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Introduction

The application of quantum mechanical theory to the analysis of physical systems
with a two dimensional state space is truly fascinating. The topic's interest is
not limited to its mathematical simplicity but is mainly based on the physical
importance of its applications.

Unfortunately none of the considered physical systems can be fully analyzed
with this model and it imposes to make an approximation in all the examined set-
tings. Therefore, de�ning the experimental conditions in which the approximation
can be done is of fundamental importance and we will try on each occasion to
characterize the validity range of the theory.

Herein will be presented some of the many system which are suitable to be
studied by the two level system model.

First we will analyze the most important example: the spin 1
2
system. We

will review the experimental evidence which led to the introduction of intrinsic
degrees of freedom, justifying the two level system approximation in that scenario.
Then, we will take into account the interaction with a magnetic �eld (�rst static
then time-dependent); �nally we will see how the temporal evolution has a simple
geometrical interpretation in a new abstract space.

The complete knowledge of spin 1
2
systems is crucial in the analysis of the most

general of the two level systems. We shall see that the original system can be
replaced introducing a �ctitious spin 1

2
interacting with a �ctitious magnetic �eld,

whose direction and modulus depends on the physical framework, so that every
two level system has an immediate and simple interpretation.

The application of the two level system theory to concrete physical situation
will allow a global understanding in an easy and elegant way.

First, we will study the ammonia molecule, introducing the maser function;
then we will give a qualitative explanation to the neutrino oscillation phenomenon.

In particular the neutrino oscillation has to be studied with the quantum den-
sity matrix formalism. We will introduce it always looking for a geometrical ap-
proach as intuitive as the pure state case.
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Chapter 1

Spin 1/2 systems

1.1 The Stern Gerlach experiment

The Stern Gerlach experiment is the �rst experimental evidence of the existence
of spin degrees of freedom. The experiment consists of studying the de�ection of
a beam of neutral paramagnetic atoms in a highly inhomogeneous magnetic �eld.
The interaction of an atomic system with a magnetic �eld is governed by the total
angular momenta ~J arising both from the orbital and the spin angular momenta.
When J 6= 0 the atom posseses a permanent magnetic moment

< ~µ >= −gµB <
~J

~
> (1.1)

so that the paramagnetism is observed when the magnetic moments are partially
aligned by the �eld. Silver atoms are contained in a furnace which is heated to high
temperature, they leave through a small opening an are selected by a collimating
slit which selects those atoms whose velocity is parallel to a particular direction
(Oy in this case).

Figure 1.1: Schematic drawing of the Stern Gerlach experiment.
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SPIN 1/2 SYSTEMS 5

The atomic beam then enter the region with the electromagnetic �eld which
has its largest component along Oz which is strongly variable. Since the silver
atoms are neutral they are not subject to Lorentz force, so neglecting the terms
proportional to µx and µy the force can be calculated by:

~F = ∇µzBz. (1.2)

Since ∇Bz has only z-component the force on the atom is parallel to Oz and
proportional to µ.

The results of the experiment are outstanding since we do observe two spots
symmetrical with respect to the center. This brought to the introduction of a new
intrinsic angular momentum whose discrete spectrum includes only two eigenval-
ues.

Figure 1.2: Spot observed in the Stern Gerlach screen. According to classical
mechanics one should observe one spot (dashed line), in reality two symmetrical
spots centered at N1 and N2 are observed.

We now know that silver atoms are in their ground state spin 1
2
system so that

such a result can be achieved only if the system is described totally by its two
dimensional spin Hilbert space and the external degrees of freedom shall not be
studied quantum mechanically. This is obviously an approximation but all along
this work we want to study physical systems with a two dimensional Hilbert space.
This process will be always an approximation which we will call "Two level system
approximation".

We want to apply the approximation in the present case. We shall verify that
it is possible, in order to describe the motion of silver atoms, to construct wave
packets whose dispersion ∆p and ∆z are completely negligible. The dispersion
must satisfy Heisenberg relation and we can see numerically that:

∆z∆vz ≥ 10−9 m

s2
(1.3)

Considering the lengths and velocities involved in the problem:
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• width of the slit F ∼ 0.1 mm

• separation N1N2 several millimeters

• B
∂B
∂z

∼ 1 mm

• velocity of the silver atoms leaving a furnace at 1000 K∼ 500 m
s

we can see that while satisfying (1.3) they are negligible on the scale concerned,
enabling us to reason in terms of quasi-pointlike wave packet moving along classical
trajectories.

1.2 Formal theory of spin

The formal theory of spin is a carbon-copy of the orbital angular momenta one,
we will follow [1]. Beginning with the fundamental commutation relation:

[Sx, Sy] = i~εxyzSz (1.4)

It follows that the eigenvectors of S2 and Sz satisfy

S2 |s,m〉 = s(s+ 1) |s,m〉 Sz |s,m〉 = ~ |s,m〉 (1.5)

and
S± |s,m〉 = ~

√
s(s+ 1)−m(m± 1) |s,m± 1〉 (1.6)

where S± = Sx ± iSy.
However this time the eigenvector are not spherical harmonics(they are not

functions of the polar angles at all). There is no a priori reason to exclude half
integer values of s and m.

It so happens that every elementary particle has a speci�c and immutable value
of s.

The silver beam used by Stern and Gerlach is as spin 1
2
system which is by far

the most important case.
As we expect from the experiment there are just two eigenstates∣∣∣∣12 , 1

2

〉
≡ |↑〉

∣∣∣∣12 , −1

2

〉
≡ |↓〉 (1.7)

An element of the Hilbert space Hs spanned by (|↑〉 , |↓〉) is called a spinor
and can be expressed as a two-element column vector. Meanwhile any operator
becomes a 2x2 matrix, allowing us to work out any useful calculation in a simple
way.
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Using relations (1.5) (1.6) we can �nd in particular the expression of the spin
operators:

Sz =

(~
2

0
0 −~

2

)
(1.8)

Sy =

(
0 −i~

2

i~
2

0

)
(1.9)

Sx =

(
0 ~

2
~
2

0

)
(1.10)

They are obviously all hermitian and can be written in the more compact form:

Si =
~
2
σi (1.11)

where the σi are the "Pauli matrices".
The observable corresponding to ~S · û where û is a direction identi�ed by (θ, φ)

in the (|↑〉 , |↓〉) base is directly obtained by matrix multiplication

Su = Sx sin θ cosφ+ Sy sin θ sinφ+ Sz cosφ (1.12)

and its eigenvectors can be found to be:

|↑〉u = cos
θ

2
exp

{
−iφ

2

}
|↑〉+ sin

θ

2
exp

{
i
φ

2

}
|↓〉 (1.13)

|↓〉u = − sin
θ

2
exp

{
−iφ

2

}
|↑〉+ cos

θ

2
exp

{
i
φ

2

}
|↓〉 (1.14)

In a two dimensional complex Hilbert spaces there should be four real degrees of
freedom, but one is removed by the normalization bound and the other from the
overall phase invariance of quantum mechanics. We can identify any spinor by
the angles (θ, φ) which preserve the characteristic of being polar angles in a new
�ctitious space.

We see that a spinor has a geometrical representation given by a vector directed
along (θ, φ) called Bloch vector pointing the surface of an unitary sphere called
Bloch sphere.

It is important to note that orthogonal states inH are represented by antipodal
points on the Bloch sphere, but obviously in our Hilbert space orthogonal vectors
have an angular separation of π

2
. Hence the division by two in (1.13) and (1.14).

