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Introduction

Superconducting nanostructures allow to investigate frontier problems in solid
state physics and favor a large number of applications, which touch other field
of reserach activity. Nanowires for instance have been of increasing interest in
the last years, due to their possible use as superconducting nanowire single pho-
ton detectors (SNSPD) in quantum technologies. These devices show an intrinsic
transistion from the superconducting to the resistive state when a certain current
Isw flows through the sample. The detection principle is based on this transition:
as the photon impacts the active region of the SNSPD, it warms up the nanowire,
causing the transition to the normal state and thus a voltage drop that can be
measured. To characterise the dark counts rate of these detectors, it is fundamen-
tal to study the dissipation processes in these superconducting nanostructures.
To completely characterise the nanostructures behaviours at different tempera-
tures, it is necessary to study the dissipation modes and self-heating process,
which are the main target of this thesis and are specifically relevant to determine
the dark count rates of these photon detectors. For this reason, I-V characteris-
tics and switching current distributions (SCDs) of the nanostructures have been
measured in a range of temperatures from few mK to temperatures relatively close
to the critical temperature Tc.
After a brief introduction to superconductivity and its principal theories in Chap-
ter 1, one of the main models to describe superconducting to resistive state tran-
sistion, the thermally activated phase slips (TAPS) model, is presented. The
switching transistions are strongly correlated with the self-heating process, as it
will be clear at the end of the chapter.
Once the self-heating process has been presented, in Chapter 2, it is widely dis-
cussed the connection between the I-V characteristics and the SCDs, which are
the principal experimental investigation tools to explore the heating dynamics. In-
deed, the description of the SCDs is discussed in terms of the local heat dynamics,
presented in Section 2.3.
In order to give an overview on the experimental background, in Chapter 3 the
cryogenic systems used to collect the measurements are described. Then, the
measurement setup and protocols are described, with a final discussion about the
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measurement errors.
Finally, the experimental data are discussed in Chapter 4 and compared with the-
oretical curves obtained by the local heat dynamics model. The fitting curves and
parameters allow an insight on the dissipation processes in the different nanostruc-
tures.
It is shown that the behaviour of these nanodevices is completely described by the
local heat dynamics in the whole temperature range used in the measurements.
The presence of two possible processes at the origin of the switching transistion,
which are identified in the single and the multiple phase slip regime, is presented
to describe these behaviours.



Chapter 1

Superconductivity in
nanostructures

Superconductivity is a physical phenomenon discovered in the early years of XX
century and it has been observed in more the 30 elements, and in a larger number
of alloys [1], below a certain transition temperature called critical temperature Tc
characteristic of each specific material. A superconductor can be identified by two
hallmarks:

• perfect conductivity [2];

• perfect diamagnetism [3,4].

It will be first briefly mentioned the microscopic theory by Bardeen-Cooper-Schrieffer
(BCS), which explains the origin of superconductivity, and the phenomenological
Ginzburg-Landau (GL) theory in order to introduce some important physical pa-
rameters used in this work. It is possible to derive the GL theory from the BCS
one, so that the predictions are consistent [5].
Then, the phase slips concept and model will be presented as a possible origin
of the superconducting to resistive state transition in superconducting nanostruc-
tures.
These notions will provide the background to discuss the mechanisms leading to
dissipation in nanostructured superconductors, which is the ultimate aim of this
work.

1.1 Principal phenomena

In 1911, by performing measurements of the resistance of mercury, Kamerlingh
Onnes found a vanishing resistance below a critical temperature of Tc = 4.2 K

3
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Figure 1.1: First observation of resistance drop in Hg [2].

[2]. A modern and more accurate demonstration of perfect conduction is realised
through an expriment using a superconducting ring. Typically, current in a ring
varies in time according to

I(t) = I(0)e−
R(T )t

L

where R(T ) is the resistance and L the inductance of the ring respectively. In
experiments with superconductors no significant variation of the current has been
measured [6].
In 1933, Meissner and Ochsenfeld discovered the perfect diamagnetism of super-
conductors in a magnetic field [3]. However, such an effect cannot be explained by
only considering a superconductor as a perfect conductor. Indeed, in Figure 1.2,
the differences between the behaviours of a perfect conductor and a superconductor
in a magnetic field are presented.
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Figure 1.2: Differences between superconductor and a perfect conductor [7].

A first theory capable of explaining the relation between the perfect conductiv-
ity and the perfect diamagnetism was presented by F. and H. London in 1935 [4]:
they proposed two equations on microscopic magnetic and electric fields, which
lead to an exponetial screening of magnetic field within a length given by the
penetration depth λL

λ2
L(0) =

mc2

4πnse2
(1.1)

here presented in the limit of T = 0, where the density of superconducting elec-
trons ns is the same of the conduction electron one. London equations are still a
phenomenological theory but, in 1950, F. London proposed to describe supercon-
ductivity as a quantum phenomenon on a macroscopic scale [8]. In this view, ns
can be written as the superfluid density |ψ|2, as if the superconducting electrons
where in something like a Bose-Einstein condensed phase.

1.2 Bardeen-Cooper-Schrieffer theory

In 1956, Corak et al. experimentally showed that the electronic specific heat in
superconducting vanadium has an exponential trend [9]:

Ces ≈ γaTce
− bT

Tc
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instead of the linear behaviour of the electronic specific heat typical of the normal
state Cen = γT , where a and b are numerical constants (b ≈ 1.5) and γ is a
constant that can be determined experimentally [9]. This and other measurements
would be explainable if the excitations were produced in pair, and not by single
indipendent particles [10]. In this framework, Bardeen, Cooper and Schrieffer
proposed a theory where superconductivity is due to an interaction mediated by
phonons between electron pairs, the so-called Cooper pairs. Indeed, an electron
passing through the lattice polarizes the nearby ions. Before lattice relaxation,
another electron is attracted by positive polarized ions [11]. Thus, the two electrons
form a Cooper pair, which behave like a single boson and is characterised by a
superconducting coherence length ξ(T ), i.e the maximum length needed to form the
pair. The maximum of attraction occurs when the two electrons have an opposite
momentum k. This pairing condition, in addition to a contact-potential interaction
in real space, leads to the following Hamiltonian of an electronic system in a bulk
superconductor in Hartree-Fock approximation, written in second quantization
formalism [10]:

H =
∑
kσ

εkc
†
kσckσ +

∑
k,l

Vk,lc
†
k↑c
†
−k↓c−l↓cl↑ (1.2)

where εk =
~2k2

2m
− EF and

Vk,l =

{
−V for |εl|, |εk| ≤ ~ωD
0 otherwise

(1.3)

where EF is the Fermi energy, ωD the Debye frequency and V a positive constant.
To find the ground state of Equation (1.2), the following trial wavefunction is used
in a variational method

|Ψ〉 =
∏
k

(
uk + vkc

†
k,↑c

†
−k,↓

)
|0〉 (1.4)

with the normalisation condition

|uk|2 + |vk|2 = 1 .

From these equations, the amplitude of Cooper pairs is

ukvk =
1

2

∆k

Ek

where Ek =
√
ε2k + ∆2

k is the quasi-particle excitation spectrum [10]. Indeed,

whereas the Cooper pairs condense in a ground state, the excitations can be seen as
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quasi-particle, also known as bogoliubons1, that are a superposition of electrons and
holes. As it can be noted from the energy-momentum diagram (Figure 1.3a), in a
normal metal the electron-hole pair creation is seen like the excitation of two states:
a hole of energy Eh, below the Fermi level, and an electron of energy El, above the
Fermi level. In the same way, in Figure 1.3b, in a superconducting metal, all the
Cooper pairs are at the Fermi level and an excitation needs a minimum threshold
energy, that is the superconducting gap ∆. Thus, an excitation is partially in a
hole and partially in an electron state [12].

Figure 1.3: Energy momentum diagrams: the dashed line rappresents the energy
levels below the Fermi level. In panel (a) there is the electron-hole pair creation
in a normal metal. In panel (b) Cooper pairs in a superconductor [12].

Since there is a one-to-one corrispondence between quasi-particle excitations
and electrons in the normal state, the density of states (DOS) can be derived by
considering the following relation:

D(E)dE = D(ε)dε

where D(ε) is the normal state DOS and D(E) is the superconducting one. Thus,

D(E)

D(ε)
=

dε

dE
=

E√
E2 −∆2(E)

− ∆(E)[d∆(E)/dE]√
E2 −∆2(E)

. (1.5)

In case of an energy indipendent gap [12], Equation (1.5) can be written as

D(E) = D(ε)
E√

E2 −∆2

where the superconducting gap ∆ is ralated to Tc [13]

∆ = 1.76kBTc . (1.6)
1This name derives from the Bogoliubov-Valatin tranformation applied to Equation (1.2).
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1.3 Ginzburg-Landau theory

The GL theory is a phenomenological theory [14], formulated before the BCS
theory. In 1959 Gork’ov showed that the GL equations could be derived from
the microscopic theory, rewritten in terms of Green functions in order to treat
inhomogenity [5].
Since the superconductor-normal transition is a second-order phase transition 2,
Ginzburg and Landau formulated a mean field theory valid below Tc, using a
complex order parameter ψ:

ψ =

√
ns
2
eıϕ (1.7)

where ϕ is the phase and |ψ|2 = ns/2 = ρs is the density of superelectrons. Within
the framework of the GL theory, it is possible to rewrite the free-energy as a
functional of the order parameter ψ, expanding the free-energy density in terms
of the order parameter and its derivatives [15]:

F = Fn0 +

∫ B2

8π
+

~2

4m

∣∣∣∣∣
(
∇− 2ıe

~c
A

)
ψ

∣∣∣∣∣
2

+ a|ψ|2 +
b

2
|ψ|4

 dV (1.8)

where Fn0 is the free-energy of the normal state and the expansion coefficients
a = A(T − Tc) and b are positive. The spatial distribution of ψ and the magnetic
field in the superconductor is given by the minimum of Equation (1.8), that is a
functional of ψ, ψ∗ and A. By varying ψ∗ in Equation (1.8), the minimum of δF
for any δψ∗ is

δF

δψ∗
=

1

4m

(
−ı~∇− 2e

c
A

)2

ψ + aψ + b|ψ|2ψ = 0 (1.9)

In the same way, the variation of A brings to

∇×B =
4π

c
j (1.10)

where the current density is given by

j = − ıe~
2m

(ψ∗∇ψ − ψ∇ψ∗)− 2e2

mc
|ψ|2A (1.11)

2Second-order phase transitions are characterised by continuous first derivative of the free-
energy with respect to some thermodynamic variable and show a discontinuity in the second
derivative.
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Equations (1.9) and (1.11) are the so-called Ginzburg-Landau equations, that have
been used by Langer and Ambegaokar [16] for the phase slip process in supercon-
ducting nanostructures, which will be analysed in Section 1.6. In these equations
the coherence length of order parameter can be found:

ξ(T ) =
~

2(mA)1/2
√
Tc− T

(1.12)

Moreover, from Equations (1.10) and (1.11), the London equations can be found
and thus the penetration depth:

λ(T ) =

√
mc2b

8πe2A(Tc − T )
. (1.13)

These two quantities (coherence length and penetration depth) are fundamental
in the definition of the Ginzburg-Landau parameter κ:

κ =
λ(T )

ξ(T )
=

mcb1/2

√
2π|e|~

. (1.14)

The GL parameter allows to distinguish between two kinds of superconductors:{
Type I for 0 < κ < 1/

√
2

Type II for κ > 1/
√

2
(1.15)

These two superconductors classes have extremely different behaviours as can be
seen from their response to an external magnetic field.

