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1 Introduction

The temperature of a system may conveniently be regarded as a parameter that
determines the distribution of energy among the particles of the system. The
concept of absolute temperature is based on the second principle of thermody-
namics and in general absolute temperature can only assume positive value. We
will see that this is based on the implicit assumption that the entropy is always
an increasing function of energy however there are specific systems for which
this is not valid and they can be described with negative absolute temperature.
Of course the conditions for the existence of one of these systems are so restric-
tive that they are rarely met in practice. However, the thermodynamics and
statistical mechanics of negative temperatures are more general than their ap-
plication to a single type of system so we will first study the general theory for
negative temperature systems and only later will specific applications be made
to spin systems.

2 Definition of temperature

Before we start our study on negative temperatures we need a clear definition of
”temperature”. First definitions were based on the linear expansion of liquids
but because the expansion has not been perfectly linear scientists developed
new definitions based on the powerful principles of statistical mechanics.
Our intuitive notion is that two systems in thermal contact should exchange no
energy (in form of heat) if and only if they are at the same temperature, so
what we are doing is searching for a parameter that becomes the same for the
two systems in contact when they reach equilibrium.

Let’s suppose we have two systems: system A with internal energy E1 and
system B with internal energy E2.
With ΩA(E1) we indicate the number of microstates accessible to the system
A given his value of energy and with ΩB(E2) we indicate the same thing for
the system B. When we put them in thermal contact they start to exchange
energy until they reach equilibrium. We know from statistical mechanics that
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the state of the system at equilibrium is the one that maximizes entropy (always
respecting the other physical constrains). The entropy is:

S = kln(Ω)

Where k is the Boltzmann constant and Ω is the number of microstates acces-
sible to the system.
In our case the system is C = A∪B and, given a distribution of energy between
A and B, we have that

Ω = ΩA(E1)ΩB(E2)

If S reaches its maximum we obviously have that ∂S
∂E1

= 0; developing the cal-

culations we have:

∂ln(ΩA(E1)ΩB(E2))

∂E1
= 0

∂ln(ΩA(E1))

∂E1
+
∂ln(ΩB(E2))

∂E1
= 0

now using conservation of energy we note that: ∂E1 = −∂E2; so we can write:

∂ln(ΩA(E1))

∂E1
− ∂ln(ΩB(E2))

∂E2
= 0

∂S1

∂E1
=
∂S2

∂E1

We have finally found a physical quantity for the two systems that becomes the
same at equilibrium. We decide to name it 1

T (where T is the temperature) to
be consistent with previous definitions.

3 Negative temperature

Given this definition of temperature it is easy to note that the only condition
that must be satisfied in order to have a system capable of negative tempera-
tures is that its entropy should be a decreasing function over a certain range of
energy. This is not an easy condition to satisfy, the easiest way to do it is to
have a system whose energy levels are limited as we can see with the following
simple example:
Let’s suppose we have a system of N particles and that each of these particles
has only two possible states: a ground state (with a lower energy value) and
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an excited state (with an higher energy value). The lowest energy state for
this system is obviously the state in which all the particles are in the ground
state, this is an highly ordered state with an entropy value S = 0 (the entropy
is maximized when the occupation of every state is the same; it is important
to note that this situation is not always possible for a given system because of
its other physical constrains). If we give energy to the system the occupation
of the excited level starts to increase and so does the entropy until we reach
the state where half of the particles are in the ground state and half are in the
excited state. As noticed above this is the state that has the maximum value
of entropy for the system so, if we continue to add energy, we have an inversion
of population between the two levels and the entropy decreases because we are
returning in an ordered situation where the particles tend to be in the same
state.
With this explanation we have shown that it is possible to have negative tem-
perature in this theorized system because S starts to decrease if we increase E.
These type of systems are difficult to build and are not found in nature mainly
because there is almost always the kinetic energy that has no upper bound.
If we draw the graphs of the entropy and temperature as a functions of energy
we obtain:

Figure 1: Entropy and temperature as functions of internal energy; note that
the temperature is the inverse of the derivative of entropy

We notice that negative temperatures corresponds to states that are more
excited than positive temperature ones.
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4 Two levels system

We want to use statistical mechanics to derive the graphs of the previous para-
graph. The essential requirements for a physical system to be capable of negative
temperature in the way described before are:

• The elements of the system must be in thermodynamic equilibrium (in
order for the system to be described with a temperature at all);

• There must be an upper limit to the possible energies accessible to the
elements of the system;

• It is necessary that the system is isolated from all the systems that don’t
respect the first two conditions.

