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Introduction

The following study aims to evaluate the Casimir energy in a generical number

of cavity, when the distance from the plates is in the order of nanometers. The

dielectric model [21] doesn't work in this case because the distance from the

plates are too small for this reason using the Kempf work [20] we create a �rst

approximation for the Casimir energy in this model.

The Archimedes experiment aims to calculate the Casimir energy in a plates of

Ybco in the order of few centimeters that contains a large number of cavities

(' 107) in the order of nanometers. The following study allow to give us a �rst

analysis of the experimental result of Archimedes.

In the �rst chapter we have a historical description about the problem of the

black body and the Planck model that gave birth at the study of the zero point

energy.

In the second chapter we explain how to quantize the electromagnetic �eld and

obtain, in this case too, the zero-point energy.

After that we show the Casimir calculus, i.e., the macroscopic e�ect of the zero

point energy for two plates and extend this for a plates in a dielectric material.

In the third chapter we analyze the Barton model [14] for a cavities (plasma

sheet model) and we calculate the Casimir energy for one and more cavities

(for instance 2,3). After that we consider the di�erence between a quantum

system with zero temperature and a quantum system with �nite temperature

and evaluate the Casimir energy when have �nite temperature.

Finally we generalize the Casimir energy formula for a number n of cavities and

note the di�erence between a dielectric case and the Barton model.

In the fourth chapter we analyze the evolution of the generalization to n cavity

of the Casimir energy in function of distance and number of cavities and we
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Introduction 4

have evaluate that this evolution follows the same properties of the dielectric

case (see Bordag [17]).



Chapter 1

The Planck model

The Casimir e�ect in its simplest form is the interaction of a pair of neutral,

parallel conducting planes due to disturbance of the vacuum of the electromag-

netic �eld. It is a pure quantum e�ect, there is no force between the plates

in classical electrodynamics. In the ideal situation, at zero temperature for in-

stance, there are no real photon in between the plates. So it's only the vacuum,

i.e., the ground state of quantum electrodynamics which causes the plates to

attract each other.

In this section we give a brief historical introduction about the discovery of

zero-point energy. We analyze the blackbody problem that is of fundamental

importance in the development of quantum �eld theory, and led to the concept

of zero-point energy.

1.1 The blackbody problem

In 1860 Kirchho� derived a general relation between the radiative and absorptive

strengths of a body at �xed temperature T . According to Kirchho�'s law, the

ratio of the radiative strength to the absorption coe�cient of the radiation of

wavelength λ is the same for all bodies at temperature T , and de�nes a universal

function F (λ, T ). This led to the abstraction of an ideal blackbody for which

the absorption coe�cient is unity at every wavelength, corresponding to total

absorption. Thus F (λ, T ) characterizes the radiative strength at wavelength λ

of a blackbody at temperature T . The problem was to determine the universal

function F (λ, T ).

5



CHAPTER 1. THE PLANCK MODEL 6

An important step was taken in 1884 by Boltzmann, who invoked several as-

pect of Maxwell's electromagnetic theory. The most important of these for the

present discussion is the result that isotropic radiation exerts on a perfectly

re�ecting surface a pressure u/3 where u is the energy density of the radiation.

Boltzmann considered blackbody radiation con�ned in a cylinder of volume V ,

one end of which is a perfectly re�ecting piston. The radiation pressure of the

piston increases the volume by dV , and in order to maintain a constant temper-

ature, according to the �rst law of thermodynamics, an amount of heat must

be added :

dQ = V du+
4

3
udV (1.1.1)

Since dS = dQ
dt is an exact di�erential we obtain Stefan-Boltzmann-law:

u = bT 4 (1.1.2)

where b is a universal constant (the Stefan constant).

The Stefan-Boltzann law is in con�ict with elementary classical models of equi-

librium between radiation and matter. Indeed let us consider the classical os-

cillator model of an atom, where an electron is assumed to be bound by an

elastic restoring force. In a state of equilibrium between radiation and matter,

the energy absorption rate should equal the emission rate:

πe2

3m
ρ(ν0) =

32π4e2ν4
0

3c3
x2 (1.1.3)

Where ρ(ν)dν denotes the energy for unit volume of radiation in the frequency

interval [ν, ν + dν], ν0 is the natural oscillation frequency of the electron in the

atom and x is the electron displacement from its equilibrium position in the

classical oscillator model in the atom. Now according to the virial theorem

of classical mechanics the average potential energy of the electron oscillator is

equal to the average kinetic energy and their sum is the total oscillator energy

U = 4π2mν2
0x

2 obtaining that

ρ(ν) =
8πν

c3
U (1.1.4)

for a blackbody, which absorb all frequencies ν. Finally the equipartition theo-

rem of a classical statistical mechanics demand that the average value of U in

thermal equilibrium is kT , where k is Boltzmann's constant, so that the spectral
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energy density of thermal radiation must be:

ρ(ν) =

(
8πν

c3

)
kT (1.1.5)

this is the Rayleigh-Jeans distribution. The total electromagnetic energy density

u =

∫ ∞
0

ρ(ν)dν (1.1.6)

violates the Stefan-Boltzmann law. Furthermore the Rayleigh-Jeans law su�er

from the ultraviolet catastrophe: u diverges when (1.1.6) is used for ρ(ν).

The Rayleigh-Jeans distribution obeys to another classical result, due to Wien

in 1893. Wien basically followed Boltzmann's model of radiation contained in

a cylinder with a piston, but included the Doppler shift of radiation re�ected

by the moving piston. This allowed radiant energy to be exchanged among

di�erent frequencies. In this way Wien showed that the spectral energy density

must follow the general form:

ρ(ν) = ν3φ1(ν/T ) (1.1.7)

or, in term of the wavelength:

ρ(λ) = λ−5φ2(λ/T ) (1.1.8)

where φ1 and φ2 are undetermined functions.

1.2 Planck's solution and zero point energy

In 1890, Planck produced a derivation of the Wien distribution from general

thermodynamic considerations plus the assumption that the entropy of a collec-

tion of radiators depends only on their total energy. An important result was

the following relation between the entropy S and the average energy U of an

elementary radiator in thermal equilibrium with radiation at the temperature

T :
∂2S

∂U2
= −A

U
(1.2.1)
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where A is a constant dependent on the frequency of a given radiator. From

this equation and the general relation ∂S/∂U = 1/T it follows that:

U = Be−1/AT (1.2.2)

where B is a constant that, like A, may depend on the frequency of a given ra-

diator. This result together with eq.(1.1.4), yields the radiation spectral energy

density:

ρ(ν) = f(ν)e−1/AT (1.2.3)

where f(ν) is some function of ν. Wien's displacement law implies that f(ν)

and A are proportional to ν3 and ν−1, respectively, so that:

ρ(ν) = Cν3e−Dν/T (1.2.4)

where C and D are constant or

ρ(λ) = αλ−5e−β/λT (1.2.5)

where α and β are constant the equations (1.2.4) and (1.2.5) is know as Wien

distribution.

The Wien distribution, however, was soon found to be incorrect in higher wave-

length's experiment. The data indicated that ρ(ν) was proportional to temper-

ature T for small ν and large T , indeed the Rayleigh-Jeans distribution �ts with

the experimental data in this frequency range.

For small ν and large T , the experimental result ρ(ν) ∝ T and equation

(1.1.4) imply U ∝ T and therefore, since ∂S/∂U = T−1, ∂2S/∂U2 = U−2

and S ∝ logU . On the other hand (1.2.1) leads to Wien distribution, which has

the correct form for large ν and small T , for this reason Planck proposed the

interpolation:
∂2S

∂U2
=

−A
U(B + U)

(1.2.6)

where A and B are constant. Using again the relation ∂S/∂U = T−1, equation

(1.1.4) and the Wien displacement law, one obtain from (1.2.6) the spectral

energy density:

ρ(ν) =
αλ−5

e−β/λT − 1
(1.2.7)

where α and β are constant. This formula was found to agree with all the
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existing data.

The Planck's reasoning may be summarized as follows([1], [2], [3], [4]). Consider

N radiators of frequency ν and total energy UN = NU = Pε, where P is a

large integer and ε is a �nite element of energy. The entropy SN = NS =

N logWN , where WN is the number of ways in which the P energy element can

be distributed among N radiators. If the energy element are assumed to be

indistinguishable we have:

WN =
(N − 1 + P )!

P !(N − 1)!
(1.2.8)

use the Stirling's approximation, then gives, for N,P � 1

S ' k
[
(1 +

U

ε
) log(1 +

U

ε
)− U

ε
log

U

ε

]
(1.2.9)

thus:
∂S

∂U
=

1

T
= log(1 +

ε

U
)→ U =

ε

eε/kT − 1
(1.2.10)

for the average energy of the radiators. The excellent agreement between (1.2.7)

and experiment, together with the eq.(1.1.4), suggests that ε is inversely pro-

portional to the wavelength, or directly proportional to the frequency of the

oscillator:

ε = hν (1.2.11)

then

U =
hν

ehν/KT − 1
(1.2.12)

and (1.1.4) implies

ρ(ν) =
8πhν3/c3

ehν/kT − 1
(1.2.13)

for the spectral energy density of thermal radiation.

A revolutionary aspect of Planck's calculation, of course, is the physical sig-

ni�cance it attaches to the energy element of size ε, and the relation (1.2.11)

between ε and the frequency ν of a material oscillator. Boltzmann had also

employed energy element in his counting of ways, but in his calculation ε had

no particular signi�cance and in fact could ultimately be taken to be zero once

a formula of WN had been obtained. If Planck had taken the limit ε → 0 in

equation (1.2.10), however, then ∂S/∂U → k/U and ∂2S/∂U2 → −k/U2 which

leads to the Rayleigh-Jeans distribution. In Planck's derivation of his spectrum,
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therefore, the quantization of energy was absolutely essential.

Einstein and Stern noted a circumstance about the zero-point energy is worth

mentioning. Consider the classical limit kT � hν of the expression (1.2.12) for

the average energy of an oscillator in thermal equilibrium with radiation:

U =
hν

ehν/KT − 1
' hν

1 + hν
kT + 1

2 ( kνkT )2 − 1
=

kT

1 + 1
2
hν
kT

' kT − 1

2
hν (1.2.14)

thus U contains a �rst-order temperature-independent correction to kT , the

energy predicted by the equipartition theorem in the classical limit but:

U +
1

2
hν =

hν

ehν/KT − 1
+

1

2
hν (1.2.15)

which includes the zero point energy 1
2hν, does not have a �rst-order correction

to kT in the classical limit. In the Planck's second theory U was in fact replaced

by U + 1
2hν.

In his second theory, Planck considers that the absorption of radiation was as-

sumed to proceed according to classical theory, whereas emission of radiation

occurred discontinuously in discrete quanta of energy. Assumes that an oscil-

lator can radiate only after it has continuously absorbed an energy hν. Let

Pn be the probability that it has energy between (n − 1)hν and nhν, there is

a probability p that it will lose all its energy in the form of radiation, and a

probability 1−p that it continues to absorb without emission of radiation. Thus

P2 = P1(1− p), P3 = P2(1− p) = P1(1− p)2.... and Pn = P1(1− p)n−1and

∞∑
n=1

Pn = 1 =

∞∑
n=1

P1(1− p)n−1 = P1/p (1.2.16)

or P1 = p is the probability that an oscillator in equilibrium with radiation has

energy between 0 and hν, P2 = p(1−p) is the probability that it has the energy

between hν and 2hν, and Pn = p(1− p)n−1 is the probability that it has energy

between (n− 1)hν and nhν. Following Boltzmann, Planck de�nes the oscillator

entropy as:

S = −k
∞∑
n=1

Pn logPn = −k
∞∑
n=1

p(1−p)n−1 log[p(1−p)n−1] = −k
[

1

p
log p+ (

1

p
− 1) log(

1

p
− 1)

]
(1.2.17)
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Planck now assumes that all energies between (n − 1)hν and nhν are equally

likely, so that the average energy of the oscillators with energy between (n−1)hν

and nhν is 1
2 (n+ n− 1)hν = ( 1

p −
1
2 )hν; for (1.2.17), therefore,

S = k

[
(
U

hν
+

1

2
) log(

U

hν
+

1

2
)− (

U

hν
− 1

2
) log(

U

hν
− 1

2
)

]
(1.2.18)

using once again the relation ∂S/∂U = 1
T , Planck obtained:

U =
hν

ehν/kT − 1
+

1

2
hν (1.2.19)

this implies that when T → 0 U → 1
2hν. Planck equation (1.2.19) marked the

birth of the concept of zero-point energy.



Chapter 2

The electromagnetic vacuum

The quantum �eld theory of the electromagnetic �eld in absence of any sources

was formulated by Born, Heisenberg and Jordan (1926). The new quantum

electrodynamics predicted a �uctuating zero-point of vacuum �eld existing even

in the absence of any sources.

In this section , after having quantized the electromagnetic �eld, we study the

Casimir e�ect. This is a macroscopic observable e�ect due to zero-point energy

and we will extend the results to dielectric materials.