Figure 1.4: Applied field and order parameter behaviours inside and outside a bulk
Type I superconductor [17].
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Indeed, looking at what happens at the boundary of a Type I superconductor,
as depicted in Figure 1.4, a magnetic field penetrates in a small region, exponen-
tially decaying, and it is expelled from the bulk, until a critical field Hc is reached.
This field can destroy the superconducting state and is related to the difference
between the Helmholtz free-energies of superconducting and normal phases:

Ec =
H2
c (T )

8π
= fs(T )− fn(T ) (1.16)

where Ec is the so-called condensation energy [10].
On the other hand, Type II superconductors are characterised by a continuous
increase of flux penetration.

Figure 1.5: Applied field and order parameter behaviours inside and outside a bulk
Type II superconductor [17].

Indeed, as the magnetic field reaches a “first” critical field Hc1 , magnetic flux
penetrates in the superconductor, until H reaches a “second” critical field Hc2 ,
where the superconductivity is lost.
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Figure 1.6: The internal field B with the respect to an applied external field H
for a Type I and a Type II superconductor with the same thermodynamic critical
field Hc [10]

Abrikosov, that firstly described Type II superconductors [18], noticed that
between Hc1 and Hc2 , the material is in the so-called mixed state or Schubnikov
phase, where the flux penetrates in regular array of flux tubes, each one carring
a flux quantum Φ0 = h/2e. In every cell of the array, the flux is generated by a
supercurrent vortex toward the center of the vortex itself [10].

1.3.1 Time-dependent GL theory

To study the relaxation of the system when it is not in an equilibrium state, it
is needed a time-dependent GL theory. As reported in Ref. [19, 20], the simplest
equation for ψ is given by:

γ~
∂ψ

∂t
=

1

2m
(~∇)2ψ + a(T )ψ + b|ψ|2ψ (1.17)

from which it can be seen that there is a time constant τGL, called Ginzburg-
Landau relaxation time [11], correlated to T and Tc

τGL =
~γ
2a

=
π~

8kB(T − Tc)
. (1.18)

In presence of an external field, Equation (1.17) has to be modified to take into
account the magnetic field:(

ı~
∂

∂t
− 2µ

)
ψ = − ı

τGL

~
|a(T )|

∂F

∂ψ∗
(1.19)

where µ is the chemical potential and ∂F/∂ψ∗ has been defined in Equation (1.9).
Although the form presented in Equation (1.19) of a time-dependent GL theory
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should be accurate only near Tc [19], McCumber and Halperin have used it for
their model (that will be described in Section 1.6.1), which is in agreement with
the experiments even well below Tc.

1.4 Josephson effect

One of the most interesting effects regarding superconductors was predicted by
Josephson in 1962 [21]. As it is presented below in this section, the most impres-
sive effect of the Josephson effect is the supercurrent flow through a small barrier
between two superconductors without a voltage drop, which has been experimen-
tally observed in 1963 [22] for the first time. Considering two superconductors
coupled by a weak link (Figure 1.7), such as an insulating barrier, Cooper pairs
flow from a superconductor to another without a voltage drop, until a maximum
value of the supercurrent is reached. Josephson found out that the current flow
through the barrier is deeply correlated with the phase difference between the two
superconductors that constitute the Josephson junction. For this reason, Joseph-
son junctions are the main benchmark for the study of the phase dynamics in
superconducting nanodevices.
If we take into account the two order parameters ψR and ψL for the right and left
superconductor respectively, it has been shown that

〈R|ψ∗RψR |R〉 = |ψR|2 = ρR 〈L|ψ∗LψL |L〉 = |ψL|2 = ρL (1.20)

where |R〉 and |L〉 are the macroscopic states of the right and left superconductor
respectively [12].
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Figure 1.7: Order parameters overlap in the insulating barrier between SR and SL
superconductors [12].

This coupling is due to the overlap of ψR and ψL, as depicted in Figure 1.7,
and the whole system can be described by

|ψ〉 = ψR |R〉+ ψL |L〉 . (1.21)

The macrostate |ψ〉 has a time evolution given by the Schrödinger equation where
the hamiltonian is

H = HL + HR + HT = EL |L〉 〈L|+ ER |R〉 〈R|+K[|L〉 〈R|+ |R〉 〈L|] . (1.22)

The first two terms in Equation (1.22) are the imperturbated hamiltonians of the
righ and left superconductor and HT is the tunneling hamiltonian. ER = 2µR and
EL = 2µL are the ground state energies of the two superconductors, whereas K is
the coupling amplitude and it depends essentially on the junction structure.
The Scrödinger equation can be projected on the base states, leading to the time
evolution equation of ψR and ψL

ı~
∂ψL
∂t

= ELψL +KψR (1.23)

ı~
∂ψR
∂t

= ERψR +KψL . (1.24)

If there is a potential difference V between the two superconductors, the chemical
potentials are shifted by eV , so that EL−ER = 2eV : thus it is possible to set the
zero of energy such that ER = −eV and EL = eV .
Recalling Equation (1.7), it can be found a set of equations describing supercurrent
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flow and the time evolution of the phase difference of the two electrodes of the
Josephson junction [12]. Thus, it is possible to define a pair current density through
the barrier as

J ≡ ∂ρL
∂t

= −∂ρR
∂t

=
2K

~
√
ρLρR sinϕ = J1 sinϕ (1.25)

where J1 is the maximum supercurrent density and ϕ = ϕL − ϕR is the phase
difference between the two electrodes.
The time evolution of the phase difference ϕ can be found as [12,21]:

∂ϕ

∂t
=

2eV

~
. (1.26)

Equations (1.25) and (1.26) are the so-called Josephson equations. A typical I-V
characteristic is reported in the following figure.

Figure 1.8: I-V characteristic of a Sn-SnxOy-Sn Josephson junction at T = 1.52
K [12].
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1.4.1 RCSJ model

Figure 1.9: Equivalent circuit of a Josephson junction [12].

Even if the samples measured in this work are not Josephson junctions, the Joseph-
son effect stays as a reference for whatever nanostructure or weak link may present
effects related to the phase of the superconductor and its dynamics. For this reason
it is important to study the resistively and capacitively shunted junction (RCSJ)
model, which is commonly used to describe the phase dynamics. The current
balance equation for the circuit in Figure 1.9 can be written as:

Idc = C
dV (t)

dt
+

1

R
V (t) + I1 sinϕ . (1.27)

Recalling the second Josephson equation and multiplying everything by ~/2e, the
previous equation can be rewritten as:(

~
2e

)2

C
d2ϕ(t)

dt2
+

(
~
2e

)2
1

R

dϕ(t)

dt
+

~
2e
I1 sinϕ− ~

2e
Idc = 0 (1.28)

that can be seen like a motion equation for a “phase particle” moving in a potential:

m
d2ϕ(t)

dt2
+ η

dϕ(t)

dt
+
∂U

∂ψ
= 0 (1.29)

where m = ~2C/(2e2) is the phase particle mass, η = ~2/(2e2R) is the damping
coefficient and U = −(~/2e)(I1 cosϕ + Iϕ) is the so-called washboard potential,
shown in Figure 1.10.
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Figure 1.10: Washboard potential U(ϕ) for different values of α = I/Ic [12].

A particle in the minimum of the washboard can have small oscillations with
a frequency

ωP (I) =

(
2eIc
~C

)(
1− I2

I2
c

)1/4

= ωP (0)

(
1− I2

I2
c

)1/4

(1.30)

The damping term can be rewritten as:

η =
~2

2e2R
=

~
2π

Rq

R
(1.31)

thus the damping is proportional to the normal conductance G = 1/R, where Rq =
h/(2e)2. The particle oscillations are confined in the minimum of the washboard
potential, characterised by a barrier ∆U [23]:

∆U(I) =
4
√

2

3
Φ0I

(
1− I

Ic

)3/2

. (1.32)

The particle can escape out of the barrier by thermal activation or quantum tun-
neling, as it will be explained in Section 1.6.

1.5 1D Superconductivity

Recently, superconductivity at the nanoscale is a key argument for fundamental
science and nanostructures have become of great interest for their applications as
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single-photon detectors [24–26]. How dissipation occurs in a confined geometry
is a crucial key to understand superconductivity in these extreme conditions and
obviously to engineer most of nanodevices.

Figure 1.11: Superconducting regime in respect of length and width, normalised
to the coherence length ξ. The solid line separates the regime where the vor-
tices are free to move from the 1D-regime, in which 1D-instabilities affects the
superconductivity. Under the dashed line, Josephson effect takes place [27].

The natural hystorical path to follow to describe dissipation in nanostructures
originates from weak links, as highlighted in Figure 1.11, from Ref. [27], where it
is shown how a bridge can turn into a Josephson junction by changing its dimen-
sions. In other words a bridge composed of a single superconductor can behave
as a Josephson junction when its length L is smaller than a few times the coher-
ence length of the superconductor. For L >> 3.5 ξ, no Josephson phenomena are
observed. Depending on the width W the transition to the normal state will be
driven by 1-D or 2-D processes, such as phase slips that are described below. Gen-
erally, following Ref. [28], a wire is considered a one dimensional system when its
thickness d and width w are smaller than the coherence length ξ. This condition
ensures the invariance of the order parameter across the wire, thus it can only
evolve along it. In this thesis, Al nanowires [29–31] fall in the one-dimensional de-
pairing region in Likharev’s diagram, while NbTiN and NbN nanomeanders [26,32]
fall in the Abrikosov vortex motion zone. The feasibility of 1D models and the
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validity of Likharev’s criterion on nanowires with different width and length has
been proven in several studies [33,34].
Al nanowires are characterised by a coherence length ξ ∼ 125 nm that is greater
than the cross-sectional dimensions (d ∼ 25 nm and w ∼ 50 nm). It’s interesting
to note that even if the cross-sectional dimensions are not strictly minor than ξ, a
nanowire can be consider a quasi-1D system if (d, w) < π

√
2ξ [28]. Indeed, in this

situation, vortices aren’t stable in the wire and consequently the order parameter
can be considered to vary only along the length of the wire. It is important to
mention that, since the coherence length exceeds the cross-sectional dimensions,
it is far larger than the Fermi wavelength λF of the electrons, thus the quasi-
particle excitations are still bulk-like and their treatment is the one mentioned in
Section 1.2 [28]. Nowadays, it is possible to fabricate wires as thick as 5nm, that
is a quasi-1D system in the limit of zero temperature for many materials, such as
the aluminium [28]. Sometimes, it is also possible to consider a nanowire as a one
dimensional system if its length is much larger than the other dimensions, i. e.
L >> (d, w) [11].
Since Al nanowires are more “standard” devices, they are used as terms of com-
parison for nanomeanders’ results.

1.6 Phase Slips

In superconducting nanostructures, the transition from the superconducting state
to the resistive state has been traditionally studied in terms of phase slips. Firstly
Little [35] and later Langer and Ambegaokar [16] suggested that fluctuations of
measured supercurrents from the mean field values were to be attributed to a phase
slip of the complex order parameter. This phase slip, that can be due to either
thermal or quantum fluctuations, causes a suppression of the order parameter
magnitude, as shown in Figure 1.12b. It’s interesting to note that the suppression
length of the order parameter is ∼ ξ(T ) [11].
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(a) (b)

Figure 1.12: Phase slip process: in (a) the real and imaginary part of ψ along
the nanowire are reported in absence of a phase slip event; in (b) the amplitude
suppression of the order parameter along the nanowire during a phase slip [11].
The phase slip core has a size comparable with ξ.

