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Introduction

Information Geometry is the study of the theory of information using the tools of

modern geometry, and it has given many contributions to information theory, due

to the works of Chentsov [10] and Amari [4] among others, and is still a theory

of great interest for its application to modern problems [3] [31].

This works tries to investigate if there is a possibility of cross-fertilization between

this theory and Quantum Mechanics, this idea originates from the following ob-

servation: Fisher-Rao metric can be seen as a term of Fubini-Study metric.

Let us justify this statement: Fisher-Rao [37] metric has a privileged role in In-

formation Geometry due to Chentsov theorem [10], it is usually obtained from

Shannon relative entropy [39] with an algorithm that we will review in chapter

3, and has the following form:

gFR “
n
ÿ

j“1

qjd log qj b d log qj (1)

where the qj are the components of a probability vector.

Now let us write Fubini-Study metric [24] on a Hilbert space H:

gFS “
xdψ|dψy

xψ|ψy
´
xdψ|ψy b xψ|dψy

xψ|ψy2
(2)

Introducing an orthonormal basis p|e1y , |e2y , . . . , |enyq in H (so clearly H has

complex dimension n) we have:

|ψy “
n
ÿ

j“1

zj |ejy zj P C @ j “ 1, 2, . . . , n (3)

Then one can take the polar decomposition of the complex coefficients zj:
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zj “
?
pje

iφj (4)

where ?pj are real positive numbers and the φj are phases.

Now let us write an explicit expression for Fubini-Study metric, omitting the

details of the calculation:

gFS “
n
ÿ

j,k“1

1

4
ppjd log pj b d log pj ´ pjpkd log pj b d log pkq

` pjdφj b dφj ´ pjpkdφj b dφk

`
i

2
ppjd log pj ^ dφk ´ pjpkd log pj b dφkq (5)

Now we can clearly recognise the first term of this expression as the Fisher-

Rao metric, while the other terms that are present in (5) arise because of the

phase present in (4).

Fisher-Rao metric is appropriate in Information Geometry, its exclusive use in

the classical case is justified by Chentsov theorem [10], is used to obtain relevant

results in this subject, like the existence of the Cramer-Rao bound [37] [2] and

we have written it in terms of the probabilities pj.

On the other hand Fubini-Study metric [24] is appropriate in Quantum Theory,

and we have written it in terms of the amplitudes zj. Formula (4) is a simple

example of a shift from probabilities to amplitudes, and allows us to write Fubini-

Study metric in terms of the components pj of a probability vector, and when we

do so we obtain, together with other terms depending on the phase, Fisher-Rao

metric as a term of Fubini-Study metric.

This simple consideration strongly suggests that there may exist a deep link be-

tween Information Geometry and Quantum Theory, and that such a link can be

seen from a perspective indicated by this transition from probabilities to ampli-

tudes [23].

In mathematical terms, this transition may be translated into a bundle language,

where probabilities constitute the base manifold while the total space is made of
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probability amplitudes.

The work is structured as follows:

• In the first chapter is given a bundle picture for the description of (pure and

mixed) quantum states [6], this description allows to discuss the procedure

of lifting from probabilities to amplitudes in a geometric fashion. Moreover

we will see how the problem of the purification of mixed states [44] can be

formulated in this same setting;

• In the second chapter there is a description of further geometric structure

that one can give in Quantum Mechanics [22], this is needed in order to

better understand the role of quantum metrics in Quantum Mechanics, and

how they may be obtained from relative entropies or their generalization;

• In the third chapter a brief review of Information Geometry is given [3],

and are discussed some fundamental result of the application of Information

Geometry to Classical Information Theory;

• In the fourth chapter we describe the difficulties and the problems that arise

when trying to use the methods developed in chapter 3 in the quantum

setting;

• In the fifth and final chapter, by using recent proposals [12–14, 28] we will

argue, that the bundle picture may be considered as an overall description

in terms of groupoids, which are the mathematical translation of Schwinger

approach to quantum theory.

In some recent works [25–27] are derived Schrödinger-Robertson indetermina-

tion relations from Cramer-Rao inequalities, extending the possibility of appli-

cation of Information Geometry to Quantum Metrology and to Foundations of

Quantum Mechanics.



Chapter 1

A bundle picture for quantum

states

In the standard approach to Quantum Mechanics [18] with every physical quan-

tum mechanical system we associate an Hilbert space H, and a pure state of the

physical system is associated to a (non null) vector |ψy of the Hilbert space.

On an Hilbert space H we have an Hermitian structure:

h : H ˆH Q pψ, φq ÞÑ xψ|φy P C (1.1)

i.e. a positive-definite, non-degenerate form that is linear in the second argu-

ment and anti-linear in the first. It induces a norm on H given by:

H Q |ψy ÞÑ xψ|ψy P R` (1.2)

The Copenaghen interpretation of Quantum Mechanics consists of interpret-

ing the quantity

P pψ, φq “
| xψ|φy |2

xψ|ψy xφ|φy
(1.3)

as the transition probability between the states |ψy and |φy; we will call the

quantity xψ|φy transition amplitude between these two states. Then usually one

defines the (normalised) expectation value of an observable A, that is an Hermi-

4
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tian operator on H over the state |ψy in the following way:

eApψq “
xψ|A |ψy
xψ|ψy

(1.4)

What is usually done is using only normalised vectors, that is restrict oneself

in the space SpHq defined as the space of the vectors of H0 that have norm one:

SpHq “
 

|ψy P H0 s.t. xψ|ψy “ 1
(

(1.5)

And one can forget about the denominators in the quantities (1.3) and (1.4).
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1.1 A bundle picture for pure states

Notice that neither the transition probabilities (1.3) nor the expectation values of

the observables (1.4) are affected if we multiply these vectors by an overall phase

or if we change the normalization of our vectors (or if we don’t normalize them

at all). Thus we find that all the information about the physical state encoded

in the vector |ψy is equally encoded in every vector that one could get from |ψy

by multiplying it by a real (non zero) positive number or by a pure phase, in this

spirit we define the following equivalence relation:

|ψy ” λ |ψy @λ P C0 – R` ˆ Up1q (1.6)

The equivalence classes defined inH0 by this equivalence relation will be called

the rays of the Hilbert space H, the space of all the rays will be called PpHq, the

complex projective space. Let us define a normalised rank-one projector:

ρψ “
|ψy xψ|
xψ|ψy

(1.7)

This is clearly a projector:

ρ2
ψ “ ρψ (1.8)

And it is rank-one since it projects a vector of H on a subspace of H that

has (complex) dimension 1. Notice that these objects are invariant under mul-

tiplication by a real positive number and by a pure phase, and are in a one to

one correspondence with the elements of PpHq. Thus rank-one projectors are in

a one to one correspondence with physically distinguishable pure states and they

will be the mathematical objects that represent pure states in our formalism.

Remark 1. It should be noticed that the space of rays does not depend on the Her-

mitian structure we use for the definition of Hilbert space, however the parametriza-

tion by means of rank-one projectors depends on the Hermitian product.

We can define the following map:
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π : |ψy ÞÝÑ ρψ (1.9)

This map is a projection map from vectors in H0 to rank-one projector that

are in bijection with the elements of PpHq. The geometric structure that emerges

is a principal bundle with total space H0, base space PpHq and with fibers that

are isomorphic to the 2-dimensional real Abelian Lie group C0. So we have the

following structure:

C0 ÝÝÝÑ H0
§

§

đ

PpHq

We could also first quotient w.r.t. the action of R` and then w.r.t. the action

of Up1q or viceversa:

R` ÝÝÝÑ H0
§

§

đ

Up1q ÝÝÝÑ SpHq
§

§

đ

PpHq

We already said that quantities (1.3) and (1.4) are invariant under multiplica-

tion of vectors by a phase and under multiplication by a real (non zero) positive

number (i.e. are constant along the fibers) so we can write in terms of rank-one

projectors:

eApψq “
xψ|A |ψy
xψ|ψy

“ TrtρψAu (1.10)

P pψ, φq “
| xψ|φy |2

xψ|ψy xφ|φy
“ Trtρψρφu (1.11)

Example 1. A qubit is a two level quantum mechanical system, so the Hilbert

space is C2. Let p|e1y , |e2yq be a basis of H, the generic vector can be written
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in that base:

|ψy “ z1 |e1y ` z2 |e2y (1.12)

zj “ xj ` iyj with xj, yj P R for j “ 1, 2 (1.13)

Now we can impose the normalization condition:

x2
1 ` y

2
1 ` x

2
2 ` y

2
2 “ 1 (1.14)

This is just the equation of S3 embedded in R4 – C2.

It is a well known result, due to Hopf [1], that S3 can be seen as the total

space of a principal bundle with base S2 and structure group Up1q.

So, going to the quotient with respect to the action of R` takes us to S3, then

going to the quotient with respect to the action of Up1q takes us on S2.

R` ÝÝÝÑ H0 – C2
0

§

§

đ

Up1q ÝÝÝÑ S3

§

§

đ

PpC2
0q – S2

What we are left with is the boundary of what is usually called the Bloch

sphere, we are going to "fill" the sphere when we will discuss mixed state.

We can consider the action of GLpHq on H:

GLpHq Q T : |ψy ÞÑ T |ψy (1.15)

This is clearly a linear action, consider now the projection via π of the trans-

formed vector:

πpT |ψyq “ T |ψy xψ|T :

xψ|T :T |ψy
(1.16)
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So we can state the following remark:

Remark 2. GLpHq acts linearly on H and the action "descends" to PpHq with

a non linear action

Notice now that the projections cancels the effect of a multiplication by a

complex non-zero number:

πp|zTψyq “ πpT |ψyq @z P C0 (1.17)

Thus the effective action on PpHq is that of the quotient of GLpHq with

respect to his center:

Z “ tZ P GLpHq : Z “ zI z P C0u (1.18)

Being the center a normal subgroup this quotient gives rise to a group, and

this group is the special linear group SLpHq. Moreover, being H an orbit of

GLpHq we can state the following remark:

Remark 3. PpHq is an orbit of the action of SLpHq defined by relation (1.16)

If we take an element U in the subgroup UpHq of GLpHq, we get:

πpU |ψyq “ U |ψy xψ|U :

xψ|U :U |ψy
“
U |ψy xψ|U :

xψ|ψy
“ UρψU

: (1.19)

That is just the coadjoint action of UpHq on the space of Hermitian operators.

Repeating the argument we exposed for GLpHq one gets that the effective action

on PpHq is the action of SUpHq. It is a well known fact [33] that UpHq acts

transitively on PpHq and thus we have:

Remark 4. PpHq is an orbit of the action of UpHq defined by relation (1.19),

and it is also an orbit of SU(H) and of SL(H) at the same time.

Now let us note that with rank-one projectors one can construct transition

probability:

P pφ, ψq “ Trtρφρψu (1.20)
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But one cannot construct amplitudes. While using elements of the total space,

that is vectors in the Hilbert space H0, we can.

So in this setting the idea of going from probabilities to amplitudes means going

from PpHq to H0, and this has an ambiguity given by an element of C0.

In this section we saw that the most natural setting for Quantum Mechanics is

not the Hilbert space itself but rather the complex projective space. Nonetheless

we need to recover the superposition principle in order to describe interference

phenomena, and the previous observation suggests that rank-one projectors are

not suitable to describe such phenomena.

Now we will first give an example that makes clear what is the problem with

describing interference with rank-one projectors, and then give a procedure to

overcome this difficulty.

So we want to consider a superposition between the states represented by two

rank-one projectors ρ1 and ρ2:

ρ1 “
|ψ1y xψ1|
xψ1|ψ1y

ρ2 “
|ψ2y xψ2|
xψ2|ψ2y

(1.21)

So what one can do is going back to the total space with the following section:

σ0 : ρψj ÞÑ |ψjy for j “ 1, 2 (1.22)

Now clearly we can take a linear superposition of the two states |ψ1y and |ψ2y:

|ψy “ c1 |ψ1y ` c2 |ψ2y |ψ1y , |ψ2y P H0; c1, c2 P C0 (1.23)

to obtain another vector of our Hilbert space.

Then consider the rank-one projector associated to |ψy:

ρ “
|ψy xψ|
xψ|ψy

(1.24)

Clearly we have that:
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ρ “
pc1 |ψ1y ` c2 |ψ2yqpc

˚
1 xψ1|` c˚2 xψ2|q

pc˚1 xψ1|` c˚2 xψ2|qpc1 |ψ1y ` c2 |ψ2y

“
|c1|

2ρ1 ` |c2|
2ρ2 ` c1c

˚
2 |ψ1y xψ2|` c˚1c2 |ψ2y xψ1|

|c1|
2 xψ1|ψ1y ` |c2|

2 xψ2|ψ2y ` c˚1c2 xψ1|ψ2y ` c1c˚2 xψ2|ψ1y
(1.25)

where the terms containing the two different vectors cannot be written in

terms of the rank-one projectors ρ1 and ρ2.

So what we have done is going back to the total space with the section given by

(1.22), then do the superposition on the total space and project back on the base

space. The problem we encountered is that there is no simple way of making

explicit the relation between the initial rank one projectors ρ1 and ρ2 and the

result of this procedure.