2.1 The harmonic oscillator

A monochromatic electromagnetic �eld is mathematically equivalent to a har-

monic oscillator of the same frequency. Before showing this we will brie�y review

the harmonic oscillator in quantum mechanics. The Hamiltonian has the same

form as in classical mechanics:

H = p2/2m+
1

2
mω2q2 (2.1.1)

where now q and p are quantum mechanical operators in a Hilbert space. The

Heisenberg equations of motion have the same form as classical Hamilton equa-

tions:

q̇ = (i~)−1[q;H] = p/m

ṗ = (i~)−1[p;H] = −mω2q (2.1.2)

12
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these follow from the commutation rule [q, p] = i~. We de�ne the non Hermitian

operator

a =
1√

2m~ω
(p− imωq) (2.1.3)

or equivalently:

q = i

√
~

2mω
(a− a†)

p =

√
m~ω

2
(a+ a†) (2.1.4)

where a†is the adjoint of a. From [q, p] = i~ it follows that

[a, a†] = 1 (2.1.5)

equations (2.1.4) allow us to write the Hamiltonian (2.1.1) in the form:

H =
1

2
~ω(aa† + a†a) = ~ω(a†a+

1

2
). (2.1.6)

The energy levels of the harmonic oscillator are thus determined by the eigen-

values of the operator N = a†a. We denote the eigenvalues and eigenket of N

by n and |n〉, respectively
N |n〉 = n |n〉 (2.1.7)

now 〈n|N |n〉 =
〈
n
∣∣a†a∣∣n〉 is the scalar product of the vector a |n〉 with itself. It

then follows from (2.1.7) that n 〈n|n〉 = n is real and positive.

Consider the e�ect on the vector a |n〉 of the operator N . Obviously Na |n〉 =

aN |n〉 + [N, a] |n〉, but (2.1.5) imply [N, a] = −a , and therefore Na |n〉 =

(n− 1)a |n〉. In other words, if |n〉 is an eigenstate of N with eigenvalue n, then

a |n〉 is an eigenstate of N with eigenvalue n− 1: a |n〉 = C |n− 1〉. Taking the

norm of both sides of this equation we obtain |C|2 = n, and without any loss of

generality we can choose the phase such that C =
√
n. Thus

a |n〉 =
√
n |n− 1〉 (2.1.8)

we �nd similarly that:

a† |n〉 =
√
n+ 1 |n+ 1〉 (2.1.9)

for obvious reasons a and a†are called lowering and raising operators.
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We have already noted that the eigenvalues are positive (n ≥ 0). But the

equation (2.1.8) shows that we can generate eigenstates with lower and lower

eigenvalues by successive applications of lowering operator a. Consistency then

required that a |n〉 = 0 for n < 1 and (2.1.8) indicates that this is satis�ed

only for n = 0. The eigenvalues n of N are therefore zero and all the positive

integers. That is, the energy level of the harmonic oscillator are given by

En = (n+
1

2
)~ω. (2.1.10)

2.2 Quantization of Field mode

We will now take the most elementary route to the quantization of the electro-

magnetic �eld. The �rst step is to show that a �eld mode is equivalent to a

harmonic oscillator.

The Maxwell equations for the �free� �eld i.e. the �eld in a region where there

are no sources, are:

~∇ · ~E = 0 ~∇ · ~B = 0

~∇× ~E = −1

c

∂ ~B

∂t
~∇× ~B =

1

c

∂ ~E

∂t
(2.2.1)

we introduce the vector potential ~A by writing ~B = ~∇× ~A. Since ~∇·(~∇× ~A) = 0

the second equation of (2.2.1) is automatically satis�ed. the third equation of

(2.2.1) implies ~E = −(1/c)∂ ~A/∂t + ~∇φ, where φ is the scalar potential. From

the fourth equation of (2.2.1) we have:

∇2 ~A− 1

c2
∂2 ~A

∂t2
= 0 (2.2.2)

in the Coulomb gauge de�ned by ~∇ · ~A = 0 and, in absence of any sources,

φ = 0. Obviously the �rst equation of (2.2.1) is then also satis�ed. Thus we

can obtain a solution of free-space Maxwell equations by solving (2.2.2) for the

Coulomb-gauge vector potential subject to appropriate boundary conditions.

Separation of variables gives monochromatic solutions

~A(r; t) = α(t) ~A0(r) + α∗(t) ~A∗0(r) (2.2.3)

= α(0)eiωt ~A0(r) + α∗(0)e−iωt ~A∗0(r) (2.2.4)
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where ~A0(r) satis�es the Helmholtz equation:

∇2 ~A0(r) + k2A0(r) = 0 k =
ω

c
(2.2.5)

and α(t) satis�es α̈(t) = −ω2α(t). The electric and magnetic �eld vectors are

given by:

~E(r, t) = −1

c
[α̇(t) ~A0(r) + α̇∗(t) ~A∗0(r)]

~B(r, t) = α(t)~∇× ~A0(r) + α∗(t)~∇× ~A∗0(r). (2.2.6)

We show that the electromagnetic energy are:

HF =
1

8π

∫
d3r(E2 +B2) =

k2

2π
|α(t)|2 (2.2.7)

where, without any loss of generality, we assume the �mode function� ~A0(r) is

normalized such that ∫
d3r ~|A0(r)|2 = 1. (2.2.8)

De�ne the real quantities

q(t) =
i

c
√

4π
[α(t)− α∗(t)] (2.2.9)

p(t) =
k√
4π

[α(t) + α∗(t)] (2.2.10)

in terms of which equation (2.2.7) is

HF =
1

2
(p2 + ω2q2). (2.2.11)

The notation suggest that our �eld mode of frequency ω is mathematically

equivalent to a harmonic oscillator of frequency ω. To prove this we must, of

course, show that q and p are indeed canonically conjugate coordinate and

momentum variables. But this is trivial: from the de�nitions (2.2.9) and (2.2.10)

and α̇(t) = −iωt, we have q̇ = p and ṗ = −ω2q, which are the Hamilton

equations that follows from the Hamiltonian HF .

To describe a �eld mode quantum mechanically, we simply describe the equiva-

lent harmonic oscillator quantum mechanically. Since the oscillator with Hamil-

tonian (2.2.11) has unitary mass, we introduce the lowering and raising operators
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a and a† using (2.1.4) . Comparing with eq.(2.2.9) and eq.(2.2.10), we see that

this quantization procedure, except for a trivial constant, is equivalent to re-

place the classical variables α(t) and α(t)∗ by the quantum mechanical operator

a(t) and a†(t).

The classical vector potential (2.2.4) is thus replaced by the operator

~A(r; t) =

(
2π~c2

ω

)1/2

[a(t) ~A0(r) + a†(t) ~A∗0(r)] (2.2.12)

and the operators corresponding to the electric and magnetic �eld are similar:

~E(r, t) = i(2π~ω)1/2[a(t) ~A0(r) + a†(t) ~A∗0(r)] (2.2.13)

~B(r, t) =

(
2π~c2

ω

)1/2

[a(t)~∇× ~A0(r) + a†(t)~∇× ~A∗0(r)]. (2.2.14)

The Hamiltonian (2.2.11) for the quantized �eld mode is now obviously equiv-

alent to:

HF = ~ω(a†a+
1

2
) (2.2.15)

the energy eigenvalues of a �eld mode of frequency ω are given by equation

(2.1.10). The integer n is the number of photons in the �eld mode described by

the state |n〉. The vacuum state |0〉 has no photon, but it nevertheless has an

energy 1
2~ω. The quantum theory of radiation thus predict the existence of a

zero-point electromagnetic �eld. In the vacuum state and in all stationary state

|n〉, the expectation values of electric and magnetic �eld vanish:〈
~E(r, t)

〉
=
〈
~B(r, t)

〉
= 0 (2.2.16)

since 〈n|a|n〉 = 0. This means that the electric and magnetic �eld vectors

�uctuate with zero mean in the state |n〉, although the �eld has a de�nite,

non�uctuating energy (n+ 1
2 )~ω.

Consider the expectation value of the square of the electric �eld, from (2.2.13)

this is given by: 〈
E2(r)

〉
= 4π~ω|A0(r)|2n+

〈
E2(r)

〉
0

(2.2.17)

the �rst term is the probability distribution for �nding the photon , which is

the intensity in the classical wave theory, and n is the number of photons. The

term
〈
E2(r)

〉
0
is the vacuum contribution and we consider like a constant to

add in equation as in (2.2.17). Physical measurement will therefore reveal only
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deviations from the vacuum state. Thus the �eld Hamiltonian (2.2.15), for

example, can be replaced by:

HF − 〈0|HF |0〉 = ~ωa†a (2.2.18)

without a�ecting any physical predictions of the theory. The new Hamiltonian

(2.2.18) is said to be normally ordered, the raising operator a† appearing to the

left of the lowering operator a. The normally ordered Hamiltonian is denoted

: HF :

: HF := ~ωa†a (2.2.19)

in other words, within the normal ordering symbol we can commute a and a†.

Since the zero-point energy is intimately connected to the noncommutativity of

a and a†, the normal ordering procedure eliminates any contribution from zero-

point �eld. This is especially reasonable in the case of the �eld Hamiltonian,

since the zero-point term merely adds a constant energy which can be eliminate

by a simple rede�nition of the zero of the energy. Moreover, this constant energy

in Hamiltonian obviously commutes with a and a† and so cannot have any e�ect

on the quantum dynamics described by the Heisenberg equations of the motion,

furthermore we shall see that it possible to attribute measurable e�ect, such as

the Casimir force, to change the zero-energy.

The generalization of the quantization procedure to a multimode �eld is straight-

forward. We consider the �eld in free space with no physical boundaries, in

which case the number of allowed modes is in�nite.

Obviously the �eld intensity for in�nite free space should be independent of

position so that, from (2.2.17), |A0(r)|2 should be independent of r for each

mode of �eld. Of course ~A0(r) must still satisfy the Helmholtz equation (2.2.5).

A mode function satisfying these conditions is obviously ~A0(r) = ~eke
i~k·~r, where

~k · ~ek = 0 in order to have the transversality condition ~∇ · ~A = 0 satis�ed for

the Coulomb gauge in which we are working.

We also wish to normalize our mode function according to equation (2.2.8). To

achieve the desired normalization we pretend that space is divided into cubes

of volume V = L3 and impose on the �eld the periodic boundary condition

A(x+ L; y + L; z + L) = A(x; y; z) (2.2.20)
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or equivalently

(kx; ky; kz) =
2π

L
(nx;ny;nz) (2.2.21)

where each n can assume any integer value. Of course this arti�cial peri-

odic boundary condition will have no physical consequences if L is very large

compared with any physical dimensions of interest. It allows us to consider

the �eld in any one of the imaginary cubes, and to de�ne a mode function
~Ak(r) = V −

1
2 ~eke

i~k·~r satisfying the Helmholtz equation, transversality and the

�box normalization� ∫
V

d3r|Ak(r)|2 = 1 (2.2.22)

where ~ek is chosen to be a unit vector. The unit vector ~ek, which we take to

be real, speci�es the polarization of the �eld mode. The condition ~k · ~ek = 0

means that there are two independent choices for ~ek, which we call ek1 and ek2,

ek1 · ek2 = 0 and e2
k1 = e2

k2 = 1 , thus we can de�ne the mode functions

~Akλ(r) = V −
1
2~ekλe

i~k·~r (λ = 1, 2) (2.2.23)

in term of which the vector potential (2.2.12) becomes:

~Akλ =

(
2π~c2

ωkV

)1/2

[akλ(t)ei
~k·~r + a†kλ(t)e−i

~k·~r]~ekλ (2.2.24)

where ωk = kc and akλ and a†kλ are respectively the photon annihilation and

creation operators for the mode with wave vector ~k and polarization λ. This

gives the vector potential for a plane-wave mode of the �eld. The condition

(2.2.21) shows that there is an in�nite number of such modes. The linearity of

Maxwell's equations allow us to write

~A(r, t) =
∑
kλ

(
2π~c2

ωkV

)1/2

[akλ(t)ei
~k·~r + a†kλ(t)e−i

~k·~r]~ekλ (2.2.25)

for the total vector potential in the free space. Using the fact that:∫
V

d3r ~Akλ(r) · ~A∗k′λ′(r) = δ3
kk′δλλ′ (2.2.26)
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we �nd that the Hamiltonian of the �eld can be written:

HF =
∑
kλ

~ωk(a†kλakλ +
1

2
) (2.2.27)

for the in�nity modes in free space. This is Hamiltonian for an in�nite number

of uncoupled harmonic oscillator. Thus the di�erent modes of the �eld are

independent and satisfy the commutation relation:

[akλ(t), a†k′λ′(t)] = δ3
kk′δλλ′ (2.2.28)

and [akλ, ak′λ′ ] = [a†kλ, a
†
k′λ′ ] = 0. From the (2.2.25) it follows that:

~E(r, t) = i
∑
kλ

(
2π~ωk
V

)1/2

[akλ(t)ei
~k·~r − a†kλ(t)e−i

~k·~r]~ekλ (2.2.29)

~B(r, t) = i
∑
kλ

(
2π~c2

ωkV

)1/2

[akλ(t)ei
~k·~r − a†kλ(t)e−i

~k·~r]~k × ~ekλ (2.2.30)

it is worth nothing that the free space mode functions (2.2.23) form a complete

set for transverse vector �eld satisfying our periodic boundary condition. That

is, the plane-wave modes ~Akλ(r) form a complete set in term of which any mode

of the �eld may be expanded (this is essentially just a statement of Fourier's

theorem about the completeness of sines and cosines). Of course ~Akλ(r) are

complete only for modes satisfying the periodic boundary condition, but in

slightly more sophisticated approach we can work with a complete continuum

of plane wave mode functions in which the ~k vectors are not restricted to the

discrete spectrum. This has a formal consequences such as the replacement of

δ3
kk′ in (2.2.26) and (2.2.28), but since it has no physical consequence here, we

just stick to the periodic boundary condition.

