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Preface

Framework

The research for a unified theory, which describes both the laws of the microscopic world
and those of the macroscopic world, reached a deadlock. The progress of physical theories
is hampered by theoretical and experimental limits, which influence each other: on the
one hand there are no models that help to interpret experimental observations compre-
hensively, on the other hand there are no experimental decisive observations for a better
formulation of existing models. To be precise, problems arise mostly from the cosmolog-
ical observations and one tries to find an answer, for example, introducing new types of
energy and matter.

The assumption from which most start is that General Relativity (GR) is not a com-
plete theory, despite being one of the most beautiful theories of gravity and its many
successes (e.g classical tests of GR and gravitational waves) [1–4]; GR lacks a quantum
counterpart and does not explain in an exhaustive way observations, such as the acceler-
ated expansion of the universe (negative pressure), the analysis of galactic rotation curves
[5], acoustic oscillations in the cosmic microwave background (CMB) [6–8], large scale
structure formation [9, 10] and gravitational lensing [11–14].

The most used approach is to combine GR at cosmological scales, with a hypothesis of
homogeneity and isotropy, and the Standard Model of particle physics (SM), describing
non-gravitational interactions, in the “concordance model ” of cosmology: the Λ−CDM
(Cold Dark Matter) model. This “compromise” is still far from representing an exhaus-
tive description of the Universe, because important puzzle pieces remain missing. Notably,
there is a necessity to introduce what are called dark energy (DE), described by a cos-
mological constant Λ, and cold dark matter (DM), that consists of some unknown stable
particle.

The existence of the DE and the DM is an open problem that generates potential con-
flicts between the concordance model of cosmology and the Standard Model of particles.
From cosmological observations [15], it is known that the content of matter and energy
of the Universe is about 68.3% DE, 26.8% DM, and 4.9% baryonic matter (the “com-
mon” visible matter). Thus, in the Universe there is a strong presence of non-baryonic
dark matter particles, effects of which should certainly be predicted by some extension
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of the SM. Unfortunately, experiments at the Large Hadron Collider (LHC) do not pro-
duce results that indicate the existence of a new physics beyond the SM. The conflicts
concern the DE too. Indeed, its simplest explanation is the existence of a small, but
non-zero, cosmological constant Λ. The latter does not undergo a dynamical evolution
and is conventionally associated with the energy of the vacuum in a quantum field theory.
In other words, the cosmological constant is a constant energy density filling space ho-
mogeneously and isotropically, and is physically equivalent to vacuum energy. Here arises
another problem: the vacuum energy density associated to the cosmological constant is
ρΛ = Λ/8πG ' 10−47GeV 4(' ρcritical) where ρcritical is the critical density of the universe;
from a quantum point of view, the vacuum energy density is the sum of zero point en-
ergy of quantum fields with a cut-off determined by the Planck scale (mP ' 1.22×1019

GeV) giving ρvacuum = 1074GeV 4, which is about 121 orders of magnitude larger than the
observed value [16]. This discrepancy has been called “the worst theoretical prediction in
the history of physics! ” [17].

From a theoretical point of view, nowadays, there is no explanation as to why the
cosmological constant should assume the “correct” value at the scale of the observed
Universe. The only argument we can give is based on the anthropic principle, i.e the
idea that much larger values would not have led to the formation of stars, planets and
ultimately humans.
Although there is such strong evidence for the existence of DE and DM, almost nothing
is known about their nature and properties.
All the considerations made so far are motivating physicists to seek ways to extend GR so
that it is more compatible with experimental observations and it represents a macroscopic
limit of some quantum theory.
Therefore, questioning even about what currently seems obvious or necessarily true is
legit. What if the Einstein Equivalence Principle (EEP) is violated at some (unknown)
energy scale?

This question is not unreasonable since there are many theories that foresee small
violations of principles at certain scales. Moreover, what justifies this question is the fact
that the principle of equivalence is not a fundamental symmetry of physics, contrary to
the principle of local gauge invariance in particle physics, for instance.