Now, to overcome this problem [22], we can consider a fiducial vector |ψ0y, which

is not orthogonal neither to |ψ1y nor to |ψ2y. Let us define:

ρ0 “
|ψ0y xψ0|
xψ0|ψ0y

(1.26)

And let us introduce the following section:

σ : ρj ÞÑ |φjy “ ρj |ψ0y for j “ 1, 2 (1.27)

Notice that this vector could be obtained multiplying |ψjy by a complex num-

ber, so they belong to the same fiber.

And now we take the linear superposition |φy “ c1 |φ1y ` c2 |φ2y and construct

the rank-one projector:

ρ “
|φy xφ|
xφ|φy

(1.28)

Clearly we have:

|φjy xφk| “ ρjρ0ρk xφj|φky “ Tr ρ0ρjρk (1.29)

And then:
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ρ “
2
ÿ

j,k“1

cjc
˚
kρjρ0ρk

c˚j ck Trtρ0ρjρku
(1.30)

This expression can be simplified once one considers that:

cjc
˚
j ρjρ0ρj

c˚j cj Trtρ0ρjρju
“
|ψjy xψj|ψ0y xψ0|ψjy xψj|
xψ0|ψjy xψj|ψjy xψj|ψ0y

“ ρj (1.31)

So we have that (1.30) becomes:

ρ “ ρ1 ` ρ2 `
c1c

˚
2ρ1ρ0ρ2

c˚1c2 Trtρ0ρ1ρ2u
`

c˚1c2ρ2ρ0ρ1

c˚2c1 Trtρ0ρ2ρ1u
(1.32)

The advantage of the latter procedure is that the result is written in terms

of rank-one projectors. In this way, even if we constructed the result using the

section (1.27), one can operate the superposition using formula (1.32) without

having to explicitly choose a section.
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1.2 A bundle picture for mixed states

Density matrices are used to describe mixed states, i.e. to describe statistical

mixtures of different quantum states. A typical example is when we have to

describe a beam of particles that is a mixture ofm fractions of particles in different

quantum states. In that case one writes:

ρ “
m
ÿ

j“1

wjρψj (1.33)

Where ρψj are rank-one projectors that represent the state of the j-th fraction

of the beam and the coefficients wj are the weights of the mixture. So the result

will be a convex combination of the ρψj , that is:

n
ÿ

j“1

wj “ 1; 0 ď wj ď 1 for j “ 1, 2, . . . ,m (1.34)

It is easily seen that ρ is a semi-positive definite, Hermitian and trace one

operator onH. We will assume thatH is finite dimensional (of complex dimension

n) because in this way the space of linear operators over H coincides with the

space of trace-class operators.

The space of semi-positive definite operators PpHq is a cone in the space of trace

class operators BpHq, while the trace one operators form an affine subspace, the

intersection between this subspace and PpHq is the space of density state, called

DpHq. With PkpHq and DkpHq we will denote the spaces of positive operators

or density states of rank k with k “ 1, 2, . . . , n.

It can be proven [29] that BDpHq “
Ťn´1
k“1 DkpHq, this means that density states

of non maximal rank are in the boundary of DpHq, while the space of density

states of maximal rank DnpHq is the bulk of DpHq, it also holds the following

result:

Theorem 1. The spaces DkpHq are smooth and connected submanifolds of BpHq

of (real) dimension 2nk´k2´1, while the whole DpHq and its boundary BDpHq “
Ťn´1
k“1 DkpHq are not smooth manifolds

This theorem allows us to say that DpHq is a stratified manifold, with n strata,
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given by the smooth manifolds DkpHq.

The spectral theorem [8] states that any Hermitian matrix can be diagonalized

by a unitary matrix, and that the resulting diagonal matrix has only real entries

i.e. it has real eigenvalues.

The semi-positive definiteness implies that the eigenvalues are all non-negative,

imposing also the trace one condition one has that the sum of the eigenvalues

(each taken with his algebraic multiplicity) have to be one.

So we have that every mixed state can be written in following form:

ρ “ U

¨

˚

˚

˚

˚

˚

˚

˝

λ1 0 . . . 0

0 λ2 . . . 0
...

... . . . ...

0 0 . . . λn

˛

‹

‹

‹

‹

‹

‹

‚

U : (1.35)

With:

n
ÿ

j“1

λj “ 1; 0 ď λj ď 1 for j “ 1, 2, . . . , n (1.36)

UU : “ U :U “ I (1.37)

So we see that every mixed state can be parameterized by giving a diagonal

matrix satisfying the constraints (1.36) and an element of Upnq. Diagonal matri-

ces of this kind can be put in a one to one correspondence with points in an n´1

dimensional simplex.

The vertices, or 0-faces, are associated to rank-one projectors, that is pure states,

while the k´1-faces with 1 ă k ă n`1 are rank k matrices, with the pn´1q-face

(that is the bulk of the simplex) made of maximal rank states, that is invertible

states. The barycenter of this simplex will be the so called maximally mixed state,

that is the state proportional to the identity.

There is however an issue with this decomposition, one can swap two eigenvalues,

while leaving unaltered all the others, with a unitary transformation. This means

that for every ρ we have n! different decompositions, one for every permutation
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Figure 1.1: A pictorial representation of a bidimensional simplex, in green one of
the Weyl chambers

of the eigenvalues.

So in order to uniquely decompose a density matrix via (1.35) we should not con-

sider elements in the n ´ 1 dimensional simplex but in its quotient with respect

to the action of the permutation group of degree n, the result of this quotient is

what is usually called the Weyl chamber, which can be then immersed in Sn´1,

see figure 1.1.

Equation (1.35) also tells us that the coadjoint action of the unitary group

Upnq connects density matrices that have the same spectrum, a stronger result

actually holds:

Remark 5. The orbits of the coadjoint action of the unitary group Upnq on DpHq

are smooth submanifolds of DpHq that are made of operators that have the same

spectrum

Example 2. Every Hermitian 2 ˆ 2 matrix can be written in the following

form:

ρ “ αpI` x ¨ σq @x P R3
@α P R (1.38)

with σ being a (tri)vector whose components are the Pauli matrices. Being

the Pauli matrices traceless, in order to have a trace one matrix we need to

put α “ 1{2, let us write the eigenvalues of ρ:

λ˘ “
1

2
p1˘ |x|q (1.39)
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So if we want ρ to be semi-positive definite we need 0 ď |x| ď 1. Every

2ˆ 2 density state can be decomposed in the following way:

ρ “ U

¨

˝

λ` 0

0 λ´

˛

‚U : (1.40)

0 ď λ˘ ď 1 λ` ` λ´ “ 1 U P Up2q (1.41)

The couples pλ`, λ´q can be seen as points in the monodimensional sim-

plex, that is the segment in figure 1.2, and quotienting with respect to the

action of the permutation group of degree 2 just means taking only half of it,

this means taking 1{2 ď λ` ď 1 and 0 ď λ´ ď 1{2. Putting λ` “ 1 and

λ´ “ 0 means that we are considering a pure state, and by remark 4 we know

that every pure state is reached if we consider the coadjoint action of the uni-

tary group on a pure state. But when λ` “ 1 and λ´ “ 0 then |x| “ 1, that

is:

x2
1 ` x

2
2 ` x

2
3 “ 1 (1.42)

That is just the equation of the sphere of radius 1 embedded in R3, so we

can conclude that pure states in the qubit case are in a one to one correspon-

dence with points on the surface of the sphere, this is just what we obtained

on example 1. Now consider 1{2 ă λ` ă 1 and 0 ă λ´ ă 1{2, in this case we

obtain spheres of radius |x| with 0 ă |x| ă 1, all these spheres share the same

center, that is x “ 0. This point is the whole orbit of the coadjoint action of

Upnq on the diagonal matrix with: λ` “ λ´ “ 1{2, in fact, being this matrix

proportional to the identity, this action is trivial on this point. So we get

the following picture, the bulk of the sphere is the stratum of maximal rank

(rank two) states, while the boundary is the stratum of pure states. States that

belong to the same sphere share the same spectrum, the center of this sphere

being the maximally mixed state.
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Figure 1.2: A pictorial representation of a monodimensional simplex, in green
one of the two Weyl chambers

Now we will describe the principal bundle structure that emerges in this set-

ting.

We can define the following projection map:

π1 : BpHq Q A ÞÑ ρ “
A:A

TrtA:Au
P DpHq (1.43)

This map associates an operator in BpHq with an Hermitian, semi-positive

definite and trace one operator, that is a mixed state. Clearly one can define

another projection:

π2 : BpHq Q A ÞÑ ρ “
AA:

TrtA:Au
P DpHq (1.44)

The operators at the numerator are already semi-positive definite and Hermi-

tian, while the denominator fixes the trace to one. Notice that:
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π1pUAq “ π1pAq (1.45)

π1pλAq “ π1pAq (1.46)

π2pAUq “ π2pAq (1.47)

π2pλAq “ π2pAq (1.48)

@U P Upnq @λ P R` (1.49)

So we have that π1 maps all elements connected by the left action of Upnq

in the same positive operator, while π2 maps all elements connected by the right

action of Upnq in the same positive operators. Both projections are not sensible

to multiplication by a real number, due to their normalization.

In order to define a bundle, the inverse images of this projections have to be

isomorphic [6]:

π´1
1 pAq – π´1

1 pA
1
q (1.50)

π´1
2 pAq – π´1

2 pA
1
q (1.51)

This can be done by restricting the maps to operators with trivial kernel (i.e.

invertible operators), so we have:

π1 : GLpn,Cq Q A ÞÑ ρ “
A:A

TrtA:Au
P DnpHq (1.52)

π2 : GLpn,Cq Q A ÞÑ ρ “
AA:

TrtA:Au
P DnpHq (1.53)

And the fibers result all isomorphic to Upnq ˆ R`, so we end up with the

following structure:



CHAPTER 1. A BUNDLE PICTURE FOR QUANTUM STATES 19

Upnq ÝÝÝÑ GLpn,Cq
§

§

đ

R` ÝÝÝÑ PnpHq
§

§

đ

DnpHq

We can, like we did for the pure states, consider the right action of GLpn,Cq

on the total space, in this case GLpn,Cq itself:

GLpn,Cq Q T ÞÑ AT (1.54)

And this will induce a non-linear action on the base space:

π1pAT q “
T :A:AT

TrtT :A:AT u
(1.55)

The effective action is again that of SLpn,Cq, as we showed in the case of

pure states, and it can be shown with analog arguments. One can easily see that

this action preserves the rank of ρ, and it actually holds a stronger result [29]:

Remark 6. The orbit of the action of the special linear group SLpn,Cq defined

by equation (1.55) on a state ρ of rank k coincides with the stratum DkpHq of

DpHq

Clearly all of this can be reproduced for π2 considering the left action of

GLpn,Cq. Notice that if we use only elements in the subgroup Upnq of GLpn,Cq

we get again the coadjoint action of the unitary group, that we already discussed.

Notice that the bundle we constructed for mixed states is trivial, unlike the one

we constructed for pure states.

In fact, every nˆ n complex matrix admits the following decomposition:

MnpCq Q A “ UP (1.56)

Where P is a semi-positive definite Hermitian matrix and U is a unitary

matrix. This decomposition is called polar decomposition of the matrix A.
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If one restricts himself to invertible matrices this decomposition is also unique.

So in our case we can always write:

GLpn,Cq Q A “ U
?
ρ (1.57)

And clearly the point A in the total space projects via π1 on the point on the

base space ρ.

So we can define everywhere the section:

σU : DnpHq Q ρ ÞÑ U
?
ρ P GLpn,Cq (1.58)

So this will be a global section for our bundle, showing that it is trivial.
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1.3 Purification of mixed states

Now we will see how the geometrical approach developed in this chapter can be

used to make contact with the idea of purification of mixed states. Let us recall

briefly what we mean by purification of mixed states.

Let us consider a mixed state ρ1 in the space of density states DpH1q associated to

the Hilbert space H1, then what one could ask is: can ρ1 be seen as the reduction

of a pure state of a bigger system?

What we are saying is that we want to find a pure state ρ12 in H “ H1 b H2,

that is indistinguishable from ρ1 if one makes measurements only on the system

associated to H1. This equals to find a ρ12 such that:

ρ1 “ Tr2 ρ12 ρ2
12 “ ρ12 (1.59)

Where with Tr2 we mean the partial trace over the subsystem H2.

Going from ρ1 to ρ12 is what is usually called purification of mixed states, while

the inverse process is called reduction. Clearly the purification process has an

ambiguity, we can see this by noticing that:

ρ1 “ Tr2 ρ1 b ρ2 @ρ2 P DpH2q (1.60)

This means that in the reduction process all information about the state ρ2

is lost.

In order to continue our discussion let us give the following result [6]: any density

matrix ρ on a Hilbert space H can always be purified choosing H2 “ H˚, this

means that we can find a purification of ρ as a vector of the Hilbert-Schmidt

space BpHq “ H bH˚.

