2.29 where B = B1B2

and then repeat the process to compute B3 and B4 on the transformed Ay to

eliminate Ay0. In formulae: suppose we have two variables x and y and a system

∂xf(x, y, ε) = Ax(x, y, ε)f(x, y, ε)

∂yf(x, y, ε) = Ay(x, y, ε)f(x, y, ε)
(2.82)

where both Ax and Ay are linear in ε, Ai = A0i + εAi0. We can at first work on

Ax and compute matrices B1 and B2 to eliminate A0x. Defining B̃ = B1B2 the

system will be in the form

∂xg2(x, y, ε) = εÃx(x, y)g2(x, y, ε)

∂yg2(x, y, ε) = Ãy(x, y, ε)g2(x, y, ε)
(2.83)

with Ãx(x, y) = B̃−1Ax(x, y)B̃, Ãy(x, y, ε) = B̃−1Ay(x, y, ε)B̃−∂yB̃ and f = B̃g2.

Then we compute B3 and B4 to eliminate Ãy0 from Ãy = Ãy0+εÃy1. If B̂ = B3B4,

the system, in the base g4, will be in canonical form

∂xg4(x, y, ε) = εÂx(x, y)g4(x, y, ε)

∂yg4(x, y, ε) = εÂy(x, y)g4(x, y, ε)
(2.84)

with Âx(x, y) = B̂−1ÃxB̂ − ∂xB̂, Ây(x, y) = B̂−1Ãy1B̂. The canonical base g4 is

then defined by the transformation B = B1B2B3B4 with f = Bg4.

2.4.6 Uniform Trascendentality and Boundary Conditions

Now that the symbolic integration is performed, we are left with the problem of

determining the Boundary Conditions (BCs); we will show, in this section, how

the properties of integrals in the canonical form can be helpful at this purpose.

Suppose we can express the solution in terms of nested integrals (e.g. GPLs),

we may have powerful tools to numerically evaluate them, but, to determinate

analytically the constant of integration, an analytical value of the nested integrals

has to be known in a point. The direct integration is quite demanding when
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dealing with higher and higher weights, but it is possible to proceed alternatively.

We recall that we call weight of a function the number of nested integrals of

its definition. Dealing with integrals in canonical form, we immediately get, as

solution, a Laurent expansion of them. If we assign to ε a weight W (ε) = −1 all

terms of the expansion will have weight 0. Because we still have the constant of

integration to fix, this is the only term that could break the uniformity.

A function f(ε, x) is ε uniform trascendental (UT) if all the terms of its

Laurent expansion in ε have equal weight (also total weight), provided that

W (ε) = −1. A function is pure UT if its total weight is 0.

To establish the total weight of a function we notice that the product of two

UT function f1f2 of weights w1 and w2 is an UT function of weight w1 +w2. The

sum and the invertion of UT function are still UT.

With this information in mind, we need to give the weight associated to the

typical trascendental constants we deal with when computing FIs.

• π. Because π is the trascendental constant that appears when dealing with

analytical continuation of logarithms, it is reasonable to assign

W (π) = 1 (2.85)

• ζ(n). The values of ζ(2n), where n ∈ N , are related to π with the following

ζ(2n) =
(−1)n+1(2π)2nB2n

2(2n)!
(2.86)

where B2n is 2n-th Bernoulli number. Because B2n is rational ∀n we can

associate a weight W (ζ(2n)) = 2n. This definition can be extended to the

n odd values and we have

W (ζ(n)) = n (2.87)

• Γ(1 + ε). Before we discuss the UT properties of the Γ function we need

to associate a weight to the Euler-Mascheroni constant γ. Recalling two
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possible definitions of γ, we have

γ = lim
n→∞

(
n∑
k=1

1

k
− log n

)

γ = −
∫ ∞

0

log(t)e−tdt

(2.88)

Because the harmonic series
∑

1/k is made of rational numbers, from the

first definition, it is reasonable to assign weight W (γ) = 1. The second

definition reads instead as follows

−γ =

∫ ∞
0

log(t)e−tdt =∫ y=1

y=0

y

1− y
log

y

1− y
e−

y
1−y d log

y

1− y

(2.89)

where the change of variable is performed in order to deal with a compact

domain of integration. So if we suppose to assign W (γ) = 1, there has to be

W
(

y
1−y log y

1−ye
− y

1−y

)
= 0 because of the presence of d log that has already

weight 1. So we finally have

W

(
y

1− y
e−

y
1−y

)
= −1 (2.90)

To prove UT of the Γ function, we need to analyze its expansion.

Γ(1 + ε) =

∫ ∞
0

tεe−tdt =

∞∑
n=0

εn

n!

∫ ∞
0

logn(t)e−tdt =

∞∑
n=0

εn

n!

∫ y=1

y=0

y

1− y
logn

y

1− y
e−

y
1−y d log

y

1− y

(2.91)

So with equation 2.90 it is clear that each term of the expansion has weight

0. Recalling that zΓ(z) = Γ(1 + z), also Γ(ε) is a UT function but with

weight one. In formula, provided the assignment W (γ) = 1, we have

W (Γ(1 + ε)) = 1, W (Γ(ε)) = 0 (2.92)
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Now that all the notable weights have been defined, a priori criteria do not

exist to in general determine if a graph is an UT function, except in some simple

cases [6]. If we deal with solutions of d-log canonical forms, non UT could arise

only because of the constant term, this in general isn’t very luckily to happen.

So how do we determine analytically the value of the BCs? We could make the

ansatz that we’re dealing with pure UT graphs, this lead us to make a guess on

the possible constants that could appear when evaluating, order by order, the

integrals. In fact, if the graph is a pure UT function and we are evaluating the

n-th order, the constant needs to have weight n. This limits the possible choice

to a linear combination of constants of weight n multiplied by rational factors; for

instance at 5-th order we might have k1π
5 +k2ζ(5)+k3ζ(2)π3 + . . . where ki ∈ Q.

This ansatz can be checked because we can evaluate with the desired precision

(e.g. using GiNaC [8]) all the GPLs and this allows us to give an analytical

solution to our integrals.



Chapter 3

Top Yukawa contribution

Now that all the techniques have been outlined, we can proceed with the com-

putation of the top Yukawa contribution to the decay of the Higgs boson into

bb. Because the NLO correction is about 30% of the LO one, we may expect

a significant contribution also from the NNLO corrections. In this chapter, we

first compute real and virtual contribution and then evaluate the impact of our

calculation on the distribution of some observables of interest.

3.1 Real contribution

In this section we compute the real contribution to the decay of Higgs boson into

a bb pair via top triangle. So we consider the process H(s)→ b(b)b̄(a)g(g). The

diagrams involved are showed in fig. 3.2a at leading order and in fig. 3.2b at

one-loop level. This contribution is both infrared and ultraviolet finite.

As in the first chapter we define momenta and momentum conservation as

follows:

g2 = 0, a2 = b2 = m2
b

p2 = (a+ b+ g)2 = s
(3.1)

49
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(a) Born digrams
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`
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a

(b) Triangle diagrams

Figure 3.1: Diagrams of the Real contribution.

The contribution of the two Born diagrams, M(i)
b , i = 1, 2, is given by

M(1)
b = −igybū(b, i)γν(τc)ij

i

/b + /g −mb

v(a, j)εν(g, c)

M(2)
b = −igybū(b, i)

i

−/a− /g −mb

γν(τc)ijv(a, j)εν(g, c)

(3.2)

where yb is the Yukawa coupling, i, j the color indices and τc the fundamental

representation of the color algebra.

The one loop-level diagrams,M(i)
n (figure 3.2b), have the following expressions

M(i)
n =− ig3ytε

µ2(g, d)(τd)ij(τc)kl(τd)lkū(b, i)γµ1v(a, j)

1

(a+ b)2

∫
dd`

(2π)d
N

(i)
µ1µ2

[(`+ a+ b+ g)2 −m2
t ][`

2 −m2
t ][(`+ g)2 −m2

t ]

(3.3)

where

N (1)
µ1µ2

= Tr
[
γµ1(/̀+ /a+ /b + /g +mt)(/̀+mt)γµ2(/̀+ /g +mt)

]
N (2)
µ1µ2

= Tr
[
γµ1(−/̀− /g +mt)γµ2(−/̀+mt)(−/̀− /a− /b − /g +mt)

] (3.4)
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The next to next leading order (NNLO) amplitude, g4
s order, is then

Ar = 2 Re
(
M(1)

n +M(2)
n

) (
M(1)

b +M(2)
b

)∗
(3.5)

The color factor is easily computed and we have:

(τd)ij(τc)kl(τd)lk(τc)ji =
CACF

2
(3.6)

where CA is the number of colors and CF the Casimir fundamental representation

of the SU(CA) algebra associated to the colors.

We are now dealing with a process 1 → 3 particles, so to reduce ourselves

to a minimum number of Master Integrals and express all the scalar products in

terms of denominators, we need of an auxiliary topology. So we add the forth

denominator to the three of equation 3.3.

D1 = (`+ a+ b+ g)2 −m2
t D2 = `2 −m2

t

D3 = (`+ g)2 −m2
t D4 = (`+ a)2 −m2

t

(3.7)

Then we can express all the scalar products in terms of denominators and kine-

matic invariants

` · ` = D2 +m2
t

` · g =
1

2
(D3 −D2)

` · b =
1

2

(
D1 −D3 −D4 +D2 −m2

b − 2a · b− 2a · g − 2b · g
)

` · a =
1

2

(
D4 −D2 −m2

b

)
;

(3.8)

With the help of software Reduze2 [37], we find 4 master integrals listed in

figure 3.2. We have 3 bubbles and 1 triangle integral. While fB(p) and fB(a+ b)

will have the same analytical expression, fB(g) will be different because it depends

on g2 = 0. The scalar integrals we found are all well known; in this case is then

not necessary to compute them via partial differential equation. We have then
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p p

fB(p)

a+ b a+ b

fB(a+ b)

g g

fB(g)

g

a+ b

fT (g, a+ b)

Figure 3.2: The Master Integrals: blue lines stand for denominators with mt. On the dashed lines, we have

instead the momenta.

