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Introduction

Gravity is one of the four fundamental interactions in nature, among elec-
tromagnetism, weak and strong nuclear forces; in particular, it is the weak-
est of all.
The Greek philosopher Aristotle gave one of the earliest attempts of ex-
planation of gravity by dividing the universe into terrestrial and celestial
spheres, with the idea that all bodies move toward their natural place. It
was Aristotle who first thought that objects with different masses should
fall at different rates. This supposition failed when, between the 16th and
17th century, Galilei conducted his experiments on gravity using inclined
planes, pendulums and telescopes, showing experimentally that all the ob-
jects accelerate toward the Earth uniformly if we neglect resistant forces.
It was the first primordial formulation of the Equivalence Principle.
A consistent theory of gravity was proposed by Newton in 1687 in his trea-
tise "Philosophiae naturalis principia mathematica", where he formulated
the inverse-square law of universal gravitation. The most important con-
ceptual ideas introduced by the Newton’s theory of gravity are: space and
time are two absolute entities, i.e. all the physical phenomena take place in
a non dynamical background; gravitational and inertial masses coincide,
i.e. the so called Equivalence Principle.
The idea of the absolute space, the failure of the theory to explain the ex-
cess precession of Mercury’s orbit, together with the incompatibility of
Special Theory of Relavity with the Newton’s theory were some of the
reasons that led Einstein to formulate the General Relativity in 1915 [28].
General Relativity suggests that gravity is no longer a force, as Newton
proposed, but instead it is just the effect of geometry, i.e. it is the curva-
ture of spacetime that causes objects to fall down to Earth. Time is not an
absolute notion and it depends on the position, in a gravitational field, in
which it is measured. Space and time, together, form the notion of space-
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time.
Although General Relativity passed numerous tests over the years, for ex-
ample the three classic tests proposed by Einstein himself (the perihelion
precession of Mercury’s orbit, the deflection of light by the Sun and the
gravitational redshift of light), gravitational lensing and the direct detec-
tion of gravitational waves in 2016 [1, 2, 3], it is not free from defects.
A first shortcoming is the inability of General Relativity to be integrated in
a more general theory with Quantum Field Theory. The main conceptual
problem is that the Quantum Field Theory assumes the spacetime to be
non-dynamical, while in General Relativity the spacetime is a dynamical
quantity [15].
From a cosmological point of view it exists the so called problem of the
dark approach. To explain why the universe is currently undergoing an
accelerated expansion phase, a new cosmological model, usually referred
to as the Concordance Model or Λ Cold Dark Matter (ΛCDM ) model, was
introduced. The ΛCDM model assumes that the universe is dominated by
an unclustered fluid with negative pressure commonly referred to as dark
energy, which drives the accelerated expansion. A candidate for dark en-
ergy is the cosmological constant Λ [24, 39]. The ΛCDM fails to explain
why the inferred value of Λ is 120 orders of magnitude lower in compar-
ison with the typical value of the vacuum energy density predicted by
Standard Model [25], and the coincidence problem, i.e. the energy density
of the cosmological constant, as indicated by cosmological observations,
has the same order of magnitude with the energy density of the matter
content of the universe.
As a possible solution to these problems it was thought to replace the cos-
mological constant with a scalar field φ rolling slowly down a flat section
of a potential V (φ). This model is called quintessence [27, 18], however
it still has the coincidence problem since the dark energy and matter den-
sities evolve differently and reach comparable values only during a very
short time of history of the universe, coinciding right at present era.
In response to these and other shortcomings of General Relativity, sev-
eral alternative theories of gravity arose, some of which will be discussed
in this thesis. In particular, we will focus on the role that the affine con-
nection plays in various theories of gravity and we will also focus on three
quantities dependent on it, which constitute the so called trinity of gravity:
the curvature, which measures how much a vector rotates along a closed
curve; the torsion, which measures how much two vectors that are par-
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allel transported to each other are twisted, and the non-metricity, which
instead measures how much the length of a vector varies when it is par-
allel transported. Depending on what value these three quantities assume
we can obtain different theories of gravity. We will concentrate on theories
that are obtained by removing two quantities out of curvature, torsion and
non-metricity.
Initially we will show basic concepts useful for our study, such as the def-
inition of connection or isometries, and then we will concentrate on how
to modify the affine connection in presence of metric and manifold defor-
mations.
Then, we will focus on the theories obtainable from the trinity. First we
will deal with the case in which the curvature is the only non-zero quantity
and we will study the various approaches that can be obtained depending
on which one between the metric and the connection assumes the value
of dynamic variable. We will start from General Relativity, a purely met-
ric theory, which leads to the result that the connection must necessarily
be the Levi-Civita one. Later we will be interested in theories where the
metric is put in the background with respect to the connection, which as-
sumes the value of unique dynamic variable. In this framework we will
open a small parenthesis in which we will see that by imposing a non-zero
torsion we can naturally recover the concept of cosmological constant. Fi-
nally we will discuss an approach to gravitation in which both the metric
and the connection have the value of a dynamic variables but relegated to
two different roles, the metric is the one that regulates the causal structure
while the connection governs the geodesic one.
Afterwards, we will consider "teleparallel" theories, where curvature is
null. In particular, we will take in account the Teleparallel Equivalent to
General Relativity, which is a gravitational gauge theory where the con-
nection has the torsion as the only non-zero quantity out of the trinity
ones. In this theory the geometric character of gravity imposed by General
Relativity is lost and gravity is to be considered again as a force. The other
teleparallel theory considered is the Symmetric Teleparallel Equivalent to
General Relativity, where it is the non-metricity that dominates. This is
a theory in which there is ferment in recent years since non-metricity im-
plies the possible invalidity of the Equivalence Principle.
In the last part we will analyse the study of a generic affine connection
through which it is possible to catalog, in addition to the theories we
considered, all the theories that can be distinguished according to which
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quantities out of the trinity ones are taken into account.
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Chapter 1

The Equivalence Principle

Already known to Galilei thanks to his free fall experiments, the Equiv-
alence Principle(EP) was formulated by Newton in "Philosophiae natu-
ralis principia mathematica": it asserts the equivalence between the iner-
tial mass mi, i.e. the property of a body to resist to being accelerated by
a force F = mia, and the gravitational mass mg, i.e. the coefficient that
appears in the Newtonian gravitational attraction law Fg = GNmgMgr/r3:

mi ≡ mg. (1.1)

Today this is known as Weak Equivalence Principle (WEP) and the present
accuracy of equivalence is of the order of 10−15 [44]. However there are dif-
ferent proposals for new experiments that would lead to the improvement
of this estimate, one of them is SAGE [43] where the use of a multi-satellite
configuration is considered.
The WEP implies that it is impossible to distinguish, locally, between the
effects of a gravitational field from those experienced in uniformly accel-
erated frames using the simple observation of the free-falling particles be-
haviour.
Thanks to Special Relativity, Einstein generalised this concept not only for
free-falling particles but to any experiment. This principle is called Ein-
stein Equivalence Principle (EEP) and it states [19]:

• Weak Equivalence Principle is valid;

• the outcome of any local non-gravitational test experiment is inde-
pendent of velocity of free-falling apparatus;
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CHAPTER 1. THE EQUIVALENCE PRINCIPLE

• the outcome of any local non-gravitational test experiment is inde-
pendent of where and when it is performed.

It is defined as local non-gravitational experiment an experiment per-
formed in a small-size freely falling laboratory. It follows from the EEP
that the gravitational interaction must be described in terms of a curved
spacetime, i.e. the postulates of the so-called metric theories of gravity
have to be satisfied:

• spacetime is endowed with a metric gµν ;

• the world lines of test bodies are geodesics of the metric;

• in local freely falling frames, called local Lorentz frames, the non-
gravitational laws of physics are those of Special Relativity.

There is another EP that is distinct from the WEP and EEP due to inclusion
of self-gravitating bodies and local gravitational experiments, it is called
Strong Equivalence Principle (SEP) and it states:

• Weak Equivalence Principle is valid for self-gravitating bodies as
well as for test bodies;

• the outcome of any local test experiment is independent of the veloc-
ity of the free-falling apparatus;

• the outcome of any local test experiment is independent of where
and when it is performed.

Of course WEP is recovered when the gravitational forces are ignored.

1.1 Tests of the Weak Equivalence Principle:
the torsion-balance experiments

Among the various tests of the WEP [Table 1.1], the experiments based on
the torsion-balance deserve a mention due to the fact that the first high
precision experiment was performed by Eötvös precisely by using one of
them.
A torsion-balance consists in two masses of different composition con-
nected by a rod and suspended by a thin wire. If the inertial mass was
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CHAPTER 1. THE EQUIVALENCE PRINCIPLE

different from the gravitational one, then the gravity and the centrifugal
force would not compensate each other and eventually the rod would ro-
tate.
How to quantify a possible violations of WEP? Let us assume, for exam-
ple, that the inertial mass mi differs in a system from the gravitational one
according to

mg = mi + ΣAη
AE

A

c2 , (1.2)

where EA is the internal energy of the body generated by interaction A
and ηA is a dimensionless parameter quantifying the violation of the WEP
induced by this interaction. Thus, the acceleration of a body is given by

a = g

(
1 + ΣAη

A EA

mic2

)
. (1.3)

We define a quantity called Eötvös ratio as the relative difference in accel-
eration between two different bodies:

η = 2 |a1 − a2|
|a1 + a2|

= ΣAη
A

∣∣∣∣∣ EA
1

mi1c2 −
EA

2
mi2c2

∣∣∣∣∣ . (1.4)

The measured value of η provides information on the WEP-violation pa-
rameters ηA.

Researchers Method Limit on |η|
Newton(1686) Pendulum 103

Bessel(1832) Pendulum 2 · 10−5

Eötvös, Pekar and Fekete(1922) Torsion-balance 5 · 10−9

Potter(1923) Pendulum 3 · 10−6

Renner(1935) Torsion-balance 2 · 10−9

Roll, Krotkov and Dicke(1964) Torsion-balance 3 · 10−11

Keiser and Fallen(1981) Fluid support 4 · 10−11

Baessel et all.(1999) Torsion-balance 5 · 10−14

MICROSCOPE(2017) Earth orbit 10−15

Table 1.1: Tests of the Weak Equivalence Principle.
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CHAPTER 1. THE EQUIVALENCE PRINCIPLE

1.2 The geodesic equation

In this last section we want to show that the free fall motion of a test par-
ticle is given by the geodesic equation due to the EP.
If we are in a locally inertial frame, where by the EP we are able to elim-
inate the gravitational force, the equations of motion would be that of a
free particle:

d2yµ

ds2 = 0, (1.5)

where
ds2 = ηαβdy

αdyβ (1.6)

is the line element, with

ηαβ = diag(1,−1,−1,−1) (1.7)

the Minkowski metric. Performing the coordinate transformations

yµ = yµ(xν) (1.8)

we get

d2yµ

ds2 = d

ds

(
dyµ

ds

)
= d

ds

(
∂yµ

∂xλ
dxλ

ds

)
= d

ds

(
∂yµ

∂xλ

)
dxλ

ds
+ ∂yµ

∂xλ
d2xλ

ds2

= ∂2yµ

∂xσ∂xρ
dxσ

ds

dxρ

ds
+ ∂yµ

∂xλ
d2xλ

ds2 = 0.
(1.9)

Multiplying by ∂xλ/∂yµ the Eq.(1.9) becomes

∂xλ

∂yµ
∂2yµ

∂xσ∂xρ
dxσ

ds

dxρ

ds
+ d2xλ

ds2 = 0, (1.10)

which can be written as

d2xλ

ds2 + Γλσρ
dxσ

ds

dxρ

ds
= 0, (1.11)

with

Γλσρ = Γλρσ = ∂xλ

∂yµ
∂2yµ

∂xσ∂xρ
. (1.12)
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CHAPTER 1. THE EQUIVALENCE PRINCIPLE

Eq.(1.11) is the geodesic equation and the quantities (1.12) are called affine
connections, these ones express the gravitational force that acts on the par-
ticle. The geodesic equation show us that the affine connections give the
apparent forces, in the absence of a gravitational field, if we perform a
transformation from a locally inertial frame to another generic frame. This
manifests the equivalence between inertial and gravitational forces.
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Chapter 2

Isometries and Killing equations

In this chapter we want to discuss about isometries, transformations which
preserve the metric, and the equations satisfied by the generators of these
transformations [36]. However, before this, we must set the geometrical
framework and define the Levi-Civita connection.