The linear momentum of the �eld is given classically by ~P = (1/4πc)
∫
V
d3r( ~E×

~B). In the case of quantized �eld we use (2.2.29) and (2.2.30) in this expression

and obtain, after straightforward manipulations,

P =
∑
kλ

~~k(a†kλakλ +
1

2
) (2.2.31)

obviously [P,HF ] = 0, so that the linear momentum of the �eld in the absence

of any source is a constant of motion. It is also obvious that the eigenvalues of

P are
∑
kλ ~~k(nkλ + 1

2 ) where each n is a positive integer or zero. A stationary
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state of the free �eld is thus characterized by the set of the photon numbers

{nkλ}. The state |{nkλ}〉 has a total photon number
∑
kλ nkλ, an energy

E =
∑
kλ

~ωk(nkλ +
1

2
) (2.2.32)

and linear momentum:
~P =

∑
kλ

~~k(nkλ +
1

2
) (2.2.33)

or:

E =
∑
kλ

~ωknkλ ~P =
∑
kλ

~~knkλ (2.2.34)

if the zero point energy and linear momentum associated with the vacuum state

are discarded. Note that the zero-point momentum
∑
kλ

1
2~~k in fact vanishes

since for each ~k there is a equal contribution from−~k in the summation. We have

thus arrived at the quantum theory of the free electromagnetic �eld in which

stationary states are described by photons of energy ~ωk and linear momentum

~~k. Since E2 − P 2c2 = ~2(ω2
k − k2c2) = 0 for each photon, the photon have

zero rest mass. The theory also implies that photons are bosons, i.e., that

the stationary states are symmetric with respect to permutation of identical

photons. To see this, note from equation (2.1.9) that the n-photon state |n〉 of
a �eld mode may be written in the form:

|n〉 =
(a†)n√
n!
|0〉 (2.2.35)

which is obviously symmetric with respect to any permutation of the n pho-

tons. Of course the boson character of photons is just a consequence of the

commutation rule (2.2.28), from which the (2.2.35) follows.

2.3 Casimir Force

In the previous section we assumed that the zero-point energy cannot have any

e�ect in the physical measurement. Casimir showed in 1948 that one conse-

quence of the zero-point �eld is an attractive force between two uncharged,

perfectly conducting parallel plates (Figure 2.1).
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Figure 2.3.1: Two conducting parallel planes experience an attractive force at-
tributable to the zero-point electromagnetic �eld

The physical situation shown in Figure 2.1 leads us to consider a di�erent set of

modes than the free-space plane-wave modes we have dealt with so far. Consider

�rst the modes appropriate to the interior of a rectangular parallelepiped of

sides Lx = Ly = L and Lz. For conducting walls the mode functions such

that the tangential component of the electric �eld vanishes on the walls are
~A(r) = Ax(r)̂i+Ay(r)ĵ +Az(r)k̂ where:

Ax(r) = (8/V )1/2ax cos(kxx) sin(kyy) sin(kzz) (2.3.1)

Ay(r) = (8/V )1/2ay sin(kxx) cos(kyy) sin(kzz) (2.3.2)

Az(r) = (8/V )1/2az sin(kxx) sin(kyy) cos(kzz) (2.3.3)

with a2
x + a2

y + a2
z = 1 V = L2Lz and

kx =
lπ

L
ky =

mπ

L
kz =

nπ

Lz
(2.3.4)

with l,m and n each taking on all positive integer values and zero. In order to

satisfy the transversality condition ∇ ·A = 0 we also require

kxAx + kyAy + kzAz =
π

L
(lAx +mAy) +

π

Lz
(nAz) = 0. (2.3.5)
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Thus there are two independent polarization, unless one of integers l,m or n is

zero, in which case (2.3.5) indicates that there is only one polarization. It is easy

to check that equations (2.3.1)− (2.3.3) de�ne transverse mode function satisfy-

ing the Helmholtz equation (2.2.5) as well as the condition that the transverse

components of ~E vanish on the cavity walls. Furthermore these mode functions

are orthogonal and satisfy the normalization condition, i.e,∫ L

0

dx

∫ L

0

dy

∫ Lz

0

dz[Ax(r)2 +Ay(r)2 +Az(r)
2] = 1 (2.3.6)

actually all we really require for the calculation of the Casimir force are the

allowed frequencies de�ned by (2.3.4):

ωlmn = klmnc = πc

[
l2

L2
+
m2

L2
+
n2

L2
z

]1/2

(2.3.7)

the zero-point energy of the �eld inside the cavity is therefore

′∑
l,m,n

(2)
1

2
~ωlmn =

′∑
lmn

π~c
[
l2

L2
+
m2

L2
+
n2

L2
z

]1/2

(2.3.8)

the factor 2 arises from the two independent polarization of modes with l,m, n 6=
0, and the prime on the summation symbol implies that a factor 1/2 should be

inserted if all this integers are zero, for then we have just one independent

polarization as noted earlier.

In the physical situation of interest L is so large compared with Lz = d that we

may replace the sums over l andm in (2.3.8) by integrals:
∑
lmn →

∑′
n(L/π)2

∫ ∫
dkxdky

and

E(d) =
L2

π2
(~c)

′∑
n

∫ ∞
0

dkx

∫ ∞
0

dky(k2
x + k2

y +
n2π2

d2
)1/2 (2.3.9)

this is in�nite; the zero-point energy of the vacuum is in�nite in any �nite

volume. If d were also made arbitrarily large, the sum over n could be replaced

by an integral. Then the zero-point energy (2.3.9) would be:

E(∞) =
L2

π2
(~c)

d

π

∫ ∞
0

dkx

∫ ∞
0

dky

∫ ∞
0

dkz(k
2
x + k2

y + k2
z)1/2 (2.3.10)

which is also in�nite.

The potential energy of the system when the plates are separated by a distance
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d is U(d) = E(d)− E(∞), the energy required to bring the plates from a large

separation to the separation d

U(d) =
L2~c
π2

[

′∑
n

∫ ∞
0

dkx

∫ ∞
0

dky(k2
x + k2

y +
n2π2

d2
)1/2−

+
d

π

∫ ∞
0

dkx

∫ ∞
0

dky

∫ ∞
0

dkz(k
2
x + k2

y + k2
z)1/2] (2.3.11)

this is the di�erence between two in�nites quantities, but we shall now show

that it is nonetheless possible to extract from it a physically meaningful, �nite

value. In polar coordinate u, θ in the kx, ky plane ( dkxdky = ududθ) we have:

U(d) =
L2~c
π2

(π
2

)
[

∞∑
n=0

′
∫ ∞

0

duu

(
u2 +

n2π2

d2

)1/2

+ (2.3.12)

−
(
d

π

)∫ ∞
0

dkz

∫ ∞
0

duu(u2 + k2
z)1/2]

since θ ranges from 0 to π
2 for kx, ky > 0 . We now introduce a cuto� function

f(k) = f([u2 + k2
z ]1/2) such that f(k) = 1 for k � km and f(k) = 0 for k � km

. Physically, it can be argued that f(k) is necessary because the assumption of

perfectly conducting walls breaks down at small wavelengths and especially for

wavelengths small compared with an atomic dimension. We might then suppose

that km ' 1/a0 where a0 is the Bohr radius. What we are assuming here is that

the Casimir e�ect is primarily a low-frequencies non relativistic e�ect. We thus

replace (2.3.12) by:

U(d) =
L2~c
π2

(π
2

)
[

∞∑
n=0

′
∫ ∞

0

duu

(
u2 +

n2π2

d2

)1/2

f

(
[u2 +

n2π2

d2
]1/2
)

+

−
(
d

π

)∫ ∞
0

dkz

∫ ∞
0

duu(u2 + k2
z)1/2f([u2 + k2

z ]1/2)] (2.3.13)

U(d) =
L2~c
4π

(
π3

d3

)
[

∞∑
n=0

′
∫ ∞

0

dx(x+ n2)1/2f(
π

d
[x+ n2]1/2)+

−
∫ ∞

0

dκ

∫ ∞
0

dx(x+ κ2)1/2f(
π

d
[x+ κ2]1/2)] (2.3.14)

where we have de�ned the new integration variables x = u2d2/π2 and κ =
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kzd/π. Now

U(d) =

(
π2~c
4d3

)
L2

[
1

2
F (0) +

∞∑
n=1

F (n)−
∫ ∞

0

dκF (κ)

]
(2.3.15)

where

F (κ) =

∫ ∞
0

dx(x+ κ2)1/2f([x+ κ2]1/2) (2.3.16)

according to Euler-MacLaurin ([1], [5], [6]) summation formula:

∞∑
n=1

F (n)−
∫ ∞

0

F (κ)dκ = −1

2
F (0)− 1

12
F ′(0) +

1

720
F ′′′(0) (2.3.17)

for F (∞)→ 0. To evaluate the n-th derivative F (n)(0) we note that

F (κ) =

∫ ∞
κ2

du
√
uf(

π

d

√
u) F

′
(κ) = −2κ2f(

π

d
κ) (2.3.18)

then F ′(0) = 0 and F
′′′

(0) = 0 and all higher derivative F (n)(0) vanish if

we assume that all derivatives of the cuto� function vanish at κ = 0. Thus∑∞
n=1 F (n)−

∫∞
0
F (κ)dκ = − 1

2F (0)− 4
720 and

U(d) =

(
π2~c
4d3

)
L2

(
− 4

720

)
= −

(
π2~c
720d3

)
L2 (2.3.19)

which is �nite and independent of the cuto� function. The attractive force per

unit area between the plates is then F (d) = −π2~c/240d4.

2.4 Casimir e�ect in a strati�ed media

In the vacuum, we solved the eigenvalues problem for obtaining the solution of

the Casimir e�ect. When we consider a strati�ed dielectric material character-

ized by a dielectric constant(ε(ω)) the eigenvalue problem cannot be solved for

this reason, in this section, we use an another approach to obtain the Casimir

energy.

This is the con�guration investigated by E.M. Lifshitz ([7], [8]) for which he

obtained the general representation of the Van der Waals and Casimir force

in terms of the frequency dependent dielectric permettivities for an arbitrary

number of plane-parallel layers of di�erent material.
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The original Lifshitz derivation was based on the assumption that the dielec-

tric materials can be considered as continuous media characterized by randomly

�uctuating sources. The correlation function of these sources, situated at dif-

ferent point, is proportional to the δ- function of the radius-vector joining these

point. The force per unit area acting upon one of the semispaces was calculated

as the �ux incoming momentum into this semispaces through the boundary

plane. The �ux is given by the appropriate component of the stress tensor

(zz−component if xy is the boundary plane). Usual boundary condition on the

boundary surfaces between di�erent media were imposed on the Green's func-

tions. To exclude the divergences, the value of all Green's function in vacuum

were subtracted of their values in the dielectric media.

Here we present another derivation of the Lifshitz ([7], [9], [10]) result and their

generalization starting directly from the zero-point energy of electromagnetic

�eld. In doing so, the continuous media, characterized by the frequency de-

pendent dielectric permettivities, and appropriate boundary conditions on the

photon states, can be considered as some e�ective external �eld (which can-

not be described, however, by a potential added to the left-hand side of wave

equation).

In the experiment on the Casimir force measurement, symmetrical con�guration

are usually used, i.e., both interacting bodies are made of one and the same

material which is covered by a thin layers of another material. In line with this

let us consider the con�guration presented in Figure 2.2. The layer is of thickness

a if the permettivities is ε2(ω) while is of thickness d if the permettivities is ε1(ω).
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Figure 2.4.1: A two layer cavities, where the layer 1,3 have thickness d instead
2 have thickness a

In line with eq.(2.3.9) the non-renormalized vacuum energy density of electro-

magnetic �eld reads:

ES(a, d) =
E0(a, d)

S
=

~
2

∫
dk1dk2

(2π)2

∑
n

(ω
(1)
k⊥,n

+ ω
(2)
k⊥,n

) (2.4.1)

where we have separated the proper frequencies of the modes with two di�erent

polarization of the electric �eld (parallel and perpendicular to the plane formed

by k⊥ and z-axis respectively). Here k⊥ = (k1, k2) is the two dimensional
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propagation vector in xy−planes. For simplicity the x−axis is chosen to be

parallel to k⊥.