[46, 47]:

fB(p) =
µ2ε

iπ2−εΓ(1 + ε)

∫
dd`

1

[(`+ p)2 −m2
t ][`

2 −m2
t ]

=

µ2ε

[
1

ε
+ 2− log

(
p2 − i0

)
+

2∑
i=1

λi log

(
λi − 1

λi

)
− log(λi − 1) + o(ε)

]

with λ1,2 =
p2 ±

√
(p2)2 − 4p2(m2

t − i0)

2p2

fB(g) = µ2ε

[
1

ε
− log

(
m2
t − i0

)
+ o(ε)

]
fT (g, a+ b) =

µ2ε

iπ2−εΓ(1 + ε)

∫
dd`

1

[(`+ p)2 −m2
t ][`

2 −m2
t ][(`+ g)2 −m2

t ]
=

1

2p((a+ b)2 − 1)

log2


√
−4i0+(a+b)2−4m2

t

(a+b)2
+ i√

−4i0+(a+b)2−4m2
t

(a+b)2
− i

− log2


√
−4i0−4m2

t+p

p
+ i√

−4i0−4m2
t+p

p
− i

+ o(ε)


(3.9)

We now have the expressions of the master integrals in terms of the Feynman

prescription. In the decay region, m2
b < p2 < m2

t , we have then

f1 = µ2ε

1

ε
− log

(
m2
t

p2

)
−

√
4m2

t

p2
− 1 tan−1


√

4m2
t

p2
− 1

2m2
t

p2
− 1

− log
(
p2
)

+ 2 + o(ε)
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f3 = µ2ε

[
1

ε
− log

(
m2
t

)
+ o(ε)

]

f4 =
µ2ε

2(p2 − (a+ b)2)

tan−1


√

4m
k
− 1

2m2
t

(a+b)2
− 1

2

− tan−1


√

4m2
t

p2
− 1

2m
p2
− 1

2

+ o(ε)


(3.10)

Performing now basic Dirac algebra and writing all the integrals in terms of the

MIs we obtain the finite expression for the amplitude Ar.

Ar =CACFybytg
4
s

(
−16mbmt

(
4m2

b − 2a · g − 2b · g
2a · g2b · g

− 4 (2m2
b + 2a · b)

(2a · g + 2b · g)2

)
(f1−f2)

− 16mbmt

(
4m2

b(2a · g + 2b · g)− (2a · g + 2b · g)2

2a · g2b · g (2m2
b + 2a · b)

− 4

2a · g + 2b · g

)(
1

2

(
4m2

t − 2a · g − 2b · g
)
f4 + 1

))
(3.11)

As expected from a power analysis of the amplitude, we observe the cancellation

of the ε pole. Performing the limit g → 0, the amplitude is finite, so no soft

divergences appear in this calculation. According to KLN theorem we should find

no soft divergences in the virtual contribution, calculated in the next section.

3.2 Two loops contribution

In this section we apply the methods presented in the previous chapter to the

computation of the two loop diagrams of the top Yukawa contribution to the

Higgs decay into bottom quarks, figure 3.3.

p

a

b
p

l

l+q

l-a-b

q

q+a+b

b

a

b+q

p

l-a-b

l

l+q

q

q+a+b

b

a

b+q

Figure 3.3: Here we represent the diagrams computed with the notation used for the momenta.
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Fixing the kinematics, we have H(p)→ b(b)b̄(a), and the following relations

s = p2 = (a+ b)2, a2 = b2 = m2
b (3.12)

The Born contribution is given by the simple expression

M0 = ybū(b)v(a) (3.13)

where yb is the Yukawa coupling Higgs to fermions and, for a generic fermion f , it

is given by [48] yf = −imf/v = −imfe/2MW sin(θw). The amplitude to calculate

is

A = 2 Re(M(1)
tb +M(2)

tb )M∗
0 (3.14)

where M(i)
tb , with i = 1, 2, are the contributions of the two two-loops diagrams:

M(i)
tb = g4yt(τa)ij(τb)jk(τa)nm(τb)mng

µ1µ2gµ3µ4×∫
dd`

(2π)d
ddq

(2π)d
N

(i)
µ2µ3

D1D2D3D4D5D6

ū(b, i)γµ1(/q + /b +mb)γµ4v(a, k)
(3.15)

We have for the two diagrams:

N (1)
µ2µ3

= −Tr
[
γµ2(/̀+mt)(/̀− /a− /b +mt)γµ3(/̀+ /q +mt)

]
N (2)
µ2µ3

= −Tr
[
γµ2(−/̀− /q +mt)γµ3(−/̀+ /a+ /b +mt)(−/̀+mt)

] (3.16)

The denominators Dj are defined as follows

D1 = `2 −mt2 D2 = (`+ q)2 −mt2

D3 = (`− a− b)2 −mt2 D4 = q2 −mt2

D5 = (b+ q)2 −mt2 D6 = (`− a)2 −mt2
(3.17)

As explained in section 2.1, to deal with only scalar integrals and express all

the scalar products in temrs of denominators, we need to enlarge the number

of denominators, relying on an auxiliary topology. So we complete the set of

denominators adding D7

D7 = (`− a)2 (3.18)
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All the scalar products appearing in the amplitude can be written in terms of the

7 denominators and kinematics invariants as:

` · ` = D1 +m2
t q · q = D4

` · q = 1
2
(D2 −D1 −D4) b · q = 1

2
(D6 −D4)

a · q = 1
2
(D5 −D6 − s) ` · a = 1

2
(D1 −D7 +m2

t +m2
b)

` · b = 1
2
(D7 −D3 −m2

t −m2
b)

(3.19)

The color factor is easily computed, we have:

∑
i,k

(τa)ij(τb)jk(τa)nm(τb)mn =
CACF

2
(3.20)

3.2.1 Getting the master integrals

Now that we have set up the calculation of the amplitude, a part from basic Dirac

algebra, we have to compute all the scalar integrals appearing after performing

the substitutions 3.19. Thanks to the software Reduze2 [37], we can reduce all

of them to combinations of master integrals. Given the auxiliary topology of

the seven denominators Di and the kinematic relations 3.12, after performing

the reduction and applying the Laporta’s algorithm, we get 20 MI, divided in 14

subsectors.

To compute them and apply the Magus expansion (sec. 2.4.5), we want to

choose a particular basis that satisfies a linear system of differential equations

in the ε parameter. By mistakes and trials it is possible to find such a basis for

our calculation. The master integrals are listed in fig 3.4. They satisfy a linear

system of p.d.e in the form:

∂sf = (As0(s,mb) + εAs1(s,mb)) f

∂mbf = (Amb0(s,mb) + εAmb1(s,mb)) f
(3.21)
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f1 f2 f3 f4

f5 f6 f7 f8

f9 f10 f11 f12

f13 f14 f15 f16

f17 f18 f19 f20

Figure 3.4: The chosen base of master integrals that gives a linear system of differential equation in the ε

parameter. In each graph a red line stands for a quark bottom propagator, a blue line for a quark top propagator

and a green line for a gluon propagator. A dot on a line stands for a square power of that propagator. The

dashed line is the Higgs external leg while the continue black lines are quark bottom external legs.
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3.2.2 Canonical Form

We have 3 kinematics invariants s, mb, mt with respect to we can compute the

differential equations. As previously seen in sec 2.4.1, we can eliminate the de-

pendence on a kinematic invariant because it can be reconstructed with a dimen-

sional analysis of the integrals. We choose to eliminate the dependence on mt

and compute the differential equations w.r.t s and mb.

With a view of getting a system in a d-log canonical form 2.37 that we rewrite

here for brevity

dA(~x) =
K∑
i=1

Ãid log(Li(~x)) (3.22)

we recall that the alphabet Li(~x) needs to be made of rational functions in the

kinematic invariants. By a direct computation, the invariants s and mb lead to

a system in which square roots appear. These can be eliminated by a clever

change of variable (as we have seen in the example in section 2.4.4). We define

the variables x and y so that

s = −m2
t

(1− x2)2

x2
, m2

b = m2
t

(1− x2)2y2

(1− y2)x2
(3.23)

and we will come up to a system with alphabet constituted by only rational

functions of x and y.

At this point we have a system of p.d.e. in the variables x and y, that can be

written in the following way

∂xf = (Ax0(x, y) + εAx1(x, y)) f

∂yf = (Ay0(x, y) + εAy1(x, y)) f
(3.24)

We can apply the Maguns method to put it in the canonical form. The step that

we need to perform are listed in section 2.4.5 in the 2 variables example. Since we

are dealing with two 20× 20 matrices, we do not report in detail all the steps of

the calculation, but what we can say is that the method succeeds and the Dyson

series terminates after the first two steps. The integrals we want now to compute

are defined in equation 3.25, where g = Bf and B is the transformation matrix
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of the Magnus algorithm.

g1 = ε2f1

g2 = ε2f2

g3 = −ε2f3 (x4 − 1)

x2

g4 = ε2
f4 (x2 − 1)

2

x2

g5 = −ε2 (x2 − 1) (f5 (x2 + 1) + f4)

x2

g6 = ε2
f6 (x2 − 1)

2

x2

g7 = ε2
f7 (x2 − 1)

2
y2

x2 (y2 − 1)2

g8 = ε2
(2f7 + f8) (x2 − 1) y

x (y2 − 1)

g9 = −ε2f9 (x4 − 1)

x2

g10 = −ε2f10 (x2 − 1)
3

(x2 + 1)

x4

g11 = ε2(1− 2ε)
(x2 − 1) ((y2 + 1) (f11 (x2 + 1) + 2f12)− 2f9 (x2 + 1))

x2 (y2 − 1)

g12 = −ε3f12 (x2 − 1)
2

(y2 + 1)

x2 (y2 − 1)

g13 = −ε3f13 (x2 − 1)
2

(y2 + 1)

x2 (y2 − 1)

g14 = ε2

(
f13 (x2 − 1)

2

x2 (y2 − 1)
+
f11 (x2 + 1) (x− y)(x+ y)

x2 (y2 − 1)
− f12 (x2 (y2 − 3) + y2 + 1)

x2 (y2 − 1)

−f3 (x2 − 1)

x2
+
f14 (x2 − 1)

2
(x− y)(x+ y)(xy − 1)(xy + 1)

x4 (y2 − 1)2

−f9 (x4 − 2x2 (y2 − 1)− 1)

x2 (y2 − 1)
− 2f7 − f8

)
g15 = −ε2f15 (x2 − 1)

2
(y2 + 1)

x2 (y2 − 1)

g16 = ε2(1− 2ε)
1

2 (x2 + 1) (y2 − 1)3

(
2f16 (x2 − 1)

3
y2 (y2 + 1)

x2

+
4f7 (x2 − 1)

2
y2(x− y)(x+ y)

x2
+

4f15 (x2 − 1)
2

(y2 − 1)
2

(y2 + 1)

x2
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+
2f5 (x2 + 1)

2
(x2 − 1) (y2 − 1)

2

x2

−f4 (x2 − 1) (y2 − 1)
2

(x4 − 2x2 (y2 + 2) + 2y2 − 1)

x2

−2f2

(
y2 − 1

)2
(x− y)(x+ y)

)
g17 = −ε3f17 (x2 − 1)