2.1 Geometrical structure

Spacetime is described by a 4-dimensional differentiable manifold M. We
can define on it a metric

g = gµνdx
µdxν , gµν = gνµ, (2.1)

which is a rank-2 symmetric covariant tensor. The metric defines a scalar
product on the manifold between two vectors V and W

g(V,W ) = gµνV
µW ν . (2.2)

By definition, the metric is assumed to be non-degenerate, g = det(gµν) 6=
0, this allows to determine the inverse matrix gµν such that gµνgνλ = δµλ .
Thanks to this we can establish, in every point p of manifold, an iso-
morphism between the tangent space Vp and the dual one V∗p. We use
a Lorentzian metric, i.e. a metric with a signature ±2.
Independently to the metric, we can define the affine connection Γλµν . It
introduces a local isomorphism of tangent spaces at different points x of
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CHAPTER 2. ISOMETRIES AND KILLING EQUATIONS

the manifold, by specifying a rule that maps a vector V at a point x into a
vector W at an infinitely near point x+ dx:

δV λ = W λ − V λ = −ΓλµνV µdxν . (2.3)

Defining a connection structure, we introduce the covariant derivative of
a tensor:

∇λT
µ1...µn

ν1...νm = ∂λT
µ1...µn

ν1...νm + Γµ1
λρT

ρ...µn
ν1...νm + ...

+ Γµn
λρT

µ1...ρ
ν1...νm − Γρλν1T

µ1...µn
ρ...νm − ...

− ΓρλνmT
µ1...µn

ν1...ρ.

(2.4)

The connection also defines the notion of parallel transport. Let γ(t) be a
curve in M, specified by the parametric equations γ(t) = {xµ}. We define
the covariant derivative of a tensor field T along this curve as

dT

dt
= dxµ

dt
∇µT. (2.5)

The tensor T is said to be parallel transported along γ(t) when it satisfies
the condition:

V µ∇µT = 0. (2.6)

with V µ = dxµ/dt. Geodesics are particular curves whose tangent vectors
remain parallel when they are transported along them:

V µ∇µV
ν = α(t)V ν . (2.7)

Geodesics are said to be affine-parameterized if α(t) = 0, with t the affine
paramater. In this situation, Eq.(2.7) becomes

V µ∇µV
ν = 0 = d2xν

ds2 + ΓνµαV µV α. (2.8)

Thanks to the connection and the covariant derivative, we define the quan-
tities

T λµν ≡ 2Γλ[µν], (2.9)

Qλµν ≡ ∇λgµν = ∂λgµν − Γρλµgρν − Γρλνgµρ, (2.10)

Rα
βµν ≡ ∂µΓαβν − ∂νΓαβµ + ΓαλµΓλβν − ΓαλνΓλβµ, (2.11)
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CHAPTER 2. ISOMETRIES AND KILLING EQUATIONS

which are respectively the torsion tensor, the non-metricity tensor and the
Riemann tensor.
Contraction of the first index with the third one of the Riemann tensor
gives the Ricci tensor,

Rα
µαν ≡ Rµν , (2.12)

from which, using the metric, we get the Ricci scalar

R ≡ gµνRµν . (2.13)

It is useful to underline that torsion, non-metricity and curvature, which is
given by the Riemann tensor, are all properties of the connection and not
of the spacetime.

2.2 The Levi-Civita connection

Recovering the argument of the last chapter, let us take in account the
transformations

yµ = yµ(xν). (2.14)

Under these transformations the metric becomes

g = ηαβdy
αdyβ = ηαβ

∂yα

∂xµ
dxµ

∂yβ

∂xν
dxν = gµνdx

µdxν , (2.15)

where

gµν = gνµ = ηαβ
∂yα

∂xµ
∂yβ

∂xν
. (2.16)

Deriving this equation with respect to xλ, we get

∂λgµν = ηαβ
∂2xα

∂xµ∂xλ
∂yβ

∂xν
+ ηαβ

∂yα

∂xµ
∂2yβ

∂xν∂xλ
. (2.17)

From Eq.(1.12), we achieve

∂λgµν = ηαβΓρµλ
∂yα

∂xρ
∂yβ

∂xν
+ ηαβΓρνλ

∂yβ

∂xρ
∂yα

∂xµ
= gρνΓρµλ + gρµΓρνλ. (2.18)

Finally, permuting the indices, we write the Levi-Civita connection:

Γλµν =
{
λ

µν

}
= 1

2g
λρ (∂µgνρ + ∂νgµρ − ∂ρgµν) . (2.19)
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CHAPTER 2. ISOMETRIES AND KILLING EQUATIONS

Thus, if we start from the statement of the WEP, we find a metric de-
pendent affine connection. The relation (2.19) can also be derived by the
metric-compatibility relation

∇λgµν = 0, (2.20)

imposing a null torsion.

2.3 Killing equations

A transformation y : xµ → yν(xµ) is an isometry if it preserves the metric:

gµν(x) = ∂yα

∂xµ
∂yβ

∂xν
g̃αβ(y). (2.21)

Let us consider the infinitesimal transformation

yα = xα + εξα ε→ 0 (2.22)

where ξ is the vector field that generates the transformation. Substituting
this transformation in Eq.(2.21), we obtain

gµν(x) =
(
δαµ + ε

ξα

∂xµ

)(
δβν + ε

ξβ

∂xν

)
g̃αβ(y)

'g̃µν(y) + ε
∂ξα

∂xµ
gαν(y) + ε

∂ξβ

∂xν
gµβ(y) + o(ε2).

(2.23)

In the last line we have replace g̃µν with gµν since the two tensors differ by
an ε. Being

g̃µν(y) ' g̃µν(x) + εξα
∂ ˜gµν
∂xα

' g̃µν(x) + εξα
∂gµν
∂xα

, (2.24)

we find

gµν(x) = g̃µν(x) + εξα
∂gµν
∂xα

+ ε
∂ξα

∂xµ
gαν(x) + ε

∂ξβ

∂xν
gµβ(x) (2.25)

In order that the metric tensor is invariant under an infinitesimal transfor-
mation, it must be:

ξα
∂gµν
∂xα

+ ∂ξα

∂xµ
gαν + ∂ξβ

∂xν
gµβ = 0. (2.26)
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CHAPTER 2. ISOMETRIES AND KILLING EQUATIONS

Using the Levi-Civita connection, this equation can be rewritten as

∇µξν +∇νξµ = 0 (2.27)

These are the Killing equations. From the definition of Lie derivative

Lξgµν = lim
ε→0

gµν(x)− g̃µν(x)
ε

, (2.28)

the Killing equations assume the form

Lξgµν = 0. (2.29)

This equation denotes that a transformation is an isometry if the Lie deriva-
tive of metric with respect to the generator vector field is null and ξ is
called Killing vector field.
Let ξ and ξ̃ be two Killing vector fields. We easily verify that:

1. a linear combination aξ + bξ̃ (a, b ∈ R) is a Killing vector field;

2. the Lie bracket
[
ξ, ξ̃

]
is a Killing vector field.

(1) is obvious from the linearity of the covariant derivative. To prove (2)
we use the propriety

L[ξ,ξ̃] = LξLξ̃ − Lξ̃Lξ, (2.30)

so
L[ξ,ξ̃]g = LξLξ̃g − Lξ̃Lξg = 0, (2.31)

since Lξg = 0 and Lξ̃g = 0.
Thus, all the Killing vector fields form a Lie algebra of the symmetric op-
erations on the manifold M.
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Chapter 3

The spacetime deformations

Studies concerning the deformations of spacetime [23, 26] are related to
physical problems that ranging from the spontaneous breaking of sym-
metry up to the gravitational waves. In this chapter we use an approach
in which the deformations are treated through Lorentz matrices of scalar
fields Φa

b. These fields have a straightforward physical interpretation
which could contribute to explain several fundamental issues as the in-
flation in cosmology and other pictures where scalar fields play a funda-
mental role in dynamics.

3.1 Metric deformations

Let us consider a 4-dimensional spacetime manifold M endowed with
a Lorentzian metric g. We work in the tetrad formalism [49] where the
tetrads

ha = ha
µ∂µ and ha = haµdx

µ (3.1)

are linear bases that relate g to the tangent space metric

η = ηabdx
adxb (3.2)

through the relation
ηab = gµνha

µhb
ν . (3.3)

This means that a tetrad is a linear frame whose members are pseudo-
orthogonal by the pseudo-riemannian metric g. Due to the relations

haµha
ν = δνµ and haµhb

µ = δab , (3.4)
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CHAPTER 3. THE SPACETIME DEFORMATIONS

we can reverse Eq.(3.3):
gµν = ηabh

a
µh

b
ν . (3.5)

In the expressions just written we used the Greek alphabet (µ, ν, ρ, ... =
0, 1, 2, 3) to denote indices related to spacetime and the Latin alphabet
(a, b, c, ... = 0, 1, 2, 3) to denote indices related to the tangent space.
Defining a new tetrad field with the help of a matrix scalar fields Φa

b ∈
GL(4),

h̃a = Φa
ch
c, (3.6)

we introduce a manifold M̃ with a metric

g̃ = ηabΦa
cΦb

dh
chd = γcd(x)hchd, (3.7)

where
γcd(x) = ηabΦa

c(x)Φb
d(x) (3.8)

is a matrix of fields which are scalars with respect to the coordinate trans-
formations. The manifold M̃ and the metric g̃ are respectively the defor-
mation of M and g. If all the functions of Φa

b are continuous, then there
is a one-to-one correspondence between the points of M and the points of
M̃.
The matrices Φa

b(x) are known as first deformation matrices, instead γcd(x)
are called second deformation matrices.
A particular subset of deformation matrices is given by

Φa
b(x) = Ω(x)δab . (3.9)

This relation defines conformal transformation of the metric:

g̃ = Ω2(x)g. (3.10)

Then Eq.(3.7) can be regarded as a generalization of the conformal trans-
formations.

3.2 The deformed connection

Let us decompose the matrix Φa
b(x) in its symmetric and antisymmetric

parts:
ηacΦc

b = Φab = Φ(ab) + Φ[ab] = Ωηab + Θab + ϕab, (3.11)
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CHAPTER 3. THE SPACETIME DEFORMATIONS

with Ω = Φa
a, Θab the traceless symmetric part and ϕab the skew sym-

metric part of the first deformation matrix. Then the second deformation
matrix assumes the form

γab =ηcd (Ωδca + Θc
a + ϕca)

(
Ωδdb + Θd

b + ϕdb
)

=Ω2ηab + 2ΩΘab + ηcdΘc
aΘd

b + ηcd
(
Θc

aϕ
d
b + ϕcaΘd

b

)
+

+ ηcdϕ
c
aϕ

d
b.

(3.12)

Thanks to this relation the metric can be written as

g̃µν = Ω2gµν + γµν (3.13)

where
γµν =(2ΩΘab + ηcdΘc

aΘd
b + ηcd

(
Θc

aϕ
d
b + ϕcaΘd

b

)
+

+ ηcdϕ
c
aϕ

d
b)haµhbν .

