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Introduction

In a Josephson junction [1] (JJ) a supercurrent will �ow between two super-
conductors separated by a barrier without any voltage drop fully depending
on the phase di�erence between the macroscopic wave functions of the two
superconducting condensates [1] [2] [3]. It is the only superconducting non-
linear circuital element [3] [4] and for these reasons, JJs are key structures for
all low-power electronics applications including all types of superconducting
qubits and a wide range of fundamental experiments [4] [5].
In the last years, a new class of Josephson devices, using ferromagnets as
barriers, has been proposed. In these junctions, two forms of macroscopic
order coexist (even if they are traditionally considered in con�ict) generating
unique properties for fundamental studies and applications.
In this work, we will consider a special type of S-F-S (superconductor-
ferromagnet-superconductor) JJ, where the traditional metallic-like ferro-
magnet F is replaced by a tunnel-like ferro-insulator. In particular, our
junction is composed of two superconducting electrodes of NbN separated by
an insulator ferromagnetic barrier of GdN (SIfS Josephson junctions). The
properties of these devices vary as a function of the barrier thickness and we
will focus on the study of the device with a barrier thickness of 3 nm. This
is an intermediate regime that shows very remarkable properties, such as the
presence of MQT (Macroscopic Quantum Tunneling) at low temperatures [6]
and hints of triplet supercurrents [7] [8]. These characteristics are very in-
teresting from a technological point of view and can be used in a wide range
of low powers electronics including superconducting qubits.
All junctions have been fabricated at the Materials Science and Metallurgy
Department of the University of Cambridge (UK).
A substantial part of my work is focused on the analysis of critical cur-
rent �uctuations, the switching current distributions (SCD), that provides a
powerful tool to investigate the electrodynamics properties of a Josephson
junction and its interaction with the environment. I have compared the ex-
perimental switching current distributions with Monte Carlo simulations and
these allow us to estimate some crucial parameters of the junction, such as
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the damping factor Q and the capacitance C. The study that I have per-
formed allows to investigate the behaviour of the device and it is the �rst
step to develop real applications.
The thesis has been organized in the following way: in Chapter 1 I will give
some hints on the quantum nature of the Josephson e�ect in junctions, an-
alyzing the properties of devices with an insulator or metallic barrier, either
if ferromagnetic or not. We will provide a simple model, the RCSJ model
(Resistively and Capacitively Shunted Junction), that describes the electro-
dynamics of the majority of junctions in the presence of a direct current
(DC).
In Chapter 2 we will extend the considerations on the I-V curves given in
the �rst Chapter by including the e�ects of thermal �uctuations. We will
investigate the switching current distributions and we will show how these
curves can help us to provide a description of the electrodynamics parameters
of the junction, such as capacitance and resistance.
In Chapter 3, we will describe the experimental set-up and the techniques
used to perform low noise measurements.
The experimental data will be presented and discussed in Chapter 4. We will
analyze the spin �ltering properties of this junction starting from the R(T )
curve and the e�ects induced by the magnetic �eld. We will characterize the
electrodynamics of the junction studying the switching current distributions
and the interaction with the external environment.
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Chapter 1

Introduction to superconductivity

and Josephson e�ect

In this Chapter we will give some hints on superconductivity, providing the
terminology that we will use. We will describe the main properties of a
Josephson junction, starting from the well-known SIS junctions, where an
insulator barrier is inserted between two superconducting electrodes.
We will investigate how these properties are modi�ed in the presence of
a ferromagnetic barrier, independently of being metallic or insulating, and
which processes determine the electrodynamics of these junctions.

1.1 The phenomenon of superconductivity

Superconductivity is characterized by two fundamentals properties [9] [3]:

• The transition from �nite resistivity to zero resistance below a threshold
critical temperature Tc, which marks the transition from the normal to
the superconducting state. As a consequence current can �ow in a
superconducting loop without any detectable decay below a threshold
value Icritical

1.

• The simultaneous change of magnetic susceptibility χ from a small pos-
itive paramagnetic value above Tc to χ = −1, i.e. perfect diamagnetism
below Tc. This e�ect was �rst observed by Meissner and Ochsenfeld
in 1933, and is usually referred to Meissner e�ect [11]. The perfect

diamagnetism occurs below a critical �eld ~Hc.

1Measurements in a superconducting loop of Nb-Zr wires [10] showed that the current's
decay time is about 100.000 years with a resistivity ρ = 4 · 10−25Ω ·m

9



1.1. THE PHENOMENON OF SUPERCONDUCTIVITY

Superconductivity was discovered in 1911 by Kamerlingh Onnes [12]. In
studying the electrical resistance of mercury at low temperatures, Kamer-
lingh Onnes found that, at about 4.2 K and in a range of about 0.01 K,
the electrical resistance sharply dropped by several orders of magnitude to
non-measurable values; cooling the metal below this critical temperature ap-
parently led to a new resistance-less state, referred to as the superconducting
state.
Since 1911, superconductivity has been found in more than 25 metallic ele-
ments and in more than one thousand alloys [11].

1.1.1 The London model

The �rst phenomenological model to explain the "superconductive state" was
given by the London brothers (1935) [13]. Their theory assumes that in the
superconducting state, the electronic density is made of two contributions,
one from normal electrons and one from super-electrons which condense into
a macroscopic quantum state [11].
Starting from the Drude's model for a perfect conductor, they obtained two
equations, the London�s equations, that describe both the perfect DC con-
ductivity and the Meissner e�ect :

∂ ~J

∂t
=
nsq

2

m
~E (1.1)

∇× ~J +
nsq

2

mc
~B = 0 (1.2)

as discussed in more detail in Appendix A. Here ~J is the superconducting
current density, ~E and ~B are respectively the electric and magnetic �elds
within the superconductor, e is the charge of an electron, m is electron mass,
and ns is a phenomenological constant loosely associated with a number
density of superconducting carriers [13].
In particular the eq. 1.2 de�nes a characteristic length :

λL =

√
mc2

4πnse2
(1.3)

along which the magnetic �elds penetrates in the superconductor.

1.1.2 Ginzburg�Landau theory

The normal metal-superconductor phase transition can be well described and
understood within the Ginzburg-Landau phenomenological theory, based on

10



1.1. THE PHENOMENON OF SUPERCONDUCTIVITY

the general theory of second order transitions developed in 1930 by Landau.
Ginzburg and Landau [14] introduced a macroscopic complex function, the
order parameter ψ(~r, T ) = |ψ(~r)|eiθ(~r), which characterizes the system:

ψ =

{
0 for T > Tc

ψ(~r, T ) T < Tc
(1.4)

ψ(~r) at a given temperature T is related to the local number of the carriers
in the superconductor by the relation:

npairs = |ψ(~r)|2 (1.5)

The basic assumption of the Ginzburg-Landau theory is that the supercon-
ductor free energy density near the transition temperature can be expanded
in the form [15] :

fS(T, ψ, ~A) = fN(T ) + α(T )|ψ2|+1

2
β(T )|ψ4| 1

2m∗
|(~p− e∗

c
~A)ψ(~r)|2+

~B2

8π
(1.6)

where fN(T ) is the free energy density in the normal phase (ψ = 0). The
total free energy in the volume V of the sample is given by the space integral:

FS(T ) =

∫
V

fS(T, ψ(~r), ~A(~r))d~r (1.7)

In eq. 1.6 the terms in |ψ|2 and |ψ|4 can be recognized as an expansion of
the free energy up to second order in ψψ∗. The fourth term in the second
member of 1.6 is written as if ψ(~r) represents a true quantum mechanical
wavefunction for a particle of charge e∗ and mass m∗ in the presence of
spatial gradients of the order parameter and magnetic �elds.
We can obtain ψ(~r) minimizing the free energy FS(T ) in respect to arbitrary
variations of ψ∗. The variational calculation shows that the order parameter
function ψ satis�es the �rst Ginzburg-Landau equation:

1

2m∗

(
~p− e∗

c
~A

)
2ψ(~r) + β|ψ(~r)|2ψ(~r) = −α(T )ψ(~r) (1.8)

Similarly, one can calculate the variation of free energy FS(T ) with respect

to arbitrary variations of the vector potential ~A, obtaining an equation for
the supercurrent density ~Js [3]:

~Js(~r) = |ψ(~r)|2
(
e∗h̄

m∗
∇θ(~r)− e2∗

m∗c
~A(~r)

)
(1.9)

11



1.1. THE PHENOMENON OF SUPERCONDUCTIVITY

This is known as the second Ginzburg-Landau equation: it shows that the
phase θ(~r) describes locally the motion of the center of mass of the super-
conductor's carrier.
For one dimensional model (~r ≡ z) and in the absence of the magnetic �eld
~B, the eq. 1.9 can be written as:

h̄2

2m∗
d2ψ(z)

dz2
+ β|ψ(~r)|2ψ(~r) = −α(T )ψ(~r) (1.10)

and the solution is:

ψ(z) = ψ∞tanh

(
z√

(2)ξGL(T )

)
(1.11)

where ξGL ≡ h̄2/2m∗|α(T )| and ψ∞ is the value of ψ(~r) in the superconductor
bulk, in the absence of perturbation.
The coherence length ξ represents the range over which superconducting
order is a�ected and speci�cally reduced by a local perturbation (for example
the surface of superconductor) [2].

1.1.3 BCS Theory

A microscopic theory was developed �rst by Bardeen, Cooper and Schrie�er
(BCS) in 1957 [17]. They supposed that in certain condition an e�ective at-
tractive interaction between the electrons can be established. The electrons
form pairs, called Cooper pairs, that have an e�ective mass m∗ = 2me and
charge e∗ = 2e . Because of this interaction, the ground state of the system
changes such that it contains correlated pairs of electrons [9].
Di�erent mechanisms have been proposed to explain the origin of supercon-
ductivity. In conventional superconductors, the attraction is generated by
an indirect electron-electron interaction mediated by phonons, as suggested
by Fröhlich [18]. This can be phenomenologically understood as follows:
consider an electron moving in a lattice; as it is negatively charged, its move-
ment exerts a force on the positively charged ions, which then slightly move
towards the electron. Now the other electrons in the system may feel this
movement, and follow the movement of the ions, i.e., towards the �rst elec-
tron. Thus, an e�ective attractive interaction is created, and with certain
materials parameters and the average distance between the electrons, it can
even beat the repulsive Coulomb interaction.
The �rst consequence of the presence of Cooper pairs is that the normal
Fermi sea becomes unstable [19]. For the BCS theory all details are exten-
sively given in textbooks. Here we limit to highlight a few details, which are
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1.1. THE PHENOMENON OF SUPERCONDUCTIVITY

useful in the following. While in a normal metal small energy excitations are
permitted, in a superconductor the spectrum has energy gap ∆, calculated
in the appendix B (using the Bogoliubov-de Gennes equations):

E0
k =

√(
h̄2k2

2m

)
2 + ∆2 (1.12)

where ( h̄
2k2

2m

)
is the energy spectrum of a normal metal in Free electron

approximation. ∆ is a complex quantity and can be written as ∆ = |∆|eiθ.

Figure 1.1: The BCS spectrum of excitations in a superconductor.

L.P.Gork'ov in 1959 showed that ∆ is proportional to the order parameter
ψ introduced in the Ginzburg Landau's theory [16].
The energy gap ∆ decreases with increasing T , and is 0 above a critical
temperature Tc: electrons with opposite spin become uncorrelated and the
system behaves like a normal metal. The presence of the energy gap ∆ has
important consequence in the transport properties of the system: if the pairs
have a center of mass 2~q, such as when a current �ows in the superconductor,
∆ is in the form 2 [2]:

∆ = |∆|ei2~q~r (1.13)

2We have seen in the previous section that the phase of the order parameter ψ is related
to the motion of the Cooper pair 's center of mass

13



1.1. THE PHENOMENON OF SUPERCONDUCTIVITY

In this case the excitation energy is:

Ek = E0
k +

h̄2

m
~k · ~q (1.14)

where E0
k =

√(
h̄2k2

2m

)
2 + ∆2 is the excitation energy of the system in the

absence of current. This equation shows that the gap goes to zero when:

q =
m∆

h̄2kf
(1.15)

i.e there is a limit on the value of q and consequently, superconducting system
cannot sustain a current up to Icritical.
The relation 1.14 is linear in ~q: the Landau super�uidity criterion [20] ensure
that the Copper pairs form a super�uid and the can �ow with zero viscosity
below Icritical.
It's important to de�ne the condensation energy of the system, that is the
di�erence in the energy of between the superconducting state and the normal
state [2]. In the BCS theory at T = 0, this quantity is equal to:

∆E = EN − ES =
1

2
N(0)∆2(T = 0) (1.16)

where N(0) is the number of electrons at the Fermi energy EF ≡ 0 The
eq. 1.16 shows so that the superconducting state is energetically favorable
respect to the normal metal state for T < Tc and it's the key to explain
the presence of a critical �eld Hc. When a magnetic �eld ~H is applied, the
electrons spins tend to be aligned to ~H: this mechanism breaks the pairs and
the system goes to the normal state acquiring energy.
Then for the system is convenient screens the external �eld ~H with currents
in order to have ~B = 0 inside the superconductor, i.e perfect diamagnetism
[11]. This is possible below a critical magnetic �eld Hc de�ned as :

∆E = EN − ES =
H2
c

8π
(1.17)

We can de�ne a characteristic length

ξ0 =
1

π

h̄2kF
m∆0

(1.18)

called BCS coherence length: ξ0 represents the average distance in real space
between the two electrons of the Cooper pair [11]. At least, as pointed in
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1.2. JOSEPHSON EFFECT

appendix B, there is an uncertainty relation between the number of electrons
that compose the system and the phase θ that characterizes the energy gap
∆ [21]:

∆N∆θ ≤ 2π (1.19)

Figure 1.2: ∆(T ) dependence in BCS theory

1.2 Josephson e�ect

In 1962 Brian D. Josephson predicted that a zero voltage electrical current
could �ow between two superconducting electrodes, separated by a thin in-
sulator barrier [1]. This current is determined by the relation:

Is = Icriticalsin(φ) (1.20)

where φ ≡ θR − θL is the phase di�erence between the order parameters of
the right (R) and left (L) superconducting electrodes and the critical current
Icritical is the maximum supercurrent that the junction can sustain.
He also predicted that if a voltage di�erence V is maintained across the
junction the phase evolves with time according to the eq.:

d(φ)/dt = 2eV/h̄ (1.21)
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1.2. JOSEPHSON EFFECT

Figure 1.3: An example of a Josephson junction in BCS description. The red
(green) line representes the order parameter Ψ of the left (right) superconducting
electrode. As pointed above, Ψ∞ is the bulk value of the order parameter that
decreases to zero in the presence of the barrier

These e�ects, known as the dc and the ac Josephson e�ects respectively, have
been fully con�rmed by a great number of experiments. The �rst observation
was made by Anderson and Rowell in 1963 [22].
The Josephson prediction was based on a microscopic theoretical analysis
of the quantum mechanical tunneling of Cooper pairs through an insulator
barrier layer, but it's now clear that the Josephson's e�ects are much more
general and occur whenever two strongly superconducting electrodes are con-
nected by a weak link [2]. To obtain the equations 1.20 and 1.21 one can
consider a SIS junction ( superconductor-insulating barrier-superconductor).
In an isolated superconductor, the minimum energy state would be one with
N (|ψ〉 ≡ |N〉) �xed electrons chosen so that the electron's charge cancels the
positive ion cores's ones: this implies that the system is electrically neutral
and have no electrostatic self-energy.
If a second isolated superconductor is present but far away from the �rst, it
will also be in such a state with M electrons (|ψ〉 ≡ |M〉) , with M chosen
to preserve the electrical neutrality.
If the two electrodes are brought close enough together, the system could
lower its energy by exchanging Coopers pairs[2]: in this case one can write
the state of the system as :

|ψ〉 =
∑
p

cp|NL − p〉|NR + p〉 (1.22)
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1.2. JOSEPHSON EFFECT

The index p represents the number of pairs transferred from the left to the
right. The Hamiltonian of the system is:

H = HL +HR +HT (1.23)

whereHR andHL are the Hamiltonians of the right and left electrodes respec-
tively and HT describes the interaction between the two superconductors.
We can adopt the simple model introduced by Anderson in 1963 [21].
We consider H such that the matrix element of H in the base |NL− p〉|NR +
p〉 ≡ |NL − p,NR + p〉 are:

〈NL − p′, NR + p′|HR|NL − p,NR + p〉 = δp,p′ER

〈NL − p′, NR + p′|HL|NL − p,NR + p〉 = δp,p′EL

〈NL − p′, NR + p′|HT |NL − p,NR + p〉 =

{
−t for p− p′ = ±1

0 otherwise

(1.24)

where t > 0 is a real constant and represents the energy of binding.
This model is analogous to the Tight Binding model [11] for crystals.
The diagonalization of 1.23 shows that the ground state of the system is in
the form:

|ψ〉 =

∫ 2π

0

e−iNφ
dθ

2π
|θL −

φ

2
〉|θR −

φ

2
〉 (1.25)

with energy:
E = 2(E0 − tcos(φ)) (1.26)

Here, N is the total number of the electrons of the system, θR and θL are the
phase of the right and left superconducting electrode and φ is their di�erence.
Eq. C.9 states that the system is the superposition of all possible states of
phase with φ ≡ θR− θL �xed. Eq. C.2 shows that the system's energy is less
than the energy of the superconductors isolated for −π

2
< φ < π

2
.