So now we will take a slightly broader point of view and say that a purification

process is a procedure that, given a density state, associates to it a bounded

operator (that means a generic linear operator if we restrict ourselves to finite

dimensional Hilbert spaces). The associated procedure of that allows us to "go

back" to the density state will be called a reduction procedure.

The bundle picture developed the previous section is perfectly suitable to describe
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this situation. Recall now that we had two distinct projection maps:

π1 : GLpn,Cq Q A ÞÑ ρ “
A:A

TrtA:Au
P DnpHq (1.61)

π2 : GLpn,Cq Q A ÞÑ ρ “
AA:

TrtA:Au
P DnpHq (1.62)

At this level the choice of π1 or π2 remains arbitrary, but in chapter 5 we will

give different interpretations of these two maps.

Now we can point out a strong analogy between this procedure and the leitmotiv

of this work, that is the process of going from probabilities to amplitudes.

In fact we can now see the purification procedure as a section of this principal

bundle, while on the other hand the reduction procedure is represented by one of

the two projection maps π1 or π2.

Now let us study some geometrical aspects of this structure, from now on in this

section we will always consider the projection map π2.

In the first place let us find the vertical vectors of this bundle. As we already

said, the fibers of our principal bundle are the orbits of the right action of the

unitary group on GLpn,Cq (set apart the part relative to the action of R`). So

being A0 an element of GLpn,Cq, the following curve:

I P t ÞÑ Aptq “ A0Uptq Uptq P Upnq @t P I (1.63)

is contained in a fiber.

Provided that this curve is regular, we can find the vector tangent to this curve

in A0:

d

dt
Aptq

ˇ

ˇ

ˇ

ˇ

t“0

“ A0
dUptq

dt

ˇ

ˇ

ˇ

ˇ

t“0

(1.64)

Now let us use the fact that anti-Hermitian matrices are the infinitesimal

generators of unitary transformation:

d

dt
Aptq

ˇ

ˇ

ˇ

ˇ

t“0

“ A0K (1.65)
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With K “ ´K:.

Being this curve all contained in a fiber, the tangent vectors will be vertical.

So being both the starting point A0 and the curve generic, we can conclude that:

AK P VApGLpn,Cqq @K “ ´K: (1.66)

Where VApGLpn,Cq is the vertical part of the space tangent to GLpn,Cq in

A.

Vertical vectors are determined once one specifies the bundle structure, this is

not true for horizontal vectors: in order to specify horizontal vectors we need to

introduce a connection.

Let us recall that on the Hilbert-Schmidt space BpHq is canonically defined an

Hermitian product:

xA,By “ Tr
 

A:B
(

A,B P BpHq (1.67)

we can take its real part to get a metric on BpHq:

gpA,Bq “
1

2
Tr
 

A:B `B:A
(

(1.68)

This is what is usually called Bures metric [9].

One typical choice for the horizontal spaces is the space of vectors that are or-

thogonal (w.r.t. the metric we just defined) to vertical vectors. In that case one

would get that a vector X P TAGLpn,Cq is horizontal if:

gpAK,Xq “ 0 (1.69)

That is:

Tr
 

pAKq:X `X:AK
(

“ Tr
 

´A:XK `X:AK
(

“ Tr
 

pX:A´ A:XqK
(

“ xX:A´ A:X,Ky “ 0 (1.70)
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And this is sufficient to conclude that:

X:A´ A:X “ 0 (1.71)

This is because every element M ofMnpCq can be written as:

M “ K1 ` iK2 (1.72)

Where K1 and K2 are anti-Hermitian matrices.

Then one could ask if can be found a connection form that has the vectors of the

form (1.71) in its kernel.

This problem was addressed by Uhlmann [41] and he concluded that such a

connection form A has to satisfy the following relation:

A A:A` A:AA “ A:dA´ pdAq:A (1.73)

This is the approach usually followed if one is interested in geometric phases

[7] [40] [20] [19].



Chapter 2

Riemannian and Poisson Geometry

on H0

Let us start this chapter with the definition of Kähler manifold.

Before we say what a Kähler manifold is, we need the notion of realification

of a complex Hilbert space: given a complex Hilbert space H with (complex)

dimension n, the realified HR of H is a 2n-dimensional real vector space that has

the same group structure of H. Being HR a real vector space, only multiplication

by real scalars is allowed.

A complex structure is an operator that plays the role of the multiplication by

the imaginary unit i, so it will satisfy the property J2 “ ´I.

Let us construct a complex structure J , given a basis B “ pe1, e2, . . . , enq in H

and a basis in BR “ pf1, f2, . . . , f2nq in HR, we associate to a vector ψ of H

specified in the base B by the components pz1, . . . , znq, with zj “ uj ` ivj, to a

vector in HR specified in the base BR by the components pu1, . . . , un, v1, . . . , vnq.

The multiplication by the imaginary unit i in H will be represented in HR by

an operator J that maps the vector ψ “ pu1, . . . , un, v1, . . . , vnq in the vector

Jψ “ p´v1, . . . ,´vn, u1, . . . , unq.

A complex manifold is a manifold M that can be locally modeled on Cn for some

n. Then on the tangent bundle TM one can define the complex structure J via:

J : TZ ÝÑ TZ s.t. JpXq “ iX @v P TZ. (2.1)

25
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In a real, even-dimensional manifold, let us call it K, with a complex structure

and a closed two form satisfying the property:

ωpJX, JY q “ ωpX, Y q @X, Y P TK (2.2)

One can define a type p0, 2q tensor in the following way:

gpX, Y q “ ωpX, JY q @X, Y P TK (2.3)

And this will be a symmetric tensor, also it will be non degenerate if ω is non

degenerate. If g is also positive, then K is a Kähler manifold, notice that (2.2)

and (2.3) imply:

gpJX, JY q “ gpX, Y q @X, Y P TK (2.4)

The triple pg, J, ωq will be called an admissible triple.

Notice that (2.2), (2.3) and (2.4) show that J is a generator for both finite and

infinitesimal orthogonal and symplectic transformations.

We can also notice that it is possible to have alternative symplectic structures and

alternative complex structures which in some combinations give positive definite

symmetric tensors while in some other combinations give symmetric tensors which

are not positive definite.
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2.1 H0 as a Kähler manifold

Let us now take a closer look at the Hermitian structure h defined in (1.1), one

can separate its real and imaginary part:

hpψ, φq “
1

2
pxψ|φy ` xφ|ψyq `

1

2
pxψ|φy ´ xφ|ψyq “ gpψ, φq ` iωpψ, φq (2.5)

Notice that its real part is a symmetric, positive and nondegenerate form,

while its imaginary part is an antisymmetric and nondegenerate form. So we can

define the following objects:

gpψ, φq “
1

2
pxψ|φy ` xφ|ψyq (2.6)

ωpψ, φq “
1

2
pxψ|φy ´ xφ|ψyq (2.7)

The aim of this section will be to "promote" this objects to tensorial quanti-

tities and use them as a metric tensor and a symplectic form on H0 [22].

Being H a vector space, we can do what follows: given a point p in H and a

vector ψ P TpH – H we can construct the constant vector field that associates ψ

to every point of H, let us call it Xψ. Now we can redefine g and ω as tensors of

type (0,2) in the following way:

gpψ, φq “ gppqpXψ, Xφq (2.8)

ωpψ, φq “ ωppqpXψ, Xφq (2.9)

The form g can now be considered a Riemannian metric and ω a symplectic

form on an Hilbert manifold.

We will now switch to the Dirac notation and give explicit expressions of g, ω

and J in an orthonormal basis p|e1y , |e2y , . . . , |enyq, in the following will be used

the Einstein convention on summations over repeated indices:
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|ψy “ zjψ |ejy “ px
j
ψ ` iy

j
ψq |ejy (2.10)

|φy “ zjφ |ejy “ px
j
φ ` iy

j
φq |ejy (2.11)

hpψ, φq “ xψ|φy “ xjψxφj ` y
j
ψyφj ` ipx

j
ψyφj ´ y

j
ψxφjq (2.12)

Xψ “ zjψ
B

Bzj
“ xjψ

B

Bxj
` iyjψ

B

Byj
(2.13)

Xφ “ zjφ
B

Bzj
“ xjφ

B

Bxj
` iyjφ

B

Byj
(2.14)

With these positions one can easily show that in order to satisfy (2.5), (2.8)

and (2.9) g and ω have to assume the following form:

g “
n
ÿ

j“1

pdxj b dxj ` dyj b dyjq (2.15)

ω “
n
ÿ

j“1

dxj ^ dyj (2.16)

We can also easily find the form of the tensor J :

J “ dyj b
B

Bxj
´ dxj b

B

Byj
(2.17)

The following equalities are satisfied:

J2
“ ´I (2.18)

gpJXψ, JXφq “ gpXψ, Xφq (2.19)

ωpJXψ, JXφq “ ωpXψ, Xφq (2.20)

ωpJXψ, Xφq “ gpXψ, Xφq (2.21)

Now we can see that H0 (or better its realified HR) is a Kähler manifold and

the triple pg, J, ωq is an admissible triple.

Let us write the complete expression of h:
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h “
n
ÿ

j“1

pdxj b dxj ` dyj b dyjq ` i
n
ÿ

j“1

dxj ^ dyj (2.22)

Notice that this can be simply written as:

h “ xdψ|dψy (2.23)

Let us conclude this section by noticing that ω can be obtained in the following

way:

ω “
1

2
dJdpxψ|ψyq (2.24)

i.e. that the function 1
2
xψ|ψy is a Kähler potential for the sympletic form ω

dJdp
1

2
xψ|ψyq “ dJpxjdx

j
` yjdy

j
q “ dpxjdy

j
´ yjdx

j
q “

n
ÿ

j“1

dxj ^ dyj (2.25)

Using (2.17) and (2.21) one can obtain again (2.15).
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2.2 A connection one-form on H0

On H0 one can construct the following vector fields:

∆ “ xj
B

Bxj
` yj

B

Byj
(2.26)

Γ “ yj
B

Bxj
´ xj

B

Byj
“ Jp∆q (2.27)

These definitions allow us to obtain the bundle structure constructed in chap-

ter 1 in geometric terms: consider the distribution generated by ∆ and Γ, being

involutive this distribution will be associated to a foliation which is regular in

H0, the quotient space with respect to this foliation is indeed PpHq. The integral

curves of ∆ and Γ are respectively the orbits of the action of R` and of Up1q on

H0, so they jointly generate the action of C0.

These vector fields will be tangent to the fibers of our principal bundle, so they

will be vertical vector fields, from now on we will refer to these vector fields as

fundamental vector fields, because they generate the action of C0.

From the previous remark it is clear that a generic vertical vector will be of the

form:

V ppq “ α∆ppq ` β Γppq with α, β P R (2.28)

Where p is a point in the total space. The fundamental vector fields can also

be used to construct a connection on our principal bundle:

A “ ∆b
1

2

d xψ|ψy

xψ|ψy
` Γb

1

2

dJ xψ|ψy

xψ|ψy
(2.29)

For future use, let us define the following form:

θ “
1

2

d xψ|ψy

xψ|ψy
(2.30)

So we can rewrite our connection in the following way:
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A “ ∆b θ ` Γb Jpθq (2.31)

Let us give the explict expression of θ and Jpθq:

θ “
xjdx

j ` yjdy
j

xjxj ` yjyj
(2.32)

Jpθq “
xjdy

j ´ yjdx
j

xjxj ` yjyj
(2.33)

From which one can easily show:

θp∆q “ 1 pJpθqqp∆q “ 0 (2.34)

θpΓq “ 0 pJpθqqpΓq “ 1 (2.35)

So A is the identity over vertical vectors:

Ap∆q “ ∆ (2.36)

ApΓq “ Γ (2.37)

Vectors that are in the kernel of this p1, 1q type tensor field will be called

horizontal vectors. Our expressions clearly show that these structures may be

derived from a potential:

F “
1

2
log xψ|ψy (2.38)

One has that

dF “ θ (2.39)

So we can rewrite our connection in the following way:
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A “ ∆b dF ` Jp∆q b dJF (2.40)

Now we will prove that the function F defined in (2.38) is the only function

of xψ|ψy that gives a connection in the form (2.40) that defines ∆ and Γ “ Jp∆q

as vertical vectors.

This amounts to prove that the one form θ “ dF satisfies properties (2.34) and

(2.35). The first two of these relations in coordinates give the following relations:

BF

Bxj
xj `

BF

Byj
yj “ 1 (2.41)

BF

Bxj
yj ´

BF

Byj
xj “ 0 (2.42)

The other two give the same relations.