(3.14)

In order to find the deformed connection we need to obtain the contravari-
ant deformed metric. It can be decomposed in the following way

g̃µν = α2gµν + λµν . (3.15)

The matrices γµν and λµν are related by a relation that we get imposing

g̃µν g̃
νσ = δσµ = α2Ω2δσµ + α2γµ

σ + Ω2λµ
σ + γµνλ

νσ, (3.16)

with α = (Φ−1)aa. Assuming that the deformations are conformal trans-
formations, we have α = Ω−1, therefore

Ω−2γµ
σ + Ω2λµ

σ + γµνλ
νσ = 0. (3.17)

From Eq.(3.17) we achieve

λν
σ = −Ω−4

(
δνµ + Ω−2γµ

ν
)−1

γµ
σ. (3.18)

The Levi-Civita connection corresponding to the metric g̃µν is related to
the original Levi-Civita one by the relation

Γ̃σµν = Γσµν + Cσ
µν . (3.19)

17



CHAPTER 3. THE SPACETIME DEFORMATIONS

where
Cσ

µν =2Ωg̃σλgλ(µ∇ν)Ω− Ωgµν g̃σλ∇λΩ+

+ 1
2 g̃

σλ (∇µγλν +∇νγµλ −∇λγµν) .
(3.20)

The connection (3.19) derives from the relation

∇̃λg̃µν = ∇λg̃µν − Cσ
λµg̃σν − Cσ

λν g̃µσ (3.21)

imposing the metric compatibility.
The connection deformation acts like a force that deviates the test parti-
cles from the geodesic motion in the unperturbed spacetime, in fact the
geodesic equation

d2xσ

ds2 + Γ̃σµν
dxµ

ds

dxν

ds
= 0 (3.22)

becomes
d2xσ

ds2 + Γσµν
dxµ

ds

dxν

ds
= −Cσ

µν
dxµ

ds

dxν

ds
. (3.23)

The deformed Riemann tensor is given by

R̃α
βµν = Rα

βµν +∇µC
α
βν −∇νC

α
βµ + Cα

λµC
λ
βν − Cα

λνC
λ
βµ, (3.24)

while the deformed Ricci tensor is

R̃µν = Rµν +∇αC
α
µν −∇νC

α
µα + Cα

λαC
λ
µν − Cα

λνC
λ
µα (3.25)

and the deformed curvature scalar

R̃ = g̃µνRµν + g̃µν
(
∇αC

α
µν −∇νC

α
µα + Cα

λαC
λ
µν − Cα

λνC
λ
µα

)
. (3.26)

We obtain the equation for the deformations in presence of matter From
Eq.(3.25):

Rµν +∇αC
α
µν−∇νC

α
µα+Cα

λαC
λ
µν−Cα

λνC
λ
µα = kΘ̃µν−

1
2kg̃µνΘ̃ (3.27)

where Θ̃µν is the deformed energy-momentum tensor.

18



CHAPTER 3. THE SPACETIME DEFORMATIONS

3.3 The Killing equations for deformed metric

Let us compute the Lie derivative of the deformed metric:

Lξ̃g̃µν =ξ̃σ∂̃σg̃µν + g̃σν ∂̃µξ̃
σ + g̃µσ∂̃ν ξ̃

σ

=ξ̃σ∇̃σg̃µν + ξ̃σΓ̃λσµg̃λν + ξ̃σΓ̃λσν g̃λµ+
+ g̃σν∇̃µξ̃

σ − g̃σνΓ̃σµλξ̃λ + g̃σµ∇̃ν ξ̃
σ − g̃σµΓ̃σνλξ̃λ,

(3.28)

from which, since Γ̃ is symmetrical in the last two indices, we get

∇̃(µξ̃ν) = 0. (3.29)

However, so far we have set ourselves in the case of metric compatibility,
if we impose that the non-metricity tensor is not null, then the relation
just written is no longer valid since we have that the Lie derivative must
necessarily be different from zero since the presence of the non-metricity
does not allow the preservation of the scalar product. Therefore, what we
find is

∇̃(µξ̃ν) + 1
2
(
Q̃σµν − Q̃µσν − Q̃νσµ

)
ξ̃σ 6= 0, (3.30)

with Q̃σµν the non-metricity tensor of the deformed connection.
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Chapter 4

Metric theories of gravity

By the EEP, Einstein formulated a new gravity theory, General Relativity
(GR), in terms of the spacetime curvature. In this chapter we present a
brief overview of GR and its extensions, while in the next chapters we will
discuss other approaches to gravity theory based on the curvature.

4.1 General Relativity: a metric theory

General Relativity [46] is a purely metric theory, where the only field that
mediates gravity is the metric and every concept and quantity are linked
to it.
The connection is torsionless and metric-compatible, i.e.

T λµν = 0→ Γλµν = Γλνµ, (4.1)

Qλµν = 0→ ∇λgµν = 0, (4.2)

thus the connection is assumed to be the Levi-Civita one:

Γλµν =
{
λ

µν

}
= 1

2g
λρ (∂µgνρ + ∂νgµρ − ∂ρgµν) . (4.3)

The Riemann tensor is the same of Eq.(2.11) and it satisfies the following
Bianchi identities:

Rα
βµν +Rα

µνβ +Rα
νβµ = 0 (4.4)

∇ρR
α
βµν +∇µR

α
βνρ +∇νR

α
βρµ = 0 (4.5)
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4.1.1 The geodesic in General Relativity

In GR we have two equivalent definitions of geodesic. The first is already
given in Chapter 2 by Eq.(2.7). The second one states that the geodesic is
the curve that minimises the distance between two points in a manifold,
that is

δS = δ
∫ q

p
ds = δ

∫ q

p

(
gαβ

dxα

ds

dxβ

ds

) 1
2

ds = 0. (4.6)

The variation of the integral leads to

δS =
∫ q

p

1
2
√
gαβvαvβ

[
∂λgαβδx

λdx
α

ds

dxβ

ds
+ 2gαβ

d

ds
(δxα)dx

β

ds

]
ds, (4.7)

with vα = dxα/ds. Integrating by parts and cancelling the boundary term,
we get

δS =
∫ q

p

1
2

[
∂λgαβδx

λdx
α

ds

dxβ

ds

]
ds+

−
∫ q

p

[
gαβ

d2xβ

ds2 + ∂λgαβδx
λdx

λ

ds

dxβ

ds

]
δxαds

=
∫ q

p

[(1
2∂λgαβ − ∂αgλβ

)
dxα

ds

dxβ

ds
− gλβ

d2xβ

ds2

]
δxλds = 0,

(4.8)

where we used the fact that gαβdxαdxβ = 1. Since

∂αgλβv
αvβ = ∂βgλαv

αvβ = 1
2 (∂αgλβ + ∂βgλα) vαvβ, (4.9)

finally we achieve the geodesic equation

d2xλ

ds2 + Γλαβvαvβ = 0. (4.10)

The equivalence of these two definitions is due to the fact that GR is a
torsion-free theory.

4.1.2 Field equations

We can derive the field equations from Hilbert-Einstein action:

S = k
∫
d4x
√
−gR +

∫
d4x
√
−gLm (gµν , φ) , (4.11)
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where k is a dimensional constant, g is the determinant of the metric, R is
the Ricci scalar and Lm is the matter lagrangian density.
Varying the action with respect to the metric, we achieve

δS = k
∫
d4x

(
δ
√
−gR +

√
−gδgµνRµν +

√
−ggµνδRµν

)
+ δSm

=
∫
d4x
√
−gδgµν

(
Rµν −

1
2gµνR

)
+
∫
d4x
√
−ggµνδRµν + δSm.

(4.12)

The second integral can be evaluated in the local inertial frame, obtaining

Rµν = ∂αΓαµν − ∂νΓαµα, (4.13)

δRµν = ∂αδΓαµν − ∂νδΓαµα, (4.14)

gµνδRµν = gµν∂αδΓαµν − gµν∂νδΓαµα
= ∂ρ (gµνδΓρµν − gµρδΓαµα) .

(4.15)

Then, we can write
gµνδRµν = ∂ρW

ρ, (4.16)

W ρ = gµνδΓρµν − gµρδΓαµα. (4.17)

Therefore the integral is null since its argument is a pure divergence. In
fact, in general coordinates it is:∫

d4x
√
−ggµνδRµν =

∫
d4x
√
−g∂ρW ρ =

∫
d4x
√
−g∇ρW

ρ

=
∫
d4x∂ρ

(√
−gW ρ

)
= 0.

(4.18)

Then
δS = k

∫
d4x
√
−gδgµν

(
Rµν −

1
2gµνR

)
+ δSm, (4.19)

from which we find the Einstein equations

Gµν ≡ Rµν −
1
2gµνR = kΘµν , (4.20)

where

Θµν = − 1√
−g

δ (√−gLm)
δgµν

(4.21)
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is the matter energy-momentum tensor.
The second Bianchi identity Eq.(4.5) can be rewritten as follows

∇µGµν = 0. (4.22)

This identity gives us the energy conservation equation

∇µΘµν = 0. (4.23)

4.2 Extended Theories of Gravity

Extended Theories of Gravity (ETG) [22, 20] are an answer to the need to
put together a new theory capable of describing the gravitational interac-
tion, need arose with the appearance of the shortcomings of General Rel-
ativity (quantum gravity, inflationary paradigm, etc.). ETG consist essen-
tially of adding higher order curvature invariants or non-minimally cou-
pled terms between matter fields and geometry into the Hilbert-Einstein
lagrangian. In this section we analyse some of these theories.

4.2.1 f(R) theories

In f(R) theories the lagrangian density is a general function of the Ricci
scalar R, therefore the Hilbert-Einstein action takes the form

S =
∫
d4x
√
−gf(R) + Sm. (4.24)

Let us calculate the field equations from the variational principle (for sim-
plicity, we calculate this variation in an inertial local frame):

δS =
∫
d4xδ

[√
−gf(R)

]
+ δSm. (4.25)

The last term gives us the usual matter energy-momentum tensor (4.21),
whereas the first term provides:∫

d4xδ
[√
−gf(R)

]
=
∫
d4x

[
δ
√
−gf(R) +

√
−gδf(R)

]
=
∫
d4x
√
−g

[
f ′(R)Rµν −

1
2gµνf(R)

]
δgµν

+
∫
d4x
√
−gf ′(R)gµνδRµν .

(4.26)
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The second integral can be rewritten (Eq.(4.17)) as∫
d4x
√
−gf ′(R)gµνδRµν =

∫
d4x
√
−gf ′(R)∂ρW ρ

=
∫
d4x∂ρ

[√
−gf ′(R)W ρ

]
− ∂ρ

[√
−gf ′(R)

]
W ρ

=−
∫
d4x∂ρ

[√
−gf ′(R)

]
W ρ.

(4.27)
From the expression of the Levi-Civita connection (2.19), we obtain

gµνδΓρµν = 1
2∂

ρ (gµνδgµν)− ∂µ (gαµδgρα) , (4.28)

gµρδΓαµν = −1
2∂

ρ (gναδgνα) . (4.29)

Inserting these equations in Eq.(4.27), the integral becomes∫
d4x
√
−gf ′(R)gµνδRµν =

∫
d4x∂ρ

[√
−gf ′(R)

]
[∂µ (gµνδgρν)− ∂ρ (gµνδgµν)]

=
∫
d4xgµν∂

ρ∂ρ
[√
−gf ′(R)

]
δgµν+

−
∫
d4xgµν∂

µ∂ρ
[√
−gf ′(R)

]
δgρν .

(4.30)
The variation of the action is then∫

d4xδ
[√
−gf(R)

]
=
∫
d4x
√
−g

[
f ′(R)Rµν −

1
2gµνf(R)

]
δgµν+

+
∫
d4x

[
gµν∂

ρ∂ρ
(√
−gf ′(R)

)
− gρν∂ρ∂µ

(√
−gf ′(R)

) ]
δgµν .

