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Preface

In the past decades we have witnessed an increase of interest towards two differ-

ent aspects of systems’ theory. On one side, the necessity to be able to specify

and to check properties of systems has led to the introduction of temporal logics,

such as LTL (Linear-time Temporal Logic), and to the study of related problems,

such as model checking or LTL games. On the other side, the persistent will of

finding new and better ways to control systems has enlarged the already consid-

erable family of controllers available: in particular, this search has conducted to

the introduction of fuzzy controllers. The present work aims at building a bridge

between these apparently separate sectors of systems’ theory. Our goal is to show

how the theoretical tools used to check properties, and those applied to individu-

ate strategies to assure they are fulfilled, can be used to model the situation to be

controlled, and therefore to instruct the controller itself. Having chosen to focus

our attention on fuzzy controllers, as a new and highly promising kind of control

system, we first had to extend the usual LTL techniques to allow fuzzy values for

the variables. Besides, the strategies emerging from our approach prove different

from the fuzzy controllers usually defined. The main body of this thesis therefore

consists in defining and solving fuzzy LTL games, and in showing how to trans-

form them in fuzzy controllers. Bibliographical remarks and consideration about

the algorithms developed complete the work.
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Chapter 1

Basic notions of control

This chapter starts with a brief introduction to control systems in general, and

proceeds with a detailed discussion of fuzzy control systems.

1.1 Introduction

Generally speaking, a system can be defined as a well-delimited portion of an

environment. According to the case, we may speak of mechanical systems, ther-

modynamic systems, chemical systems, etc. A control system is a device able

to enforce a desired behavior of a given system. This definition may look rather

vague, but vagueness is unavoidable due to the large number of different control

systems. A brief historical overview, as provided for example in [1], will prob-

ably provide a useful introduction. Control systems were born in the industrial

machines. Many historians mark the beginning of the industrial revolution with

James Watt’s steam engine (1769), and Watt provided it with a “governor”, whose

aim was to prevent oscillations in the steam flow (Watt’s governor is depicted in

4



CHAPTER 1. BASIC NOTIONS OF CONTROL 5

Figure 1.1)1.

Figure 1.1: Watt’s governor as represented in Discoveries & Inventions of the
Nineteenth Century, by R. Routledge.

Watt’s governor can therefore be considered the first control system. It was

a mechanical device consisting of a conical pendulum whose rotating speed de-

pended on the speed of the steam flow. At the same time, the pendulum masses

were connected to a valve capable of reducing the fuel income of the furnace

producing steam. The faster the pendulum rotated, the more the masses went

upward because of centrifugal force and the more the valve was occluded. This

1To be precise, Watt based the governor on a very similar device invented by Christiaan Huy-
gens to regulate the distance and the pressure between millstones in windmills. Watt himself
never claimed to have invented the device. Nonetheless, its application to steam engines is widely
recognized as the real starting point of control theory.
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mechanism then prevented the steam from flowing too fast. For many years, no

substantial progress was made in the field. It was only in 1868 that James Clerk

Maxwell firstly provided a mathematical model for a governor controlling a steam

engine in [2]. Maxwell described different types of governors using differential

equations. Therefore, his approach can be called analytic: a mathematical model

of the system to be controlled, and of its interaction with the controlling system

is given, and is used to implement the controller itself. This framework was very

fruitful, and has been improved by many other scientists in the following years. In

the twentieth century it led to feedback control systems, where the actual output

is compared with the desired one, and the controller works to keep the difference

as small as possible. However, in the last decades, a new approach was devel-

oped. In his 1965 paper [3] Lotfi A. Zadeh introduced the expression fuzzy logic

to indicate a many-valued logic where a sentence, besides the ordinary boolean

values of 0 (False) and 1 (True), can assume any value between these, enabling

one to speak about partial truth in a quantitative way. Accordingly, he described a

new set theory, which he called fuzzy set theory, where the concept of an element

belonging to a set was not crisp: an element could belong to the set, not belong,

or have a partial degree of belonging expressed by a number comprised between

0 and 1.2 In the following decades fuzzy logic was applied for the first time to in-

dustry, especially in Japan: Hitachi showed its feasibility for controlling trains in

a subway network; Mitsubishi used it to design an air conditioner; Matsuhita em-

ployed it in the construction of a vacuum cleaner, and so on (see [4] [5] [6]). Fuzzy

control theory was born. Control systems in general implement some devices to

measure the variables they work with (these devices are called sensors), and some

2It is important to underline that Zadeh just introduced the term “fuzzy” and the concept of
fuzzy set; many-valued logics had already been studied since the 1920s, notably by Łukasiewicz
and Tarski.
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others to influence the value of these variables (these are called actuators). Fuzzy

controllers collect inputs from sensors, map them into appropriate fuzzy sets, use

rules to produce fuzzy outputs for the actuators and then map back these outputs

into settings for the actuators. This approach is quite different from the one origi-

nated from Maxwell’s paper. In the following we will only deal with those types

of control systems. Before we define fuzzy control systems, an introduction to

fuzzy logic and fuzzy sets is needed.

1.1.1 Fuzzy logic

In fuzzy logic we suppose that sentences’ truth values can be any real number in

the interval [0, 1]. Accordingly, any logical operator has to be able to deal with

fuzzy truth values. If we want to keep using the boolean operators ∧ (whose in-

tuitive meaning is that of the conjunction “and”), ∨ (which expresses disjunction,

as the word “or”), ¬ (representing negation, like particle “not”) and→ (“implica-

tion”, in the sense that the left side implies the right one), for example, we have to

extend their usual definitions to enable them to deal with fuzzy truth values. We

recall that, in boolean logic, these operators’ action is usually described using the

following tables:

Table 1.1: AND table
p q p ∧ q
True True True
True False False
False True False
False False False
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Table 1.2: OR table
p q p ∨ q
True True True
True False True
False True True
False False False

Table 1.3: NOT table
p ¬ p
True False
False True

Table 1.4: IMPLICATION table
p q p→ q
True True True
True False False
False True True
False False True

Tables can be used in ordinary boolean logic because sentences can only take a

finite amount of values. When infinitely many values are allowed, the rules which

fix the semantics of these operators must take another form. Usually, some useful

properties are required for such rules. First of all, it is required that they reproduce

boolean operators when acting on formulas having the boolean values True and

False, i.e., 1 and 0. Also, it is typically required that conjunction be commutative,

monotonic, associative and admit 1 as identity element. Many non-equivalent

operators satisfying these properties have been proposed. In the following we will

consider the form proposed by Zadeh:

¬x = 1− x; (1.1)
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x ∨ y = max {x, y} ; (1.2)

x ∧ y = min {x, y} ; (1.3)

x→ y = max {min {x, y} , 1− y} . (1.4)

It can be easily verified that they fulfill the aforementioned properties and satisfy

De Morgan’s laws. With their definition boolean logic is successfully fuzzified.

Of course, if one considers additional boolean operators, additional rules must be

given for them.

1.1.2 Fuzzy sets

While in classic set theory, given a set A and an element p, the only possibilities

are “p belongs to A” and “p does not belong to A”, in fuzzy set theory an element

can belong to a set with any degree in range [0, 1]. In order to evaluate what is

the degree of belonging of an element to a set, membership functions are needed.

Let’s explain this point with an example. Suppose we have the fuzzy sets “Short

people” and “Tall people”. Each of them needs a membership function to as-

sign degrees of belonging to any possible element, i.e., to each person. Possible

membership functions, Short(h) and Tall(h), where h indicates the height of the

person whose degrees of belonging we wish to find, may be

Short(h) =


1 for 0.20m ≤ h ≤ 1m

−1.428h+ 2.4 for 1m ≤ h ≤ 1.70m,

0 for 1.70m ≤ h

(1.5)
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and

Tall(h) =


0 for 0.20m ≤ h ≤ 1m

1.428h− 1.428 for 1m ≤ h ≤ 1.70m.

1 for 1.70m ≤ h

(1.6)

Using these membership functions a person whose height is 1.64m would belong

to the set “Short people” with degree 0.059 and would belong to the set “Tall

people” with degree 0.913. Of course, other membership functions are possible,

leading to different degrees of belonging: their choice is arbitrary as that of the

number of fuzzy sets to be used.

1.2 Fuzzy control systems

In Section 1.1 we said that the first studies in control theory used differential equa-

tion to model the system to be controlled and its interaction with the controller.