In order to solve this problem we use the formalism of surface modes ([7], [9], [10])

which are exponentially damped for z > d3 → z > 2d + a and z < 0. These

modes describe waves propagating parallel to the surface of the walls. To �nd

these modes let us represent the renormalized set of negative-frequency solutions

to Maxwell equations in the form

~E
(i)
k⊥,n

(t, ~r) = ~f (i)
α (k⊥, z)e

i(kxx+kyy)−iωt

~B
(i)
k⊥,n

(t, ~r) = ~g(i)
α (k⊥, z)e

i(kxx+kyy)−iωt (2.4.2)

where the index i numerates the same state of polarization as in eq.(2.4.1), index

α numerates the regions show in Figure 2.2.

From Maxwell equations the wave equation for the z−dependent vector func-
tions follows

d2 ~f
(i)
α

dz2
−R2

α
~f (i)
α = 0

d2~g
(i)
α

dz2
−R2

α~g
(i)
α = 0 (2.4.3)

where the notation is introduced

R2
α = k2

⊥ − εα(ω)
ω2

c2
k2
⊥ = k2

1 + k2
2 α = 0, 1, 2, 3, 4 (2.4.4)

in obtaining eq.(2.4.3) we have assumed that the media are isotropic so that the

electric displacement is ~Dα = εα ~Eα.

According to boundary conditions at the interface between two dielectrics the

normal component of ~D and the tangential component of ~E should be continu-

ous. Also ~Bn and ~Ht = ~Bt ( in our case of non-magnetic media) are continuous.

It is easy to verify that all these conditions are satis�ed automatically if the

quantities εα ~f
(1)
α and df (1)/dz or f

(2)
α and df

(2)
α /dz are continuous. Let us con-

sider in detail the �rst of these conditions.

According to eq.(2.4.3) the surface modes f
(1)
z in di�erent regions of Figure 2.2
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can be represented as the following combinations of exponents:

f (1)
z = AeR0z z < 0

f (1)
z = BeR1z + Ce−R1z 0 < z < d1

f (1)
z = DeR2z + Ee−R2z d1 < z < d2

f (1)
z = FeR3z +Ge−R3z d2 < z < d3

f (1)
z = He−R4z z > d3 (2.4.5)

where R0 = R2 = R4 and R1 = R3 , imposing the continuity conditions on

εαf
(1)
z,α and df

(1)
z,α/dz at the points z = 0, d1, d2, d3. If we consider the thickness

of the layers assume that d1 = d, d2 = a + d, d3 = 2d + a , taking to account

eq.(2.4.5) we arrive at following system of equations:

Aε2 = Bε1 + Cε1

AR2 = BR1 − CR1

ε1(BeR1d + Ce−R1d) = ε2(DeR2d + Ee−R2d)

BR1e
R1d − CR1e

−R1d = DR2e
R2d − ER2e

−R2d

ε2(DeR2(a+d) + Ee−R2(a+d)) = ε1(FeR1(a+d) +Ge−R1(a+d))

DR2e
R2(a+d) − ER2e

−R2(a+d) = FR1e
R1(a+d) −GR1e

−R1(a+d) (2.4.6)

ε1(FeR1(2d+a) +Ge−R1(2d+a)) = ε2(He−R2(2d+a))

FR1e
R1(2d+a) −GR1e

−R1(2d+a) = −R2(He−R2(2d+a))

this is a linear homogeneous system of algebraic equations relating the unknown

coe�cient A,B, .....H. It has non trivial solutions under the condition that the

determinant of its coe�cient is equal to zero. This condition is, accordingly,

the equation for the determination of the proper frequencies ω
(1)
k⊥,n

of the modes

with a parallel polarization([7], [12]):

∆(1)(ω
(1)
k⊥,n

) = e(a+d)(R1−R2){(r+
12)4 + (r−12)4e−2(a+d)R1 + (r+

12)2(r−12)2[

e−2a(R2+R1) − e−2aR2 − e−2a(R2+R1)−2dR1 + e−2aR2−2dR1 − e−2dR1 − e−2aR1 ]}
(2.4.7)

here the following notations are introduced

r±ij = εiRj ± εiRj q±ij = Rj ±Ri i, j = 1, 2 (2.4.8)
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similarly the requirement that the quantities f
(2)
y,α and df

(2)
y,α/dz are continuous

at the boundaries results in the equations for determination of the frequencies

ω
(2)
k⊥,n

of the perpendicular polarized modes([7], [12]):

∆(2)(ω
(2)
k⊥,n

) = e(a+d)(R1−R2){(q+
12)4 + (q−12)4e−2(a+d)R1 + (q+

12)2(q−12)2[

e−2a(R2+R1) − e−2aR2 − e−2a(R2+R1)−2dR1 + e−2aR2−2dR1 − e−2dR1 − e−2aR1 ]}.
(2.4.9)

Given that we have a dielectric material, we not solve the eigenvalue problem

( instead in the vacuum we obtain that ωk⊥,n =
√
k2

1 + k2
2 + π2n2

d2 ). For this

reason, summation in eq.(2.4.1) over the solutions (2.4.7) and (2.4.9) can be

performed by applying the argument theorem([7], [9], [10]):

∑
n

ω1,2
k⊥,n

=
1

2πi

[∫ −i∞
i∞

ωd log ∆1,2(ω) +

∫
C+

ωd log ∆1,2(ω)

]
(2.4.10)

where C+ is a semicircle of in�nite radius in the right one-half of the complex

ω−plane with a center at the origin. Notice that the functions ∆1,2(ω) de�ned

in eq.(2.4.7) and eq.(2.4.9) have no poles. For this reason the sum over their

poles is absent from (2.4.10).

The second integral in the right-side of (2.4.10) is simply calculated with the

natural supposition that:

lim
ω→∞

εα(ω) = 1 lim
ω→∞

dεα(ω)

dz
= 0 (2.4.11)

along any radial direction in complex ω− plane. The result is in�nite, and does

not depend on a: ∫
C+

ωd log ∆1,2(ω) = 4

∫
C+

dω. (2.4.12)

Now we introduce a new variable ξ = −iω in eq.(2.4.10), eq.(2.4.12). The result

is ∑
n

ω1,2
k⊥,n

=
1

2π

∫ −∞
∞

ξd log ∆1,2(iξ) +
2

π

∫
C+

dξ (2.4.13)

where both contributions in the right-hand side diverge. To remove the diver-

gences we use the renormalization procedure ([7], [13]) that the renormalized

physical vacuum energy density vanishes for the in�nitely separated interacting
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bodies. From eq.(2.4.7), eq.(2.4.9) and eq.(2.4.13) it follows:

lim
a,d→∞

∑
n

ω1,2
k⊥,n

=
1

2π

∫ ∞
−∞

ξd log ∆(1,2)
∞ (iξ) +

2

π

∫
C+

dξ (2.4.14)

where the asymptotic behavior of ∆1,2 at d, a→∞ is given by

∆1
∞ = e(a+d)(R1−R2)(r+

12)4

∆2
∞ = e(a+d)(R1−R2)(q+

12)4 (2.4.15)

now the renormalized physical quantities are found with the help eq.(2.4.13)−eq.(2.4.15):(∑
n

ω
(1,2)
k⊥,n

)
ren

=
∑
n

ω1,2
k⊥,n

− lim
a,d→∞

∑
n

ω1,2
k⊥,n

=

∫ −∞
∞

ξd ln
∆(1,2)(iξ)

∆
(1,2)
∞ (iξ)

(2.4.16)

they can be transformed to a more convenient form with the help of integration

by parts: (∑
n

ω
(1,2)
k⊥,n

)
ren

=
1

2π

∫ ∞
−∞

dξ ln
∆(1,2)(iξ)

∆
(1,2)
∞ (iξ)

(2.4.17)

where the term outside the integral vanishes. To obtain the physical renormal-

ized Casimir energy density one should substitute the renormalized quantities

eq.(2.4.17) instead of eq.(2.4.13) into eq.(2.4.1) with the result:

ErenS (a, d) =
~

4π

∫ ∞
0

k⊥dk⊥

∫ ∞
0

dξ[lnQ1(iξ) + lnQ2(iξ)] (2.4.18)

where we introduced polar coordinates in k1, k2 plane, and:

Q1(iξ) =
∆(1)(iξ)

∆
(1)
∞ (iξ)

= 1 +
(r−12)4

(r+
12)4

e−2(a+d)R1 +
(r−12)2

(r+
12)2

[e−2a(R2+R1) − e−2aR2+

− e−2a(R2+R1)−2dR1 + e−2aR2−2dR1 − e−2dR1 − e−2aR1 ] (2.4.19)

Q2(iξ) =
∆(2)(iξ)

∆
(2)
∞ (iξ)

= 1 +
(q−12)4

(q+
12)4

e−2(a+d)R1 +
(q−12)2

(q+
12)2

[e−2a(R2+R1) − e−2aR2+

− e−2a(R2+R1)−2dR1 + e−2aR2−2dR1 − e−2dR1 − e−2aR1 ] (2.4.20)

may be possible return to one cavity case if take the limit a → ∞ while d is
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�xed:

∆
′(1) = lim

a→∞
∆(1) = ed(R1−R2)[(r+

12)4 − (r+
12)2(r−12)2e−2dR1 ] (2.4.21)

∆
′(2) = lim

a→∞
∆(2) = ed(R1−R2)[(q+

12)4 − (q+
12)2(q−12)2e−2dR1 ] (2.4.22)

note that this terms are not renormalized.

These formulae eq.(2.4.19), eq.(2.4.20) can be very much simpli�ed when a = d:

Q
′

1(iξ) =

(
1 +

(r−12)2e−2R1d

(r+
12)2

)2

+ e−2dR2
(r−12)2

(r+
12)2

(
−e−4R1d + 2e−2dR1 − 1

)
(2.4.23)

Q
′

2(iξ) =

(
1 +

(q−12)2e−2R1d

(q+
12)2

)2

+ e−2dR2
(q−12)2

(q+
12)2

(
−e−4R1d + 2e−2dR1 − 1

)
(2.4.24)



Chapter 3

Casimir E�ect in plasma

sheet model

In the previous section we have analyzed the Casimir energy for the dielectric

model. Now we consider a new model for the description of the cavity, that so

called �plasma sheet� model.

In this section after a brief description , we evaluate the Casimir energy for one

cavity within two plasma sheet and extend the formula for a quantum system

at non zero temperature. Finally we analyze what happen for di�erent number

of cavities.

3.1 Model Description

We start a brief outline of the Plasma sheet model ([14],[16]). Let us consider an

in�nitesimally thin and inde�nitely extended �at sheet occupying the xy−plane,
carrying a continuous �uid with mass and charge densities nm, ne per unit

area, plus an immobile, uniformly distributed, overall-neutralizing background

charge. The subscript ‖ indicates vector component parallel to the sheet, and

~r = (~s, z), i.e., ~s = ~r‖ = (x, y). The �uid displacement ~ξ is purely tangential,

with surface charge and current densities given by:

σ = −ne~∇‖ · ~ξ ~J = ne~̇ξ (3.1.1)

32
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the motion is assumed to be nonrelativistic (ξ̇ � c), so that the Lorentz force

is negligible and Newton's second law reads

∂2~ξ(~s, t)/∂t2 = (e/m) ~E‖(~s, z = 0, t) (3.1.2)

evidently the model mimic n delocalized particles per unit area, call them elec-

trons, with charge and mass e,m. The surface density n is related to some mean

inter-electron distance a by:

n = 1/a2 (3.1.3)

merely for orientation, we shall form rough estimates with a of the order of a

few Bohr radii far longer than the classical electron radius r0.

a ' aB = ~2/me2 r0 = e2/mc2 r0/a ' (e2/~c)2 = α ' (1/137) (3.1.4)

moreover, we impose a Debye-type cuto� K on the surface-parallel wave num-

bers of waves that the �uid can support, and by the same token also on Maxwell

waves that can interact e�ectively with the �uid as such (as distinct from the

individual charge carriers out of which in the last analysis the �uid is formed).

In detail ([14], [16]). Thus:

πK2/(2π)2 = n⇒ K =
√

4π/a (3.1.5)

we de�ne another characteristic wave number q = (2π/c2)(ne)2/(nm) and ob-

serve that the input parameters of the model (ne, nm, K and through Maxwell's

equations also c) admit one dimensionless combination X:

q = 2πne2/mc2 = 2πnr0 X = K/q = a/r0

√
π ' 1/α2 � 1 (3.1.6)

we list three widely considered limits that can highlight important features of

the more complicated exact result.

• The nonretarded (NR) limit, c → ∞ at �xed a and K, entailing q → 0,

with c
√
q �xed and �nite, and X → ∞. In the nonretarded model there

are no photons, and the only excitation of the sheet are surface plasmons.

• The perfect-re�ector (PR) limit, designed to make the sheet re�ect per-

fectly at all frequencies, which will be seen presently to require q →∞.
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• The no-cuto� (NC) limit is arti�cial in that it abandons the Debye con-

nection between a and K and contemplates K → ∞ at �xed a and �xed

q.

For the normal modes, with all time variation described by a common factor

exp(−iωt), equation (3.1.2) and Maxwell's equations plus (3.1.1), read:

~ξ = −(e/mω2) ~E‖ ~J = −iωne~ξ σ = −ne~∇‖ · ~ξ (3.1.7)

~∇ · ~B = 0 ~∇× ~E − iω ~B/c = 0 (3.1.8)

~∇ · ~E = 4πδ(z)σ ~∇× ~B + iω ~E/c = 4πδ(z) ~J/c (3.1.9)

To obtain the matching conditions on the �eld, we integrate equations (3.1.9)

across the sheet, which amounts to applying Gauss' law and Ampère's law.