Most physicists believe that GR and the SM are only low-energy approximations
of a more fundamental theory that remains to be discovered. Several concepts have
been proposed and are currently under investigation (e.g, String Theory, Loop Quantum
Gravity, extra spatial dimensions) to fill this gap and most of them lead to tiny violations
of the basic principles of GR.

One of the most desirable attributes of such fundamental theory is the unification of
the fundamental interactions of Nature, i.e a unified description of gravity and the three
other fundamental interactions. There are several attempts at formulating such a theory,
but none of them are widely accepted or considered successful. Furthermore, few of their
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quantitative predictions are precise in a way that could be verified experimentally. One of
them is the Hawking radiation of black holes, which is, however, far from being testable
experimentally for stellar-size black holes observed in astrophysics.

Therefore, a comprehensive understanding of gravity will require observations or ex-
periments able to determine the relationship of gravity with the quantum world. This
topic is a prominent field of activity with repercussions covering the complete range of
physical phenomena, from particle and nuclear physics to galaxies and the Universe as a
whole, including DM and DE.

Indeed, most attempts at quantum gravity and unification theories lead to a violation
of the EEP [18–25]. In general these violations have to be be handled by some tuning
mechanism in order to make the theory compatible with existing limits on EEP violation.
For example, in String Theory, moduli fields need to be rendered massive (short range)
[23] or stabilized by e.g cosmological considerations [19] in order to avoid the stringent
limits already imposed by EEP tests.

Therefore, rather than asking why the EEP should be violated, the more natural
question to ask is why no violation has been yet observed.

Outline

The present work consists of the collection of surveys made to devise a way to violate
the EEP using the nonmetricity of connection. The arguments are all purely classical
because they are aimed at generalizing or modifying GR. The thesis relies and takes into
account the possibility that, at some energy scale, the principle of equivalence could be
violated (strictly) due to a nonmetricity of the “physical connection”. One of the aims is
to show the link between different theories having in common a non-metric connection.
In particular, during the progress of the Chapters, the attention focuses on the Weyl
non-metricity tensor.
The organization of Chapters to a large extent reflects the process of investigation.

The starting point is intended as an overview of the pillar on which the most elegant
and simple theory of gravitation is based: the EEP. Einstein himself initially called it the
hypothesis of equivalence before elevating it to a principle, once it became clear how pivotal
it was in including gravitation in the generalization of special relativity. EEP supports all
the theories that are called metrics, in which the metric tensor gµν constitutes a dynamic
field that determines the lengths of “objects”, the causal structure of the universe and the
gravitational field [26]. EEP guarantees a geometric interpretation of the gravitational
effects.

Then, two metric modifications of general relativity are mentioned. These are part of
the large family of Extended Theories of Gravity (ETG), the scalar-tensor theories and
f(R)-theories [3, 24, 27–30].
Scalar-tensor theories are characterized by the presence of a scalar field φ, or more gen-
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erally by a coupling function F (φ), that can be interpreted as the inverse of an effective
universal gravitational constant, Geff . This modification is based on Mach’s ideas which
states: “the inertia of each system is the result of the interaction of the system with the
rest of the universe; in other words, every particle in the cosmos has influence on every
other particle”. Therefore, it is expected that the gravitational constant is not actually
constant with respect to the life of the universe.
In f(R)-theories the Ricci curvature scalar R = gµνRµν inside the Einstein-Hilbert ac-
tion is replaced by its generic function (i.e f(R)) which produces an extra gravitational
energy-momentum tensor due to higher-order curvature effects. Moreover, f(R)-theories
can be generalized using what is called the Palatini formalism [31], wherein the connec-
tion is considered a priori independent from the metric, whereas the matter Lagrangian
depends on the metric only (and, obviously, on the matter field). This means that while
the metric tensor determines the casual structure of the universe, the connection deter-
mines the geodesic curves (or better, the autoparallel curves) i.e the free fall. In principle,
this decoupling enriches the geometric structure of space-time and generalizes the purely
metric formalism. By means of the Palatini field equations, this dual structure of space-
time is naturally translated into a bi-metric structure of the theory: instead of a metric
and an independent connection, the Palatini formalism can be seen as containing two
independent metrics gµν and hµν = f ′(R)gµν . In Palatini f(R)-gravity the new metric hµν
determining the geodesics, is related to the connection as the latter turns out to be the
Levi-Civita connection of hµν . Moreover, other geometrical invariants, besides R, can be
considered in the Palatini formalism, as well as the second-order curvature invariant.
However, the Palatini method will be developed only in the final part of the work, as well
as the relationship between f(R)-theories and scalar-tensor theories, together with their
interpretation in the context of conformal transformations.