(4.31)

The vanishing of the variation implies the following field equations

f ′(R)Rµν −
1
2f(R)gµν = ∇µ∇νf

′(R)− gµν�f ′(R). (4.32)

Adding the matter term and putting in evidence the Einstein tensor, these
field equations take the form

Gµν = Θµν

f ′(R) + 1
f ′(R)

{1
2gµν [f(R)− f ′(R)R] +∇µ∇νf

′(R)− gµν�f ′(R)
}
.

(4.33)
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The term in braces,

Θeff
µν = 1

2gµν [f(R)− f ′(R)R] +∇µ∇νf
′(R)− gµν�f ′(R), (4.34)

is an effective energy-momentum tensor which can be interpreted as an
extra gravitational energy-momentum tensor due to higher-order curva-
ture effects.

4.2.2 Scalar-tensor theories

Scalar-tensor theories was born when we tried to incorporate the Mach’s
principle, which states that the local inertial frame is determined by the av-
erage motion of distant astronomical objects, into metric gravity and they
are characterized by the presence of a non-minimal coupling scalar field
φ. These theories exhibit a non-constant gravitational coupling, thus the
Newton constant GN is replaced by the effective gravitational coupling:

Geff = 1
F (φ) , (4.35)

where F (φ) is a generic function of the scalar field.
In a situation where gravity is not minimally coupled, a generic action is
given by

S =
∫
d4x
√
−g

[
F (φ)R + 1

2g
µν∇µφ∇νφ− V (φ)

]
+ Sm (ψ,∇ψ) , (4.36)

with V (φ) a generic scalar field potential.
The variation of the action with respect to metric leads to the equation

−1
2gµνF (φ)R + F (φ)Rµν + gµν�F (φ)−∇µ∇νF (φ)+

−1
4gµν∇αφ∇αφ+ +1

2∇µφ∇νφ+ 1
2V (φ)gµν = Θµν ,

(4.37)

that we can rewrite as
Gµν = Θµν

F (φ) + Θeff
µν (4.38)

with

Θeff
µν =− 1

2F (φ)

[
∇µφ∇νφ−

1
2gµν∇αφ∇αφ+ gµνV (φ)+

+ 2gµν�F (φ)− 2∇µ∇νF (φ)
] (4.39)
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an effective energy-momentum tensor which includes the contributions
of non-minimal coupling, the kinetic terms and the potential of the scalar
field.
Varying the action (4.36) with respect to φ, instead we find:

�φ−RF ′(φ)− V ′(φ) = 0. (4.40)

As expected, we have obtained the Klein-Gordon equation.
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Chapter 5

Purely affine theories of gravity

The purely affine formulation [33, 42] is an approach to the gravitational
theory where the affine connection is the only variable and we express ev-
ery gravitational quantities in terms of it.
A general lagrangian density depends on the affine connection, its first
derivative, a matter field of any nature and on the correspondent deriva-
tive:

L = L (Γ, ∂Γ, φ, ∂φ) , (5.1)

where Γ is an arbitrary affine connection and φ denotes a general matter
field.
The purely affine formulation allows us to solve several shortcomings of
the metric formulation of GR. It is important to underline that this formu-
lation is not a modified theory of gravity but GR itself written in terms of
the affine connection as a dynamical configuration variable. This equiva-
lence implies that also purely affine gravity is consistent with experimen-
tal tests of GR.

5.1 The affine variational principle

Let us calculate the dynamical equations for a purely affine theory. To do
this it is required to define the canonical momenta conjugate to Γ,

πλ
µνρ ≡ ∂L (Γ, ∂Γ, φ, ∂φ)

∂ (∂ρΓλµν)
, (5.2)
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and the canonical momenta conjugate to the field φ,

pρ ≡ ∂L (Γ, ∂Γ, φ, ∂φ)
∂ (∂ρφ) . (5.3)

The total differential of the affine lagrangian density is equal to

dL =πλµνρd
(
∂ρΓλµν

)
+ ∂L
∂Γλµν

dΓλµν + pρd (∂ρφ) + ∂L
∂φ

dφ

=
(

∂L
∂Γλµν

− ∂ρπλµνρ
)
dΓλµν +

(
∂L
∂φ
− ∂ρpρ

)
dφ+

+ ∂ρ
(
πλ

µνρdΓλµν + pρdφ
)
.

(5.4)

Thus we obtain the following Eulero-Lagrange equations:

∂ρπλ
µνρ = ∂L (Γ, ∂Γ, φ, ∂φ)

∂Γλµν
, (5.5)

∂ρp
ρ = ∂L (Γ, ∂Γ, φ, ∂φ)

∂φ
. (5.6)

Due to diffeomorphism invariance of General Relativity, to recover the
Einstein equations, the affine lagrangian must depend on the only invari-
ant quantity that can be construct in terms of ∂Γ, the Riemann tensor. In
particular, the affine lagrangian must assume the form

L = L (Γ, P, φ, ∂φ) , (5.7)

where P is the symmetric part of Ricci tensor. Using this lagrangian den-
sity the differential becomes

dL = πµνdPµν + JλµνdΓλµν + pρd (∂ρφ) + ∂L
∂φ

dφ, (5.8)

where we have defined the two quantities:

πµν ≡ k
√
−ggµν = ∂L (Γ, P, φ, ∂φ)

∂Pµν
, (5.9)

which represents the controvariant density of the metric associated to the
manifold and it is a function of ∂Γ being the canonical momentum conju-
gate to Γ, and

Jλµν ≡
∂L (Γ, P, φ, ∂φ)

∂Γλµν
. (5.10)
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Using the relation
πλ

µνρ = δρλπ
µν − δ(µ

λ π
ν)ρ, (5.11)

after some manipulations, we achieve

dL = (Jλµν −∇ρπλ
µνρ) dΓλµν +

(
∂L
∂φ
− ∂ρpρ

)
dφ+

+ ∂ρ
(
πλ

µνρdΓλµν + pρdφ
)
,

(5.12)

from which the Eulero-Lagrange equations derive:

∇λπ
µν = Jλµν −

2
3δ

(µ
λ Jρν)ρ, (5.13)

∂ρp
ρ = ∂L (Γ, P, φ, ∂φ)

∂φ
. (5.14)

The Levi-Civita connection is recovered when the lagrangian density de-
pends on affine connection only through the symmetric part of the Ricci
tensor, being J null by definition:

∇λπ
µν = 0. (5.15)

To analyse the relation between the purely affine theory and metric theory,
it is useful to subtract from the lagrangian density L the Hilbert-Einstein
one

LH−E = k
√
−gR = πµνPµν (5.16)

and then define the affine matter lagrangian density:

Lmatt (π,Γ, φ, ∂φ) ≡ L (Γ, P, φ, ∂φ)− πµνPµν (π,Γ, φ, ∂φ) . (5.17)

The Eq.(5.8) implies the following expression for the total differential of
affine matter lagrangian density

dLmatt = Pµνdπ
µν + JλµνdΓλµν + pρd (∂ρφ) + ∂ρp

ρdφ, (5.18)

with

Pµν = −∂L
matt (π,Γ, φ, ∂φ)

∂πµν
(5.19)

Jλµν ≡
∂Lmatt (π,Γ, φ, ∂φ)

∂Γλµν
(5.20)
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pρ ≡ ∂Lmatt (π,Γ, φ, ∂φ)
∂ (∂ρφ) . (5.21)

From Eq.(5.9) we can derive g as a function of π,

gµν = k
√
−π

(
π−1

)
µν
. (5.22)

Inserting Eq.(5.22) into Eq.(5.19), we obtain

Pµν =− ∂gρσ
∂πµν

∂Lmatt (g,Γ, φ, ∂φ)
∂gρσ

=k
√
−π

[(
π−1

)
ρ(µ

(
π−1

)
ν)σ
− 1

2
(
π−1

)
µν

(
π−1

)
ρσ

]
∂Lmatt

∂gρσ

= k√
−g

(
gρ(µgν)σ −

1
2gµνgρσ

)
∂Lmatt

∂gρσ
.

(5.23)

Inverting this relation we get the Einstein equations

Gµν = kΘµν , (5.24)

where
Gµν ≡

√
−g

(
P µν − 1

2g
µνR

)
(5.25)

is the density of the Einstein tensor expressed in terms of the symmetric
part of the Ricci tensor, and

Θµν ≡ ∂Lmatt (g,Γ, φ, ∂φ)
∂gµν

(5.26)

is the affine energy-momentum tensor density.
In the case of J = 0 we have, as seen above, the connection Γ equal to the
Levi-Civita one and Θ reduces to the standard metric energy-momentum
tensor.

5.2 The cosmological constant Λ in a purely affine
approach

In this section we want to show that we can write a lagrangian density, in
a purely affine formalism, which leads to Einstein equations with a cos-
mological constant [41] as we consider a non null torsion tensor T :

LΛ =
√
kkµνRµν + αLm (k, φ, ∂φ) , (5.27)
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where Rµν is the Ricci tensor, kµν is a symmetric tensor defined as

kµν = T ρλµT
λ
ρν , kµρkνρ = δµν , (5.28)

with Tµ = T νµν , k is the absolute value of the determinant of kµν and
Lm is the matter lagrangian density that depends on the connection only
through the torsion tensor.
The variation of the action corresponding to Eq.(5.27) is

δS = δ
∫
d4x
√
kkµνRµν

=
∫
d4x
√
kkµνδRµν +

∫
d4x
√
k
(
Rµν −

1
2Rρσk

ρσkµν

)
δkµν + αδSm.

(5.29)
Field equations result from the variation (5.29) calculated under δΓλµν .
Since the variation δΓλµν can be divided into the symmetric part δΓλ(µν)
and the antisymmetric part δΓλ[µν] = δT λµν , we can vary the action under
δΓλ(µν), substitute the resulting field equations into the action, and then
vary the action under δT λµν .
Varying under δΓλ(µν), we find the equations

∇ρkκλ = ∂ρkκλ − Γσρκkσλ − Γσρλkκσ = −Qρκλ, (5.30)

where

Qρκλ = −
(2

3Tρkκλ + 1
3Tκkρλ + 1

3Tλkρκ + T σρκkσλ + T σρλkσκ

)
. (5.31)

Permuting the indices in Eq.(5.30) we get the symmetric part of the con-
nection:

Γρµν =
{
ρ

µν

}
k

+ T σµλk
ρλkνσ + T σνλk

ρλkµσ −
1
2k

ρλ (Qλµν −Qµλν −Qνλµ) ,

(5.32)
where {

ρ

µν

}
k

= 1
2k

ρσ (∂µkσν + ∂νkσµ − ∂σkµν) (5.33)

is the Levi-Civita connection constructed from the rank-2 tensor kµν . Using
Eq.(5.30) and Eq.(5.32), we obtain the affine connection

Γρµν =
{
ρ

µν

}
k

+ T ρµν −
1
3
(
δρµTν + δρνTµ

)
. (5.34)
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Defining the quantity

Cρ
µν = Γρµν −

{
ρ

µν

}
k

= T ρµν −
1
3
(
δρµTν + δρνTµ

)
, (5.35)

we can decompose the Riemann tensor as

Rλ
ρµν = Rλ(k)

ρµν +∇{}µ Cλ
ρν −∇{}ν Cλ

ρµ + Cλ
σµC

σ
ρν − Cλ

σνC
σ
ρµ (5.36)

where Rλ(k)
ρµν is the Riemann tensor constructed form the Levi-Civita con-

nection (5.33) and ∇{} is the covariant derivative defined using this con-
nection.
Substituting Eq.(5.36) in Eq.(5.27), after some manipulation, we find the
action:

S =
∫
d4x
√
k
(
R(k)
µν k

µν + 4− 1
3TµTνk

µν
)

+ αSm. (5.37)