In fuzzy control theory, instead, we adopt a more empirical point of view. As

underlined in works like [7], we suppose we can talk with an expert who can

successfully control the actuator. Typically, such experts do not have a mathemat-

ical understanding of the phenomena they manage to control, rather, they have an

instinctive one: think for example of automobile drivers or football players. Usu-

ally they have some “rules”, rather than precise mathematical equations, which

prescribe what to do in any possible situation. A fuzzy controller, too, uses fuzzy

if-then rules to relate variables’ fuzzified statuses to actuators’. Basically, the im-

plementation of a fuzzy controller consists of the following steps:

1. we seek the help of the expert to choose the important variables for the

controlling task; we suppose we have sensors able to measure each of these
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variables; nonetheless, we ask the expert to “fuzzify” these inputs, i.e., to

introduce fuzzy sets and membership functions; the same must be done for

actuators;

2. a set of fuzzy if-then rules has to be written, so that every possible combina-

tions of the input variables leads to an output in terms of actuators’ statuses;

if boolean or other logical combinations of the variables appear in the rules,

a semantics to deal with these expressions must be given; also, a way to

determine the value of the then part from the value of the if part must be

given; it must be noted that this procedure produces many different outputs,

one for every rule;

3. the outputs given by the rules must be combined to produce a single output

(various methods for doing this have been proposed); this process is called

“defuzzification”.

Let’s explain better this procedure using an example. Suppose we have a system

consisting of some fluid in a container, whose status is fixed by two parameters:

temperature and pressure. Both can be measured by sensors, and both can be

modified by actuators: a heater and a compressor. Suppose that temperature can

vary between 20 degrees (when the heater is off) and 100 degrees (when the heater

is functioning at maximum power), while pressure can vary between 1 bar (when

the compressor is off) and 100 bars (when the compressor is at its maximum).

Finally, suppose our goal is to keep the fluid as close as possible to a temperature

of 50 degrees and a pressure of 50 bars. A fuzzy controller for this system could

be implemented this way:

1. fuzzification; a possible choice for the fuzzy sets could be the following:
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• measured temperatures in interval [20, 46] and measured pressures in

interval [1, 33] are labeled as LOW;

• measured temperatures in interval [47, 73] and measured pressures in

interval [34, 67] are labeled as MEDIUM;

• measured temperatures in interval [74, 100] and measured pressures in

interval [68, 100] are labeled as HIGH;

analogous labels can be set for actuators functioning in corresponding in-

tervals; the attribution of the values of the sensors and the actuators to the

fuzzy sets can be done using these functions:

LOWT (T ) =


1 for 20 ≤ T ≤ 40

− T
20

+ 3 for 40 ≤ T ≤ 60

0 for 60 ≤ T ≤ 100

(1.7)
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MEDIUMT (T ) =



0 for 20 ≤ T ≤ 40

T
20
− 2 for 40 ≤ T ≤ 60

− T
20

+ 4 for 60 ≤ T ≤ 80

0 for 80 ≤ T ≤ 100

(1.8)
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HIGHT (T ) =


0 for 20 ≤ T ≤ 60

T
30
− 2 for 60 ≤ T ≤ 90

1 for 90 ≤ T ≤ 100

(1.9)
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LOWP (P ) =


1 for 1 ≤ P ≤ 20

− P
20

+ 2 for 20 ≤ P ≤ 40

0 for 40 ≤ P ≤ 100

(1.10)
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MEDIUMP (P ) =



0 for 1 ≤ P ≤ 30

P
20
− 3

2
for 30 ≤ T ≤ 50

− P
20

+ 7
2
for 50 ≤ P ≤ 70

0 for 70 ≤ P ≤ 100

(1.11)
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HIGHP (P ) =


0 for 1 ≤ P ≤ 60

P
25
− 12

5
for 60 ≤ P ≤ 85

1 for 85 ≤ P ≤ 100

(1.12)
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2. rules; we can implement the following rules (for economy, we indicate tem-

perature with T , pressure with P , the heater with H and the compressor

with C):

1) T is LOW and P is LOW H is HIGH and C is HIGH
2) T is LOW and P is MEDIUM H is HIGH and C is MEDIUM
3) T is LOW and P is HIGH H is MEDIUM and C is LOW
4) T is MEDIUM and P is LOW H is MEDIUM and C is MEDIUM
5) T is MEDIUM and P is MEDIUM H is MEDIUM and C is MEDIUM
6) T is MEDIUM and P is HIGH H is LOW and C is LOW
7) T is HIGH and P is LOW H is LOW and C is MEDIUM
8) T is HIGH and P is MEDIUM H is LOW and C is MEDIUM
9) T is HIGH and P is HIGH H is LOW and C is LOW

We use Zadeh’s fuzzified version of boolean operators to find the truth value

of the if part of every rule, and simply set the value of the then part to be

equal to the value of the if part (the then part of every rule consists of two

statements, one for the heater and one for the compressor; we set the value

of each of them equal to the value of the if part of the rule);
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3. defuzzification; we only consider the rule leading to the highest contribu-

tion.

This is all we need to make the controller work. If, for example, sensors read a

temperature of 55 degrees and a pressure of 77 bars, then we have the following

values for the membership functions:

LOWT 0.25
MEDIUMT 0.75
HIGHT 0
LOWP 0
MEDIUMP 0
HIGHP 0.68

From Zadeh’s semantics we see that

LOWT ∧ LOWP 0
LOWT ∧MEDIUMP 0
LOWT ∧HIGHP 0.25
MEDIUMT ∧ LOWP 0
MEDIUMT ∧MEDIUMP 0
MEDIUMT ∧HIGHP 0.68
HIGHT ∧ LOWP 0
HIGHT ∧MEDIUMP 0
HIGHT ∧HIGHP 0

According to our rules, then, we have the following values for each possible

output:
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heater is HIGH and compressor is HIGH 0
heater is HIGH and compressor is MEDIUM 0
heater is MEDIUM and compressor is LOW 0.25
heater is MEDIUM and compressor is MEDIUM 0
heater is MEDIUM and compressor is MEDIUM 0
heater is LOW and compressor is LOW 0.68
heater is LOW and compressor is MEDIUM 0
heater is LOW and compressor is MEDIUM 0
heater is LOW and compressor is LOW 0

According to our defuzzification method, we only have to consider the outputs

having the highest value, i.e., heater is LOW with membership value of 0.68 and

compressor is LOW with membership value of 0.68. Inverting functions LOWT

and LOWP we see that

LOWT (46.4) = 0.68, (1.13)

LOWP (26.4) = 0.68. (1.14)

Our controller, then, prescribes to set the heater on 46.4 degrees and the com-

pressor on 26.4 bars.3 Few considerations on this example will allow us to better

understand the main feature of fuzzy control. Our aim was to control temperature

and pressure of a fluid in a container of given volume. As known, volume, temper-

ature and pressure of a fluid are connected by means of the so called equation of

state. If such equation were given for the considered fluid, traditional controllers

would have used it to predict how temperature changes would affect pressure.

This information would then be used to try to evaluate the best settings for the ac-

tuators. For this reason, these controllers are often said model-based: they predict

changes in the system using a model. Fuzzy controllers use a different approach.

3Additional rules are needed for the intervals where the membership functions are not invert-
ible; since this case does not show up in our example, we avoided to state them.
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They do not suppose any model for the interaction between system’s variables and

between system and actuators. They use empirical data (what above has been said

to be the expert’s advising) to establish which option among the many possible

is the better in every occasion. The model, in this way, is implicitly contained in

the controller itself, namely, in the fuzzy rules. For example, in our treatment of

the problem of controlling the fluid’s temperature and pressure the connection be-

tween these two variables is acknowledged in rule 3, where, despite the necessity

of increasing temperature using the heater, it is prescribed to keep this actuator at a

medium level, in order to avoid an excessive increase of the already high pressure

level. For this reason, fuzzy controllers are sometimes said to be model-free. This

characteristic makes them usually simpler than their competitors; nonetheless,

their performances are sometimes even better. That is the reason of the interest

raised by them in the last years. Nonetheless, fuzzy controllers usually present

some limitations, which we are going to discuss.