Now assuming that

F “ F pxψ|ψyq (2.43)

One gets that (2.42) is automatically verified, while (2.41) gives:

2
BF

B xψ|ψy
xjx

j
` 2

BF

B xψ|ψy
yjy

j
` “ 1 (2.44)

That means:

BF

B xψ|ψy
“

1

2 xψ|ψy
(2.45)

And this finally gives:

F “
1

2
log xψ|ψy (2.46)

Up to an additive constant.
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2.3 Fubini-Study metric on H0

Now we want to obtain a metric tensor on PpHq. In the first place we want to

redefine the Hermitian tensor h in order to make it "gauge invariant" (that is

invariant under the action of C0), we do this by normalizing it:

h “
xdψ|dψy

xψ|ψy
(2.47)

Notice that this tensor defined on H0, altough it is gauge invariant, cannot

be seen as the pullback via the projection map (1.9) of a tensor defined on PpHq,

this can be done if:

i∆h “ 0 (2.48)

iΓh “ 0 (2.49)

But this is not the case. What we can do is, in the spirit of Kaluza-Klein

theory, add to this tensor some terms in order to make relations (2.48) and (2.49)

satisfied. Now we are going to show that the quantity

h̃ “ h´ θ b θ ´ Jpθq b Jpθq ´ i Jpθq ^ θ (2.50)

is a tensor on H that can be thought of as the pullback via the projection

map defined in our bundle of a tensor defined on the base space.

i∆h̃ “ i∆h´ i∆pθqθ ´ i∆pJpθqqJpθq ´ i i∆pJpθqqθ ` i i∆pθqJpθq (2.51)

So using (2.34) and (2.35):

i∆h̃ “ i∆h´ θ ` iJpθq (2.52)

Using coordinate expression for h, θ and Jpθq:
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i∆h̃ “
xjdx

j ` yjdx
j ` ipxjdy

j ´ yjdx
jq

xjxj ` yjyj

´
xjdx

j ` yjdx
j

xjxj ` yjyj
` i

yjdx
j ´ xjdy

j

xjxj ` yjyj
“ 0 (2.53)

Now turning to Γ:

iΓh̃ “ iΓh´ iΓpθqθ ´ iΓpJpθqqJpθq ´ i iΓpJpθqqθ ` i iΓpθqJpθq (2.54)

And again using (2.34) and (2.35):

iΓh̃ “ iΓh` Jpθq ` iθ (2.55)

And again using coordinate expressions for this quantities:

iΓh̃ “
´yjdx

j ` xjdy
j ´ ipyjdy

j ` xjdx
jq

xjxj ` yjyj

`
yjdx

j ´ xjdy
j

xjxj ` yjyj
` i

xjdx
j ` yjdy

j

xjxj ` yjyj
“ 0 (2.56)

Let us write the terms that we added to h in another form:

θ b θ ` Jpθq b Jpθq ` iJpθq ^ θ “

“
pxjxk ` yjykqpdx

j b dxk ` dyj b dyk ` idxj ^ dykq

pxlxl ` ylylq2
“

“
xdψ|ψy b xψ|dψy

xψ|ψy2
(2.57)

So we can rewrite h̃ in the following way:

h̃ “
xdψ|dψy

xψ|ψy
´
xdψ|ψy b xψ|dψy

xψ|ψy2
(2.58)
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And this is just what is usually called the Fubini-Study metric. We will prove

that the imaginary part is given by:

ddJ
`1

4
log xψ|ψy

˘

“ ddJ
`1

2
F q (2.59)

In fact we have:

ddJ

ˆ

1

4
log xψ|ψy

˙

“ d

ˆ

dJ xψ|ψy

4 xψ|ψy

˙

“
1

2
dJpθq

“
ddJpxψ|ψyq xψ|ψy

xψ|ψy2
´ Jpθq ^ dpxψ|ψyq

“
ddJ xψ|ψy

2 xψ|ψy
´ Jpθq ^ θ (2.60)

And this is clearly equal to the imaginary part of (2.58), in fact we have,

recalling (2.24), that:

Imh “
ω

xψ|ψy
“
ddJpxψ|ψyq

2 xψ|ψy
(2.61)

and this is just the imaginary part of the first term. The other term can be

checked directly from (2.57).

Similarly can be proven that the symmetric part is:

JddJp
1

4
log xψ|ψyq “ JddJ

`1

2
F q (2.62)

This makes clear that, in order to define ω and g the only addtional objects

one needs are the complex structure J and the potential function F “ 1
2

log xψ|ψy.
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2.4 The pull-back to "trial submanifolds of states"

As a matter of facts, in some situation it may be useful to work actually into a

subset of the Hilbert space rather then into the whole of it because of computa-

tional convenience or because of experimental constraints

This is the typical approach in the so-called variational method, the method can

be described as follows: is given a certain problem, tipically finding the ground

state of a certain Hamiltonian H, being unable to find the solution analitically,

one restricts himself to a certain set of states M , called trial states, labelled with

a certain set of parameters tλ1, λ2, . . . , λmu.

Then one finds the values λ̄ of said parameters that select the element φ̄ of this

set that minimizes the expectation value of the Hamiltonian H. This will be the

best approximation in M for the ground states of the Hamiltonian H.

This process can be translated in geometric terms in the following way: consider

an immersion of the space of parameters Λ into the Hilbert space H:

I : Λ ãÑ H (2.63)

The image of this immersion will be the submanifold of trial states M , then

we can bring objects of interest on Λ using the pullback of the immersion I and

(hopefully) find the point λ̄ that solves the given problem. Then the solution of

our problem will be just the Ipλ̄q.

Now we will give an example of restriction of a metric tensor to a trial submanifold

of states, this will be done in the case that the full Hilbert space is L2pRq and we

want to restrict Fubini-Study metric to Gaussian states.

This example points out a crucial advantage of this process, in fact being L2pRq

an infinite dimensional Hilbert space, we should develop the calculus for such

spaces. But as we will see we will never write the explicit expression for the

metric on the full Hilbert space, avoiding technical difficulties.

Example 3. In order to restrict to Gaussian states let us define an immersion

i of the space of parameters that identify a Gaussian state in L2pRq:
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i : R3
Q pa, µ, φq ÝÑ ψa,µ,φ P L

2
pRq (2.64)

Where ψa,µ,φ is defined by:

ψa,µ,φpxq “

d ?
2

a
?
π
eiφpx´µq´

px´µq2

a2 (2.65)

We want to restrict Fubini-Study metric:

h “
xdψ|dψy

xψ|ψy
´
xdψ|ψy xψ|dψy

xψ|ψy2
(2.66)

to such states.

So to begin let us notice that:

i˚ |dψy “ dψa,µ,φ (2.67)

because exterior derivative always commute with the pull-back of a smooth

map, and the exterior derivative in the right side is simply done in the space

of parameters.

Then we are able to calculate:

i˚ |dψy “

d ?
2

a
?
π
eiφpx´µq´

px´µq2

a2

«

ˆ

2px´ µq3

a3
´

1

2a

˙

da

`

ˆ

2px´ µq

a2
´ iφ

˙

dµ` ipx´ µqdφ

ff

(2.68)

Then:

i˚ xdψ|dψy “

?
2

a
?
π

«

ˆ

4I4

a6
´

2I2

a4
`

I0

4a2

˙

dab da`

ˆ

4I2

a4
` I0φ

2

˙

dµb dµ

` I2dφb dφ` iφ

ˆ

2I2

a3
´
I0

2a

˙

da^ dµ` i
2I2

a2
dµ^ dφ

ff

(2.69)
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And:

i˚pxdψ|ψy b xψ|dψy “
2

a2π

«

ˆ

2I2

a3
´
I0

2a

˙2

dab da` φ2I2
0dµb dµ

` iφ

ˆ

2I2

a3
´
I0

2a

˙

da^ dµ

ff

(2.70)

Where:

I0 “

ż

R
e
´2px´µq2

a2 dx “

c

π

2
a (2.71)

I2 “

ż

R
px´ µq2e

´2px´µq2

a2 dx “

c

π

2

a3

4
(2.72)

I4 “

ż

R
px´ µq4e

´2px´µq2

a2 dx “

c

π

2

3a5

16
(2.73)

While the integrals:

I1 “

ż

R
px´ µqe

´2px´µq2

a2 dx I3 “

ż

R
px´ µq3e

´2px´µq2

a2 dx (2.74)

are zero.

Notice also that:

xψ|ψy “ 1 (2.75)

Then combining these results one obtains:

i˚h “
1

2a2
dab da`

1

a2
dµb dµ`

a2

4
dφb dφ`

i

2
dµ^ dφ (2.76)

So we have that the pullback of the Hermitian tensor h can be split in

its real part, that is a symmetric tensor, and its imaginary part, that is a
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skew-symmetric tensor:

i˚g “
1

2a2
dab da`

1

a2
dµb dµ`

a2

4
dφb dφ (2.77)

i˚ω “
1

2
dµ^ dφ (2.78)

Notice that the imaginary part is a closed two form, but it is not symplectic,

since it is degenerate, while the real part is genuinely a metric tensor.



Chapter 3

A glance at Information Geometry

Information Geometry is the study of statistical estimation from a geometric

point of view, this means that we will give a geometric setting for the discussion

and construct geometrical object that have significance from the point of view of

Information Theory.

In this chapter we will give a brief review of this subject, a complete treatment

can be found on [3]. This subject is widely studied and has a vast number of

application, for example in Machine Learning and Signal Optimization [4].

40
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3.1 Statistical manifolds and distinguishability

Let χ be a sample space, let us assume for simplicity that it is finite (of cardi-

nality n): χ “ tx1, x2, . . . , xnu. We can construct the space P pχq of probability

distributions on χ, that is the space of maps of this kind:

p : χ ÝÑ R s.t. ppxjq ě 0;
n
ÿ

j“0

ppxjq “ 1 (3.1)

Then we could take some family S of elements of P pχq, for example one that

can be parametrized by a set of parameters tλ1, λ2, . . . , λku. Then a statistical

manifold is a manifold whose points are in a one to one correspondence with the

elements of S. Let us give an example:

Example 4. Let χ “ tH,T u, this is a sample space of cardinality two, and

can be seen as the sample space of a coin toss. The space of all probability

distributions is just the mono-dimensional simplex, as we already pointed out

in chapter 2. So for example a fair coin will give equal probabilities of get-

ting a tail or a head, and will be associated to the barycenter of the simplex

(see fig. 1.2), while a biased coin that always gives head will be associated to

one of the extremal points of the simplex. Now let us consider the problem

of distinguishing between these two coins. Distinguish between two probability

distributions means that, having the possibility to make trials with a source

that obeys some distribution p, we want to know what is the probability, after

N trials, that we will observe a different distribution q.

It is easy to convince ourselves that this task is more difficult (that is takes a

larger number of trials to have the same confidence) if we can make trials on

the biased coin, while if we can make trials on the fair coin, and we are lucky

enough to get a tail, we could also conclude that the probability that the coin

is biased is zero.

This simple example makes clear the fact that distinguishability between sta-

tistical distributions can not in general be seen as a distance on a statistical
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manifold, since distance between two points is a symmetric quantity in the

exchange of the two points, while we have shown that distinguishability is not.

So, in order to make a statistical discussion, we need a measure of distinguisha-

bility between distributions, this will be provided by the so-called divergence func-

tion (or contrast function). We will first give the definition in coordinates, then

switch to a coordinate-free discussion of the argument in the next section.

Definition 1. A divergence function F is a two point function on a statistical

manifold M :

F : M ˆM ÞÑ R (3.2)

that satisfies the following properties, introducing local coordinates px, yq on

M ˆM :

F px, yq ě 0 (3.3a)

F px, yq “ 0 iff x “ y (3.3b)

BF

Bxj

ˇ

ˇ

ˇ

ˇ

x“y

“ 0 for j “ 1, 2, . . . , n (3.3c)

BF

Byj

ˇ

ˇ

ˇ

ˇ

x“y

“ 0 for j “ 1, 2, . . . , n (3.3d)

And such that the Hessian:

Gjk “
B2F

BxjByk

ˇ

ˇ

ˇ

ˇ

x“y

(3.4)

is a positive-definite matrix.

It is worth noting here that we did not demand that the function F is sym-

metric in the exchange of the two arguments. As we discussed in example 4, this
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property is necessary in order to makes the function F suitable as a distinguisha-

bility measure.
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3.2 From divergence functions to metric tensors

Now we are going to restate the definition of divergence functions in an intrinsic

fashion and then see how we can "promote" the Hessian in (3.4) to a metric

tensor [32]. In order to do that we need to introduce some geometric tools on

M ˆM .

Let us define the diagonal immersion:

iD : M Q m ãÑ pm,mq PM ˆM (3.5)

In order to rewrite equations (3.3) in an intrinsic fashion we need to deal with

bi-forms [35], a bi-form is an element of ΩppMq b ΩqpMq so it can be regarded

either as a q-form valued p-form on M or as a p-form valued q-form on M . We

also need the following definitions:

d1 b I : Ωp
pMq b Ωq

pMq ÝÑ Ωp`1
pMq b Ωq

pMq (3.6)

Ib d2 : Ωp
pMq b Ωq

pMq ÝÑ Ωp
pMq b Ωq`1

pMq (3.7)

Where d1 and d2 act as the canonical exterior derivative on ΩpMq.

Now we are in the position to rewrite equations (3.3):

F ppq ě 0 @p PM ˆM (3.8a)

i˚DF “ 0 (3.8b)

i˚Dpd1 b IqF “ 0 (3.8c)

i˚DpIb d2qF “ 0 (3.8d)

From now on we will use a simplified notation and simply write d1 and d2

when there is no ambiguity.