In their work, Langer and Ambegaokar took into consideration the case of a su-
perconductor with (d, w) < ξ, i.e. a current biased 1D-nanowire whose Ginzburg-
Landau free-energy functional is:

F − Fn =

∫ L/2

−L/2
A

a|ψ|2 +
b

2
|ψ|4 +

~2

4m

∣∣∣∣∣
(
−ı∇− 2e

~c
A

)
ψ

∣∣∣∣∣
2
 dx (1.33)

where A is the cross-sectional area of the nanowire, L its length and Fn the free-
energy of the normal state. Looking at Equation (1.33), it’s easy to see that a
phase slip, that is a discontinuity in ϕ(x), would make the gradient to diverge: for
this reason it is necessary an order parameter suppression, i.e. a local switch to
the resistive state.
Following McCumber and Halperin [36], it’s useful to consider the normalised order
parameter

Ψ =
ψ√
|a(T )|/b

. (1.34)

Rescaling the Equation (1.33) by the GL coherence length and an energy expressed
in terms of the thermodynamic critical field

ξ(T ) =
ξ(0)√

1− T/Tc
Hc(T ) =

√
4π

b
a(T ) ,
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it can be obtained the following equation:

F −Fn = AL
H2
c (T )

4π

L/2∫
−L/2

−|Ψ|2 +
1

2
|Ψ|4 +

∣∣∣∣∣
(
−ıξ(T )

d

dx
− ξ(T )

2e

~c
Ax

)
Ψ

∣∣∣∣∣
2
 dx

L

(1.35)
where, following the arguments reported in Section 1.3, a(T ) = A(T − Tc) =
−|a(T )|, since the nanostructure is below the critical temperature. Given this GL
free-energy functional, the stationary solutions for the normalised order parameter
can be found by solving the following equation:

(1− |Ψ|2)Ψ +

(
ξ(T )

d

dx
− ıξ(T )

2e

~c
Ax

)2

Ψ = 0 . (1.36)

In absence of an external magnetic field (Ax = 0), the general form for the nor-
malised order parameter is

Ψ(x) = f(x)eiϕ(x) (1.37)

which allows to separate the Equation (1.36) in two equations for magnitude f(x)
and phase ϕ(x):

ξ2(T )
d2f

dx2
= −f + f 3 +

(
4

27

)
j2

f 3

dj

dx
= 0 , j =

3
√

3

2
f 2ξ(T )

dϕ

dx
=

3
√

3

2
κ(1− κ2)

(1.38)

where j = J/Jc. The right-hand term of the first equation of the system can be
rewritten as [16]:

− dUeff
df

= −f + f 3 +

(
4

27

)
j2

f 3
=⇒ Ueff =

1

2
f 2 − 1

4
f 4 +

2

27

j2

f 2
(1.39)

which remind the washboard potential of RCSJ model, as can be seen in Fig-
ure 1.13.
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Figure 1.13: Ueff behaviour as a function of f with J < Jc [16].

The Equations 1.38 can be solved in analogy with a mechanical system. Con-
sidering a particle of unit mass in a potential Ueff , whose radial and angular
coordinates are respectively f and φ, and considering x as the time [16], the so-
lution ψ̄ for Equation (1.36) can be found. Replacing ψ̄ in Equation (1.35), the
free-energy barrier for a phase slip can be found as:

∆F−(κ, T ) = A
H2
c (T )

π
ξ(T )

[√
2

3

√
1− 3κ2 − κ(1− κ2) tan−1

(√
1− 3κ2

√
2κ

)]

∆F+(κ, T ) = A
H2
c (T )

π
ξ(T )

{√
2

3

√
1− 3κ2 + κ(1− κ2)

[
π − tan−1

(√
1− 3κ2

√
2κ

)]}
(1.40)

where ∆F+ stands for the uphill potential barrier (anti-phase slip) and the ∆F−

stands for the downhill potential barrier (phase slip). Following Ref. [37], the
energy prefactor can be expressed as:

A
H2
c (T )

π
ξ(T ) =

3
√

3

8
Φ0Ic(T ) . (1.41)

In this way, it is possible to compute the barrier height without calculating the
critical field Hc(T ).
Finally, to describe the dynamics of nanowires, it is useful to write the free-energy
barrier of the phase slip (see Figure 1.13) as [38]:

∆F (I) =
√

6Ic
~
2e

(
1− I

Ic

)3/2

. (1.42)
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1.6.1 Thermally activated phase slips

Figure 1.14: Phase slip dinamics: in (a) the variation of the ψ is shown. In the
upper part there is the real and the imaginary part of the order parameter. After
a phase slip, shown in the middle part of the figure, the ψ change: it has lost a
winding. In (b) it is shown the same process, but only for the phase. Note that
the slope of φ(x) in (iv) is different than in (i) [11].

In Figure 1.14, the physical mechanism of a thermally activated phase slip (TAPS)
is described: in (a) the variation of the order parameter is presented; in (b) there
is the variation of the phase through the nanowire due to a phase slip. Indeed,
if the system is presumed to be in a local minimum of the potential, the thermal
agitation makes the system oscillate enough to suddenly overcome the barrier. As
the phase slip process is approached, the spatial region, wherein the 2π phase shift
is located, is compressed and the point where the phase slip occurs has to be a
zero for the order parameter. After the phase slip, the energy needed to overcome
the potential barrier can be dissipated through the normal core generated by the
phase slip.
The rate at which the phase (or anti-phase) slips occur is given by

Γ± = Ω± exp

[
−∆F±

kbT

]
(1.43)

where the potential barrier gives an exponential suppression to the rate. The
attempt frequency Ω±, that is the thermal agitation frequency, has been proposed
by Langer and Ambegaokar [16] to be:

Ω(T ) =
Ne

τe
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where Ne is the number of conduction electrons and τe ≈ 10−12 s is a typical
relaxation time for electron scattering. Later on, McCumber and Halperin [36]
estimated the attempt frequency within a TDGL theory (see Section 1.3.1), ob-
taining [11]:

Ω(T ) ∼ L

ξ(T )

√
∆F±

kBT
× entropy factor

τGL

where the first term is the number of the indipendent units for the phase slip
process, the second one is associated with the number of energy phase space cells
for this random process and the third is correlated to the characteristic relaxation
time needed to explore the free-energy extrema during the process, given by the
GL relaxation time (Equation (1.18)).
To achieve this form for Ω±(T ), it is necessary to make some assumptions to the
TDGL theory previously presented [11]. Indeed, neglecting the vector potential,
since the self-generated magnetic field is negligible, and the chemical potential,
which can be ignored at this level of accuracy, the Equation (1.19) becomes

∂ψ

∂t
=

4π

AH2
c (T )ξ(t)τGL(T )

[
(1− |ψ|2)ψ + ξ2(T )

∂2ψ

∂x2

]
.

To take into account thermal fluctuations, a stochastic noise term should be added
to the previous equation. Alternatively, following Ref. [36], Fokker-Planck equa-
tions can be used to determine the probability-density functional, from which it
is possible to calculate the attempt frequency for phase (−) and anti-phase (+)
slips:

Ω−(κ, T ) = (1−
√

3κ)15/4(1 + κ2/4)Ω(T )

Ω+(κ, T ) = Ω(T )
(1.44)

with

Ω(T ) =

√
3

2π3/2

L

ξ(T )τ(T )

√
∆F (T )

kBT
. (1.45)

Taking into account Equation (1.40), it is possible to give an estimate of the
escape rate for phase and anti-phase slip Γ±TAPS(κ, T ) in the Langer-Ambegaokar-
McCumber-Halperin (LAMH) model

Γ±TAPS(κ, T ) = Ω± exp

[
−∆F±(κ, T )

kBT

]
. (1.46)

whereas the cumulative escape rate Γ(κ, T ) is given by

ΓTAPS(κ, T ) = Γ−TAPS(κ, T )− Γ+
TAPS(κ, T ) (1.47)
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However, the escape rate presented in Equation (1.46) is still not so easy to handle,
so it is useful to rewrite the rate, following Ref. [30], as depending from the bias
current I:

ΓTAPS(T, I) =
L

ξ(T )τGL

√
∆F (T, I)

kBT
exp

[
−∆F (T, I)

kBT

]
(1.48)

with

∆F (T, I) =
√

6
~
2e
Ic(T )

(
1− I

Ic(T )

)3/2

(1.49)

It is important to note that such functional form allows to be not so accurate in
the estimate of the attempt frequency, since minimal variations of the energy ratio
would absorb all the inaccuracies of Ω(T ). For the superconducting nanowires
used as photon detectors, the escape rate gives an estimate of the dark counts rate
of the detector, since the stochastic transition from the superconducting to the
resistive state could give a false counting event.



Chapter 2

Switching Current Distributions

Superconducting nanostructures, in particoular meandered nanostrips, have ac-
quired considerable interest as single photon detectors and for their use in quan-
tum technologies. This is an additional reason to study the dissipation processes
occuring during the current flow, since it can affect the dark counts rate in SNSPD.
As it has been anticipated in Chapter 1, the dissipation in superconducting nanos-
tructures is typically studied in the framework of thermally activated phase slip
mechanism. Indeed, a nanostructure passes from the superconducting to the resis-
tive state as a result of a phase slip event causing the local temperature increase
due to Joule dissipation. This dynamics can be studied by measuring the critical
current fluctuations, i. e. the switching current distributions, as it will be ex-
plained in Sections 2.1 and 2.2.
These distributions can give direct information on the phase dynamics and can
be simulated by using a kinetic phase slip description, according to Refs. [37, 39].
Therefore, it has to be taken into account the heat generated in a phase slip process.
The intrinsic stochasticity of a phase slip event is such that between two events,
heating dissipation can affect the nanomeanders’ behaviour and their transition
to the resistive state. In particular, it has been used and developed a numerical
method to simulate the nanostructure response to a current ramp, in order to
reproduce the experimental results. At the end of this Chapter, the simulation
algorithm will be depicted in some detail.

25
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2.1 I-V Characteristics

Figure 2.1: I-V characteristic of an Al nanowire at bath temperature T = 0.4 K.

In Figure 2.1, a typical I-V characteristic of a current biased Al nanowire is pre-
sented. Here, it is possible to distinguish the superconducting (S) branch, the
normal state (N) branch and the retrapping (R) one, at which the transistion from
N to S branch occurs. As the bias current increases, there is no voltage drop until
it reaches a critical value, called switching current Isw. At Isw, a jump to a finite
voltage state occurs as the system passes to the N-branch. The switching current
is a stochastic event, i.e. measurements done under the same experimental con-
ditions don’t have the same switching current, since fluctuations play a relevant
role.
Thus, the stochastic switching from the superconducting to the resistive state can
be studied in terms of phase fluctuations, as described in Section 1.6. As a matter
of fact, the voltage depends on the phase slip rate (or escape rate) Γ, according to
the relation [11]:

V =
2π~
2e

[Γ− − Γ+] . (2.1)

A single phase slip event can be observed only when the induced heat is such that
the phase slip core reaches a temperature larger than its critical temperature, caus-
ing the transition to the normal state [28]. This occurs mainly for temperatures
significantly lower than Tc.
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2.2 Kurkijärvi-Fulton-Dunkleberg Transformations

The statistical analysis of the switching current distributions (SCDs) has been
carried out by Kurkijärvi, Fulton and Dunkleberg [40, 41] on standard tunnel
Josephson junctions and later adapted to study the critical current fluctuations of
superconducting nanodevices. Actually, Kurkijärvi theory is about every stochas-
tic switching event distribution, but here it will be presented in relation to SCD
for a current-biased nanowire. In the phase slip framework, the Kurkijärvi theory
can be applied only in phase slip processes involving single events.
Thus, let’s consider the bias current slowly increasing. When I < Ic the phase
particle is trapped in the potential well, which disappears as the current reaches
its critical value Ic and then the transition to the resistive state occurs. The phase
particle can overcome the free-energy barrier, due to thermal fluctuations, for val-
ues of the bias current lower than Ic. The current ramp has to be as slow as
possible, to allow the system to relax, and its slope ∆I/∆t has to be as much as
possible constant. After the resistive jump the current is rapidly decreased in order
to reach the superconducting state. Repeating this procedure a large number N
of times, usually N = 5 000, a distribution for the switching current values can be
derived. An example of SCD with the area normalised to 1 is reported in Figure 2.2