The last term in the parentheses can be set to zero by one arbitrary co-
ordinate transformation, instead the first two terms have the form of the
Einstein-Hilbert lagrangian for the gravitational field with a cosmological
constant if we identify, up to a multiplicative constant factor, the tensor
kµν with the metric tensor gµν :

gµν = 2
Λkµν , (5.38)

where the constant Λ has the dimension of inverse square length. Thus
Eq.(5.37) becomes the Hilbert-Einstein action with the cosmological con-
stant:

S ∝
∫
d4x
√
g
(
R(g)
µν g

µν + 2Λ
)
. (5.39)

Now, considering action (5.37) and varying it with respect to δT ρµν , we
obtain the equations

Tµ = 0 (5.40)

R(k)
µν −

1
2R

(k)
ρσ k

ρσkµν = 2kµν −
α√
k

δLm
δkµν

(5.41)

Inserting (5.38) in (5.41), the Einstein equations of General Relativity with
cosmological constant are reproduced

R(g)
µν −

1
2R

(g)
ρσ g

ρσgµν = Λgµν −
α

ΛΘµν . (5.42)

32



CHAPTER 5. PURELY AFFINE THEORIES OF GRAVITY

Therefore we have shown that the cosmological constant occurs naturally
in the case in which we have a purely affine theory and a non-zero torsion,
unlike what happens in General Relativity.
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Chapter 6

Metric-affine theories of gravity

Until now we have discussed about theories where the main variable is
either the metric or the connection. In this chapter we analyse a mixed
approach: the Palatini formalism.
The Palatini approach to gravitational theories is based on the idea that
the affine connection Γ is a variable independent of the spacetime metric
g. From a physical point of view, this is equivalent to decouple the casual
structure of spacetime and its geodesic structure.
The Palatini formalism applied to the Hilbert-Einstein action is completely
equivalent to the purely metric theory since it leads to the same field equa-
tions, however, the situation is different when we consider the Extended
Theories of Gravity as we will see [35, 9, 38, 21].

6.1 Extended Theories of Gravity in Palatini for-
malism

Let us begin with the study of the f(R) theories:

S =
∫
d4x
√
−gf(R) + Sm (g, φ) (6.1)

where R ≡ R(g,Γ) = gµνRµν (Γ) (it will be so for the whole section), i.e.
the Ricci scalar R depends on both g and Γ, instead the Ricci tensor is a
function of the only affine connection. Varying the action with respect to
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the metric tensor, we obtain

δgS =
∫
d4xδg

[√
−gf(R)

]
+ δgSm

=
∫
d4x

[
δg
√
−gf(R) +

√
−gδgf(R)

]
+ δgSm

=
∫
d4x

[
δg
√
−gf(R) +

√
−gf ′(R)δgR

]
+ δgSm

=
∫
d4x

[
δg
√
−gf(R) +

√
−gf ′(R)δgg

µνRµν

]
+ δgSm.

(6.2)

from which we determine the field equations

f ′(R)R(µν)(Γ)− 1
2f(R)gµν = Θµν . (6.3)

Varying, instead, with respect to the connection, we get

∇Γ
λ

(√
−gf ′(R)gµν

)
= 0, (6.4)

with ∇Γ
λ the covariant derivative defined using the independent connec-

tion Γ. From Eq.(6.4) the bimetric structure of spacetime emerges, indeed
we can introduce a new metric hµν conformally related to gµν by

√
−gf ′(R)gµν =

√
−hhµν . (6.5)

This implies that the connection Γ is the Levi-Civita one of the metric hµν ,
with the only restriction that the conformal factor relating gµν and hµν is
non-degenerate. The General Relativity case is recovered for f ′(R) = 1.
It is useful to consider the trace of the field equations (6.3) :

f ′(R)R− 2f(R) = gµνΘµν ≡ Θ. (6.6)

We refer to this scalar equation as the structural equation of spacetime. In
vacuo, this scalar equation admits constant solutions. In this case, Palatini
f(R) gravity reduces to GR with a cosmological constant [29].
Now, let us extend the Palatini formalism to non-minimally coupled scalar-
tensor theories, with the aim of understanding the bimetric structure of
spacetime in these theories.
We find the following field equations for the metric and the connection
from the scalar-tensor action (4.36):

F (φ)
(
R(µν) −

1
2gµνR

)
= Θφ

µν + Θµν , (6.7)
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∇Γ
λ

(√
−gF (φ)gµν

)
= 0. (6.8)

The equations of motion of the matter fields are

�φ = V (φ) + F (φ)R, (6.9)

δLm
δψ

= 0. (6.10)

In this case, the structural equation of spacetime implies that

R = −

(
Θφ + Θ

)
F (φ) . (6.11)

The bimetric structure of spacetime is defined by the ansatz
√
−gF (φ)gµν =

√
−hhµν . (6.12)

It follows from Eq.(6.11) that in vacuo, Θφ = 0 and Θ = 0, this theory is
equivalent to vacuum GR.
As a further step, let us generalise the previous results to the case of non-
minimal coupling in framework of f(R) theories. The action can be writ-
ten as

S =
∫
d4x
√
−g

[
F (φ)f(R) + 1

2g
µν∇µφ∇νφ− V (φ)

]
+ Sm (ψ,∇ψ) . (6.13)

The Palatini field equations are

F (φ)
[
f ′(R)R(µν) −

f(R)
2 gµν

]
= Θφ

µν + Θµν , (6.14)

∇Γ
λ

(√
−gF (φ)f ′(R)gµν

)
= 0, (6.15)

instead, the equations of motion for the scalar and the matter fields are

�φ− F ′(φ)f(R)− V ′(φ) = 0, (6.16)

δLm
δψ

= 0. (6.17)

In this case, the structural equation of spacetime implies that

f ′(R)R− 2f(R) = Θφ + Θ
F (φ) . (6.18)
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The bimetric structure of spacetime is given by

√
−gF (φ)f ′(R)gµν =

√
−hhµν . (6.19)

In vacuo, we obtain from Eq.(6.18) that the theory reduces again to Ein-
stein gravity as for minimally interacting f(R) theories.
Finally, let us discuss the situation in which the gravitational lagrangian is
a general function of φ and R:

S =
∫
d4x
√
−g

[
K (φ,R) + 1

2g
µν∇µφ∇νφ− V (φ)

]
+ Sm (ψ,∇ψ) , (6.20)

which yields the gravitational field equations

∂K (φ,R)
∂R

Rµν −
1
2K (φ,R) gµν = Θφ

µν + Θµν , (6.21)

∇Γ
λ

(
√
−g∂K (φ,R)

∂R
gµν

)
= 0, (6.22)

while the scalar and matter fields obey

�φ− K (φ,R)
∂φ

− V ′(φ) = 0, (6.23)

δLm
δψ

= 0. (6.24)

The structural equation of spacetime can be expressed as

∂K (φ,R)
∂R

R− 2K (φ,R) = Θφ + Θ. (6.25)

The bimetric structure of spacetime is defined by

√
−g∂K (φ,R)

∂R
gµν =

√
−hhµν . (6.26)

In this case, in general, we do not recover GR, as it is evident from Eq.(6.25)
in which the strong coupling betweenR and φ prevents, even in vacuo, the
possibility of obtaining constant solutions.
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Chapter 7

Teleparallel theories

We want to focus on those theories that are equivalent to the General Rela-
tivity whose main peculiarity is to work in situations with null curvature,
in particular we deal with the Teleparallel Equivalent to General Relativity
and the Symmetric Teleparallel Equivalent to General Relativity.

7.1 Teleparallel Gravity

The Teleparallel Equivalent to General Relativity (TEGR) [7, 34] is an equiv-
alent description of General Relativity but with different conceptual basis.
In particular, TEGR, in contrast to GR, is well integrated within a gauge
theory context and can be defined as the gauge theory for the translation
group.
In this theory, gravity is mediated by torsion on a flat spacetime and the
dynamical field is the tetrad, differently from the theories seen so far where
the spacetime is curved and hence gravity is viewed as a purely geometric
effect.

7.1.1 Geometrical setting

The geometrical setting of TEGR is the tangent bundle, in which spacetime
is the base space and the tangent space at each point of the base space,
on which the gauge transformations take place, is the fiber of the bundle.
Spacetime is assumed to be a metric spacetime with a general metric gµν
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and the tangent space is by definition a Minkowski spacetime with tan-
gent space metric ηab.
We will use the Greek alphabet (µ, ν, ρ, ... = 0, 1, 2, 3) to denote indices re-
lated to spacetime and the Latin alphabet (a, b, c, ... = 0, 1, 2, 3) to denote
indices related to the tangent space.
Since the base and the fiber are both four-dimensional spacetimes, the bun-
dle is said to be soldered. This means that the metrics are related by the
relation:

gµν = ηabh
a
µh

b
ν , (7.1)

where haµ is the tetrad field, i.e. the components of the solder 1-form.
Differently from other gauge theories, in TEGR the soldering property
ensures the presence of torsion tensor, being by definition the covariant
derivative of the solder 1-form.
The tetrad fields, or vierbiens,

ha = haµdx
µ and ha = ha

µ∂µ, (7.2)

as already seen in Chapter 3, are general linear bases on the spacetime
manifold that satisfy the relations

haµha
ν = δνµ haµhb

µ = δab , (7.3)

[ha, hb] = f cabhc, (7.4)

where f cab are the so called structure coefficients, or coefficients of an-
holonomy, of frame {ha}. The whole set of such bases constitutes the bun-
dle of linear frames.
Because of the soldered character of the tangent bundle, a tetrad field re-
lates tangent space (or internal) tensors with spacetime (or external) ten-
sors. For example, if va is an internal vector, therefore

vµ = ha
µva (7.5)

is an external vector, conversely

va = haµv
µ. (7.6)

In the presence of gravitation, the coefficients of anholonomy f cab includes
both inertial and gravitational effects. In this case, the spacetime metric gµν
represents a general pseudo-riemannian spacetime. Instead, in absence of
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gravitation, the anholonomy of the frames is entirely related to the inertial
forces that are present in these frames. In this case haµ becomes trivial
and it is indicated with eaµ, while gµν is the Minkowski metric in a general
coordinate system:

ηµν = ηabe
a
µe
b
ν . (7.7)

A preferred class of inertial frames, that we denote as h′a, is characterized
by

f ′cab = 0 (7.8)

They are called, for this reason, holonomic frames.
A connection form ω, it also called spin connection or Lorentz connection,
of a given connection in the bundle of linear frames, i.e. a linear connec-
tion, is a 1-form with values in the Lie algebra of Lorentz group:

ω = ωµdx
µ = 1

2ω
a
bSa

b = 1
2ω

a
bµSa

bdxµ, (7.9)

with Sab a given representation of the Lorentz generators and ωab ∈ Ω1(M),
where ωab are matrices of 1-form and Ω1(M) is the space of all 1-form.
A general linear connection Γρµν is related to the corresponding spin con-
nection ωab by

Γρνµ = ha
ρ∂µh

a
ν + ha

ρωabµh
b
ν . (7.10)

This equation in nothing else but the tetrad postulate:

∇µh
a
ρ = ∂µh

a
ρ − Γσρµhaσ + ωabµh

b
ρ = 0, (7.11)

where ∇µ is the standard covariant derivative in the connection Γρνµ. The
postulate states that the tetrads are parallel vector fields.
Defining the covariant exterior derivative of a tensor, valued on the p-form
Ba

b, as the operator D : Ωp(M,Tr
s)→ Ωp+1(M,Tr

s), we get

DBa
b = dBa

b + ωac ∧Bc
b − ωdb ∧Ba

d, (7.12)

where d is the exterior derivative of a p-form. Through the Cartan struc-
ture equations,

T a = Dha = 1
2T

a
bch

b ∧ hc (7.13)

and
Ra

b = Dωab = 1
2R

a
bcdh

c ∧ hd, (7.14)
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we can define the torsion of a spin connection as a 2-form assuming values
in the Lie algebra of the translation group