Preparation of spin state along any direction can always be made by clever
manipulation of Stern Gerlach apparati; in fact if we take that the most general
spin state ψ ∈ HS we can write:

|ψ〉 = c1 |↑〉+ c2 |↓〉 (1.15)
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Figure 1.3: Geometrical representation on the Bloch sphere.

Since the state vector is normalized, exists θ such that

|c1| = cos
θ

2
(1.16)

|c2| = sin
θ

2
(1.17)

Imposing

tan
θ

2
=
c1

c2

(1.18)

φ = Arg(c2)− Arg(c1) (1.19)

χ = Arg(c2) + Arg(c1) (1.20)

(1.21)

the state can be written as :

|ψ〉 = cos
θ

2
e−i

φ
2 |↑〉+ sin

θ

2
ei
φ
2 |↓〉 = |↑〉u (1.22)

with (θ, φ) de�ned above, so that to prepare a system in state |ψ〉 it su�ces to
place the SG apparatus so that its axis point along ~u.

Once prepared the state we have to follow the postulate of quantum mechanics
to predict the results of spin measurement. Often experiments uses two SG mag-
nets one after the other in quite a similar way to polarizer and analyzer of optical
polarization experiment.

For the intrinsic probabilistic nature we will argument only of probability that
a certain outcome will occur repeating the same experiment N times, but if we
calculate the mean values of spin operator we will �nd the components of a classical
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angular momentum of modulus ~
2
oriented along the vector ~u:

〈↑u|Sz|↑u〉 = ~
2

cos θ

〈↑u|Sy|↑u〉 = ~
2

sin θ sinφ

〈↑u|Sx|↑u〉 = ~
2

sin θ cosφ

(1.23)

con�rming that quantum mechanic is mapped onto classical mechanics for high
quantum numbers.

1.3 Interaction with magnetic �eld

1.3.1 Static Magnetic �eld

Let the spin system be in an uniform magnetic �eld ~B0 along k̂. The hamiltonian
is given by:

H = −~µ ~B0 = gµBB0
σz
2

= −γB0Sz (1.24)

where γ is the gyromagnetic ratio.
It's easy to solve the stationary Schroedinger equation. Setting ω0 = −γB0 we

�nd the two energy levels

E± = ±1

2
~ω0 (1.25)

de�ning a single Bohr frequency, while the eigenvectors are those of Sz.
If we assume that at t = 0 the state vector is |ψ(0)〉 = |↑〉u where û = û(θ, φ),

we can calculate

|ψ(t)〉 = cos
θ

2
e−i

φ
2 eiE+t |↑〉+ sin

θ

2
e+iφ

2 e−iE−t |↓〉 (1.26)

We see on the Bloch sphere that the spin revolves around 0z with angular
velocity ω0 proportional to the magnetic �eld

θ(t) = θ (1.27)

φ(t) = φ+ ω0t (1.28)

which is the quantum mechanical Larmor precession.
Obviously the mean value will behave like the components of a classical angular

momentum of modulus ~
2
undergoing classical Larmor precession.
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Figure 1.4: Quantum mechanical Larmor precession on the Bloch sphere.

1.3.2 Time dependent magnetic �eld

Suppose now to turn on a weak oscillating magnetic �eld along the x̂ axis. The
Hamiltonian is

H = −~µ · ~B =
gµB
~

(SxBx cosωt+ SzBz) (1.29)

The wave function is a two-component spinor

ψ(t) =

(
c↑(t)
c↓(t)

)
(1.30)

When the perturbation Bx is absent the unperturbed eigenfunctions are:

ψ 1
2

=

(
e−i

ω0t
2

0

)
ψ− 1

2
=

(
0

e
iω0t
2

)
(1.31)

H is now time dependent and under certain conditions the problem can be
solved by �rst order perturbation theory but we shall be interested in large values
of t, so that we proceed by using the explicit forms of the Pauli matrices to
write Schroedinger equation as a pair of coupled di�erential equations for c↑↓(t) as
presented in [2].

i
dc↑(t)

dt
=
ω0

2
c↑(t) +

ω̃0

2
cos(ωt)c↓(t) (1.32)

i
dc↓(t)

dt
=
ω̃0

2
cos (ωt)c↑(t)−

ω0t

2
c↓(t) (1.33)

where:

ω̃0 = gµB
Bx

~
= −γBx (1.34)
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It is convenient to de�ne new functions by setting

C+(t) = e
iω0t
2 c↑(t) (1.35)

C−(t) = e
−iω0t

2 c↓(t) (1.36)

this removes the term in ω0 giving

i
dC+(t)

dt
=
ω̃0

2
cosωteiω0tC− (1.37)

i
dC−(t)

dt
=
ω̃0

2
cosωte−iω0−tC+ (1.38)

By recognising in the product cos (ωt)e±ω0t terms in e±(ω±ω0)t we can neglect
e±i(ω+ω0)t because they oscillate extremely rapidly and on the average they make
little contribution to the equation.

Dropping these terms the approximate Schroedinger equation is

i
dC+(t)

dt
=
ω̃0

4
ei(ω−ω0)tC− (1.39)

i
dC−(t)

dt
=
ω̃0

4
e−i(ω0−ω)tC+ (1.40)

It is possible now to solve exactly, the general solution is

C+(t) = peiη+t + qeiη−t (1.41)

C−(t) = − 4

ω̃0

[pη+e
iη+t + qη−e

iη−t]ei(ω−ω0)t (1.42)

where p and q are costant of integration and

η± =
1

2
[(ω0 − ω)±

√
(ω − ω0)2 +

ω̃0
2

4
] (1.43)

Preparing the initial state such that C+(0) = 1 and C−(0) = 0 we can calculate
the probability of transition from upper to lower level obtaining:

P (+→ +) = cos2 ωRt

2
+ [

(ω − ω0)2

ω2
R

]sin2ωRt

2
(1.44)

P (+→ −) =
ω̃0

2

4

(ωR)2
[sin2 ωRt

2
] (1.45)

where ωR is known as the "Rabi �opping frequency" and is

ωR = η+ − η− =

√
(ω − ω0)2 +

ω̃0
2

4
(1.46)

This process is called spin resonance (SR).



Chapter 2

Two level systems

2.1 Introduction

In this section we now consider a general system whose state space is two di-
mensional, following [3]. We have discussed before that this model can be used
whenever the TLS approximation is valid. As we will se this is often the case when
we have two states whose energies are close together and very di�erent from those
of all other states of the system. We want to evaluate the e�ect of an external
perturbation(or an internal interactions previously neglected) and if the approxi-
mation of two level system is good we can ignore all the other energy levels staying
in our two dimensional subspace.

2.2 General treatment of Two level system

Suppose that H = H0 + W where H0 is the unperturbed hamiltonian and W is
the perturbation or coupling.

For a basis, we choose the orthonormal basis (|1〉 , |2〉) eigenkets of H0 with
eigenvalues (E1, E2).

We assume that W is time independent in this space, and in the (|1〉 , |2〉) base
is represented by the hermitian matrix

W =

(
W11 W12

W21 W22

)
(2.1)

Let the eigenstates of H be (|+〉 , |−〉) with eigenvalues (E+, E−).
The consequences of the coupling are clear:

• E1 and E2 are no longer possible energies of the system and a measurement
of energy can yield E±.

12
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• |1〉 and |2〉 are no longer stationary states of the system .