The total current I passing through the junction can be calculated as:

I =
d < N̂R >

dt
− d < N̂L >

dt
(1.27)

where, using the Ehrenfest theorem :

d < N̂i >

dt
=< [N̂i, Ĥ] >=

1

h̄
∂θiE(θi − θL) (1.28)

with i ≡ R,L. The last equality in the eq. 1.28 comes from the fact that in
phase-space N̂ is a di�erential operator.
Because 1

h̄
(∂θR − ∂θL) = 1

h̄
∂φ, considering 1.27 and 1.28, we get :

I =
4t

h̄
≡ Icriticalsin(φ) (1.29)
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1.2. JOSEPHSON EFFECT

Vinay Ambegaokar and Alexis Barato� in 1964 [24] showed, starting from the
microscopic model of the junction (see appendix C) in BCS approximation,
that the Icritical(T ) has the form:

Icritical(T ) =
π

2

∆(T )

Rn

tanh

(
∆(T )

2kbT

)
(1.30)

known as AB relation. Here Rn is the normal resistance of the junction,
as we will discuss in the next section. The eq. 1.30 shows that the critical
current Icritical depends on the energy gap ∆(T ) and goes to 0 as T → Tc.
Likewise eq. 1.21 can be calculate taking in number space (where θi ≡ ∂Ni )
the di�erence between < dθL

dt
> − < dθR

dt
>=< dφ

dt
>. We have

ih̄ <
dθi
dt

>=< [θi, H] >= − < i∂NiE >= −iµi =⇒ (1.31)

<
dθL
dt

> − <
dθR
dt

>=<
dφ

dt
>= −1

h̄
(µL − µR) =

2eV (t)

h̄
(1.32)

In the last equation, µR,L is the chemical potential of the right or the left
superconducting electrodes and V (t) is the potential's di�erence between the
two sides of the Josephson junction.
Because the Josephson e�ect is a general property of weak links, one can
analyze this e�ect using the order parameter ψ(~r) [2]. For example, Richard
Feynman [25] proposed a phenomenological description of the Josephson ef-
fect, assuming that the superconducting condensates, with order parameters
ψ1 =

√
n1e

iφ1 and ψ2 =
√
n2e

iφ2 overlap in the barrier and there is a coupling
between the two systems.

1.2.1 E�ect of magnetic �eld

Let's consider a junction with a magnetic �eld in the ŷ− direction and the
potential vector ~A ≡ | ~A|x̂, as showed in �g. 1.4.
In each superconductors the second Ginzburg-Landau equation 1.9 is valid
that could be written in the form:

∇φR,L =
2e

h̄c

(
mc

2e2|ψ|2
~Js + ~A

)
(1.33)

Integrating the eq. 1.33 along the contours CL and CR one gets:

φRa(x)− φRb(x+ dx) =
2e

h̄c

∫
CR

( ~A+
mc

2e2|ψ|2
~Js

)
~dl (1.34)

φLb(x)− φLa(x+ dx) =
2e

h̄c

∫
CL

( ~A+
mc

2e2|ψ|2
~Js

)
~dl (1.35)
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1.2. JOSEPHSON EFFECT

Figure 1.4: Contours of integration Cr and Cl used to derive the magnetic �eld
dependence of the phase di�erence φ

Assuming that the thickness of the superconducting �lms are much larger
than the London depths λL [4], one can extend the contours CL and CR out-

side the penetration region where the shielding current density ~Js vanishes:
far from the barrier ψ(~r) has the asymptotic value ψ∞ (as discussed in the
previous section) and the pair density |ψ|2 is not reduced.
The portions of CL and CR in the penetration region can be chosen perpen-
dicular to ~Js. In this way the second term in the integrals in eq. 1.34 and
1.35 doesn't give a contribution.
If the barrier thickness is small, one can write:

φ(x+ dx)− φ(x) =
2e

h̄c

∮
~A~dl = Hy(λR + λL + t)dx (1.36)

The integration of this equation gives:

φ =
2e

h̄c
dHyx+ φ0 (1.37)

where d = (λR +λL + t) is the magnetic depth. In this way the supercurrent
density can be expressed:

~Js(~r) = ~J1sen(
2e

h̄c
dHyx+ φ0) (1.38)
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This equation shows that the tunneling supercurrent is spatially modulated
by the magnetic �eld. In the case of rectangular junctions, calculating the
total current, one has:

I1(
Φ

Φ0

) = I1

∣∣∣∣sen(π Φ
Φ0

)

(π Φ
Φ0

)

∣∣∣∣ (1.39)

where Φ ≡ HyLd is the magnetic �ux through the junction and the Φ0 ≡ hc
2e

is the quantum �ux. The maximum of the supercurrent exhibits a Fraunhofer
pattern in function of the magnetic �ux Φ [4]. The �rst observation of this
e�ect was made by Rowell in 1963 [26].

Figure 1.5: Fraunhofer pattern in conventional Nb/AlOx/Nb junction

1.3 Other type of weak links

In general other materials rather than insulator can be used as barriers in
Josephson junctions: for example, we can employing semiconductors layers
or metal.
In the last years, a new class of Josephson junction composed of ferromagnetic
barriers between superconducting electrodes has been investigated [27]-[29].
The simultaneous presence of the macroscopic phase coherence of supercon-
ductors and the exchange interaction of ferromagnetic are of great interest
in the study of fundamental questions on possible pairing states and for po-
tential applications in a wide range of areas [7].
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The existing literature focuses mostly on metallic super-conductor-ferromagnet-
superconductor (SFS junctions) while the physics of ferromagnetic junctions
with insulating barriers (SIFS junctions), like the one in this work, is still
relatively unexplored.
In this section we will be investigated the properties of the SFS and SIfS
junctions, analyzing the feature that a ferromagnetic barrier induces and
comparing the di�erence between a metallic and an insulator weak link. This
helps us to provide a full characterization of the NbN-GdN-NbN junction in
the following sections.

1.3.1 SNS junctions

In an SNS device, the mechanism that leads the �ow of a supercurrent
through the barrier is quite di�erent respect the case of tunnel junctions.
Two main microscopic e�ects have to be considered: the proximity e�ect
and Andreev re�ection , which are in many ways related [9].
The proximity e�ect occurs when a layer of normal metal is interposed be-
tween two superconductors: a �nite supercurrent can �ow through such a
junction. The e�ect lies in the fact that if a normal metal and a supercon-
ducting metal are brought into proper electric contact, some Cooper pairs
will penetrate into the normal metal from the superconductor. Thus in the
normal metals there arises a nonzero order parameter ∆, which exponentially
decreases within the metal over a distance of the order of ξN . Hence, if the
thickness of the normal interlayer is not very large, the order parameter will
be di�erent from zero throughout the normal metal, and a �nite supercurrent
may �ow through the interlayer [5].
A microscopic argument to understand proximity e�ect has been given in
terms of Andreev re�ection [30].
Let's consider �rst a structure where a normal metal is brought in contact
with a superconductor.
If an electron excitation, with energy lower than the gap (E < ∆) hits the su-
perconductor, it cannot enter because there are no available states for E < ∆.
However, if the contact is clean contact, the electron can't be re�ected back
[9].
What happens is an Andreev re�ection: the electron re�ects as a hole (an ex-
citation below the Fermi sea with positive charge), and an extra Cooper pair
(with a double negative charge) is formed inside the superconductor. This
means that Andreev re�ection carries charge current into or out of (in the
inverse process, the hole is converted into an electron) the superconductor
[9].
This process can be investigated using the Bogoliubov-de Gennes equations.
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As pointed previously, in the metal, in which ∆(~r) = 0, BdG eqs have the
form B.16 with solution [9]:

ψmetal = A

[(
1
0

)
eik

+
Nx + ree

(
1
0

)
e−ik

+
Nx + reh

(
0
1

)
eik
−
Nx

]
(1.40)

Here, A is a coe�cient of normalization, while |ree|2, |rhe|2 represent the
probability that the incident electron is re�ected in an electron or a hole
respectively. The expression 1.40 is obtained considering the Free electrons
approximation for the metal, i.e H0 = p2/2m.
In the superconductor side, in BCS approximation, the solution is in the
form:

ψmetal = t+

(
u0e

iφS

v0

)
eik

+
S x + t−

(
v0e

iφS

u0

)
e−ik

−
S x (1.41)

as discussed in Appendix C.
In the eq. 1.41 |t+|2 and |t−|2 are coe�cients could be obtained requiring
continuity of the functions and their derivatives at the surface points, for
simplicity x = 0.
In the hypothesis of clean surface we have:

ree = 0, t+/− = 0, |reh|2= 1 for|E|< ∆

ree = t− = 0, t+/− = 0, |reh|2=
E −

√
E2 −∆2

E +
√
E2 −∆2

= 1− |t+|2 for|E|> ∆

(1.42)

In the case of a SNS junction, the hole re�ected from the left NS interface
may �nd its way to the right interface, and re�ect again into an electron
state. Returning back to the left interface, this electron may again re�ect,
and so on. If the total phase acquired within a full cycle is a multiple of 2π,
this results into a bound state.
One can study, as in the case of a single NS interface, the solution of eq.
B.15 supposing the continuity of the functions and their derivatives at the
interfaces points: this condition leads to bound states, known as Andreev
bound states. The result of each cycle of Andreev re�ections is a transfer of
a Cooper pair between the superconductors:Andreev bound states can hence
carry supercurrent. This is actually the mechanism of the Josephson e�ect
through the normal metal.
Let us concentrate on the energy region E < ∆. In the case short junction,
i.e L << ξ0 [5], the Andreev bound states :

E± = ±∆ cos(φ/2) (1.43)
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Figure 1.6: The Andreev bound state in SNS structure [9]. The black line
represents the wavefunction of an electron responsible of Andreev re�ections

In the same way, as shown in Section 1.2.1 , we can obtain the current from
the total energy of the system :

IS =
2e

h̄

∑
±

∂E±
∂φ

tanh

(
E±

2kbT

)
(1.44)

In the case of presence some scattering at the interface, the bound state
energies become

E± = ±∆

(
1− τpsin2(φ/2)

)
(1.45)

and so, considering 1.44 we note that the dc Josephson relation IS = Icriticalsin(φ)
is satis�ed only in the case of small transmission or at high temperatures.
In the other cases, the metallic barrier introduces the possibility of a new
current-phase relation di�erent respect to the conventional Josephson's one.
In addition to the Andreev bound states, the SNS junction contains a contin-
uum of states for energies ∆ < |E| that don't contribute to the supercurrent
[31] in the limit of short junctions.
In the long weak link limit, deviations from the sinusoidal trend in the su-
percurrent become sensitively stronger than in short weak links [32].
The normal branch is rather di�erent respect the one observed in a tun-
nel junction: Andreev re�ections produce electron-hole conversion at the
interfaces in the high transparencies limit, contributing an excess current I
compared with the normal state [33].
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1.3.2 SFS junctions

Ferromagnetic materials are characterized by a spontaneous magnetization
~M due to the magnetic momentum orientation, which vanishes above a criti-
cal temperature known as Curie temperature TCurie, at which the ferromagnet
becomes a paramagnet. The spontaneous magnetization ~M(T ) depends on
the temperature.
The �rst phenomenological mechanism leading to ferromagnetism was pro-
posed by Weiss in 1907 [34]. It is based on the assumption that the e�ective
magnetic �eld acting on a magnetic moment is given by:

~Heff = ~H + λ ~M (1.46)

where ~H is the external magnetic �eld, λ is an appropriate constant, ~M
is the magnetization, and the molecular �eld λ ~M provides the cooperative
e�ect. Originally the Weiss constant λ was considered as a phenomenological
constant that modulate the strength of interactions between the magnetic
momentum of the system; the interpretation of λ in terms of microscopic
quantum model appears later with the works of Heisenberg [11].
In the hypothesis of localized magnetic moments :

~µ = −gµB ~J (1.47)

the interaction energy of the magnetic moment with an applied magnetic
�eld can be described by the Zeeman operator:

H = −~µ · ~H (1.48)

Here, µB is the Bohr magneton and g is the gyromagnetic factor. Then, from
the de�nition of magnetization ~M(T ):

~M(T ) = − 1

V
∇ ~HF (1.49)

where F is the free energy of the system and V is the ferromagnetic volume,
one can show that in the Weiss model :

~M(T ) = −N
V
µB tanh

(
µB( ~H + λ ~M)

kbT

)
(1.50)

The Weiss model explains importants property of a ferromagnetic such as
the spontaneous magnetization and the presence of a critical temperature
TCurie [11].
The magnetization as a function of the magnetic �eld is hysteretic, as re-
ported in �g. 1.7. In one dimensional approximation, initially the mag-
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Figure 1.7: Magnetization hysteresis loop using Matlab. The plot is obtained
making the path H = 0→ Hmax → −Hmax → Hmax

netization is zero in absence of magnetic �elds. Turning the �eld on, the
magnetization follows the �rst magnetization curve and saturates at the �eld
Hs. Retracing back the magnetic �eld, the magnetization follows a di�erent
curve and becomes zero when the magnetic �eld reaches a value known as
coercive �eld −Hc.
Then, it saturates at negative values in −Hs; returning to positive values of
H, the magnetization is zero at Hc and reaches the asymptotic values at Hs.
The �nal result is a hysteretic loop that depends on the direction of the spon-
taneous magnetization with respect to the crystallographic axes and gives a
footprint of the crystallographic nature of the ferromagnet [35].

Fraunhofer pattern with a ferromagnetic barrier

One of the most important di�erence between a magnetic and a non-magnetic
junction is the hysteretic nature of the SFS Fraunhofer pattern. Further-
more, the characteristic Fraunhofer pattern is horizontally shifted. These
e�ects are due to the presence of the spontaneous magnetization M with a
hysteretic behaviour. In �g. 1.8 we show for a �xed value of the magne-
tization M (in one-dimensional approximation) the corresponding value of

25



1.3. OTHER TYPE OF WEAK LINKS

Ic(H), obtained starting from the equation:

Icritical(H) = Imaxcritical

∣∣∣∣sin
(
π φH+φM

φ0

)
π φH+φM

φ0

∣∣∣∣ (1.51)

Here φ0 is the quantum �ux, φH and φM are the �uxes due to the mag-
netic �eld and the magnetization of the barrier respectively and Imaxcritical is
the critical current when the total �ux is 0. Due to the hysteretic nature

Figure 1.8: Frouhnofer pattern in a SFS junctions. The curves show that the
hysteretic behaviour of the magnetization resulting in a hysteretic Frouhnofer pat-
tern.

of the pattern, the junctions with ferromagnetic barrier are very interesting
for engineering applications such as for the realization of cryogenic RAM [36].