1.2.1 Present fuzzy controllers’ limitations and our proposal

As anticipated in the previous section, one of the main differences between tra-

ditional controllers and fuzzy controllers is that traditional controllers are model-

based (models for the system, and possibly for the environment and for the in-

teraction between them are given), while fuzzy controllers are usually model-free

(no attempt is made to try to describe the system’s behavior, but rules of empir-

ical validity are given). This difference is responsible for some of the positive

aspects of fuzzy controllers. With respect to traditional controllers, fuzzy con-

trollers are usually implemented more easily (they use few simple if-then rules

instead of usually complex differential equations), require less memory, only tak-
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ing into account what is really needed, and less calculations (differential equations

often can be solved only numerically, and the algorithms which perform this task

usually converge very slowly; in comparison, the fuzzification and defuzzification

processes require very few calculations). But at the same time this feature has a

downside: lacking a model of the interaction between the controller and the envi-

ronment, for example, fuzzy controllers are unable to anticipate what can be the

possible changes in the environment, and are bound to intervene only when the

values measured by the sensors are outside the prescribed intervals. Let’s clarify

this statement with the example of a controller for the temperature inside a room.

A model-free controller for this system could be a thermostat, which only mea-

sures the temperature inside the room and intervenes when it finds it outside a

prescribed interval. Of course, such a controller cannot keep the temperature in

the given interval all the time, because it is unable to foresee changes due to the

variations of the temperature of the environment outside the room. A model-based

controller would have sensors to measure the temperature of the environment, too,

and a model which enables it to predict how the temperature outside influences

that inside the room. Such a controller could intervene with its actuators before

the changes of the environment would show their effects, and succeed in keep-

ing the inside temperature always in the prescribed interval. Another limitation

of fuzzy controllers as previously described is that they can only fulfill specifi-

cations of a static kind (a certain condition has to hold in the present instant, or

as soon as possible), since the mechanism of the rules previously described does

not allow to apply long-term strategy, which would make possible to handle more

elaborate specifications. Still referring to the previous example, a specification

such as The temperature of the room never lies outside the prescribed interval
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for more than ten minutes, could not be fulfilled by usual fuzzy controllers, since

they do not take into account time. The main idea, which we pursue in the next

chapters, is to define a model-based fuzzy controller, which retains the positive

aspects of an ordinary fuzzy controller, to be simple and fast (i.e., to keep using

the mechanism based on fuzzification, fuzzy rules and defuzzification), but im-

plements some characteristics of the model-based controllers to be able to attend

to a wider range of tasks, such as foreseeing changes in the environment and han-

dling temporal specifications adopting long-term strategies. We plan to model the

temporal aspects of the controlling task using Linear Temporal Logic (LTL), and

to describe the interaction between the controller and the environment as a game.

Chapters 2 and 3 will then deal with these subjects.



Chapter 2

Reactive systems and Linear-time

Temporal Logic (LTL)

In this chapter we define reactive systems, introducing a model for their descrip-

tion, and introduce the basic concepts of temporal logic, with particular attention

to its applications in specifying system properties.

2.1 Reactive systems

Systems are said to be “reactive” if they interact with their environment constantly.

They are able to accept inputs and produce outputs all along their time of func-

tioning, which is supposed to be infinite. To deal with reactive systems models

are needed, and many have been proposed. The one we will use in this work, as

described in the following subsections, is called Kripke structure.

22
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2.1.1 Formal definition of Kripke structures

A Kripke structure K = (S,E, I, f, so) is an oriented graph with no isolated

vertices. In this graph:

• a function f : S → 2I is given, where S is the set of states of the Kripke

structure, corresponding to the possible states the system can visit, and I is

a set of sentences, called atomic propositions; therefore, f label each state

with a mark for every atomic proposition, indicating whether it is true or

false in that state;

• oriented edges describe allowed transitions from one state to another; we

indicate their set with letter E; we notice that E ⊆ S × S;

• so is the initial state;

• every transition takes one instant of time to be performed.

A path π on a Kripke structure is an infinite sequence of states of the structure,

s0s1...sk..., such that, for every n, (sn, sn+1) ∈ E. The first state, s0, is specified

in K. The suffix πi of path π is path si...sk.... If pi is the i-th atomic proposition

and sj a state of a Kripke structure, we use the symbol sj(pi) to indicate the value

of atomic proposition pi in sj , i.e., we set sj(pi) = fi(sj), where fi is the i-

th component of the labeling function f . Kripke structures are very simple, yet

they are general enough to describe a wide range of systems. Indeed, they are the

models essentially used in control theory, being able to suitably describe computer

networks, flexible manufacturing systems and start-up and shut-down procedures

of industrial plants, just to make few examples (see [8]).
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2.1.2 Usefulness of Kripke structures in modeling reactive systems

We are familiar with the concept of a system as a continuous medium, whose

evolution over time is described by functions. Many systems, however, can be

discretized. Suppose we are studying a system which, with good approximation,

can be found in a finite set of different states, each characterized by the presence

or absence of a given attribute, and that the system is able to go from any state to

some others in a given, fixed amount of time. In this case, we could completely

neglect what happens in the middle of transitions from one state to another, and

only consider the ordained sequence of states visited by the system. Systems like

these, therefore, can be suitably described by Kripke structures. Let’s see how this

can be done with an example.

2.1.3 Example of a reactive system described by a Kripke structure

Suppose we have a very simple microwave oven, whose state is completely de-

fined by the value of two attributes: ON/OFF and OPEN/CLOSED. Suppose the

user can open the oven when it is closed and off, close it when it is open, turn it

on when it is closed and off and turn it off when it is closed and on. All these

dynamics are then condensed in the following Kripke structure:
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ON AND CLOSED

OFF AND CLOSEDOFF AND OPEN

Figure 2.1: Kripke structure describing states and transitions of a microwave oven.

We see that the description provided by the Kripke structure is very synthetic,

since it only takes into account the characteristics of the system which are really

relevant.

2.2 Linear-time Temporal Logic (LTL)

In the preceding section we have seen how to usefully describe reactive systems.

Now we want to introduce a way to state specifications for systems, i.e., to make

statements on the possible paths of a given Kripke structure. We will do this using

a particular kind of logic which allows us to talk about time.

2.2.1 Formal definition of LTL

LTL stands for “linear temporal logic” or “linear-time temporal logic”. Practi-

cally, LTL is built supposing a discrete concept of time is given (time is seen as
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a discrete, ordained succession of instants), and adding temporal operators to the

usual boolean ones. Temporal operators usually implemented, the ones we will

consider in the following, are these:

• Next φ (Xφ): formula φ will hold in the next instant;

• Finally φ (Fφ): φ holds at least one instant in the future;

• Always φ (Gφ): from now on, φ will always hold;

• φ Until ψ (φUψ): ψ is true now or will be true in the future; φ has to be

true at least until ψ becomes true.

We suppose given an amount of atomic propositions, for each of whom we sup-

pose we know the truth value (for the moment we suppose propositions and for-

mulas only can have the boolean truth values, i.e., True or False). The way a

formula can be built in a given logic is called the syntax of the logic. A syn-

tax can be conveniently described using a mathematical object known as formal

grammar. We can write LTL syntax using the following, usual grammar:

φ := True |False | p |φ ∧ φ | ¬φ |Xφ |φ U φ, (2.1)

where p is an atomic proposition. We have considered neither operator ∨, since

it can be obtained from ∧ and ¬ (φ ∨ ψ = ¬(¬φ ∧ ¬ψ)), nor operators F and G,

since they can be obtained from U and ¬ (Fφ = True U φ and Gφ = ¬F¬φ). The

truth value of a given formula has to be evaluated along the infinite succession of

time instants, assuming we know the truth value of the atomic propositions at

each instant. If we have described the system using a Kripke structure, then its

temporal evolution corresponds to a path along the Kripke structure, each time
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step corresponding to a transition. The truth value of an atomic proposition at a

given instant, then, is the truth value of that atomic proposition in the state visited

by the system in that instant. We have already introduced a notation to indicate

the value of an atomic proposition in a particular state of a Kripke structure in

subsection 2.1.1. We now introduce the notation Jπ, φK to indicate the value of

formula φ along path π. The way a meaning is given to any formula allowed

by the syntax of a given logic is called the semantics of that logic. Let’s see

what LTL semantics is. We set the constants True and False to have values 1

and 0, respectively, on every path. In our notation, we can state this fact with the

following expressions:

Jπ, TrueK = 1, (2.2)

Jπ, FalseK = 0. (2.3)

Then, we set the truth value of an atomic proposition along a path to be equal to

the truth value of that atomic proposition in the initial state of that path:

Jπ, pK = s0(p). (2.4)

Suppose we know the value of formulas φ and ψ along π. Then we set the value

of their conjunction φ ∧ ψ along π to be equal to 1 if both φ and ψ have value 1

along π, 0 otherwise. In other words we set:

Jπ, φ ∧ ψK = Jπ, φK ∧ Jπ, ψK. (2.5)
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Known the value of formula φ along π, Jπ, φK, we set Jπ,¬φK to be equal to 1 if

Jπ, φK = 0, equal to 0 otherwise, so that we can write:

Jπ,¬φK = ¬ Jπ, φK. (2.6)

Provided we know how to evaluate a formula φ along any path, we set the value

of Xφ along a path π to be equal to the value of φ along path π1:

Jπ,XφK = Jπ1, φK. (2.7)

Finally, if we recall the definition of Until given above, we see that we have to set

Jπ, φ U ψK = 1 if Jπ, ψK = 1, ∨ if Jπ, φK = 1 ∧ Jπ1, ψK = 1, and so on, while

we will set Jπ, φ U ψK = 0 if none of these eventualities holds. What said can be

expressed by this expression:

Jπ, φ U ψK = ∨i≥0{Jπi, ψK ∧ ∧0≤j≤iJπj , φK}. (2.8)

These rules completely fix LTL semantics.

2.2.2 Usefulness of LTL in modeling specifications of reactive systems

LTL is very useful in stating temporal specifications for systems. Indeed, Amir

Pnueli first introduced it in [9] to deal with formal verification of computer pro-

grams (for this contribution, Pnueli won a Turing Award). Let’s just give an ex-

ample. Suppose we have a computer program, and that we want the following

statement to be true: Any time the user executes the operation described by the the

atomic proposition p=“button A has been pushed”, atomic proposition q=”letter
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A has been written on the screen” becomes true in at most three instants of time.

We can simply state this sentence using the LTL formula G(p → (Xq ∨ XXq ∨

XXXq)). LTL allows to easily state some of the most common kinds of specifi-

cations for systems, such as:

• safety: an undesired eventuality never happens, G(¬φ);

• liveness: a desired eventuality keeps happening in the future, G(Fφ).

Both these properties can be checked as particular cases of the so-called model

checking problem: given an LTL formula and a Kripke structure, verify that every

path on that structure satisfies that formula. In the past years efficient ways to

solve the model checking problem for LTL have been proposed.

2.2.3 Fuzzification of LTL

In Subsection 1.1.1 we have already seen how to extend ordinary boolean oper-

ators in order to deal with fuzzy values. Having given LTL semantics in terms

of boolean operators, the same can be done for LTL: we only have to substitute

boolean operators with their fuzzy version. Therefore, we see that a fuzzy ver-

sion of LTL compatible with Zadeh’s fuzzy boolean operators is defined by the

following semantics:

Jπ,¬ψK = 1− Jπ, ψK, (2.9)

Jπ, ψ1 ∧ ψ2K = max {Jπ, ψ1K, Jπ, ψ2K} , (2.10)

Jπ, ψ1 U ψ2K = sup
i≥0

{
min

{
Jπi, ψ2K, min

0≤j<i
Jπj, ψ1K

}}
, (2.11)

(constants True and False and atomic propositions are evaluated in the same way

as in boolean LTL; operator X , also, has the same semantics). We refer to this
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fuzzified version of LTL as to LTL[Z], the Z staying for “Zadeh”.



Chapter 3

Fuzzy LTL games

This chapter starts with an exposition of the basic concepts of automata theory.

A presentation of the traditional automata-based technique for solving the model-

checking problem for LTL specifications follows. In Section 3.3 LTL games are

defined, and the usual way to solve them via automata is exposed. Finally, in

Section 3.4, we introduce a variation of these kinds of games, which we call fuzzy

LTL games, and show how the technique used for LTL games can be adapted to

solve these ones. It provides the first original contribution of this work.

3.1 Basic notions of automata theory

Automata are mathematical objects capable of representing computational prob-

lems in a very simple but effective way. For this reason, they are a fundamental

tool in computer science. In this section we will give the basic notions of automata

theory, limiting ourselves to the aspects of the theory needed for our purposes.

31
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3.1.1 Formal definitions

In order to define automata and their properties, we recall the following definitions

from formal languages’ theory:

• an alphabet Σ is a collection, finite or infinite, of symbols;

• a word ω over an alphabet Σ is a sequence, finite or infinite, of elements of

Σ;

• a language L over an alphabet Σ is a collection of words over Σ.

An automaton is a tuple 〈Q,Σ, δ, q0,F〉, where:

• Q is a set of states; we denote the generic element of Q by q;

• Σ is a finite alphabet; we denote the generic element of Σ by τ ;

• δ : Q× Σ→ 2Q \∅ is a transition rule: given a state q and a symbol τ ,

δ(q, τ) is the set of possible next states; note that δ can be single-valued or

many-valued: in the former case the automaton is said to be deterministic,

in the latter it is said to be non-deterministic;

• q0 ∈ Q is the initial state;

• F ⊆ Q is the set of the accepting states.

Automata take words τ0τ1...τn... as inputs, and produce runs q0q1...qn..., i.e. se-

quences of states starting from the initial state such that, for every n, qn+1 ∈ δ(qn, τn).

A word, submitted to a deterministic automaton, produces one run. In the case of

non-deterministic automata, instead, many runs can correspond to the same input

word. An automaton is said finite if it has a finite number of states, infinite other-

wise. Both finite and infinite words can be submitted to an automaton. Sometimes,



CHAPTER 3. FUZZY LTL GAMES 33

the word “automaton” is used to indicate those which work on finite words, while

those using infinite words as input are called ω-automata. In the following, we

will only consider finite ω-automata. A finite non-deterministic ω-automaton is

usually indicated with NFω, while a finite deterministic ω-automaton is usually

referred to as DFω. Among all the possible runs of an automaton some are said

to be accepting. A word is said to be accepted by the automaton if there is an ac-

cepting run on it. The rule which prescribes which runs are accepting is called the

accepting condition of the automaton. Many different accepting conditions have

been considered, leading to many different types of automata. For the moment we

only consider two of them. Firstly, said ρ a run, we define Inf(ρ) as that subset

of Q consisting of states which appear an infinite number of times in ρ. The two

accepting conditions can then be stated as follows:

Büchi accepting condition. A run ρ is accepted if at least one accepting state

appears in Inf(ρ).

Parity accepting condition. Let the states of the automaton be labeled with nat-

ural numbers from 0 to m; a run ρ is accepted if the smallest label number ap-

pearing in Inf(ρ) is even.

A non-deterministic Büchi ω-automaton is usually indicated as NBω, a de-

terministic one with DBω. Analogously, NPω and DPω indicate respectively

non-deterministic and deterministic parity ω-automata. A word ω is said to be

accepted by an automaton A if a run ρ produced by A when processing the input

ω is accepted. The set of words over an alphabet accepted by an automaton forms,

according to the definition given above, a language. This language is said to be

recognized by the automaton.
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3.1.2 Automata problems of interest in computer science

Typical problems in automata theory consist in establishing properties of the lan-

guages of certain automata. In the following we will deal with the following two:

• emptiness: deciding if a certain automaton accepts any word at all, i.e., if

its language is the empty set or not;

• inclusion: deciding whether the language of one automaton is included into

the language of another or not.

We also introduce a slightly different kind of problem which will play a role in

the following:

• determinization: given a non-deterministic automaton, construct a deter-

ministic one which recognizes the same language.

Typically determinization, when possible, implies an exponential blow-up in the

number of states and transitions of the automaton. In some cases, it also impose to

change the accepting condition. Indeed, it is known that non-deterministic Büchi

automata are more expressive than deterministic Büchi automata. It means that

it is impossible in general to find a deterministic Büchi automaton which recog-

nizes the same language of a non-deterministic Büchi automaton. But it has been

proven that deterministic parity automata are as expressive as non-deterministic

parity automata, which in turns are more expressive than non-deterministic Büchi

automata. It means that the following theorem holds:

Theorem 1 (from NBω to DPω). For every NBω A = 〈Q,Σ, δ, qo,F〉 exists a

DPω Ã =
〈

Q̃,Σ, δ̃, q̃0,P
〉

such that A and Ã recognize the same language (P is

the function assigning priorities to every state in Q̃).