Given these rules we are going to study a system of N indistinguishable particles.
These particles have only two possible states: the first state is the ground state
and we assign to it the energy value of 0, the other state is excited and we assign
to it the energy h.
If our system has a value of total energy E then we know exactly how many
particles are in the excited state (N1 = number of particles in the excited state,
N0 = number of particles in the ground state):

N1 =
E

h

Now given the fact that the particles are indistinguishable the number of the
microstates accessible to the system is (in how many ways can we choose N1

excited particles from a total of N particles?)

Ω(N1) =
N !

N1!(N −N1)!

Now we can use the Boltzmann formula to derive the entropy

S(N1) = kln(
N !

N1!(N −N1)!
)

S(N1)

k
= lnN !− lnN1!− ln(N −N1)!

Using the logarithmic form of the Stirling approximation that is

ln(N !) ≈ NlnN −N

we have

S(N1)

k
= NlnN −N −N1lnN1 +N1 − (N −N1)ln(N −N1) + (N −N1)

S(N1)

k
= NlnN −N1lnN1 − (N −N1)ln(N −N1)
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returning in the variable E using the following relation N1 = E
h

S(E)

k
= NlnN − E

h
ln
E

h
− (N − E

h
)ln(N − E

h
)

If we draw the graph we obtain:

Figure 2: Entropy as a function of internal energy

We can also obtain the temperature of the system:

1

T
=
∂S

∂E

1

kT
=

1

h
ln(N − E

h
)− 1

h
ln(

E

h
)

1

kT
=

1

h
ln(

N0

N1
)

kT =
h

ln(
N0
N1

)

We note that if the excited state is more populated than the ground state we
have a negative temperature, exactly what we expected.
We can also draw the graph of the temperature as a function of E and we obtain:
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Figure 3: Temperature as a function of internal energy

All the results are consistent with the qualitative analysis made before.

5 Are negative temperatures ”hotter” than pos-
itive ones?

To answer this question we must first agree a condition that allows us to say
when a system is hotter than another. We say that system A is hotter than
system B if when we put them in thermal contact heat starts to flow from system
A to system B. With these conditions we can say that negative temperatures
are hotter than positive ones. We can show this with these following simple
examples:
For the first example we have two system: system A not capable of negative
temperatures and system B capable of negative temperatures (for the sake of
simplicity exactly of the two levels type treated before); the system B is in a
state of negative temperature.
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Figure 4: Energy/temperature for system A and system B

If we put them in thermal contact they have to reach the same temperature.
Because system A can not have negative temperatures T eq has to be positive.
In order to reach a state of positive temperature the system B has to lower his
energy. Due to the conservation of energy it is obvious that system B has lost
energy in the form of heat and that system A has gained the same amount. We
have shown that a system at a negative temperatures is hotter than any system
at any positive temperature.

For the second example we still have two system: system A capable of negative
temperatures (but in a state of positive temperature) and system B capable
of negative temperatures (in a state of negative temperature), for the sake of
simplicity we suppose that these two system are exactly identical and of the two
level type. The only difference is, indeed, their initial energy:
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Figure 5: Energy/temperature for system A and system B

When we put them in thermal contact there is no reason to think that
the total energy should not be divided equally between the two systems (given
the symmetry of the situation).So each of the two systems reach an energy of