In order to rewrite the property of the Hessian of F to be positive-definite we
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need to consider two immersions of vector fields of M into the vector fields on

M ˆM . Given a vector field X P XpMq we can construct the following vector

fields in XpM ˆMq: Xl “ X ‘ t0u or Xr “ t0u ‘ X where the direct sum is

meant in the module space of vector fields.

Then we define the metric tensor g defined by F in the following way:

Definition 2. We say that the metric tensor g is obtained from the divergence

function F if:

gpX, Y q :“ i˚D
`

pd1d2F qpXl, Yrq
˘

“ .i˚DpLXlLYrF q (3.9)

for all X, Y in XpMq

Now we will retrace this whole procedure using as statistical manifold the n´1-

dimensional simplex and as divergence function the Shannon relative entropy.

Example 5. A point in the n´1-dimensional simplex Sn´1 is individuated by

an n-tuple p “ pp1, p2, . . . , pnq s.t. 0 ď pj ď 1 @j “ 1, 2, . . . , n and they sum

to one. Shannon relative entropy between two probability distribution p and

q is defined as:

SSHpp, qq “
n
ÿ

j“1

pj log
pj
qj

(3.10)

This is a function from Sn´1 ˆ Sn´1 to R, this function satisfies the first

two relations of (3.8) but not the other two. So in order to call it a divergence

function we need to modify it in this way, for details and motivations see [3]:

rSSHpp, qq “
n
ÿ

j“1

pj log
pj
qj
´ pj ` qj (3.11)

This new function satisfies the first two relations of (3.8) but now:
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i˚Dpd1
rSSHq “ i˚D

ˆ n
ÿ

j“1

dpj log pj ` pjdplog pjq ´ dpj log qj ´ dpj

˙

“

i˚D

ˆ n
ÿ

j“1

dpj log pj ´ dpj log qj

˙

“

n
ÿ

j“1

dpj log pj ´ dpj log pj “ 0 (3.12)

And an analog calculation can be done for d2, so this is a divergence func-

tion. Anyway SSH and rSSH define the same metric tensor, so we refer to SSH

as a divergence function and use it to construct the metric tensor:

gFR “ i˚D
`

d1d2SSH
˘

“

n
ÿ

j“1

pjd log pj b d log pj (3.13)

This is what is usually called the Fisher-Rao metric tensor. In section 3.4

we will see the importance of this metric tensor. This tensor can be rewritten

in the following forms:

gFR “
n
ÿ

j“1

dpj b d log pj “
n
ÿ

j“1

d log pj b dpj

“

n
ÿ

j“1

pjd log pj b d log pj “
n
ÿ

j“1

4d
?
pj b d

?
pj (3.14)

the third form appears as an expectation-value 2-form and will be usually

preferred.

If we introduce the parameters xj “ 2
?
pj in the last form Fisher-Rao metric

appears as an Euclidean metric:

gFR “
n
ÿ

j“1

dxj b dxj (3.15)

Let us conclude this section with an interesting observation, we have seen how

we can obtain a metric tensor on M from a divergence function as:
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gpX, Y q “ i˚D
`

pd1d2F qpXl, Yrq
˘

(3.16)

But in chapter 2 we also obtained a metric tensor (and a symplectic form) in

a different fashion, using the complex structure defined on our complex manifold.

Now, let us introduce on M ˆM the coordinates tx1, x2, . . . , xn, y1, y2, . . . , ynu,

where the first n coordinates specify a point on the first copy of M and the last

n do the same on the second copy of M .

We can define on M ˆM the following complex structure:

J “ dxj b
B

Bxj
´ dyj b

B

Byj
(3.17)

We proved that with this choice of the complex structure the following result

holds:

i˚DpddJF pJX, Y qq “ ´4i˚Dpd1d2F pXl, Yrqq (3.18)

Where d is the exterior derivative ofMˆM , X and Y are vector fields defined

on M ˆM :

X “ Xj
x

B

Bxj
`Xj

y

B

Byj
P XpM ˆMq (3.19)

Y “ Y j
x

B

Bxj
` Y j

y

B

Byj
P XpM ˆMq (3.20)

While:

Xl “ Xj
x

B

Bxj
P XpMq ‘ t0u (3.21)

Yr “ Y j
y

B

Byj
P t0u ‘ XpMq (3.22)

This makes a connection between the two procedures introduced in this and

in the previous chapter to obtain a metric, but actually the procedure involving

the complex structure is more general.
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In fact we have shown that the two sides of (3.18) coincide only when we choose

a J in the form in which we defined it in (3.17). This gives the possibility of

obtaining a metric for every possible choice of the complex structure, and also

has another advantage: the definitions of d1, d2, require that the manifold has

the structure of a product M ˆM , while defining d and dJ doesn’t require such

a structure.

Let us conclude this section with the proof of (3.18):

We will write the two sides of (3.18) and then compare them.

d1d2F pXl, Yrq “
B2F

BxjByj
pdxjpXlqdy

k
pYrq ´ dy

j
pXlqdx

k
pYrqq “

B2F

BxjByj
Xj
xY

k
y

(3.23)

So:

i˚Dpd1d2F pXl, Yrqq “
B2F

BxjByj

ˇ

ˇ

ˇ

ˇ

x“y

Xj
xY

k
y (3.24)

Now let us denote with zj the two set of coordinates together:

zj “ xj @j “ 1, . . . , n (3.25)

zj “ yj @j “ n` 1, . . . , 2n (3.26)

Then on the left hand side of (3.18) we have:

ddJF pJX, Y q “
B2F

BzjBxj
pdzjpJXqdxkpY q ´ dxjpJXqdzkpY qq

´
B2F

BxjByj
pdzjpJXqdykpY q ´ dxjpJXqdzkpY qq (3.27)

So:

ddJF pJX, Y q “ ´2
B2F

BxjByj
pXj

xY
k
x `X

j
yY

k
y q (3.28)
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Taking the pull-back of the diagonal immersion we get:

i˚DpddJF pJX, Y qq “ ´4
B2F

BxjByj

ˇ

ˇ

ˇ

ˇ

x“y

Xj
xY

k
y (3.29)

So (3.18) is proven.
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3.3 Dual connections on statistical manifolds

In section 3.2 we have constructed a metric tensor from the second derivative

of a divergence function F , now we will see what can be done with the third

derivatives of a divergence function.

It can be easily shown that the following quantities:

Γlkhpxq “ gjl
B3F

BxlBxkByh
ˇ

ˇ

x“y
Γ˚ljkhpxq “ gjl

B3F

BxlBykByh
ˇ

ˇ

x“y
(3.30)

Transform under coordinates transformation as the coefficients of a connec-

tion, so these cannot be seen as the components of any tensor, but we can define

the following quantities:

T hjkpxq “ Γhjkpxq ´ Γ˚hjk pxq (3.31)

And this quantities will transform as the components of a tensor. In order

to understand the role of this two connections and of this tensor we need the

definition of dual connections.

Let us denote with LX the Lie derivative along the field X. Then we define dual

connections (w.r.t. the metric g) implicitly with relations:

gp∇XY, Zq :“ i˚pLXlLYlLZrF q (3.32)

gp∇˚
XY, Zq :“ i˚pLXlLYrLZrF q (3.33)

It is shown in [3] that (3.30) define a pair of dual connections with respect

to the metric given by the same divergence function. Then we can define the

skewness tensor as:

T pX, Y, Zq “ gp∇XY, Zq ´ gp∇˚
XY, Zq (3.34)

And this clearly gives equation (3.31) when we write it in coordinates.
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The dual connections defined in this section are torsionless, and their "average":

Γ0 “
1

2
pΓ` Γ˚q (3.35)

is also a metric connection for g, so it is the Levi-Civita connection associated

to the metric g. The triple pM, g, T q is usually called statistical model or Amari-

Chentsov structure.

One could wonder if there are other combinations of derivatives that give rise to

other covariant tensors, in [15] there is an answer to this question.

In this work it is proved that from a divergence function one can extract only one

metric, only two dually related connections and no tensors of rank higher than

four can be extracted, if the divergence function is analytic.
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3.4 Coarse graining and Chentsov theorem

We have seen that we can construct a metric tensor on a statistical manifold from

a divergence function, but at this point the choice of the function, and therefore

of the metric one is going to obtain seems quite arbitrary.

In this section we will give a criterion to select a certain class of divergence func-

tions, and all these functions give rise to the same metric, that is the Fisher-Rao

metric.

This work was made by Chentsov [10] working in the framework of category the-

ory, we will give the result without proof, but we will give the intuition of the

theorem working with more familiar objects [17].

Let χ “ tx1, x2, . . . , xnu be a finite sample space, let Mn be the statistical mani-

fold of all probability distribution on χ, and assume we have defined a divergence

function F on M . We can divide χ in m subsets tX1, X2, . . . , Xmu with m ă n

and such that:

m
ď

j“1

Xj “ χ Xj XXk “ H @j ‰ k (3.36)

We can consider the case where we are not able to know the outcome of the

trial, but only to determine at which subset Xj it belongs, this process goes under

the name of coarse graining.

So, starting from a probability distribution ppxq “ pppx1q, ppx2q, . . . , ppxnqq, we

can consider a coarse grained probability distribution p̃ on a coarse grained sample

space χ̃ “ ty1, y2, . . . , ymu such that:

p̃pykq “
ÿ

xjPXk

ppxjq (3.37)

The space of these probability distribution will form another statistical man-

ifold, let us call it Mm.

So coarse graining is realized by a map:

φ : Mn ÝÑMm (3.38)
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That maps probability distribution on χ to probability distributions on χ̃.

Coarse graining is a process with loss of information, so if we want our divergence

function F to be a measure of distinguishability between probability distribution,

it is reasonable to impose that this should not increase with coarse graining.

In order to do this let us introduce a family of divergence functions tF ku s.t. F k

is a two-point function on the statistical manifold Mk:

Definition 3. The family tFku satisfies the monotonicity property if:

F n
pp, qq ě Fm

pφppq, φpqqq (3.39)

For all p, q PMn and for all maps φ of this kind.

A typical example is the family of Shannon entropies:

SkSHpp, qq “
k
ÿ

j“1

pk log
pk
qk

(3.40)

We can define the monotonicity property also for metric tensors, let tgku be

a family of metric tensors s.t. gk is defined on Mk:

Definition 4. The family tgku satisfies the monotonicity property if:

gnpX,Xq ě pφ˚gmqpX,Xq (3.41)

For all X in XpMnq and for all maps φ of this kind.

One can prove [3] the following result:

Theorem 2. If a divergence function F obeys the monotonicity property then

the metric obtained from F with the procedure exposed in section 3.2 obeys the

monotonicity property.

Now let us state Chentsov theorem:
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Theorem 3 (Chentsov). In the classical setting the only metric that satisfies the

monotonicity property is Fisher-Rao metric tensor.

Let us stress that in the work of Chentsov the fact that g can be obtained

from a divergence function plays no role.

But then if one considers this possibility, Chentsov theorem allows to state the

following remark:

Remark 7. In the classical setting every divergence function that satisfies the

monotonicity property gives rise to the only metric that satisfies the monotonicity

property, that is Fisher-Rao metric.

In the next chapter we will see that, switching to the quantum case, if one

uses a category of maps relevant in this case, one can rewrite the monotonicity

condition for two point functions and for metric tensors, and a theorem analogue

to theorem 2 holds.

The point is that Chenstov theorem doesn’t hold in this case, so there is no pos-

sibility of giving a unique metric in the quantum setting.



Chapter 4

From Classical to Quantum

probabilities

As we already said, the usual setting for discussing classical probabilities for a

finite sample space X of cardinality n is the n´ 1 dimensional simplex Sn´1. We

can immerse Rn in the space of nˆ n matrices:

I : p “ pp1, p2, . . . , pnq ÞÝÑ ρ0 “

¨

˚

˚

˚

˚

˚

˚

˝

p1 0 . . . 0

0 p2 . . . 0
...

... . . . ...

0 0 . . . pn

˛

‹

‹

‹

‹

‹

‹

‚

(4.1)

The image via I of the n ´ 1 dimensional simplex Sn´1 is the space of n ˆ n

diagonal, semi-positive definite and trace one matrices, let us call it Dn. So this

can be used to immerse the space of classical probability distributions over a finite

sample space in the space of density states of a finite dimensional Hilbert spaceH.

I : Dn ãÑ DpHq (4.2)

And this gives the space of "classical states" of quantum mechanics, that is

density states that commute with each other.

55
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4.1 Quantum description of classical probabilities

Von Neumann-Umegaki [43] relative entropy is one of the entropies one can use

in Quantum Information Theory, it has the form:

SV Npρ, σq “ Trtρplog ρ´ log σqu ρ, σ P D (4.3)

Where ρ and σ are density states.

Now we can repeat the procedure illustrated in the previous chapter to obtain a

metric tensor from this divergence function.