The diagonalization of the matrix presents no problems since is done in a 2-D
space. We �nd eigenvalues:

E± =
E1 +W11 + E2 +W22

2
±
√

(E1 +W11 − E2 −W22)2 + 4|W12|2 (2.2)

and eigenvectors:

|+〉 = cos
θ

2
e−i

φ
2 |1〉+ sin

θ

2
e
iφ
2 |2〉 (2.3)

|−〉 = − sin
θ

2
e

−iφ
2 |1〉+ cos

θ

2
e
iφ
2 |2〉 (2.4)

where (θ, φ) are de�ned by:

tan θ =
2|W12|

E1 +W11 − E2 −W22

(2.5)

W21 = W12e
iφ (2.6)

Obviously interesting e�ects arise from the fact that W is non diagonal so that
we can set W11 = W22 = 0. In order to simplify the notation we introduce the
parameters:

Em =
E1 + E2

2
∆ =

E1 − E2

2
(2.7)

so that the eigenvalues reduces to:

E± = Em ±
√

∆2 + |W12|2 (2.8)

Figure 2.1: Anticrossing diagram.
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From the diagram we can grasp fundamental physical information. In the
absence of coupling the two levels "cross", but when the perturbation is present
the two levels "repels each other" since for any ∆ we have

|E+ − E−| > |E1 − E2| (2.9)

Moreover the e�ects of coupling are much more important when the two un-
perturbed levels have the same energy as can be seen expanding in |W12

∆
| near the

asymptotes

E± = Em ±∆(1 +
|W12

∆
|

2
+ . . . ) (2.10)

which is of the second order while for small separation of ∆ expanding in | ∆
W12
|

E± = Em ± |W12|(1 +
| ∆
W12
|

2
) (2.11)

which is of the �rst order in the perturbation.
The e�ects of the coupling on the eigenstates can be calculated recalling that:

tan θ = |W12

∆
| (2.12)

It follows that for strong coupling (∆ << W12):

|+〉 =
1√
2

[e−i
φ
2 |1〉+ ei

φ
2 |2〉] (2.13)

|−〉 =
1√
2

[−e−i
φ
2 |1〉+ ei

φ
2 |2〉] (2.14)

while for weak coupling (∆ >> W12) we have

|+〉 = exp

{
−iφ

2

}
[|1〉+ exp{−iφ}|W12

2∆
| |2〉+ . . . ] (2.15)

|−〉 = exp

{
i
φ

2

}
[|2〉 − exp{−iφ}W12

2∆
|1〉] (2.16)

It is clear that the same pattern has emerged in fact for weak coupling apart from
�rst order term the eigenstates remains unchanged while for strong coupling the
new eigenstates are linear superposition with coe�cients of the same modulus.

The time evolution of a state vector is then straight-forward, in fact the state
vector will folllow:

i~
d |ψ(t)〉

dt
= (H0 +W ) |ψ(t)〉 (2.17)
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Let the state vector be:

|ψ(t)〉 = c1(t) |1〉+ c2(t) |2〉 (2.18)

If we project onto the (|1〉 , |2〉) basis we obtain:

i~
dc1(t)

dt
= E1c1(t) +W12c2(t) (2.19)

i~
dc2(t)

dt
= W12c1(t) + E2c2(t) (2.20)

This constitutes a system a linear system of homogeneous coupled di�erential
equations, so we have to move into (|+〉 , |−〉) basis to analyze time evolution.

If the system at t = 0 is in the state

|ψ(0)〉 = λ |+〉+ µ |−〉 (2.21)

we then have
|ψ(t)〉 = λeiω+t |+〉+ µeiω−t |−〉 (2.22)

This means that the ket |ψ(t)〉 oscillates between the two unperturbed states,
to see this we can choose

|ψ(0)〉 ≡ |1〉 = ei
φ
2 [cos

θ

2
|+〉 − sin

θ

2
|−〉] (2.23)

from which we deduce:

|ψ(t)〉 = ei
φ
2 [cos

θ

2
eiω+t |+〉 − sin

θ

2
eiω−t |−〉] (2.24)

The probability of �nding the state at time t in the state |2〉 is then written:

P12(t) = | 〈1|2〉 |2 = sin2 θ sin2 [
E+ − E−

2~
t] (2.25)

which can be expressed as

P12(t) =
4|W 2

12|
4|W 2

12|+ (E1 − E2)2)
sin2 [

√
4|W 2

12|+ (E1 − E2)2
t

2~
] (2.26)

Which is sometimes called Rabi's formula.
We observe that P12(t) oscillates at the Bohr frequency of the system and varies

between 0 and sin2 θ, in function of the parameters |W12| and E1 − E2.
In the strong coupling case where ∆ << |W12|, we know that sin2 θ ∼ 1

and the system oscillates completely from one state to the other with frequency
proportional to the coupling.

While in the weak coupling case it's not surprising that sin2 θ becomes very
small and the systems evolves very little over time.
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Figure 2.2: Rabi oscillation between unperturbed states.

2.3 Equivalence with spin 1/2 system

Consider a two-level system whose Hamiltonian is represented in (|1〉 , |2〉) basis as

H =

(
H11−H22

2
H12

H21 −H11−H22

2

)
(2.27)

where we choose H11+H22

2
as the new energy origin.

Although the two-level system under consideration is not spin 1/2, we can
always associate with it a �ctitious spin .1/2 whose Hamiltonian is represented by
the same matrix in the (|↑〉 , |↓〉) basis.

We shall see that H can be interpreted as describing the interaction of this
�ctious spin with a static �ctitious magnetic �eld ~B whose direction and modulus
are simply related to the parameters in H.

The Hamiltonian of the coupling between a spin 1/2 and a magnetic �eld ~B
can be written as:

H̃ = −γ ~B · ~S = −γ~
2

(Bxσx +Byσy +Bzσz) (2.28)

This is equivalent to

H̃ = −γ~
2

(
Bz Bx − iBy

Bx + iBy −Bz

)
(2.29)

Therefore to make H equvalent to H̃ we must simply choose a �ctitious �eld
de�ned by

Bx = − 2

γ~
ReH12 (2.30)

By =
2

γ~
ImH12 (2.31)

Bz =
1

γ~
(H22 −H11) (2.32)
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According to formulas (2.5) and (2.6), the angles (θ, φ) associated to H = H̃ are

tan θ =
|γB⊥|
−γBz

0 ≤ θ ≤ π (2.33)

− γ(Bx + iBy) = |γB⊥|eiφ 0 ≤ φ ≤ 2π (2.34)

γ is a simple parameter in the model and can have arbitrary value. Choosing
γ negative, relation shows that the angles (θ, φ) associated to the matrix H are

simply the polar angles of the direction of the �ctitious �eld ~B on the Bloch sphere
(if we had chose γ positive they would be the opposite of the direction) where now
the poles are the unperturbed states |1〉 and |2〉.

The geometrical formalism remains the same if we forget the two-level sys-
tem from which we started and consider only the matrix H as representing the
hamiltonian of a spin 1/2 in the (|↑〉 , |↓〉) basis, so that:

H = ωSu (2.35)

where Su = ~S · û is the operator associated to spin component along the
direction û de�ned by (θ, φ) and ω is the Larmor angular velocity ω = |γ|| ~B|.
We can follow dynamical evolution on the Bloch sphere, easily interpreting Rabi
oscillation where θ and φ introduced in (2.33) and (2.34) are the polar angles of
the perturbed "Hamiltonian vector"(i.e �ctitious �eld) about which the state will
precess.