The idea of a connection independent of the metric leads to the analysis of the metric-
affine structure of the spacetime [32, 33]. A generic connection can be divided into three
objects with different proprieties. Their presence causes changes on a metric pseudo-
Riemannian manifold (the GR manifold with metric-compatible affine connection).
Connection coefficients can be seen as the sum of the Levi-Civita connection (Christoffel
coefficients), contorsion tensor (linked to the torsion of the connection) and the disforma-
tion tensor (related to the non-metricity tensor). This allows one to better understand
the consequences of the presence of torsion and nonmetricity in a theory. In particular,
the general form of Riemann tensor and its contraction, together with the auto-parallel
curves equation, will be useful in the ending part of discussion. Moreover, they allow to
further generalize what has been done in this thesis.

Hereafter, the study went on to the so called “Geometrical Trinity of Gravity” [34]. It
is nothing transcendental. The trinity is formed by GR and two other theories that are
equivalent to the last one: Teleparallel Equivalent to General Relativity (TEGR) [35–37]
a theory based on the torsion, the only geometric aspect that determines gravitational
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effects in a flat world; Symmetric Teleparallel Equivalent to General Relativity (STEGR)
[32, 34, 37, 38], a theory based on the non-metricity, i.e the “non-conservativity” of the
parallel transported vectors length [33]. In particular TEGR can be seen as a gauge
theory with respect to the group of the translations [39–42]. According to who writes this
point of view is a bit precarious because of the “intimate” relation between the external
space and the internal gauge one (see Appendix). However, it bridges the search for a
theory with a non-metric connection that is a gauge potential on the group of conformal
transformations1.

For this reason the next step is devoted to summing up the basic foundations of
isometries, conformal transformation and Weyl rescaling (or conformal transformations
of the metric) [50–53].

Subsequently, the attention is focused on the Classical Conformal Theories of Gravity
that stress out the idea that conformal metric transformations should be a symmetry of
gravity (spacetime). In this framework, Weyl’s geometry and the Weyl vector Wµ are
introduced. Weyl geometry is characterized by a symmetric but non-metric connection,
which is invariant under Weyl rescaling. In particular, it is possible to link Weyl’s geome-
try and a Brans-Dicke action by using a conformally invariant scalar field φ. In this regard,
it is possible to think Weyl vector as generalization of a scalar field because W = Wµdx

µ

is, generally, a non-exact form but, by using its equations of motion, Wµ results equal to
the derivative of a scalar field function. Therefore, Wµ can be “absorbed” in a particular
conformal rescaling which links different actions (in this case Einstein-Hilbert action and
Brans-Dicke action).

To stress out this idea, following [27], the relation between non-metricity and Weyl
rescaling in Palatini formalism is discussed. Both in f(R)-theories and Scalar-Tensor
theories, there is a second metric hµν associated to the connection, which can be seen as
conformally related to gµν . Moreover, it is possible to generalize these two theories by
copulating a scalar field with f(R). However, GR vacuum equations can be recovered
only when the scalar field and the curvature can be decoupled. This leads to think that
there may be a kind of “physical equivalence” between theories which can be obtained by
performing a conformal transformation. Historically, this issue was born with the Brans-
Dicke action which shows two faces: Jordan frame and Einstein frame. They are linked
by a conformal transformation and, in absence of a specific transformation law of the
matter Lagrangian, their equivalence produces a violation of the EEP.