E�ects of ferromagnetic barrier on SNS transport properties

In normal metal barriers, due to the spin degeneracy of the energy levels, no
spin e�ects occur with the Andreev re�ection. However, in a junction with
a metallic ferromagnet barrier there is an interaction that tries to align the
electrons spin to ~M : the electronic bands for up spins and down spins are
shifted with respect to each other by an amount of 2Eex as shown in �g 1.9.
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Figure 1.9: Energy band for spin up and down

In the BCS theory, the spins in a Cooper pair are antiparallel and so there
is a competition between the formation of pairs and tendencies to align the
spins to ~M . This e�ect is known as paramagnetic e�ect and it's similar to
what happens to Copper pair when a strong external magnetic �eld near
Hc is applied [37]; now the role of the Zeeman interaction is played by the
exchange interaction.
To model the spin splitting in the junction, one can consider the Stoner
model [37], in which the motion of conduction electrons inside the ferromagnet
can be described by an e�ective single-particle Hamiltonian with an exchange
interaction while the in�uence of the magnetization of the ferromagnet on
the orbital motion of conduction electrons is neglected [38]. Due to the para-
magnetic e�ect and to the split of the energy band, a Cooper pair acquires
a nonzero center of mass momentum ~Q. To understand this, let's consider a
Cooper pair, that in the BCS theory is in the singlet state:

|ψ〉 = N

(
ei(

~kF↑−~kF↓)~r|↑〉|↓〉 − |↓〉|↑〉e−i(~kF↑−~kF↓)~r
)

(1.52)

where N is a normalization factor.
As pointed above, the paramagnetic e�ect shifts the momenta at the Fermi
energy EF from ~kF to: ~kF↑ = ~kF + ~Q/2 for spin up and ~kF↓ = ~kF − ~Q/2 for
spin down.
Including this change in the eq.1.52 the resulting state is a mixture of singlet
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(
|↑〉|↓〉 − |↓〉|↑〉

)
and triplet spin states

(
|↑〉|↓〉 + |↓〉|↑〉

)
with zero spin

projection on the direction of magnetization [37]:

ei(
~kF↑−~kF↓)~r|↑〉|↓〉 − |↓〉|↑〉e−i(~kF↑−~kF↓)~r ⇐⇒

cos( ~Q~r)

(
|↑〉|↓〉 − |↓〉|↑〉

)
+i sin( ~Q~r)

(
|↑〉|↓〉+ |↓〉|↑〉

)
(1.53)

This state is called FFLO and takes the name from its discoverers Peter
Fulde, Richard Ferrell, Anatoly Larkin and Yurii Ovchinnikov [39] [40].
Eq 1.53 shows that the Cooper pair's wavefunction in ferromagnetic barrier
has an oscillatory behaviour over a length scale ∝

√
D/Eex [8], where D is

the di�usion constant. This has important implication: combined with the
Josephson e�ect it leads to the possibility of a so called π-junction, in which
the two sides of the device has a phase di�erence of π. This e�ect depends
on the length of the junction as shown in �g. 1.10 [37] and on temperature

Figure 1.10: Comparison between SNS (a) and SFS (b) junction [37]. In �gure
(b) is also shown that di�erent size of the ferromagnetic barrier can lead to a
0-junction or to π-junction

T . Fig. 1.11 (b) shows that the critical current density has a non-monotone
behaviour in temperature with a cusp at the transition. This provides a
useful experimental method to study the 0-π transition [37].
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Experimental con�rms of the FFLO state have been found �rst by V. V.
Ryazanov et al.(2001) [41] and T. Kontos et al. (2002) [42].

Figure 1.11: Evidence of 0 − π transition varying T and the barrier length df
[37]

1.3.3 SIfS junctions

The NbN-GdN-NbN junction that we have studied in this work represents
a new member of a class of SIfS junctions, where If insulator ferromagnetic
barrier. Using a tunnel barrier e have most of the properties of a ferromag-
netic barrier, with the advantage of the intrinsically non-dissipative nature
of the tunneling process, useful to build low damping devices [43]. The pres-
ence of the ferromagnetic has two main e�ects: the junction acts like as
spin-�lter and spin-mixing as in SFS junction.

Spin-�ltering In tunnel junctions, because there is a gap in the conduction
band and valence band, the electron transport can only take place through
quantum mechanical tunneling.
In WKB (Wentzel-Kramers-Brillouin) approximation 3 the conductance, in
tunnel process, can be written as :

σ ∝ e−
2t
h̄

√
2mE (1.54)

3The WKB approximation is a method for �nding approximate solutions to linear
di�erential equations with spatially varying coe�cients. It assumed that the solution is in
the form of an asymptotic series expansion y(x) ∼ exp

[
1
δ

∑∞
n=0 δ

nSn(x)
]
with δ → 0. The

coe�cients Sn(x) are obtained with the substitution of y(x) in the di�erential equation.
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where t is the barrier thickness,m is the e�ective mass of the electron and E is
the e�ective barrier height. When the material goes through its ferromagnetic
transition, however, the presence of exchange interactions leads to a spin
asymmetry for the two spin channels: electrons of di�erent spins, in fact,
experience di�erent barrier heights [8]:

E↑ = E0 −
h

2

E↓ = E0 −
h

2

(1.55)

where h is the ferromagnet exchange �eld. In this way, we have di�erent
contribution to conductance σ for spins up and down [44]. Following Senapati
et al. [8], one can de�ne the spin-�ltering e�ciency P as:

P =

∣∣∣∣σ↑ − σ↓σ↑ + σ↓

∣∣∣∣ (1.56)

In the WKB framework, one can show that this expression could be written
[8]:

P ∼ tanh

(
cosh−1

(
R∗

R

))
(1.57)

where R = is the resistance that the junction would have if it acts like a
non-spin-�lter junction and R∗ is the e�ective one.
A �rst model of a SIfS junction that considers the presence of spin-�ltering
and spin-mixing (that induces a non-zero Josephson triplet current) was de-
veloped by Bergeret et al. [45]. They modelled the tunnel junction as shown
in �g. 1.12. The orange parts are the superconductor electrodes, the green
parts are thin ferromagnetic layers with a �nite exchange �eld acting on the
spin of the conducting electrons and the blue part is a spin �lter.
They assumed that the thickness of the barrier is smaller than the coherence
length ξ0 of the superconductors.
The Hamiltonian of the system can be written in the form:

H = HR +HL +HT (1.58)

where HL,R are BCS Hamiltonian of the left and right electrodes. HT is
composed of two terms: one that describes the tunnel in a conventional
insulating barrier and another one that takes in account the e�ect of ~M on
the spins tunneling.
They calculated the current through the junction like in the eq. D.4
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1.3. OTHER TYPE OF WEAK LINKS

Figure 1.12: In the Bergeret et al. model [45] the device is represented as com-
posed by �ve parts. The superconducting electrodes are painted in orange while the
barrier has three elements. The blue region represents the spin-�lter barrier while
the green regions are layers with a �nite exchange �eld pointing in an arbitrary
direction.

In the case in which ∆ = ∆R = ∆L , Bergeret et al. showed that the
characteristic voltage of the junction is in the form:

IcriticalRN =
2πT

e

∑
ωN>0

r

(
f 2
s + f 2

t cos(α)sin(β)

)
+f 2

t sin(α)sin(β) (1.59)

where:

• r is a parameter linked to the spin-�ltering e�ciency P

r =
√

1− P 2 (1.60)

So that for r = 0 we have the limit case of a fully polarized barrier and
for r = 1 a non-magnetic barrier

• α and β are the angles between the exchange �eld of the L and R
electrodes with respect to the z axis

• fs and ft are respectively are the amplitude of the singlet and triplet
component. The are related to the anomalous Green function in fre-
quency domain:

f± =
∆√

∆2 + (ωN ± ih)2
(1.61)

by symmetric and asymmetric combination.

If h = 0 the expression 1.59 reproduce the well-known Ambegaokar-Barato�
(AB) 1.30 formula for the critical current multiplied by a factor r < 1.
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1.4. RSCJ MODEL

1.4 RSCJ Model

As we have previously mentioned, the Josephson phenomena occur in vari-
ous kinds of structure and the di�erent properties of these systems determine
di�erent I-V characteristics [4]. The Josephson systems, then, are important
example in which the microscopic transport features can be investigated by
measurements of macroscopic quantities, such as the current and voltage [4].
Many properties of the I-V characteristics in DC current can be studied con-
sidering the Josephson junction as equivalent circuit balanced by the equa-
tion:

Idc = C
dV (t)

dt
+ σV (t) + Icriticalsinφ((t)) (1.62)

where the term C dV
dt

is the displacement current through the barrier with a
capacity C and σ = 1/R is the conductance of the device. Here R may con-
tain frequency-dependent contributions from the bias circuitry in addition
to the intrinsic values of the junction [46] as we will discuss in the following
Chapters. This model takes the name of RCSJ model (Resistively and Ca-
pacitively Shunted Junction) and can be obtained formally starting from the
microscopic model of a Josephson junction as showed in appendix D.

Figure 1.13: Equivalent circuit of a Josephson junction device

The eq. 1.62 is valid when the phase di�erence φ across the weak link has
no spatial variations.
Using the second Josephson equation 1.21 , the expression 1.62 can be trans-
formed in an equation for the phase φ:

Idc =
h̄

2e
C
d2φ

dt2
+
h̄

2e

1

R

dφ

dt
+ Icriticalsinφ((t)) (1.63)
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1.4. RSCJ MODEL

Eq. 1.63 can be considered as the motion's equation of a particle in a tilted
washboard potential (see �g. 1.14) :

U(φ) = − h̄

2e
Icriticalcos(φ)− h̄

2e
Idcφ (1.64)

and subjected to a viscous force. In the case of Idc = 0, for φ near the

Figure 1.14: Washboard potential for the phase particle for di�erent value of i.
U(φ) is normalized on Ej = h̄Icritical/2e

minimum, the eq.1.63 becomes:

d2φ

dt2
+

(
2e

h̄

Icritical
C

)
φ = 0 (1.65)

and the phase particle oscillates around the minimum of the potential well
with the plasma frequency

ωp =

√
2e

h̄

Icritical
C

(1.66)

While the bias current Idc is smaller than the critical current Icritical, the
potential is tilted respect to the case in which Idc = 0 but not enough to allow
the particle to roll down the potential: the motion consists in oscillations
around one of the minimum of potential. In this case:

d < φ >

dt
= 0 =⇒ V = 0 (1.67)
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1.4. RSCJ MODEL

If Idc > Icritical the phase particle escapes from the washboard potential
minimum and a �nite V appears [2].
To study the property of eq. 1.63, it's convenient to introduce the variable
[48]:

τ = ωjt

1

Q
=

1

ωj

1

RC

ωj =

(
2e

h̄

Icritical
C

)
1
2

i =
Idc

Icritical

η =
1

Q

dV

dτ
=

V

RI

(1.68)

where:

• i is the normalized current

• ωj is the plasma frequency

• Q is the quality or damping factor of the junction that characterizes
the strength of friction in the phase particle's motion

• η is the normalized voltage

In this way eq 1.63 becomes:

i =
d2φ

dτ 2
+

1

Q

dφ

dτ
+ sin(φ) (1.69)

A very useful technique for a qualitative understanding of the behaviour of a
Josephson system and the I-V characteristic is provided by the study of the
eq. 1.69 in an appropriate phase space [48].
First, let's de�ne the variable:

dφ

dτ
≡ Z (1.70)

so that the eq. 1.69 can be transformed in an equivalent system of di�erential
equations of the �rst order:

dφ

dτ
= Z

dZ

dτ
= i− 1

Q

dφ

dτ
− sin(φ)

(1.71)
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The state of the system is represented at any time by a speci�c point in
the Z, φ plane. As τ varies the point describes a trajectory in that plane
depending on the initial conditions: for a �xed value of parameters i and Q,
the system is represented by a set of possible paths.
A closed curve in the Z, φ plane corresponds to a periodic solution, while an
equilibrium point has dφ/dt = 0 and dZ/dt = 0.
Now φ appears in the sine function so that φ̃ = φ+ 2nπ, with n ∈ Z. So the
phase space is a cylindrical variety [4]. There are two kinds of closed paths

Figure 1.15: Representation of curves of �rst (γ1) and second (γ2) kind in a
(a)Cylindrical phase space and (b) in is projection on the plane z = const

(corresponding to a two di�erent solutions of the eq. 1.69 in that space):

• closed paths of �rst kind that encircle an equilibrium point. These cor-
respond to oscillatory motion of the phase particle around the potential
minimum. It can be shown that these types of solution have the mean
value of the voltage equal to zero.

• closed paths of the second kind which go around the cylinder without
encircling an equilibrium point. These describe the state of running of
the phase particle down the potential.

As pointed by Stewart [49], in terms of parameters I and Q the solutions of
the motion in the phase space can be summarized as follows:

• for i > 1(Idc > Icritical) there is only a periodic solution of the second
type with < Z(τ) >6= 0. Therefore the junction is in the �nite voltage
state.
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1.4. RSCJ MODEL

• for i < 1 the behaviour depends on the particular value of Q. In a
plane i−Q, a curve i(Q) can be identi�ed that divides the plane in two
regions: in the �rst region there is a solution of the �rst type, in the
second region coexists two solutions, one of the �rst type and one of the
second. Therefore the states of zero and �nite voltage are both possibles
and the junction is in either one depending on the initial conditions.
For example, let's consider �g. 1.16. The curve (a) is obtained placing
Q = 0.9 while in the �gure (b) Q = 5. In the �rst case only for i > 1
we have a �nite voltage; in the case (b) we have also a �nite voltage
branch for i < 1.

Figure 1.16: Example of (a) overdamped and (b) underdamped JJ. In �gure (a)
the damping factor Q = 0.9 while in the �gure (b) Q = 5.

The dependence of the curve i(Q) was evaluated numerically by several au-
thors [49] [50] [51] . For Q greater than about 3 an excellent estimate of i is
given by [49]:

i ' 4

πQ
(1.72)

We can distiguish two main class of junctions depending on the value of the
damping factor Q.

Overdamped Junctions

This correspond to the case in which the product ωp C is small compared to
the conductance σ ≡ 1/R, i.e Q ≤ 1. This implies that the viscous drags
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dominates inertia [2]. The eq. 1.69 reduces to:

i =
1

Q

dφ

dτ
+ sin(φ) (1.73)

and has the analytical solution

φ(τ) = 2tan−1

[(
i2 − 1

i2

)
−1/2 tan

(
πτ

T

)
−i
]

(1.74)

where T is the period.
From the 1.21, the DC voltage is proportional to the time average of dφ dt,
and the relation between the averaged voltage and the current could be shown
to be:

V̄ = RIcritical
√
i2 − 1 (1.75)

As shown in �g. 1.16 (a) as long as i < 1 (Icritical < Idc) the averaged voltage
is zero. A further increase of the driving current Idc brings the junction to
a �nite voltage states without any overlap between the two possible states.
Typical overdampend junctions are the ones with a metallic barrier, such as
in SNS and SFS devices. The presence of a metallic barrier implies that
the capacity C tends to 0: consequently Q << 1 and in these devices the IV
characteristic is non hysteretic.

Underdamped Junctions

When C is large enough so that Q > 1, the I-V curves becomes hysteretic.
The equation 1.69 is not analytically solvable. The �g. 1.16 (b) shows the I-
V curve obtained numerically. Starting from i = 0 and V = 0 and increasing
the current, no voltage drop develops until i = 1 is reached. At this point a
switch to the �nite voltage state occurs.
Reducing the current, the junction stays in the �nite voltage state until i
is reduced to the value i(Q); then the system reaches the superconducting
state. Typical underdamped junctions are the ones with an insulator barrier
such as the SIS and SIfS devices.