T = T aPa = 1
2T

a
µνPadx

µdxν , (7.15)

with Pa = ∂a the translation generators, and the curvature of a spin con-
nection as a 2-form assuming values in the Lie algebra of the Lorentz
group

R = 1
2R

a
bSa

b = 1
4R

a
bµνSa

bdxµ ∧ dxν . (7.16)

The torsion and curvature components have the form

T aνµ = ∂νh
a
µ − ∂µhaν + ωacνh

c
µ − ωacµhcν , (7.17)

Ra
bνµ = ∂νω

a
bµ − ∂µωabν + ωacνω

c
bµ − ωacµωcbν . (7.18)

These relations can be expressed in purely spacetime forms if we use the
Eq.(7.10):

T ρνµ ≡ ha
ρT aνµ = Γρµν − Γρνµ, (7.19)

Rρ
λνµ ≡ ha

ρhbλR
a
bνµ = ∂νΓρλµ − ∂µΓρλν + ΓρσνΓσλµ − ΓρσµΓσλν . (7.20)

It is easily verified, using the relation

ωabc = ωabµhc
µ, (7.21)

that in the anholonomic basis {ha} the torsion and curvature components
are given respectively by

T abc = ωacb − ωabc − fabc, (7.22)

Ra
bcd = hc(ωabd)− hd(ωabc) + ωaecω

e
bd − ωaedωebc − f ecdωabe. (7.23)

7.1.2 Gravity as a gauge theory

A gauge transformation in Teleparallel Gravity is defined as a local trans-
lation of the tangent space coordinates

x′a = xa + εa(xµ) (7.24)
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with εa(xµ) the infinitesimal transformation parameters. An arbitrary
source field ψ ≡ ψ(xa(xµ)) transforms under this transformation as

δψ = εa∂aψ. (7.25)

However, the ordinary derivative does not transform covariantly under
such transformation:

δ(∂µψ) = εa∂a(∂µψ) + (∂µεa)∂aψ. (7.26)

As is usual in gauge theories, to recover the covariance, we have to re-
place ordinary derivatives by covariant derivatives involving a connec-
tion. Thus, we introduce a gauge potential Bµ, a 1-form assuming values
in the Lie algebra of the translation group:

Bµ = Ba
µPa. (7.27)

It is easy to see, that the covariant derivative we construct with Bµ,

hµψ = ∂µψ +Ba
µ∂aψ, (7.28)

transforms covariantly, i.e.

δ(hµψ) = εa∂a(hµψ), (7.29)

if the gauge potential transforms as

δBa
µ = −∂µεa. (7.30)

Due to the soldered property of the frame bundle, the covariant derivative
can be rewritten in the form

hµψ = haµ∂aψ, (7.31)

where
haµ = ∂µx

a +Ba
µ, (7.32)

is a non-trivial tetrad field, which means a tetrad with

Ba
µ 6= ∂µε

a, (7.33)

otherwise it would be just a translational gauge transformation of the triv-
ial tetrad eaµ = ∂µe

a.
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When the translational covariant derivative assumes the form (7.31), the
translational coupling prescription acquires the simple form:

∂µψ = eaµ∂aψ → hµψ = haµ∂aψ. (7.34)

Consequently, the spacetime metric changes according to

ηµν = ηabe
a
µe
b
ν → gµν = ηabh

a
µh

b
ν . (7.35)

To obtain relations valid in a general Lorentz frame, it is necessary per-
forming a local Lorentz transformation:

xa → Λa
bx
b. (7.36)

The scalar field transforms under this transformation as

ψ → U(Λ)ψ, (7.37)

with U(Λ) an element of the Lorentz group in the representation appro-
priate for the field ψ. Since Ba

µ → Λa
bB

b
µ, it is immediate to see that the

translational covariant derivative assumes the form

hµψ = ∂µψ + •
ωabµx

b∂aψ +Ba
µ∂aψ, (7.38)

where •
ωabµ is the purely inertial Lorentz connection

•
ωabµ = Λa

e(x)∂µΛb
e(x), (7.39)

i.e. it is the connection obtained from a Lorentz transformation of the van-
ishing spin connection •

ω′edµ = 0:

•
ωabµ = Λa

e(x) •
ω′edµΛb

d(x) + Λa
e(x)∂µΛb

e(x). (7.40)

Defining the Lorentz covariant derivative
•
Dµxa = ∂µx

a + •
ωabµx

b, (7.41)

the tetrad becomes
haµ =

•
Dµxa +Ba

µ. (7.42)

In this class of frames, the gauge potential Ba
µ transforms according to

δBa
µ = −

•
Dµεa. (7.43)
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In addition to being invariant under local translations, any theory must
also be invariant under local Lorentz transformations. This second invari-
ance is related to the fact that physics must be the same, independently of
the Lorentz frame used to describe it. The Lorentz coupling prescription
can be obtained from the so-called general covariance principle. It states:
an equation valid in Special Relativity can be made to hold in the pres-
ence of gravitation if it is written in a generally covariant form, i.e. if it
preserves its form under general coordinate transformations.
The general covariance principle can be seen as an active version of the
Strong Equivalence Principle, in the sense that, by making a special rel-
ativistic equation covariant and using the SEP, it is possible to obtain its
form in the presence of gravitation. This vision of the general covariance
principle is opposed to the usual (or passive) SEP, which says that, given
an equation valid in the presence of gravitation, the corresponding special
relativistic equation is recovered locally.
The process of obtaining this coupling prescription comprises two steps:
the first is to pass to a general anholonomic frame, where inertial effects
are present in the form of a compensating term; then, by using the SEP,
the compensating term is replaced by a connection representing a gravita-
tional field.
Let us consider a vector field φ′c on Minkowski spacetime whose ordinary
derivative, in trivial holonomic frame, is

e′aφ
′c = ∂aφ

′c = δµa∂µφ
′c. (7.44)

Under a local Lorentz transformation Λd
c(x), a vector field transforms as

φc = Λd
c(x)φ′d. (7.45)

Thus, the relation between the Lorentz-transformed derivative and the
previous one is given by

e′aφ
′c = Λb

aΛd
cDbφd, (7.46)

where
Dbφd = ebφ

d + Λd
eeb (Λc

e)φc (7.47)

and
eb = Λb

ae′a (7.48)
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is the transformed frame, which, due to the locality of the Lorentz trans-
formation, is anholonomic:

[eb, ec] = fabcea. (7.49)

Obtaining the Lorentz group element from the Eq.(7.48), the covariant
derivative becomes

Daφc = eaφ
c + 1

2 (fbca + fa
c
b − f cab)φb (7.50)

In the right-hand side, the second term is the announced compensating
term which represents the inertial effects inherent to the chosen frame.
In the presence of gravitation, according to the translational coupling pre-
scription , the trivial tetrad is replaced by the non-trivial one and the cou-
pling prescription assumes the form:

Daφc = haφ
c + 1

2 (fbca + fa
c
b − f cab)φb. (7.51)

Let us consider the Eq.(7.22). With a permutation of the indices, we find
the relation

1
2 (fbca + fa

c
b − f cab) = •

ωcba −
•
Kc

ba, (7.52)

where
•
Kc

ba = 1
2
( •
Tb
c
a +

•
Ta

c
b −

•
T cba

)
(7.53)

is the contortion tensor in the tetrad frame. The left-hand side is the usual
expression of the General Relativity Lorentz connection in terms of the
coefficients of anholonomy:

ω̊cab = 1
2 (fbca + fa

c
b − f cab) . (7.54)

In the Eq.(7.52) we have both inertial and gravitational effects.
According to the general covariance principle, inserting Eq.(7.52) in
Eq.(7.50), we achieve the so-called full gravitational coupling prescription
in Teleparallel Gravity.:

Daφc = haφ
c +

(
•
ωcba −

•
Kc

ba

)
φb. (7.55)
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This equation is also valid when we consider a general source field

ψ → U(Λ)ψ, (7.56)

with
U(Λ) = exp

(
i

2εbcS
bc
)

(7.57)

the element of the Lorentz group in the arbitrary representation Sbc. In
fact, after some calculations we get

Daψ = haψ −
i

2
(

•
ωbca −

•
Kbc

a

)
Sbcψ. (7.58)

7.1.3 Translational field strength

In gauge theories, we can find the field strength by the commutation re-
lation of gauge covariant derivatives. In the case of Teleparallel Gravity,
what we get is

[hµ, hν ] =
•
T aµνPa, (7.59)

where
•
T aµν = ∂µB

a
ν − ∂νBa

µ + •
ωabµB

b
ν −

•
ωabνB

b
µ (7.60)

is the translational field strength. Using the relation
•
Dµ

( •
Dνxa

)
−

•
Dν

( •
Dµxa

)
= 0, (7.61)

it follows
•
T aµν = ∂µh

a
ν − ∂νhaµ + •

ωabµh
b
ν −

•
ωabνh

b
µ. (7.62)

Contracting with a tetrad, we find that the translational field strength has
the form of the torsion tensor

•
T ρµν ≡ ha

ρ
•
T aµν =

•
Γρνµ −

•
Γρµν . (7.63)

where we have defined the Weitzenböck connection:
•
Γρνµ = ha

ρ∂µh
a
ν + ha

ρ •
ωabµh

b
ν . (7.64)

This connection is the spacetime indexed connection corresponding to the
inertial Lorentz connection. The Weitzenböck connection has an identi-
cally null curvature tensor:

Rλ
ρνµ = ∂ν

•
Γλρµ − ∂µ

•
Γλρν +

•
Γλσν

•
Γσρµ −

•
Γλσµ

•
Γσρν = 0. (7.65)
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Therefore, in Teleparallel Gravity, gravitation is represented by torsion,
not by curvature, conversely from what happens in General Relativity.
The Weitzenböck connection

•
Γρµν is related to the Levi-Civita connection

of General Relativity Γ̊ρµν by

•
Γρµν = Γ̊ρµν +

•
Kρ

µν . (7.66)

7.1.4 Teleparallel force equation

Let us consider a particle of mass m in presence of gravitation. Along the
particle trajectory the spacetime interval can be written as

ds2 = gµνdx
µdxν → ds = gµρu

µdxρ = ηabu
ahb, (7.67)

where
uµ = dxµ

ds
(7.68)

is the holonomic four-velocity, which is related to the anholonomic four-
velocity ua by

ua ≡ haµu
µ = ha

(
d

ds

)
. (7.69)

Then, the teleparallel version of the action of the particle, described from
a general Lorentz frame, is

S = −mc
∫ q

p
uah

a = −mc
∫ q

p
ua
(
dxa + •

ωabµx
bdxµ +Ba

µdx
µ
)
. (7.70)

The first term represents the free particle, the second one represents the
interaction with the inertial effects and the last one represents the gravita-
tional interaction. The variation of the action under a general spacetime
transformation,

xµ → xµ + δxµ, (7.71)

assumes the form

δS =−mc
∫ q

p
(uadδxa + uaδ

•
ωabµx

bdxµ + ua
•
ωabµδx

bdxµ+

+ ua
•
ωabµx

bdδxµ + uaδB
a
µdx

µ + uaB
a
µdδx

µ).
(7.72)
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Integrating by parts, substituting the expressions

δxa = ∂µx
aδxµ, δ

•
ωabµ = ∂ρ

•
ωabµδx

ρ, δBa
µ = ∂ρB

a
µδx

ρ, (7.73)

and considering that the curvature tensor of the Lorentz connection is null,
we find

δS = mc
∫ q

p

[
haµ

(
dua
ds
− •
ωbaρubu

ρ

)
−

•
T bµρubu

ρ

]
δxµds, (7.74)

from which we have the equation of motion:

dua
ds
− •
ωbaρubu

ρ =
•
T baρubu

ρ. (7.75)

Using the identity
•
T baρubu

ρ = −
•
Kb

aρubu
ρ, (7.76)

and contracting with the tetrads, we can write the equation of motion in a
purely spacetime form:

duµ
ds
−

•
Γρµνuρuν = −

•
Kρ

µνuρu
ν , (7.77)

this is the force equation. As already mentioned, it is the torsion that plays
the role of gravitational force.
From the relation (7.52), we achieve that the teleparallel force equation
coincide with the geodesic equation of General Relativity:

dua

ds
+ ω̊abρu

buρ = 0. (7.78)

Then, we showed that the teleparallel description of the gravitational in-
teraction is completely equivalent to the description of General Relativity
although they are conceptually different theories.