In order to have a more comprehensive view of Weyl’s geometry, in the last Chapter
the free-fall of particles in such geometry is studied. Moreover, we set out to analyse
the role of Weyl vector in generic quadratic actions. Here, the similarities and differences
between the Weyl field and the electromagnetic field are highlighted −Wµ was introduced
by Weyl precisely to unify gravity and electromagnetism in a single formalism. However,

1This is not the first time that such an idea emerges [43–49] but it presents several theoretical
difficulties. Many obstacles arise, especially if one tries to see Weyl rescaling as local scale transformations
caused by tetrad conformal transformation coordinates.
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Weyl vector behaves as an electromagnetic field in Bach equations. The presence of
Weyl energy-momentum tensor could explain the anomaly of galaxy rotational curves,
describing (at least partially) the presence of DM.

On the basis of these correspondences and observations, it is suggested that Weyl’s
geometry may be a valuable tool for constructing a generalized action and that a conformal
breaking symmetry may discriminate against different theories. In this regard, there are
several generalizations that can be taken in consideration. Some of these are mentioned in
the Conclusions, but no one are intended to concretize the “conformal equivalence” taking
into account the possibility of coupling Weyl’s geometry, scalar field and quadratic orders
in curvature. This could be an interesting starting point for future studies. Moreover, this
line of research is very compatible with the current context of high-precision measurements
in space which aim to observe violation of EEP [16, 54, 55].
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Chapter 1

Einstein Equivalence Principle

1.1 Towards Metric Theories

The Equivalence Principle is one of the great pillars of GR, defined by Einstein as “the
most beautiful thought of his whole life”.
GR is rooted into three large groups of ideas:

1. Mach’s criticism to the Newtonian conception of space and time as absolute entities;
2. Special Relativity (SR), which revolutionized the concept of space and time, making

them an inseparable unit, the space-time;
3. Einstein Equivalence Principle, which focused the attention on a “new universal

reference motion”, the free fall of an uncharged body.

The last idea is based on the works of Galileo and Kepler. In Principia, Newton
formulated a version of it so that the inertial mass of any body, mI, i.e. that property of a
body that governs its response to a given force, F = mIa, is equal to its gravitational mass,
mg, the quantity that dictates its response to gravitation, Fg = mgg = GNMgmgr/r3. This
is known today as the Weak Equivalence Principle (WEP) and is better stated as “if an
uncharged test body is placed at an initial trajectory it will be independent of its internal
structure and composition” [1].
The WEP implies that it is impossible to distinguish, locally, the effects of a gravitational
field from those experienced in uniformly accelerated frames using the simple observation
of the free-falling particles behaviour.

However, Einstein was the only one to think about the universality of free fall and to
generalize this idea to all the physics laws, not only the mechanical ones: Physics is the
same in any free falling frame. In this sense Einstein introduced a “new universal reference
motion”.
It was this idea that opened the road to GR, the most famous and fashionable example
of metric theory (as well as the founder of all metric theories of gravity).
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It is called the Einstein Equivalence Principle and it states that: (i) WEP is valid univer-
sally, (ii) the outcome of any local non-gravitational test experiment is independent of the
velocity of the (freelyfalling) apparatus (which is the Local Lorentz Invariance, LLI) and
(iii) the outcome of any local non-gravitational test experiment is independent of where
and when in the universe it is performed (which is the Local Position Invariance, LPI).

The validity of EEP in the so-called metric theories of gravity constrains gravitation
to be a “curved space-time” phenomenon. When speaking of a “metric theory”, one refers
to a theory wherein the metric tensor has a double role to determinate both the geometry
and the causal structure of space-time and the manifestation of gravitational field effects
on it.
This description of gravity implicates that gravitational field, the metric, determines the
space-time. Specifically, gravity is mediated through the curvature, i.e. the deviation of
space-time from flatness, and this is directly related to the matter and energy content of
the Universe [56]. Mathematically, it is always possible to choose a so-called local inertial
frame wherein gµν = ηµν and ∂λgµν = 0, i.e. the gravitational effects vanish.