As we did for Shannon relative entropy, we modify it in this way:

rSV Npρ, σq “ Trtρplog ρ´ log σq ´ ρ` σu (4.4)

So that this satisfies conditions (3.8), let us verify condition (3.8c) as an

example:

i˚Dpd1
rSV Npρ, σqq “ i˚DpTrtdρ log ρ` ρ d log ρ´ dρ log σ ´ dρu

“ Trtdρ log ρ` ρ d log ρ´ dρ log ρ´ dρu “ Trtρ d log ρ´ dρu (4.5)

Now we are tempted to use d log ρ “ dρ{ρ but we can not, because dρ and

1{ρ do not commute. So we will use the fact that every Hermitian operator is

diagonalized by a unitary transformation:

ρ “ Uρ0U
: (4.6)

and the fact that, being the logarithm an analitic function, holds the following

equality:

log
`

BAB´1
˘

“ B logAB´1 (4.7)

For any invertible matrix B and semi positive-definite matrix A.
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i˚Dpd1
rSV Npρ, σqq “ Tr

 

Uρ0U
:d log

`

Uρ0U
:
˘

´ dpUρ0U
:
q
(

“ Tr
 

Uρ0U
:dpU log ρ0U

:
q ´ dpUρ0U

:
q
(

(4.8)

And now, using the fact that dpU :q “ ´U :dUU :, the Leibniz rule and the

cyclic property of the trace one gets:

i˚Dpd1
rSV Npρ, σqq “ Trtρ0U

:dU log ρ0 ` ρ0d log ρ0 ´ ρ0 log ρ0U
:dU

´ U :dUρ0 ´ dρ0 ` ρ0U
:dUu “ Trtρ0d log ρ0 ´ dρ0u (4.9)

Now we can use d log ρ0 “ dρ0{ρ0, because they commute, and we find that:

i˚Dpd1
rSV Npρ, σqq “ Trtρ0d log ρ0 ´ dρ0u “ Tr

 

ρ0ρ
´1
0 dρ0 ´ dρ0

(

“ 0 (4.10)

Now we can calculate the metric tensor induced by this divergence function

with the same technique we used in the last calculation:

i˚Dpd1d2
rSV Npρ, σqq “ i˚D Trtdρb d log σu

“ i˚D Tr
 

dpUρ0U
:
q b dpV log σ0V

:
q
(

“ i˚D TrtpdUρ0U
:
` Udρ0U

:
´

Uρ0U
:dUU :q b pdV log σ0V

:
` V d log σ0V

:
´ V log σ0V

:dV V :qu

“ TrtU :dUρ0 b U
:dU log ρ0 ´ U

:dUρ0 b log ρ0U
:dU

` ρ0U
:dU b log ρ0U

:dU ´ ρ0U
:dU b U :dU log ρ0 ` dρ0 b d log ρ0u

“ Tr
 “

U :dU, ρ0

‰

b
“

U :dU, log ρ0

‰

` dρ0 b d log ρ0

(

(4.11)

This metric tensor can be written in this way:

gV N “ gU ` gFR (4.12)
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Where:

gFR “ Trtdρ0 b d log ρ0u (4.13)

gU “ Tr
 “

U :dU, ρ0

‰

b
“

U :dU, log ρ0

‰(

(4.14)

So what we found is that the metric splits in two parts, one is just Fisher-Rao

metric on the diagonal part, and the other is a metric on Upnq that is written

in terms of the Maurer-Cartan one form of Upnq. Now we will write explicitly

the metric obtained from Von Neumann-Umegaki relative entropy in the case of

a qubit.

Example 6. A generic diagonal density state is written in the following form:

ρ0 “

¨

˝

1`w
2

0

0 1´w
2

˛

‚“
1

2
pI` wσ3q w P r´1; 1s (4.15)

So we have:

Trtdρ0 b d log ρ0u “ Tr

"

d

ˆ

1

2
pI` wσ3q

˙

b d

ˆ

log
1

2
pI` wσ3q

˙*

“
1

2
Tr
 

σ3dw b pI` wσ3q
´1σ3dwq

(

“
1

2
Tr
 

pI` wσ3q
´1
(

dw b dw

“
1

1´ w2
dw b dw (4.16)

It is a well known result [34] that Maurer-Cartan one form can be written

in the following form:

U :dU “
i

2
σjθ

j (4.17)

where the θj are the elements of a basis of left invariant one forms on

Up2q. This is the Fisher-Rao part of the metric. For the other term we have:
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“

U :dU, ρ0

‰

b
“

U :dU, log ρ0

‰

“ ´
1

4
rσj, ρ0srσk, log ρ0sθ

j
b θk (4.18)

Clearly:

rσ3, ρ0s “ rσ3, log ρ0s “ 0 (4.19)

After a tedious but straightforward calculation one gets:

Trtrσ1, ρ0srσ1, log ρ0su “ 2w log
1´ w

1` w
(4.20)

Trtrσ2, ρ0srσ2, log ρ0su “ 2w log
1´ w

1` w
(4.21)

Trtrσ2, ρ0srσ1, log ρ0su “ 0 (4.22)

Trtrσ1, ρ0srσ2, log ρ0su “ 0 (4.23)

So one gets:

g “
w

2
log

1` w

1´ w
pθ1
b θ1

` θ2
b θ2

q `
1

1´ w2
dw b dw (4.24)

This tensor is usually called Bogoliubov-Kubo-Mori metric.

We can notice here that this metric is singular when w Ñ 1 and when

w Ñ ´1, that is when one goes to pure states. Notice that this is a

metric on states, but the first term is not a metric on Up2q, since it is de-

generate, we can easily see this by noticing that it lacks any term involving θ3.

Now we can obtain again Shannon relative entropy if we take the pullback via

the immersion I of the Von Neumann-Umegaki relative entropy.

Let

Ippq “ ρ0 Ipqq “ σ0 (4.25)
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Then we have that

I˚SV N “ I˚pTrtρplog ρ´ log σquq “
n
ÿ

j“1

pjplog pj ´ log qjq (4.26)

Then we can take the pullback via I also of the metric (4.12), and clearly in

this process the part along the orbit of the unitary group vanishes, and we have:

I˚gV N “ I˚
`

Tr
 “

U :dU, ρ0

‰

b
“

U :dU, log ρ0

‰

` dρ0 b d log ρ0

(˘

“

n
ÿ

j“1

dpj b d log pj (4.27)

And this is just Fisher-Rao metric.

So we have the following commutative diagram:

SV N
I˚

ÝÝÝÑ SSH
§

§

đ

i˚Dd1d2

§

§

đ

i˚Dd1d2

gV N
I˚

ÝÝÝÑ gFR

Notice that this is not trivial, because doesn’t fall under the case of the com-

mutation of the exterior derivative with the pullback of a map, since d1d2 is not

the exterior derivative of DpHq ˆDpHq.
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4.2 From classical to quantum metric tensors

In section 1.2 we described the state of density states DpHq on the Hilbert space

H, and saw that its bulk coincides with the space DnpHq of invertible density

states (where n is the complex dimension of H).

In section 3.4 we have used coarse graining maps to introduce the monotonicity

property of divergence functions and metric tensors. Now we want to do the same

in the quantum setting, so we need to identify the class of quantum stochatic maps.

From now on and until next chapter we will denote with Dn the state of invertible

density states over an Hilbert space of complex dimension n. Let Dl and Dm be

two such spaces and let us give the definition of quantum stochatic maps:

Definition 5. Let φ : Dl ÝÑ Dm be a completely positive trace preserving1 map,

if:

φpDlq Ď Dm (4.28)

then φ is a quantum stochastic map.

Now we will give definitions of the monotonicity property for metric tensors

in the quantum setting.

Let us consider the family tDku of spaces of invertible density states and a family

tgku of metric tensors, where k can be any natural number except 0 and 1 and

gk is defined on Dk. Then:

Definition 6. The family tgku of metric tensors satisfies the monotonicity prop-

erty if:

glpX,Xq ě pφ
˚gmqpX,Xq (4.29)

for all X in XpDlq and for all quantum stochastic maps φ from Dl to Dm.

Now we will give the definition of the monotonicity property also for divergence

functions, in the quantum case this property is usually called data processing

inequality (DPI).
1For a definition of completely positive maps see [21] pg. 66,67. for motivations of this

choice see [30]
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Let us consider a family of divergence functions tFku where as before k is a natural

number stricty larger than one and each function Fk is defined on DkˆDk. Then:

Definition 7. If the family tFku satisfies:

Flpρ, σq ě Fmpφpρq, φpσqq (4.30)

For all ρ, σ in Dl and for all quantum stochastic maps φ from Dl to Dm, then we

say that it satisfies the DPI.

The content of this definition is analogous the content of its classical counter-

part (definition 3 in section 3.4), that is we demand that the information encoded

in the divergence function does not increase under stochastic maps.

Now what one can prove [16] is the following proposition:

Proposition 1. If the family of divergence functions tFku satisfies the DPI, than

the family of metric tensors tgku obtained from these divergence functions satisfies

the monotonicity property.

In this proposition when we say that tgku is obtained from tFku we mean that

the procedure described in section 3.2 is applied (in the appropriate space) to

every element of the family tFku.

At this point the picture seems quite similar to the classical case, but there is a

crucial difference, there is no analogue for Chentsov theorem in the quantum case,

that is we don’t have a unique metric that satisfies the monotonicity property in

the quantum case.

So we have different function satisfying the monotonicity property that give rise

to metrics that give rise to monotonicity property but we don’t have a criterion

to choose one funtion amongst the others, or one metric.

In fact in Quantum Information Theory there exist entire families of quantum

divergence function that generate families of quantum metrics, for example one

can consider relative Tsallis entropy, as done in [32], or the pq´ zq-Rényi relative

entropies, as in [11].
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4.3 Metric tensors on orbits of Lie groups

In this section we will see how we can construct metric tensors on submanifolds

of the full space of quantum states, in the particular case that this submanifold

is an orbit of the action of a Lie group on the space of quantum states.

Imagine that we define the action of a Lie group G on our space of quantum

states S:

A : Gˆ S Q pg, ρq ÞÝÑ Agpρq P S (4.31)

in the following we will denote this action just with gρ.

Let ρ0 be a state of S, the orbit of the action of G on ρ0 will be a submanifold

Oρ0 . Let us define the following immersion:

iG : G Q g ÞÝÑ gρ0 P S (4.32)

clearly if e is the neutral element of G we have that ρe “ ρ0, the image of this

immersion will be just Oρ0 .

So now we can work on the Lie group G in an analogous way as we have done in

section 2.4. Given a function F P FpS ˆ Sq we can obtain a function on G b G

by taking the pullback of F via iG.

Then the construction of the metric tensor follows as described in section 3.2:

gpX, Y q “ i˚Dpd1d2F qpXl, Yrq (4.33)

and the exterior derivatives can be performed on the Lie group, while pullback

of the diagonal immersion basically brings us from GˆG to G. Let us make an

example of this procedure.

Example 7. On H we can obtain Fubini-Study metric from the following

divergence function:

F “ 1´
| xψ|φy |2

xψ|ψy xφ|φy
(4.34)
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Where |ψy and |φy are two vectors of H. Let us compute its restriction to

the orbit of a Lie group G.

This means that we consider |ψy and |φy in (4.34) belonging to the orbit of G

through the "fiducial" vector |ψ0y, namely, we are assuming that they can be

both obtained by acting on |ψ0y with two elements, say g and h, in G:

|ψy “ g |ψ0y |φy “ h |ψ0y g, h P G (4.35)

This allows us to write F as a function on GˆG:

F “ 1´
xψ0| g:h |ψ0y xψ0|h:g |ψ0y

xψ0|h:h |ψ0y xψ0| g:g |ψ0y
(4.36)

Then with the following positions:

N “ xψ0| g:h |ψ0y xψ0|h:g |ψ0y (4.37)

D “ xψ0|h:h |ψ0y xψ0| g:g |ψ0y (4.38)

We have:

d1d2F “ ´
pDd1d2N ` d1Dd2D ´ d1Nd2D ´Nd1d2DqD

D3

´
d1pD

2qpDd2N ´Nd2Dq

D3
(4.39)

Let us compute some terms:
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d1N “ xψ0| dg:h |ψ0y xψ0|h:g |ψ0y ` xψ0| g:h |ψ0y xψ0|h:dg |ψ0y (4.40)

d2N “ xψ0| g:dh |ψ0y xψ0|h:g |ψ0y ` xψ0| g:h |ψ0y xψ0| dh:g |ψ0y (4.41)

d1D “ xψ0|h:h |ψ0y pxψ0| dg:g |ψ0y ` xψ0| g:dg |ψ0yq (4.42)

d2D “ xψ0| g:g |ψ0y pxψ0| dh:h |ψ0y ` xψ0|h:dh |ψ0yq (4.43)

d1d2D “
d1D b d2D

D
(4.44)

d1d2N “ xψ0| dg:dh |ψ0y xψ0|h:g |ψ0y ` xψ0| g:dh |ψ0y xψ0|h:dg |ψ0y

` xψ0| dh:dg |ψ0y xψ0| g:h |ψ0y ` xψ0| dg:h |ψ0y xψ0| dh:g |ψ0y (4.45)

Then combining all of this result and taking the pullback of the resulting

tensor via the diagonal immersion we get:

i˚Dphq “ ´2

ˆ

xψ0| dg: b dg |ψ0y

xψ0| g:g |ψ0y
´
xψ0| dg:g |ψ0y b xψ0| g:dg |ψ0y

xψ0| g:g |ψ0y
2

˙

(4.46)

That is just (´2 times) the Fubini-Study metric restricted to the orbit of

the group G [5].