1.5 Quantum phenomena in Josephson junc-

tion

In the preceding discussions we have treated the Josephson Junction as a
purely classical system, in which the phase di�erence φ across the junction
and the charge Q = CV were treated as classical variables which could be
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1.5. QUANTUM PHENOMENA IN JOSEPHSON JUNCTION

Figure 1.17: Underdamped junction with Q=5. This �gure has been obtained
solving 1.69 using a C algorithm. In the subplot (a), (b) and (c) we have the
behaviour of i, dφ/dt and φ obtained in the function of t. In �g (d) we have
represented i vs dφ/dt

speci�ed to arbitrary precision [2].
This is valid only if Ej � EC , with Ej = h̄/2e, when φ is well de�ned and
Q has large �uctuations and the Josephson nature of the junction dominates
[52]. When Ej � EC , N is well de�ned, and φ has large quantum �uctua-
tions; therefore, the charging nature of the capacitor is dominating. In this
situation the junction is known as a Cooper-pair box [53].
Macroscopic quantum phenomenon can be observed in Josephson junctions
if two conditions are satis�ed. First the Coulomb charging energy for one
electron e2/2C should be larger than temperature to avoid thermal smearing
of the charge states of the superconducting island.
Second the tunnel resistance should be large enough to avoid averaging out by
quantum �uctuations in the particle number. To be observable, the charging
energy e2/2C must exceed the quantum uncertainty in energy h̄/∆t ∼ h̄/RC
associated with the �nite lifetime of the charge on the capacitor. Equating
e2/2C to h̄/RC we �nd that the capacitance drops out and the condition
becomes R > R0 where R0 is the resistance quantum R0 = h/2e2 ' 12kΩ
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1.5. QUANTUM PHENOMENA IN JOSEPHSON JUNCTION

[2].
When all these conditions are satis�ed a fully quantum-mechanical descrip-
tion of the junction dynamics is necessary: we have to determine the form of
the Hamiltonian.
In the classical regime, when Ej � EC , we have schematized the dynamics of
the system as the motion of a phase particle in a washboard potential 1.64.
The Hamiltonian of this system could be written in the form:

H =
Q2

2C
− Ejcos(φ)− h̄

2e
Ibφ (1.76)

where Ib is the bias current. The quantum mechanics Hamiltonian can be
obtained replacing the classical variables Q and φ with the operator Q̂ and
φ̂, that have in the phase space the representation [9]:

Q̂ ≡ 2e
∂

∂φ
and φ̂ ≡ φ (1.77)
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Chapter 2

Thermal e�ects on a Josephson

junction

In the �rst Chapter we have reviewed the fundamentals properties of a
Josephson junction, starting from the well known SIS devices to the non-
conventional SIfS ones. These considerations hold as long as the e�ects due
to thermal �uctuations are negligible: when thermally activated processes
are taken into account, the dynamics of the junctions can be strongly modi-
�ed from the simple picture described in the �rst Chapter [2].
Experimentally, we can study the in�uence of thermal e�ects on the junction
through the measurement of both I-V curves and switching current distribu-
tions (SCD) as a function of T . SCD help us to provide a full characterization
of the electrodynamic parameters of the junction, such as the damping fac-
tor Q, and the incidence of the various processes responsible for the phase
dynamics of the system [54].
In this Chapter we describe the e�ects of thermal �uctuations and their in-
�uence, strongly dependent on the damping factor Q. We focus our analysis
on systems in the moderately damping regime, i.e 1 < Q < 10, because our
NbN-GdN-NdN junction, as we will demonstrate in the following Chapters,
falls in this category of junctions.
These considerations will be very useful to provide a characterization of the
non-conventional NbN-GdN-NbN system in the following Chapters.
The study of thermal e�ects on Josephson systems is of great importance
for a comprehension of the interaction between the environment and the
junction, aspects that we have to consider to develop technological devices
[53].
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2.1 In�uence of thermal noise on the I-V

characteristics

The e�ects of thermal �uctuations can be introduced by adding a Johnson
noise current term to the bias current in the eq. 1.63. This represents the
noise due to resistive �ow of quasiparticle current described by the term V/R
in the RCSJ model.
This term introduces a small stochastic perturbation in the motion of the
phase particle and the problem is thus entirely equivalent to the Brownian
motion in the washboard potential 1.64 [54].
The Johnson current noise can be represented by a Gaussian signal with
mean and autocorrelation given by [55]:

< I(t) >= 0 and < I(t+ τ)I(t) >=
2kbT

R
δ(τ) (2.1)

For stationary processes, it isn't important at which points in time we begin
our observation; in other words, there is translational symmetry in time [56].
The �rst equation re�ects the fact that phase particle motion is Brownian.
The second equation shows that I(t) is independent of I(t∗) for t 6= t∗. The
central limit theory implies that the probability distribution for I(t) is a
Gaussian with a width determined by A ≡ 2kbT/R [56]
Eq. 2 in 2.1 can be determined considering the Wiener-Khintchine theorem:

< I(t+ τ)I(t) >=

∫ ∞
0

dωP (ω)cos(ωτ) (2.2)

This theorem states that the power spectrum and the correlation function are
reciprocal Fourier transforms of each other. [4] In the case of quasiparticle
current, the power spectrum is given by [57] :

P (ω) =
|e|
π
I

(
h̄ω

|e|

)
coth

(
h̄ω

2KbT

)
(2.3)

that reduces to the expression:

P (ω) =
2kbT

πR
(2.4)

in the hypothesis of T >> h̄ω/kb and frequency independent conductance.
It's important to note that eq. 2.4 is independent of h̄: this testi�es the
fact that the �uctuations are now classical and P is just the Johnson noise
associated with the resistor R.
Inserting eq. 2.4 in 2.2 one obtains the expression 2 in eq. 2.1
The Johnson current can be well approximated by a sequence of independent
pulses of random sign and magnitude as shown in �g. 2.1.
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Figure 2.1: Simulation of Johnson noise. The �gure (a) shows the behaviour of
I(t) starting from eqs. 2.2. In �gure (b) the extracted values I obtained with a
Gaussian random generator have been collected in histograms

2.1.1 I-V curves

Including the Johnson noise term we can rewrite the eq. 1.69 [58]:

i =
d2φ

dτ 2
+

1

Q

dφ

dτ
+ sin(φ) + in (2.5)

where in is the normalized Johnson current with autocorrelation:

< i(t+ τ)i(t) >= 2πkBT/QIcoΦ0δ(τ) (2.6)

To study the e�ects of thermal noise we are going to focus on moderately-
damped regime (i.e 1 < Q < 10). The underdamped and overdamped case
could be considered as limits of the moderately damping case [55], as we will
show in the following considerations. In �gure 2.2 we have shown four I-V
curves, computed at di�erent normalized temperatures Γ ≡ 2kbT/Φ0IcriticalQ
with Q=3. Each of these curves illustrates a qualitatively di�erent situation.
In the absence of noise, Γ = 0, the zero-voltage state or 0 state is stable at
all bias levels less than the critical current (is0 = 1) and the voltage state or
1 state is stable at all bias levels greater than a minimum value designated
ir0.
For Γ = 0.2, the bias is at which the junction switches from the 0 state to the

42



2.1. INFLUENCE OF THERMAL NOISE ON THE I-V
CHARACTERISTICS

Figure 2.2: Noise a�ected curve in the RSJ model with Q=3 simulated using a
C algorithm for di�erent value of Γ

1 state is reduced below the current is0 and the bias ir, at which the junction
returns to the 0 state is raised above ir0. In the same manner, we will refer
to Ic0 to indicate the critical current in the absence of �uctuations and Ic to
the switching current in the presence of thermal noise. This de�nition will
be useful in the following Chapters
At a higher temperature, Γ = 0.5, the hysteresis shown in �g. 2.2(a) and
2.2(b) disappears and the I-V curve simply shows a plateau at a bias level ie
Finally, for Γ = 1, the thermal noise disrupts the I-V curve: the e�ects are
so strong that typical I-V characteristic is completely modi�ed.
To understand the di�erence with respect to the case with Γ = 0 let's consider
the basins of attraction in state space of the eq. 1.69. By de�nition, the basin
of attraction of a given attractor is the region of state space that includes
all sets of initial conditions leading to a motion on the attractor [55]. If the
system is initially within this central basin, a thermally induced escape can
take the system to an adjacent minimum either φ or −φ [62].
In the case in which i < ir0, near the region of the central basin there are
only O-state basins of attraction in state space. In this case, the system
escapes to an adjacent minimum and remains in the 0-state, as shown in �g.
illustrated in �g. 2.3 (a) [55].
For i < ir0 < 1 the 0-state and 1-state attractors coexist, and the topology
of state space takes the form illustrated in �g. 2.3 (b) for Q=3 and i = 0.5.
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Figure 2.3: Basins of attraction of 1.69 in the case of (a) i = 0.02 and (b) i = 0.5.
The black point represents the state (0,0). The orange regions are the basins of
0-state with minima in φ = 0. The blue regions are the basins of 0-state with
minima in φ 6= 0.The green regions are the basins of 1-state

Because the blue region of 1-states attractor separates the basins of adjacent
0-state attractors, an escape event can't event to take the system directly
from the basin of one potential minimum to that of a neighbouring minimum.
The escape from the 0 state necessarily takes the system into the basin of the
1 state [55]. If the temperature is su�ciently low, the thermal �uctuations
cannot induce a retrapping of the phase particle and it begins to accelerate
toward the 1 state [55].
Instead, when the temperature is su�ciently high, thermal �uctuations can
induce retrapping of the particle and the junctions switch back and forth
between the zero-voltage state and the quasiparticle branch giving rise to
the I-V curves (c) in �g. 2.2 [55]. This state is called phase di�usion [62].
The escape rate ΓE from a minimum can be calculated within the theory of
Kramers [59]:

ΓE = at
ωa
2π
exp(−∆UE

kbT
) (2.7)

where ∆UE is the height of the energy barrier from a washboard poten-
tial minimum to the adjacent maximum, at = (1 + 1/4Q)1/2 − 1/2Q is a
damping-dependent prefactor [60] and the quantities ωa and ∆UE are all
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current dependent:

ωa = ωp

(
1− (I/Icritical)

2

)
1/4 (2.8)

∆UE '
4
√

2

3
Ej

(
1− (I/Ic0)

)
3/2 (2.9)

Similar, one can de�ne the rate of retrapping ΓR for the inverse process, from
the 1-state to 0-state.
This process cannot be treated within the theory of Kramers because the 1
state is a dynamic non-equilibrium state.
Ben-Jacob et al. [61] have obtained an analytic form for ΓR:

ΓR =
I − IR0

Ic0
ωp exp

(
−EjQ

2(I − IR0)2

2kbTIc0

)
(2.10)

where IR0 ≡ ir0 is the retrapping current.
Eqs. 2.7 and 2.10 are valid in the limit of kbT � Ej [55]. It's important
to note that in eqs. 2.7 and 2.10 are dominated by the exponential factor
that can change by many orders of magnitude with small changes of the
quantity in the exponent [55]. In underdamped junctions, with Q > 10, ΓR
is dominated by the factor exp(−Q2) and retrapping is negligible: the I-V
curve is hysteretic and shows a similar behaviour to the moderate case with
Γ = 0.1 as in �g. 2.2 (a). In overdamped junctions Q < 1 retrapping has an
important role for each temperature T : the I-V curve is non-hysteretic, as
in �g. 2.2 (c). The time-averaged voltage across the junction is nonzero and
can be estimated as [55]:

< v >=
1/ΓR

1/ΓE + 1/ΓR
v1 (2.11)

where v1 is the voltage in 1-state in absence of noise.
We conclude that the main e�ect of thermal noise is to reduce the hysteresis
of the I-V characteristics such as at low temperature a moderately damped
junction behaves like an underdamped one while at su�ciently high tem-
peratures the phase dynamics is similar to the one in overdamped junction
[62].

2.2 Switching current distributions

The e�ects of thermal noise on a Josephson junction can be analyzed also by
the studying of the switching current distributions.
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In the last section, we have considered the e�ects of the thermal noise on the
I-V characteristics in a moderately-damped regime. We have schematized
the thermal �uctuations by a source of random current in, and consequently
the value i at which the junction switches is stochastic.
In this Section we analyze the current distributions starting from the eqs.
2.7 and 2.10.
The density of probability pE(I) of a switch in the current range I and
I + dI can be calculated as follow. If the escape events are supposed to be
independent, the probability of a switch in the time interval dt:

dP (1; dt) = ΓEdt (2.12)

and similarly the probability of no switch in the time interval dt is:

dP (0; dt) = 1− ΓEdt (2.13)

Then the probability of no switch in the interval I+dt is

P (0; t+ dt) = P (0; t)dP (0; dt) = P (0; t)(1− ΓEdt) (2.14)

that can be written in the form:

P (0; t+ dt)− P (0; t)

dt
= −ΓEP (0; t) (2.15)

In the limit of dt→ 0 we can integrate the last equation and obtain:

P (0; t) = exp

(
−
∫ t

t=0

ΓEdt

)
(2.16)

If we write the probabilities as a function of the bias current:

P (0; I) = exp

(
−
∫ I

0

ΓE
dI ′/dt

dI ′
)

(2.17)

The density of probability pE can be calculated deriving 2.17 respect to I :

pE(I) =
ΓEI

dI/dt
exp

(
−
∫ I

0

ΓE
dI ′/dt

dI ′
)

(2.18)

By de�nition:

P (0; I) = exp

(
−
∫ I

0

ΓEI

dI ′/dt
dI ′
)

= 1−
∫ I

0

pE(I ′)dI ′ (2.19)
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Inserting 2.19 in 2.18 one obtains;

pE(I) =
ΓEI

dI/dt

(
1−

∫ I

0

p(I ′)dI ′
)

(2.20)

Similarly we can compute the expression for the pR.

First one can observes that in eq. 2.21

pE(I) =
ΓE I

dI/dt

(
1−

∫ I

0

p(I ′)dI ′
)

(2.21)

for small currents, ΓE � ΓI ≡ dI/dt so p(I) is small.
When the current is increased toward the current IEI , at which ΓE = ΓI , the
�rst quotient 2.21 increases. Therefore as the current increase, the numerator
of the second quotient begins to reduce from 1 to 0. We conclude that to
have an escape ΓE ' ΓI .
In the following Sections we use the term escape to describe any (possibly
short-lived) escape from the instantaneous 0-state to the 1-state. Instead,
the term switch is used to describe an experimentally measured switch to
the running state [62].
In the study of I-V curves, we have pointed out that the behaviour of un-
derdamped and overdamped junctions can be considered as limits of the
moderately damping case at low and high temperatures respectively. These
considerations are still valid in the analysis of the switching current distri-
butions and so we focus our attention on moderately damping junctions.
The e�ect of thermal �uctuations allows us to identify three di�erent regimes
in these junctions [62]: thermal regime, phase di�usion regime and high tem-
perature regime.
The study of the switching current distributions in moderately damped case
is particularly important for the analysis of the NbN-GdN-NbN junction [53],
as we will discuss in the last Chapter.

2.2.1 Thermal regime

At low temperatures, before a certain value T ∗, ΓR is small and retrapping
is negligible as in underdamped case. This can be seen in �g. 2.5 where we
have shown the behaviour of ΓE, ΓR and ΓI at T = 0.3K: when ΓI ' ΓE,
a necessary condition to have a switch, ΓR → 0 and every switch events
determine an escape of the phase particle. The density of probability reduces
to:

pS = pE =
ΓE I

dI/dt

(
1−

∫ I

0

p(I ′)dI ′
)

(2.22)
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2.2. SWITCHING CURRENT DISTRIBUTIONS

Figure 2.4: Distribution width vs T in NbN-GdN-NbN junction

In this regime the width of the distribution goes as ∼ T 2/3 and the skewness1

is around −1.
This is valid till the temperature T ∗ is reached: above T ∗ the width of dis-
tributions starts to fall as we will discuss in the phase di�usion regime.
In the �g 2.5 we also represent three switching current distributions at the
same temperature: in green we have the one obtained starting from the
eq. 2.21, the second in light blue is the experimental distribution in the
NbN-GdN-NdN junction and the dark red is the Monte Carlo simulated dis-
tribution.
The distribution pE, is in good agreement with the experimental results,
con�rming that for low T retrapping is negligible.

2.2.2 Phase di�usion regime

As the temperature increases, the current IEI , at which ΓE ' ΓI decreases
and retrapping cannot be neglected. Above T ∗ the width departs from the
thermal regime behaviour and starts to fall, as we see in the �g. 2.4. In other
words, counter-intuitively the switching process in less stochastic than that

1The skewness is the ratio of the third moment about the mean to the standard devia-
tion gives a simple one-parameter description of the shape of the distribution; a symmet-
rical distribution has zero skewness
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Figure 2.5: Variation in characteristic rates with current at T = 0.3K for Q=3.
The green distribution is the underdamped case (pE). The dark red is Monte Carlo
simulated distribution while the light blue's one ( that is completely overlapped by
the dark red curve) is obtained experimentally. The arrows indicate for each curve
the respective y-axis

Figure 2.6: Switching current distributions from eq. 2.22 at di�erent T
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a lower temperature [60].
The skewness becomes progressively less negative until a positive value is
reached [62]. This can be seen in �g. 2.7 where the experimental distribu-
tion (in light blue) is more symmetric and has smaller width respect to the
underdamped distribution pE (in green). This curve fails to replace to match
the experimental data, while the Monte Carlo simulation (in dark red curve)
is in a good agreement with them.
In �g 2.7 we have also represented the behaviour of ΓE, ΓI and ΓR. Respect
to the thermal regime case, a switching event occurs when ΓE ' ΓR, i.e
I ' IER: for I < IER, ΓE � ΓR and when the phase particle starts to go
down the washboard potential, it's immediately retrapped.