Figure 2.2: Switching current distribution with the area normalised to 1 measured
on a NbTiN nanomeander at T = 0.3 K

From the measured SCD, the momenta of the distribution can de determined.
The mean switching current 〈Isw〉, standard deviation σ and skewness µ̃3 can be



Chapter 2. Switching Current Distributions – 2.2.
Kurkijärvi-Fulton-Dunkleberg Transformations 28

defined:

〈Isw〉 =
N∑
k

PkIk σ =

√√√√ N∑
k

Pk(Ik − 〈Isw〉)2

µ̃3 =

∑N
k Pk(Ik − 〈Isw〉)3

σ3

where Pk = Nk/N , with
∑
k

Nk = N the numbers of events for Ik. The standard

deviation σ gives information about the distribution width, whereas the skewness
µ̃3 is a measurement of the lack of symmetry. As it can be seen in Figure 2.2, SCDs
are asymmetric, showing a longer tail on the left and for this reason a skewness
µ̃3 ≈ −1 [28]. For the sake of comparison, a Gaussian distribution is characterised
by a skewness µ̃3 = 0.
Kurkijärvi found a temperature and current dependence for the standard deviation

σ(T, Ic) ∝ T 2/3I1/3
c (2.2)

that is called Kurkijärvi power law for standard deviation [28].
Assuming the ergodic hypotesis, it can be said that N measurements of the same
system should give the same results of a single measurement on N systems under
the same conditions At time t = 0, all the N nanowires are in the superconducting
state. Later on, when I = I(t) is applied, N1 nanowires are in the superconduct-
ing state and N2 are in the normal state: obviously N2 increases as the current
approaches the critical value Ic, i.e. as the time increases. Thus, in an interval dI,
N2 increments of dN2 = N2(I + dI)−N2(I) and the probability of a nanowire to
switch to the normal state is given by the equation

P (I)dI =
dN2

N
(2.3)

and, keeping in mind N = N1 +N2,

dN1 = −NP (I)dI = −NP (I)νdt . (2.4)

where ν = dI/dt is the current ramp rate. Equation (2.4) can be solved, giving

N1(I) = N

[
1−

∫ I

0

P (I ′)dI ′
]

(2.5)

However, in absence of thermal fluctuations, the probability density is Dirac delta
function, P (I) = δ(I − Ic). Instead, fluctuations have to be considered and thus
the escape rate Γ has to be introduced. Indeed, as seen in Section 1.6, Γdt is
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the number of phase slips in the time interval dt. The number of the unswitched
nanowires is

dN1 = −N1Γdt . (2.6)

Keeping in mind N1(0) = N , the Equation (2.6) can be solved, giving

N1(t) = N exp

[
−
∫ t

0

Γ(I(t′))dt′
]

. (2.7)

Equating (2.4) and (2.6) and considering Equation (2.5), the escape rate in terms
of the probability density is given by

Γ(I) =P (I)ν

[
1−

∫ I

0

P (I ′)dI ′
]−1

= P (I)ν

[∫ Ic

I

P (I ′)dI ′
]−1

=

− ν d
dI

[
ln

∫ Ic

I

P (I ′)dI ′
] (2.8)

that is called Kurkijärvi-Fulton-Dunkleberg (KFD) transformation [28].
The probability density extrapolated from the data is discrete, thus a discrete
KFD transformation has to be find. Actually, if the distribution bin has a fixed
size ∆I, the discrete value of the probability density Pk can be seen as an average
of P (I) over the bin size

Pk ≡
1

∆I

∫ Ik+∆I/2

Ik−∆I/2

P (I ′)dI ′ (2.9)

where Ik = IMax − (k − 1/2)∆I is the measured switching current value, IMax is
the maximum switching current measured [41]. Note that the I1 is the maximum
value for Ik.

Remembering that Γ = −νdZ/dI, where Z =

∫ Ic

I

P (I ′)dI ′, the discrete escape

rate can be written as [28]:

Γ(Ik) = −ν dZ
dI

′
∣∣∣∣∣
I=Ik

. (2.10)

Looking at the derivative term in Equation (2.10), it can be noticed that

d(lnZ)

dI

∣∣∣∣∣
I=Ik

−→ − lnZk − lnZk−1

∆I
=

1

∆I
ln
Zk−1

Zk
(2.11)
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where Zk ≡ Z(Ik). By implementing Equation (2.11) in Equation (2.10), the
discrete escape rate can be rewritten as

Γ(Ik) =
ν

∆I
ln

Zk
Zk−1

.

Defining Zk as the sum of short-segments integrals

Zk =

∫ Ic

Ik

P (I ′)dI ′ =
l=k∑
l=1

Il+∆I/2∫
Il−∆I/2

P (I ′)dI ′ = ∆I
l=k∑
l=1

Pl ,

it is possible to express the discrete KFD transformation as [28,41]:

Γ(Ik) =
ν

∆I
ln

∑l=k
l=1 Pl∑l=k−1
l=1 Pl

=
ν

∆I
ln

(
1 +

P (Ik)∑l=k−1
l=1 P (Il)

)
. (2.12)

2.2.1 Inverse KFD transformation

For superconduting devices, the escape rate from the superconducting to the re-
sistive state can be expressed in the form of the Arrhenius law:

Γ = Ae−BT −

In general, it is useful to find an inverse relation between P (I) and the escape rate.
Indeed, integrating Equation (2.6), it can be obtained

N1(t) = N exp

[
−
∫ t

0

Γ(I(t′))dt′
]

. (2.13)

Thus, equating Equations (2.4) and (2.6)

N1Γ = NΓ exp

[
−
∫ t

0

Γ(I(t′))dt′
]

= NP (I)ν

where in the mid-term N1 has been replaced with Equation (2.13). In this way,
an inverse KFD transformation can be expressed as [28]

P (I) =
Γ(I)

ν
exp

[
−1

ν

∫ I

0

Γ(I ′)dI ′
]

. (2.14)

Actually, since P (Ik) are directly measured, Equation (2.14) can be used to fit the
probability density P (I), once the escape rate of a specific dissipation process is
known. In the following, the escape rate derived for thermal phase slips will be
considered.
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2.3 Local Heat Dynamics

In the previous Section, the standard relations between the probability density and
the escape rate in the switching process to the resistive state have been derived.
As mentioned before, KFD and inverse KFD transformations resulted from the
dynamics of standard tunnel Josephson junctions. In superconducting nanostruc-
tures, high values of the critical current density are often achieved, of the order of
106A/cm2 [24]. In this case, switching to the resistive state leads to a local temper-
ature increase, which can be described in terms of Joule dissipation through the
nanostructure [37,39]. Hence, the switching current distributions can be simulated
studying the local heat dynamics of the nanowire, under the assumption that a
switching event occurs when the phase slips give such energy that the phase slip
(PS) core temperature is increased over a threshold temperature Tth.
For this reason, a model is needed to describe the heat dynamics of phase slips.
The model proposed in Refs. [37, 39] considers a nanowire of length L suspended
between two thermal baths, as shown in Figure 2.3a. In this way, the only available
cooling mechanism to dissipate Joule heating is the conduction of heat from the
center of the wire to its ends. It’s important to notice that the wire length L can
be slightly different from the real geometric length, to compensate the heat spread
in the leads at bonding point. It is assumed that the system is in the dirty limit,
which means electron mean free-path is much shorter than coherence length.

Figure 2.3: In the panel (a) the sketch of a typical experiment setup is presented.
In (b) there is shown the real and imaginary part of the order parameter along
the wire. In (c) the simplified model is shown. In (d) there is presented the
temperature profile along the wire [39].
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Since the heat generated locally in the nanostructure can flow away only
through the ends, the static heat equation describing the wire heating and cooling
is [37]

Qsource(x) = −∂x[Ks(Θ)∂x(Θ(x))] = −∂Ks

∂Θ
(∂xΘ)2 −Ks(Θ)∂2

xΘ (2.15)

where Θ(x) is the nanowire temperature at position x and Ks(Θ) is the thermal
conductivity. In addiction to Eq. 2.15, boundary conditions Θ(±L/2) = Tb are
needed to take into account the presence of the bath at the ends of the wire. The
power per unit volume dissipated via Joule effect Qsource can be expressed as:

Qsource =
I2R(Θ(x), I)

AL
(2.16)

where R(Θ(x), I) is the entire nanowire resistance at the uniform temperature
Θ(x) = Θ′, A is the cross-sectional area and L is the wire length. Keeping in mind
the second Josephson equation and Equation (2.1), the resistance can be written
as

R(Θ(x), I) =
V

I
=

1

I

Φ0

2π

dφ

dt
=

Φ0Γ(Θ, I)

I
(2.17)

and then, Equation (2.16) can be rewritten as

Qsource =
IΦ0Γ(Θ, I)

AL
(2.18)

where Γ ≡ Γ−− Γ+, as defined in Section 1.6. Hence, recalling the heat continuty
equation:

∇ · jQ + ∂tQ = Qsource

where the heat current jQ is defined as

jQ ≡ −Ks∇ ·Θ (2.19)

and the energy density Q is

Q =

∫ Θ(x)

0

Cv(Θ
′)dΘ′ ; (2.20)

it’s possible to derive the time-dependent heat equation:

Cv(Θ)∂tΘ(x, t) = ∂x[Ks(Θ)∂xΘ(x, t)] +Qsource (2.21)

where Cv is the wire specific heat.
By assuming the Joule heating caused by single phase slips, Qsource can be rewritten
in a discrete form as

Qsource(x, t) =
Wps

A

∑
i

σiF (x− xi)δ(t− ti) (2.22)
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where we are considering discrete phase slip events that occur at random time ti
and position xi, with F (x−xi) as a spatial form factor of unit weight, which gives
the information about the spatial distribution of the heat, and σi = ±1 for phase
or antiphase slips. Wps is the energy of a single phase slip defined by

Wps =

∫
IV dt = I

∫ 2π

0

~
2e
dφ = IΦ0 . (2.23)

Thus, using Equation (2.22) in Equation (2.21), it can be obtained a stochastic
Langevin equation with a “noise” term distinctive of the temperature jump.
Therefore, Equation (2.21) can be used to investigate the superconducting-resistive
transition, but the presence of both temporal and spatial randomness makes it very
hard to handle. For this reason, in Refs. [37,39], some assumptions are made. First
of all, because there are the two thermal baths at the edge of the nanostructure,
it’s assumed that the phase slips occur mainly in the central part of the nanowire,
heating a region of length l ∼ ξ(T ), which is at a uniform temperature T , as shown
in Figure 2.3c-d. In this way, the heat flows away through the end segments
of length (L − l)/2, whose heat capacity will be ignored. Then, neglecting the
antiphase slips, since for bias currents close to Ic their probability is quite low, it
is possible to write a stochastic ordinary differential equation for the time evolution
of the PS core’s temperature

dT

dt
= −α(T, Tb)(T − Tb) + η(T, I)

∑
i

δ(t− ti) (2.24)

where the first term on the right represents the deterministic coolig and the second
one the stochastic heating due to phase slip [37, 39].
To understand as deeply as possible the local heating dynamics, making a com-
parison between Eq. 2.16 and Eq. 2.22, the simplified model can be written in a
continuous way:

dT

dt
= −α(T, Tb)(T − Tb) + η(T, I)Γ(T, I) = −∂U(T, I)

∂T
(2.25)

that can be seen like a motion equation of an overdamped “particle” of position
T (t) in a fictitious effective potential U(T, I), whose behaviour as a function of T
and I is shown in Figures 2.4a and 2.4b.
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(a) (b)

Figure 2.4: Effective potential pointed out in Equation (2.25). In (a) U(T, I)
at a fixed I. Several temperatures can be noted: Tsc is the temperature for the
minimum of U(T ) in the superconducting state; Trs is for the minimum in the
resistive state; Tb is the bath temperature. In (b) U(T, I) behaviours for different
bias current values (0.175, 0.195, 0.215, 0.235, 0.255 µA). In the inset the local
maximum are shown. [37].