They yield

[ ~E‖]S = 0 [Ez] = 2q(c/ω)2~∇‖ · ~E‖ (3.1.10)

[Bz] = 0 [ ~B‖]S = −i2q(c/ω)ẑ × ~E‖ (3.1.11)

3.2 Vacuum energy

In the following section, after having described the plasma sheet model, we

study the Casimir e�ect for thin plasma sheet using the same reasoning as the

dielectric case.

Let us start with eq.(3.1.8), eq.(3.1.9), the solutions can be written:

~E(~x, t) = ~fα( ~k‖, z)e
i( ~k‖· ~x‖−ωt) ~B(~x, t) = ~gα( ~k‖, z)e

i( ~k‖· ~x‖−ωt) (3.2.1)

where ~f = (f1, f2, f3), ~g = (g1, g2, g3), ~k‖ = (k1, k2) and ~x‖ = (x1, x2) and

α = 0, 1, ....n numerates the regions ( for instance see �gure 2.2).

We can show that (see Appendix A) f1, f2, g1g2 can be written as functions of

f3, g3 and their derivative, where f3 and g3 are obtained by:

∂2fα3
∂z2

+

(
εαω

2

c2
− |k2

‖|
)
fα3 = 0

∂2gα3
∂z2

+

(
εαω

2

c2
− |k2

‖|
)
gα3 = 0 (3.2.2)
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the solutions of this equation are:

f3, g3 ' AeiKαz +Be−iKαz (3.2.3)

where the asymptotic behavior of f3, g3 is:

z → −∞⇒ eiRαz + re−iRαz z →∞⇒ teiRαz (3.2.4)

where r and t are the re�ection and transmission coe�cient and Kα is the wave

number in the direction perpendicular to the planes. The frequency of these

solutions follows from the dispersion relation εαω
2/c2 = k2

‖ +K2
α .

The matching conditions in the plasma sheet model demand E‖ to be continuous

across the surface and for the jump of the normal component of ~D, [Dz] =
2Ω
ω2
~∇‖ · ~E‖ to hold. The parameter Ω is proportional to the density of the

carriers in the plasma sheet and coincides with the parameter q in eq.(3.1.6).

(For the details refer to [14]).

In this model, the polarization can be separated into TE and TM too and the

matching conditions then read (see Appendix A):

g+
3 − g

−
3 = 0 ∂zg

+
3 − ∂zg

−
3 = 2Ωg3 (TE) (3.2.5)

∂zf
+
3 − ∂zf

−
3 = 0 ε+f+

3 − ε−f
−
3 = −2

Ω

ω2
∂zf3 (TM) (3.2.6)

The matching conditions for TE polarizations is the same of the dielectric case

except for a delta function potential on a plane with streght Ω, instead the

matching conditions for TM polarization depend by a potential δ
′
with streght

−2 Ω
ω2 .

Let us consider two parallel plasma sheet at distance L. We have two continuous

media with ε1(ω) and ε2(ω) dielectric permettivities where we �nd in z < 0 and

z > L ε1(ω) otherwise we �nd ε2(ω). According to eq.(3.2.2) f3, g3 have the

following combination of exponent:

f
(0)
3 = eiK0z + re−iK0z

f
(1)
3 = r1e

−iK1z + t1e
iK1z

f
(2)
3 = teiK0z (3.2.7)

where in this case K2 = K0. Using the matching conditions eq.(3.2.5) in z = 0
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and z = L we obtain the following system of equation:

r1 + t1 − 1− r = 0

iK1(r1 − t1)− iK0(1− r) = 2Ω(r1 + t1)

teiK0L − r1e
−iK1L − t1eiK1L = 0

iK0te
iK0L − iK1(t1e

iK1L − r1e
−iK1L) = 2ΩteiK0L (3.2.8)

Now, solving the system eq.(3.2.8) we obtain:

∆
(TE)
1 = eiL(K0−K1)[(K0 +K1 + 2iΩ)(−K0 −K1 − 2iΩ) + e2iLK1(K0 −K1 + 2iΩ)2]

(3.2.9)

t(TE)(k) =
−4e−iL(K0−K1)K0K1

∆TE
1

. (3.2.10)

We can use the same reasoning with the boundary condition of TM case and

obtain:

∆
(TM)
1 = eiL(K0−K1)[(iK0ε1 + iK1ε0 − 2

Ω

ω2
K0K1)2 − e2iLK1(iK0ε1 − iK1ε0 + 2

Ω

ω2
K0K1)2]

(3.2.11)

t(TM) =
−4e−iL(K0−K1)K0K1ε0ε1

∆
(TM)
1

(3.2.12)

the non renormalized vacuum energy, in the plasma sheet model, can be written:

E0 =
1

2

∫
dk‖

(2π)2

{∫ ∞
0

dk

2πi
ω(k‖, k)

∂

∂k

t(k)

t(−k)

}
(3.2.13)

where t(k) is the transmission coe�cient eq.(3.2.10), eq.(3.2.12) for the TE and

TM polarization respectively.

The eq.(3.2.13) is highly oscillating and it is di�cult to calculate numerically.

For this reason, in general we rotate k along imaginary axis, using argument

theorem (2.4.13) and obtain:

E0 =
1

2

∫
dk‖

(2π)2

{∫ ∞
0

dk

π
ω(k‖, ik)

∂

∂k
log t(ik)

}
(3.2.14)



CHAPTER 3. CASIMIR EFFECT IN PLASMA SHEET MODEL 37

where:

∆
(TE)
1 (ik) = e−L(K0−K1)[(K0 +K1 + 2Ω)2 − e−2LK1(K0 −K1 + 2Ω)2]

(3.2.15)

∆
(TM)
1 (ik) = e−L(K0−K1)[(K0ε1 +K1ε0 − 2

Ω

ω2
K0K1)2 − e−2LK1(−K0ε1 +K1ε0 − 2

Ω

ω2
K0K1)2]

(3.2.16)

t(TE)(ik) =
4eL(K0−K1)K0K1

∆
(TE)
1 (ik)

. (3.2.17)

t(TM)(ik) =
4eL(K0−K1)K0K1ε0ε1

∆
(TM)
1 (ik)

(3.2.18)

in this formula, the ultraviolet divergences are still present. We remove them

by subtracting the contribution from one single surface. This is equivalent to

subtracting the limit for large separation L. We de�ne:

∆
∞(TE)
1 (ik) = lim

L→∞
∆

(TE)
1 (ik) = e−L(K0−K1)(K0 +K1 + 2Ω)2 (3.2.19)

∆
∞(TM)
1 (ik) = lim

L→∞
∆

(TM)
1 (ik) = e−L(K0−K1)(K0ε1 +K1ε0 − 2

Ω

ω2
K0K1)2

(3.2.20)

t∞(TE)(ik) = lim
L→∞

t(TE)(ik) =
4eL(K0−K1)K0K1

∆
∞(TE)
1 (ik)

. (3.2.21)

t∞(TM)(ik) = lim
L→∞

t(TM)(ik) =
4eL(K0−K1)K0K1ε0ε1

∆
∞(TM)
1 (ik)

(3.2.22)

the renormalized energy can be read:

E0 =
1

2

∫
dk‖

(2π)2

{∫ ∞
0

dk

π
ω(k‖, ik)

∂

∂k
log tren(ik)

}
(3.2.23)
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where:

∆
(TE)ren
1 (ik) = 1 + e−2LK1

(K0 −K1 + 2Ω)(K1 −K0 − 2Ω)

(K0 +K1 + 2Ω)2
(3.2.24)

∆
(TM)ren
1 (ik) = 1 + e−2LK1

(−K0ε1 +K1ε0 − 2 Ω
ω2K0K1)(+K0ε1 −K1ε0 + 2 Ω

ω2K0K1)

(K0ε1 +K1ε0 − 2 Ω
ω2K0K1)2

(3.2.25)

t(TE)ren(ik) =
1

∆
(TE)ren
1 (ik)

t(TM)ren(ik) =
1

∆
(TM)ren
1 (ik)

(3.2.26)

Thanks to eq.(3.2.26) we can write the eq.(3.2.23) in term of ∆
(TE)(TM)
1 :

E0 =
1

2

∫
dk‖

(2π)2

{∫ ∞
0

dk

π
ω(k‖, ik)

∂

∂k
log

1

∆ren
1 (ik)

}
. (3.2.27)

For purpose of numerical evaluation it is meaningful to integrate by parts to get

rid of the derivative, and obtain:

E0 =
1

2

∫
dk‖

(2π)2

{∫ ∞
0

dk

π
ω(k‖, ik)[log ∆

(TE)ren
1 (ik) + log ∆

(TM)ren
1 (ik)]

}
.

(3.2.28)

where we have summed over the polarization. This is the formula for the energy

of one cavity described by �plasma sheet�, note that this formula is the same of

the dielectric case eq.(2.4.18) but with di�erent value of ∆(TE)(TM).
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Figure 3.2.1: Evolution of the one cavity energy as function of d

3.3 Casimir energy at �nite temperature

In all the previous results, we have assumed that the temperature is zero. In this

section, we consider the behavior of a generic quantum system at temperature

di�erent from zero, especially we evaluate the case of the scalar �eld. Finally

we obtain the equation of the Casimir energy at �nite temperature.

Let's start with the generical quantum system to �nite temperature T , the

most fundamental quantity of interest is the partition function Z. We employ

the canonical ensemble whereby Z is function of T ; the partition function is

de�ned by:

Z = Tr[e−βĤ ] (3.3.1)

where the trace is taken over the full Hilbert space and Ĥ is the Hamiltonian

operator and β = 1
kBT

.

The eigenvalues of Ĥ often can be di�cult to compute; for this reason it's

important to have, for example, a useful representation of Z, the path integral
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represent:

Z = lim
N→∞

∫
[

N∏
i=1

dxidpi
2π~

] exp

−1

~

N∑
j=1

ε

[
p2
j

2m
+ ipj

xj+1 − xj
ε

+ V (xj)

] |xn+1=x1 ε=
~

kTN

(3.3.2)

which is often symbolically expressed as a �continuum� path integral:

Z =

∫
x(β~)=x(0)

DxDp
2π~

exp

{
−1

~

∫ β~

0

dτ

[
p(τ)2

2m
− ip(τ) ˙x(τ) + V (x(τ))

]}
(3.3.3)

The integration measure here is understood as the limit indicated by (3.3.2);

the discrete x1's have been collected into function x(τ); the maximal value of

τ−coordinate has been obtained from εN = β~.

We now explicitly evaluate the path integral in the case of a harmonic oscillator

eq.(2.1.1).

Let us start by representing an arbitrary function x(τ), 0 < τ < β~ as a Fourier

sum:

x(τ) = T

∞∑
n=−∞

xne
iωnτ (3.3.4)

where the factor T is a convention. In general, imposing the periodicity condi-

tion, x(β~−) = x(0+) we obtain a set of frequencies called Matsubara frequen-

cies:

eiωnβ~ = 1 i.e.ωnβ~ = 2πn n ∈ Z (3.3.5)

where the values ωn = 2πn/β~ are Matsubara frequencies. The corresponding

amplitudes xn are called Matsubara modes. Apart from periodicity, we also

impose reality on x(τ)

x(τ) ∈ R ⇒ x∗(τ) = x(τ)⇒ x∗n = x−n (3.3.6)

if we write xn = an + ibn, it then follows that:

x∗n = an − ibn = x−n = a−n + ib−n ⇒

an = a−n

bn = −b−n
(3.3.7)

and moreover that b0 = 0 and xnx−n = a2
n + b2n. Thereby we now have the
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representation:

x(τ) = T

{
a0 +

∞∑
n=1

[
(an + ibn)eiωnτ + (an − ibn)e−iωnτ

]}
(3.3.8)

where a0 is called the Matsubara zero mode.

In according to previous result, we can show that [19] the partition function for

the case of harmonic oscillator can read:

Z = C
′
∫ ∞
−∞

da0

∫ ∞
−∞

[
∏
n≥1

dandbn] exp[−1

2
mkTω2a2

0−mkT
∑
n≥1

(ω2
n+ω2)(a2

n+b2n)]

(3.3.9)

where C
′
is a coe�cient dependent by the integration measurement.