7.1.5 Field equations

Due to the fact that TEGR is a gauge theory, the action is given by

S = k
∫
Tr

( •
T ∧ ?

•
T
)

+ Sm, (7.79)
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with
?

•
T = 1

2
(
?

•
T aρσ

)
Padx

ρ ∧ dxσ (7.80)

the Hodge dual of the torsion tensor. After some manipulations, we can
write the action in terms of the scalar torsion

•
T :

S = k
∫
d4xh

•
T + Sm, (7.81)

with h = √−g and
•
T ≡

•
Sρµν

•
T ρµν =

•
Kµνρ

•
Kρνµ −

•
Kµρ

µ

•
Kν

ρν , (7.82)

where we have defined the superpotential as
•
Sρµν = −

•
Sρνµ ≡

•
Kµνρ − gρν

•
T σµσ + gρµ

•
T σνσ. (7.83)

The action just written differs from the GR one only because of a diver-
gence. We can achieve this result remembering that the curvature of the
Weitzenböck connection vanishes identically. Let us consider Eq.(7.65),
substituting the relation (7.66), we find

0 =
•
Rρ

θµν =R̊ρ
θµν + ∂µ

•
Kρ

θν − ∂ν
•
Kρ

θµ+

+
•
Γρσµ

•
Kσ

θν −
•
Γρσν

•
Kσ

θµ −
•
Γσθµ

•
Kρ

σν+

+
•
Γσθν

•
Kρ

σµ +
•
Kρ

σν

•
Kσ

θµ −
•
Kρ

σµ

•
Kσ

θν ,

(7.84)

where
R̊ρ

θµν = ∂µΓ̊ρθν − ∂νΓ̊ρθµ + Γ̊ρσµΓ̊σθν − Γ̊ρσνΓ̊σθµ (7.85)

is the curvature of the Levi-Civita connection. Contracting the first and the
third index and multiplying by the metric tensor gθν , Eq.(7.84) becomes

R̊ = −
•
T − 2

h
∂µ
(
h

•
T νµν

)
, (7.86)

with R̊ the scalar curvature of the Levi-Civita connection. Thanks to this
relation we got what we anticipated, that is, up to a divergence, the action
of TEGR is equivalent to the action of the GR.
To compute the field equations it is necessary to vary the action (7.81) with
respect to the tetrad field haµ. What we get is

∂σ
(
h

•
Sa

ρσ
)
− kh

•
Ja

ρ = khχa
ρ. (7.87)
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The first term

h
•
Sa

ρσ = −k ∂
•
L

∂ (∂σhaρ)
=

•
Kρσ

a − haρ
•
T θρθ + ha

ρ
•
T θσθ, (7.88)

where
•
L stands for the teleparallel lagrangian density, is the superpoten-

tial, the second one

h
•
Ja

ρ = − ∂
•
L

∂haρ
= h

(
1
k
ha

µ
•
Sc

νρ
•
Tc
νµ − ha

ρ

h

•
L+ 1

k
•
ωcaσ

•
Sc

ρσ

)
(7.89)

represents the gauge current and the last one

hχa
ρ = hχρa = −∂δLm

δhaρ
≡ −

(
∂Lm
∂haρ

− ∂µ
∂Lm

∂ (∂µhaρ)

)
(7.90)

is the matter energy-momentum tensor. Due to the antisymmetry of the
superpotential in the last two indices, the total energy-momentum density
is conserved in the ordinary sense:

∂ρ
(
h

•
Ja

ρ + hχa
ρ
)

= 0. (7.91)

7.1.6 Gravitation without Equivalence Principle

In this section we will show that as well as the Maxwell theory, a gauge
theory for the unitary group U(1), is able to describe the non-universal
electromagnetic interaction, i.e. every particle feels electromagnetic field
in different way, then the TEGR is able to describe the gravitational interac-
tion in the lack of universality, i.e. in the absence of the Weak Equivalence
Principle [8].
Analogously to the electromagnetic case, where we consider the fine struc-
ture constant √

αe = q

qp
, (7.92)

which represents how much the particle electric charge differs with respect
to the Planck charge, in Teleparallel Gravity we take in account a dimen-
sionless coupling constant which takes into consideration the gravitational
mass mg in relation to the inertial mass mi:

√
αg = mg

mi

. (7.93)
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The translational gauge transformation of a field ψ, representing a particle
with mg 6= mi, is

ψ′ = Ũψ, (7.94)

where
Ũ = exp

(√
αgε

a∂a
)

(7.95)

is an element of the translational group. The infinitesimal transformation
is given by

δ̃ψ = δ̃xa∂aψ, (7.96)

with
δ̃xa = √αgεa (7.97)

the non-universal gauge transformation of the tangent space coordinates.
From the general definition of covariant derivative

hµ = ∂µ +Ba
µ
δ

δεa
, (7.98)

in a general Lorentz frame, we derive the translational gauge covariant
derivative of ψ:

h̃µψ = h̃aµ∂aψ, (7.99)

where
h̃aµ ≡ h̃µx

a =
•
Dµxa +√αgBa

µ (7.100)

is the translational covariant derivative of xa. Now we are able to write
the action of the particle in presence of gravitation:

S =−mic
∫ q

p
ua
( •
Dµxa +√αgBa

µ

)
dxµ

=−mic
∫ q

p

[
uah

a
µ +

(√
αg − 1

)
uaB

a
µ

]
dxµ

(7.101)

It is important to underline that h̃aµ is not a tetrad, unlike haµ, because, by
definition, a tetrad cannot depend on any property of the particle.
Using the relations

δua = uµ
dua
ds

δxµ, (7.102)

δdxµ = dδxµ, δBa
µ = ∂ρB

a
µδx

ρ (7.103)
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and taking into account that the variation of the first term of the action
leads to Eq.(7.75), we find

dua
ds
− •
ωbaρubu

ρ = −
•
Kb

aρubu
ρ + Fa, (7.104)

where

Fa = −
(√

αg − 1
)
ha

µ

[
P ρ

µB
b
ρ
dub
ds
−
(
∂µB

b
ρ − ∂ρBb

µ

)
ubu

ρ

]
, (7.105)

with
P ρ

µ = δρµ − uρuµ (7.106)

a velocity-projection tensor, is a new gravitational force coming from the
lack of universality.
Let us note that although the equation of motion depends explicitly on the
properties of the particle due to √αg, this does not apply to the gauge po-
tential Ba

µ. This means that the teleparallel field equations (7.87) can be
consistently solved for Ba

µ, independently of the validity or not of WEP.
Then, we have achieved the important result that the TEGR is able to de-
scribe the motion of a particle even in lack of universality.

7.1.7 Extended TEGR theories

Just as we need to extend General Relativity, in the same way, being an
equivalent theory, we need to modify the TEGR. There are many modi-
fications of TEGR, the most straightforward is the generalization of the
action to an arbitrary function of the torsion scalar f(T ) [17], just like f(R̊)
in GR:

Sf(T ) = k
∫
d4xf(T ) + Sm. (7.107)

Varying the action with respect to the tetrad we obtain the field equations

4hf ′′(T ) (∂µT )Sνµλ + 4haν∂µ
(
hSa

µλ
)
f ′(T )+

−4hf ′(T )T σµνSσλµ − hf(T )δλν = kΘν
λ.

(7.108)

Replacing f(T ) with T we recover the TEGR field equations. It is interest-
ing to notice that, even though the TEGR is completely equivalent to GR,
since the Ricci scalar and the torsion scalar differ only by a total derivative
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term, the same does not happen for f(R̊) and f(T ) theories because the
boundary term behaves completely arbitrarily for non-linear terms of the
torsion tensor.
Other theories are the teleparallel scalar-tensor theories [13], theories in-
cluding couplings between the torsion scalar and the boundary term,
f(T,B) [12], theories with decomposition of the torsion tensor to its ax-
ial, tensorial and vectorial parts, f(Tax, Tten, Tvec) [11], and more.

7.2 Symmetric Teleparallel Gravity

In this section we continue our study on teleparallel theories, however,
this time focusing on the one called Symmetric Teleparallel Equivalent of
General Relativity (STEGR)[37, 5, 6, 4]. Symmetric because the torsion is
zero and teleparallel because the curvature is also zero. However, STEGR
is not metric compatible:

∇λgµν = Qλµν . (7.109)

From this we can compute the following connection

Γλµν = Γ̊λµν + Lλµν , (7.110)

with
Γ̊λµν = 1

2g
λσ (∂µgσν + ∂νgσµ − ∂σgµν) (7.111)

the Levi-Civita connection and

Lλµν = 1
2g

λσ (Qσµν −Qµσν −Qνσµ) (7.112)

the disformation tensor. It is evident that this connection is symmetric in
the last two indices.

7.2.1 Field equations

Let us define the non-metricity scalar:

Q = Qα
µνPα

µν = −1
4QαµνQ

αµν + 1
2QαµνQ

µαν + 1
4QαQ

α − 1
2QaQ̃

α (7.113)
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with Qα = Qα
µ
µ, Q̃α = Qµ

αµ. The quantity Pα
µν is the non-metricity con-

jugate and it has the following form:

Pα
µν ≡ −

1
4Q

α
µν + 1

2Q(µ
α
ν) + 1

4Q
αgµν −

1
2
(
Q̃αgµν + δα(µQµ)

)
. (7.114)

Now we can write the STEGR action:

S = k
∫
d4x
√
−gQ+ Sm. (7.115)

The variation with respect to the metric leads to the equations

2√
−g
∇α

(√
−gPα

µν

)
− qµν −Qgµν = Θµν (7.116)

where qµν stands for

qµν =− 1
4
(
2QαβµQ

αβ
ν −QµαβQν

αβ
)

+ 1
2QαβµQ

βα
ν

+ 1
4
(
2QαQ

α
µν −QµQν

)
− Q̃αQ

α
µν .

(7.117)

As in the case of Teleparallel Gravity, the STEGR action also differs from
that of General Relativity due to a divergence. Let us consider the curva-
ture tensor and the connection (7.110), we get

Rα
µβν = R̊α

µβν + ∇̊βL
α
νµ − ∇̊νL

α
βµ + LρνµL

α
βρ − LρβµLανρ, (7.118)

where ∇̊ is the covariant derivative of the Levi-Civita connection. Con-
tracting the first index with the third one and applying the teleparallel
condition Rα

µβν = 0, we obtain the relation

R̊ = Q− ∇̊α

(
Qα − Q̃α

)
. (7.119)

This relation proves the equivalence between STEGR and General Relativ-
ity.

7.2.2 The coincident gauge

Both the teleparallel condition and the torsionless one lead to an important
property of STEGR. The teleparallel condition restricts the connection to
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be purely inertial so that it can be parameterized by a general element Λb
a

of GL(4,R):
Γαµν = (Λ−1)αβ∂[µΛβ

ν]. (7.120)

In addition, the torsionless condition constrains the transformation matrix
to satisfy ∂[µΛβ

ν] = 0, so the general element of GL(4,R) determining the
connection can be parameterized by a set of functions ξα as Λα

µ = ∂µξ
α,

then
Γαµν = ∂xα

∂ξλ
∂µ∂νξ

λ. (7.121)

Thanks to Eq.(7.121) we achieve the result that we can completely remove
the connection by means of a diffeomorphism. The gauge where the con-
nection vanishes, i.e.