In Figure 2.4a it is possible to distinguish two critical points of the effective
potential U(T, I). Indeed, the system is in a bistable state: it can be either
superconducting or in a resistive state. As the current is low, which situation is
the upper curves in Figure 2.4b, there is only the superconducting minimum at
Tsc, since the system cannot be in a normal phase. Increasing the bias current,
a second minimum develops at Trs, in which the system is in the resistive state,
as it can be seen in lower curves in Figure 2.4b. Thus, at the same value of bias
current, the system can stay either in the superconducting or normal state. If
the temperature rise is smaller than the difference between the two minima, the
system remains in whichever minimum it was [37].
To better understand the heat dynamics, it is important to clarify the meaning of
the stochastic heating and deterministic cooling terms.

2.3.1 Stochastic heating

As the phase slip occurs, the thermal “jump” η(T, I) of the central segment l can
be found solving the integral equation:

Φ0I = Al

∫ Ti+η(T,I)

Ti

Cv(T
′)dT ′ , (2.26)

where η(T, I) = Tf − Ti. The left hand term is the energy of a single phase slip,
see Equation (2.23). To bear in mind that not all the cross-sectional area passes
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from the superconducting to the resistive state, it is assumed the specific heat to
be a weighted average of its BCS and Fermi liquid limits [42]:

Cv(T ) =
ABCSCvBCS

(T ) + AFLCvFL
(T )

A
(2.27)

where ABCS and AFL are superconducting and normal cross-sectional areas, for
which it is valid the constitutive relation A = ABCS + AFL.
The specific heat of a Fermi liquid CvFL

can be written as [10]:

CvFL
(T ) =

2

3
π2k2

BN0T (2.28)

where N0 is the density of state per unit volume at the Fermi level. Following
Ref. [43], the specific heat of a superconductor CvBCS

can be defined with respect
to CvFL

(Tc) as:

CvBCS
(T )

CvFL
(Tc)

=


3
√

2

π
exp

[
−1

τ

(
τ−3/2 +

3

2
τ−1/2 + 2τ 1/2 + τ 3/2

)]
for τ ∈ [0, 0.35]

−0.86τ + 3.560τ 2 for τ ∈]0.35, 0.65]

2.43τ(+0.936 log τ) for τ ∈]0.65, 1]

(2.29)
where τ = T/Tc.

2.3.2 Deterministic cooling

The thermal relaxation term can be found equating the heat currents, as defined
in Equation (2.19) and it can be written as

α(T, Tb) =
4

l(L− l)Cv(T )

1

T − Tb

∫ T

Tb

Ks(x)dx . (2.30)

In analogy with Cv(T ), Ks has to be written as a weighted average of its BCS and
Fermi liquid limits:

Ks(T ) =
ABCSKsBCS

(T ) + AFLKsFL
(T )

A
(2.31)

For a Fermi liquid, the thermal conductivity is [44,45]

KsFL
=
π2k2

B

3e2

LT

ARN
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where RN is the normal resistance of the nanowire. For a superconductor, instead,
the thermal conductivity is given by:

KsBCS
= 2N0Dk

2
BT

∫ ∞
∆/kBT

1

2
sech2(x)x2dx

where D is the diffusion constant of the material and ∆ is the superconducting
gap. Taking into account the previous equations, the total thermal conductivity
Ks is:

Ks(T ) = 2ÃBCSN0Dk
2
BT

∫ ∞
∆/kBT

1

2
sech2(x)x2dx+ ÃFL

π2k2
B

3e2

LT

ARN

(2.32)

where Ãi = Ai/A. Therefore, in Equation (2.30), the contribution due to the
thermal conductivity can be written in the following way:∫ T

Tb

Ks(x)dx = 2ÃBCSN0Dk
2
B

∫ T

TB

y

∫ ∞
∆/kBy

1

2
sech2(x)x2dxdy + ÃFL

π2k2
B

3e2

L

ARN

(T 2 − T 2
b ) =

= 2ÃBCSN0Dk
2
BT

2
c Ξ + ÃFL

π2k2
B

6e2

L

ARN

(T 2 − T 2
b ) =

= 2ÃBCSN0Dk
2
BT

2
c Ξ + ÃFL

π2

6rn

k2
BL

Ah
(T 2 − T 2

b )

where rn = RN(e2/h) is the dimensionless resistance and the number Ξ is:

Ξ =
1

T 2
c

∫ T

Tb

y

∫ ∞
∆/kBy

1

2
sech2(x)x2dxdy =

=
1

2T 2
c

∫ T

Tb

[
−8Li2

(
sinh

(
kBy

∆

)
− cosh

(
kBy

∆

))
+

+2
kBy

∆

(
kBy

∆
+ 4 log

(
1 + e

−kBy

∆

))
− kBy

∆
tanh

(
kBy

2∆

)]
∆

kBy
dy

where Li2(z) is the dilogarithm of the complex number z.
Thus, Eq. 2.30 can be written as

α(T, Tb) =
4

l(L− l)
1

kB(T − Tb)
2ÃBCSN0Dk

2
BT

2
c Ξ + ÃFL

π2

6rn

k2
BL

Ah
(T 2 − T 2

b )

Cv(T )/kB
(2.33)

At fixed bias current, the system is at T = Tb and the temperature of the central
region of the nanowire cannot change, until a phase slip occurs, which induces a
thermal jump η. If a single thermal jump is not sufficient to induce the switching
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and multiple phase slips are needed, it can happen that between two thermal jumps
there is a transient in which only the cooling term acts. In Figure 2.5, a typical
simulation is shown.

Figure 2.5: Temperature dynamics of a nanowire, where the peaks are the thermal
jumps and the relaxation is due to deterministic cooling [37].

2.4 Simulation process

The model presented in Section 2.3 can be used to simulate the measured SCDs.
The Python programm used to implement this model has been realised in collab-
oration with professor Procolo Lucignano1.
A bias current ramp is introduced through a constant increasing step, which is de-
termined by setting the critical current Ic(T ). At the beginning of the simulation,
the system is at bath temperature Tb, which is a given parameter. The determin-
istic cooling term gives no contribution and the righ-hand term of Equation (2.24)
does not give any contribution to the temperature until a thermal jump η occurs.
If the thermal jump is sufficient to overcome the threshold temperature Tth, the
system can be considered switched to the resistive state. On the other hand, if
after the phase slip T ′ < Tth, the systems persists in its superconducting state at
a T ′ temperature carrying a slightly higher current. An example of temperature
dynamics is shown in Figure 2.5 to represent its complexity. The systems may cool
down from its previous state until another phase slip event occurs. This process
continues until the threshold temperature is overcome and the system switches to
the resistive state. At low temperatures, the specific heat is quite low, because
the nanowire is deeply in the superconducting state: for this reason a single phase
slip, i.e. a single thermal jump η is enough to get the system into the resistive
state. As the temperature increases, the specific heat increases and more jumps

1Dipartimento di Fisica, Università di Napoli ‘Federico II’, Monte Sant’Angelo, I-80126
Napoli, It
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are needed to reach the second minimum of the potential in Eq. 2.25, as shown
in Figure 2.5. To simulate the stochasticity of a phase slip, a random number
r ∈ [0, 1] is compared with the theoretical Γ(T, I) value:

• If r > Γ(T, I):
dT

dt
= −α(T, Tb)(T − Tb)

• If r ≤ Γ(T, I):
dT

dt
= −α(T, Tb)(T − Tb) + η(T, I)

Γ(T, I) gives a measure of the probability of a single thermal jump occurence
[11, 28, 37, 39]. For low bias currents, the condition Γ(T, I) << 1 always holds, it
is very likely that the random number r would be greather than Γ(T, I). On the
other hand, for higher bias currents the condition Γ(T, I) >> 1 holds and therefore
the second condition takes place and thermal jumps occur. Simulating this process
for a reasonably high number of times N (see below), a distribution of the events,
which bring the system from the S to the N state, can be obtained. In this thesis,
the results presented in Chapter 4 have been obtained with N = 4000 events
and only the thermally activated phase slip escape rate Γ has been considered
(see Section 1.6.1). Indeed, the distributions are obtained even for lower values
of N , but in order to fit the experimental data, it has been choosen a number
of events close to the one collected for the measured SCDs, which is N = 5000
(see Section 3.4). From now on, phase slips are the only thermal events that
will be considered in the superconducting to resistive state transition. Indeed, no
significant differences are expected in preferring an alternative model to the TAPS
in the local heat dynamics and, in the majority of the escape rate models, Γ has
an Arrhenius law form, which is the same expected from the LAMH model.
T , Ic and Tth are the significant parameters involved in these simulations. As it
will be clear from the comparison with the experiments, these quantities are not
completely free parameters, since experimental conditions fix their range of values.
Other parameters, such as the diffusion constant and the geometrical dimensions,
are considered fixed for each sample [29].
The temperature T obviously modifies the position and the shape of the SCDs
in an impressive way, as shown in Figure 2.6 and discussed below. Nevertheless
in some sense, when fitting a series of measurements at different temperatures
(see Chapter 4), T turns as not a completely free fitting parameter and acts as
self-consistent check for the whole physical picture.
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Figure 2.6: Simulated SCDs at different temperatures are presented, with Ic =
25µA and ∆T = Tth − T = 0.11 K.

Simulations in Figure 2.6 have been done in the single phase slip regime, in
which only the stochastic heating is involved (Section 2.3.1), fixing Ic and Tth. As
the temperature decreases, the distribution has a minor width and an increasing
mean switching current, as shown in Figures 2.7a and 2.7b.
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(a)

(b)

Figure 2.7: Simulated mean switching currents and standard deviation σ as func-
tion of temperature T .

At high temperature, thermal fluctuations affect the switching current values,
causing premature switching transitions, as it can be seen from the I-V charac-
teristics [46]. Thus, σ increse is proportional to the temperature, as predicted by
Equation (2.2), and the 〈Isw〉 consequently decreases. In the multiple phase slip
processes, the behaviour of σ is very different and the distribution shape depends
on the threshold temperature Tth.
In these processes where multiple phase slips are involved, the deterministic cooling
(Section 2.3.2) plays a relevant role in the simulation, allowing to fit the measured
SCDs by tuning the threshold temperature Tth, as shown in Figure 2.8.
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Figure 2.8: Simulated SCDs with different values of threshold temperature are
presented, whose values are indicated in relation with the temperature ∆T . In
these simulations Ic has been fixed at 10µA and T = 6 K.

As the threshold temperature increases, higher values of the critical current are
needed to make the switching event to happen and σ decreases. Following Ref. [39],
a possible explaination is that as the number of events necessary to switch from the
superconducting to the resistive state increases, the stochasticity of the switching
event drops and consequently the standard deviation σ is smaller. Indeed, looking
at the behaviour of the mean number of phase slips as a function of temperature
T in Figure 2.9, the PSs necessary to make the transistion to happen increase as
the threshold temperature increases and thus as σ decreases.

Figure 2.9: The mean number of PSs necessary to simulate distributions in Fig-
ure 2.8.



Chapter 2. Switching Current Distributions – 2.4. Simulation process 42

The position of the distributions can be modulated also varying the critical
current Ic, as shown in Figure 2.10.

Figure 2.10: Simulated SCDs with different critical current values are presented.
These simulations are done at T = 0.9 K with Tth = 1.07 K.