For the construction of Ã see, for example, [10].
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3.2 Model-checking problem for LTL specifications

In this section we give a precise definition of the model-checking problem for

LTL specifications, and show how it can be solved applying the Vardi-Wolper

procedure. As we will see, this procedure permits to construct an automaton which

accepts only computations which satisfy a given formula.

3.2.1 Formal statement of the model-checking problem

The model-checking problem can be stated as follows:

Statement of the model checking problem. Given a Kripke structure K =

(S,E, I, f, s0) and a temporal logic formula φ constructed on the set I of atomic

propositions of K, decide whether or not, for every path π in K starting from s0,

Jπ, φK = 1.

Some model-checking algorithms, when the answer to the model-checking

problem is negative, produce a counterexample.

3.2.2 Solving the model-checking problem using the Vardi-Wolper procedure

In their 1983 paper [11] Vardi and Wolper showed, given an LTL formula φ, how

to construct an automaton Aφ which only accepts computations satisfying φ. We

do not go into the details of the construction, nor in the proof of its correctness,

but just show how it can be used to solve the model-checking problem:

1. following Vardi and Wolper, building a non-deterministic Büchi automaton

Aφ which only accepts computations satisfying φ;

2. building a non-deterministic Büchi automaton AK which accepts all and

only computations of K;
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3. checking whether the language of AK is included in the language of Aφ;

clearly, this would assure that every computation in K starting from s0 sat-

isfies φ.

3.3 LTL games

We are going to define LTL games, and to show how the objects used to solve the

model-checking problem can be applied to solve them.

3.3.1 Formal definitions of LTL, Büchi and parity games

In this section we define three different kinds of games, not only LTL. The reason

is that we will solve LTL games reducing them to other games, namely Büchi or

parity. These three games share many features, namely:

• they are played on a Kripke structure K = (S,E, I, f, s0), called the arena;

• they are played by two players; the set of vertices S is partitioned into two

subsets, S0 and S1; player 0 moves when in a state belonging to S0, choosing

one of the possible transitions from that state; similarly, player 1 moves

when in a state belonging to S1;

• player 0 wins when the infinite path π in K generated by the players’ moves

satisfies some condition, called the winning condition; player 1 wins if

player 0 fails.

In Büchi and parity games, we suppose the states labeled as said in Subsection

3.1.1. The only difference between LTL, Büchi and parity games is in the winning

conditions:
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• in LTL games, an LTL formula φ in terms of the atomic propositions in I is

given; the winning condition for player 0 is: Jπ, φK = 1;

• in Büchi games, the winning condition for player 0 is: at least one accepting

state appears infinitely often in π;

• in parity games, the winning condition for player 0 is: among the states

which appear infinitely often in π, the one with the highest priority has an

even priority.

It is useful to introduce the concept of strategy, which we define as follows:

Definition of strategies. Be Π the set consisting of all the possible finite paths of

the form sj...sk on a Kripke structure K(S,E, I, f, s0). A strategy for a player i

is a function σ : Π → S compatible with the transitions in K, i.e., such that for

every n ∈ N we have σ(sj...sn) = sn+1 ∈ S and (sn+1, σ(sj...sn)) ∈ E. A strategy

is said to be memoryless if σ(sj...sn) = σ(sn) for all sj...sn. A path π = sj...sn...

is said to be a play generated by σ if, for every n such that sn is a state belonging

to player i, sn+1 = σ(sj...sn). A strategy for player i is said to be winning if every

play generated by it is winning.

We define player 0’s winning region as the subset P0 of the set of states of the

arena from which player 0 has a winning strategy; player 1’s winning region P1

has a similar definition. We recall this fundamental property of Büchi and parity

games (see for example [12] and [13]:

Theorem 2 (winning strategies for Büchi and parity games). In Büchi and

parity games P0 and P1 are computable and form a partition of the set of states

of the game’s arena; when a player has a winning strategy, she has a memoryless

one from every state in her winning region.



CHAPTER 3. FUZZY LTL GAMES 38

3.3.2 Solving LTL games

The usual way to solve LTL games (see, for example, [14]) consists in translating

them into games with a different type of winning condition which is known how to

solve. Informally, the idea at the basis of this translation is to form the product be-

tween the arena where the game is played and the automaton Aφ = 〈Q,Σ, δ, q0,F〉

defined in Subsection 3.2.2. The product set so obtained is seen as the arena

of another game. This game is defined so to assure that winning it we both re-

spect the transitions on the arena and the accepting condition of the automaton,

therefore winning the initial LTL game. We recall that the automaton Aφ is gen-

erally non-deterministic: it happens to be deterministic only for particular for-

mulas φ. This fact represent a problem, because the game on the product set is

not well-defined unless the automaton involved in the product is deterministic.

When Aφ is non-deterministic, then, it is necessary to determinize it. A deter-

ministic automaton Aφ leads to a Büchi game. When determinization is needed,

the kind of game the LTL game is translated into depends on the determiniza-

tion we perform. The determinization we choose is from Büchi to parity. Con-

sequently, the LTL game will result translated into a parity game. As before,

K = (S,E, I, f, s0) is the arena where the LTL game is played. We construct a

parity game G = (X = X0 + X1, s̃0, P̃) according to the following steps (for gen-

erality, we suppose Aφ is non-deterministic):

1. translate Aφ into a deterministic parity automaton Ãφ =
〈

Q̃,Σ, δ̃, q̃0,P
〉

;

2. form the set X = S× Q̃; we suppose X partitioned into sets X0 and X1

according to S’s partitioning, i.e., X0 is formed by states (s, q) such that s is

in S0 and X1 is formed by states (s, q) such that s is in S1;
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3. introduce transitions on X in the following way: from a state (s, q) it is

possible to go to a state (s′, q′) if and only if there is a transition in K which

leads from s to s′ and δ̃(q, f(s)) = q′;

4. P̃ assigns to state (s, q) the same priority which P assigns to state q;

5. s̃0 = (s0, q0), where q0 is the initial state of Ãφ, is the initial state of G.

G is a parity game. A play in G is obtained by a play in K, and viceversa a play

in G fixes a play in K. A winning strategy in G is guaranteed to produce a path

(s0, q0)(s1, q1)...(sn, qn)... in X such that s0s1...sn... is a path compatible with K’s

structure, and q0q1...qn... is an accepting run for Ãφ, i.e., a computation satisfying

φ. Therefore, if (s0, q0)(s1, q1)...(sn, qn)... is a winning play for Player 0 in X,

then s0s1...sn... is a winning play for Player 0 in the original LTL game.

3.4 Fuzzy LTL games

Now we are ready to introduce and solve fuzzy LTL games.

3.4.1 Formal definition of fuzzy LTL games

Be K = (S = S0 + S1,E, I, f, s0) a Kripke structure as the ones introduced above,

with the difference that f takes values in the interval [0, 1]. Be φ an LTL[Z] for-

mula, i.e., a formula whose value on a path s0s1...sn... in K is evaluated according

to Zadeh’s semantics. We give the following definition:

Definition of LTL[Z] games. An LTL[Z] game A is an infinite two-player game

on an arena K. Player 0 chooses which move to take in states belonging to S0,

while Player 1 choose which move to take when in a state belonging to S1. Player
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0’s goal is to assure that the path produced by the moves of the two players is

such that Jπ, φK has the highest possible value. Player 1’s goal is to assure that

the path produced by the moves of the two players is such that Jπ, φK has the

lowest possible value.

In LTL[Z] games we do not talk about winning positions. Instead, we define

the value val(A, φ) of an LTL[Z] game whose specification is formula φ:

val(A, φ) = sup
σ

inf
π

Jπ, φK, (3.1)

where σ is a strategy for player 0 and π is a path generated following σ. Infor-

mally, this definition means that the value of the LTL[Z] game considered is equal

to the highest value player 0 can attain for φ when starting from s0, when player

1 plays in the best possible way. In the following subsection we will show how to

adapt the technique introduced in Subsection 3.3.2 to solve LTL[Z] games.