E =
E1+E2

2 that is the point in the middle of the two energies. By varying
the position of E1 in the T positive region and E2 in the T negative region
we clearly see that the T eq between a positive and a negative temperature can
be a positive temperature higher than the one of the ”T positive system” or a
negative temperature lower than the one of the ”T negative system”.
In view of these two examples it seems that the term negative temperature is
misleading. it certainly is but the definition of temperature was agreed long ago
and the vast majority of physical system don’t have these problems. It is worth
noticing that for the purpose of negative temperatures the ”coldness” scale is in
many ways more convenient than the temperature scale. The coldness is defined
as β = 1

kT and the heat always flow from the system with the lower value of β
to the system with the higher one.
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Figure 6: A representation of the heat flow

.
To conclude this section we will show in a more formal way that heat flows from
negative temperature systems to those at positive temperature. We have:

System 1 with energy E1 and positive temperature 1
T1

=
∂S1
∂E1

(E1) > 0

System 2 with energy E2 and negative temperature 1
T2

=
∂S2
∂E2

(E2) < 0

∆ is the energy that passes from the system 2 to system 1

the total entropy is:

Stot = S1(E1 + ∆) + S2(E2 −∆)

Deriving respect to ∆ we have

∂Stot

∂∆
=
∂S1

∂E
(E1 + ∆)− ∂S2

∂E
(E2 −∆)

which is positive if ∆ is positive. This type of exchange is therefore favorable
to reach the state of maximum entropy.
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6 Nuclear spin system

In this paragraph we want to give an example of a negative temperature system
that has been reproduced in an experimental environment. The system we are
going to study has been experimentally realized using pure Lithium Fluoride
crystals (LiF). More specifically our system consists of the nuclear spins of the
crystal subjected to a constant magnetic field. If the spin of the nucleus is I the
field forces the nuclear spins to assume one of the 2I + 1 values of Sz (z is the
direction of the magnetic field) ranging form −I to +I. Each of the nuclei has
an energy of

Ei = −BzSz

So there are only 2I + 1 states accessible to the ”particles” of the system. So
there is an upper limit to the possible energies for the elements of the system.
Now we have to verify if the other two conditions discussed in the previous
paragraph are satisfied. In order that the nuclear spin system can adequately be
considered as a thermodynamic system describable by a temperature the various
nuclear spins must interact among themselves in such a way that thermodynamic
equilibrium is achieved. This occurs by virtue of the nuclear spin-spin magnetic
interaction. The last condition that must be satisfied is that this spin system has
to be isolated. This is not totally true because of the existence of a spin-lattice
interaction but it has experimentally observed that the relaxation time (the
relaxation time is a measure of the time it takes for the system to be significantly
perturbed by a certain type of interaction ) of the spin-spin interaction is ≈ 10−4

seconds while the relaxation time of the spin-lattice interaction is ≈ 120 seconds;
so we can consider our nuclear spin system as isolated for short time intervals
in which we can neglect the spin-lattice effects.
The last question we have to answer is how we put this system in a negative
temperature state. The answer is simple: we open a magnetic field and wait till
the nucleus reach the thermal equilibrium with the surrounding environment,
since the temperature of the environment is obviously positive we have that the
lower energy states of the spin system are more populated than the higher ones.
Now we quickly reverse the magnetic field thus forcing an inversion of population
between the levels (in reality we are simply swapping the value of the energy
of each level with its opposite!). The system ends in a situation in which the
high energy levels are the more populated: a negative temperature state. All
the observed behaviours of the system are consistent with our analysis.
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7 Classical definition of Temperature

Throughout the thesis we have used the statistical mechanics definition of tem-
perature but the concept of absolute temperature was already present in ther-
modynamics (absolute scale: a scale with no negative values). In this chapter
we are going to analyze the thermodynamic definition of absolute temperature
and see why negative values were not contemplated.

Classical definition of absolute Temperature:
The absolute temperature of a system T is the thermodynamic function that
makes dS = δQ

T a perfect differential (∆S depends only on the initial and final
state of the system) and it can be measured using a Carnot cycle as a ther-
mometer.

The S function is entropy and it can be shown that it is equivalent to the
statistical mechanics one.
The Temperature T can be multiplied by an arbitrary constant, to fix the scale
we have to assign a value to the temperature of the triple point of water. The
most common absolute temperature scale is the Kelvin scale which assigns to
the triple point a T = 273, 2K.
How can we use a Carnot cycle to measure the temperature of a system?