In Figure 2.10 different distributions are calculated for different values of Ic,
fixing T and Tth. The SCDs in Figure 2.10 show that 〈Isw〉 increases with the
increasing Ic. Keeping in mind what has been said in Section 1.6.1, Ic values de-
fines the energy scale of the phenomenon. Indeed, as Ic increases, the free-energy
barrier becomes higher, according to Equation (1.49). As Ic increases, simulated
SCDs have a larger σ, as predicted in Equation (2.2) and can be noted from the
peak height of the distributions with normalised area in Figure 2.10.



Chapter 3

Experimental Setup

In this work, two cryogenic systems have been used to study the transport prop-
erties of different nanostructures: the Heliox 3He system and the Triton dilution
fridge. The samples fall in two classes: Al nanowires and three nanomeanders, i.e.
meandered nanostrips, made of NbTiN and NbN. For all these samples, transport
measurements have been done, in particoular measurements of current-voltage I-
V characteristics and switching current distributions. The Heliox 3He system can
reach the base temperature of 300 mK and has been used to collect data between
the base temperature and the critical temperature of the nanomeander devices, of
the order of 10 K. Nanodevices with different geometries may have a direct appli-
cation as single photon detectors with possible impact also in the field of quantum
technologies, therefore thier trasport properties have been studied at very low
temperatures by using the Triton system, which reaches a base temperature about
10mK. For both cryostats, the filtering system will be described. The electronic
setup is the same for both cryostats and will be illustrated in the last part of this
chapter.

3.1 Samples

In this work, meandered nanostrips made of NbN and NbTiN have been studied,
also by virtue of their application as superconducting nanowire single-photon de-
tector (SNSPD) [32]. These two materials have similar growth condition and bulk
Tc and, furthermore, their high detection efficiency is well known [26,47,48].

43
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Figure 3.1: NbTiN nanomeander: the darker lines represent the superconducting
material, while the brighter ones represent the substrate [32].

To realise these nanostructures, a substrate of thermally oxidized Si, polished
with acetone, has been covered with a NbTiN (NbN) thin film deposited by reactive
DC-magnetron sputtering in an Ar + N2 gas mixture. On the superconducting ma-
terial, PMMA (polymethylmethacrylate) has been deposited through spin-coating.
The PMMA is a resist material, i.e. an electrosensitive material. To let evaporate
the solvent in the resist, the chip is put in a fan oven at 180 ◦C for a minute. Thus,
the resist is exposed to electric beam lithography (EBL), during which a part of
the resist is covered with a negative mask of the final device. In this way, the
resist structure has the same geometry of the final device. Now, the sample can
be exposed to ion beam etching (IBE) with Ar+. Indeed the resist is not sensitive
to the argon ions and only the NbTiN (NbN) exposed is etched. Finally, the chip
is immersed in acetone to remove the remaining resist.
Therefore, the NbTiN (NbN) is nanostructured in meandered strips 80 nm wide
and 5 nm (7 nm) thick [32]. It is important to recall that the nanomeander is
composed by strips, not wires: actually the coherence length of NbTiN (NbN) is
ξ = 4.5 nm (ξ = 6 nm) [49, 50], which is smaller than the width and comparable
with the thickness. Moreover, the length of the meander is L = 0.8 mm. The Tc
values of these samples are almost the same. The whole nanostructure is confined
to a circumference with a diameter of 15µm, where the strips are spaced of 90 nm,
as shown in Figure 3.1. This geometry has been choosen to increase the active re-
gion of the detector: a photon can impact on more sections of the same nanowire.
A detailed analysis of the fabrication process can be found in Ref. [26].
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Figure 3.2: Scanning electron microscopy image of an Al nanowire [29].

As a term of comparison, superconducting Al nanowires have been measured
down to 300 mK. These devices have been realised in Liège [29], depositing Al
on Si/SiO2 substrates by using molecular beam epitaxy (MBE). The geometry is
realised by following a process similar to the one described above. The nanowire
has a length of 1.5µm, with a thickness d ∼ 25 nm and a width w = 50 nm.
Since the Al coherence length is 120 nm, these samples can be considered 1D-
superconducting devices [29].
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3.2 Heliox

Figure 3.3: In (a) the Heliox system is described. In (b) the 3He condensation
process is reported. In (c) the activation of the sorption pump to achieve the base
temperature is shown.

The Heliox 3He is an evaporation cryostat, i.e. a cryogenic system capable to
reach low temperatures due to the reduction of the vapour pressure of liquid 3He.
The system structure is shown in Figure 3.3. The fridge is formed by a sorption
pump, a 1 K-pot and an 3He-pot and the whole fridge is isolated from the external
environment by a brass cylinder, the inner vacuum chamber (IVC). In the IVC,
vacuum is created by an external rotary pump, in order to decouple the fridge
from the 4He bath. The fridge is dipped in a liquid 4He bath and a small amount
of 4He gas is inserted as exchange gas between the bath and the fridge: if the gas
amount is too much, the system is not able to go below 4.2 K. Once the liquid he-
lium temperature is reached (about 4 K), the 1 K-pot is filled with liquid 4He from
the bath, by using a cannula that goes outside the IVC, as shown in Figure 3.3b.
Thanks to a rotary pump connected to the 1 K-pot, the vapour pression can be
decreased, using a needle valve to control the vapour pression inside the chamber.
When the pression is about 1mbar, the 1 K-pot goes under 2 K, so the 3He starts
to condense in the 3He-pot. At the same time, the sorption pump temperature is
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kept over 35 K. This is made necessary because the sorption pump is a cilinder of
a zeolitic material able to absorb 3He molecules: above 35 K the sorption pump
is not active, then it starts to pump 3He molecules when cooled down to a few
Kelvin. Therefore, when the condensation of 3He in the 3He-pot is terminated,
the sorption pump heater is turned off, in order to decrease the vapour pressure
in the 3He-pot and a base temperature of about 300 mK is reached. As it can be
seen in Fig. 3.4, the vapour pression of 3He is about 10−3 mbar.

Figure 3.4: 3He and 4He phase diagrams (P,T) [51].

The sample is glued on a copper holder attached to the 3He-pot, to which it
is thermically anchored. Thanks to the heaters on the sorption pump and on the
3He-pot, the system is able to thermalise at any temperature between 0.3÷ 100 K.
To avoid the sample heating due to the current flow, different kinds of wire are used
in the fridge. From room temperature down to the sample stage, manganin (86%
of Cu, 12% of Mn and 2% of Ni) wires are choosen for voltage lines, due to their
thermal conductivity that at low temperatures is about two orders of magnitude
smaller than copper’s one. On the other hand, manganin has higher resistivity,
therefore copper wires are used for current lines down to the 1 K-pot. Then, to
ensure that high currents wouldn’t effect the thermal stability, from the 1 K-pot
to the sample stage, current wires made of a superconducting alloy of Nb and Ti
(Tc ≈ 11 K) are employed. The sample is bonded with Al wires on a chip with
golden pads, which are electrically connected to the cryostat lines, once the chip
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is attached to the 3He-pot stage.

3.3 Triton

The Triton system is a “dry” dilution fridge, where dry stands for cryogenic liquid
free. Indeed, this system doesn’t need any external source of liquid helium: it is
possible to reach the base temperature (about 10 mK) thanks to a pumping system
acting on a mixture of 3He-4He. As it can be seen in in Fig. 3.5, depending on
3He concentration x

x =
n3He

n3He + n4He

it is possible to find a range of temperature where there is a coexistence of two
phases: a lighter diluted one floating on a saturated one. The diluted phase is
composed mostly of 4He with about 6% of 3He in it, instead the saturated one is
composed almost completely of 3He.

Figure 3.5: Phase diagram of a 3He-4He mixture [51].

The Triton system is essentially described in Figure 3.6, where the principal
components of the condensing line are indicated.
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Figure 3.6: Triton system description.

To isolate the cryostat, an IVC is present and the vacuum is created in it with
an external pump. In Figure 3.6 it can be seen the presence of a still, several heat
exchanger and a mixing chamber. The mixing chamber is where the two phases
of the 3He-4He mixture coexist and it is connected to the still. The still is a stage
where 3He is “distilled” from the mixing chamber and flow to the pumping lines.
If the temperature has a quick drop, the vapour pressure would be so low that
circulation stops. For this reason, the still has a heater to control the temperature
decrease. As much as it is given power to the still, the circulation rate will be
higher, which means more cooling power. Otherwise, too much power to the still
heater leads to an increase of 4He vapour pressure that decreases the dilution
efficiency: therefore the optimal still temperature is 0.7÷ 0.8 K.
It can be noticed that there is no 1 K-pot, which has been replaced with by a
heater exchanger in the still pumping line. The heater exchanger and the Joule-
Thompson expansion make possible to condense the 3He gas. In the first cooling
steps, the pressure of Joule-Thompson expansion is ∼ 2.5 bar, but near the base
temperature it drops to ∼ 0.5 bar: indeed the need to reach high pressure makes
it necessary the presence of a compressor.
As in the Heliox system, even in the Triton we have different materials for voltage
and current lines. The first ones run from the fridge’s head with constantan (55%
of Cu and 45% of Ni) wires, until they reach the first filtering stage at about
4 K. There manganin wires are used for voltage lines down to the sample holder
located under the mixing chamber. The material choice is made to reduce as
much as possible the system heating. For the same reason, current lines are made
of copper until the first filtering stage at 4 K, then NbTi superconducting wires
are used to reach the sample stage.
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3.4 Filtering system and electronic setup

In order to perform low temperature measurements of the transport properties of
superconducting devices, an accurate filtering system is required to reduce thermal
and electromagnetic noise. Concerning thermal noise, different materials for volt-
age and current lines, as described in the previous Section, are suitable to ensure
progressive and optimal thermalization of the measurement lines. On the other
hand, to reduce the electromagnetic noise, two stages of filters for both voltage and
current lines are used. The first stage of filtering is a low-pass RC-circuit, which
is used on both Triton and Heliox systems. These RC-filters have a typical cut-off
frequency of about 1 MHz and are located at the 1 K-pot stage in the Heliox. In
the Triton, the filters are located at 4 K-plate, i. e. above the still plate. These
filters lose in attenuation at higher frequencies, especially above a few GHz, thus
another filtering stage is needed to reduce the electromagnetic noise in the GHz
range. This stage of filtering is composed by copper-powder (CP) filters, which
have a cut-off frequency in the range of few GHz. In the Heliox there are two
CP filters, placed at the 1 K-pot and at 3He-pot. Instead, in the Triton CP filters
are situated at the 100 mK stage (the cold plate, a stage between still and mixing
chamber).
The electronic setup is the same for both the cryogenic systems. A list of the
measurements instruments is described below:

• LeCroy Wave Runner 6100A oscilloscope;

• SR570 Stanford Research Systems preamplifier;

• Agilent 33120A waveform generator;

• EG & G Princeton Applied Research 5210 lock-in amplifier.

The transport measurements are performed by using a 4-point contact technique,
where two contacts are used for current bias of the nanostructure and two contacts
are used to read the voltage drop across the device. This measuring technique is
used to exclude the voltage drop due to the filter impedance. The two voltage
lines V− and V+ are sent to a differential amplifier, with variable gain between 10
and 500 and the output is measured on the oscilloscope.
In Figure 3.7 the measurement setup is shown.
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Figure 3.7: Measurement setup that has been used in this thesis.