Chapter 3

Ammonia molecule

3.1 Introduction

In this chapter we shall see how the two level system model is suitable for studying
particular con�guration of the ammonia molecule which will led us to introduce
the �rst electromagnetic ampli�er: the ammonia maser.

In the ammonia molecule NH3 the three hydrogen atoms form the base of a
pyramid whose apex is the nitrogen atom. We study the molecule using a simpli�ed
model

• The nitrogen atom,much heavier, is motionless

• The potential energy of the system is a function of only one parameter,
the distance x between the nitrogen and the plane de�ned by the hydrogen
atoms.

Figure 3.1: Potential energy for the molecule. Square well potential to approximate
V(x) is shown in dashed lines.

18
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The symmetry of the problem requires V (x) to be even, with two minima cor-
responding to two symmetrical con�gurations in which classically is stable where
we choose energy origin such that these energy are zero.

This model reduces the problem to a motion of a single �ctitious particle of
reduced massµ = 3mHmN

3mH+mN
under the potential V (x).

3.2 In�nite barrier approximation

Let's oversimplify the model assuming that the potential barrier on the hydrogen
plane is in�nite.

No tunnel e�ect is possible and we have in each region a simple in�nite barrier
problem. The possible energies are

En =
~2k2

n

2m
(3.1)

with
kn =

nπ

a
(3.2)

Each of the energy value is twofold degenerate since two wave functions corre-
spond to it:

ψn1 (x) =

{√
2
a

[sin kn(b+ a
2
− x)] if b− a

2
≤ x ≤ b+ a

2

0 everywhere else
(3.3)

ψn2 (x) =

{√
2
a

[sin kn(b+ a
2

+ x)] if b− a
2
≤ −x ≤ b+ a

2

0 everywhere else
(3.4)

The Bohr frequency associated with the �rst two levels correspond the to-and-
fro motion of the particle between the two sides of a de�nite well and physically
such an oscillation represents molecular vibration of the plane of the three hydrogen
about its stable equilibrium position (x = ±b) whose frequency of oscillation falls
in the infrared.

Since V (x) is even the Hamiltonian commutes with the parity operator Π.
The common basis of eigenvectors is symmetrical and antisymmetrical combi-

nations of the ψni having:

ψns (x) =
1√
2

[ψn1 (x) + ψn2 (x)] (3.5)

ψna (x) =
1√
2

[ψn1 (x)− ψn2 (x)] (3.6)

where the particle can be found in both wells.
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Figure 3.2: Energy spectrum in the in�nite barrier approximation.

Figure 3.3: Eigenfunctions of the in�nite barrier problem. The �rst two are lo-
calized on a de�nite side of the barrier while the last two the symmetry of the
problem is used to choose as stationary states symmetrical and antisymmetrical
states.



AMMONIA MOLECULE 21

3.3 Finite barrier

Now we can come back to the original problem where V0 has a �nite value.
V (x) is always even and we can look for eigenfunctions that are common to H

and Π.
In the interval −(b− a

2
) ≤ x ≤ (b− a

2
) the wave function is no longer zero and

we have to solve again the stationary Schroedinger equation obtaining the energy
quantization condition:

tan ksa−
ks√

α2 − k2
s

coth [
√
α2 − k2

s(b−
a

2
)] (3.7)

tan kaa−
ka√
α2 − k2

a

tanh [
√
α2 − k2

a(b−
a

2
)] (3.8)

The trascendental equation can be solved graphically �nding a certain number
of roots (k1

s , k
2
s , . . . , k

1
ak

2
a, . . . ).

It is important to note that the energies En
s and En

a are now di�erent.
Sketching the shape of the energy spectrum we see that the removal of the

degeneracy of E1 and E2 gives rise to doublets.

Figure 3.4: Energy spectrum in the �nite barrier approximation.

The distance between the doublet is much greater than the spacing within each
doublet (103 times). We can de�ne new Bohr frequency

Ω1 =
E1
a − E1

s

h
, Ω2 =

E2
a − E2

s

h
, . . . (3.9)

3.4 Two level system approximation

We see that the condition of two-level system is respected, we can work with
(Ei

s, E
i
a) neglecting all the other energies and the removal of degeneracy can be

easily interpreted, we will follow [4].
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Suppose we are interested in the ground state (i.e n = 1). The molecule is in
a de�nite state of rotation or translation, a physical model for the state space can
be visualized as follows. Suppose the ammonia is rotating about an axis passing
through nitrogen atom and perpendicular to the plane of the hydrogen atoms,
there are two possible con�gurations:

Figure 3.5: Two level system model for the Ammonia molecule in its ground state.

We take these states (|1〉 , |2〉)[i.e (|ψ1
1, |ψ1

2〉〉)] as the basis of our space. Our
mind thinks classically and we can be brought to think that these are stationary
states, but the quantum possibility of tunnel e�ect denies that assumption. When
the height of the barrier is in�nite (|1〉 , |2〉) have the same energy and are indeed
stationary states and the Hamiltonian is:

H0 = E0I (3.10)

To take into account phenomenologically the fact that the barrier is not in�nite
we introduce a coupling term W anti diagonal in (|1〉 , |2〉) base:

W = −Aσx (3.11)

The problem is nothing more than a speci�c case of the general one treated
before.

If we want to �nd the stationary states we can now look at the general formula
(2.2), noting that we are in the maximal splitting condition and A < 0(i.e φ = π)
we obtain:

E± = E0 ∓ A (3.12)
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and the stationary states:

|+〉 =
1√
2

[|1〉+ |2〉] (3.13)

|−〉 =
1√
2

[|1〉 − |2〉] (3.14)

[i.e (|ψ1
s〉 , |ψ1

a〉)].
It is important to highlight that now we have changed notation since |+〉 would

have represented the antisymmetrical combination, so to avoid any confusion the
sign will represent the eigenvalue of the parity operator.

We expect to see Rabi oscillation if the system starts in one of the unperturbed
state.

Suppose that |ψ(0)〉 = |1〉. By simple calculation the state at time t will be:

|ψ(t)〉 =
1√
2
e−

iE0t
~ [ei

At
~ |+〉+ e−i

At
~ |−〉] (3.15)

We again �nd the Rabi problem with P12 and P11 functions that oscillates at
the Bohr frequency υ = 2A

h
[i.e Ω

2
], experimentally found to be 23800MHz which is

in the microwave range called inversion frequency.

3.4.1 Interaction with electric �eld

We see in �g (3.5) that when the nitrogen atom �ips about the plane of hydrogen
also the dipole moment along x �ips.

If we call D the observable associated to it, we assume that in (|1〉 , |2〉) basis
is represented by

D =

[
−η 0
0 η

]
(3.16)

When the molecule is placed in a static electric �eld ξ pointing in the positive
x direction the interaction energy of the molecule with the �eld is then

W ′(ξ) = −ξD = −ηξσz (3.17)

The total Hamiltonian is then:

H = H0 +W +W ′(ξ) =

[
E0 − ηξ −A
−A E0 + ηξ

]
(3.18)

Following the general formulas (2.2) (2.3) (2.4) we arrive to:

E ′± = E0 ±
√
A2 + η2ξ2 (3.19)
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|+′〉 = cos
θ

2
|1〉 − sin

θ

2
|2〉 (3.20)

|−′〉 = sin
θ

2
|1〉+ cos

θ

2
|2〉 (3.21)

Where

tan θ = − A
ηξ

0 ≤ θ < 0 (3.22)

We can sketch the anti-crossing diagram in function of ξ (Which is responsible
for splitting in unperturbed energy).