Notice that in the case that G is just the unitary group UpHq we have:

i˚Dphq “ ´2

ˆ

xψ0| dU : b dU |ψ0y

xψ0|U :U |ψ0y
´
xψ0| dU :U |ψ0y b xψ0|U :dU |ψ0y

xψ0|U :U |ψ0y
2

˙

(4.47)

Noting that U : “ U´1 this expression can be rewritten as:
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i˚Dphq “ ´2

ˆ

xψ0| dU :U b U :dU |ψ0y

xψ0|ψ0y

´
xψ0| dU :U |ψ0y b xψ0|U :dU |ψ0y

xψ0|ψ0y
2

˙

(4.48)

So it is written in terms of the Maurer-Cartan form of the unitary group.

At the end of section 3.2 we also pointed out that we can obtain the same

metric tensor (with a factor ´4) if we use the derivatives d and dJ instead of d1

and d2:

i˚Dd1d2F pXl, Yrq “ ´4i˚DddJF pJX, Y q (4.49)

In order to do this in this setting we need to define a complex structure on

G ˆ G. A "privileged" choice for the complex structure on G ˆ G could be the

following:

J “ X̃j
b θj ´X

j
b θ̃j (4.50)

Where Xj and X̃j are the elements of a basis of left-invatiant vector fields

respectively on XpGq‘t0u and on t0u‘XpMq, while θj and θ̃j are the elements of

a basis of left-invariant one forms respectively on Ω1pGq‘t0u. and on t0u‘Ω1pGq.

Now we will give an example of this kind of procedure to obtain a metric tensor.

Example 8. In the first place let us show that Gaussian states can be obtained

acting with the affine group AffpRq on the state:

ψ0pxq “ e´x
2

(4.51)

In fact let us consider an affine transformation on the coordinates:
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χpxq “ ax` b (4.52)

we have that:

ψ0pχpxqq “ e´a
2px`a´1bq2 (4.53)

That is just a Gaussian state of mean value ´a´1b and variance 1{a. It

is clear that every Gaussian state can be written as a certain affine trans-

formation acting on the state ψ0. But to make better contact with the usual

way gaussian states are written we will use not the transformation χ but its

inverse:

χ´1
pxq “ a´1x´ a´1b (4.54)

So that we have:

ψ0pχ
´1
pxqq “ e´

px´bq2

a2 (4.55)

In this way the mean value is b and the variance is a.

This provides us with the following immersion:

iAffpRq : R0 b R Q pa, bq ÝÑ ψa,b P L
2
pRq (4.56)

Now let us construct the complex structure on AffpRqˆAffpRq: it is easy

to check that a basis for the left invariant vector fields on AffpRq is given by:

X1
“ a

B

Ba
(4.57)

X2
“ a

B

Bb
(4.58)

while a basis for left invariant one forms on AffpRq is given by:
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θ1 “ a´1da (4.59)

θ2 “ a´1db (4.60)

So the complex structure on AffpRq ˆ AffpRq is:

J “ ãa´1
p
B

Bã
b da`

B

Bb̃
b dbq ´ aã´1

p
B

Ba
b dã`

B

Bb
b db̃q (4.61)

Now we want to compute a metric tensor from the divergence function:

F “ 1´
| xψ|φy |2

xψ|ψy xφ|φy
(4.62)

We will proceed taking in the first place the pullback of F via iAffpRq and

then acting on this function with ddJ :

i˚AffpRqF “ 1´
2e
´2 pb´b̃q

2

a2`ã2

aãp1{a2 ` 1{ã2q
(4.63)

Then we have:

dJpi
˚
AffpRqF q “ ãa´1

ˆ

BF

Bã
da`

BF

Bb̃
db

˙

´ aã´1

ˆ

BF

Ba
dã`

BF

Bb
db̃

˙

(4.64)

Now we should take the exterior derivative of this one form, then make it

act on JX and Y :

X “ Xa
B

Ba
`Xb

B

Bb
`Xã

B

Bã
`Xb̃

B

Bb̃
(4.65)

X “ Ya
B

Ba
` Yb

B

Bb
` Yã

B

Bã
` Yb̃

B

Bb̃
(4.66)

JX “ ãa´1

ˆ

Xa
B

Bã
`Xb

B

Bb̃

˙

´ aã´1

ˆ

Xã
B

Ba
`Xb̃

B

Bb

˙

(4.67)
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and then take the diagonal immersion The calculations are really long but

straightforward, so let us jump to the results:

i˚DpddJ i
˚
AffpRqF pJX, Y qq “

4

a2
XaYa `

8

a2
XbYb (4.68)

Let us notice that this tensor is 8 times (2.77), in example 3, if we put

φ “ 0. This is in complete agreement with the results of section 3.2 (in

particular equation (3.18)) and of the previous example.

The fact that the imaginary part doesn’t appear here is clearly because of the

fact that we have chosen to work with real functions from the start, so it is

no surprise.



Chapter 5

The groupoid viewpoint

In this chapter we will discuss a recent proposal [13] [14] of a new picture of

Quantum Mechanics based on an approach due to Schwinger [38]. Schwinger’s

approach was based on the concept of selective measurement, let us describe it

briefly.

Given a physical system, we can consider an ensemble E1 associated with it, then

we have a family of observables A that represent physical quantities, so every

A P A has some possible outcomes a P R when A is measured on a physical sys-

tem S P E . Two observables A1 and A2 are said to be compatible if the outcomes

of their respective measurements are not affected by the outcomes of the other,

a set A of observables is said to be compatible if every couple of observables in

A is compatible.

Consider a family of compatible observables A “ tA1, A2, . . . , Anu and a collec-

tion a “ pa1, a2, . . . , anq of outcomes respectively of A1, A2, . . . An. A selective

measurement Mpaq is a process that rejects all elements S of the ensemble E

whose outcomes are different from a. So we will write MpaqS “ S if the result

of the measurement of A on S gives the outcome a, and MpaqS “ H in the case

that this measurement gives another outcome.

For the sake of clarity. let us stress here that we are referring to non-destructive

measurements so, if we take the example of Stern-Gerlach measurements, we con-

sider only the interaction with the magnetic field without the act of registering
1See [36] pg. 45,46 for a definition of ensemble, that we omit here for sake of brevity

70
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the outcome by letting the particle hit a screen.

Then we can define another class of measurementMpa1, aq, this is a measurement

that first rejects all systems whose outcomes are not a and then transforms the

accepted systems in such a way that their outcomes are a1.

Now consider the case that we want to take two consecutive measurements of

this kind, to describe this situation we can define a composition law between

measurements that has the meaning of performing first the measurement on the

right and then the measurement on the left, let Mpa1, aq and Mpa2, a1q be two

selective measurements, then:

Mpa2, a1q ˝Mpa1, aq “Mpa2, aq (5.1)

clearly only some couples of measurements can be composed, specifically

Mpa3, a2q can be composed with Mpa1, aq iff a2 “ a1.

We can also compose together the two kind of measurements introduced:

Mpa1q ˝Mpa1, aq “Mpa1, aq Mpa1, aq ˝Mpaq “Mpa1, aq (5.2)

The composition law beetwen selective transformation, when it can be per-

formed, is clearly associative:

pMpa3, a2q ˝Mpa2, a1qq ˝Mpa1, aq “Mpa3, a2q ˝ pMpa2, a1q ˝Mpa1, aqq (5.3)

Moreover we will assume that if exists the selective measurement Mpa1, aq,

then exists another measurement Mpa, a1q such that:

Mpa1, aq ˝Mpa, a1q “Mpa1q Mpa, a1q ˝Mpa1, aq “Mpaq (5.4)

Now that we have briefly descripted the premises of Schwinger’s approach we

can start our discussion.

In the first section of this chapter we will develop the theory of groupoids we need

in order to understand the approach depicted in [12], [13] and [14]. In the second
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section we will see how this links to Schwinger’s idea we briefly descripted and

finally in a third section we will see its link with our work.
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5.1 Groupoids

Roughly speaking a groupoid is a set with the properties of a group, except for

the fact that the binary operation doesn’t have to be defined for every couple of

elements of the group. Now we will give a rigorous definition, but in order to

do that we have to make a little deviation and give some definitions of Category

Theory.

A category C consist of a family of objects that we will denote ObpCq and a

family of morphisms, that we will denote MorpCq:

MorpCq Q γ : x ÞÑ y x, y P ObpCq (5.5)

We can define two maps from MorpCq two ObpCq called source and target

that gives respectively the starting object and the arrival object of the morphism:

γ : x ÞÑ y (5.6)

spγq “ x tpγq “ y (5.7)

The category is equipped with a composition law ˝ between morphisms:

α : x ÞÑ y β : y ÞÑ z x, y, z P ObpCq (5.8)

β ˝ α : x ÞÑ z (5.9)

This composition law is defined on every pair of composable morphisms, that

is when tpαq “ spβq, this composition law is also associative.

Another requirement for C to be a category is that there exist a family of mor-

phisms Ix such that α ˝ Ix “ α and Iy ˝ α “ α, where α is defined as before.

A category can be denoted as:
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MorpCq

ObpCq

s t

Where the double arrows denote the assignments to each morphism α : x ÞÑ y

of the source object x and the target object y respectively.

A morphism α : x ÞÑ y is said to be invertible if exists another morphism β : y ÞÑ

x, this will be denoted as α´1.

A category is said to be small when his objects, family of objects and family of

morphisms are sets, and their morphisms are maps between sets.

A groupoid G is a small category whose morphisms are all invertible.

Now before we introduce other elements in the discussion let us present a simple

example:

Example 9. Given a set Ω we can consider the set of pairs of elements of Ω,

and this set has the structure of a groupoid. In fact, given a pair px, yq with

x, y P Ω, we can associate to it a morphism γ such that:

spγq “ x tpγq “ y (5.10)

The composition rule will give:

px, yq ˝ py, zq “ px, zq (5.11)

This composition is clearly associative.

The unit morphisms are given by Ix “ px, xq and the inverse of γ will be given

by γ´1 “ py, xq.

Now consider a finite groupoid G, this means that G is made of a finite

number of morphisms:

G “ tγj|j “ 1, . . . , Nu (5.12)



CHAPTER 5. THE GROUPOID VIEWPOINT 75

Clearly also its set of objects Ω will be finite

Ω “ txj|j “ 1, . . . , nu (5.13)

Now we can consider formal complex linear combinations of elements of G:

a “
N
ÿ

j“1

ajγj (5.14)

b “
N
ÿ

j“1

bjγj (5.15)

with aj, bj P C @j “ 1, . . . , N .

Then we can define a product between these objects in the following way:

a ¨ b “
N
ÿ

j,k“1

ajbkδpγj, γkqγj ˝ γk (5.16)

Where δpγj, γkq is 1 whenever γj and γk are composable and 0 otherwise.

This product gives to the set of objects like a and b the structure of an associa-

tive algebra (the associativity of the product defined by (5.16) comes from the

associativity of the composition law between morphisms).This structure will be

called groupoid algebra and will be indicated with the symbol CpGq.Clearly a

basis of CpGq will be given by the set of all transitions in G.

On CpGq one can also introduce an involution operator ˚ : CpGq Q a ÞÑ a˚ P

CpGq defined in the following way:

a˚ “
ÿ

γ

āγγ
´1 (5.17)

Moreover given a finite groupoid we can define the Hilbert space HΩ as the

complex linear space with elements:

|ψy “
n
ÿ

j“1

ψj |xjy vj P C (5.18)

What we have done is associate every object xj P Ω with a linear space :
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Π : Ω Q xj ÞÑ C |xjy (5.19)

Then we define an inner product in our Hilbert space:

xψ, φy “
n
ÿ

j“1

ψ̄jφj @ |ψy , |φy P HΩ (5.20)

With this definition then the vectors |x1y , |x2y , . . . , |xny form an orthonormal

basis of HΩ “ ‘
n
j“1C |xjy.

Then what about the morphisms of the groupoid? They can now be seen as maps

between linear spaces: this means that we associate to the morphism γ : xj ÞÑ xk

the linear map:

Πpγq : Πpxjq ÞÑ Πpxkq (5.21)

Πpγq |xjy “ |xky (5.22)

This is what is called the fundamental representation of the groupoid G.

As one could expect, the support HΩ of this representation will be used to make

contact with the usual Dirac-Schrödinger picture of Quantum Mechanics.

Notice that the fundamental representation can be applied also to elements of

the groupoid algebra CpGq assuming complex linearity:

Πpaq |ψy “
ÿ

j,k

ajψkΠpγjq |xky (5.23)

If we introduce the symbol δpγj, xkq defined as 1 if spγjq “ xk and 0 in any

other case we can recast the last definition in the following form:

Πpaq |ψy “
ÿ

j,k

ajψkδpγj, xkq |tpγjqy (5.24)

Now we can take functions f : G ÝÑ C that associate a complex number to

a transition. In the set of all such functions FpGq we can define a convolution

product:
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pf ˚ gqpγq “
ÿ

α˝β“γ

fpαqgpβq (5.25)

Equipped with this product the set FpGq becomes an algebra (in general

non-commutative). One can also define an involution:

f˚pγq “ Ğfpγ´1q (5.26)

That makes it into a ˚-algebra.