2
(y2 + 1)

x2 (y2 − 1)

g18 = ε3(1− 2ε)
f18 (x2 − 1)

2

x2

g19 = ε3(1− 2ε)
(x2 − 1)

2
(y2 + 1) (f19 (x2 − 1) + 2f17)

x2 (x2 + 1) (y2 − 1)

g20 = −ε4f20 (x2 − 1)
4

(y2 + 1)

x4 (y2 − 1)
(3.25)

Now that the we have applied the transformation of the MI, in the g basis the

system is in canonical form and can be written as

∂xg(ε, x, y) = εAx(x, y)g(ε, x, y)

∂yg(ε, x, y) = εAy(x, y)g(ε, x, y)
(3.26)

Moreover thanks to the change of variable, previously made, the system is more

specifically in a d-log canonical form.

dg(x, y) =
12∑
i=1

Aid log(Li(x, y)) (3.27)

where the constant matrices Ai can be read in the appendix B and the 12 letters

of the alphabet are listed below

L1 = 1− x L2 = x L3 = 1 + x L4 = 1 + x2

L5 = x− y L6 = 1− y L7 = y L8 = 1 + y

L9 = x+ y L10 = 1− xy L11 = 1 + xy L12 = 1 + y2

(3.28)

3.2.3 Integrate the system

Now that we obtained a system in a d-log canonical form, as we already shown

(sec. 2.4.4), the symbolic integration can be performed in terms of GPLs. What
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we have to do is to find a primitive of the differential form g(x, y) in equation

3.27. With this purpose in mind, it is more convenient to work the with matrices

Ax and Ay, so that the system is in the form

dg(x, y) = ε [Ax(x, y)dx+ Ay(x, y)dy] g(x, y) (3.29)

With g integrals already scaled, we can Laurent expand each of them in ε, so that

g = g(0) + εg(1) + ε2g(2) + . . . (3.30)

and solve the system recursively, order by order.

Because we have a two variables problem and at each step we deal with a

differential form of the kind

dg(n)(x, y) = [Ax(x, y)dx+ Ay(x, y)dy] g(n−1)(x, y) (3.31)

a primitive of dg(n) is given by:

g(n) =

∫
dyAyg

(n−1) +

∫
dx

[
Axg

(n−1) − ∂x
∫
dyAyg

(n−1)

]
+ C(n) (3.32)

We work in the Euclidean region in which all the GPLs have real and pos-

itive arguments. Imposing all the letters 3.28 to be greater than 0, we get the

boundaries of the Euclidean region:

0 < y < 1 ∧ y < x < 1 (3.33)

In terms of the kinematic invariants s and mb, the new variables can be written

as

x =

√
− s
m2
t
−
√

4− s
m2
t

√
− s
m2
t

+ 2

√
2

, y =

√
− s
m2
b
−
√
− s
m2
b

√
4− s

m2
b

+ 2

√
2

(3.34)
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so that the Euclidean region, corresponds to the kinematic configuration

s < 0 ∧ 0 < m2
b < m2

t (3.35)

Once the solution is obtained we need to analytically continue it. This can be

done restoring the Feynman prescription, that implies to perform the substitution

s→ s+ iε and m2
b → m2

b − iε. Assuming mb < mt, we can then distinguish three

regions :

• Unpyhsical region 0 < s < 4m2
b . Both x and y are phases

x = ei
1
2
φt , y = ei

1
2
φb (3.36)

where

φi = arctan

√
s
√

4m2
i − s

2m2
i − s

, with s < 2m2
i

φi = arctan

√
s
√

4m2
i − s

2m2
i − s

+ π, with s > 2m2
i

(3.37)

The conditional definition of φi is needed if we use that the arctan has

values in [−π/2, π/2].

• Decay region 4m2
b < s < 4m2

t

x = ei
1
2
φt , y =

i√
2

√
s

m2
b

−
√

s

m2
b

√
s

m2
b

− 4− 2 (3.38)

• High energy region s > 4m2
t

x =
i√
2

√
s

m2
t

−
√

s

m2
t

− 4

√
s

m2
t

− 2

y =
i√
2

√
s

m2
b

−
√

s

m2
b

√
s

m2
b

− 4− 2

(3.39)

The computation is made in the Mathematica framework [49]. Referring to

equation 3.32, to find a primitive of our differential form we need to deal with
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both integrals and derivatives of GPLs. While the integrals are easily performed

simply applying their definition, the derivatives would require some work to be

bring back to GPLs if performed directly on their definition. These difficulties

can be overcome with the coproduct formalism [12] that allows an elegant way to

software implement GPLs derivatives.

3.2.4 Coalgebras and Coproducts

In this section we give the necessary definitions and equations useful to compute

the derivatives, we follow mainly [50, 12].

We recall that an algebra over a field K is a K-vector space A together with

a map m (multiplication)

m : A×A → A

(a, b)→ (a, b) ≡ a · b
(3.40)

associative and with unit ε

(a · b) · c = a · (b · c)

ε · a = a · ε = a
(3.41)

Moreover the multiplication is distributive and associative w.r.t. scalars

a · (b+ c) = a · b+ a · c and (a+ b) · c = a · c+ b · c

a · (kb) = k(a · b) and k(`a) = (k`) · a
(3.42)

where k, ` ∈ K.

We can identify the multiple polylogarithms as an algebra where the multipli-

cation is given by the shuffle product and scalars are (rational) numbers. More

specifically we can talk of graded algebra. In fact, the shuffle product preserves

the weight (the product of two GPLs of weights w1 and w2 is a linear combination

af GPLs of weight w1 +w2). A graded algebra is, indeed, the direct sum of vector
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spaces of grade (or weight) n

A =
∞⊕
n=0

An (3.43)

where the multiplication preserves the grading. Because m is a bilinear map, it is

well known that there exists a unique map µ : A⊗A → A, acting on the tensor

product A⊗A, such that

a · b = m(a, b) = µ(a⊗ b) (3.44)

A coalgebra is, formally speaking, defined as the dual of an algebra. If A is

an algebra with multiplication µ : A⊗A → A, its dual C = A∗ is equipped with

the linear map ∆

∆ = µ† : C → C ⊗ C (3.45)

The linear map ∆ is called comultiplication. The comultiplication is then an op-

eration that allows us to split an object into the sum of more. The coassociativity

expressed as

(id⊗∆)∆ = (∆⊗ id)∆ (3.46)

ensures that the way we perform the decomposition into 3 or more elements is

unique. In fact if ∆(a) =
∑

i a
(1)
i ⊗a

(2)
i , we can further decompose into 3 elements

both acting with id⊗∆ and ∆⊗ id. The coassociativity ensures that the results

need to match.

A bialgebra is an algebra that is at the same time a coalgebra, i.e., a vector

space equipped both with a multiplication µ and a comultiplication ∆. In this

case they don’t need to be one the induced dual operation of the other. We

require the two operations to be compatible in the sense that

∆(a · b) = ∆(a) ·∆(b) (3.47)

where the multiplication on the r.h.s is intended taken separately on each factor

of the tensor product. Moreover an Hopf algebra H is a bialgebra equipped with

another structure, the antipode S : H → H, that we do not furtherly discuss.
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As showed by Goncharov [51], the following definition of coproduct makes the

GPLs an Hopf algebra. The definition is more transparent if we refer to a slightly

generalization of GPLs in a different notation

I(a0; a1, . . . , an; an+1) =

∫ an+1

a0

dt

t− an
I(a0; a1, . . . , an−1; t) (3.48)

Note that a G can easily be expressed as I with the following

G(an, . . . , a1; an+1) = I(0; a1, . . . , an; an+1) (3.49)

where, by definition, the intermediate ai are in reverse order.

On the new notation the coproduct of GPLs is defined, in the case in witch

all the arguments are mutually different, as

∆(I(a0; a1, . . . , an; an+1)) = ∑
0=i1<i2<···<ik<ik+1=n

I(a0; ai1 , . . . , aik ; an+1)

⊗

[
k∏
p=0

I(aip ; aip+1, . . . , aip+1−1; aip+1)

] (3.50)

In [12] all the formal aspects of divergent and general GPLs are discussed.

Example. I(a0; a1, a2; a3). By a direct application of equation 3.50 we can

write

∆(I(a0; a1, a2; a3)) =
1⊗ I(a0; a1, a2; a3) + I(a0; a1, a2; a3)⊗ 1 +
I(a0; a1; a3)⊗ I(a1; a2; a3) + I(a0; a2; a3)⊗ I(a0; a1; a2)

(3.51)

As shown in [50], an analogous result in the Symbol formalism, allows us to

conjecture that

∆

(
∂

∂xk
Iw

)
=

(
id⊗ ∂

∂xk

)
∆(Iw) (3.52)

where Iw is a function of weight w. In other words the differential operator acts

only on right element of the coproduct. This relation is very useful to compute

derivatives of GPLs w.r.t. a generic argument. In fact, noticing that the vector
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space of different weights are in direct sum, the following has to hold

∂

∂xk
Iw = µ

(
id⊗ ∂

∂xk
∆n−1,1(Iw)

)
(3.53)

where µ is the multiplication and ∆n−i,i denotes the elements of the coproduct

split into weights n− i, i.

Example. Assume we want to compute the derivative w.r.t. y ofG(1, 1+y; z).

Using equation 3.53 and the computed coproduct 3.51, we have

∂

∂y
G(1, 1 + y; z) = µ

(
id⊗ ∂

∂y

)
∆1,1(G(1, 1 + y; z))

= G(1; z)
∂

∂y
G(1 + y; 1)−G(1 + y; z)

∂

∂y
G(1; 1 + y)

+G(1 + y; z)
∂

∂y
G(1; z)

(3.54)

where we applied that

I(a0; a1; a2) = G(a1; a3)−G(a1; a0) (3.55)

The derivatives now act on simply logarithms so we finally obtain

∂

∂y
G(1, 1 + y; z) =

1

y(1 + y)
G(1; z)− 1

y
G(1 + y; z) (3.56)

The fact that, thanks to equation 3.53, the derivative acts always on weight one

function or simply logarithms has simplified enormously the problem of comput-

ing the derivatives w.r.t. a general argument. Moreover the result is already

expressed in terms of GPLs, requiring no further transformation to be applied.

3.2.5 Fix the Boundary Conditions

Now that a primitive can be found, we need to determine the boundary conditions

of all the gi MI.