Figure 2.7: Variation in characteristic rates with current at T = 5K for Q=3.
As in �g. 2.5, the green distribution is the underdamped case (pE). The dark
red is Monte Carlo simulated distribution while the light blue's one is obtained
experimentally. The arrows indicate for each curve the respective y-axis

2.2.3 High temperatures regime

Above a certain temperature T ∗high the expectation value of mean, width and
skewness begins to level out [63] [64], as observed experimentally by Franz
et al [65].
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2.2. SWITCHING CURRENT DISTRIBUTIONS

This corresponds to the situation in which the phase particle escapes and is
retrapped several times in a minimum of the potential.

2.2.4 Dependence on Q

Considering the eq. 2.10, we see that rate ΓR depends exponentially on the
damping factor Q: small variations of this parameter determines important
changes in the probability of retrapping.
These e�ects become particularly important in the moderately damping case,
where we can identify three di�erent regimes depending on the value of the
temperature T .
In �gure 2.8 we represent the dependence on Q of the width in simulated
switching current distributions. We see that an increase of Q determines
a greater value of T ∗ and σ(T ∗). This can be understood considering the
expression of ΓR 2.10: for greater Q retrapping becomes to be important
for higher temperatures because of ΓR ∝ exp(−Q2/T ). Consequently, T ∗

increases and σ gets higher value, having a greater range to increase as T 2/3.
Below the respectively T ∗, in fact, we can see that all the curves increases in
the same manner: this re�ects the fact that for T < T ∗ the switching current
distributions follows the underdamped distributions pE = pS, that depends
very weakly by the damping factor Q.
Above T > T ∗, we have a clear depends on Q: σ decreases smoothly for small
Q than for high ones.

2.2.5 Dependence on rate

The �g. 2.9 we have shown the variation with current-ramp rate of the
width of distributions. We can see that a decrease in the current-ramp rate
corresponds determines a decrease of the maximum and a shift to T = 0 of
T ∗. Also T ∗high moves to the left and the width saturates with a lower value
at a greater rate.
Our results are in agreement with the prediction of Fenton et al. [62] in

their works
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Figure 2.8: Dependence of the width from Q. This curves have been obtained
with Monte Carlo simulations, as we will discuss in the last Chapter

2.3 Quantum regime

When the temperature T is su�ciently low the phase particle can escape from
potential the potential minimum at φ0 by tunneling through the potential
barrier, as shown in �gure 2.10.
This process, known as MQT (Macroscopic Quantum Tunneling), involves a
macroscopic number of particles and thus its probability should be inherently
small.
For making estimates we can use the WKB approximation:

ψ(φ) ∝ exp

(
i

∫
λ(φ)dφ

)
(2.23)

where φ(φ) is the solution of the eq. 1.76 The probability of transmission
becomes [66]:

P ∼ ωa exp

(
−E−1/2

c

∫ φ

φ0

√
Uj(φ′)− Edφ

)
(2.24)
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Figure 2.9: Dependence on rate of the switching current distributions. This
curves has been obtained with Monte Carlo simulations, as we will discuss in the
last Chapter

where φ and φ0 are the turning points satisfying E = U(φ). For zero current,
the phase particle tunnels from φ = 0 to φ = π. Writing h̄ωp = (EjEC)1/2

we can present the probabilty as :

P ∼ ωp exp

(
−2πEB/h̄ωp

)
(2.25)

where EB ∼ 2Ej is the barrier height. The crossover temperature is given
by Tcr ≈ h̄ωp/2π.
For typical value of ωp ≈ 1011, this correspond to T ≈ 100 mK.
In the presence of moderate level of dissipation, Caldeira and Legget [67]
have shown that the escape in quantum regime is, in the �rst order in Q:

Γq = aq
ωp
2π
exp

(
−7.2

∆U

h̄ωp

(
1 +

0.87

Q

))
(2.26)
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Figure 2.10: Phase dynamics of a Josephson junctsion

where ∆U is the barrier height, as in the thermal limit, Q is the damping
factor and aq can be approximated as:

aq '
(

120π7.2∆U/h̄ωp

)
1/2 (2.27)

The reality of MQT and the predicted crossover temperature has been demon-
strated de�nitively by Martinis et al. [68].
In their work they introduce an escape temperatures Tesc which is de�ned
through the relation:

Γ =
ωp
2π
exp

(
− ∆U

kbTesc

)
(2.28)

We can analyze the limit of high and low temperature. We �nd that in
thermal escape regime the eq. 2.7 reduces:

Tesc =
T

1− pt
(2.29)

where:

pt =
lnat

∆U/kbT
(2.30)

We see that this expression depends linearly on T .
Vice-versa, one can show that the in the quantum regime, when T → 0, Tesc
goes as:

Tesc =
h̄ωp
7.2kb

1

1 + 0.87/Q

1

1− pq
(2.31)
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Figure 2.11: Tesc vs T for the high ("quantun junction") and low values ("classical
junction") of I0 with arrows indicating Tcross [68].

where:

pq = (lnaq)/

(
7.2∆U/h̄ωp

)(
1 + 0.87/Q

)
(2.32)

The experimental measurements are in very good agreement with the the-
ory. They have evaluated the expression 2.28 in the case of a Nb based SIS
junction. The results are shown in �gure 2.12: we can see that for T above
100 mK the expected behaviour of the eq.2.29 is obtained. At temperatures
below 25 mK , Tesc becomes independent of temperature, with a value in
great agreement with the prediction of the theory of Caldeira-Legget[67].
In quantum regime the temperatures behaviour of the switching current dis-
tributions changes [53]: Imean is constant in temperature while in thermal
regime his values decreases by increasing T . Similarly, below the crossover
temperature the width of the switching distributions is independent on T.
In 2015 Massarotti et al. [6] demonstrated the occurrence of MQT in NbN-
GdN-NbN junction below a Tcross =70 mK. This phenomenon occurs be-
cause the junction's properties, such as the spin-�ltering and the presence
of low dissipation, drive in the appropriate window of junction parameters
to observe MQT . In �g. 2.12 we can see the width dependence on the
in the NbN-GdN-NbN junction: we can see the typical moderately damp-
ing behaviour in thermal regime and a saturation, as expected by the theory
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Caldeira-Legget[67], below Tcross. The presence of the macroscopic supercon-

Figure 2.12: Distributions and widths vs T in NbN-GdN-NbN junction. As the
temperature decreases below Tcross=70 mK the Imean and the width of distributions
becomes constant

ducting coherence allows the use of superconducting circuits as realizations
of quantum bits, qubits [52] and in this sense demonstration of macroscopic
quantum phenomena in spin �lter devices gives promise for their application
in quantum hybrid circuits [6].
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Chapter 3

Experimental setup

This Chapter deals with the experimental set-up and the measurements tech-
niques employed in this work to analyze our SIfS junctions in a tempera-
ture range from room temperature down to 300 mK. We will especially fo-
cus on the description of the cooling system, of the �ltering system, of the
electronic-rack and of the measurements techniques, which allow to perform
high precision and low noise measurements.

3.1 Cryogenic System

The study of superconducting phenomena is performed at low temperatures
with the use of cryogenic systems, designed to minimize the e�ects of noise
and to ensure the thermalisation of the samples. In our work we have per-
formed most of measurements in a temperature range from a few hundred
millikelvin up to some degrees kelvin, using an evaporation cryostat Oxford
Instruments HelioxVL, immersed into a 4He bath.
The dewar is composed of an internal chamber of 79 cm deep and an external
one, which is at very low pressure of about 10−5-10−3 mbar in order to decou-
ples the cryogenic liquid from the environment. The dewar is equipped with
a �rst screen of cryoperm, a nichel and aluminium alloy, and with a second
one in lead, in order to shield the sample stage from external magnetic �elds.
The sample is glued to a chip holder, bonded with Al wires and is sub-

sequently mounted on the cryostat, ensuring electrical connection with the
cryostat lines and room temperatures electronics.
The cryostat is closed using a brass cylinder, forming an inner vacuum cham-
ber (IVC ). A grease layer ensures a perfect closing of the IVC. This chamber
is pumped down to a pressure of 10−2 mbar, using a rotative pump Adixen
PASCAL 2015sd, shown in �gure 3.1.
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Figure 3.1: View of the experimental set-up

The cooling down from room temperatures to 300 mK is characterized by
several stages:

• From room temperature to 4.2 K The cryostat is immersed in
the 4He bath in the Dewar and reaches the temperature of 4.2K via
thermalization with the liquid. This process is ensured by the small
amount of helium gas previously introduced in the IVC.

• From 4.2K temperature to 2 K A capillary draws liquid 4He from
the bath to a dump in the cryostat called 1K-pot. Using a rotative
pump Adixen PASCAL 2015sd, we remove the more energetic molecules
reducing the temperature below 2K. The pumping is regulated with a
needle valve that adjusts the 1K pot chamber pressure.

• From 2K temperature to 300mK The base temperature is reached
using 3He, contained in a closed circuit in the cryostat.
This circuit crosses the 1K pot, so that the 3He is in thermal contact
with the 1K pot dump. When the temperature of the 1K pot goes below
2.0K, the 3He starts to liquefy and drops in the 3He pot, another dump
thermally anchored to the sample.
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Finally, similarly to the previous step, we can lower the temperature to
300mK pumping on the 3He bath with a zeolite pump, called sorption
pump or SORB, that absorbs 3He molecules, if its temperature is lower
than 30K.
The di�erent parts of the cryostat are shown in �gure 3.2.

Figure 3.2: Sketch of the 3He system during the condensing phase (a) and at the
base temperature (b)

The system has three diode thermometer that monitor the temperature of the
SORB, the 1K pot and of the 3He pot. Moreover, temperatures of the sample
stage and of the sorb can be regulated indipendently by using two di�erent
heaters placed at the 3He pot and at the 1K-pot, respectively. We need to
ensure that the junction is at the temperature which we want to measure,
waiting su�cient time to provide a perfect thermalization of the sample.
Previous analysis on the experimental setup have demonstrated that in this
condition the error on the measured temperature is of the order of 1 %.

3.2 Electronic setup

We perform four-contact measurements to exclude from the overall mea-
sured resistance the contributions due to the connecting wires. The junction
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is bonded to the chip holder through aluminum wires. We use manganin
cables for the voltage lines that connect the instruments to chip holder. This
material is widely used in cryogenic measurements thanks to its low thermal
conductivity (at low temperature, it is two orders of magnitude lower than
the copper one) that helps in reducing the heat load to the refrigerating sys-
tem [81]. The current lines, instead, are made of low resistance materials to
avoid excessive heating. In particular we use niobium-titanium (NbTi) cables
in the points that reach low temperatures ( as 1K and 3He pot), because
this material becomes superconducting below about 10K. The rest of current
cables are made by copper wires, because this material has a low resistance
compared to other materials.
Overall, electrical lines resistance is about 100 Ω for current-carrying lines
and about 200 Ω for voltage lines.

3.2.1 Filtering system

The experimental study of Josephson systems leads to the measurement of
currents of the order of micro-Ampere or less and voltage about micro-Volt;
consequently we need high resolution measurement setup and very low noise
environment. The noise depends on several factors such as the temperature,
the electronic instruments and the properties of the sample just to mention
a few. The most e�ective way to �lter noise in cryogenic system is to use
several �ltering stages at di�erent temperatures [81]. This strategy is needed
to progressively �lter the signal and to obtain an e�cient cooling of the �lters
themselves [81].
Our system is equipped with two stages of �lters: a low pass RC-circuits
with a cut-o� of about 1 MHz, installed at the 1K-Pot stage and two cop-
per powder �lter stages with typical cut-o� frequencies of about few GHz,
installed at the 1K-Pot stage and at the 3He pot stage.

RC �lter The �rst �ltering stage is composed for each measurement line
by a 100 Ω resistor and two 1nF capacitors in parallel con�guration, anchored
to the 1K-Pot stage . Everything is then enclosed in a copper box to allow
good thermalization. From the values of the resistors and capacitors a cut-
o� frequency of 1.6MHz is obtained. The main advantage of this type of
�lter is the possibility of �ltering a di�erent lines in a small volume. The
disadvantage is the loss in attenuation at high frequencies due to the parasitic
capacitance of the resistors.
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Figure 3.3: Filters mounted on the Heliox 3He system. The position of the coil
is also indicated.

Cu powder �lters The copper powder �lters were �rst described by Mar-
tinis et al. [55] and they are used in experiments requiring the highest level
of �ltering [81]. They are realized with a spiral coil of insulated wire inside
a tube �lled with metal powder with a grain size that can go from 5 to 30
µm. The cut-o� frequency is in the range of few GHz.
The improvement that this type of �lter introduces is shown in the �g.3.4
where we report an IV curve of YBCO based sample at 0.3 K measured with
and without Cu powder �lters. As we can see, the reduction in electronic
noise brings an increase in the measured critical current of about 35 % [81].

3.3 Experimental measurements

We have performed measurements of the I-V characteristic, the resistance
as a function of temperature and switching current distributions (SCD) that
allow us to reconstruct the electrodynamics properties of the NbN-GdN-NbN
Josephson junction will be shown in Chapter 4. The following instruments
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Figure 3.4: I-V characteristics of the same YBCO based junction measured with
Heliox system equipped with �lters (red curve) and without �lters (black curve) at
0.3 K [81]

are used to perform most of the transport measurements reported in the next
Chapter:

• LeCroy Wave Runner 6100A oscilloscope

• SR570 Standard Research Systems preampli�er

• Agilent 33120A waveform generator ;

• EG&G Princeton Applied Research 5210 lock-in ampli�er;

• Source Meter Keithley 2400 used as a current generator to produce
magnetic �elds

• Nanovoltmeter Keithley 2182 used in R(T) measurements.

3.3.1 Current-voltage characteristics

The current-voltage characteristic (IV) allows to investigate some fundamen-
tals properties of the junction. To obtain this curve we use an Agilent 33120A
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that generates a voltage triangular waveform with a peak-to-peak Vpp am-
plitude at low frequency, of the order of 10 Hz. The current �owing through
the device is:

Ibias =
Vpp

Rshunt +Rline +Rjunction

' Vpp
Rshunt

(3.1)

and this corresponds to an e�ective current polarization if Rshunt is chosen
to be much larger than the resistances of electrical lines and the junction.
The error on the generated voltage is 0.1% Vpp from the instrument speci�-
cations [70] and similarly for the generated current.
The voltage signal generated is showed on the oscilloscope WaveRunner
6100A, so as the current in the JJ, pre-ampli�ed by the SR570 Preampli-
�er. The measured voltage drop on the junctions electrodes V is ampli�ed
by an operational ampli�er with a 500 gain and measured on the oscilloscope.
This instrument records a number of 100 curves and make an average of the
measured signal in order to reduce noise e�ects.
The oscilloscope is connected to the computer, where we saved all the mea-
surements. In �g. 3.5 we show a scheme of the electronic set-up. While we

Figure 3.5: Electronic set-up con�guration for I(V) measurements

have a good control on the bias current, the measured voltage is obvsiouly
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a�ected by the e�ects of noise. The experiments and the analysis performed
over time on our experimental setup suggest that a reliable estimation of the
error in the measured voltage can be given analyzing the noise range in the
I-V curves as shown in �g. 3.6 and is about 1 % of the measured value.
This estimation comes from the ratio between the error bar and the signal
amplitude.

Figure 3.6: Error bar in a typical measured I(V). In particular we have reported
in the inset the I(V) curves of the NbN-GdN-NbN junction at 0.3 K. The blue line
is a zoom of the I(V) curve .

3.3.2 Switching current measurements

The experimental setup used to measure switching current distributions is
analogous to the I-V one. Measurements have been performed by choosing
a voltage threshold �xed to ±100µV . This value is smaller than the energy
gap and su�ciently large to avoid the voltage �uctuations due to the thermal
noise.
When the threshold voltage occurs, indicating a switch to the normal state,
the corresponding bias current is recorded by the oscilloscope. This operation
is repeated 5000 times in order to obtain an histogram of the switching events.
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3.3.3 R(T) measurements

Some properties of a Josephson junction, such as the transition temperature
Tc and the spin �lter e�ciency can be well analyzed starting from the R(T )
curve. We have performed this measurement generating a sinusoidal wave-
form with root-mean-square amplitude Vrms = 100±1mV at 11.123 Hz. The
ampli�ed voltage drops between the two superconducting electrodes V and
is read by EG&G Princeton Applied Research 5210 lock-in ampli�er, which
allows high accuracy AC measurements. This instrument integrates the volt-
age curve taking as reference the signal waveform generator, over a period
of time ten times larger than the signal one. In this way only the signal at
the same frequency of the lock-in reference is preserved by integration while
the other signal components are reduced close to zero. The amplitude (in
rms) of the survived signal is read by the Nanovoltmeter Keithley 2182 and
divided by the bias current.
The lock-in allows also to measure the phase di�erence ∆φ between the volt-
age drop on the junction V and the reference signal Vpp ; we required a
∆φ ∼ 0 or π, because this value typically ensures a non-reactive coupling in
the sample, which could be due to inhomogeneities or non-metallic contacts.
The resistance error is about the 0.5 % considering the instrument speci�ca-
tion [72]. In �g. 3.7 we show a scheme of the electronic set-up for the R(T)
measurements.