Therefore, metric theories have to satisfy the following two postulates [26, 57, 58]:

1. There exists a metric gµν , which is a non-degenerate symmetric rank-2 tensor and
determines all the geometric and causal structure of space-time through the line
element ds2 = gµνdx

µdxν .

2. If Tµν is the energy-momentum tensor of all matter fields and ∇µ a covariant deriva-
tive, derived by the Levi-Civita connection of the above metric gµν , then∇µT

µν = 0.

Levi-Civita conceived a gedanken experiment, a way to test a metric theory of gravity
(GR in particular), that required three principles, necessary for the physical meaning of
the theory and for the consistency with SR.
Let γ a generic curve of the spacetime with tangent vector T = T µ∂µ = (dγµ/dλ)∂µ, then:

i. matter curves are always time-like curves, γ : g(T,T) < 0, i.e. the 4-velocity of a
matter particle is always smaller than the light one;

ii. under geometrical optics approximation, light rays describe always light-like curves
(null-curve), γ : g(T,T) = 0;

iii. a free fall material particle motion is described by the equation
γ : ∇TT = αT, with g(T,T) < 0.

Therefore, with a finite number of free fall matter particles and light rays, it is possible
to measure the gravitational field and test a metric theory.

From a more practical point of view, Schiff and Dicke were the first who realized
[59, 60] that the gravitational experiments would be the way to probe the foundations of
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gravitational theories, and not only of general relativity itself. Therefore, Dicke formulated
a framework in which one can discuss the nature of space-time and gravity [58]. According
to him any theory of gravity should satisfy the following assumptions and constraints,
summarized below [32]:

• Geometric points have to be associated with physical events. The only geometric
properties a space-time should have a priori are those of a 4-dimensional differ-
entiable manifold (with a generic affine connection, neither metric-compatible nor
symmetric).

• All the mathematical quantities should be expressed in a coordinate covariant form.
• Gravitational effects should be described by one or more long-range fields, having a
tensorial form (scalar, vector, 2-rank tensor or even higher).

• The dynamical equations will be obtained from an invariant action principle.
• Nature likes things as simple as possible (requirement of simplicity).

Throughout the years, theorists formulated a set of fundamental criteria that any viable
gravitation theory should respect, not only from a theoretical viewpoint but also from an
experimental one [32]. A theory must be:

• complete, i.e. the analysis of experimental results should be based on “first princi-
ples”;

• self-consistent, i.e. the interpretation of experimental data should not be ambiguous
and independent of the calculation method used;

• relativistic, i.e. it must reconcile with SR when gravitational effects are negligible;
• compatible with the Newtonian limit when the masses/energies are sufficiently weak.

The last two criteria are based on the great success of both SR and Newtonian theory of
gravity at their range of validity.

To conclude, it is worth mentioning the existence of another Equivalent Principle
which distinguishes itself from WEP and EEP by including self-gravitating bodies and
also local gravitational experiments. It is called the Strong Equivalence Principle (SEP)
and it states that: (i) WEP is valid not only for test bodies but also for bodies with self-
interactions (planets, stars), (ii) the outcome of any local test experiment is independent
of the velocity of the (freely falling) apparatus, and (iii) the outcome of any local test
experiment is independent of where and when in the universe it is performed.
SEP includes EEP in the limit where self-gravitational forces are ignored. Up to now,
there is no other theory satisfying the SEP but GR.

3



1.2 General Relativity

1.1.1 Geodesic Equation

As a consequence of the Equivalence Principle, the free fall motion of a test particle is
given by the geodesic equation.
In a locally inertial frame, where the gravitational force is eliminated thanks to the EEP,
the equations of motion is that of a free particle:

d2yµ

ds2
= 0, (1.1)

where
ds2 = ηαβdy

αdyβ, (1.2)

is the line element, with ηαβ = diag(+1,−1,−1,−1) the Minkowski metric. Performing
the coordinate transformations yµ = yµ(xν), the eq. (1.1) becomes

d2xλ

ds2
+ Γλσρ

dxσ

ds

dxρ

ds
= 0 (1.3)

with

Γλσρ = Γλρσ =
∂xλ

∂yµ
∂2yµ

∂xσ∂xρ
. (1.4)

The eq. (1.3) is the geodesic equation and the quantities Γλσρ are called affine connections;
these latter express the gravitational force that acts on the particle. In the absence of
a gravitational field, the geodesic equation shows that the affine connections give the
apparent forces if a transformation from a locally inertial frame to another generic frame
is performed. This manifests the equivalence between inertial and gravitational forces.