3.4.2 Solving fuzzy LTL games

At the beginning of this chapter we recalled that fuzzy LTL games are a new topic,

so the way to solve them cannot be found in the literature. Nonetheless, fuzzy

versions of LTL have already been given in the past, and the generalized model-

checking problem for them has been solved, for example in [15]. We are going

to adapt the main results of [15] to LTL[Z], so to have a good starting point to

solve LTL[Z] games. The first step is bounding the number of values that a given

specification can have on the given Kripke structure. This is done in Lemma 2.5 of

[15], proven for an entire family of quantitative extensions of LTL which includes

LTL[Z]. Restricting ourselves to LTL[Z], the limit on the number of values that a
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formula can have is lower than the one given in [15] for the general case. We are

going to prove this assertion adapting the proof in [15]:

Lemma 1 (bounding the number of values for LTL[Z] formulas). Given an

LTL[Z] formula φ and a Kripke structure K, the number of values of the form

Jπ, φK, where π is a path on K, is finite, and is equal to x · |φ|, where x is the

highest number of different possible values an atomic proposition can assume on

K, and |φ| is the length of formula φ.

Proof. Let’s proceed by induction. The only formulas of length 1 are True, False

and the atomic propositions. By the definition of x, for these propositions it triv-

ially holds that #V (φ) ≤ x. A formula of length n can be obtained:

1. via negation of a formula of length n− 1;

2. via conjunction of formulas ψ1 and ψ2 such that |ψ1|+ |ψ2| = n− 1;

3. applying operator X to a formula of length n− 1;

4. applying operator U to formulas ψ1 and ψ2 such that |ψ1|+ |ψ2| = n− 1;

Let’s discuss each of these cases:

1. according to our semantics, Jπ,¬ψK = 1− Jπ, ψK; the set V(¬ψ) is then

formed by all numbers of the form 1− y, where y ∈ V(ψ); f(y) = 1− y

is a one-to-one correspondence between V(ψ) and V(¬ψ), so we conclude

that V(ψ) and V(¬ψ) have the same cardinality; our lemma then holds,

even with a stronger bound;

2. since Jπ, ψ1 ∧ ψ2K = max {Jπ, ψ1K, Jπ, ψ2K}, we have V(ψ1 ∧ ψ2) ⊆ V(ψ1) ∪ V(ψ2),

and therefore #V(ψ1 ∧ ψ2) ≤ #V(ψ1) + #V(ψ2); by the induction hy-

pothesis, then, #V(ψ1 ∧ ψ2) ≤ x · (|ψ1|+ |ψ2|) = x · (n− 1);



CHAPTER 3. FUZZY LTL GAMES 42

3. the set V(φ) contains the values assumed by formula φ along any possible

path; for every possible path π, π1 is a possible path too1; thus, Jπ1, φK

belongs to V(φ) whatever path π we consider; since numbers of the type

Jπ1, φK form the set V(Xφ), we conclude that V(Xφ) ⊆ V(φ), and again

the lemma holds in an even stronger form;

4. we have Jπ, ψ1Uψ2K = sup
i≥0

{
min

{
Jπi, ψ2K, min

0≤j<i
Jπj, ψ1K

}}
, so again

V(ψ1Uψ2) ⊆ V(ψ1) ∪ V(ψ2) and #V(ψ1Uψ2) ≤ #V(ψ1) + #V(ψ2) ≤ x · (n− 1).

We notice that for formulas of length greater than 1 we have the stronger bound

#V (φ) ≤ x · (|φ| − 1). We had to use the weaker bound in the statement of the

theorem so that it could apply to formulas of length 1 too.

Another result we will need from [15] is this:

Theorem 3 (extending the Vardi-Wolper procedure to LTL[Z] formulas). For

every LTL[Z] formula φ and for every interval P ⊆ [0, 1] exists a non-deterministic

Büchi automaton Aφ which accepts all and only computations such that φ’s value

is in P.

Again, they prove their result for an entire family of fuzzy LTLs, but their pro-

cedure is general and we can apply it without modifications to the case of LTL[Z].

For this reason, we give and accept the statement without repeating the proof.

From Lemma 1 we see that given a Kripke structure K and an LTL[Z] formula φ,

a finite set {V1, ...,Vk} of possible values for φ in K is given. Applying Theorem

3 to the k intervals Ij, each reducing to the single value Vj (j ≤ k), we obtain a

finite set of automata {Aφ
1, ...,Aφ

k} such that, for every j, Aφ
j accepts all and

1Of course, π and π1 have different initial states, but we are considering any path, not only
paths starting in a designated state.
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only those computations such that the value of φ is Vj. Some of these automata’s

languages might be empty: it means that the corresponding numbers Vj are not

actually obtainable. We eliminate from sets {V1, ...,Vk} and {Aφ
1, ...,Aφ

k} those

indexes for which this eventuality occurs. Let {W1, ...,Wm} and {Aφ
1, ...,Aφ

m},

with m ≤ k, be the sets obtained after this elimination. The value of the LTL[Z]

game can be found using the same procedure described in Subsection 3.3.2: the

only difference is that we might be obliged to repeat it up to m times. Indeed,

when dealing with LTL[Z] games, we can build m different parity games, one for

every automaton Aφ
j. Said j the highest index between 1 and m such that the cor-

responding game can be won by player 0, we have that val(K, φ) = Wj. The best

strategy for the LTL[Z] game can be obtained by the parity game corresponding to

automaton Aφ
j as done in Subsection 3.3.2. The results of this last section, which

constitutes the first theoretical contribution of this work, can be seen as the proof

of the following theorem:

Theorem 4 (decidability of LTL[Z] games). Solving LTL[Z] games is decidable.

It should be possible to prove that the complexity of this problem is 2EXPTIME-

complete, the lower bound being obtainable, for example, from [16], and the upper

bound coming from the description of our algorithm.



Chapter 4

LTL[Z] controller synthesis

Now we have all the items needed to introduce our idea, the core of this work: an

LTL[Z]-based controller. In Section 4.1 we illustrate step by step how to construct

it, while in Section 4.2 we give a simple example.

4.1 Construction of an LTL[Z]-based controller

We suppose given a system y, which we aim to control with actuators in order

to fulfill some LTL[Z] formula φ, and the environment e it is immersed in. We

can split the construction of an LTL[Z]-based controller in two parts: the modeling

process and the strategy synthesis. The modeling process consists in the following

steps:

1. individuate a set of attributes I which completely specifies the state of s and

e; formula φ must be expressed in terms of these attributes, too;

2. discretize y and e so that we can assume that they can only be in a finite

number of states, which we call Y and E respectively, according to the
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values of the attributes assigned to them by a labeling function f ; be these

values expressed in a scale going from 0 to 1; be the time discretized as well,

and be t the shortest amount of time we consider; in the cartesian product

Y × E individuate the only couples (Yi, Ej) formed by states which are

simultaneously observable; be W the subset of Y × E so obtained;

3. construct a set V duplicating every state in W ; the set V be partitioned in

the subsets V0 and V1 such that just one copy of every state belong to each

of them; these sets represent states belonging to the controller and states

belonging to the environment respectively;

4. let’s introduce transitions T in V ; the rules to be followed in doing so are:

(a) no state can remain isolated;

(b) a state in V0 must necessarily lead to a state in V1, and viceversa;

(c) transitions must represent variations in the attributes for y which is

possible to attain using the actuators, and variations in the attributes

for e which can realistically happen in an amount of time t.

Now we discuss strategy synthesis. Before describing the steps it requires, we

remind that, from the algorithm described in Chapter 3, solving an LTL[Z] game

on an arena V is equivalent to solve a parity game on the arena V × Q, where Q

is the set of states of a certain automaton, and that the parity game on this larger

arena can be solved applying a memoryless strategy.

1. For every state y0 in V , solve the LTL[Z] game on the arena K = (V =

V0 + V1, T, I, f, y0) corresponding to formula φ, i.e., establish what is the

highest possible value for φ on a path starting from y0 and find a strategy to

assure it is obtained;
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2. following Sections 3.3 and 3.4 expand the set of states of the controller from

V to V ×Q;

3. note that the strategy on V × Q obtained in step 1, being memoryless, is

equivalent to a set of fuzzy if − then rules on V ×Q;

4. set the actuators response to sensors’ inputs according to the rules obtained

in step 3.

4.2 An example

In this example we want to synthesize a controller for the temperature of a room

in a building. The system y is therefore the room, while the environment e is

everything around it. The only variable we want to control is the temperature T .