The two double tadpoles g1 and g2 can be directly integrated, using the con-
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venient mesure normalization

d̃d` =

(
m2
t

µ2

)ε
dd`

iπd/2Γ(1 + ε)
(3.57)

their expression is given by

g1 = 1, g2 =

(
(1− x2)

2
y2

x2 (1− y2)2

)−ε
(3.58)

We can exploit the regularity of those fi integrals that do not present a branch

cut for s → 0 or x → 1. By performing an s cut on the diagrams in fig. 3.4

these are f3, f4, f5, f7, f8, f9, f11, f12, f13, f14, f15, f16. Evaluating equations 3.25 in

x→ 1 limit, we get the boundaries

[g3 = g4 = g5 = g7 = g8 = g9 = g11 = g12 = g13 = g14 = g15]x=1 = 0

[g16]x=1 = − [f2]x=1

2

(3.59)

The integral f6 needs to be directly computed and, from it, we get the expres-

sion of g6

g6 =

(
(1− x2)

2

x2

)−ε(
1− π2ε2

6
− 2ζ(3)ε3 − 1

40
π4ε4 + . . .

)
(3.60)

The integrals f17, f19, f20 are regular when s → 4m2
b or y → i, from equation

3.25 we get

[g17 = g19 = g20]y=i = 0 (3.61)

The boundary condition for g10 ∝ f10 = can be fixed at

x → 1 if we previously subtract its divergent part in the limit s → 0 given by

the subsector . We can use the expression of the subsector previously
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computed for f6

=

∫
d̃dq

1

q2[(q + p)2]2
= (−s)−1−ε

∫ 1

0

dy
y

y(1− y)1+ε

= (−s)−1−ε
(

1

ε
− π2ε

6
− 2ζ(3)ε2 − 1

40
π3ε4 + . . .

) (3.62)

Moreover the second subsector is easily computed in the limit s→ 0

=

∫
d̃d`

1

(`2 −m2
t )[(`− s)2 −m2

t ]
2

= (m2
t )
ε

∫ 1

0

dy
y

[m2
t − sy(1− y)]1+ε

if s→ 0 =
1

2

1

m2
t

(3.63)

Now that we know the analytically value of the finite ratio f10
f6

when s→ 0, using

3.25, we can write
g10

g6

∣∣∣∣
x=1

= 0 (3.64)

This equation allows us to compute the constant of integration of g10 provided

that g6 is known, as it is.

The last integral that needs fixed boundary conditions is g18 ∝ f18 = .

We can try and use the more easily integrated diagram , that, if

known, allows us to match the twos in the limit m2
t → 0 or x → 0. To compute

the massless five denominators topology , we can, at first, reduce to

a set of MIs and then try to compute them directly. With the help of the software
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Reduze2 [37] we identify two MIs:

=

1

s2ε2

(
2
(
9ε2 − 9ε+ 2

)
+

s(1− 2ε)ε

)
(3.65)

Luckily the two MIs can be directly integrated with no difficulties and their

expressions are given by:

=
s(−s)−2εΓ(1− ε)3Γ(2ε− 1)

Γ(3− 3ε)Γ(ε+ 1)2

=
(−s)−2εΓ(1− ε)4Γ(ε)2

Γ(2− 2ε)2Γ(ε+ 1)2

(3.66)

With equation 3.65 we know the expression of the massless 5 denominators topol-

ogy and with equation 3.25 we can go back to g18. We finally obtain

g18|x=0 = (−s)−2ε

(
−6ζ(3)ε3 − π4

10
ε4 + . . .

)
(3.67)

3.2.6 Results

To perform the ε→ 0 limit in the amplitude, we need to compute the g integrals

up to the fourth order. Restoring the common normalization ddk/(2π)d we get

the following result for the amplitude:

Av =
α2
s

π2
mbmtCACFybytG(x, y) (3.68)

where the function G(x, y) of 256 GPLs is written in the appendix C.1. As

expected from the real calculation, we observe the cancellation of the ε pole and

the whole formula requires less then one second to be evaluated with GiNaC up

to 30 digits.
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3.3 Inclusive Decay

Once we obtained the analytical values of the real and virtual amplitudes Ar and

Av, the correction to the inclusive decay rate will be given by:

∆Γyt =

∫
dΦ2Av(Φ2) +

∫
dΦ3Ar(Φ3) (3.69)

The 2 particle kinematic is trivial so we only need to multiply Av by the 2

particle phase space volume 1.25, instead the integration over Φ3 can be performed

numerically with a Monte Carlo integration up to the desired precision. We now

compare our exact result with the approximated formula computed by Chetyrkin

and Kwiatkowski [10] that is valid for the case mb � mH � mt:

∆ΓCK =
1

8π
CAy

2
bmH

(
8

3
− π2

9
− 2

3
log

(
m2
H

m2
t

)
+

1

9
log

(
m2
b

m2
H

)2

+
m2
H

m2
t

(
7

1080
log

(
m2
b

m2
H

)2

− 41

1620
log

(
m2
H

m2
t

)
− 7

1080
π2 +

1381

24300

)

+
m2
b

m2
H

(
−4

9
log

(
m2
b

m2
H

)2

+
16

9
log

(
m2
b

m2
H

)
+ 4 log

(
m2
H

m2
t

)
+

4

9
π2 − 10

)

+
m2
b

m2
t

(
− 7

270
log

(
m2
b

m2
H

)2

+
1

135
log

(
m2
b

m2
H

)
− 7

270
log

(
m2
H

m2
t

)
+

7

270
π2 +

713

2700

))
(3.70)

In table 3.1 we show the discrepancy d between our result and the formula in

[10], where d is defined as

d =

(
1− ∆ΓCK

∆Γyt

)
100 (3.71)

Because their expression is obtained in the limit mb � mH � mt, we focus the

comparison to the Decay region 4m2
b < m2

H < 4m2
t , fixing mb = 5 GeV. We

note that, for values of the masses in the range of validity of the approximated

formula, the agreement is very good and excellent for the physical mass values.

Such a level of agreement was not predictable a priori also becasuse in [10] the
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authors do not provide an estimate for the order of magnitude of the neglected

terms in their expansion.

mt

mH 20 75 125 180

100 2.123 0.075 1.025 6.704
125 2.329 0.011 0.335 2.107
175 2.452 -0.019 0.018 0.355
250 2.566 -0.024 -0.055 -0.035
350 2.656 -0.023 -0.069 -0.113

Table 3.1: The discrepancy d between our result and the approximated formula in [10], we fix mb = 5 GeV.

3.4 Phenomenology

In this section, we include the top Yukawa contribution to the Higgs decay into a

bb pair, extending the analysis of the first chapter on the impact of the radiative

corrections. We start plotting Emax distribution for 2 jets events, figure 3.5.

Unlike the NLO calculation, to show the impact of the yt contribution, we choose

a fixed scale µ = mH and ycut = 0.1 for the JADE algorithm. In the lower panel

we include also the ratio plot of the distributions. The correction adds about

1.5% to the NLO result and is rather flat.

We observe a similar impact of the correction also on the distribution of the

absolute value of the rapidity of the jet with highest energy, figure 3.6.

In figure 3.7 we plot the transverse momentum PT of the d-jet of bottom

quarks. As expected we have a peak at PT = 0 where the 2 particles kinematic

dominates. The rest of the distribution is a pure real correction. The top Yukawa

contribution is about 1% where the distribution has its second peak and rises to

about 8% in the tail of the distribution.

Referring to the massless calculation [9], the inclusive decay rate at NNLO is

Γ
(massless)
NNLO = ΓLO

[
1 +

αs
π

17

3
+
(αs
π

)2

29.15

]
(3.72)

Comparing this equation with our result for ∆Γyt, we can estimate that our

contribution to the total decay rate is about 30% of the total NNLO, resulting in
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Figure 3.5: Emax distribution with top Yukawa corrections. The new contribution has an influence on the plot

of about 1.5%. The error bars from the Monte Carlo simulation are to small to be seen. The QCD scale is fixed

at µ = mH

a correction of about 1% with respect to the NLO correction.

Despite the fact that the top Yukawa contribution still remains quite relevant

among the NNLO corrections, as shown in the plots, it gives a flat correction

to the distributions with no remarkable impact on their shapes. The situation

can be different at hadron colliders where both the process of production and

decay of the Higgs boson receive radiative corrections and where different jet

clustering algorithms are used. Moreover the kinematical regimes considered at

CERN might emphasize specific contributions. In light of the relevance for the

physics study of the Higgs boson at LHC, these studies will be the subject of

further future investigations.
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Figure 3.6: Absolute value of y rapidity of the jet with highest energy. Plot at QCD scale µ = mH . In the panel

below the correction is about 2% of the NLO distribution.

Figure 3.7: Transverse momentum of the d-jet of bottom quarks. Plot at QCD scale µ = mH . In the panel

below the correction is about 1% of the NLO distribution, growing relatively fast in the high PT region.



Conclusions

In this thesis work we have first re-obtained the NLO calculation of the Higgs

boson decay into massive quarks and, using the subtraction method, we have built

a Monte Carlo program able to produce binned histograms for any jet observables.

We showed the relevance of the NLO correction, both on the inclusive decay rate

and the shape of the distributions. The former gets a correction of about 20%

while the latter are drastically modified.

We then focused on the NNLO contribution proportional to the top Yukawa

coupling, presenting an exact calculation based on the method of partial differ-

ential equations with the Magnus series expansion. This led us to a complete

analytical solution of the double virtual part of the computation written in terms

of 256 GPLs. The numerical evaluation of the two loop amplitude can be per-

formed, up to the desired precision, in a relatively short time (30 digits require

less than one second).

An exact computation of this contribution was missing in the literature. We

evaluated the discrepancy between our result and the approximated formula of

Chetyrkin and Kwiatkowski [10], finding a remarkably good agreement for the

physical values of the masses, mH = 125 GeV, mb = 5 GeV, mt = 175 GeV. Our

full result proves the validity of the approximated formula and establishes the

size of its error that was not predicted. Finally, we have also computed the effect

of the new contribution at the differential level, finding no specially privileged or

suppressed region in phase space w.r.t. the NLO computation.

Next step of the present research work is the application of our results to the

case of the Higgs boson production and decay at the hadron colliders. It is worth

stressing that the techniques applied here are of general applicability. Indeed,
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they can be used to address the computation of higher order amplitudes for

processes involving both internal and external masses that are needed to match

the precision of present and future experiments at the LHC. This will be the

subject of further studies.
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Appendix A

Inclusive integrals

We give here the analytical expressions, expanded in ε up to the zeroth order, of

the integrals Ii 1.37 necessary to perform the NLO calculation. Recalling that

r = 4m2
b/s and J = 4 (x2

1 − r) (x2
2 − r) − (2r − x2

1 + (−x1 − x2 + 2)2 − x2
2)

2
, we

have

I1 =
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dx1
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(A.1)
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Appendix B

Matrices of the Canonical Form

In this appendix we report the matrices of the canonical form obtained in 3.2.2,

for the alphabet

L1 = 1− x L2 = x L3 = 1 + x L4 = 1 + x2

L5 = x− y L6 = 1− y L7 = y L8 = 1 + y

L9 = x+ y L10 = 1− xy L11 = 1 + xy L12 = 1 + y2

We list below only the non 0 elements of the matrices.