A basis of this algebra will be given by the function δγ defined in the following

way:

δγpαq “

$

’

&

’

%

1 if α “ γ

0 if α ‰ γ

(5.27)

So that every element of FpGq can be written in the following way:

f “
ÿ

γ

fpγqδγ (5.28)

Where the summation is made on all transitions.

This definition shows clearly that the algebras CpGq and FpGq are dual.

We can also define a pairing x., .y : FpGq ˆ CpGq ÝÑ C between this two sets,

let:

a “
ÿ

γ

aγγ P CpGq (5.29)

f “
ÿ

γ

fpγqδγ P FpGq (5.30)

Then:

xf, ay “
ÿ

γ

aγfpγq (5.31)

Then we can associate to every element of CpGq an element of FpGq and
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vice-versa:

af “
ÿ

γ

fpγqγ (5.32)

fa “
ÿ

γ

aγδγ (5.33)

With this identification one can easily prove the following identities:

af ¨ ag “ af˚g (5.34)

fa ˚ fb “ fa¨b (5.35)

a˚f “ af˚ (5.36)

f˚a “ f˚a (5.37)

We will prove the first and the third of these relations as an example, the

other two proofs being analogous:

af ¨ ag “
ÿ

γ1,γ2

fpγ1qgpγ2qδpγ1, γ2qγ1 ˝ γ2 “
ÿ

γ1˝γ2“γ

fpγ1qgpγ2qγ “ af˚g (5.38)

and this proves the first relation.

Now the third:

a˚f “ p
ÿ

γ

fpγqγq˚ “
ÿ

γ

Ęfpγqγ´1 (5.39)

af˚ “
ÿ

γ

f˚pγqγ “
ÿ

γ

Ğfpγ´1qγ (5.40)

And clearly the two expression are the same.

Now, using the correspondence we estabilished between elements in the groupoid

algebra and functions defined on the groupoid let us define the action of the
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fundamental representation also on elements of FpGq:

Πpfq |xjy ” Πpaf q |xky “
ÿ

γ

fpγqδpγ, xkq |tpγqy (5.41)

So the fundamental representation allows us to associate an endomorphism

of HΩ to a function in FpGq. For this reason we will also write Af “ Πpfq,

moreover one gets:

Af˚ “ A:f (5.42)

Where the adjoint of an operator A is defined w.r.t. the canonical inner

product (5.20). So the fundamental representation is a ˚-representation w.r.t.

this inner product.
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5.2 Groupoids and Quantum Mechanics

In the introduction of this chapter we briefly described Schwinger’s approach, in

this section we will see how the mathematical structures introduced in the previ-

ous section can be used to reformulate such approach.

In the first place let us consider the set of all possible outcomes of the family of

compatible observables A and let us call it ΩA, a selective measurementsMpa1, aq

can be considered as a morphism between two elements a and a1 of this set, we

will call the set of all transitions GA. Equation (5.1) then defines a composition

rule between morphisms that is not globally defined on GA, this composition

rule, when it can be performed, is clearly associative by (5.3).

For every element a P ΩA we have the selective measurement Mpaq that is repre-

sented by the morphism that maps a into itself. As can be seen from (5.2) these

morphisms represent left and right identities for the composition rule between

transitions.

Moreover by (5.4) for every transition in GA there exists an inverse transition,

these considerations let us conclude that GA can be seen as a groupoid with

object space ΩA.

We are actually neglecting an important aspect here, we could choose to use

another set of compatible observables, let us call it B, to describe the same quan-

tum system, then transformations between these two should be taken care of.

This can be done adding another layer to the groupoid structure, we introduce

transformations as morphisms between transitions, so the resulting structure is

a 2-groupoid, the outcomes are the objects of the groupoid GA, transitions are

morphisms between outcomes but can also be considered as the objects of the

groupoid ΓA whose morphisms are transformations.

For details on this aspect see [13], we will skip these details and bring on our

discussion using only one set of compatible observables.

Now we can use the fundamental representation of the groupoid GA to construct

the Hilbert space HΩA
and to associate to every function f P FpGAq an operator

acting on it. A basis of HΩA
is given by the vectors |ay associated to the elements
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of ΩA.

Notice that, considering (5.42), real elements in FpGAq (that is functions f s.t.

f˚ “ f) are associated to self-adjoint operators acting on HΩA
, from now on we

will refer both to the real elements of FpGAq and to the operators associated

with them with the name of observables.

Let us evaluate the following quantity:

xa1, Afay “ xa
1| pAf |ayq “

ÿ

γ

xa1| fpγqδpγ, aq |tpγqy

“
ÿ

γ

fpγqδpγ, aqδpa1, tpγq “
ÿ

γ:aÞÑa1

fpγq (5.43)

So it is basically the sum of the values of f on all transitions that connect a

to a1.

In particular when f is an observable and for a “ a1 we will get a real number

that can be interpreted as the expected value of f on the state |ay.

What we are doing here is usingHΩA
as the Hilbert space of the Dirac-Schrödinger

picture, alternatively one can define states as normalized positive functionals on

FpGAq and then construct the Hilbert space with the GNS construction [14].

Let us conclude this section with an example in order to better understand this

construction:

Example 10. Imagine that the family of observables A gives only two possible

outcomes, that we will call ` and ´, so we have Ω “ t`,´u. We have the

transition α : ` ÞÑ ´ and its inverse α´1 together with the identities of the

two objects:

GA “ tI`, I´, α, α´1
u (5.44)

This groupoid can be represented by the following graph:
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` ´I`

α

α´1

I´

We can use the fundamental representation of this groupoid: |`y “ Πp`q

and |´y “ Πp´q. Then the Hilbert space HΩ that supports this representation

will be isomorphic to C2.

The morphisms are represented by the following linear operator acting on HΩ:

ΠpI`q |`y “ |`y ΠpI´q |´y “ |´y (5.45)

Πpαq |`y “ |´y Πpα´1
q |´y “ |`y (5.46)

So we have that they are represented by 2ˆ 2 matrices:

ΠpI`q “

¨

˝

1 0

0 0

˛

‚ ΠpI´q “

¨

˝

0 0

0 1

˛

‚ (5.47)

Πpαq “

¨

˝

0 0

1 0

˛

‚ Πpα´1
q “

¨

˝

0 1

0 0

˛

‚ (5.48)

(5.49)

The groupoid algebra will be the (non-commutative) associative algebra

generated by ΠpI`q, ΠpI´q, Πpαq and Πpα´1q, that we will denote with

e1, e2, e3, e4.

We have the following relations:



CHAPTER 5. THE GROUPOID VIEWPOINT 83

e2
1 “ e1 e1e2 “ 0 e1e3 “ 0 e1e4 “ e4 (5.50)

e2e1 “ 0 e2
2 “ e2 e2e3 “ e3 e2e4 “ 0 (5.51)

e3e1 “ e3 e3e2 “ 0 e2
3 “ 0 e3e4 “ e2 (5.52)

e4e1 “ 0 e4e2 “ e4 e4e3 “ e1 e2
4 “ 0 (5.53)

So the groupoid algebra is given by M2pCq with structure constants given

by the previous relations.

Notice that if we remove the transitions α and α´1 we get the groupoid GC “

tI`, I´u, it can be represented by the following graph:

` ´I` I´

The support of the fundamental representation is still HΩ – C2 but the

groupoid algebra will be the two-dimensional Abelian algebra defined by the

relations:

e2
1 “ e1 e1e2 “ 0 (5.54)

e2e1 “ 0 e2
2 “ e2 (5.55)

Notice that ignoring these two transitions we are saying that experimental

devices do not modify the system, so we are describing the classical bit.
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5.3 Why groupoids?

In this section we will connect this formulation in terms of groupoids of Schwinger’s

Picture of Quantum Mechanics with the main theme of the work.

Let us take another look at the purification of mixed states in the case of the

qubit, in section 1.3 we set the problem in a bundle picture. Now we want to see

how this problem can be formulated in terms of groupoids.

To see this let us limit ourselves to pure states for the moment, that is, instead of

taking DnpHq as the base space, take D1pHq. Then in our base space there will

be rank-one projectors and in the total space rank-one linear operators.

Let us recall here the projection maps π1 and π2 introduced in section 1.2, so for

example we have:

π1p|´y x`|q “ |`y x´|´y x`| “ |`y x`| “ ρ` (5.56)

π2p|´y x`|q “ |´y x`|`y x´| “ |´y x´| “ ρ´ (5.57)

Where we are considering normalized vectors for simplicity.

Recalling example 10, one can notice that |´y x`| is just the image via the the

fundamental representation of the transition α, what we have called Πpαq. The

projection map π1 applied on it gives I`, the unit in the groupoid associated to

the element + of the space of objectsl, that is the unit of the groupoid associated

to the source of α.

On the other hand we have that π2 applied on Πpαq gives I´, the unit of the

groupoid associated to the target of α.

Units of the groupoids can be clearly put in a one-to-one correspondence with

the set of objects of the groupoid, and can be used to immerse the set of objects

into the morphisms of the groupoid.

So the idea behind this simple example is the following: the purification procedure

can be seen from the point of view of the Schwinger picture, and in this setting

it is a lift from the units (or from the objects) of a groupoid to its morphisms.

Moreover the two projection map are respectively on the source and on the target
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of the transition. This can give a criterion on the choice between the two, that

was something lacking in the way we proposed them in section 1.2.

This represent a further development of the idea of going from probabilities to

amplitudes, in fact we have seen in chapter 1 that this transition can be seen as

a lift from the projective space PpHq to the Hilbert space H0, and now we have

reformulated this transition in terms of a lift in the context of groupoids.

Clearly at this level we are "purifying" pure states, but this discussion can be

repeated for mixed states, and the investigation of this approach can be fruitful

and could be object of future work.

There is also another interesting aspect, given a statistical manifold M , we can

construct the groupoids of pairs of points of M , like we have done in example 9.

So a two-point function on the statistical manifold M can be seen as a one-point

function of the groupoid of pairs of set of M . This possibility is discussed in the

contest of Lie groupoids on [28].



Conclusions

In this work we studied the connection between Information Geometry and Geo-

metric Quantum Mechanics. The leitmotiv is the transition from probabilities to

amplitudes [23], starting from the motivation given in the introduction, namely:

Fisher-Rao metric can be seen as a term of Fubini-Study metric.

In fact Fubini-Study metric can be split in two parts: one involving phases and

one involving probabilities, and Fisher-Rao metric is just the term relative to

probabilities.

In chapter 1 we saw how this transition from probabilities to amplitudes can be

seen from the geometrical point of view as a lift in a bundle picture for quantum

states.

The same idea was applied in chapter 4 to Information Geometry, and led us

to the transition from Classical to Quantum Information Geometry. Clearly in

order to do that we needed some background in Information Geometry, and this

was given in chapter 3,

In chapter 2 we introduced some geometric structure in the bundle picture pre-

sented in 1, in fact we studied the Riemannian and symplectic structure of H0

also in relation with the bundle structure described in the first chapter.

Finally in the last chapter we introduced a formulation of Schwinger’s approach

to Quantum Mechanics in term of groupoids, this formulation is interesting by

itself and offers several advantages [12] [13] [14], but for our purpose the more

relevant part is the fact that it gives a natural setting for studying two-points

functions, that is the pair groupoid [28].

Investigating these subjects we were able to formulate a certain number of in-

teresting observations, like the ones contained in section 4.1, where is given a

86
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geometric description of the transition from Quantum to Classical Information

Theory.

However, during the development of this work many more questions have been

asked and are unanswered at the moment, let us enumerate some of them:

• At the end of chapter 1 we introduced the purification process and gave

a geometric picture to describe it as a lift in an appropriate bundle, then

what one could ask is: if a purification procedure assigns a certain path

on the total space to an assigned path on the base space, can we find a

connection that defines the tangent vectors of the path in the total space as

horizontal? When this connection will be metric? If it is metric, how does

this metric look like?

• In chapter 2 we saw the relevant role of the complex structure in defining the

metric and the symplectic structure, we assumed implicitly that it satisfied

Nijenhuis condition, but what if it doesn’t? Or more generally, what is the

role of Nijenhuis tensor in this setting?

• In section 2.3 we found with a straightforward procedure the Fubini-Study

metric and underlined what are the essential objects needed to construct

it. Is it possible to reproduce the same procedure to obtain a metric in the

mixed state case? Will this procedure give rise to Bures metric [9] [42]?

• In section 3.2 we estabilished a contact point between two procedures, one

typical of Information Geometry and one typical of Geometric Quantum

Mechanics, to obtain metric tensors. What one could ask is: is it possible

to estabilish such connection also for the third order tensors usually defined

in Information Geometry?

The presence of so many interesting question that arise in this context signals

that this work has hit an interesting spot, from which a large amount of work

can be carried out in order to answer these and other questions.
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