A triangular waveform is generated by Agilent 33120A, at low frequency in the
order of 10÷ 20 Hz and with a peak-to-peak amplitude Vpp. To current drive the
nanostructure, the voltage Vpp is sent on a shunt resistance RS, so that the bias
current across the sample is

Ibias =
Vpp

RS +RN

(3.1)

where RN is the sample resistance. Since RN << RS, it can be neglected. The
current passing through the nanomeander is preamplified in the SR570 Stanford
Research Systems and then measured on the oscilloscope.
By using the same setup, it can be acquired both the I-V characteristics and
the switching current distributions. In the first case, an average over 100 sweeps
is made to further reduce the electromagnetic noise. To measure the switching
current distributions, a threshold voltage Vth is set on the oscilloscope: if the
voltage drop across the nanostructure overcome Vth, the corresponding bias current
is recorded. After a sufficiently high number of switching events, of the order of
5000, the resulting switching current distribution is exported. The oscilloscope is
connected to a computer, where all the data are recorded.
In the two cryogenic systems, there are of three kind of resistance thermometers:
Cernox, RuOx and Pt100. The first ones are resistance thermometers made of
ceramic zirconium oxynitride, with a temperature range from room temperature to
1.5 K. The RuOx (RUthenium OXide) thermometers are thick-film resistors that
work only at low temperature, i.e. from 10 mK to 40 K. The last ones are platinum
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resistance thermometers that work in the range from 30 K to 873 K [52]. For
standard operation in the Triton system, two are the places where it’s fundamental
to control the temperature: the still plate, that has a RuOx thermometer, and the
mixing chamber, that has a RuOx and a Cernox thermometer, in order to cover
the full temperature range from room temperature down to the base temperature
of about 10 mK. Anyway, every plate of the system has at least one thermometer,
in case of more specific applications, which are outside the goals of this thesis.

3.4.1 Measurements errors

The filtering scheme described in the previous Section allows to perform low noise
measurements. Maximum errors can be estimated from the I-V characteristics,
as shown in Figure 3.8. In the inset of the figure, a zoom of the superconducting
branch highlights the corresponding noise figure.

Figure 3.8: The fluctuations in the I-V characteristic can be used to determine
the maximum error of a measurement. The presented I-V characteristic refers to
an Al nanowire at T = 0.4 K.

The maximum errors can be estimated as half of the noise figure measured
on the IV characteristic. Since the nanostructures are current biased, the errors
on the current values are smaller than the errors on the voltage drop across the
device. The percentage errors on the voltage values are about 1% and have been
determined as the ratio between the noise amplitude and the maximum voltage
value measured on the I-V characteristic. The same approach has been used to
determine the errors on the current values, leading to percentage errors of the
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order of 0.5%. These errors propagate on the estimate of other quantities, such as
the normal resistance RN , for instance.
The errors on the mean switching current 〈Isw〉 and of the standard deviation σ
can be estimated by considering the following relation [53]:

δf =

√√√√∑
i

(
∂f

∂xi
δxi

)2

where f is a function of the quantities xi affected by an error δxi. Since a switching
event is recorded when the voltage overcomes a threshold value, the error on the
switching event depends on the voltage error. As it is well known, in experiments
where stochastic events are counted, the uncertainty on the number of events
collected in a specific bin is equal to the square root of the counted events, i.e.
δnk =

√
nk, where nk is the number of switching events at Ik [53]. Since the error

that affects the current measurements is significantly smaller than the voltage
error, δIk can be neglected in the propagation of errors:

δImean =

√∑
k(Ikδnk)

2

N
δσ =

√∑
k((Ik − Imean)2 δnk

N
)2

2σ

where
∑
k

nk = N . The errors estimated in this way are about 1% ÷ 2% of the

measured values of the mean switching current 〈Isw〉 and on the standard deviation
σ.
Concerning Tc, its values are estimated from the I-V characteristics, as the tem-
perature at which the superconducting branch disappears. Thus, its error can be
estimated as the half of the difference between the temperature of the first I-V
curve which does not show any supercurrent and the last temperature at which
the superconducting branch appears.



Chapter 4

Experimental results

In this chapter, the I-V measured on different nanowires and nanomeanders char-
acteristics are shown. Experimental switching current distributions (SCDs) are
then presented and analysed by using the model presented in Chapter 2.
Since the nanomeanders are great candidates for superconducting nanowire single-
photon detectors (SNSPD), the standard deviation behaviours are analysed to
identify the dissipation mechanisms and therefore the best temperature range of
application.

4.1 I-V as a function of the temperature T

Due to the their geometrical structure, the samples fall in two different regimes
of Likharev’s diagram, as discussed in Section 1.5. Differences between the pre-
sentend nanostructures and Josephson junctions are evident from the analysis of
the I-V characteristics, as partly discussed below and as widely acknowledged in
literature [29–31,33,34,54].

54
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Figure 4.1: I-V characteristic of the Al nanowire at the bath temperature Tb =
0.4 K.

In the I-V characteristic of an Al nanowire at Tb = 0.4 K (Figure 4.1), the
superconducting, the normal and the retrapping branches can be easily identified
with the criteria, which have been summarized in Section 2.1. Once the switch-
ing current is exceeded, there is a voltage jump to the resistive branch, which is
commonly:

Vsw = IswRN

where Isw is the switching current and RN is the normal resistance, which can be
estimated from the normal branch slope. In Josephson junctions the switching
voltage is proportional to the sum of the two superconducting gaps, i.e. Vsw =
|∆L + ∆R|/e [23], where the subscript symbols are referred to the left and right
superconductor, respectively. In the Al nanowire, the normal resistance has been
found to be RN = 16.74 ± 0.2 Ω and the switching current Isw = 45.97 ± 0.4µA,
thus the Vsw = 0.82± 0.02 mV is estimated applying the previous equation and is
consistent with the measured value on the I-V characteristic shown in Figure 4.1.
The errors have been estimated following the considerations done in Section 3.4.1.
Since the energy eVsw = 0.82±0.02 meV is almost twice the superconducting gap of
the Al, which is 2∆Al = 0.4 meV, the voltage jumps are consistent with the typical
behavior of Al nanowires [30]. This is a further confirm that these Al nanowires
cannot be considered in the Josephson regime, according to Likharev’s criterion
(Section 1.5). These considerations are done on the I-V characteristics, since the
study of the switching current fluctuations is the main topic of the analysis pursued
in this thesis. Indeed, substantial differences would be immediately evident from
the I-V characteristics as a function of the applied magnetic field.
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The I-V characteristics have been measured at different temperatures and are
presented in Figure 4.2.

Figure 4.2: I-V characteristics at different temperatures of Al sample. At T =
1.32 K the superconducting branch disappears.

The superconducting branch disappears between T = 1.30 K and T = 1.32 K,
where the I-V is completely linear up to V = 0.08± 0.01 mV. Thus, Tc = 1.31 K
will be considered as the critical temperature of the Al sample. As the tempera-
ture decreases, the critical current Ic obviously increases.
The I-V characteristics are strongly different in nanomeanders, which nominally
fall in the Abrikosov vortex motion zone of the Likharev’s diagram (see Fig-
ure 1.11).
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Figure 4.3: I-V characteristic of the NbTiN nanomeander at T = 0.3 K.

Differently from the Al samples, there is no sharp jump to a finite voltage,
but a jump with a current suppression, as reported elsewhere in literature (see
for instance Refs. [25, 32]). This behaviour is due to the normal resistance of the
nanomeander, which is larger than the shunt resistance. The nanostructure is
current driven until the switching current is reached. In the resistive branch, there
is a jump in the bias current, according to:

Ibias =
Vpp

RS +RN

.

Measuring the bias current and the voltage in the increasing linear segments of the
normal branch, it is possible to estimate the normal resistance RN = 250± 50 kΩ
applying the previos equation.
The critical temperature can be found from the I-V characteristics at different
temperatures, which are reported in Figure 4.4a and in Figure 4.4b.
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(a)

(b)

Figure 4.4: a) I-V characteristics measured at different temperatures for the
NbTiN nanomeander. b) Zoom of the I-V characteristics near Tc.

In Figure 4.4b, it can be noticed that the superconducting branch disappears
between T = 8.5 K and T = 9 K, hence the nominal value Tc = 8.5 K is considered
as the critical temperature of the NbTiN sample. In analogy to the Al nanowire,
also for both nanomeanders the relation among the switching voltage and the
superconducting gaps does not hold. Indeed, the voltage jumps are ∼ 100 meV
and, for example, the superconducting gap of NbTiN is 1.3 meV. The same con-
siderations can be done for the NbN nanomeander, whose I-V characteristic at
T = 0.3 K is shown in Figure 4.5.
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Figure 4.5: I-V characterstic of the NbN nanomeander at T = 0.3 K.

As for the NbTiN sample, the normal resistance RN = 360± 50 kΩ is compa-
rable with the shunt resistance, giving an I-V characteristic similar to the NbTiN
ones. A critical temperature T = 8 K has been found.
All the characteristic parameters of the samples are summarised in the following
table, where Jsw is the nominal current density, D is the thickness, W the width,
L is the length and ξ(0) is the coherence length.

Sample Tc (K) RN (Ω) Jsw (MA/cm2) D (nm) W (nm) L (µm) ξ(0) nm

Al 1.31 16.7± 0.2 3.80 25 50 1.5 120 [29]

NbTiN 8.5 (250± 50) · 103 5.49 5 80 800 4.5 [49]

NbN 8 (360± 50) · 103 4.15 7 80 800 6 [48]

4.2 Experimental SCD

SCDs have been collected acquiring 5000 switching events at different temper-
atures, as specified for each sample in the relative caption. Concerning the Al
nanowire, the distributions have been measured in the temperature range of 0.3÷
0.9 K and are shown in Figure 4.6.
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Figure 4.6: SCDs for the Al nanowire measured between 0.3 K and 0.9 K.

The mean switching current values vary in a wide range between 〈Isw〉 = 47.5±
0.7µA, at T = 0.35 K, and its minimum 〈Isw〉 = 22.8± 0.3µA, at T = 0.9 K. The
errors have been estimated by using the arguments reported in Section 3.4.1.
All the SCDs show a left tail longer than the right one, i.e. a negative skewness
[25, 32, 55]. As described in Section 2.2, the Kurkijärvi theory gives prediction on
the statistical momenta in the single event regime that is the temperature range
in which a single thermally activated process can induce the transistion from the
superconducting to the resistive state. According to Equation (2.2), the σ should
be proportional to the temperature and for this reason it should increase with T .
In Figure 4.7, the σ of the Al sample is shown as function of the temperature.
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Figure 4.7: σ(T ) of the SCDs measured on the Al nanowire.

Following the considerations developed in Section 2.2, this behaviour induces
to recognise the single event region in the increasing σ regime, in analogy to
Refs. [25, 29, 32]. The decreasing σ regime is not expected considering only ther-
mal activation processes, hence more sophisticated considerations will be done in
Section 4.3 in order to describe this counter-intuitive behavior.
For the nanomeanders, the SCDs have been measured for temperatures between
0.3 K and 6 K. In Figure 4.8, NbTiN SCDs are presented.
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Figure 4.8: SCDs for the NbTiN nanomeander measured between 0.3 K and 6 K
with a mean switching current that varies between 4.76±0.06µA and 22.0±0.3µA.

For both nanomeanders, the mean switching current values are monotonically
decreasing as the temperature approaches Tc. In Figure 4.9 the behaviours of
normalised Imean/Ic are shown as a function of the normalised temperature T/Tc,
where Ic is the maximum mean switching current of each sample measured at the
lowest temperature T = 0.3 K.
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Figure 4.9: The behaviours of normalised Imean/Ic as a function of the normalised
temperature T/Tc for NbTiN and NbN nanomeanders are shown. The square
points above 0.7Tc are the values estimated from the I-V characteristics. The
error bars are within the experimental point dimensions.