Figure 7: A classical Carnot cycle
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A Carnot cycle is a reversible process so it is characterized by a ∆S = 0.
Since it is a cycle at the end the system S is in the initial state so the ∆S is
0 (state function) and we have to consider only the ∆S of the heat reservoirs.
(we are using the convention that heat leaving a system is negative, with Q1

and Q2 we always indicate the absolute value of the heat and we put the plus
or minus sign manually)

∆S =
Q1

T 1
− Q2

T 2

This has to be zero so:
Q1

T 1
=
Q2

T 2

And

T 2 =
Q2

Q1
T 1

By letting the first heat reservoir consist of water at its triple point we have:

T 2 =
Q2

Q1
273.2K

So why are negative temperature not contemplated?
The answer is easy : we have mistakenly assumed that in order to have a
reversible cycle (with a ∆S = 0) Q2 must be absorbed by the system S and Q1

must be discharged but if T 1 is negative we can also have a reversible cycle like
this:

Figure 8: Heat flows from system 2 to system 1

16



because given the fact that both Q1 and Q2 are absorbed by the system

∆S = −Q1

T 1
− Q2

T 2

can be zero if T 1 is negative.
This situation seems to be in contrast with the second principle of thermody-
namics (efficiency > 1), we will deepen this in the next section.
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8 Second Principle

Another important thing to study is the effect of the existence of physical sys-
tems capable of negative temperature on the theoretical results obtained from
the classical thermodynamics, in fact many theorems use implicitly the assump-
tion that the entropy is always an increasing function of energy.
More specifically we will study what happens to the main formulations of the
second principle listed below:

The classical formulation:
If a thermodynamic system is isolated then dS ≥ 0

Kelvin formulation:
There can’t exist a thermodynamic process that has as only result the transfor-
mation of heat absorbed from a body in work

Clausius formulation:
There can’t exist a thermodynamic process that has as only result the flow of
heat from a colder to an hotter system

Let’s start our analysis with the classical formulation, we can rewrite it as ”ev-
ery process is characterized by a ∆S ≥ 0 (of the universe)”. This formulation is
still valid because it is strictly connected to the principle of maximum entropy
and it is crucial in the statistical mechanics that we have extensively used in
this study; if the principle would have been invalidated, the whole thesis would
have lost its meaning. Given the importance of this formulation we will study
what happens to the Kelvin and Clausius formulation leading back to it.

The Clausius formulation also remains true but we have to consider the new
definition of ”hotter”.
We have shown that the most appropriate scale to study the flow of heat is the
coldness scale. We show below that any process that has as only result the flow
of heat form a system with an higher value of coldness (colder) to a system with
a lower one (hotter) is characterized by a ∆S < 0 and is therefore impossible
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Figure 9: Heat flows from system 2 to system 1

.
Remembering that the ∆S for a system is equal to βQ then the ∆S of the
universe is equal to

Qβ1 −Qβ2

(Heat is going from system 2 to system 1 and we are using the convention that
heat leaving a system is negative) .
If β2 > β1 we can clearly see that we always have a ∆S < 0.

The Kelvin formulation loses its validity unlike the other two.
Analyzing the situation we have

Figure 10: Heat converted in work
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Classically the ∆S in a process like the one in the picture is always negative

−Q
T

but if we consider a negative temperature system we have that the ∆S is > 0
and so the process is possible. (that is exactly what happened in the Carnot
cycle of the previous section)
This formulations of the second principle does not hold anymore and is in fact
possible to convert all the heat produced by a negative temperature system in
work (and also have reversible cycles with an efficiency > 1). It is true that
we can produce work simply by cooling a T < 0 system but there are some
restrictions:

1) Negative temperature systems do not exist in nature and often the energy
required to build one is greater than the energy that we can get from it

2) Negative temperature systems will eventually reach a positive temperature
state when cooled so only limited amount of work can be produced this way.

3) Negative temperature systems exists only for brief intervals of time as dis-
cussed before.

All these limitations make all practical application impossible or useless.
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