(A1)2,2 = −2 (A1)4,4 = 2 (A1)5,4 = 2 (A1)5,5 = −2

(A1)6,6 = −2 (A1)7,7 = 2 (A1)8,8 = −2 (A1)9,9 = −2

(A1)10,10 = −2 (A1)11,11 = −2 (A1)11,12 = 4 (A1)12,12 = 2

(A1)13,12 = −2 (A1)13,13 = −2 (A1)14,3 = 1 (A1)14,12 = 3

(A1)14,14 = −2 (A1)15,15 = 2 (A1)16,4 = 2 (A1)16,7 = −4

(A1)16,15 = −4 (A1)16,16 = −2 (A1)17,17 = −2 (A1)18,4 = 2

(A1)18,18 = −2 (A1)19,19 = −2 (A1)20,20 = −2
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(A2)3,1 = 2 (A2)4,5 = 4 (A2)5,1 = −2 (A2)9,2 = 2

(A2)10,6 = 2 (A2)12,11 = 2 (A2)15,2 = 2 (A2)15,4 = 1

(A2)15,5 = 2 (A2)15,7 = −4 (A2)15,16 = −4 (A2)18,3 = 2

(A2)18,10 = −2 (A2)20,2 = −2 (A2)20,4 = −1 (A2)20,5 = −2

(A2)20,7 = 4 (A2)20,9 = 2 (A2)20,11 = 2 (A2)20,12 = −2

(A2)20,15 = 4 (A2)20,16 = 4 (A2)20,17 = −2 (A2)20,19 = −2

(A3)2,2 = −2 (A3)4,4 = 2 (A3)5,4 = 2 (A3)5,5 = −2

(A3)6,6 = −2 (A3)7,7 = 2 (A3)8,8 = −2 (A3)9,9 = −2

(A3)10,10 = −2 (A3)11,11 = −2 (A3)11,12 = 4 (A3)12,12 = 2

(A3)13,12 = −2 (A3)13,13 = −2 (A3)14,3 = 1 (A3)14,12 = 3

(A3)14,14 = −2 (A3)15,15 = 2 (A3)16,4 = 2 (A3)16,7 = −4

(A3)16,15 = −4 (A3)16,16 = −2 (A3)17,17 = −2 (A3)18,4 = 2

(A3)18,18 = −2 (A3)19,19 = −2 (A3)20,20 = −2

(A4)3,3 = −2 (A4)5,4 = 3 (A4)5,5 = −6 (A4)9,9 = −2

(A4)10,10 = −2 (A4)11,11 = −2 (A4)11,12 = 2 (A4)14,3 = −1

(A4)14,11 = −1 (A4)14,12 = 1 (A4)16,2 = 3 (A4)16,4 = 3

(A4)16,7 = −6 (A4)16,15 = −6 (A4)16,16 = −6 (A4)19,17 = −2

(A4)19,19 = −2
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(A5)7,1 = −1/2 (A5)7,2 = 1/2 (A5)7,7 = −3 (A5)7,8 = 1

(A5)8,1 = −1/2 (A5)8,2 = 1/2 (A5)8,7 = −3 (A5)8,8 = 1

(A5)11,1 = 1 (A5)11,2 = −1 (A5)11,7 = 6 (A5)11,8 = −4

(A5)11,14 = −2 (A5)12,3 = −1 (A5)12,9 = 1 (A5)12,12 = −1

(A5)12,13 = 1 (A5)13,3 = 1 (A5)13,9 = −1 (A5)13,12 = 1

(A5)13,13 = −1 (A5)14,1 = 1/2 (A5)14,2 = −1/2 (A5)14,7 = 3

(A5)14,8 = −3 (A5)14,14 = −2

(A6)2,2 = 2 (A6)7,1 = 1 (A6)7,2 = −1 (A6)7,7 = 4

(A6)9,9 = 2 (A6)11,9 = −2 (A6)11,13 = −2 (A6)12,13 = −2

(A6)13,13 = 4 (A6)14,9 = −1 (A6)14,13 = −3 (A6)16,1 = −1

(A6)16,2 = 2 (A6)16,7 = −4

(A7)12,7 = 8 (A7)13,7 = −4 (A7)13,11 = 2 (A7)13,14 = −4

(A7)15,4 = −1 (A7)15,7 = 4 (A7)17,2 = 2 (A7)17,6 = −2

(A7)19,2 = −2 (A7)19,6 = 2 (A7)19,9 = 2 (A7)19,10 = −2

(A7)20,3 = 2 (A7)20,4 = 1 (A7)20,11 = 2 (A7)20,13 = −2

(A7)20,14 = −4 (A7)20,18 = −2

(A8)12,7 = 8 (A8)13,7 = −4 (A8)13,11 = 2 (A8)13,14 = −4

(A8)15,4 = −1 (A8)15,7 = 4 (A8)17,2 = 2 (A8)17,6 = −2

(A8)19,2 = −2 (A8)19,6 = 2 (A8)19,9 = 2 (A8)19,10 = −2

(A8)20,3 = 2 (A8)20,4 = 1 (A8)20,11 = 2 (A8)20,13 = −2

(A8)20,14 = −4 (A8)20,18 = −2
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(A9)7,1 = −1/2 (A9)7,2 = 1/2 (A9)7,7 = −3 (A9)7,8 = −1

(A9)8,1 = 1/2 (A9)8,2 = −1/2 (A9)8,7 = 3 (A9)8,8 = 1

(A9)11,1 = 1 (A9)11,2 = −1 (A9)11,7 = 6 (A9)11,8 = 4

(A9)11,14 = −2 (A9)12,3 = −1 (A9)12,9 = 1 (A9)12,12 = −1

(A9)12,13 = 1 (A9)13,3 = 1 (A9)13,9 = −1 (A9)13,12 = 1

(A9)13,13 = −1 (A9)14,1 = 1/2 (A9)14,2 = −1/2 (A9)14,7 = 3

(A9)14,8 = 3 (A9)14,14 = −2

(A10)7,1 = −1/2 (A10)7,2 = 1/2 (A10)7,7 = −3 (A10)7,8 = −1

(A10)8,1 = 1/2 (A10)8,2 = −1/2 (A10)8,7 = 3 (A10)8,8 = 1

(A10)11,1 = −1 (A10)11,2 = 1 (A10)11,7 = −6 (A10)11,8 = −4

(A10)11,9 = −2 (A10)11,11 = −2 (A10)11,13 = 2 (A10)11,14 = 2

(A10)12,3 = 1 (A10)12,9 = −1 (A10)12,12 = −1 (A10)12,13 = 1

(A10)13,3 = −1 (A10)13,9 = 1 (A10)13,12 = 1 (A10)13,13 = −1

(A10)14,1 = −1/2 (A10)14,2 = 1/2 (A10)14,3 = 1 (A10)14,7 = −3

(A10)14,8 = −1 (A10)14,9 = −1 (A10)14,12 = −1 (A10)14,13 = 1

(A10)16,1 = 1 (A10)16,2 = −1 (A10)16,7 = 6 (A10)16,8 = 2

(A11)7,1 = −1/2 (A11)7,2 = 1/2 (A11)7,7 = −3 (A11)7,8 = 1

(A11)8,1 = −1/2 (A11)8,2 = 1/2 (A11)8,7 = −3 (A11)8,8 = 1

(A11)11,1 = −1 (A11)11,2 = 1 (A11)11,7 = −6 (A11)11,8 = 4

(A11)11,9 = −2 (A11)11,11 = −2 (A11)11,13 = 2 (A11)11,14 = 2

(A11)12,3 = 1 (A11)12,9 = −1 (A11)12,12 = −1 (A11)12,13 = 1

(A11)13,3 = −1 (A11)13,9 = 1 (A11)13,12 = 1 (A11)13,13 = −1

(A11)14,1 = −1/2 (A11)14,2 = 1/2 (A11)14,3 = 1 (A11)14,7 = −3

(A11)14,8 = 1 (A11)14,9 = −1 (A11)14,12 = −1 (A11)14,13 = 1

(A11)16,1 = 1 (A11)16,2 = −1 (A11)16,7 = 6 (A11)16,8 = −2
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(A12)11,9 = 2 (A12)11,11 = 2 (A12)12,12 = 2 (A12)13,13 = 2

(A12)14,9 = 1 (A12)14,11 = 1 (A12)14,13 = −1 (A12)15,15 = 2

(A12)16,2 = −1 (A12)16,4 = −1/2 (A12)16,5 = −1 (A12)16,7 = 2

(A12)16,16 = 2 (A12)17,17 = 2 (A12)19,19 = 2 (A12)20,20 = 2
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Virtual top Yukawa contribution
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+G(0; x)
2
G

(
0,−

1

x
; y

)
−G(0; x)

2
G

(
1,

1

x
; y

)
−G(0; x)

2
G

(
1,−

1

x
; y

)
+G(0; x)

2
G(1,−x; y)

+G(0; x)
2
G(1, x; y)−G(0; x)

2
G

(
−1,−

1

x
; y

)
+ 3G(0,−1; x)G(0; x)

2
+ 3G(0, 1; x)G(0; x)

2
)

+ 4
(
y
2 − 1

) (
x
4
y
2
(
y
4
+ 8y

2 − 1
)
+ 8x

3
(
y
5
+ y

3
)
− x2

(
y
8 − 1

)
− 8x

(
y
5
+ y

3
)
+ y

2
(
y
4 − 8y

2 − 1
))(

G

(
−

1

x
,−1; y

)
+G

(
−

1

x
, 1; y

))
+ 4

(
y
2 − 1

) (
x
4
y
2
(
y
4 − 8y

2 − 1
)
− 8x

3
(
y
5
+ y

3
)
− x2

(
y
8 − 1

)
+ 8x

(
y
5
+ y

3
)

+y
2
(
y
4
+ 8y

2 − 1
))

(G(−x,−1; y) +G(−x, 1; y)) + 4
(
y
2 − 1

) (
x
4
y
2
(
y
4 − 8y

2 − 1
)
+ 8x

3
(
y
5
+ y

3
)

−x2
(
y
8 − 1

)
− 8x

(
y
5
+ y

3
)
+ y

2
(
y
4
+ 8y

2 − 1
))

(G(x,−1; y) +G(x, 1; y))
)

+ 32
(
x
4
y
2 − x2

(
y
4 − 1

)
− y2

)(
1

12
π
2
G(−x; y) +G(0,−1; x)G(−x; y) +G(0, 1; x)G(−x; y) +

1

12
π
2
G(x; y)