3.3.4 Measurements in magnetic �elds

Measurements of transport properties as a function of magnetic �eld have
been performed by using a niobium-titanium coil, which is superconducting
below a critical temperature of about 10 K. A copper wire inside a thermal
insulating twist provides thermal contact between the coil and the 1K-Pot,
so that the coil is always at about 2 K and additional Joule dissipation due
to the current �ow in the coil does not heat the sample stage.
We use a Source Meter Keithley 2400 as a current generator to feed the su-
perconducting coil.
The error on the generated current is about 0.1 %, as declared in the instru-
ment speci�cations [71]. The instruments setup is similar to those described
in �g. 3.5: for each value of the magnetic �eld we acquired the I(V) char-
acteristic, with a step ∆Icoil. The Fraunhofer pattern is obtained applying
a magnetic �eld from zero to an upper value (virgin curve); after that, we
applied a �eld from a positive value to a negative value (down curves), and
return (up curves). In this case the error of the value of magnetic �eld is
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Figure 3.7: Electronic set-up con�guration for R(T) measurements

about the step-�eld used and can be calculated starting from the ∆Icoil value:

∆H(G) = 3∆Icoil(mA) (3.2)

3.4 Samples scheme

In this work, we have analyzed unconventional Josephson junctions with an
insulating ferromagnetic barrier of 3 nm, gadolinium nitride (GdN), between
two niobium nitride (NbN) superconducting electrodes.
Our junction was fabricated at the Materials Science and Metallurgy De-
partment of the University of Cambridge (UK) by optical lithography from
trilayer NbN-GdN-NbN �lms prepared by DC reactive magnetron sputtering
at room temperature. A 5 nm MgO bu�er layer was deposited on a SiO2

substrates before the deposition of the trilayers. [43]
The GdN barrier was prepared in an Ar gas atmosphere containing 8% N2,
whereas NbN layers were prepared with 28 % N2 [43].
The junction area, in a square geometry, was de�ned by selective reactive
etching of the top 100 nm NbN layer in CF4 plasma. The error on the elec-
trodes thickness is ±10 nm. A layer of sputtered SiOx was patterned using
the lift-o� method to provide an electrically isolated contact window on top
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of the 7×7 µm2 junctions.
While the NbN base layer acted as the bottom contact, a Nb wiring layer
was patterned to achieve the top contact [43]. In �gure 3.8 a sample with its

Figure 3.8: In (a): front view of the samples; in (b): a transverse sketch of the
samples, which highlights dimensions and structure of the measures junctions [6]

typical dimensions and its contacts scheme is shown.
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Chapter 4

Experimental results

In this Chapter, we condense all the experimental results with the �nal aim
of a detailed characterization of the electrodynamic properties of the NbN-
GdN-NdN junction with a barrier thickness of 3 nm. We will analyze the
spin-�lter properties of this device starting from the R(T ) measurements. We
will report the dependence of the critical current on the magnetic �eld and on
the temperature, respectively Ic(H) and Ic(T ) ,and we will describe of the
junctions electrodynamics by studying the switching current distributions
curves, making a comparison with the simulated ones.

4.1 R(T) analysis

In �g. 4.1 we show the measurement of resistance as a function of the temper-
ature. The junction has a semiconducting behaviour from room temperature
down to about T ' 35 K, where the resistance starts to decrease. This is
due to the onset of ferromagnetism in gadolinium nitride, which is reported
to have a bulk Curie temperature of about 60 K [73]. Below the Curie tem-
perature, the spin-dependent splitting of the band structure causes a spin
polarization in the incoming charge current [74], because spin-up and spin-
down electrons experience di�erent e�ective barrier heights, and one channel
is partially suppressed.
The resistance falls to zero at a temperature of about 12 K, when the elec-
trodes become superconducting.
As we have anticipated in the �rst Chapter, the spin �lter e�ciency can be
written as:

P ∼ tanh

(
cosh−1

(
R∗

R

))
(4.1)
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Figure 4.1: Resistance versus temperature curve measured on spin �lter
NbN/GdN/NbN JJ. The black dashed line is a �t of the experimental data for
temperatures higher than ≈35 K by using a decaying exponential function. The
inset shows a zoom of the NbN superconducting transition, at about 12 K.

where R∗ is the resistance that the junction would have if it acts like a non-
spin-�lter junction and R is the measured one and depends on the thickness
of the barrier. A practical indirect way to estimate the spin-�ltering e�ciency
P is to compare the semiconductor-like device resistance R∗ (resistance in
absence of spin-�ltering) with the junction resistance R at a �xed tempera-
ture Tc < T < TCurie.
R∗ can be extrapolated by �tting the experimental curve above TCurie with a
simple decaying exponential function (dashed black line in �g. 4.1). In this
way we have we have estimated P = 95% at 15 K, that is in good agreement
with the previous analysis on this junction [43] with 3 nm barrier.

4.2 Ic(T) curves

The I-V characteristics of the junction provide a �rst method to investigate
its fundamental properties. In �g. 4.2 we have reported the I(V) curves
in a temperatures range between 0.3 K and 7.5 K, measured according to
the protocols described in Chapter 3. We can see that an increase in the
temperature determines a reduction of the critical current and the hysteresis,
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4.2. IC(T) CURVES

Figure 4.2: IV characteristics of NbN-GdN-NbN junction at di�erent tempera-
tures

as expected from the considerations of the second Chapter.
Following ref. [43] we can quantify the hysteresis in temperature de�ning the
function:

Hy =

(
Ic − IR
Ic

)
(4.2)

where Ic is the critical current a�ected by the thermal �uctuations and IR is
the retrapping current. The curve Hy(T ) is shown in �g. 4.3. The result is in
good agreement with previous analysis on this type of junction [43]. More-
over, it turns out that hysteresis is very large, above 95 % below 1 K, thus
indicating very low values of the retrapping current at low temperatures.
The IV curves help us to have a �rst estimation of Ic as a function of
the temperature T , as shown in �g. 4.4 where we have compared the be-
haviour of the experimental points with the theoretical curve predicted by
the AB(Ambegaokar and Barato�) relation. Ic(T) shows a clear unconven-
tional temperature dependence, with an absolute magnitude much lower than
predicted by the AB relation [45].
We can distinguish three di�erent regimes:

• From T = 300mK to T = 5K the critical current decreases faster than
what predicted by the AB relation
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4.2. IC(T) CURVES

Figure 4.3: Hysteresis in the IV characteristics as a function of the temperature
for the spin �lter Josephson junction. The line is a guide for the eye

Figure 4.4: Orange points represent the Ic(T) values with their errors. The black
dashed line is a guide for the eyes. The red dashed line is the AB �t following [8]
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4.3. FRAUNHOFER PATTERN ANALYSIS

• From roughly T = 5K to T = 9K a plateau occurs

• Above T = 9K the critical current decreases with a slope consistent
with the AB predictions.

As pointed by Caruso et al. [7], this behaviour does not have any analogy
in literature and cannot be explained by any of the common theories on
ferromagnetic Josephson junctions. The peculiar trend of the Ic suggests
that something far from the conventional superconductivity happens in this
device.

4.3 Fraunhofer pattern analysis

The ferromagnetic nature of the GdN determines important magnetic fea-
tures in the transport properties of the junction.
First, we have magnetic hysteresis in the Frohunofer pattern due to the pres-
ence of the intrinsic magnetization of the barrier, as discussed in the �rst
Chapter. In �g. 4.5 we have reported the Fraunhofer pattern of the NbN-
GdN-NdN junction at T = 0.3K. These curves have been obtained changing
in step of 2.5 ± 0.1 G the magnetic �eld and recording for each step the
critical current.
In these measurements we never reached the saturation �eld, and we only
moved on the linear branch of the magnetization. We can observe that the
�rst minima in the pattern are not e�ectively zero: this could be due to
a non-uniform current distribution in the system, as in SIS junctions with
structural imperfections of the barrier or to the presence of higher harmonics
in the current phase relation [7].
The study of the Fraunhofer pattern provides a useful tool to investigate
the e�ects of magnetic �eld on the unconventional behaviour of Ic(T ). As
pointed out in ref. [6] the presence of a remnant magnetic �eld can change
signi�cantly the behaviour of Ic(T), and the plateau we observe at interme-
diate temperatures might be due to residual or trapped magnetic �eld. In
order to overrule this possibility, we have measured Ic(H) curves at di�er-
ent temperatures, and collected their principal maxima, regardless of their
position. The temperature dependence of Ic(H) maxima con�rms the Ic(T)
curves obtained from I−V(T) curves measured before magnetizing the sam-
ple, as shown in �g. 4.6. This allows us to exclude any e�ect due to barrier
magnetization [6].
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Figure 4.5: Critical current versus magnetic �eld plot for T = 0.3K in NbN-
GdN-NbN junction. The blue curve has been obtained starting from H = 200G
to H = −200G. Vice-versa for the orange curve. The inset represents the IV
characteristics for the junction at 0.3 K. The red dashed lines are the threshold at
V = ±200µV

4.4 Experimental Switching current distribu-

tions

In the underdamped JJs the measures of the switching current distributions
as a function of temperature is a key tool to evaluate in detail dissipation in
the junctions [6]. This method represents the direct tool to investigate the
dynamics of the junction allows to provide the electrodynamic characteriza-
tion which is not accessible otherwise [6].
The experimental measurements have been performed in a range of tem-
peratures between 0.3 K and 7.5 K at H = 0 G. For each temperature, we
have measured the switching current distribution following the procedure de-
scribed in Chapter 3 and we have calculated the �rst three central momenta:
the mean switching current Im, the standard deviation σ and the skewness µ.
These parameters provide distinctive �ngerprints of the di�erent dissipation
processes involving the dynamics of the junction and the comparison with
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Figure 4.6: Comparison between Ic(T) curves obtained from IV characteristics at
zero �eld (green points) and from the maxima of Ic(H) (orange points). The error
is of the size of points

Monte Carlo simulations allows us to determine the electrodynamics param-
eters of the system. In �g. 4.7 we show the experimental switching current
distributions at di�erent temperatures. The moments of this curves can be
calculated starting from the statistical analysis of the histograms [75]. The
Im values have been obtained from the equation:

Im =
N∑
i

piIi =
N∑
i

ni
N
Ii (4.3)

where N is the number of switching current events, while pi = ni/N and Ii
are the frequency and current value of the i-th bin respectively, being ni the
number of counts in the i-th bin.
The statistical errors on Im have been calculated from the expression:

∆Im =

√√√√ N∑
i

(Ii∆pi)2 +
N∑
i

(pi∆Ii)2 (4.4)

Here ∆I is the error on the measured value of the current and ∆pi is the
error on the number of counts recorded in the i-th bin. We estimated ∆pi
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Figure 4.7: Experimental switching current distributions

considering the Poisson error on counts:

∆pi =

√
ni
N

(4.5)

Because in our discussion ∆pi � ∆Ii, we have neglected the second term in
the square root in the eq. 4.4. The statistical errors are of the order of 1 %.
The Im(T ) curves obtained from the switching current distributions follow
the behaviour showed in �g. 4.4, con�rming the presence of unconventional
processes in the dynamics of the junction.
To study the properties of the junction we have to consider also are the σ
values of the switching current distributions. These have been obtained from
the equation [75]:

σ =

√√√√ N∑
i

pi(Ii − Im)2 (4.6)

and their errors have been estimated following the equation:

∆σ =
1

2∆Im

√√√√ N∑
i

[(Ii − Im)2∆pi]2 (4.7)
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and are of the order of 5 %. The results are shown in �g. 4.8.

Figure 4.8: σ(T ) of the experimental switching current distributions for the NbN-
GdN-NbN junction. The errors have been calculated using the eq. 4.7. The black
line has been obtained with spline interpolation and is a guide for the eyes.

As we have already pointed in the Chapter 2, σ(T ) shows the typical be-
haviour of moderately damping Josephson junctions: σ(T ) increases up to
T ∗ ' 3.8K as T 2/3. Then the curve starts to fall and tends to saturate above
T ' 5.5K.
The transition between di�erent regimes can be analyzed also considering
the third moment of a distribution, the skewness, de�ned as [75]:

µ =
1

σ3

N∑
i

pi(Ii − Im)3 (4.8)

that describes the asymmetry of the curve.
In �g. 4.9 we show the behaviour of µ(T ) calculated starting from the ex-
perimental switching distributions. As we can see in the thermal regime,
below T ∗, µ is around -1, as expected from considerations reported in Chap-
ter 2. Around T ∗, µ becomes less negative, reaching the maximum value
for T ' 4.5K. This indicates the presence of phase di�usion, that occurs for
temperatures above T ∗. At highter temperatures the µ(T ) reaches a constant
value around -0.2.

76
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Figure 4.9: µ(T ) of the experimental switching current distributions in NbN-
GdN-NbN junction

4.5 Numerical Simulations

Monte Carlo simulations of phase dynamics have been performed starting
from the RCSJ model in presence of thermal �uctuations:

i =
d2φ

dτ 2
+

1

Q

dφ

dτ
+ sin(φ) + in (4.9)

The �tting of the switching current distributions as a function of T allows
to determine the damping factor Q in order to have a good agreement with
the experimental curves in �g. 4.7, 4.8 and 4.9. For this purpose we have
realized a C-code, using a Runge Kutta integrator (see Appendix E) to solve
numerically eq. 4.9 and the C function RAND() to simulate the noise cur-
rents in.
Simulations have been performed for a normalized time N ≡ 1 × 107, that
corresponds to about 106 plasma periods. To have a good resolution on the
motion of the phase particle [55] we have �xed the time step to dt = 0.1.
Observation time for each point generated in the I-V characteristics is 2×104

time units, which is long enough to ensure that the average time spent in
running/zero voltage state does not vary as a function of the observation
time [55].
The multiplicity of switching modes between the running and the trapped
states raises a problem of how to de�ne an escape event. In our simulations,
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the condition to de�ne the switch is V (i, T ) ≥ V (i, 0)/2, where V represents
the average velocity of the phase particle in the washboard potential. In
other words, the particle spends in the running state more than 50% of the
observation time [76]. To obtain the switching distribution we have simulated
5000 escape events, which is similar to the number of counts experimentally
measured. Simulations have been performed on the INFN machine Keplero.
The code is reported in Appendix E.
We have run the simulations at the same temperature T of the experimental
measurements, choosing as �tting parameters the damping factor Q and the
critical current Ic0(T ) (de�ned as the current in absence of thermal �uctua-
tions, such as in the Chapter 2) as we will discuss in the following paragraphs.

4.5.1 Q(T) in Monte Carlo simulations

The damping factor Q gives information on some important parameters that
characterize the dynamics of the junction such as the resistance R , the
capacitance C and the plasma frequency ωp.
As we have anticipated in Chapter 2, Q may contain frequency-dependent
contributions from the bias circuitry in addition to the intrinsic value of the
junction [46]. This is con�rmed by the work of Kautz and Martinis [55]:
they showed that the phase dynamics of the junction is also determined by
the external circuit that loads the junction. To include these e�ects they
added to the RCSJ circuit a shunt composed of a resistor Rs, its associated
Johnson noise source In2 and a capacitor Cb, as shown in �g. 4.10. In this

Figure 4.10: Kautz and Martinis junction model [55]
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new scheme, the damping depends on the frequency of the phase particle
oscillations as:

Q(ω) =

(
2eIcC

h̄G2(ω)

)
1/2 (4.10)

where:

G(ω) =
1 + (Rj/R||)R

2
sC

2
bω

2

Rj(1 +R2
sC

2
bω

2
(4.11)

is the real part of the admittance shunting the ideal Josephson element. Here
R|| is the parallel combination of RJ and RS.
The behaviour of eq. 4.10 is shown in �g. 4.11 where we have introduced
the factor Q0 ≡ ωpCRj and Q1 = ωpCR||. We can see that for ω ∼ ωp the

Figure 4.11: Behaviour of the eq. 4.10. The frequency ω is normalized to the
plasma frequency ωp =

√
2eIc0/h̄C

damping is determined by Q1, i.e. by R|| while for ω � ωp Q ' Q0. In the
study of the switching events in the superconducting state the phase particle
oscillates with a frequency ω ∼ ωp [53]: the dynamics is determined by Q1,
i.e. R||.
Originally the Kautz and Martinis's model was introduced because several
experimental studies revealed a new kind of I-V characteristic that exhibits
both hysteresis and a small voltage associated with the nominal zero-voltage
branch [55]. As pointed out by Ono et al. [80], this (I-V) characteristic
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cannot be explain within the RCSJ model if frequency dependent damping
is not taken into account. In our work we have performed simulation with

Figure 4.12: Numerical solution of the circuit in �g. 4.10 with Q0 = 7, Q1 =
0.4, Ic0 = 1µA and T = 2K. As we can see a �nite voltage appears in the
superconducting branch while the curve remains hysteretic

a single-Q model to �t the experimental switching current distributions his-
tograms instead of using the complete Kautz and Martinis's model . This is
a common procedure in moderately damping junctions and works well when
the condition Ej/(kbT ) > 1 is satis�ed, with Ej = h̄Ic0/2e and the quality
factor is larger than 1, such as in our case [81].