1.2 General Relativity

In GR, space-time is described by a manifold M, which is endowed with a metric gµν and
a connection ∇ characterized by the connection coefficients Γλµν . The metric fixes the
causal structure of space-time (the light cones) as well as its metric relations (clocks and
rods). The connection Γ fixes the free-fall, namely the locally inertial observers. They
have, of course, to satisfy a number of compatibility relations which require that photons
follow null geodesics of Γ, so that Γ and g can be independent, a priori, but constrained,
a posteriori, by some physical restrictions. In GR however, the connection is assumed to
be the Levi-Civita one, i.e.

Γλµν = {λµν} =
1

2
gλσ(∂µgσν + ∂νgσµ − ∂σgµν). (1.5)

It is easily seen that the above connection is symmetric in its two lower indices, Γλµν =

Γλνµ, and the metric is covariantly conserved,

∇αgµν = 0. (1.6)
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1.2 General Relativity

When a connection satisfies eq. (1.6) it is labelled as metric-compatible.
The fact that the connection is the Levi-Civita one (i.e. it is symmetric) means that the
torsion, defined as two times its antisymmetric part, vanishes:

T λµν = Γλµν − Γλνµ = 2Γλ [µν] = 0. (1.7)

In the eq. (3.20), Γλ [µν] is the antisymmetric part of the Levi-Civita connection and the
antisymmetrizer of indices is defined with a normalization factor (in this case 1/2).

Hence, in GR, the space-time (or more correctly, the connection) is assumed to be
symmetric and metric-compatible. In this context, there is the possibility to consider a
local inertial frame where the manifold becomes the Minkowski flat space of SR.

This means that the spacetime is characterized by the curvature, whose expression is
given by

Rµ
νρσ = ∂ρΓ

µ
σν − ∂σΓµρν + ΓµρλΓ

λ
σν − ΓµσλΓ

λ
ρν . (1.8)

The above Riemann tensor is symmetric in the exchange of the first and last pair of indices
and anti-symmetric in the flipping of any pair. In addition, it satisfies the first and second
Bianchi identities which respectively read

Rµνρσ +Rµρσν +Rµσνρ = 0, (1.9)
∇αR

µ
νρσ +∇νR

µ
ρασ +∇ρR

µ
ανσ = 0. (1.10)

Furthermore, one can now define uniquely the Ricci tensor as Rµν = Rλ
µλν = Rνµ and

from this one, the Ricci scalar as R = gµνRµν .

1.2.1 Parallel Transport and Geodesics in General Relativity

It is known that in a Riemannian space it is necessary to introduce a rule to transport
a tensor on the manifold. This rule is given by the connection [56, 61]. The derivative
of a vector v = vµ∂µ along a curve γ with tangent vector T = T µ∂µ = (dγµ/dλ)∂µ,
parameterized with λ, is defined as following

Dv
dλ
≡ ∇Tv. (1.11)

Then, it is possible to define a parallel transport rule associated to the connection

Dv
dλ

= 0←→ ∇Tv = 0, (1.12)

namely

dvµ

dλ
+ Γµρν

dγρ

dλ

dvν

dλ
= 0. (1.13)
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1.2 General Relativity

This transport rule establishes an isomorphism from tangent vector subjects to the choice
of the curve. Thanks to this, a generalization of geodesic is given for a manifold as
auto-parallels curve: geodesic is a curve γ having a parallel transported tangent vector,

∇TT = α(t)T, (1.14)

and if the parametrization is such that α(t) is null, then it is affinelly parameterized. In
coordinates, the eq. (1.14) gets the following form

d2γµ

dλ
+ Γµρν

dγρ

dλ

dγν

dλ
= 0. (1.15)