+G(0,−1; x)G(x; y) +G(0, 1; x)G(x; y)−G(−1; x)G

(
−x,

1

x
; y

)
+G(0; x)G

(
−x,

1

x
; y

)
−G(0; y)G

(
−x,

1

x
; y

)
−G(1; x)G

(
−x,

1

x
; y

)
+G(−1; x)G(−x, x; y)−G(0; x)G(−x, x; y)

+G(0; y)G(−x, x; y) +G(1; x)G(−x, x; y)−G(−1; x)G

(
x,−

1

x
; y

)
+G(0; x)G

(
x,−

1

x
; y

)
−G(0; y)G

(
x,−

1

x
; y

)
−G(1; x)G

(
x,−

1

x
; y

)
+G(−1; x)G(x,−x; y)−G(0; x)G(x,−x; y) +G(0; y)G(x,−x; y) +G(1; x)G(x,−x; y))

+ 32
(
5x

4
y
2
+ x

2
(
5y

4 − 7
)
− 3y

2
)
(G(0, 0,−1; x) +G(0, 0, 1; x)) + 128

(
x
4
y
2
+ 2x

2
(
y
4 − 1

)
− y2

)
(G(0, 0,−i; x) +G(0, 0, i; x))

− 8

(
x
4
(
y
2
+ 1

)2
+ 2x

2
(
y
4
+ 10y

2
+ 1

)
+

(
y
2
+ 1

)2
)(

G(0; x)G

(
0, 0,

1

x
; y

)
+G(0; x)G

(
0, 0,−

1

x
; y

))
+ 8

(
3x

4
(
y
2
+ 1

)2
+ x

2
(
6y

4 − 4y
2
+ 6

)
+ 3

(
y
2
+ 1

)2
)

(G(0; x)G(0, 0,−x; y) +G(0; x)G(0, 0, x; y))

− 32
(
x
4
y
2 − x2

(
y
4
+ 1

)
+ y

2
)(
−

1

2
G(0; x)

2
G

(
1

x
; y

)
−

1

2
G(0; x)

2
G

(
−

1

x
; y

)
+

1

2
G(−1; x)G(0; x)G

(
1

x
; y

)
+

1

2
G(1; x)G(0; x)G

(
1

x
; y

)
+

1

2
G(−1; x)G(0; x)G

(
−

1

x
; y

)
+

1

2
G(1; x)G(0; x)G

(
−

1

x
; y

)
−

1

2
G(−1; x)G(0; x)G(−x; y)−

1

2
G(1; x)G(0; x)G(−x; y)−

1

2
G(−1; x)G(0; x)G(x; y)

−
1

2
G(1; x)G(0; x)G(x; y)−

1

2
G(0; x)G

(
1

x
,−1; y

)
−

1

2
G(0; x)G

(
1

x
, 1; y

)
−

1

2
G(0; x)G

(
−

1

x
,−1; y

)
−

1

2
G(0; x)G

(
−

1

x
, 1; y

)
+

1

2
G(0; x)G(−x,−1; y)

+
1

2
G(0; x)G(−x, 1; y) +

1

2
G(0; x)G(x,−1; y) +

1

2
G(0; x)G(x, 1; y)−G(−1; x)G(0,−1; y)−G(1; x)G(0,−1; y)

−G(−1; x)G(0, 1; y)−G(1; x)G(0, 1; y)−G(0; y)G(0,−1; y)−G(0; y)G(0, 1; y) +G(0,−1,−1; y)

+G(0,−1, 1; y) + 2G(0, 0,−1; y) + 2G(0, 0, 1; y) +G(0, 1,−1; y) +G(0, 1, 1; y))

− 16
(
x
4
y
2
+ x

2
(
y
4
+ 1

)
− 3y

2
)(

2G

(
0, 0,

1

x
; y

)
+ 2G

(
0, 0,−

1

x
; y

)
+G

(
0,

1

x
,−1; y

)
+G

(
0,

1

x
, 1; y

)
+G

(
0,−

1

x
,−1; y

)
+G

(
0,−

1

x
, 1; y

))
− 16

(
−3x

4
y
2
+ x

2
(
y
4
+ 1

)
+ y

2
)
(2G(0, 0,−x; y) + 2G(0, 0, x; y) +G(0,−x,−1; y) +G(0,−x, 1; y) +G(0, x,−1; y)

+G(0, x, 1; y))− 128
(
x
2 − 1

) (
x
2
+ 1

)
y
2
(G(−i, 0,−1; x) +G(−i, 0, 1; x) +G(i, 0,−1; x) +G(i, 0, 1; x))

− 32
(
x
4
y
2
+ x

2
(
y
4 − 1

)
− y2

)(
−

1

12
π
2
G

(
1

x
; y

)
−G(0,−1; x)G

(
1

x
; y

)
−G(0, 1; x)G

(
1

x
; y

)
−

1

12
π
2
G

(
−

1

x
; y

)
−G(0,−1; x)G

(
−

1

x
; y

)
−G(0, 1; x)G

(
−

1

x
; y

)
+G(−1; x)G

(
1

x
,−

1

x
; y

)
−G(0; x)G

(
1

x
,−

1

x
; y

)
+G(0; y)G

(
1

x
,−

1

x
; y

)
+G(1; x)G

(
1

x
,−

1

x
; y

)
−G(−1; x)G

(
1

x
,−x; y

)
+G(0; x)G

(
1

x
,−x; y

)
−G(0; y)G

(
1

x
,−x; y

)
−G(1; x)G

(
1

x
,−x; y

)
+G(−1; x)G

(
−

1

x
,
1

x
; y

)
−G(0; x)G

(
−

1

x
,
1

x
; y

)
+G(0; y)G

(
−

1

x
,
1

x
; y

)
+G(1; x)G

(
−

1

x
,
1

x
; y

)
−G(−1; x)G

(
−

1

x
, x; y

)
+G(0; x)G

(
−

1

x
, x; y

)
−G(0; y)G

(
−

1

x
, x; y

)
−G(1; x)G

(
−

1

x
, x; y

)
−G

(
0,

1

x
,−

1

x
; y

)
+G

(
0,

1

x
,−x; y

)
−G

(
0,−

1

x
,
1

x
; y

)
+G

(
0,−

1

x
, x; y

)
−G

(
1

x
, 0,−

1

x
; y

)
+G

(
1

x
, 0,−x; y

)
−G

(
1

x
,−

1

x
,−1; y

)
−G

(
1

x
,−

1

x
, 1; y

)
+G

(
1

x
,−x,−1; y

)
+G

(
1

x
,−x, 1; y

)
−G

(
−

1

x
, 0,

1

x
; y

)
+G

(
−

1

x
, 0, x; y

)
−G

(
−

1

x
,
1

x
,−1; y

)
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−G
(
−

1

x
,
1

x
, 1; y

)
+G

(
−

1

x
, x,−1; y

)
+G

(
−

1

x
, x, 1; y

)
+ 4G(0; x)G(0,−i; x) + 4G(0; x)G(0, i; x)

)
+ 32

(
x
4
y
2 − x2

(
y
4 − 1

)
− y2

)(
G

(
0,−x,

1

x
; y

)
−G(0,−x, x; y) +G

(
0, x,−

1

x
; y

)
−G(0, x,−x; y) +G

(
−x, 0,

1

x
; y

)
−G(−x, 0, x; y) +G

(
−x,

1

x
,−1; y

)
+G

(
−x,

1

x
, 1; y

)
−G(−x, x,−1; y)−G(−x, x, 1; y) +G

(
x, 0,−

1

x
; y

)
−G(x, 0,−x; y) +G

(
x,−

1

x
,−1; y

)
+G

(
x,−

1

x
, 1; y

)
−G(x,−x,−1; y)−G(x,−x, 1; y)

)
− 64((1 + y

2
)
2
+ x

4
(1 + y

2
)
2
+ 2x

2
(1− 10y

2
+ y

4
))(G[0, 0, 0,−1, x] +G[0, 0, 0, 1, x])

+ 128x
2
y
2
(
2G(0,−i; x)G(0; x)

2
+ 2G(0, i; x)G(0; x)

2 − 4G(0; y)G(0,−i; x)G(0; x)− 4G(0; y)G(0, i; x)G(0; x)

− 8G(0, 0,−i; x)G(0; x)− 8G(0, 0, i; x)G(0; x) +G

(
0,

1

x
,−

1

x
; y

)
G(0; x)

−G
(
0,

1

x
,−x; y

)
G(0; x) +G

(
0,−

1

x
,
1

x
; y

)
G(0; x)−G

(
0,−

1

x
, x; y

)
G(0; x)

−G
(
0,−x,

1

x
; y

)
G(0; x) +G(0,−x, x; y)G(0; x)−G

(
0, x,−

1

x
; y

)
G(0; x)

+G(0, x,−x; y)G(0; x) +G(0,−1; x)G

(
0,

1

x
; y

)
+G(0, 1; x)G

(
0,

1

x
; y

)
+G(0,−1; x)G

(
0,−

1

x
; y

)
+G(0, 1; x)G

(
0,−

1

x
; y

)
−G(0,−1; x)G(0,−x; y)−G(0, 1; x)G(0,−x; y)

−G(0,−1; x)G(0, x; y)−G(0, 1; x)G(0, x; y)

+ 8G(0; y)G(0, 0,−i; x) + 8G(0; y)G(0, 0, i; x)−G(−1; x)G

(
0,

1

x
,−

1

x
; y

)
−G(0; y)G

(
0,

1

x
,−

1

x
; y

)
−G(1; x)G

(
0,

1

x
,−

1

x
; y

)
+G(−1; x)G

(
0,

1

x
,−x; y

)
+G(0; y)G

(
0,

1

x
,−x; y

)
+G(1; x)G

(
0,

1

x
,−x; y

)
−G(−1; x)G

(
0,−

1

x
,
1

x
; y

)
−G(0; y)G

(
0,−

1

x
,
1

x
; y

)
−G(1; x)G

(
0,−

1

x
,
1

x
; y

)
+G(−1; x)G

(
0,−

1

x
, x; y

)
+G(0; y)G

(
0,−

1

x
, x; y

)
+G(1; x)G

(
0,−

1

x
, x; y

)
+G(−1; x)G

(
0,−x,

1

x
; y

)
+G(0; y)G

(
0,−x,

1

x
; y

)
+G(1; x)G

(
0,−x,

1

x
; y

)
−G(−1; x)G(0,−x, x; y)−G(0; y)G(0,−x, x; y)−G(1; x)G(0,−x, x; y) +G(−1; x)G

(
0, x,−

1

x
; y

)
+G(0; y)G

(
0, x,−

1

x
; y

)
+G(1; x)G

(
0, x,−

1

x
; y

)
−G(−1; x)G(0, x,−x; y)−G(0; y)G(0, x,−x; y)−G(1; x)G(0, x,−x; y) + 12G(0, 0, 0,−i; x) + 12G(0, 0, 0, i; x)
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(
0, 0,