4.5.2 Ic(T) in Monte Carlo simulations

As well as the damping factor Q, simulations have been performed choosing
as parameters the critical currents Ic0(T ), which is the current at which the
junction pass to the resistive state in the absence of current noise In. These
parameters, with the temperature T , determines the noise width of in as
discussed in Chapter 2.
Because there isn't a microscopic model that provides the unconventional
experimental behaviour of the Ic0(T ) reported in Section 4.2, we have resorted
the phenomenological model reported in ref. [76] [53].

80
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OF THE JUNCTION

The Ic0(T ) values in�uence the damping factor Q. By de�nition, in fact, Q
depends on the critical current by the relation:

Q = RC

(
2e

h̄

Ic0
C

)
1/2 ≡ kI

1/2
c0 (4.12)

In our simulations, we have decided to consider the value of Q at T = 4K
to label the simulations, where the maximum width of the experimental
switching distribution occurs; the values at the other temperatures can be
obtained starting from the eq. 4.12.

4.6 Determination of the electrodynamic pa-

rameters of the junction

From the comparison between the simulated distributions and the experimen-
tal ones, the damping factor Q in better agreement with the experimental
data is Q = 3.5 ± 0.1. In �g.4.13 and in �g. 4.14 we have compared the
Im(T ) and σ(T ) behaviour in the experimental and simulated cases. The

Figure 4.13: behaviour of Iexpm (T ) and Isimm (T ). Bars represent the error of the
points. The lines have been obtained with spline interpolation and is a guide for
the eyes

method to determine Isimm (T ) allows us to obtain a good agreement with the
experimental Iexpm (T ), as we can see in �g. 4.13. The RCSJ model that we
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Figure 4.14: behaviour of σexp(T ) and σsim(T ). Bars represent the error of the
points. The lines have been obtained with spline interpolation and is a guide for
the eyes

have adopted in our simulations, doesn't include the magnetic e�ects of the
barrier, but nevertheless, it provides a good agreement with some experimen-
tal key quantities such as the temperature T ∗ (see �g. 4.14).
The damping factor Q con�rms that our junction is in moderately damping
regime.
We have compared the experimental distributions with the simulated one as
shown in �g 4.15. The curves are in good agreement at low temperatures
while they have some di�erences above T ' 5K, due to the simplest model
that we have used to perform simulations. If we consider the junction as a
parallel plate condenser, we can calculate the capacitance starting from the
equation :

C = ε
A

d
(4.13)

Here A is the area of the junction, d is its thickness and ε = 2.3410−10F/m
is the absolute permittivity of the GdN barrier [78]. We obtain:

C = (3.8± 0.6)pF (4.14)

and considering the eq. 4.12 for the damping factor Q we can calculate the
resistance R:

R = (16± 2)Ω (4.15)
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Figure 4.15: Comparison between the switching current distributions simulated
(orange line) and experimetal (black dot points) at di�erent temperature

This value is consistent with the order of magnitude of the external circuity
resistance, i.e. some tens of Ohm, and it is similar to what reported in pre-
vious works in which junctions with similar electrodynamic properties have
been analyzed [58] [53] [79]. We can conclude that dissipation in NbN-GdN-
NbN junction at high frequency is determined by the environment in which
the junction is embedded, while in common SFS device the damping strictly
depends on the parameters [55] of the intrinsic junction. The clear advantage
is that, for possible applications in superconducting electronics, spintronics
and quantum circuits, the dissipation can be tuned by adjusting the overall
circuity while in SFS junction Q is �xed by the intrinsic characteristics of
the devices.
The capacitance C and the damping factor Q determine the value of the
plasma frequency ωp, which describes the motion of the phase particle in a
minimum of the washboard potential. We have found that ωp is around 32
GHz, a typical value in a moderately damping junctions [6] [55] [53]. The
plasma frequency characterizes the behaviour of the junction in the quantum
regime. It brings information on the energy scale of the system and on the
di�erent role that the charge and Josephson energy have in the transport
characteristics [52]. Considering the expression [53]:

Tcross =
h̄ωp

2πkB

{[
1 +

(
1

4Q2

)]
1/2 − 1

2Q

}
(4.16)
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we can calculate the transition temperature between the quantum and ther-
mal regime:

Tcross = (50± 10)mK (4.17)

which is in good agreement with the experimental value of Tcross ' 70mK
[6]. The result is remarkable since Tcross has been determined by using two
independent measurements, thus con�rming the self-consistency of the whole
approach.
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Conclusions

In this work we have investigated the properties of unconventional Joseph-
son junctions composed of two NbN superconducting electrodes separated by
an insulating ferromagnetic barrier of GdN. These junctions fall in the very
interesting family of junctions combining the potentials of superconductiv-
ity and magnetism. These junctions o�er the additional advantage of being
tunnel devices, and also they have been suggested as potential candidates to
observe triplet supercurrents [7] [8].
I have fully characterized the transport properties of the junction with the
barrier thickness of 3 nm. I have studied the unconventional features intro-
duced by the ferromagnet starting from the exotic dependence of the critical
current on the temperature and on the magnetic �eld. The presence of an
intrinsic magnetization determines hysteresis in the Fraunhofer patter and a
spin-polarized current with an e�ciency around the 95%, below the Curie
temperature of the ferromagnet, i.e ' 35K.
In particular, I have investigated the e�ects of thermal noise on the NbN-
GdN-NbN junction in the thermal regime. Comparing the experimental
switching current distributions and Monte Carlo simulations, I have deter-
mined the fundamentals electrodynamic parameters of the junction, which
de�ne the transport characteristics of the system. These parameters are
not accessible by using direct measurements, therefore reliable methods and
analysis to estimate quality factor Q, capacitance C and resistance R asso-
ciated to the junction circuit represent a fundamental step to engineering
such unconventional junctions. This is one of the very �rst studies on the
electrodynamics of junctions using ferromagnetic or ferro-insulator barrier in
which, di�erently from SFS structures, the conduction is mostly determined
by the circuit loading the device.
The junctions I have analyzed are of great interest for technological appli-
cations. The presence of hysteresis in the Fraunhofer pattern provides a
method to develop cryogenic memory, taking advantage of the presence of
two possible Ic value at a �xed magnetic �eld ~H.
The junction with the barrier thickness of 3 nm shows MQT (Macroscopic

85



4.6. DETERMINATION OF THE ELECTRODYNAMIC PARAMETERS
OF THE JUNCTION

Quantum Tunneling) at low temperatures [6] with interesting magnetic fea-
tures and low dissipation contributing to set its potential for applications
in superconducting electronics. For this aim, the study I have performed
provides also information on the interaction with the external environment
and can be used to characterize similar junctions for the development of new
devices.
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Appendix A

The London model

In an ordinary conductor with n electrons per unit volume with e�ective mass
m, the motion of the electrons in presence of an electric �eld ~E is described
in the Drude's theory by the dynamic equation:

m
d~v

dt
= −m~v

τ
+ q ~E (A.1)

where q = (−e) is the charge of the electrons and τ is a relaxation time,
related to the scattering of this particles with impurities, phonons, and other
defects [13].
If we imagine a superconductor as an ideally pure metal, with τ → ∞, the
eq A.2 becomes :

m
d~v

dt
= +q ~E (A.2)

In terms of the current density ~J :

~J = nq~v (A.3)

the eq. A.2 can be written as:

∂ ~J

∂t
=
nq2

m
~E (A.4)

known as the �rst London equation. This classical equation describes the
dynamics of collisionless electrons and is simply a modi�cation of the Ohm
law [11].
To derive the second London equation, let's apply the curl-operator to both
members of A.4:

∂

∂t

(
∇× ~J

)
=
nq2

m
∇× ~E (A.5)
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Considering the third Maxwell's equation:

∇× ~E = −1

c

∂ ~B

∂t
(A.6)

the eq. A.5 could be written as:

∂

∂t

(
∇× ~J

)
= −nq

2

mc

∂ ~B

∂t
=⇒ ∂

∂t

(
∇× ~J +

nq2

mc
~B

)
= 0 (A.7)

This is a general equation valid for any ideal conductor, because it has been
obtained starting from the eq. A.4; but alone does not account for the
Meissner e�ect. In fact A.5 shows that the vectorial �eld

~V = ∇× ~J +
nq2

mc
~B (A.8)

is constant in time, but this argument is not su�cient to establish whether
�elds and currents can penetrate or not in the interior of the sample.
It has been pointed out by the London brothers that, if the quantity in A.8
is not only time-independent but actually vanishes identically, then the ideal
perfect conductor also exhibits the Meissner e�ect.
The equation:

∇× ~J +
nq2

mc
~B = 0 (A.9)

is called second London equation.
The eq. A.9 implies that a superconductor in stationary condition cannot
sustain a magnetic �eld in its interior, except for a thin surface layer [11].
This can be obtained as follow: in stationary conditions, the magnetic �eld
is related to the current density by the fourth Maxwell equation:

∇× ~B =
4π

c
~J (A.10)

We can apply the curl-operator to both sides of eq. A.10:

∇×
(
∇× ~B

)
=

4π

c

(
∇× ~J

)
= −4πnse

2

mc2
~B (A.11)

where the last equality in eq. A.11 is obtained using the eq. A.9
Because :

∇×
(
∇× ~B

)
= ∇

(
∇ · ~B

)
−∇2 ~B (A.12)

and:
∇ · ~B = 0 (A.13)
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for the second Maxwell equation, the eq. A.11 reduces to:

∇2 ~B = −4πnse
2

mc2
~B ≡ − 1

λ2
L

~B (A.14)

where we have de�ned the London penetration length λL as :

λL =

√
mc2

4πnse2
(A.15)

The solution of the eq. A.14 is an exponential decay of ~B from the surface
towards the interior, over the characteristic distance λL.
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Appendix B

Bogoliubov-de Gennes equations

in BCS theory

The BCS theory is based essentially on two assumptions: (i) attractive elec-
tron�electron interaction in a conductor leads to (Cooper) pairing and (ii)
this pairing can be described in a mean-�eld theory. In the language of
second-quantized �eld operators, the attractive electron�electron interaction
can be described with a Hamiltonian of the form [2]:

Ĥ =
∑
σ

∫
d~r Ψ̂†σ(~r)H0Ψ̂σ(~r) +

∑
σσ′

∫
d~rd~r′ λσ,σ′(~r, ~r

′)Ψ̂†σ(~r)Ψ̂†σ′(~r
′)Ψ̂σ′(~r

′)Ψ̂σ(~r) (B.1)

where:

H0 =
1

2m

(
h̄

i
~∇− e ~A

)
2 + U(~r)− µ (B.2)

is the single-particle Hamiltonian of the system and Ψ̂σ(~r) and Ψ̂†σ(~r) are the
many-body operator that annihilates and creates respectively an electron in
the position ~r with spin σ. The factor λσ,σ′(~r, ~r

′) is the term of interaction
between the electrons.
In the BCS approximation the electrons that form the Cooper pairs are in
the singlet state,i.e the interaction is established between electrons with the
same spin:

λσ,σ̄(~r, ~r′) = λ(~r)δσ,σ̄ (B.3)

In the same way we consider the free electron approximation, i.e H0 is in the
form :

H0 =
h̄2∇2

~r

2m
(B.4)
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that is the simplest way to describe charge carriers in a metallic solid [13].
We can make the substitution in the Hamiltonian B.1 :

Ψ̂σ̄(~r′)Ψ̂σ(~r) = F (~r) + δ̂σ̄σ(~r)

Ψ̂†σ̄(~r′)Ψ̂†σ(~r) = F ∗(~r) + δ̂†σ̄σ(~r)
(B.5)

where :

• F (~r) ≡< Ψ̂σ̄(~r′)Ψ̂σ(~r) > is the statistical average 1 of Ψ̂σ̄(~r′)Ψ̂σ(~r). It'
s important to note that F (~r) measures the correlations between the
pairs of electrons.
Gork'ov showed that F (~r) is proportional to the order parameter ψ
introduced in the Gizburg Landau's theory [16].

• δ̂σ̄σ(~r) describes the �uctuations around the mean value and satis�es
< δ̂σ̄σ(~r) >= 0.

Assuming that these �uctuations are small, one can expand the equation B.1
into the �st order in δ̂:

Ĥ '
∑
σ

∫
d~r Ψ̂†σ(~r)H0Ψ̂σ(~r) +∫

d~r ∆(~r)Ψ†σ(~r)Ψ̂†σ̄(~r) + ∆(~r)∗Ψ̂σ(~r)Ψ̂σ̄(~r)− E0 (B.7)

where ∆(~r) ≡ λ(~r)F (~r).
To diagonalize this one can introduce the Bogoliubov transformation [9]:

Ψ̂↑(~r) =
∑
n

γ̂n↑un(~r)− γ̂†n↓v
∗
n(~r)

Ψ̂↓(~r) =
∑
n

γ̂n↓un(~r) + γ̂†n↑v
∗
n(~r)

(B.8)

where un and vn are position-dependent eigenfunctions to be determined
so as to diagonalize the Hamiltonian [2]. The fermion operators γ̂nα and
γ̂†nα are called Bogoliubon operators : they annihilate and create excitations

1In the second-quantized �eld the statistical average of Â is de�ned by

< Â >≡ tr
(
ρ̂Â

)
(B.6)

where tr is the trace operator and ρ̂ is the Boltzmann operator
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from the superconducting state respectively. In this way one can obtain the
diagonalized Hamiltonian :

Ĥ = EG +
∑
α,n

εnγ̂
†
nαγ̂nα (B.9)

where Eg is the energy of the ground states, while εn is an energy of the
excitation in the state n.
One can calculate the commutators [Ĥ, Ψ̂↑(~r)] and [Ĥ, Ψ̂↓(~r)] using the rela-
tions:

[Ψ̂α(~r), Ψ̂β(~r′)] = 0 (B.10)

[Ψ̂†α(~r), Ψ̂†β(~r′)] = 0 (B.11)

[Ψ̂α(~r), Ψ̂†β(~r′)] = δαβδ(r − r′) (B.12)

and the properties (from equation B.9)

[Ĥ, γ̂nα] = −εnγ̂nα (B.13)

[Ĥ, γ̂†nα] = εnγ̂
†
nα (B.14)

and obtain the Bogoliubov -de Gennes equations (BdGE) for the eigenfunc-
tions un and vn:

(H0 − λ(~r))un(~r) + ∆(~r)vn(~r) = εnun(~r)

−(H∗0 − λ(~r))vn(~r) + ∆∗(~r)un(~r) = εnvn(~r)
(B.15)

If ∆(~r) = 0 the equations B.15 decouples in the form:

H0un(~r) = εnun(~r)

H∗0vn(~r) = −εnvn(~r)
(B.16)

so that un and vn are the ordinary electron and hole eigenfunctions of the
normal state, with energies ±εn relative to the Fermi energy [2].
In the case where ∆ = |∆|eiχ is constant in space and the magnetic �eld is
absent, as in the case of a bulk superconductor, the BdGE have the form:(

− h̄2

2m
∇2 − µ

)
un(~r) + ∆vn(~r) = εnun(~r)

−
(
− h̄2

2m
∇2 − µ

)
vn(~r) + ∆∗un(~r) = εnvn(~r)