The two behaviours are very similar thus suggesting the same type of dissi-
pation mechanisms, as discussed Section 1.4. The similarities between the two
samples can be also seen from Figures 4.10a and 4.10b.
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(a)

(b)

Figure 4.10: In (a) the standard deviation behaviours for both nanomeanders are
presented as a function of T . In (b) the ratio between the standard deviation and
the mean value of the switching currents for both nanomeanders are presented as
a function of T . The error bars are within the experimental point dimensions.

Both samples show the same σ behaviour: the standard deviation increases
until T = 0.4Tc and then it decreases. Whereas the first region can be easily
described in the framework of Kurkijärvi theory, the decreasing region needs a
more sophisticated analysis (see Sections 2.3 and 4.3).
Other similarities can be seen from the behaviour of σ/Imean, which is always
increasing, except at very low temperatures, where the ratio saturates. In this
region, σ has a temperature-indipendent behavior, with different values for each
sample, as it can be seen in Figure 4.10a. This behaviour will be later discussed
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in Section 4.3.
Since the increasing σ region could be identified as the single event region [25,29,
32,37,39], the temperature ranges of these regimes are listed in the following table.

Sample ∆T (K)
Al 0.3÷ 0.45

NbTiN 0.3÷ 4.2
NbN 0.3÷ 3.1

4.3 Fitting of experimental curves and discus-

sion of physical parameters

The σ values presented in the previous section are not always increasing as a func-
tion of the temperature, as it should be if only stochastic heating events would take
place during the current flow. At higher temperatures, σ decreases and the best fit
curves according to Kurkijärvi theory [40] would require non-physical parameters
to fit the experimental data. These fits have been obtained on the P (I) curves,
as shown in Figure 4.11, following the approach described in Section 2.2.1 and
Equation (2.14). The simulated P (I) curves have been obtained by considering
the escape rate Γ based on thermally activated phase slips, as defined in Equa-
tion (1.48). This is the standard fitting procedure used also on junctions [23,30,56].
In Figure 4.11, solid lines are the best fit curves for the NbTiN nanomeander.
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Tb=0.30 K Tf=1.54 K Icf=26.90 μA
Tb=1.06 K Tf=1.48 K Icf=26.50 μA
Tb=1.50 K Tf=1.82 K Icf=26.57 μA
Tb=1.80 K Tf=2.36 K Icf=27.10 μA
Tb=1.80 K Tf=2.36 K Icf=27.10 μA

Tb=2.00 K Tf=2.19 K Icf=26.23 μA
Tb=2.50 K Tf=2.85 K Icf=25.93 μA
Tb=3.00 K Tf=3.24 K Icf=24.93 μA
Tb=3.50 K Tf=3.47 K Icf=23.28 μA

Tb=4.20 K Tf=3.87 K Icf=20.49 μA
Tb=5.00 K Tf=3.59 K Icf=16.32 μA
Tb=5.50 K Tf=3.43 K Icf=13.64 μA
Tb=6.00 K Tf=3.13 K Icf=10.54 μA

Figure 4.11: Experimental SCDs at different temperature for the NbTiN nanome-
ander. Solid lines are the best fit obtained using the TAPS model.

For the NbTiN, since for a bath temperature larger than 4.2 K the fitting tem-
perature Tf is significantly lower than Tb and since there is no way the system could
cool down in presence of a current flow, Tf values obtained by the fit are considered
not reasonable. For all the samples, the fitting temperature is non-physical in the
temperature range where the standard deviation σ presents a decreasing behavior
as a function of the T .

Tb (K) Tf (K)
5 3.59

5.5 3.43
6 3.13

This is a direct proof that the standard fitting procedure does not work for these
samples. It is necessary to go beyond and to study the systems in terms of heat-
ing diffusion, as reported in Refs. [29, 42, 55] and to use the model presented in
Section 2.3. The following results are in accordance with Ref [29] and there is a
robust self-consistency between the physical parameters of all samples investigated
in this work as a function of temperature. In this analysis, the switching events are
assumed to be caused by thermally activated phase slips, according to the LAMH
model presented in Section 1.6.1, and heat dissipation is regulated by the argu-
ments reported in Section 2.3. All the fitting curves presented in this section are
done with N = 4000 stochastic events, obtained by varying Ic, Tth and Teff , whose
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physical meaning and influence on the P (I) have been discussed in Section 2.4.
For all the samples, the threshold temperatures Tth as such that 0.11 K ≤ Tth−T ≤
0.20 K, in accordance with Ref. [29]. Indeed, threshold temperatures have been
choosen keeping in mind that in the decreasing region of σ behaviours as a function
of the temperature T should be fitted with multiple phase slips. For all the sam-
ples, the mean number of phase slips behaviours as a function of the temperature
T is increasing proportionally to T .
Moreover, to fit the experimental SCDs, the critical currents have been choosen
expecting a decreasing behaviour as a function of the temperature T for each sam-
ple, according to Refs. [29,30,37]. The critical current behaviours as a function of
th temperature T for each sample can be seen in Figure 4.12.

Figure 4.12: Critical currents used in simulations normalised to their maximum
value as a function of the normalised temperature.

The parameters used to fit the experimental SCDs of the Al nanowires are self-
consistent and in remarkable accordance with the experimental conditions and
results, as reported in Ref. [29]. In Figure 4.13, the fitting curves are the solid
lines superimposed on the measured SCDs for the Al nanowire. To obtain these
curves, the bath temperature has been used as the effective temperature Teff .
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Figure 4.13: Switching current distributions at different temperatures for an Al
nanowire. Solid lines are the fitting curves obtained by simulations, whereas the
points are the experimental measurements.

In the increasing σ region (see Figure 4.7), i.e. 0.3 ≤ T ≤ 0.45, a single phase
slip model contains all physical ingredients to describe the observed P (I). As the
standard deviation σ decreases, the mean number of phase slips (NPS) increases
as anticipated in Section 2.4. The behaviour of the mean NPS as a function of the
temperature T is shown in Figure 4.14. These results are consistent with results
in Ref. [29].
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Figure 4.14: Mean number of phase slips as a function of the bath temperature T
for Al nanowire.

Once the simulations of the Al nanowires SCDs have produced parameters in
good agreement with the experimental data and conditions, the same analysis has
been done on the two nanomeanders. In Figures 4.15a and 4.15b, the fitting curves
of SCDs are shown and compared with the experimental measurements of NbTiN
and NbN nanomeander, respectively.
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(a)

(b)

Figure 4.15: (a) Switching current distributions at different temperatures for a
NbTiN nanomeander. (b) Switching current distributions at different tempera-
tures for a NbN nanomeander. For both figures, solid lines are the fitting curves
obtained by simulations, whereas the points are the experimental measurements.

As for the Al sample, for both nanomeanders, multiple phase slips are required
to fit the experimental SCDs. The mean number of phase slips behaviours as a
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function of the temperature T is very similar between the two nanomeander, as
it can be seen in Figure 4.16a. Keeping in mind Figure 4.14, consistency can be
found between the nanomeanders and the Al samples.
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(a)

(b)

Figure 4.16: (a) Mean number of phase slips as a function of normalised tem-
perature T/Tc for both nanomeanders. (b) Effective temperature Teff normalised
to the critical temperature behaviour as a function of the bath temperature Tb
normalised to Tc. The blue dashed line represents the case Teff = Tb.

Differently from Al sample, for both nanomeanders it has been necessary to use
a Teff > Tb at low temperatures. As it is shown in Figure 4.16b, simulation curves
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which satisfy the condition Teff = Tb are able to fit the experimental points until
Tb ∼ 1 K (Tb ∼ 2 K for the NbTiN nanomeander). Physically, values of Teff higher
than Tb indicate that the system is not at the equilibrium with bath temperature
and non-equilibrium phenomena, which are not considered in the model, are in-
volved in the process. Indeed, at very low temperatures, the thermal conductivity
reaches very low values, thus the system is not able to dissipate the energy released
by the phase slip event. To better characterise tthe behavior of the standard de-
viation σ at very low temperatures of the two nanomeanders, other measurements
of SCD have been collected between 0.01 K and 1.20 K. Experimental data and fit
for the NbTiN sample are shown in Figure 4.17.

Figure 4.17: SCDs at very low temperatures. Solid lines are the best fit curves,
whereas the points are the experimental data.

At extremely low temperatures, the distributions width has no significant vari-
ation below Tb = 1 K. Indeed, the distributions in Figure 4.17 have almost the
same height and thus the same σ. For this reason, it can be stated that the distri-
bution widths saturate around a certain σ value, which is higher than the values
measured in the multiple phase slip regime. Keeping in mind the application of
this sample as SNSPD, it is important to notice that lower number of dark counts
correspond to small σ values. The most convenient working condition is to have
a SNSPD in the multiple phase slip regime, where σ values are lower. The best
condition would require the lower values of σ at about at T = 4.2 K, which is the
reference temperature for the superconducting electronics.
In conclusion, the local heat dynamics model can be used to describe the behaviour
of different nanostructures from ultracold temperatures to Tc. The samples fall in
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different superconducting regimes, according to Ref. [27]. The Al sample is a stan-
dard one-dimensional system, whereas the NbN and NbTiN nanomeanders have
a width W > 10 ξ(0) and for this reason are not strictly 1D nanostructures (see
Sections 1.5 and 3.1). Nevertheless, the temperature behavior of critical current
fluctuatons, which represents the key fingerprint to study the dissipation mech-
anisms in superconducting devices, can be self-consistently described by using
Monte Carlo simulations based on the local heating dynamics of the system. The
recognition of single and mulptiple phase slips regimes, along with the presence of
non-equilibirum phenomena at very low temperatures, can be helpful in designing
devices and detectors with better performances.



Conclusions

In this work, the dissipation in different superconducting nanostructures through
the analysis of the switching current distributions has been studied. Al nanowires
and nanomeanders made of NbTiN and NbN have been studied, due to their use
as superconducting nanowire single photon detectors (SNSPD). The Al nanowires
have been considered as a test sample, since their geometrical dimensions are
such as to be considered a “standard” 1D superconducting nanostructures. The
nanomeanders present unique features due to their impressive length (800µm) and
a width that largely exceeds the coherence length.
The self-consistency of the fitting parameters demonstrates the possibility to anal-
yse these nanostructures in the same way, using the local heat dynamics model.
Modelling allows to estimate even the number of heating events required at the dif-
ferent temperatures to drive the system from the superconducting to the resistive
state. The number of phase slips has been correlated with the two main regions
in which is possible to divide the σ behaviours as a function of T : the increasing
and the decreasing σ regime. In Figure 4.18, the empty circles represents the de-
creasing regime points, whereas the filled circles are the increasing regime points.
In the increasing distribution width region, a single phase slip is enough nduce
the superconducting to the resistive transition. Instead, multiple phase slips are
necessary to make a transition to happen in the decreasing regime.

75



Chapter 4. Experimental results – 4.3. Fitting of experimental curves and
discussion of physical parameters 76

Figure 4.18: σ behaviours as a function of the temperature T for each sample. The
filled circles are the σ values in the single phase slip regime, whereas the empty
circles are the σ values in the multiple phase slip regime.

Concerning the two nanomeanders, the single phase slip regime shows a satura-
tion regime at very low temepratures, which has been explained as a consequence
of non-equilibrium phenomena. Indeed, at low temperatures, the thermal conduc-
tivity reachs very low values and the heat produced in the phase slip process is
not able to be rapidly dissipated and increases the effective temperature of the
sample.
Moreover, the σ values at low temperatures are higher than the values reached in
the multiple phase slip regime, thus indicating that superconducting nanowires de-
tectors would work better at higher temperatures, where dark counts are expected
to be lower.
The future perspectives are to improve the model in order to consider out-of-
equilibrium process at very low temperatures, for a better characterisation of the
saturation regime. This will be relevant for possible applications in the fields
of quantum communications and computing, where a full comprehension of the
dynamics at ultracold temperatures is needed.
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