1

x
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1

x
; y

)
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(
0, 0,

1

x
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)
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(
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1

x
,
1

x
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)
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(
0, 0,−

1

x
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)
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(
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1

x
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)
+ 2G(0, 0,−x, x; y)− 2G

(
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1

x
; y

)
+ 2G(0, 0, x,−x; y)

− 4G(0,−i, 0,−1; x)− 4G(0,−i, 0, 1; x)− 4G(0, i, 0,−1; x)
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(
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1

x
, 0,−

1

x
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)
−G

(
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1

x
, 0,−x; y

)
+G

(
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1

x
,−

1

x
,−1; y

)
+G

(
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1

x
,−

1

x
, 1; y

)
−G

(
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1

x
,−x,−1; y

)
−G

(
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1

x
,−x, 1; y

)
+G

(
0,−

1

x
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1

x
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)
−G

(
0,−

1

x
, 0, x; y

)
+G

(
0,−

1

x
,
1

x
,−1; y

)
+G

(
0,−

1

x
,
1

x
, 1; y

)
−G

(
0,−

1

x
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−G

(
0,−

1

x
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1

x
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)
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(
0,−x,

1

x
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(
0,−x,

1

x
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x
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1

x
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)
−G

(
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1

x
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)
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+ 1
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x
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+ 2

(
y
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+ 1

)
x
2
+

(
y
2
+ 1

)2
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−

1

2
G(−1; x)G(0; x)
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+
1

3
G(−1; y)G(0; x)

3 −
1

2
G(1; x)G(0; x)

3
+

1

3
G(1; y)G(0; x)

3
+G(−1; x)G(0; y)G(0; x)

2

−
1

2
G(−1; y)G(0; y)G(0; x)

2
+G(0; y)G(1; x)G(0; x)

2 −
1

2
G(0; y)G(1; y)G(0; x)

2

+
1

2
G(−1; x)G
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−1,

1
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; y
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G(0; x) +

1

2
G(0; y)G

(
−1,

1
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)
G(0; x) +

1

2
G(1; x)G

(
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1
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)
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+
1

2
G(−1; x)G
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1
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)
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1
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)
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(
−1,−

1
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1
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1
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G(0; y)G(−1,−x; y)G(0; x)−

1

2
G(1; x)G(−1,−x; y)G(0; x)

−
1

2
G(−1; x)G(−1, x; y)G(0; x)−

1
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G(0; y)G(−1, x; y)G(0; x)−

1
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G(1; x)G(−1, x; y)G(0; x)
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−G(−1; y)G(0,−1; x)G(0; x)− 2G(0; y)G(0,−1; x)G(0; x)−G(1; y)G(0,−1; x)G(0; x)−G(−1; y)G(0, 1; x)G(0; x)

− 2G(0; y)G(0, 1; x)G(0; x)−G(1; y)G(0, 1; x)G(0; x)−
1

2
G(−1; x)G

(
0,

1

x
; y

)
G(0; x)−

1

2
G(1; x)G

(
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1

x
; y

)
G(0; x)

−
1

2
G(−1; x)G

(
0,−

1

x
; y

)
G(0; x)−

1

2
G(1; x)G

(
0,−

1

x
; y

)
G(0; x) +

1

2
G(−1; x)G(0,−x; y)G(0; x)

+
1

2
G(1; x)G(0,−x; y)G(0; x) +

1

2
G(−1; x)G(0, x; y)G(0; x)

+
1

2
G(1; x)G(0, x; y)G(0; x) +

1

2
G(−1; x)G

(
1,

1

x
; y

)
G(0; x) +

1

2
G(0; y)G

(
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1

x
; y

)
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+
1

2
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(
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1

x
; y

)
G(0; x) +

1

2
G(−1; x)G

(
1,−

1
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; y

)
G(0; x) +

1

2
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(
1,−

1
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)
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+
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2
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(
1,−

1

x
; y

)
G(0; x)−

1

2
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−
1

2
G(0; y)G(1,−x; y)G(0; x)−

1

2
G(1; x)G(1,−x; y)G(0; x)−

1

2
G(−1; x)G(1, x; y)G(0; x)

−
1

2
G(0; y)G(1, x; y)G(0; x)−

1

2
G(1; x)G(1, x; y)G(0; x) +G(−1, 0,−1; x)G(0; x)−G(−1, 0,−1; y)G(0; x)

+G(−1, 0, 1; x)G(0; x)

−G(−1, 0, 1; y)G(0; x) +G(−1, 0,−x; y)G(0; x) +G(−1, 0, x; y)G(0; x)−
1

2
G

(
−1,

1

x
,−1; y

)
G(0; x)

−
1

2
G

(
−1,

1

x
, 1; y

)
G(0; x)−

1

2
G

(
−1,−

1

x
,−1; y

)
G(0; x)

−
1

2
G

(
−1,−

1

x
, 1; y

)
G(0; x) +

1

2
G(−1,−x,−1; y)G(0; x) +

1

2
G(−1,−x, 1; y)G(0; x)

+
1

2
G(−1, x,−1; y)G(0; x) +

1

2
G(−1, x, 1; y)G(0; x)−

1

2
G

(
0,−1,

1

x
; y

)
G(0; x)

−
1

2
G

(
0,−1,−

1

x
; y

)
G(0; x) +

1

2
G(0,−1,−x; y)G(0; x) +

1

2
G(0,−1, x; y)G(0; x)

− 4G(0, 0,−1; x)G(0; x) +G(0, 0,−1; y)G(0; x)− 4G(0, 0, 1; x)G(0; x) +G(0, 0, 1; y)G(0; x)

−
1

2
G

(
0, 1,

1

x
; y

)
G(0; x)−

1

2
G

(
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1

x
; y

)
G(0; x) +

1

2
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1

2
G(0, 1, x; y)G(0; x)

+
1

2
G

(
0,

1

x
,−1; y

)
G(0; x) +

1

2
G

(
0,

1

x
, 1; y

)
G(0; x) +

1

2
G

(
0,−

1

x
,−1; y

)
G(0; x) +

1

2
G

(
0,−

1

x
, 1; y

)
G(0; x)

−
1

2
G(0,−x,−1; y)G(0; x)−

1

2
G(0,−x, 1; y)G(0; x)−

1

2
G(0, x,−1; y)G(0; x)

−
1

2
G(0, x, 1; y)G(0; x) +G(1, 0,−1; x)G(0; x)−G(1, 0,−1; y)G(0; x) +G(1, 0, 1; x)G(0; x)

−G(1, 0, 1; y)G(0; x) +G(1, 0,−x; y)G(0; x) +G(1, 0, x; y)G(0; x)−
1

2
G

(
1,

1

x
,−1; y

)
G(0; x)

−
1

2
G

(
1,

1

x
, 1; y

)
G(0; x)−

1

2
G

(
1,−

1

x
,−1; y

)
G(0; x)

−
1

2
G

(
1,−

1

x
, 1; y

)
G(0; x) +

1

2
G(1,−x,−1; y)G(0; x) +

1

2
G(1,−x, 1; y)G(0; x) +

1

2
G(1, x,−1; y)G(0; x)

+
1

2
G(1, x, 1; y)G(0; x) +G(−1; x)G(−1, 0,−1; y) +G(0; y)G(−1, 0,−1; y) +G(1; x)G(−1, 0,−1; y)

+G(−1; x)G(−1, 0, 1; y) +G(0; y)G(−1, 0, 1; y) +G(1; x)G(−1, 0, 1; y)−
1

2
G(−1; x)G

(
−1, 0,

1

x
; y

)
−

1

2
G(0; y)G

(
−1, 0,

1

x
; y

)
−

1

2
G(1; x)G

(
−1, 0,

1

x
; y

)
−

1

2
G(−1; x)G

(
−1, 0,−

1

x
; y

)
−

1

2
G(0; y)G

(
−1, 0,−

1

x
; y

)
−

1

2
G(1; x)G

(
−1, 0,−

1

x
; y

)
−

1

2
G(−1; x)G(−1, 0,−x; y)−

1

2
G(0; y)G(−1, 0,−x; y)−

1

2
G(1; x)G(−1, 0,−x; y)−

1

2
G(−1; x)G(−1, 0, x; y)

−
1

2
G(0; y)G(−1, 0, x; y)

−
1

2
G(1; x)G(−1, 0, x; y) +G(−1; y)G(0, 0,−1; x) + 2G(0; y)G(0, 0,−1; x) +G(1; y)G(0, 0,−1; x)

−G(−1; x)G(0, 0,−1; y)−G(0; y)G(0, 0,−1; y)−G(1; x)G(0, 0,−1; y) +G(−1; y)G(0, 0, 1; x)

+ 2G(0; y)G(0, 0, 1; x) +G(1; y)G(0, 0, 1; x)−G(−1; x)G(0, 0, 1; y)−G(0; y)G(0, 0, 1; y)

−G(1; x)G(0, 0, 1; y) +
1

2
G(−1; x)G

(
0, 0,

1

x
; y

)
+

1

2
G(0; y)G

(
0, 0,

1

x
; y

)
+

1

2
G(1; x)G

(
0, 0,

1

x
; y

)
+

1

2
G(−1; x)G

(
0, 0,−

1

x
; y

)
+

1

2
G(0; y)G

(
0, 0,−

1

x
; y

)
+

1

2
G(1; x)G

(
0, 0,−

1

x
; y

)
+

1

2
G(−1; x)G(0, 0,−x; y) +

1

2
G(0; y)G(0, 0,−x; y) +

1

2
G(1; x)G(0, 0,−x; y) +

1

2
G(−1; x)G(0, 0, x; y)

+
1

2
G(0; y)G(0, 0, x; y) +

1

2
G(1; x)G(0, 0, x; y) +G(−1; x)G(1, 0,−1; y) +G(0; y)G(1, 0,−1; y)

+G(1; x)G(1, 0,−1; y) +G(−1; x)G(1, 0, 1; y)