(B.17)
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where µ = h̄2k2
F/2m. In a bulk system the solutions can typically be written

in terms of plain waves:

un(~r) =
1√
V
eiχUne

i~n~r , vn(~r) = Vn
1√
V
ei~n~r (B.18)

Replacing the eq. B.18 in B.17, one obtains:

ξnUn + |∆|Vn = εnUn

−ξnVn + |∆|Un = εnVn
(B.19)

where ξn = h̄2

2m
[n2 − k2

F ]. The condition of resolvability of B.19 gives:

εn = ±
√
ξ2
n + |∆|2 (B.20)

and the solution is :

Un =
1

2

(
1 +

ξn
εn

)
1/2

Vn =
1

2

(
1− ξn

εn

)
1/2

(B.21)

The energy |∆| is the lowest single-particle excitation energy in the supercon-
ducting state while 2|∆| corresponds to an energy which is needed to destroy
a Copper pair.
By de�nition:

∆(~r) ≡ λ(~r) < Ψ̂σ̄(~r′)Ψ̂σ(~r) >= λ(~r)
∑
n

(1− 2fn)un(~r)v∗n(~r) (B.22)

where fn is the distribution function of the electrons. The last equality
comes from the de�nitions B.8 and considering the statistical average of the
Bogoliubon operators :

< γ†nα, γmβ >= δnmδαβfn (B.23)

< γ†nα, γ
†
mβ >=< γnα, γmβ >= 0 (B.24)

where fn is the Fermi-Dirac distribution.
In this way one can self-consistently calculate ∆(~r) using the eqs. B.22 and
B.18:

un(~r)v∗n(~r) =
∆

2εn
(B.25)
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In particular ∆ is T-dependent and for T → Tc (and T < Tc) the form of
∆(T ) is found to be [11]:

∆(T ) = 3.06kbTc

(
1− T

Tc

)
1/2 (B.26)

In the case of ∆(~r) = const, because un and vn are plane waves, one can
rewrite the �eld operators as:

Ψ̂↑ =
∑
n

1√
V
ei~n~rĉn↑ (B.27)

Ψ̂↓ =
∑
n

1√
V
ei~n~rĉn↓ (B.28)

and likewise for Ψ̂†↑ and Ψ̂†↓. Comparing eq. B.8 with B.27 one can obtain
the following relations [2]:

ĉn↑ = u∗nγ̂n↓ + vnγ̂
†
n↑ (B.29)

ĉ†−n↑ = −v∗nγ̂n↓ + unγ̂
†
n↑ (B.30)

where the operators ĉ†n↑ and ĉn↑ create and annihilate an electron with mo-
mentum h̄k respectively [11]. In the new base, the state of the superconductor
can be written:

|ψφ〉BCS =
∏
n

(|un|+|vn|eiφc†n↑c
†
−n↓)|0〉 (B.31)

where |0〉 is the vacuum state with no particles present. Evidently, this
expression can be expressed as a sum:

|ψθ〉 =
∑
m

λm|ψm〉 (B.32)

where each term represent the part of the expansion of the product form
B.31 containing N/2 pairs [2]. We can project out this |ψm〉 by simply
multiply by e−iNθ/2 and integrating on θ over 2π because the members of the
|ψm〉 are identi�ed by a common phase factor eiNθ/2. by integrating over all
values of θ, i.e, by making θ completely uncertain, we have enforced a precise
speci�cation of the number N . On the other hand, with θ �xed as in B.31,
there is a indetermination on the number of particles.
These results illustrate the uncertainty [21]:

∆N∆θ ≤ 2π (B.33)
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Appendix C

Anderson description of a

Josephson junction

In order to diagonalize the Hamiltonian B.1, one can calculate using 1.24 the
element 〈NL − p′, NR + p′|H|ψ〉. The result is:

Ecp′ = 2cp′E0 − tcp′+1 − tcp′−1 (C.1)

where E is the energy of the whole system and for simplicity E0 ≡ ER ≡ EL.
Making the position cp′ = eip

′φ, the eq. C.1 becomes:

E = 2(E0 − tcos(φ)) (C.2)

Substituting in 1.22 cp = eipφ the state of the system becomes:

|ψ〉 =
∑
p

eipφ|NL − p〉|NR + p〉 (C.3)

One can de�ne NL − p→ N ′L and NR + p→ N ′R with:

N ′L +N ′R = N (C.4)

N ′R −N ′L = 2p (C.5)

and obtain:

|ψ〉 =
∑
N ′R,N

′
L

δN ′R+N ′L,N
ei
N′R−N

′
L

2
φ|N ′L〉|NR〉 (C.6)

Now two properties we have to consider. The �rst is that in a superconductor
N and φ are conjugate variables (with α ≡ R,L):

|Nα〉 =

∫ 2π

0

dθα
2π

e−i
Nα
2
θα |θα〉 ⇐⇒ |θα〉 =

∑
n

ei
Nα
2
θα|Nα〉 (C.7)
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The second is that the δ-function can be expressed in the form:

δN,N ′ =

∫ 2π

0

dθ

2π
ei(N−N

′)θ (C.8)

Substituting in the eq. C.6 we have :

|ψ〉 =
∑
N ′R,N

′
L

∫ 2π

0

dθ

2π
ei(N

′
R+N ′L−N)θ ei

N′R−N
′
L

2
φ|N ′L〉|N ′R〉

=
∑
N ′R,N

′
L

∫ 2π

0

dθ

2π
eiNθ eiN

′
R(θR+φ

2
)eiN

′
L(θL−φ2 )|N ′L〉|N ′R〉

= |ψ〉 =

∫ 2π

0

e−iNφ
dθ

2π
|θL −

φ

2
〉|θR −

φ

2
〉

(C.9)
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Appendix D

Microscopic model of a Josephson

junction

For �nite voltage situations involving the ac Josephson e�ect, a more com-
plete description is required respect to the one used in Section .
From a quantum mechanical point of view, in BCS approximation, a tunnel-
ing junction is usually described by the Hamiltonian 1.23:

Ĥ = ĤR + ĤL + ĤT (D.1)

Now we use the expression for ĤT introduced by Cohen et al. [23]:

ĤT =
∑
kqσ

(
Tkqσ ĉ

†
kσd̂qσ + T ∗kqσ ĉkσd̂

†
qσ

)
(D.2)

where ĉ†kσ(ĉkσ) create (destroys) one electron with momentum k and spin σ

in the left electrode and vice-versa d̂†kσ(d̂kσ) creates (destroys) one electron
with momentum q and spin σ in the right electrode.
The tunnel current I(V, T ) can be obtained from the expectation value of
the rate of change of the electron number of operator N̂R =

∑
kσ = ĉ†kσ ĉkσ

[4]:

I(V, T ) = −e < dN̂R

dt
> (D.3)

In many-body formalism, the expectation value is de�ned as:

< ṄR >=
Tr{e−H/kbT}ṄR

Tr{e−H/kbT}
(D.4)

and can be evaluated using the perturbation theory. In eq D.4 H is the the
total Hamiltonian of the system, kb is the Boltzman costant and the Tr{}
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denotes the trace operator inside the brackets.
In the case in which the electrodes are at the same potential V, as shown by
Anderson [21], at the �rst order in HT one can obtain the eq. s1.20.
Otherwise, if ∆V 6= 0, there is another channel of transmission characterized
by a current:

Itunnel =
2π

h̄
|T |2

∫ ∞
−∞

DL(E)DR(E)

(
fL(E)− fR(E)

)
dE (D.5)

due to tunnel of quasiparticles [47] .
In eq. D.5 T is the tunneling matrix Tkσ supposed to be energy-independent;
fL(fR) is the Fermi factor and DL(DR ) is the density of states in the left
(right ) metal.
In the hypothesis that DL and DR are constant and equal to the density of
states at the Fermi energy level and V → 0, eq. D.5 can be written:

Itunnel = σV (D.6)

σ can be regarded as a normal conductance: for low applied voltage, the
tunnel behaves as an ohmic element [4].
In the case in which V (t) = V0, the eq. D.4 at the �rst order in HT gives the
following expression for the total current:

Idc(V, T, t) = Icritical(V, T )sin(φ(t)) + σV (D.7)
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Appendix E

Runge-Kutta algorithm

The Runge Kutta algorithm is an e�cient method to calculate the solution
of di�erential equations [82] .
A di�erential equation can be always written in general in the form [77]:

d~y

dt
= ~f(~y, t) (E.1)

where ~y is the dynamical variable vector and ~f is the generalized velocity
vector, a term borrowed from the de�nition of the velocity. For semplicity
we consider an unidimensional problem where f and y are scalar function
Let an initial value problem be speci�ed as follows:

y′ = f(t, y), y(t0) = y0, t ∈ [t0, tf ] (E.2)

Now we can divide the interval of integration with step of size h. In each
subintervals, we can write:

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4)

tn+1 = tn + h
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where yn ≡ y(t0 + nh). The ki coe�cients are de�ned in the following way:

k1 = hf

(
tn, yn

)
, (E.3)

k2 = hf

(
tn +

h

2
, yn +

k1

2

)
, (E.4)

k3 = hf

(
tn +

h

2
, yn +

k2

2

)
, (E.5)

k4 = hf

(
tn + h, yn + k3

)
. (E.6)

Here yn+1 is the RK4 approximation of y(tn+1), and the next value yn+1 is
determined by the present value yn plus the weighted average of four incre-
ments, where each increment is the product of the size of the interval, h,
and an estimated slope speci�ed by function f on the right-hand side of the
di�erential equation.
We have [77]:

• k1 is the increment based on the slope at the beginning of the interval,
using y (Euler's method);

• k2 is the increment based on the slope at the midpoint of the interval,
using y and k1;

• k3 is again the increment based on the slope at the midpoint, but now
using y and k2;

• k4 is the increment based on the slope at the end of the interval, using
y and k3.

In averaging the four increments, greater weight is given to the increments
at the midpoint.
The RK4 method is a fourth-order method, meaning that the local truncation
error is on the order of O(h5) while the total accumulated error is on the order
of O(h4) [82].
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Appendix F

Simulations code

In this Appendix we have reported the code used in Monte Carlo simulations.

1 #inc lude<s td i o . h>
#inc lude<s t d l i b . h>

3 #inc lude<math . h>
#inc lude <time . h>

5

7 // funz ione per c a l c o l a r e con i numeri c a s u a l i uniformememnte
d i s t r i b u i t i

double sampleNormal ( void ) {
9 double v1 , v2 , s ;

11 do {
v1 = 2 .0 ∗ ( ( double ) rand ( ) /RAND_MAX) 1 ;

13 v2 = 2 .0 ∗ ( ( double ) rand ( ) /RAND_MAX) 1 ;

15 s = v1∗v1 + v2∗v2 ;
} whi l e ( s >= 1.0 ) ;

17

i f ( s == 0 . 0 )
19 re turn 0 . 0 ;

e l s e
21 re turn ( v1∗ s q r t ( 2 . 0 ∗ l og ( s ) / s ) ) ;

}
23

25 // c a l c o l o media
double media ( double ∗∗ va l o r i , i n t per iod , i n t index ) {

27 i n t i ;
double m=0;

29 f o r ( i =0; i<per iod ; i++)
{m=m+va l o r i [ index ] [ i ] ; }

31
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re turn m/ per iod ;
33

}
35

37 // Funzione per runge kutta

39 double g1 ( double v ) {
double g=v ;

41 re turn g ;
}

43

double g2 ( double x , double v , double Q, double i ) {
45 double f = (1/(Q) ) ∗v+(i s i n ( x ) ) ;

r e turn f ;
47 }

49

51 double min ( double ∗a , i n t s i z e ) {
i n t i ;

53

double m=100000;
55 f o r ( i =0; i<s i z e ; i++) {

i f (m>a [ i ] )
57 {

m=a [ i ] ;
59 }

61

63

}
65 re turn m;

67 }

69

/ /
71 i n t main ( ) {

73 i n t j , l ,m=0, per iod =2000 ,media_l=100 , delta_t ;
double dt , Ic , d1 , c1 , c2 , d2 , d3 , c3 ,Q, c4 , d4 , rampa , i s t a r t , iend ,N, i , v , x ,

T, gamma, N_integrazione , in , soglia_V , i_period , v_period ;
75 double ∗∗ v a l o r i=mal loc (3∗ s i z e o f ( double ∗) ) ;

double ∗ va l o r i 2=mal loc (media_l∗ s i z e o f ( double ) ) ;
77 f o r ( j =0; j <3; j++){

v a l o r i [ j ]=mal loc ( per iod ∗ s i z e o f ( double ) ) ;
79
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81 }
FILE∗ f i l e 2 = fopen ( " switch . dat" , "w" ) ;

83

85

/ / CONDIZIONI INIZIALI
87

FILE∗ f i l e 3 = fopen ( " parametr i . dat" , " r " ) ;
89

91 char s1 [ 7 ] , s2 [ 7 ] , s3 [ 7 ] , s4 [ 7 ] ;
char l i n e [ 5 0 ] ;

93 whi le ( f g e t s ( l i n e , s i z e o f l i n e , f i l e 3 ) !=NULL) {
i f (∗ l i n e == '#' ) cont inue ; /∗ i gno r e comment l i n e ∗/

95 e l s e { s s c an f ( l i n e , "%7s%7s%7s%7s " , s1 , s2 , s3 , s4 ) ; }

97

}
99

I c=a to f ( s1 ) ;
101 T=ato f ( s2 ) ;

Q=ato f ( s3 ) ;
103 delta_t=1;

N_integrazione=ato f ( s4 ) ;
105 // p r i n t f ( "%l f %l f %l f %l f " , Ic ,T,Q, N_integrazione ) ;

f c l o s e ( f i l e 3 ) ;
107 / /

109

// Calco lo de i parametr i
111 gamma=0.083902971508398∗(1/Q) ∗T/ Ic ; //gamma=2∗Gamma_maiusc , per

l a var ianza d e l l a d i s t r i b u z i o n e gauss iana
rampa=1/1e+7;

113 i end=1;
i s t a r t =0;

115 dt =0.1 ;
rampa=rampa∗( iend i s t a r t ) / fabs ( iend i s t a r t ) ;

117 N=(iend i s t a r t ) /( dt∗rampa ) ;
//numero generato casualmnente per in a l tempo t=0

119 srand ( time (NULL) ) ;
soglia_V=0.5∗Q;

121 in=sampleNormal ( ) ∗ s q r t (gamma/dt ) ;
/ /

123

f o r ( l =0; l<N_integrazione ; l++){
125 x=0;

v=0;
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127 f o r ( j =0; j<N; j++){
i f ( j % delta_t==0){

129 in=sampleNormal ( ) ∗ s q r t (gamma/( ( double ) ( delta_t ) ∗dt ) ) ; }
i=i s t a r t+rampa∗ j ∗dt ;

131 c1=dt∗g1 (v ) ;
d1=dt∗g2 (x , v ,Q, i+in ) ;

133 c2=dt∗g1 (v+d1/2) ;
d2=dt∗g2 (x+c1 /2 , v+d1/2 ,Q, i+rampa ∗0 .5∗ dt+( in ) ) ;

135 c3=dt∗g1 (v+d2/2) ;
d3=dt∗g2 (x+c2 /2 , v+d2/2 ,Q, i+rampa ∗0 .5∗ dt+( in ) ) ;

137 c4=dt∗g1 (v+d3 ) ;
d4=dt∗g2 (x+c3 , v+d3 ,Q, i+rampa∗dt+in ) ;

139

x=x+(0.1666666666) ∗( c1+2∗c2+2∗c3+c4 ) ;
141 v=v+(0.1666666666) ∗( d1+2∗d2+2∗d3+d4 ) ;

143

i f (m==per iod ) {
145 i_per iod=media ( va l o r i , per iod , 0 ) ;

v_period=media ( va l o r i , per iod , 2 ) ;
147 m=0;

i f ( v_period>soglia_V ) { f p r i n t f ( f i l e 2 , "\n %d %.8e " , l +1, i_per iod ) ;
149 i f ( l<media_l ) { v a l o r i 2 [ l ]= i_per iod ; }

i f ( l==media_l ) { i s t a r t=min ( va l o r i 2 , media_l ) 0 . 1 5 ; }
151 break ;}}

153

e l s e {
155 v a l o r i [ 0 ] [m]= i ;

v a l o r i [ 1 ] [m]=x ;
157 v a l o r i [ 2 ] [m]=v ;

m=m+1;}
159

}
161

163 }

165

167 f c l o s e ( f i l e 2 ) ;
r e turn 0 ;

169 }
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