Making use of the Gaussian integral
∫∞
−∞ dxexp(cx2) =

√
π/c with c > 0, as

well as the above integration measure, the expression (3.3.9) becomes:

Z = C
′

√
2π

mkTω2

∞∏
n=1

π

mkT (ω2
n + ω2)

. (3.3.10)

In quantum �eld theory, the form of the theory is most economically de�ned

in terms of the corresponding classical (Minkowskian) Lagrangian LM , rather

than the Hamiltonian Ĥ; for instance the Lorentz symmetry is explicit only in

LM . Let us therefore start

LM =
1

2
mẋ2 + V (x) (3.3.11)

that is the Lagrangian of the quantum harmonic oscillator. We re-interpret x

as an �internal� degree of freedom φ situated at the origin ~0 of d-dimensional

space and obtain:

SHOM =

∫
dtLHOM (3.3.12)

LHOM =
m

2

(
∂φ(t,~0)

∂t

)2

− V (φ(t,~0)) (3.3.13)

We may compare this with the usual action of a scalar �eld theory in d-
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dimensional space:

SSFTM =

∫
dt

∫
x

LSFTM (3.3.14)

LSFTM =
1

2
∂µφ∂µφ− V (φ) =

1

2
(∂tφ)2 − 1

2
(∂iφ)(∂iφ)− V (φ) (3.3.15)

comparing eq.(3.3.13) with eq.(3.3.15), we see that scalar �eld theory is formally

nothing but a collection of almost independent harmonic oscillator with m = 1

at every ~x. These oscillators interact via the derivative term (∂iφ)(∂iφ), which,

in the language of statistical physics, couples nearest neighbors through:

∂iφ '
φ(t, ~x+ ~eiε)− φ(t, ~x)

ε
(3.3.16)

where ~ei is a unit vector in the direction i.

Next, we note that a coupling of the above type does not change the deriva-

tion of the path integral in any essential way: it was only important that the

Hamiltonian was quadratic in the canonical momenta p = mẋ↔ ∂tφ . In other

words, the derivation of the path integral is only concerned with object having

to do with time dependence, and this appear in eq.(3.3.13) and eq.(3.3.15) in

identical manners. Therefore, we can directly take over the result for Z in scalar

�eld theory:

ZSFT (T ) =

∫
φ(β~,~x)=φ(0,~x)

∏
x

[CDφ(t, ~x)] exp

[
−1

~

∫ β~

0

dτ

∫
x

LSFTE

]
(3.3.17)

LE = −LSFTM (t→ iτ) =
1

2

(
∂φ

∂t

)2

+

d∑
i=1

(
∂φ

dxi

)2

+ V (φ) (3.3.18)

where the periodicity condition φ(β~, ~x) = φ(0, ~x) give the Matsubara modes

like the example of harmonic oscillator (3.3.5).

Given that the component of the electromagnetic �eld are a scalar �eld, the

equation of Casimir energy (3.2.28) is substituting by:

E = kBT

∞′∑
l=0

∫
dk⊥

(2π)2
(log ∆(TE)(ξl) + log ∆(TM)(ξl)) (3.3.19)

where ξl are the Matsubara frequencies l = 0, 1, 2...; the superscript ′ on the

sum means that the zero mode must be multiplied by a factor 1
2 .
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3.4 Generalization to n-cavities

The equation (3.3.19) is the Casimir energy of one cavity described as �plasma

sheet�. Formally the energy of n cavities can be given in the form (3.3.19) simply

rede�ning the function ∆(TE), ∆(TM).

In this section we show the result for two and three cavities (in Appendix B we

show the result for four and �ve cavities).

Let us start with the equations of ∆
ren(TE)
1 and ∆

ren(TM)
1 :

∆
(TE)ren
1 = 1 + e−2LK1

(K0 −K1 + 2Ω)(K1 −K0 − 2Ω)

(K0 +K1 + 2Ω)2
(3.4.1)

∆
(TM)ren
1 = 1 + e−2LK1

(−K0ε1 +K1ε0 − 2 Ω
ω2K0K1)(+K0ε1 −K1ε0 + 2 Ω

ω2K0K1)

(K0ε1 +K1ε0 − 2 Ω
ω2K0K1)2

(3.4.2)

We de�ne for TE polarization:

RijTE =
Ki −Kj + 2Ω

Ki +Kj + 2Ω
SijTE =

Ki −Kj − 2Ω

Ki +Kj + 2Ω
T ijTE =

Ki +Kj − 2Ω

Ki +Kj + 2Ω
(3.4.3)

instead for TM polarization:

RijTM =
εjKi − εiKj + 2 Ω

ω2KiKj

εjKi + εiKj − 2 Ω
ω2KiKj

SijTM =
εjKi − εiKj − 2Ω

ω2KiKJ

εjKi + εiKj − 2 Ω
ω2KiKj

T ijTM =
εjKi + εiKj + 2 Ω

ω2KiKj

εjKi + εiKj − 2 Ω
ω2KiKj

(3.4.4)

For simplicity, we de�ne an index α = 1, 2 where α = 1 indicate the TE po-

larization while α = 2 indicate the TM polarization. We can substitute the

eq.(3.4.3) and eq.(3.4.4) in eqs.(3.4.1) and (3.4.2) and obtain:

∆α
1 = 1 + e−2LK1R01

α S
12
α (3.4.5)

remember that R0 = R2 and ε2 = ε0.We de�ne:

Eijkα = 1 + e−2LKjRijα S
jk
α (3.4.6)

substituting the eq.(3.4.6) into eq.(3.4.5) obtain:

∆α
1 = E012

α (3.4.7)
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consider:

Iα1 = E012
α (3.4.8)

using eq.(3.4.8) we obtain:

∆α
1 = Iα1 (3.4.9)

Let us consider three parallel plasma sheet that are put at a distance L from

each others (see �gure 3.4.1) . We have two continuous media with ε1(ω) and

ε2(ω) dielectric permettivities where:

ε1(ω) z < 0, L < z < 2L (3.4.10)

ε2(ω) otherwise

Figure 3.4.1: three parallel �plasma sheet�

Using the same method of section 3.2 we obtain the following combination of

exponential:

f (0) = re−iK0z + eiK0z

f (1) = r1e
−iK1z + t1e

iK1z

f (2) = r2e
−iK0z + t2e

iK0z

f (3) = teiK1z (3.4.11)
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using the boundary condition eq.(3.2.5) in z = 0, z = L and z = 2L and solving

the system we obtain: ( in this section we study the TE polarization only because

the TM polarization can be obtained by the RTE → RTM substitution)

∆2 = e−iL(K0−K1)[A+Be2iLK1 + Ce2iLK0 +De2iL(K0+K1)] (3.4.12)

where:

A = i(K0 +K1 + 2iΩ)3 B = −i(K0 −K1 + 2iΩ)2(K0 +K1 + 2iΩ) (3.4.13)

C = −i(−K0 +K1 + 2iΩ)2(K0 +K1 + 2iΩ) (3.4.14)

D = i(K0 −K1 − 2iΩ)(K0 +K1 − 2iΩ)(K0 −K1 + 2iΩ) (3.4.15)

and:

Kα = k2
⊥ +

εα(ω)ω2

c2
α = 0, 1, 2, 3 R2 = R0 R1 = R3 (3.4.16)

in according to the rotation along the imaginary axis, we substitute K0 → iK0

and K1 → iK1 and obtain the eqs. (3.4.12)-(3.4.15) in terms of real coe�cient.

Let us now consider the renormalization coe�cient ∆ren
2 = ∆2/∆

∞
2 , to obtain

this we calculate ∆∞2 = limL→∞∆2 and obtain:

∆∞2 = eiL(K0−K1)A ∆ren
2 = [1 +B′e−2LK1 + C ′e−2LK0 +D′e−2L(K0+K1)]

(3.4.17)

where B′ = B/A, C ′ = C/A and D′ = D/A, substituting eq.(3.4.3) into

eq.(3.4.17) we obtain:

B′ = R01
TES

12
TE C ′ = R12

TES
01
TE D′ = R01

TES
01
TET

12
TE (3.4.18)

and substituting eq.(3.4.18) into eq.(3.4.17) :

∆ren
2 = [1 +R01

TES
12
TEe

−2LK1 +R12
TES

01
TEe

−2LK0 +R01
TES

01
TET

12
TEe

−2L(K0+K1)]

(3.4.19)

and gathering this terms:

∆ren
2 = (1 +R01

TES
12
TEe

−2LK1) +S01
TE(R12

TE +R01
TET

12
TEe

−2LK1)e−2LK0 . (3.4.20)
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Let us de�ne:

F ijkTE = e−2djKjRijTET
jk
TE +RjkTE G′ijTE = SijTE (3.4.21)

substituting eq.(3.4.21), eq.(3.4.6) in eq.(3.4.20) we �nally obtain:

∆ren
2 = E012

TE + F 012
TEG

′
TE

01e−2K0L (3.4.22)

and de�ning

I
′

2 = F 012
TEG

′
TE

01e−2K0L (3.4.23)

using eq.(3.4.8) and eq.(3.4.23) in eq.(3.4.22) obtain that:

∆ren
2 = I1 + I ′2. (3.4.24)

Let us now consider four parallel plasma sheet that are put at distance L from

each other (see �gure 3.4.2). We have two continuous media with ε1(ω) and

ε2(ω) dielectric permettivities where:

ε1(ω) z < 0, L < z < 2L z > 3L (3.4.25)

ε2(ω) otherwise

Figure 3.4.2: four parallel �plasma sheet�
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Using the same method of section 3.2 we obtain the following combination of

exponential:

f (0) = eiK0z + re−iK0z

f (1) = t1e
iK1z + r1e

−iK1z

f (2) = t2e
iK0z + r2e

−iK0z

f (3) = t3e
iK1z + r3e

−iK1z

f (4) = teiK0z (3.4.26)

using the boundary condition eq.(3.2.5) in z = 0, z = L, z = 2L and Z = 3L

and solving the system obtain:

∆3 = eiL(K0−K1)[A+Be2iK1L+Ce4iK1L+De2iK0L+Ee2iL(K0+K1)+Fe2iL(K0+2K1)]

(3.4.27)

where:

A = (K0 +K1 + 2iΩ)4

B = −2(K0 −K1 + 2iΩ)2(K0 +K1 + 2iΩ)2

C = (K0 −K1 + 2iΩ)4

D = −(K0 −K1 − 2iΩ)2(K0 +K1 + 2iΩ)2

E = 2(K4
0 − 2K2

0 (K2
1 − 4Ω2) + (K2

1 + 4Ω2)2

F = −(K0 +K1 − 2iΩ)2(K0 −K1 + 2iΩ)2 (3.4.28)

and:

Kα = k2
⊥ +

εα(ω)ω2

c2
α = 0, 1, 2, 3, 4 R2 = R0 = R4 R1 = R3 (3.4.29)

in according to the rotation along the imaginary axis, we substitute K0 → iK0

and K1 → iK1 and obtain the eqs. (3.4.27),(3.4.28) in terms of real coe�cient.

Let us now consider the renormalization coe�cient ∆ren
3 = ∆3/∆

∞
3 , for obtain

this we calculate ∆∞3 = limL→∞∆3 and obtain:

∆∞3 = e−L(K0−K1)A (3.4.30)

∆ren
3 = [1 +B′e−2K1L + C ′e−4K1L +D′e−2K0L + E′e−2L(K0+K1) + F ′e−2L(K0+2K1)]

(3.4.31)
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where B′ = B/A, C ′ = C/A and D′ = D/A,E′ = E/A,F ′ = F/A substituting

eq.(3.4.3) into eq.(3.4.31) obtain that:

B′ = 2R01
TES

12
TE C ′ = (R01

TE)2(S12
TE)2 D′ = S01

TER
12
TE (3.4.32)

E′ = R01
TES

01
TET

12
TE + S12

TER
12
TET

01
TE F ′ = T 12

TET
01
TER

01
TES

12
TE (3.4.33)

let us de�ne:

GijkTE = SjkTET
ij
TEe

−2djKj + SijTE (3.4.34)

substituting eq.(3.4.34) , eq.3.4.21) and eq.(3.4.6) into eq.(3.4.31), using the

same process of two cavities case, we �nd that:

∆ren
3 = (E012

TE )2 + F 012
TE e

−2K0LG012
TE (3.4.35)

consider:

I2 = F 012
TEG

012
TEe

−2K0L (3.4.36)

using eq.(3.4.36) and eq.(3.4.23) into eq.(3.4.35):

∆ren
3 = I2

1 + I2 (3.4.37)

We can generalize the eq.(3.4.9), (3.4.24), (3.4.37) to N cavities. Let us consider

for instance N = 3 cavities, ∆3 can be written as:

∆3 = I3
1 + 2I1I2 + I3 (3.4.38)

where the �rst term consider the three cavities that don't interact from each

other, the second one is the interaction from two cavities and the third that

doesn't interact ( we have a factor 2 because we have two possibilities for this

interaction or the �rst two cavities interact and the third doesn't interact or the

last two cavities interact and the �rst doesn't interact), the third term is the

interaction of three cavities. We can generalize this formula for N cavities and

obtain:

∆N =
∑
J

QJ(Ik1 .....Ikj ) (3.4.39)

where {k1, k2..........kj} are the j-th partition of N and Qj is his molteplicity

(the number of combination that only di�er among each other with respect the
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order in which the various Ik are distributed)

Now, let us consider n plasma sheet cavities, in this case we �nd two general-

ization depending if the value of n is odd or even:

• Let us consider n an odd number remember that if the number of cavities

is �ve, for instance, we have six interface, in the dielectric case we can see

that six interface represent three cavities (see Appendix B):

∆d
3 = ∆p

5 = I3
1 + 2I1I2 + I3 (3.4.40)

This occur because the plates in �plasma sheet� are in�nitesimal with respect to

the dielectric case. For this reason when we add two interface in the dielectric

case obtain another cavity instead in the �plasma sheet� case we obtain another

two cavities. Generalizing this formula for N cavities:

∆N = ∆2n−1 (3.4.41)

where N is the number of dielectric cavities and n is the number of plasma sheet

cavities.