+G(0; y)G(1, 0, 1; y) +G(1; x)G(1, 0, 1; y)−
1

2
G(−1; x)G

(
1, 0,

1

x
; y

)
−

1

2
G(0; y)G

(
1, 0,

1

x
; y
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−
1

2
G(1; x)G

(
1, 0,

1

x
; y

)
−

1

2
G(−1; x)G

(
1, 0,−

1

x
; y

)
−

1

2
G(0; y)G

(
1, 0,−

1

x
; y

)
−

1

2
G(1; x)G

(
1, 0,−

1

x
; y

)
−

1

2
G(−1; x)G(1, 0,−x; y)−

1

2
G(0; y)G(1, 0,−x; y)

−
1

2
G(1; x)G(1, 0,−x; y)−

1

2
G(−1; x)G(1, 0, x; y)−

1

2
G(0; y)G(1, 0, x; y)−

1

2
G(1; x)G(1, 0, x; y)

−G(−1, 0,−1,−1; y)−G(−1, 0,−1, 1; y)− 2G(−1, 0, 0,−1; y)− 2G(−1, 0, 0, 1; y) +G

(
−1, 0, 0,

1

x
; y

)
+G

(
−1, 0, 0,−

1

x
; y

)
+G(−1, 0, 0,−x; y) +G(−1, 0, 0, x; y)−G(−1, 0, 1,−1; y)−G(−1, 0, 1, 1; y) +

1

2
G

(
−1, 0,

1

x
,−1; y

)
+

1

2
G

(
−1, 0,

1

x
, 1; y

)
+

1

2
G

(
−1, 0,−

1

x
,−1; y

)
+

1

2
G

(
−1, 0,−

1

x
, 1; y

)
+

1

2
G(−1, 0,−x,−1; y)

+
1

2
G(−1, 0,−x, 1; y) +

1

2
G(−1, 0, x,−1; y) +

1

2
G(−1, 0, x, 1; y)−G(0,−1, 0,−1; x)

−G(0,−1, 0,−1; y)−G(0,−1, 0, 1; x)−G(0,−1, 0, 1; y) +
1

2
G

(
0,−1, 0,

1

x
; y

)
+

1

2
G

(
0,−1, 0,−

1

x
; y

)
+

1

2
G(0,−1, 0,−x; y) +

1

2
G(0,−1, 0, x; y) +G(0, 0,−1,−1; y) +G(0, 0,−1, 1; y) + 3G(0, 0, 0,−1; y) + 3G(0, 0, 0, 1; y)

−
3

2
G

(
0, 0, 0,

1

x
; y

)
−

3

2
G

(
0, 0, 0,−

1

x
; y

)
−

3

2
G(0, 0, 0,−x; y)−

3

2
G(0, 0, 0, x; y) +G(0, 0, 1,−1; y)

+G(0, 0, 1, 1; y)−
1

2
G

(
0, 0,

1

x
,−1; y

)
−

1

2
G

(
0, 0,

1

x
, 1; y

)
−

1

2
G

(
0, 0,−

1

x
,−1; y

)
−

1

2
G

(
0, 0,−

1

x
, 1; y

)
−

1

2
G(0, 0,−x,−1; y)−

1

2
G(0, 0,−x, 1; y)

−
1

2
G(0, 0, x,−1; y)−

1

2
G(0, 0, x, 1; y)−G(0, 1, 0,−1; x)−G(0, 1, 0,−1; y)−G(0, 1, 0, 1; x)−G(0, 1, 0, 1; y)

+
1

2
G

(
0, 1, 0,

1

x
; y

)
+

1

2
G

(
0, 1, 0,−

1

x
; y

)
+

1

2
G(0, 1, 0,−x; y) +

1

2
G(0, 1, 0, x; y)−G(1, 0,−1,−1; y)−G(1, 0,−1, 1; y)− 2G(1, 0, 0,−1; y)

− 2G(1, 0, 0, 1; y) +G

(
1, 0, 0,

1

x
; y

)
+G

(
1, 0, 0,−

1

x
; y

)
+G(1, 0, 0,−x; y) +G(1, 0, 0, x; y)−G(1, 0, 1,−1; y)−G(1, 0, 1, 1; y) +

1

2
G

(
1, 0,

1

x
,−1; y

)
+

1

2
G

(
1, 0,

1

x
, 1; y

)
+

1

2
G

(
1, 0,−

1

x
,−1; y

)
+

1

2
G

(
1, 0,−

1

x
, 1; y

)
+

1

2
G(1, 0,−x,−1; y) +

1

2
G(1, 0,−x, 1; y)

+
1

2
G(1, 0, x,−1; y) +

1

2
G(1, 0, x, 1; y)

)
+

1

90

(
−720ζ(3)

(
−7x

4
y
2
+ x

2
(
y
4
+ 1

)
+ 5y

2
)
+ 120π

2
(
x
4
(
y
4
+ 6y

2
+ 1

)
− 2x

2
(
y
2
+ 1

)2
+

(
y
2 − 1

)2
)

−π4
(
x
4
(
y
2
+ 1

)2
+ 2x

2
(
y
4 − 22y

2
+ 1

)
+

(
y
2
+ 1

)2
))

+
1

y2
(
y2 − 1

)
(
−32

(
x
2 − 1

) (
x
2
+ 1

)
y
2
(
y
2 − 1

) (
y
4 − 1

)
(G(0; x)G(−i; x) +G(0; x)G(i; x))

+ 64
(
x
2 − 1

) (
x
2
+ 1

)
y
4
(
y
2 − 1

) (
−2G(−i; x)G(0; x)G(0; y)− 2G(i; x)G(0; x)G(0; y) +G(−i; x)G(0; x)

2

+G(i; x)G(0; x)
2 −

1

6
π
2
G(−i; x)−

1

6
π
2
G(i; x)

)
−

4

3
y
2
(
y
2 − 1

)(
6
(
x
4 − 1

) (
y
4 − 1

)
+ π

2
(
x
4
(
y
2
+ 1

)2
+ 2x

2
(
y
4 − 6y

2
+ 1

)
+

(
y
2
+ 1

)2
))

(G(−1; x)G(0; x) +G(1; x)G(0; x))

+ 64x
2
y
2
(−1 + y

2
)(−1 + y

4
)(G[−1, x]G[0, x]

2
+G[0, x]

2
G[1, x])

+ 8x
2
(
y
2 − 1

) (
y
4 − 1

) (
−2x

2
y
2
+ y

4
+ 1

)
(G(0; x)G(−1; y) +G(0; x)G(1; y))

+ 8
(
y
2 − 1

) (
y
4 − 1

) (
x
4
y
2 − x2

(
y
4
+ 1

)
+ y

2
)
(G(−1; x)G(−1; y) +G(1; x)G(−1; y) +G(−1; x)G(1; y)

+G(1; x)G(1; y) +G(0; y)G(−1; y) +G(0; y)G(1; y))

− 4
(
y
2 − 1

) (
x
4
y
2
(
y
4
+ 8y

2 − 1
)
+ 8x

3
(
y
5
+ y

3
)
− x2

(
y
8 − 1

)
− 8x

(
y
5
+ y

3
)
+ y

2
(
y
4 − 8y

2 − 1
))(

G(−1; x)G

(
−

1

x
; y

)
−G(0; x) G

(
−

1

x
; y

)
+G(0; y)G

(
−

1

x
; y

)
+G(1; x)G

(
−

1

x
; y

))
+ 16y

2
(
y
2 − 1

) (
x
4
y
2
+ x

2
(
3y

4 − 1
)
− 3y

2
)(

G(0; x)G(0; y)G

(
1

x
; y

)
+G(0; x)G(0; y)G

(
−

1

x
; y

))
− 4

(
y
2 − 1

) (
x
4
y
2
(
y
4 − 8y

2 − 1
)
− 8x

3
(
y
5
+ y

3
)
− x2

(
y
8 − 1

)
+ 8x

(
y
5
+ y

3
)

+y
2
(
y
4
+ 8y

2 − 1
))

(G(−1; x)G(−x; y)−G(0; x)G(−x; y) +G(0; y)G(−x; y) +G(1; x)G(−x; y))

+ 16y
2
(
y
2 − 1

) (
−3x

4
y
2
+ x

2
(
3y

4 − 1
)
+ y

2
) (
G(0; x)

2
G(−x; y) +G(0; x)

2
G(x; y)

−G(0; x)G(0; y)G(−x; y)−G(0; x)G(0; y)G(x; y))

− 4
(
y
2 − 1

) (
x
4
y
2
(
y
4 − 8y

2 − 1
)
+ 8x

3
(
y
5
+ y

3
)
− x2

(
y
8 − 1

)
− 8x

(
y
5
+ y

3
)

+y
2
(
y
4
+ 8y

2 − 1
))

(G(−1; x)G(x; y)−G(0; x)G(x; y) +G(0; y)G(x; y) +G(1; x)G(x; y))

− 4y
2
(
y
2 − 1

) (
x
4
(
y
2
+ 1

) (
y
2
(ζ(3)− 4) + ζ(3) + 4

)
+ 2x

2
(
y
4
(ζ(3) + 4)− 6y

2
ζ(3) + ζ(3)− 4

)
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+
(
y
2
+ 1

) (
y
2
(ζ(3)− 4) + ζ(3) + 4

))
(G(−1; y) +G(1; y))

1

3
(−2)y

2
(
y
2 − 1

)(
24

(
x
2 − 1

)2 (
y
4 − 1

)
G(−1; x)− 16y

2
(
−5x

4
+ 4x

2
y
2
+ 1

)
G(0; x)

3

− 4G(0; x)
((

3x
4
(
y
4
+ 8y

2 − 1
)
− 8π

2
x
2
y
2 − 3

(
y
4
+ 8y

2 − 1
))
G(0; y) + 2

(
3x

4
(
2y

4
+ π

2
y
2 − 2

)
+x

2
(
−2

(
3 + π

2
)
y
4
+ 36y

2
ζ(3) + 6

)
− π2

y
2
))

+ 2

(
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(
x
2 − 1

)2 (
y
4 − 1

)
G(1; x)− 3

(
x
2 − 1

)2 (
y
2
+ 1

)2
G(0; y)

2
+ 2

(
x
4
(
3
(
y
2
+ 1

) (
y
2
(ζ(3) + 2) + ζ(3)− 2

)
+ 2π

2
y
2
)

+6x
2
(
y
4
(ζ(3)− 2) + 6y

2
ζ(3) + ζ(3) + 2

)
+ 3

(
y
2
+ 1

) (
y
2
(ζ(3) + 2) + ζ(3)− 2

)
− 2π

2
y
2
)
G(0; y)

)
+G(0; x)

2
(
24

(
−7x

4
y
2
+ x

2
(
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4
+ 1

)
+ y

2
)
G(0; y) + π

2
(
x
4
(
y
2
+ 1

)2
+ 2x

2
(
y
4 − 6y

2
+ 1

)
+

(
y
2
+ 1
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)
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(
x
4
(
9y

4 − 8y
2 − 9

)
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2
(
y
4 − 1

)
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4
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2 − 1
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