It is easy to verify that, if T is a time-like vector, the integral curve of eq. (1.14) is an
extremal of length functional,

` =

∫ B

A

ds, (1.16)

indeed

0 = δ` = δ

∫ B

A

ds =

∫ B

A

δ

ï
gµν

dxµ

dλ

dxν

dλ

ò1/2

dλ,

=

∫ B

A

ï
∂ρgµνδx

ρdx
µ

dλ

dxν

dλ
+ 2gµν

dδxµ

dλ

dxν

dλ

ò
dλ =

=

∫ B

A

ï
∂ρgµνδx

ρdx
µ

dλ

dxν

dλ
− 2gµνδx

µd
2xν

dλ2
− 2∂σgµνδx

µdx
σ

dλ

dxν

dλ

ò
dλ

= −2

∫ B

A

ï
gµν

d2xν

dλ2
+

1

2

Å
− ∂ρgµν + ∂µgρν + ∂νgρµ

ã
dxρ

dλ

dxν

dλ

ò
δxµdλ,

and multiplying by gµσ one gets

d2xσ

dλ2
+ Γσρν

dxρ

dλ

dxν

dλ
= 0. (1.17)

Thus, in GR there are two equivalent definition of geodesic.

1.2.2 Field Equations

GR field equations can be obtained in different ways [3]. Before getting his equations of
motion through the variational approach, Einstein reasoned by analogy with Maxwell and
Poisson equations, and he looked for an equation that was as simple as possible: from
the possibility to choose a locally inertial frame, it is necessary to involve second order
derivatives of the metric tensor and the criterion of simplicity leads to consider a linear
dependence on them. Moreover, he was looking for tensorial equations so as to ensure the
general covariance principle.
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1.2 General Relativity

From the Riemannian differential geometry [3], it is known that Riemann tensor and its
contraction are the only tensors which are linear in second order derivatives of the metric
and depending on the first order derivatives, too. Therefore, a natural choice is to consider
in vacuum

Rµ
νρσ = 0, (1.18)

but these are too restrictive and provide flat solutions. Thus, the choice goes to

Rµν = 0. (1.19)

Then, in order to introduce the description of the matter dynamic and the influence of
the matter on the space-time, the eq. (1.19) is replaced by

Gµν = 0, (1.20)

where Gµν ≡ Rµν − 1/2gµνR is the Einstein tensor.
In presence of matter, field equations can be obtained using the energy-momentum tensor
of a perfect fluid (T µν = ρuµuν + phµν) and taking into account the classical Poisson
equation for the gravitational field (∆Ug = 4πGρ). In general, the Einstein field equations
are

Gµν =
8πG

c4
Tµν , (1.21)

where Tµν is the energy-momentum tensor of the matter and the constant term
8πG

c4

provides the correct Newtonian limit.
Since the Einstein tensor has null divergence ∇µG

µν = 0, the equation (1.21) includes
the conservation of energy-momentum tensor, ∇µT

µν = 0, saving theory from possible
internal inconsistencies.

From the variational formalism viewpoint, the eq. (1.21) is given by the Einstein-
Hilbert action:

S =
c4

16πGN

∫
d4x
√
−gR + Sm, (1.22)

where g is the determinant of the metric and R is the Ricci scalar. This action was
introduced by Hilbert and it is the simplest action that gives second order covariant
equations of motion for the metric, which is the dynamical field.
The second term in the right hand side is given by

Sm =

∫
d4x
√
−gLm(gµν ,Ψ), (1.23)

and it is called matter action. It contains the matter Lagrangian Lm in which all matter
fields (denoted for simplicity by Ψ) directly couple to the metric.
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1.3 Other Metric Theories: ETG

Field equations are obtained by varying with respect to the metric tensor the E-H action.
Observing that

δgρσ = −gµρgνσδgµν , (1.24)
δg = ggµνδgµν = −ggµνδgµν , (1.25)