Figure 3.6: Anticrossing diagram for the Ammonia molecule in a static electric
�eld pointing towards the axis of simmetry of the molecule.

So we see that this result from a compromise between the action of ξ and W .
If we calculate the mean value of the induced electric dipole moment we �nd:

〈±|D|±〉 = ∓ η2ξ√
A2 + η2ξ2

(3.23)

Considering experimental conditions we can always use the approximation:

(
ηξ

A
) << 1 (3.24)

Expanding (3.19) in weak �eld limit we see that:

〈±|D|±〉 = ∓η
2

A
ξ (3.25)

and we can simply calculate also the electrical susceptibility:

ε± = ∓η
2

A
(3.26)
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Moreover in this limit the eigenvalues become:

E ′± = E0 ± (A+
η2ξ2

2A
) (3.27)

3.4.2 Ammonia maser

It is very interesting now to see how all the phenomena discussed in this section
were used to construct the Ammonia maser [5].

The idea is the following. Suppose we have a beam of ammonia molecules,
because the energy separation of the levels is very small a normal population in
thermal equilibrium contains very nearly equal numbers of molecules in each state.
However, by passing the beam through an inhomogeneous electric �eld a separation
can be achieved.

To see this we suppose to have a region where ξ is weak but where ξ2 has a
strong gradient in the (0x) direction

dξ2

dx
= λ (3.28)

According to (3.27) we can �nd the force on the molecules in the x direction

(Fx)± = −
dE ′±
dx

= ∓λη
2

2A
(3.29)

which splits the two population.
Having obtained a population entirely in the state |+〉 the maser function can

be obtained by stimulated emission of the transition (+→ −) which is reinforced
by passing the beam through a cavity tuned to the required frequency.

Figure 3.7: Schematic drawing of the Ammonia maser.
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Let's assume the electric �eld in the cavity is

ξ(t) = ξ0 cosωt (3.30)

The interaction energy can be represented in (|+〉 , |−〉) basis by a o� diagonal
matrix

W ′′ = ηξ(t)σx =

[
0 ηξ(t)

ηξ(t) 0

]
(3.31)

This is totally analogous to the SR experiment so we use the same non pertur-
bative approach. The wave function at time t will be:

|ψ(t)〉 = c+(t) |+〉+ c−(t) |−〉 (3.32)

Solving the time dependent Schroedinger equation in the RWA approximation we
arrive at the (1.39) (1.40):

i
dC+(t)

dt
=
ω̃0

4
ei(ω−ω0)tC− (3.33)

i
dC−(t)

dt
=
ω̃0

4
e−i(ω0−ω)tC+ (3.34)

where now:

~ω0 = 2A (3.35)

~ω̃0 = 2ηξ0 (3.36)

Following general solution (1.44) (1.45) (where we have set the initial conditions
just to �t this particular situation) which in present case (i.e resonance) reads:

P± = |c−(t)|2 = sin2 ω̃0t

4
(3.37)

P++ = |c+(t)|2 cos2 ω̃0t

4
(3.38)

We see that every ammonia molecule will undergo to the transition if the time
T of transit is given by:

ω̃0T

4
=
π

2
(3.39)

Of course not all the molecules will have the same velocity, but if the most
probable velocity is v then the length of the cavity L should be adjusted so that:

L = vT =
2πv

ω̃0

(3.40)

Power outputs of 10−10W can be obtained with line width as small as 10−2Hz
which makes the ammonia maser an excellent frequency standard.



Chapter 4

Density matrix formalism

4.1 Introduction

In many situations the state of the system is not perfectly determined, often system
properties are known only statistically. We have to incorporate into quantum
mechanical formalism this incomplete information following [3].

We formalyze saying that we deal with statistical mixture of states (|ψ1〉 , |ψ2〉 , . . . )
with probabilities of be in that state (p1, p2, . . . )

It's fundamental to note that probabilities intervene on two di�erent levels:

• �rst,the partial information about the system which are necessarily statistical

• then, when the postulates concerning the measurement are applied

Moreover the system is not equivalent to a system having the probability |c2
k|

of being in the state |ψk〉, due to interference e�ects between these states. It is
impossible, in general, to describe the statistical mixture with an "average state
vector".

4.2 Pure state

Before studying the general case we begin by analyzing the case where the state
system is perfectly known, i.e pure state case.

Let (|un〉) be a basis and |ψ(t)〉 =
∑

n cn(t) |un〉 the state vector.
If A is an observable, the mean value of A at the instant t is:

〈ψ(t)|A|ψ(t)〉 =< A > (t) =
∑
n,p

c∗n(t)cp(t)Anp (4.1)

27
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Now we introduce the density operator ρ(t) de�ned by

ρ(t) = |ψ(t)〉〈ψ(t)| (4.2)

The density operator is represented in (|un〉) basis by

ρpn(t) = c∗n(t)cp(t) (4.3)

The introduction of this operator allow us to obtain all the physical preditions
that can be calculated with the state vector formalism.

• The normalization of the state vector suggests:∑
n

ρnn(t) = Tr{ρ(t)} = 1 (4.4)

which express the conservation of probability.

• Rewriting the mean value of A:

< A > (t) =
∑
np

〈up|ρ|un〉 〈un|A|up〉 =
∑
p

〈up|ρA|up〉 = Tr{ρ(t)A} (4.5)

• The time evolution of the density operator derive directly from Schroedinger
equation

dρ(t)

dt
= (

d |ψ〉
dt

) 〈ψ(t)|+ |ψ(t)〉 (d 〈ψ(t)|
dt

) =
1

i~
[H(t), ρ(t)] (4.6)

known as "Von Neumann equation".

Nevertheless this formalism seems to be unnecessary in the pure state case
there are some advantages that will be fundamental when we dell with statistical
mixture.

First the global phase invariance is already contained in the de�nition of the
density operator but more important is the fact that the formulas involves linear
operation.

Another important properties are that:

• The density operator is hermitian

ρ(t) = ρ † (t) (4.7)

•
ρ2(t) = ρ(t), Tr

{
ρ2(t)

}
= 1 (4.8)
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4.3 Statistical mixture

Let's now consider the general case. The various probabilities are arbitrary but
must respect

0 ≤ p1, p2, · · · ≤ 1,
∑
k

pk = 1 (4.9)

We can calculate the probability that a measurement of A yield an with:

P(an) =
∑
k

pkPk(an) (4.10)

where Pk(an) is de�ned by

Pk(an) = 〈ψk|Pn|ψk〉 (4.11)

From (4.5) we have
Pk(an) = Tr{ρkPn} (4.12)

where:
ρk = |ψk〉〈ψk| (4.13)

is the density operator corresponding to the pure state ψk
Then exploiting linearity of the trace we have:

P(an) = Tr{ρPn} (4.14)

where we have set:
ρ =

∑
k

pkρk (4.15)

Since the coe�cients pk are all real obviously we have:

ρ = ρ† (4.16)

Moreover:

•

Tr{ρ} = Tr

{∑
k

pkρk

}
=
∑
k

pk Tr{ρk} = 1 (4.17)

• It can be easily shown that:

< A >=
∑
n

anP(an) = Tr

{
ρ
∑
n

anPn

}
= Tr{ρA} (4.18)
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• Using Schroedinger equation linearity it can be found the law for temporal
evolution

i~
dρ(t)

dt
= [H(t), ρ(t)] (4.19)

Where we suppose that, despite the lack of information about the state
vector, the hamiltonian is perfectly known.