We only consider three atomic propositions: T is LOW , T is MEDIUM and

T is HIGH . To assign a value to these atomic propositions we label each state

with an attribute between LOW , MEDIUM and HIGH , and use the following

table:

T LOW MEDIUM HIGH
LOW 1 0.5 0
MEDIUM 0.5 1 0.5
HIGH 0 0.5 1

It means that the atomic propositions T is LOW has value 1 in states labeled

with LOW , value 0.5 in states labeled with MEDIUM and value 0 in states la-

beled withHIGH , and so on. Following the procedure described in the preceding

section, we obtain a Kripke structure like this for the arena of our game:
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LOW LOW

MEDIUM MEDIUM

HIGH HIGH

Figure 4.1: Kripke structure describing states and transitions for a system room-
environment.

We have represented the states belonging to the controller with circles, and the

states belonging to the environment with rectangles. It is easily verified that we

have respected all the rules we have stated for the transitions, which, to make the

figure more readable, we have colored in red when they start from a state belong-

ing to the controller and in black when they start from a state belonging to the envi-

ronment. To express the fact that we do not expect the environment to change too

quickly we have forbidden it to go from LOW to HIGH and viceversa, while we

have given this possibility to the controller. A possible specification for the con-
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troller could be: ′′G((T is LOW ) ∨ (T is HIGH)) → X(T is MEDIUM)′′.

We could choose a starting state, for example LOW , belonging to the environ-

ment, find the value of the corresponding game and use the technique exposed in

Subsection 3.4.2 to find a winning strategy. According to the procedure described

in the previous section, this strategy would then tell us which moves to take at

every instant of time.



Chapter 5

Fragments of LTL

In Chapter 3 we have seen that solving an LTL game, or an LTL[Z] game, requires,

in the general case, the determinization of a Büchi automaton. This step may

present great difficulties, as briefly explained in Section 5.1. In the case of LTL,

it has been found that determinization can be avoided when certain limitations are

imposed on the form of the LTL formula the game is played with. These results

are reported in Section 5.2. In Section 5.3 we show that something similar can

be said for LTL[Z] games. Adapting the arguments valid for LTL to LTL[Z], we

prove indeed that determinization can be avoided in some important cases with no

much greater computational cost with respect to LTL. This proof constitutes the

second original theoretical contribution of this work.
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5.1 Difficulties in the determinization of a Büchi au-

tomaton

Determinization of non-deterministic automata is a very complex task. As re-

ported, for example, in [17], only in 1988 Safra introduced an algorithm to deter-

minize Büchi automata. His construction is found to be difficult, and leads to an

exponential blow-up of the number of states. Moreover, as we said in Chapter 3,

it inevitably requires to switch from Büchi to different accepting conditions, like

parity. Lately, other constructions have been given, such as the one described in

[10], which we have referred to in Chapter 3. We preferred it over the others since

it led from LTL games to parity games, for which many efficient algorithms are

known, but it still requires a huge increase in the number of states, which make it

untractable for large systems. As pointed out in [14], the complexity of the deter-

minization depends on the form of the LTL formula. For some less complex for-

mulas, they notice that the Büchi automaton produced applying the Vardi-Wolper

procedure is indeed deterministic. In this case determinization is unneeded, and

the procedure to solve the game is much simpler.

5.2 Fragments of LTL

Alur and La Torre, in their paper [14], consider some restrictions on LTL syntax.

Such restrictions are called fragments. In particular, they consider the following

two:

1. LTL(F, X, ∧, ∨): only formulas obtained using the operators Finally, Next,

AND and OR are allowed;
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2. LTL(G, F, ∧, ∨): only formulas obtained using operators Always, Finally,

AND and OR are allowed.

We consider the set of LTL(F, X, ∧, ∨) formulas φ, and, for each of them, the lan-

guage L(φ) consisting in computations which satisfy φ. They prove the following

theorem for LTL(F, X, ∧, ∨) formulas:

Theorem 5 (on the determination of automata accepting LTL(F , X , ∧, ∨)

formulas). For every LTL(F , X , ∧, ∨) formula φ exists a deterministic Büchi

automaton Aφ, doubly exponential in the length of the formula, which recognizes

the language L(φ).

Theorem 5 tells us that solving LTL(F, X, ∧, ∨) games is simpler than solving

general LTL games (we leave the discussion on complexity as an open problem).

Since LTL(F, X, ∧, ∨) contains combinations of safety and guarantee properties of

great practical value, this simplification constitutes an important theoretical result.

We can define a fragment of LTL[Z] analogous to LTL(F, X, ∧, ∨), which we call

LTL[Z](F, X, ∧, ∨), allowing for formulas φ just the use of the operators F, X,

∧ and ∨, interpreted of course according to Zadeh’s semantics. If we can extend

Theorem 5 to LTL[Z](F, X, ∧, ∨) formulas, we would obtain a great simplification

for the corresponding LTL[Z] games, too. In the next section we prove that such

an extension is possible.

5.3 Fragments of LTL[Z]

To prove Theorem 5 for LTL[Z](F, X, ∧, ∨) formulas we need the following

lemma, stated and proven in [15]:
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Lemma 2 (booleanization of fuzzy LTL formulas). For every fuzzy LTL for-

mula φ and every interval P ⊆ [0, 1], exists a Boolean LTL formula, which we

denote with Bool(φ, P ), such that, for every path π on a given Kripke structure,

Jπ,Bool(φ, P )K = 1 if and only if Jπ, φK ∈ P .

The proof that Almagor, Boker and Kupferman give of this lemma is con-

structive, i.e., they construct the formula Bool(φ, P ) and prove it has the property

asserted in the statement of the lemma. This constructions consists in translating

every fuzzy LTL operator which appears in φ into a precise combination of LTL

operators. Their proof is valid for a more general logic. We only report the part

of the construction which regards LTL(F, X, ∧, ∨). We expose the construction

referencing explicitly to LTL[Z]:

• constant True:

Bool(True, P ) =


True if 1 ∈ P

False if 1 /∈ P
(5.1)

• constant False:

Bool(False, P ) =


True if 0 ∈ P

False if 0 /∈ P
(5.2)
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• atomic propositions:

Bool(p, P ) =



True if 0 ∈ P and 1 ∈ P

p if 0 /∈ P and 1 ∈ P

¬p if 0 ∈ P and 1 /∈ P

False if 0 /∈ P and 1 /∈ P

(5.3)

• operator AND:

Bool(φ ∧ ψ, P ) = ∨d1∈V (φ),d2∈V (ψ):d1∧d2∈PBool(φ, d1) ∧Bool(ψ, d2);

(5.4)

• operator OR:

Bool(φ ∨ ψ, P ) = ∨d1∈V (φ),d2∈V (ψ):d1∧d2∈PBool(φ, d1) ∨Bool(ψ, d2);

(5.5)

• operator Next: we set Bool(Xφ,P ) = X(Bool(φ, P ));

• operator Finally: it is written in terms of operator Next.

In the expressions for operators AND and OR, V (φ) and V (ψ) represent the sets

of all possible values formulas φ and ψ respectively can have, which are finite

according to Lemma 1. In these expressions for operators F, X, ∧ and ∨ we see

that only operators F, X, ∧ and ∨ appear. It means that an LTL[Z](F , X , ∧,

∨) formula is translated, following this constructions, into an LTL(F , X , ∧, ∨)

formula. This is a crucial point in the proof of the theorem we want to establish

for LTL[Z](F , X , ∧, ∨), which we now state and prove as follows:
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Theorem 6 (on the determination of automata accepting LTL[Z](F , X , ∧,

∨) formulas). For every LTL[Z](F , N , ∧, ∨) formula φ and interval P ⊆ [0, 1]

exists a deterministic Büchi automaton A of exponential size which accepts all

and only computations satisfying φ.

Proof. Given the LTL[Z](F , X , ∧, ∨) formula φ and the interval P ⊆ [0, 1], let

us construct the LTL formula Bool(φ, P ) applying Lemma 2. Analyzing the con-

struction at the basis of the lemma, we have seen that Bool(φ, P ) is an LTL(F ,

N , ∧, ∨) formula. We can therefore apply Theorem 5 to it, and construct a de-

terministic Büchi automaton ABool(φ,P ) which accepts all and only those compu-

tations which satisfy Bool(φ, P ). But, by construction, a computation π satisfies

Bool(φ, P ), if and only if Jπ, φK ∈ P . ABool(φ,P ) is therefore the deterministic

Büchi automaton we are looking for.

Apart the practical importance of this theorem, we note that it also implies a

remarkable theoretical result: indeed, it tells that LTL[Z](F , X , ∧, ∨) games are

almost 1 as easy to solve as LTL(F , X , ∧, ∨) ones. Their greater expressiveness,

so to say, comes therefore at a little cost.