• Let us consider n an even number, if the number of cavities is four, for

instance, we have �ve interface that don't link with any dielectric case. In

order to solve this problem we consider the solution of �ve cavities (that

have six interface) and we carry out the last plates to the in�nite that

means d5 →∞ and obtain (see Appendix B):

∆4 = ∆5|d5→∞ (3.4.42)

generalizing to n cavity we obtain:

∆n = ∆n+1|dn+1→∞ (3.4.43)

In form of partition we can consider two interface as a �integer cavity� and one

interface as a � half cavity�. If we interact two integer cavities obtain Ik terms

instead if we interact an half cavity and a integer cavity obtain I
′

k terms that

are:

I
′

1 = 1 I
′

k = lim
G→G′

Ik k 6= 1 (3.4.44)

where G′ given by eq.(3.4.21).In four cavities case we have two integer cavities
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and one half cavity obtaining:

∆4 = I2
1 + I1I

′

2 + I2 + I
′

3 (3.4.45)

where the �rst term consider the three cavities that don't interact from each

other (obtaining I1 · I1 · I
′

1 = I2
1 because we have an half cavity), the second

one from two cavities and the third that doesn't interact (in this case when we

consider the integer cavities that interact and the half cavity that don't interact

we obtain I2I
′

1 = I2 otherwise we obtain I
′

2I1), the third term is the interaction

from all the cavities (since we have a half cavity we obtain I
′

3).

Generalizing to n cavities obtain:

∆N = Qj
∑
N

(Ik1.....kn−1
I
′

k) (3.4.46)

where Qj is obtained by the same method of the previous case.



Chapter 4

Numerical simulation

In the previous chapter we consider the �plasma sheet� model and we suppose

a method for the calculation of the Casimir energy. In the dielectric case the

Casimir energy have two fundamental properties:

• when the distance grows, the energy tend to zero

• when the number of cavities grow, the energy tend to a constant

For this reason, we want to obtain, using numerical simulation, that the Casimir

energy formula for a �plasma sheet� has the same properties of the dielectric case.

Let us consider odd cavity of �plasma sheet� model, because the eq.(3.4.39)

allow to link at the dielectric case. We plot the Casimir energy in function of

distance for odd cavities (for instance we show only the one cavity and three

cavities case), and obtain:

51
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Figure 4.0.1: Casimir energy in function of distance (nm) for one cavity case

Figure 4.0.2: Casimir energy in function of distance (nm) for three cavities case

If we can �t this behavior, with a model function:

y =
a

xb
(4.0.1)

we obtain for the parameters a, b:

a = −0.000390947 b = 2.54978 for one cavity

a = −0.00128623 b = 2.49953 for three cavities (4.0.2)
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This result allows to consider the evolution of the Casimir energy as a function

of the distance, the same for all odd cavities because the b parameters are equal

in the error limit. We can see that this evolution is the same of the dielectric

case (see Bordag [17]).

It's possible to plot En/n where En is the Casimir energy and n is the number

of cavities in function of the number of cavities. We can do this because allow

to know in which number of cavities we can neglect the interaction terms:

Figure 4.0.3: En/n as a function of number of cavities, where the �lled line is
the exponential �t and the dashed line is the �t of the type ax−b

we can �t this behavior for example, with two possible model functions:

y =
a

xb
+ c y = d− ge−

f
x (4.0.3)

and obtain the following values for the parameters:

a = 0.00004235 b = 1.94439 c = −0.000433

d = −0.0004386 f = −2.32466 g = −4.6644× 10−6 (4.0.4)

from the �gure 4.0.3, we obtain that the exponential model is the best �t for

this point. We don't have any physics explanation for this behavior.

Let us consider the Casimir energy for an even number of cavities, the formu-

lation of the eq.(3.4.42) is di�erent from the previous case for this reason we

want to verify the consistency of this formula. To obtain this we compare the

result of the eq.(3.4.42) and the equivalent point in the �t (for instance we can
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see two and four cavities case), using this formula:

E[2]

2
= α(2)

E[4]

4
= α(4) (4.0.5)

where α(n) is the equivalent point in the �t. we obtain:

Ea2 = −0.0008474 Eb2 = −0.0008527

Ea4 = −0.001721 Eb4 = −0.001720 (4.0.6)

where Ea2 is the value of the eq.(4.0.5) and Eb2 is the value obtaining by eq.(3.4.42).

We can plot the Casimir Energy as a function of the distance for even cavities

(for instance we can see two cavities):

Figure 4.0.4: Casimir energy in function of the distance for two cavities

If we can �t this behavior, with a model function:

y =
a

xb
(4.0.7)

and obtain the following parameters:

a = −0.00085279 b = 2.49956 (4.0.8)

The result of the even case have the same evolution of the odd case in accordance

with the Bordag result [17].



Conclusion

In this thesis's work we have studied the Casimir e�ect at �nite temperature

to the n coupled cavities case. Starting from the standard formula for two and

three dielectric cavities we extended the result to n cavities.

We have analyzed the Barton model (�plasma sheet� model) [14] using the

Kemp's hypothesis [20]. We have �nd a generalization for n cavities of this

model because this represents a �rst approximation to have a macroscopic de-

scription of Casimir e�ect for the Archimedes experiment.

We have analyzed the general formula of Casimir energy of �plasma sheet� as

a function of distance among cavities and number of cavities using numerical

simulation so to compare the di�erence and the similarity with the dielectric

case. We found a gain in energy of the order 1% respect a situation in which

the plates don't interact each other furthermore we �nd an important gain of

energy respect to the dielectric case and this is the reason because we use this

model for the Archimedes experiment.

However this model doesn't represent completely the Ybco plates because we

don't consider the microscopic properties of the material. Thus we obtain only

a �rst approximation to what expected for the Archimedes experiment.

An important improvement will be to evaluate the Casimir e�ect starting with

a microscopic model of the YBCO.
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Appendix A

Boundaries condition in

Plasma sheet model

We start with the Maxwell equations in vacuum:

~∇ · ~E = 0 ~∇ · ~B = 0

~∇× ~E = −1

c

∂ ~B

∂t
~∇× ~B =

1

c

∂ ~E

∂t
(A.0.1)

we consider a typical condition of Casimir e�ect that is two parallel conducting

plates in the vacuum, for this reason we use the boundary condition across the

surface:

disc( ~E‖) = 0 disc(Bz) = 0 (A.0.2)

disc(Ez) = 0 disc( ~B‖) = 0 (A.0.3)

for this case, i need to consider solutions of this type:

~E(~x, t) = ~f( ~k‖, z)e
i( ~k‖· ~x‖−ωt) ~B(~x, t) = ~g( ~k‖, z)e

i( ~k‖· ~x‖−ωt) (A.0.4)

where ~f = (f1, f2, f3), ~g = (g1, g2, g3), ~k‖ = (k1, k2) and ~x‖ = (x1, x2).
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Substituting eq.(A.0.4) in the expansion of the rotor in eq.(A.0.1) one obtain:

ik2f3 − ∂zf2 =
iω

c
g1 ik2g3 − ∂zg2 = − iω

c
f1 (A.0.5)

−ik1f3 + ∂zf1 =
iω

c
g2 − ik1g3 + ∂zg2 = − iω

c
f2 (A.0.6)

k1f2 − k2f1 =
ω

c
g3 k1g2 − k2g1 = − iω

c
f3 (A.0.7)

deriving the each members in eq.(A.0.7) and substituting eq.(A.0.5), eq.(A.0.6)

in eq.(A.0.7) we obtain the following relations for g1, g2, f1, f2 :

g2 =
ick2∂zg3 − ωk1f3

c|k‖|2
g1 =

ick1∂zg3 + ωk2f3

c|k‖|2
(A.0.8)

f2 =
ick2∂zf3 + k1ωg3

c|k‖|2
f1 =

ick1∂zf3 − ωk2g3

c|k‖|2
(A.0.9)

where �nally f3 and g3 are obtained by:

∂2f3

∂z2
+

(
ω2

c2
− |k2

‖|
)
f3 = 0

∂2g3

∂z2
+

(
ω2

c2
− |k2

‖|
)
g3 = 0 (A.0.10)

for TE modes, we have f3 = 0 so that:

f1 = −k2ωg3

c|k‖|2
g1 =

ik1∂zg3

|k‖|2
f2 =

k1ωg3

c|k‖|2
g2 =

ik2∂zg3

|k‖|2
(A.0.11)

in plasma sheet model we can show (see Barton [14]) that from the eq.(A.0.3)

and eq.(A.0.2) we obtain:

disc( ~E‖) = 0 disc(Bz) = 0 (A.0.12)

disc(Ez) = 2q(c/ω)2~∇‖ · ~E‖ disc( ~B‖) = −2iq(c/ω)ẑ × ~E‖ (A.0.13)

where q = 2πne2

mc2 . Using

disc( ~E‖) = 0 (A.0.14)

Being ~E‖ = (f1, f2) from eq.(A.0.11) we get:

disc( ~E‖) = disc(f1, f2) =⇒ disc(g3) = 0 (A.0.15)

Note that the condition eq.(A.0.15) implies:

disc(Bz) = disc(g3) = 0 (A.0.16)
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since f3 = 0 we have:

~∇ · ~E = 0 =⇒ ~∇‖ · ~E‖ = 0 (A.0.17)

for this reason the condition eq.(A.0.13) became:

disc(Ez) = 0 (A.0.18)

�nally let us consider the condition:

disc( ~B‖) = −2iq(c/ω)ẑ × ~E‖ (A.0.19)

where ẑ × ~E‖ = (−f2, f1) , ~B‖(g1, g2) ; using eq.(A.0.11) we obtain:

ik1∂zg3

|k‖|2
= 2iq(c/ω)

k1ωg3

c|k‖|2
=⇒ disc(∂zg3) = 2qg3 (A.0.20)

ik2∂zg3

|k‖|2
= 2iq

k2ωg3

c|k‖|2
=⇒ disc(∂zg3) = 2qg3

for TM modes, we have g3 = 0 so that:

g2 = −ωk1f3

c|k‖|2
g1 =

ωk2f3

c|k‖|2
f2 =

ik2∂zf3

|k‖|2
f1 =

ik1∂zf3

|k‖|2
(A.0.21)

by:

disc( ~E‖) = 0 (A.0.22)

using eq.(A.0.21):

disc( ~E‖) = disc(f1, f2) =⇒ disc(∂zf3) = 0 (A.0.23)

from the de�nition of TM modes one found that the condition disc(Bz) = 0 is

automatically satis�ed, while :

disc(Ez) = 2q(c/ω)2 ~∇‖ · ~E‖ =⇒ disc(f3) = −2q(c/ω)2∂zf3 (A.0.24)

where ∂zf3 derived from Maxwell equation ~∇ ·E = 0 and can be demonstrated

that the condition (A.0.24) gives the same result :

disc( ~B‖) = −2iq(c/ω)2ẑ × ~E‖. (A.0.25)
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Let us now consider Maxwell equations in materials:

~∇ · ~D = 0 ~∇ · ~B = 0

~∇× ~E = −1

c

∂ ~B

∂t
~∇× ~B =

1

c

∂ ~D

∂t
(A.0.26)

in a situation where two parallel conducting plates are surrounded by two media

one with dielectric permittvity ε1(ω) and another with dielectric permittivity

ε2(ω). In this case we �nd the following boundary condition:

disc( ~E‖) = 0 disc(Bz) = 0 (A.0.27)

disc(Dz) = 0 disc( ~B‖) = 0 (A.0.28)

where ~D = ε ~E. Like previously , we use the eq.(A.0.26) and obtain :

g2 =
ick2∂zg3 − ωεk1f3

c|k‖|2
g1 =

ick1∂zg3 + ωεk2f3

c|k‖|2
(A.0.29)

f2 =
ick2∂zf3 + k1ωg3

c|k‖|2
f1 =

ick1∂zf3 − ωk2g3

c|k‖|2
(A.0.30)

where f3 and g3 are solutions of the following equations:

∂2f3

∂z2
+

(
εω2

c2
− |k2

‖|
)
f3 = 0

∂2g3

∂z2
+

(
εω2

c2
− |k2

‖|
)
g3 = 0 (A.0.31)

for TE modes we have f3 = 0 :

g2 =
ik2∂zg3

|k‖|2
g1 =

ik1∂zg3

|k‖|2
f2 =

k1ωg3

c|k‖|2
f1 = −ωk2g3

c|k‖|2
(A.0.32)

when considering two plasma sheet with a dielectric in between, we can show (see

Barton-Jackson [14], [15]) that the condition eq.(A.0.27), eq.(A.0.28) became:

disc( ~E‖) = 0 disc(Bz) = 0 (A.0.33)

disc(Dz) = 2q(c/ω)2~∇‖ · ~E‖ disc( ~B‖) = −2iq(c/ω)ẑ × ~E‖ (A.0.34)

the conditions in g3 and ∂zg3 are the same of previous case.