• ρ is a positive operator

〈u|ρ|u〉 =
∑
k

pk 〈u|ρk|u〉 =
∑
k

pk| 〈u|ψk〉 |2 ≥ 0 (4.20)

We have so generalized all the equation for the pure state density matrix to
the general case with the exception of (4.8) since ρ is no longer a projector.

Each one of the matrix elements of the density operator has a precise meaning.
If we analyze the diagonal one, we can write in the (|un〉) basis:

ρnn =
∑
k

pk(ρk)nn (4.21)

introducing:
c(k)
n = 〈un|ψk〉 (4.22)

(4.21) reduces to

ρnn =
∑
k

pk|c(k)
n |2 (4.23)

so that ρnn represents the average probability of �nding the system in the state
|un〉.

For this reason ρnn is called population of the state |un〉.
For non-diagonal term with analogous calculation:

ρnp =
∑
k

pkc
(k)
n c(k)∗

p (4.24)

where c
(k)
n and c

(k)∗
p represents interference terms between the states |un〉 and

|up〉 which appear once the state |ψk〉 is a coherent linear superposition of these
states. If ρnp 6= 0 a certain coherence between these states exists, that is the reason
why the non diagonal elements are called coherences.

This nomenclature obviously depends on the basis chosen. From (4.6) we know
that ρ is hermitian, so it is always possible to �nd an orthonormal basis (|χi〉) where
ρ is diagonal having:

ρ =
∑
i

πi |χi〉〈χi| (4.25)
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Since ρ is positive and Tr{ρ} = 1 the following is always true:

0 ≤ πi ≤ 1 (4.26)∑
i

πi = 1 (4.27)

so that ρ describes a statistical mixture of χi with probabilities πi and no coher-
ences.

If in the chosen base (|un〉) the Hamiltonian is diagonal and time-independent,
Von Neumann equation reduces to:

i~
dρnn(t)

dt
= 0 (4.28)

i~
dρnp(t)

dt
= (En − Ep)ρnp (4.29)

equivalent to:

ρnn(t) = const (4.30)

ρnp(t) = e
i(Ep−En)t

~ ρnp(0) (4.31)

4.4 Partial trace and study of entangled systems

The formalism of density operator is fundamental when we want to consider two
di�erent systems (1) and (2) and the global system (1)+(2). The state space is
ε = ε(1)⊗ ε(2) with basis (|un(1)〉 |vp(2)〉).

The density operator ρ acts in ε, but suppose that we are interested on physical
predictions on system (1) or (2). We introduce a new operator ρ(1) such that

〈un(1)|ρ(1)|un(1)〉 =
∑
p

[〈un(1)| 〈vp(2)| ρ(|un(1)〉 |vp(2)〉)] (4.32)

That is equivalent to say:
ρ(1) = Tr2 ρ (4.33)

and similarly for ρ(2).
The operation Tri is called partial trace, and it is clear why noting that:

Tr{ρ} = Tr1 Tr2 ρ = Tr2 Tr1ρ (4.34)

It can be demonstrated that these new operators satisfy all properties of density
operators, allowing us to make physical prediction about a measurement of A(1)
acting only on space ε(1).
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We know that:
< A(1) >= Tr{ρA(1)} (4.35)

This expression can be simpli�ed by using de�nition of trace and closure rela-
tion obtaining:

< A(1) >= Tr{ρ(1)A(1)} (4.36)

Enabling us to calculate mean values of observables acting on system (1) as if
the system was isolated and has ρ(1) as density operator.

This is a very useful tool when the state of the system (1) + (2) is not in a
product state so that we cannot assign a state vector to system (1). Nonetheless
this have some consequences in fact even if ρ describes a pure state this is not in
general true for ρ(1) and ρ(2), and it is in general impossible to �nd an Hamiltonian
operator relating to system (1) alone which would enable us to write a Liouville
equation for density operator ρ(1) which instead is much more di�cult.

4.5 Density matrix in two-level system

4.5.1 Pure state

Consider a spin 1/2 system coming out from a polaryizer in the eigenstate |↑〉u
of the ~S · û component of the spin. This is a pure state and the for each spin
< ~S >= ~

2
û.

In the (|↑〉 , |↓〉) basis the density matrix take on the simple form

ρ(θ, φ) =

(
cos2 θ

2
sin θ

2
cos θ

2
e−iφ

sin θ
2

cos θ
2
eiφ sin2 θ

2

)
(4.37)

The matrix is in general non diagonal, and we note that

• The population are related to the longitudinal polarization < Sz >

ρ↑↑ − ρ↓↓ = cos θ =
2

~
< Sz > (4.38)

• The coherences are related to the transverse polarization < S⊥ >

|ρ↑↓| = |ρ↓↑| =
1

~
< ~S⊥ > (4.39)
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4.5.2 Statistical mixture

Let us consider now spin of silver atom leaving a furnace. We have just one but
important information: the spin is equiprobable to point in any direction of space.

To de�ne the density matrix in this case we use the de�nition (4.15) where the
sum is replaced by integral over all the possible directions:

ρ =
1

4π

∫
dΩρ(θ, φ) (4.40)

giving:

ρ =

(
1/2 0
0 1/2

)
(4.41)

The ensemble is maximally unpolarized in fact we note that ρ2 = ρ
2
and if we

calculate the mean value of the spin components:

< Si >= Tr{ρSi} = 0 (4.42)

It is clear that this statistical mixture cannot be described by an average state
vector since we demonstrated that if

|ψ〉 = c1 |↑〉+ c2 |↓〉 (4.43)

then we can associate for alll c1 and c2 two polar angles (θ, φ) �xing the direction
of polarization of |ψ〉.

4.5.3 Geometrical interpretation

We have seen that with pure state system Bloch sphere formalism o�ered us an
intutive point of view of how the two level system would have evolved in time and
what was the physical situation, in this section we see that a similar formalism
can be applied also with statistical mixture as presented in [6].

We exploit the fundamental property of the σi to be basis ofM2.
We can expand M ∈M2 (Space of 2x2 Hermitian matrices) in terms of the σi:

M = a0I + ~a · ~σ (4.44)

where the coe�cients are:

ax =
Trρσx

2
ay =

Tr{ρσy}
2

az =
Tr{ρσz}

2
(4.45)

and:

a0 =
Tr{ρ}

2
(4.46)
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Formula (4.44) can be simpli�ed if the matrix M is a density matrix of some
statistical mixture of spin 1

2
obtaining:

M = ρ =
1

2
I +

1

~
< ~S > ·~σ (4.47)

First we understand that the system is in a pure state if

ρ2 = ρ (4.48)

that is true if and only if

< S2 >=
~2

4
(4.49)

i.e. the system is polarized along some direction û.
Let's consider now a statistical mixture of general two level systems. From

(4.44) we know that to any projector onto |ai〉 it can be associated a Bloch vector
~a such that

|ai〉〈ai| =
1

2
[I + ~ai · ~σ] (4.50)

We have learned that ρ is nothing else that a weighted projector, so if we sup-
pose that our statistical mixture is composed of (|ai〉) with probabilities (p1, p2, . . . )
we are in the position to substitute (4.53) in the de�nition of ρ to have

ρ =
1

2
[(p1 + p2 + . . . ]I + (

∑
i

pi~ai · ~σ) =
1

2
[I + ~r · ~σ] (4.51)

where
~r =

∑
i

piai = rr̂ (4.52)

The statistical mixture is totally described by ~r which is analogous to a "center
of mass" of the system. By comparing formulas (4.50) and (4.54) we see that:

~ri = Tr{ρσi} =
2

~
< ~Si > (4.53)

We see that the center of mass ~r plays the role of the �ctitious spin Bloch
vector but with the fundamental di�erence that now the tip of the vector points
inside the Bloch sphere going to the limit to zero when the ensemble is totally
unpolarized.