1Of course, we must consider that in order to solve LTL[Z](F ,X , ∧, ∨) games we have to con-
struct the LTL formula Bool(φ, P ), which requires an additional computational effort. Almagor,
Boker and Kupferman prove that the translation can indeed be quite expensive in computational
terms. Nonetheless, its cost should generally be small when compared to that required by the
determinization of a Büchi automaton.



Conclusions

In this section we briefly summarize the work we have presented. Subsequently,

we point out some issues worthy of further investigations, and give some sugges-

tions about the possible developments of the theory.

Brief survey

In Chapter 1 we introduced the basic concepts of fuzzy control theory and fuzzy

logic. In Chapter 2 we illustrated the suitability of temporal logic, and LTL in par-

ticular, to state and check properties of systems, and suggested the possibility to

apply these concepts to the design of a new type of fuzzy controller. In Chapter 3

we went deeper into this topic, and also gave our main technical contribution: we

defined LTL[Z] games and adapted the techniques known for classic LTL games

to prove that solving them is decidable. In Chapter 4 we exemplified how to use

fuzzy LTL games to modelize and solve control tasks, which is the main concep-

tual contribution of this work. Finally, in Chapter 5, we focused our attention on

one of the most demanding points of the procedure to solve fuzzy LTL games,

showing that it could be greatly simplified introducing restrictions on the fuzzy

LTL formulas. Again, the result was obtained by combining previous results on

classic LTL and fuzzy LTL. From this brief summary it is possible to recognize
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many points where we could have taken different directions, which could be in-

vestigated in subsequent works.

Possible future developments

We just suggest three lines of investigation, which we think would be of interest:

1. As we said, many different ways to fuzzify the Boolean and the temporal

operators are possible. They lead to fuzzy versions of LTL different from

LTL[Z], and therefore to different fuzzy LTL games. To the most common

of them the results contained in [15] are still applicable, so, at least for

what regards the theoretical part, nothing new shows up. Nonetheless, the

difference in the semantics would lead to a different behavior of the fuzzy

controller eventually implemented using that fuzzy LTL game as a model,

making it more or less efficient. A study of which logic would be better in

relation to the different systems to be controlled, or the different specifica-

tions to be fulfilled, would be interesting.

2. Two-player games are very useful to model the interaction between a system

and its environment, but, in many cases, it is more realistic to consider the

interaction between the environment and a greater number of systems, each

with its specification (it is the field of study of multi-agent systems’ theory).

The possibility to define multi-player LTL and LTL[Z] games, and to apply

them to design multi-agent fuzzy controllers, could be worth studying.

3. It is possible to try to implement the algorithm developed in Chapter 3, in

order to make simulations and test its efficiency.



Further readings and related works

During the preliminary phase of the writing of this thesis a bibliographical re-

search has been done, to establish what was the state of the art for what con-

cerns the main issues here investigated: fuzzifying temporal logic and designing

game-based fuzzy controllers. Though we preferred to introduce the new ideas

previously exposed, we report in this section what we think are among the most

interesting attempts done in the aforementioned subjects, to acknowledge them as

an inspiration for our work and to compare them with the path we have chosen.

Other attempts to fuzzify LTL

The way we have chosen to fuzzify LTL consists in allowing fuzzy values for the

atomic propositions, and in adapting LTL semantics to deal with such values. In

this way we have been able to talk about the degree of satisfaction of LTL for-

mulas, or, as is said in [15], about the quality of satisfaction of these formulas.

More precisely, in [15] this concept is called propositional quality, since the eval-

uation of the quality of the LTL formulas is intended with respect to propositions.

The authors also refer to temporal quality as the framework where the degree of

quality of an LTL formula is evaluated with respect to the temporal operators. In

particular, they introduce discounting functions η : N → [0, 1], which are mono-
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tonically decreasing and tends to 0, and then add to the ordinary Until operator

a discounted Until for every discounted function, whose semantics is defined this

way:

Jπ, ψ1 Uη ψ2K = sup
i≥0

{
min

{
η(i)Jπi, ψ2K, min

0≤j<i
η(j)Jπj, ψ1K

}}
(5.6)

(operators Fη and Gη are obtained from Uη). Basically, since the function η is

decreasing, here the states nearer in time count more than the farther ones, allow-

ing one to give specifications whose quality evaluation depends not only on the

states visited along the path, but also on the time elapsed while waiting for the

fulfillment of eventualities. Different definitions of temporal quality can be found

in other works. In [18], for example, bounded versions of the temporal operators

are introduced. They tolerate that the specification is not fulfilled for a certain

number of instants, a penalty being paid for every of such instant, as prescribed

by appropriate avoiding functions. Temporal quality seems indeed a fertile field

of investigation.

System-environment models using games different from LTL

With respect to the possibility to describe the interaction between a system and

the environment as a game, [19] is a work where an interesting approach, different

from the one we have chosen, is described. In this paper, the authors introduce

what they call Fuzzy Game Graphs (FGG). These are basically Kripke structures,

partitioned as for LTL games, with fuzzy values on the transitions to represent

the possibility of success of a determined move. The winning condition is of

the reachability type, i.e., Player 0 has to reach a particular region of the arena,
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called the winning region, and Player 1 must impede her. This game is different

from LTL games in two aspects, both in the structure of the arena and in the

winning condition (the last is not a great difference though, since reachability can

be expressed in LTL). In an example at the beginning of their work, the authors

use an FGG to describe the interaction between a robot and a hostile environment,

in what can be considered the model for the design of a fuzzy controller. The main

difference with respect to our case is that fuzzy values, here, represent possibilities

rather than degrees of truth. Nonetheless, their approach has been very influential

on our work, and we must acknowledge them also for the concept of value of a

game, which we have adapted to LTL[Z] games.



Appendix A

Constructing the Vardi-Wolper

Büchi automaton

It is remarkable that the results proven in this work completely rely on the standard

techniques usually applied to solve the model-checking problem for LTL formu-

las and LTL games. For this reason, no fundamentally new construction has been

needed, and it has been possible to omit the technical details almost completely.

However, it seems inappropriate to conclude this work without giving an insight

into the automata-theoretic techniques which play such an important role in this

field. For this reason, we now show how, from an LTL formula φ, the nondeter-

ministic Büchi automaton Aφ introduced in Subsection 3.2.2 can be constructed.

We will follow [20].

1. We begin with a preliminary definition. We define the closure of formula φ,

cl(φ), as the set of φ’s sub-formulas having the following properties:

• φ ∈ cl(φ),

• if φ1 ∧ φ2 ∈ cl(φ), then φ1 ∈ cl(φ) and φ2 ∈ cl(φ),
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• if φ1 ∨ φ2 ∈ cl(φ), then φ1 ∈ cl(φ) and φ2 ∈ cl(φ),

• if X φ1 ∈ cl(φ), then φ1 ∈ cl(φ),

• if φ1 U φ2 ∈ cl(φ), then φ1 ∈ cl(φ) and φ2 ∈ cl(φ);

now we can start constructing the automaton:

2. the alphabet Σ is the set 2P , where P is the set of atomic propositions;

3. the set of states Q is formed by all the possible elements s of 2cl(φ) such

that:

• False /∈ s,

• if φ1 ∧ φ2 ∈ s, then φ1 ∈ s and φ2 ∈ s,

• if φ1 ∨ φ2 ∈ s, then φ1 ∈ s or φ2 ∈ s;

4. given a state s and a word a, we have that transition t belongs to δ(s, a) if

and only if:

• for every p ∈ P , if p ∈ s, then p ∈ a,

• for every p ∈ P , if ¬p ∈ s, then p /∈ a,

• if X φ1 ∈ s, then φ1 ∈ t,

• if φ1 U φ2 ∈ s, then either φ2 ∈ s, or φ1 ∈ s and φ1 U φ2 ∈ t;

5. the initial states are those which contain φ;

6. be e1, e2, ..., ek the set of all eventualities in cl(φ), i.e., the set of all the

expressions of the type φ1 U φ2 ∈ cl(φ); a state si is accepting if and only

if ei, φ2 ∈ si, or ei /∈ si.
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We do not prove the correctness of the construction, remanding for this to [20].

We only wanted to illustrate how the translation from LTL to automata is done,

being it a crucial point for every work in the present theory of verification.
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