ξα = xα, (7.122)

can be interpreted as the gauge where the origin of the tangent space pa-
rameterized by ξα coincides with the spacetime origin. For this reason the
gauge is called the coincident gauge [31].

7.2.3 Extended STEGR theories

As for the TEGR, since the STEGR is equivalent to General Relativity, it is
useful to modify it. The most intuitive modification is the f(Q) theory:

Sf(Q) = k
∫
d4x
√
−gf(Q) + Sm. (7.123)

Varying with respect to the metric we find the equation of motion

kΘµν =1
2f
′′(Q)∂α

(
Q(µ

α
ν) − δα(µQ̃ν) −

1
2Q

α
µν + 1

2Q
αgµν

)
+

+ f ′(Q)
[(
∇̊α −

1
2Qα

)
Lαµν + 1

2∇̊µQν − LαβµLβαν
]

+

− 1
2gµν

[
f(Q) + f ′(Q)∇̊α

(
Qα − Q̃α

)]
.

(7.124)

An extension of non-metricity theories including scalar fields can be con-
structed if we consider the following action [30]

S = 1
2

∫
d4x
√
−g (Lg − Ll) + Sm (gµν , ψ) , (7.125)
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where the gravitational lagrangian density is equal to

Lg = A (φ)Q− B (φ) ∂µφ∂µφ− 2V (φ) (7.126)

and the Lagrange multiplier terms are

Ll = 2λµβαγRµ
βαγ + 2λµαβT µαβ. (7.127)

The theory reduces to STEGR when A = 1 and B = 0 = V .
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Chapter 8

The trinity of gravity

So far our study has focused on theories whose fulcrum is given by con-
nections characterized by particular peculiarities (flat, torsionless, etc.),
now we want to show that taking the most generic connection possible,
all other theories can be derived from them. The general affine connection
Γαµν [32] that fulfills this task is

Γαµν =
{
α

µν

}
+Kα

µν + Lαµν . (8.1)

The different terms that appear in the equation represent quantities that
we have already learned about in the previous chapters:

• the disformation tensor

Lαµν = 1
2
(
Qα

µν −Qµ
α
ν −Qν

α
µ

)
, (8.2)

that is related to the non-metricity

Qαµν = ∇αgµν ; (8.3)

• the contortion tensor

Kα
µν = 1

2 (Tαµν + Tµ
α
ν + Tν

α
µ) , (8.4)

from which emerges the anti-symmetrical part of the connection by
the torsion tensor

Tαµν = 2Γα[µν]; (8.5)
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Figure 8.1: This figure illustrates the geometrical meaning of the curvature,
the torsion and the non-metricity.

• the Levi-Civita connection{
α

µν

}
= 1

2g
αλ (∂µgλν + ∂νgµλ − ∂λgµν) , (8.6)

which is the unique connection that is symmetric and compatible
with metric.

The curvature is determined by the usual Riemann tensor:

Rα
βµν = ∂µΓαβν − ∂νΓαβµ + ΓαλµΓλβν − ΓαλνΓλβµ. (8.7)

Let us describe the quantities that represent well-defined geometrical prop-
erties of the connection:

• Non-metricity, Qαµν , measures the variation of the length of a vector
as it is parallel transported. In metric spaces, i.e. Qαµν = 0, the length
of vectors is conserved.
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• Torsion, Tαµν , measures the non-closure of the parallelogram formed
when two infinitesimal vectors are parallel transported along each
other.

• Curvature, Rα
βµν , measures the rotation of a vector parallel trans-

ported along a closed curve.

Depending on which of these quantities are cancelled, we obtain the dif-
ferent theories we have analysed so far, for example General Relativity is
based on a metric and torsionless connection and imputed gravity to the
curvature, on the other hand the TEGR is founded on a metric and flat
connection with the torsion that plays the role of gravity generator. A list
of possible obtainable theories is given by the Table 8.1.
Due to the fact that GR can be equivalently described in terms of the non-
metricity, torsion and curvature, we refer to these three seemingly unre-
lated elements as the trinity of gravity.

8.1 The Killing equations for general connections

We are interested in the study of the possible isometries that a theory
presents when it is characterized by a connection of the type (8.1). To do
this we need to calculate the Lie derivative of the metric Lξgµν , where ξ is
a possible generator vector field. By definition of Lie derivative, we get

Lξgµν =ξσ∂σgµν + gσν∂µξ
σ + gµσ∂νξ

σ

=ξσ∇σgµν + ξσΓλσµgλν + ξσΓλσνgλµ+
+ gσν∇µξ

σ − gσνΓσµλξλ + gσµ∇νξ
σ − gσµΓσνλξλ

=ξσ (Qσµν −Qµσν −Qνµσ) + 2∇(µξν)+
+ ξσΓλσµgλν + ξσΓλσνgλµ − gσνΓσµλξλ − gσµΓσνλξλ.

(8.8)

Inserting Eq.(8.1), we obtain

Lξgµν =ξσ (Qσµν −Qµσν −Qνµσ) + 2∇(µξν)+
+ ξσKλ

σµgλν + ξσKλ
σνgλµ − gσνKσ

µλξ
λ − gσµKσ

νλξ
λ

=2ξσLσµν + 2∇(µξν)+
+ ξσ

(
Kλ

σµgλν +Kλ
σνgλµ −Kλ

µσgλν −Kλ
νσgλµ

)
.

(8.9)
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Geometrical objects Type of space Example of theories

R = 0 T = 0 Q = 0 Minkowski space Special Relativity
theory

R 6= 0 T = 0 Q = 0 Riemann space General Relativity
theory

R = 0 T 6= 0 Q = 0 Weitzenböck space Translational gauge
gravity theory

R 6= 0 T = 0 Q 6= 0 Weyl space Weyl’s gravity theory
[47]

R 6= 0 T 6= 0 Q = 0 Riemann-Cartan space Einstein-Cartan
gravity theory [45]

R 6= 0 T 6= 0 Q 6= 0 Generalised
metric-affine space

Einstein-Schrödinger
theory

Table 8.1: Classification of gravity theories [40].

The terms containing the disformation tensor and the Levi-Civita connec-
tion, that would have come from the expression (8.1), cancel each other
because of their symmetry in the last two indices.
The last equation can be simplified utilising the contorsion tensor defini-
tion (8.4), indeed

Kλ
σµgλν +Kλ

σνgλµ −Kλ
µσgλν −Kλ

νσgλµ = −2T(µν)σ. (8.10)

Finally we find

Lξgµν = 2∇(µξν) − 2ξσT(µν)σ + 2ξσLσµν (8.11)

To represent the isometries, this equation should be set equal to zero, how-
ever this is not possible due to the non-metricity condition (8.3), which
ensures the non conservation of the vector length, therefore

Lξgµν = 2∇(µξν) − 2ξσT(µν)σ + 2ξσLσµν 6= 0. (8.12)

Now, let us suppose the connection is compatible with the metric, then

∇(µξν) − ξσT(µν)σ = 0. (8.13)

To obtain the Killing equations Eq.(2.29), the torsion must be totally an-
tisymmetric, T(µν)σ = 0. This is exactly the necessary condition for the
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two concepts of geodesic, that is the curves that minimise the distance be-
tween two points in the manifold or a curve whose tangent vectors remain
parallel if they are transported along it, to be equivalent in the case of con-
nections with non-zero torsion [14]. In fact, when we have

Γαµν =
{
α

µν

}
+Kα

µν , (8.14)

the two different definitions of geodesics lead to

δS = δ
∫ b

a

√
gµνdxµdxν = 0→ d2xλ

ds2 + Γ̊λσρ
dxσ

ds

dxρ

ds
= 0 (8.15)

and

V ν∇νV
µ = 0→ d2xλ

ds2 + Γλσρ
dxσ

ds

dxρ

ds
= 0, (8.16)

where Γ̊λσρ is the Levi-Civita connection. These differential equations are
equivalent if, and only if, T(µν)σ = 0.
If in addition to the metric compatibility we impose that the connection is
torsionless we obtain the Killing equations again:

∇(µξν) = 0, (8.17)

with ξ the Killing vector field.
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Discussion and Conclusions

Let us summarise what we have presented in this thesis. In Chapter 1 we
focused on one of the milestones that led to the formulation of gravita-
tional theories, that is the Equivalence Principle. In Chapter 2 we first de-
duced the Levi-Civita connection from the EP and then we showed which
relations must the transformations that leave the metric unchanged satisfy,
that is, the Killing equations. In Chapter 3 we presented how the Levi-
Civita connection behaves when the metric is subject to deformations. In
Chapters 4, 5 and 6 we described theories where gravity is the effect of
the spacetime curvature. In the first of these chapters we dealt with metric
theories where the dynamic variable is precisely the metric, in particu-
lar General Relativity and its extensions. In the second one we regarded
the purely affine theories where the dynamic variable is the connection
and in the last one we considered metric-affine theories where both the
metric and the connection play the role of dynamic variables. In Chapter
7 we presented the teleparallel theories, namely the Teleparallel Equiv-
alent to General Relativity and the Symmetric Teleparallel Equivalent to
General Relativity, where the gravity is mediated through the torsion and
non-metricity of spacetime respectively. In the last chapter we focused on
the so called trinity of gravity (curvature tensor Rλ

ρµν , torsion tensor T λµν
and non-metricity tensor Qλ

µν) and what happens when we want to find
the Killing vectors for a generic affine connection.
Now we could ask ourselves what is the reason that led us to the study of
these different theories of gravity: we find the main answer in the EP. The
GR is based on the universality of free fall, which is the result of the equiv-
alence between inertia and gravity due to the EEP. If for some reasons the
EP will be disproved, then GR becomes unsuitable. Moreover the EP is
not reconcilable with quantum mechanics because controversies arise if a
particle is allowed to be in superposition states of different masses. It is
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in this scenario that the teleparallel theories come into play, which can be
formulated both with the EP and without it, as we showed. Let us stress
that although the Teleparallel Gravity is not a usual gauge theory, in the
sense that the tangent bundle is soldered and not internal, it keeps every
property of a gauge theory. This means that it is more appropriate to create
a unified theory with the other three fundamental interactions, in contrast
with GR. Furthermore, through its extensions, it is able to provide an ex-
planation for the present cosmic acceleration.
The analysis we did in Chapter 8 on the Lie derivative occurs precisely in
a framework where the validity of the EP is not ensured by the presence
of the non-metricity. From this analysis some important remarks follow:
first, from a general situation we can bring ourselves back to the results
of GR and therefore to the Levi-Civita connection, simply by annulling
the two elements of the trinity that are not relevant to GR, i.e. torsion
and non-metricity. This could be a clue to interpret the changes that in-
volve the introduction of torsion and non-metricity as a deformation of
the gravitational field. Secondly, we could interpret the loss of a symme-
try by a system, in different points of spacetime, as a consequence of the
presence of non-metricity with a consequent loss of importance for the EP.
Given the deep importance in understanding the validity of the EP and
therefore testing it with the highest possible accuracy, a space race was
born that led to the realization and proposition of space experiments such
as MICROSCOPE [44], ACES [16], STE-QUEST [10], QTEST [48] and in the
near future SAGE [43]. All these experiments aim to test the three, or at
least one, of the sub-principles on which the EEP is based, namely the Uni-
versality of Free Fall, the Local Position Invariance and the Local Lorentz
Invariance. The proof or the denial of one of these principles will tell us
if the moment of the decline of GR has come, which will then lead to the
dawn of new theories of gravity.
As a continuation to this thesis we will broaden the discussion to the theo-
ries that extend the TEGR and the STEGR, that is the f(T ) and f(Q) theo-
ries of which just a hint was given in Chapter 7, and how possible Noether
symmetries are related to the non-conservation of the metric.
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