The geometrical formalism remains unaltered and it is clear that two statistical
mixture with the same "center of mass" will describe physically indistiguishable
equivalent mixtures.

The density matrix is hermitian and the spectral decomposition is:

ρ = r1 |r1〉〈r1|+ r2 |r2〉〈r2| (4.54)
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Figure 4.1: At left three weighted points on the unit 3-ball represent a mixture
of three quantum states. On the right one dimension is discarded, construction
indicates how one might compute the location of r which enters the "eigenrepre-
sentation" of the mixture.

where r1 and r2 are de�ned by:

r1 + r2 = 1 r1 − r2 = r (4.55)

It is natural then to introduce

Q = 1− r =

{
0 for pure states

1 for maximally mixed states
(4.56)

which is analogous to the degree of polarization of classical light theory.
In this framework an useful quantity is also

S = −Tr{ρ log ρ} = −r1 log r1 − r2 log r2 (4.57)

and we have:

S =

{
0 for pure states

log 2 for maximally mixed states
(4.58)

de�ned as the entropy of the two level system.
So far ρ can be represented on the Bloch sphere by the center of mass ~r that

gives us information of how much is "polarized" the mixture. We are interested
now in treating dynamical evolution.

As always we are analyzing any two-level system in total generality described
by ρ under the Hamiltonian H:

H = ωSu (4.59)

where û is the direction of the �ctitious �eld ~B
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We expand easily in terms of the Pauli matrices obtaining:

H =
~ω0

2
û · ~σ (4.60)

.
We now decompose ~r along the "Hamiltonian vector" û

~r = ~r‖ + ~r⊥ (4.61)

and the corresponding density matrices results

ρ‖ =
1

2
(I + ~r‖ · ~σ) (4.62)

ρ⊥ =
1

2
~r⊥ · ~σ (4.63)

with ρ = ρ‖ + ρ⊥
Using Von Neumann equation we are led to:

d~r‖
dt

= ~0 (4.64)

d ~r⊥
dt

= ω0û× ~r⊥ (4.65)

We see that upon substituting the Bloch vector associated to pure state |ψ〉 with
~r, we again �nd precession about an "Hamiltonian" axis with angular velocity
ω0 = E+−E−

~ dictated by energy di�erence .

Figure 4.2: The long green arrow is set by the hamiltonian. The shorter red arrow
twirls around the hamiltonian axis.

Moreover we note that the length of ~r as the precession goes does not change
and it can be read as an illustration of the isoentropicity of quantum dynamical
motion.



Chapter 5

Neutrino oscillation

5.1 Introduction

In this section we want to give a qualitative overwiev of neutrino oscillations, using
the tools developed before, following [7]. All along this chapter we will work in
natural units to lighten up the notation. Chadwick in 1914 demonstrated that the
β− decay spectrum was continuous, incompatible with the accepted theory, which
modelled the phenomena as a two body decay. This surprising result led Bohr
and many other scientists to think that the conservation of energy held only in a
statistical sense. To remedy this serious problem in 1930 Pauli proposed that the
existence of neutral weakly interacting fermion could solve the problem which was
called by Fermi neutrino. Fermi theory will be a success but it is based on the
fundamental fact that neutrino was massless.

Today the neutrino,in agreement with the standard model, belongs to the lep-
ton family in which we �nd three doublets of particles[

e−

υe

]
(5.1)[

µ−

υµ

]
(5.2)[

τ−

υτ

]
(5.3)

formed by a charged lepton and its neutrino. Obviously there are the correspondent
doublets of antiparticle.

What distinguish the various neutrino is the reaction to which they take part.
For example if we have a neutrino produced in the decay:

π+ → µ+ + υµ (5.4)

37
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it can interacts with the neutron

υµ + n→ µ− + p (5.5)

at it is what it identi�es the muonic neutrino.
It is important to highlight that the standard model gives zero mass to neu-

trinos but as we will see is the mass di�erence between them that causes the
oscillation phenomena.

5.2 Pure state oscillation

Each of the neutrino presented above is associated with an eigenstate of weak
�avor |α〉.

In the standard theory of neutrino oscillation a neutrino with �avor α and
momentum ~p is described by the �avor state

|υα〉 =
∑
k

U∗αk |υk〉 (5.6)

The |υk〉 are the massive neutrino states and are eigenstates of the Hamiltonian

H |υk〉 = Ek |υk〉 (5.7)

with energy eigenvalues

Ek =
√
~p2 +m2

k (5.8)

so that the massive neutrino states evolve in time as plane waves.
For ultrarelativistic neutrinos (5.8) can be approximated by

Ek ' p+
m2
k

2p
(5.9)

Then it is straightforward to calculate

Ek − Ej '
∆m2

kj

2p
(5.10)

It is clear that this di�erence of energy will become a phase di�erence in time
evolution and the presence of the weight U∗αk will cause the oscillation phenomena.
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5.3 Two level system approximation

We want to focus on two neutrino mixing to see how the tools developed before
can help us understanding the problem.

First of all we need to understand what means the TLS approximation in this
case. We are going to negletct the coupling of the �avor neutrinos with the third
massive neutrino that exists in nature. The two �avor neutrinos under analysis can
be pure �avor neutrinos or also linear combination of them. This approximation
is very useful in practice for two reasons:

• Oscillation formula depend on fewer parameters

• Many experiments are not sensitive to the in�uence of three neutrino mixing,
so that we can analyze the data with the TLS model.

The two �avor neutrinos are linear superposition of the two massive neutrinos.
The coe�cients are given by the unitary matrix

U =

(
cos θ sin θ
− sin θ cos θ

)
(5.11)

where θ is called the mkixing angle with an interval of 0 ≤ θ ≤ π
2
.

We have now everything to use the tools developed before. The Hamiltonian
in the (|υ1〉 , |υ2〉) basis is of course diagonal and given by

H =

(
p+

m2
1

2p
0

0 p+
m2

2

2p

)
(5.12)

We can easily �nd the expression in the (|υα〉 , |υβ〉) basis:

HF = U †HU = pI +
1

2p

(
m2

1 cos2 θ +m2
2 sin2 θ ∆m2

2
sin 2θ

∆m2

2
sin 2θ m2

2 cos2 θ +m2
1 sin2 θ

)
(5.13)

We know that the diagonal terms does not produce any phase di�erence be-
tween the states so that we are free to add

−m
2
1 +m2

2

4p
I (5.14)

obtaining:

HF = H0 +H ′ = (p− m2
1 +m2

2

4p
)I +

∆m2

4p

[
− cos 2θ sin 2θ
sin 2θ cos(2θ)

]
(5.15)
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We are now again in the condition to apply our general formulas in fact we can
identify (|α〉 , |β〉) with (|1〉 , |2〉) as our unperturbed states.