For TM modes we have g3 = 0:

f2 =
ik2∂zf3

|k‖|2
f1 =

ik1∂zf3

|k‖|2
g2 =

ωεk2f3

c|k‖|2
g1 = −ωεk1f3

c|k‖|2
(A.0.35)
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the condition in ∂zf3 are the same of the previous case, while the condition f3

are (use the same process of vacuum condition):

disc(εf3) = −2q∂zf3 (A.0.36)



Appendix B

Solution for 4 and 5 cavities

Let us consider �ve parallel plasma sheet that are put at distance L from each

other (see �gure B.0.1). We have two continuous media ε1(ω) and ε2(ω) dielec-

tric permettivities where:

ε1(ω) z < 0 L < z < 2L 3L < z < 4L

ε2(ω) otherwise (B.0.1)

Figure B.0.1: �ve parallel plasma sheet

Using the same method of section 3.2 we obtain the following combination of

61
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exponential:

f (0) = eiK0z + re−iK0z

f (1) = t1e
iK1z + r1e

−iK1z

f (2) = t2e
iK0z + r2e

−iK0z

f (3) = t3e
iK1z + r3e

−iK1z

f (4) = t4e
iK0z + r4e

−iK0z

f (5) = teiK1z (B.0.2)

using the boundary condition eq.(3.2.5) in z = 0, z = L, z = 2L ,Z = 3L and

Z = 4L and solving the system obtain:

∆4 = e−2i(K0−K1)[A+Be2iLK1 + Ce4iLK1 +De2iLK0 + Ee2iL(K0+K1) + Fe2iL(K0+2K1)+

Ge4iLK0 +He2iL(2K0+K1) + Ie4iL(K0+K1)] (B.0.3)

where:

A = −i(K0 +K1 + 2iΩ)5

B = −2i(K0 −K1 + 2iΩ)(K1 −K0 − 2iΩ)(K0 +K1 + 2iΩ)3

C = −i(K1 −K0 − 2iΩ)2(K0 −K1 + 2iΩ)2(K0 +K1 + 2iΩ)

D = −2i(K1 −K0 + 2iΩ)(K0 −K1 − 2iΩ)(K0 +K1 + 2iΩ)3

E = −i{(K0 −K1 − 2iΩ)(K0 −K1 + 2iΩ)[(K1 −K0 − 2iΩ)(K1 −K0 + 2iΩ)(K0 +K1 + 2iΩ)

+2(K0 +K1 − 2iΩ)(K0 +K1 + 2iΩ)2] + (K1 −K0 + 2iΩ)(K1 −K0 − 2iΩ)∗

(K1 +K0 − 2iΩ)(K1 +K0 + 2iΩ)2

F = −i{(K0 −K1 + 2iΩ)(K1 −K0 − 2iΩ)(K0 +K1 − 2iΩ)[(K0 −K1 − 2iΩ)(K0 −K1 + 2iΩ)

+ (K0 +K1 + 2iΩ)(K0 +K1 − 2iΩ)]

G = −i(K1 −K0 + 2iΩ)2(K0 −K1 − 2iΩ)2(K0 +K1 + 2iΩ)

H = −i(K1 −K0 + 2iΩ)(K0 −K1 − 2iΩ)[(K0 −K1 + 2iΩ)(K0 −K1 − 2iΩ)+

+ (K0 +K1 − 2iΩ)2(K0 +K1 + 2iΩ)]

I = −i(K0 −K1 + 2iΩ)(K0 −K1 − 2iΩ)(K0 +K1 − 2iΩ)3 (B.0.4)
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and:

Kα = k2
⊥ +

εα(ω)ω2

c2
α = 0, 1, 2, 3, 4, 5 R2 = R0 = R4 R1 = R3 = R5

(B.0.5)

in according to the rotation along the imaginary axis, we substitute K0 →
iK0 and K1 → iK1 and obtain that the eqs. (B.0.4),(B.0.3) in terms of real

coe�cient.

Let us now consider the renormalization coe�cient ∆ren
4 = ∆4/∆

∞
4 , for obtain

this we calculate ∆∞4 = limL→∞∆4 and obtain:

∆∞4 = e2(K0−K1)LA (B.0.6)

∆ren
4 = [1 +B′e−2LK1 + C ′e−4LK1 +D′e−2LK0 + E′e−2L(K0+K1) + F ′e−2L(K0+2K1)+

+G′e−4LK0 +H ′e−2L(2K0+K1) + I ′e−4L(K0+K1)] (B.0.7)

where B′ = B/A, C ′ = C/A and D′ = D/A,E′ = E/A,F ′ = F/A,G′ =

G/A,H ′ = H/A, I ′ = I/A, substituting eq.(3.4.3) in eq.(B.0.7) obtain that:

B′ = 2R01
TES

12
TE C ′ = (R01

TE)2(S12
TE)2 D′ = 2S01

TER
12
TE (B.0.8)

E′ = S01
TER

01
TE [S12

TER
12
TE + 2T 12

TE ] + T 01
TES

12
TER

12
TE

F ′ = T 12
TES

12
TER

01
TE [S01

TER
01
TE + T 01

TE ] G′ = (R12
TE)2(S01

TE)2

H ′ = R12
TES

01
TE [R01

TES
01
TE + T 01

TET
12
TE ] I ′ = R01

TES
01
TET

01
TE(T 12

TE)2

let us de�ne:

Hijk
TE = SijTER

jk
TE + e−2djKjT ijTET

jk
TE (B.0.9)

Using eq.(B.0.9) , eq.3.4.6),eq.(3.4.21) and eq.(3.4.34) in eq.(B.0.7) we �nd that:

∆ren
4 = (E012

TE )2 +F 012
TEG

012
TEe

−2K0L +E012
TEF

012
TE (G′TE)01 +F 012

TE e
−4K0LH012

TEG
′01
TE

(B.0.10)

de�ne:

I ′3 = F 012
TEG

′01
TEe

−4K0LH012
TE (B.0.11)

Using eq.(3.4.8), eq.(3.4.23), eq.(3.4.36) and eq.(B.0.11) in eq.(B.0.10) obtain:

∆ren
4 = I2

1 + I2 + I1I
′
2 + I ′3 (B.0.12)
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Let us consider six parallel plasma sheet that are put at distance L from each

other (see �gure B.0.2). We have two continuous media ε1(ω) and ε2(ω) dielec-

tric permettivities where:

ε1(ω) z < 0 L < z < 2L 3L < z < 4L z > 5L (B.0.13)

ε2(ω) otherwise

Figure B.0.2: six parallel plasma sheet

Using the same method of section 3.2 we obtain the following combination of

exponential:

f (0) = eiK0z + re−iK0z

f (1) = t1e
iK1z + r1e

−iK1z

f (2) = t2e
iK0z + r2e

−iK0z

f (3) = t3e
iK1z + r3e

−iK1z

f (4) = t4e
iK0z + r4e

−iK0z

f (5) = t5e
iK1z + r5e

−iK1z

f (6) = teiK0z (B.0.14)

using the boundary condition eq.(3.2.5) in z = 0, z = L, z = 2L ,z = 3L ,z = 4L



APPENDIX B. SOLUTION FOR 4 AND 5 CAVITIES 65

and z = 5L and solving the system obtain:

∆5 = e3iL(K0−K1)[A+Be2iLK1 + Ce4iLK1 +De6iLK1 + Ee2iLK0 + Fe2iL(K0+K1)

+Ge2iL(K0+2K1) +He2iL(K0+3K1) + Ie4iK0L + Je2i(2K0+K1)L +Ke2iL(2K0+2K1) + Le2iL(2K0+3K1)]

(B.0.15)

where:

A = −(K0 +K1 + 2iΩ)6

B = 3(K0 −K1 + 2iΩ)2(K0 +K1 + 2iΩ)4

C = −3(K0 −K1 + 2iΩ)4(K0 +K1 + 2iΩ)2

D = (K0 −K1 + 2iΩ)6

E = 2(−K0 +K1 + 2iΩ)2(K0 +K1 + 2iΩ)4

F = −2(K0 −K1 + 2iΩ)(K0 −K1 − 2iΩ)(K0 +K1 + 2iΩ)2[(K1 −K0 − 2iΩ)(K1 −K0 + 2iΩ)+

(K0 +K1 − 2iΩ)(K0 +K1 + 2iΩ)]− (K1 −K0 − 2iΩ)(K1 −K0 + 2iΩ)(K0 +K1 − 2iΩ)∗

(K0 +K1 + 2iΩ)3

G = −2(K0 +K1 + 2iΩ)(K0 +K1 − 2iΩ)(K1 −K0 − 2iΩ)(K0 −K1 + 2iΩ)[(K0 −K1 + 2iΩ)∗

(K0 −K1 − 2iΩ) + (K1 −K0 − 2iΩ)(K1 −K0 + 2iΩ) + (K0 +K1 − 2iΩ)(K0 +K1 + 2iΩ)]

H = −2(K0 +K1 − 2iΩ)2(K0 −K1 + 2iΩ)4

I = −(−K0 +K1 + 2iΩ)4(K0 +K1 + 2iΩ)2

J = −(K1 −K0 + 2iΩ)(K0 −K1 − 2iΩ)(K0 +K1 − 2iΩ)(K0 +K1 + 2iΩ)[(K0 −K1 − 2iΩ)∗

(K0 −K1 + 2iΩ) + (K1 −K0 − 2iΩ)(K1 −K0 + 2iΩ)+(K0 +K1 − 2iΩ)(K0 +K1 + 2iΩ)]

K = −(K0 +K1 − 2iΩ)2(K0 −K1 + 2iΩ)(K0 −K1 − 2iΩ)[(K1 −K0 − 2iΩ)(K1 −K0 + 2iΩ)+

+(K1 +K0 − 2iΩ)(K1 +K0 + 2iΩ)] + (K1 −K0 + 2iΩ)(K1 −K0 + 2iΩ)(K0 +K1 − 2iΩ)3∗

(K0 +K1 + 2iΩ)

L = (K1 +K0 − 2iΩ)4(K0 −K1 + 2iΩ)2

(B.0.16)

and:

Kα = k2
⊥+

εα(ω)ω2

c2
α = 0, 1, 2, 3, 4, 5, 6 R2 = R0 = R4 = R6 R1 = R3 = R5

(B.0.17)

in according to the rotation along the imaginary axis, we substitute K0 → iK0

and K1 → iK1 and obtain that the eqs. (B.0.16),(B.0.15) in terms of real
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coe�cient.

Let us now consider the renormalization coe�cient ∆ren
5 = ∆5/∆

∞
5 , for obtain

this we calculate ∆∞5 = limL→∞∆5 and obtain:

∆∞5 = e−3L(K0−K1)A (B.0.18)

∆ren
5 = [1 +B′e−2LK1 + C ′e−4LK1 +D′e−6LK0 + E′e−2LK0 + F ′e−2L(K0+K1)+

+G′e−2L(K0+2K1) +H ′e−2L(K0+3K1) + I ′e−4LK0 + J ′e−2(2K0+K1)L +K ′e−2L(2K0+2K1) + Le−2L(2K0+3K1)]

(B.0.19)

where B′ = B/A, C ′ = C/A and D′ = D/A, E′ = E/A, F ′ = F/A, G′ =

G/A,H ′ = H/A,I ′ = I/A,J ′ = J/A,K ′ = K/A,L′ = L/A substituting eq.(3.4.3)

in eq.(B.0.19) obtain that:

B′ = 3R01
TES

12
TE C ′ = 3(R01

TE)2(S12
TE)2 D′ = (R01

TE)3(S12
TE)3

E′ = 2R12
TES

01
TE F ′ = 2[R01

TES
12
TES

01
TER

12
TE +R01

TET
12
TES

01
TE + S12

TET
01
TER

12
TE ]

G′ = 2[(R01
TE)2(S12

TE)T 12
TES

01
TE +R01

TE(S12
TE)2T 01

TER
12
TE + S01

TET
01
TET

12
TER

12
TE ]

H ′ = 2[(R01
TE)2(S12

TE)2T 01
TET

12
TE ] I ′ = (R12

TE)2(S01
TE)2

J ′ = R01
TET

12
TE(S01

TE)2R12
TE + S12

TET
01
TE(R12

TE)2S01
TE + T 01

TET
12
TER

12
TES

01
TE

K ′ = R01
TET

12
TET

01
TES

12
TES

01
TER

12
TE +R01

TE(T 12
TE)2T 01

TES
01
TE + S12

TE(T 01
TE)2T 12

TER
12
TE

(B.0.20)

L′ = R01
TES

12
TE(T 01

TE)2(T 12
TE)2

Using eq.(B.0.9) , eq.3.4.6),eq.(3.4.21) and eq.(3.4.34) in eq.(B.0.19) we �nd

that:

∆ren
5 = (E012

TE )3 + 2E012
TEF

012
TEG

012
TEe

−2LK0 + F 012
TEG

012
TEH

012
TE e

−4LK0 (B.0.21)

let us de�ne:

I3 = F 012
TEG

012
TEH

012
TE e

−4LK0 (B.0.22)

using eq.(3.4.8), eq.(3.4.23), eq.(3.4.36), eq.(B.0.22) and eq.(B.0.11) in eq.(B.0.21)

and obtain:

∆ren
5 = I3

1 + 2I2I1 + I3 (B.0.23)
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