We see that the presence of a mixing angle apart from introducing the coupling
term a�ects also the di�erence in the unperturbed energy ∆, we have in particular:

∆ = cos 2θ (5.16)

So it determines if we are in a strong or weak coupling environment.
We can now easily solve the Rabi problem and �nd the probability to go from

one �avor to another. Using (2.26) we obtain:

Pα→β(t, θ) = sin2 2θ sin2 ∆m2L

4E0

(5.17)

where L is the length of oscillation and is approximately equal to t.

5.3.1 Interaction with matter

In this analysis no term that involves interaction with matter is taken into account.
In fact what is presented above results only supposing that oscillation take place
in vacuum.

Possible interaction with matter are neutral current interaction (NC) and
Charged current interaction (CC). The �rst are independent from the �avor and
so insigni�cant to our scope since give only a common phase factor. The second
are direct consequence of presence of electron which can interact with electronic
neutrino in scattering phenomena:

υe + e− → υe + e− (5.18)

a�ecting the oscillation phenomena.
The Hamiltonian is given, at �rst order in Fermi constant GF by:

Ĥ ′′ =
√

2GFNe |υe〉〈υe| (5.19)

where Ne,constant in our treatment,is the di�erence of the density of positron
and electron in the medium. We have to suppose now that one �avour state is the
electronic one, leaving arbitrariness on the other.

Calling VCC =
√

2GFNe we see that HF becomes

Hm
F = (p− m2

1 +m2
2

4p
)I +

∆m2

4p

(
− cos 2θ sin 2θ
sin 2θ cos(2θ)

)
+

(
VCC 0

0 0

)
(5.20)

where the apex m stays for medium. No problem arise from this interaction
since a�ects only the di�erence on the "unperturbed energy". We are now in-
terested to put in a nicer form to calculate transition probabilities. Adding the
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diagonal terms −VCC
2
I and neglecting the term proportional to I rede�ning the

energy origin we �nd :

Wm =
1

4p

[
−∆m2 cos 2θ + 2pVCC ∆m2 sin 2θ

∆m2 sin 2θ ∆m2 cos 2θ − 2pVCC

]
(5.21)

We can de�ne new parameters θm (∆m2)m so that the Hamiltonian is equal to
the vacuum one:

∆m2 cos 2θ − 2pVCC = (∆2m)m cos 2θm (5.22)

∆m2 sin 2θ = (∆m2)m sin 2θm (5.23)

and it is possible by setting:

tan 2θm =
sin 2θ

cos 2θ − 2pVCC
∆m2

(5.24)

(∆m2)m = ∆m2

√
sin2(2θ) + [cos2 2θ − 2pVCC

∆m2
]2 (5.25)

enabling us to write in the compact form:

Wm =
(∆m2)m

4p

[
− cos 2θm sin 2θm
sin 2θm cos 2θm

]
(5.26)

We arrive to the conclusion that for the Hamiltonian for the oscillation phenom-
ena remains unchanged as long as we make the substitution with the parameters
de�ned above.

We know that the maximal splitting condition looking at the anticrossing dia-
gram is achieved when E1 − E2 = Eυe − Eυµ = 0 that is when:

cos 2θ − 2pVCC
∆m2

= 0 (5.27)

obtaining the "resonance condition":

√
2GFNe =

∆m2

2p
cos 2θ (5.28)

The Hamiltonian matrix becomes:

WR =
(∆m2)m sin 2θm

4p
σx (5.29)

and its eigenstates are: ∣∣υm+ 〉 =
[(|υe〉+ |υµ〉)]√

2
(5.30)∣∣υm− 〉 =

[(|υe〉 − |υµ〉)]√
2

(5.31)

Moreover we note that in resonance condition (∆m2)m reach its minimum.



NEUTRINO OSCILLATION 42

5.4 Statistical mixture

However in real physics application neutrinos has to be studied with the density
matrix formalism developed before.

We are interested in applying the geometrical approach exposed in chapter
four.

Since the TLS approximation is valid we can use the property of Pauli matrices
and write:

H = −1

2
~σ · ~B (5.32)

ρ =
1

2
I +

1

2
~σ · ~r (5.33)

We remember that:

r1 = 2 Re{ρeµ} r2 = −2 Im{ρeµ} r3 = ρee − ρµµ (5.34)

B1 = −2 Re{Heµ} B2 = 2 Im{Heµ} B3 = Hee −Hµµ (5.35)

So that now our problem is reduced to the well known precession of a magnetic
moment ~r in a magnetic �eld ~B in our �ctitious geometrical space.

Supposing Ne constant all the proposition will be valid in the vacuum case by
applying the substitution (5.24) and (5.25).

Considering the Hamiltonian (5.21) the vector ~B is given by:

B1 = −(∆m2)m
2p

sin 2θm (5.36)

B2 = 0 (5.37)

B3 =
(∆m2)m

2p
sin 2θm (5.38)

Let's call ( ~e1, ~e2, ~e3) the �ctitious geometrical basis. We see that B lies on the
Π13 plane inclined of 2θm with respect of ~e3.

Suppose that at t = 0 the statistical mixture is in a incoherent superposition
of �avor eigenstates. We can set in total generality the initial condition to be:

r1(0) = 0 (5.39)

r2(0) = 0 (5.40)

r3(0) = We −Wµ (5.41)

Since γ = 1 in our units the "Larmor angular frequency" is:

ω = −| ~B| = −(∆m2)m
2p

(5.42)
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Following formula (4.68) the �ctitious spin vector at time t will be:

r1(t) =
1

2
sin 4θm(We −Wµ)[cos

(∆m2)m
2p

t− 1] (5.43)

r2(t) = sin 2θm(We −Wµ) sin
(∆m2)mt

2p
(5.44)

r3(t) = (We −Wµ)[1− 2 sin2 2θm sin2 (∆m2)mt

4p
] (5.45)

Figure 5.1: Neutrino oscillation on the Bloch sphere.

So that from (4.54) we relate the matrix element to the �ctitious spin obtaining:

Pe(t) = ρee(t) =
1

2
+ (We −Wµ)[

1

2
− sin2(2θm) sin2 (∆m2)mt

4p
] (5.46)

Pµ(t) = ρµµ(t) =
1

2
− (We −Wµ)[

1

2
− sin2(2θm) sin2 (∆m2)mt

4p
] (5.47)

that for the pure state case (i.e We/µ = 1) reduces to (2.26).



Chapter 6

Conclusion

The aim of this work was to underline with simple but e�cient argument the net
di�erence between classical and quantum mechanical modelization of nature. This
was done with the application of quantum mechanical theory in its (computing-
wise) easiest case. The two level system theory is used to model many other
physical settings and plays a fundamental role in di�erent interesting applica-
tions. The spin resonance experiments are the theoretical basis for developing
the Magnetic Resonance Imaging technique, used in radiology to form pictures of
the anatomy and physiological processes of the body, without involving X-Rays
or ionizing radiations. Quantum computing employes the two level systems con-
trol (i.e. Quibit) to build a new theory of information with outstanding results
in which spin resonance-type experiments play a crucial role [8]. As described for
the Ammonia molecule and neutrino �avor eigenstates, the presence of a quan-
tum mechanical coupling between "stationary states" can be strongly related to
the cognition process which is currently modeled as a quantum process. In this
regard, simulation of the dynamic perception of the Necker cube in terms of a two
level quantum systems has led to the introduction of a neuro-physiological action
similar to the Planck constant [9] .
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