δ
√
−g = −1

2

√
−ggµνδgµν , (1.26)

δRµν = ∇ρδΓ
ρ
µν −∇(µ|δΓ

ρ
ρ|ν), (1.27)

δR = Rµνδg
µν + gµνδRµν , (1.28)

then, the variation of the action (1.22) is

δS =
c4

16πGN

∫
d4x[δ

√
−gR +

√
−gδR] + δSm

=
c4

16πGN

∫
d4x
√
−g[−1

2
gµνδg

µνR +Rµνδg
µν +∇α(gµνδΓαµν − gµαδΓρ ρµ)] + δSm

=
c4

16πGN

∫
d4x
√
−g[Gµνδg

µν +∇α(gµνδΓαµν − gµαδΓρ ρµ)] + δSm. (1.29)

The first term in the integral is the Einstein tensor. The second term multiplied by
√
−g

becomes a total derivative and thus, by Stoke’s theorem, yields a boundary term when
integrated [27]. Finally, the last term in eq. (1.29) will give the energy-momentum tensor
of all the matter fields in the universe as

Tµν = − 2√
−g

δSm
δgµν

. (1.30)

Thus, the field equations for the gravitational field reads

Gµν =
8πGN

c4
Tµν . (1.31)

1.3 Other Metric Theories: ETG

With the aim to answer open questions about Gravity, non-minimally coupled terms be-
tween matter fields and geometry and higher-order curvature invariants can be added
into the Einstein-Hilbert Lagrangian. These manipulations of GR theory are part of the
so called Extended Theories of Gravity (ETG) [24, 27, 29, 30].

1.3.1 Scalar-Tensor Theories (Generalized Brans-Dicke Gravity)

The Brans-Dicke theory of gravity is the prototype of gravitational theories alternative
to GR. It was born as an implementation of Mach’s Principle [29] which states that the
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1.3 Other Metric Theories: ETG

local inertial frame is determined by the average motion of distant astronomical objects.
Before, Dirac hypothesized a gravitational coupling GN with a temporal dependence,
keeping the other fundamental constants fixed. Then, thanks to P. Jordan’s ideas, G was
promoted to the role of a gravitational scalar field. Finally, Brans and Dicke developed
more rigorously the idea of a Scalar-Tensor Theory wherein a non-minimal coupling scalar
field, φ, describes gravity together with the metric tensor.
Therefore, Scalar-Tensor Theories are characterized by a non-constant gravitational cou-
pling, determined by all matter in the universe, and the Newton constant GN is replaced
by the effective gravitational coupling,

Geff =
1

F (φ)
, (1.32)

where F (φ) is a generic function of the scalar field.
The generic action has the following form:

S =

∫
d4x
√
−g
ï
F (φ)R +

1

2
gµν∇µφ∇νφ− V (φ)

ò
+ Sm, (1.33)

with V (φ) a generic scalar field potential. Here it is possible to obtain two equations, one
by varying the action with respect to the metric (gµν) and the other by varying the action
with respect to the scalar field φ:

Gµν =
1

F (φ)

ï
T (m)
µν + T (eff)

µν

ò
(1.34)

where

T (eff)
µν = ∇µ∇νF (φ)− gµν�F (φ)− 1

2
∇µφ∇νφ+

1

4
gµν∇ρφ∇ρφ− 1

2
gµνV (φ), (1.35)

is an effective energy-momentum tensor due to the presence of the scalar field; if the
action is varied with respect to φ, it follows

�φ−RF ′(φ) + V ′(φ) = 0, (1.36)

that is the invariant Klein-Gordon equation in a curved space-time - see the equations
(4.53) and (5.16).
The computation of the additional contributions in eq. (1.34) has been omitted because it
is very similar to that of next Section. T (eff)

µν contains the terms coming from the variation
of
√
−g (proportional to the kinetic term and to the potential), from the variation of the

squared kinetic term and from the variation δRµν that is no more a boundary term because
of the presence of F (φ).
An analogous situation arises for metric theories, described below.
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1.3 Other Metric Theories: ETG

1.3.2 f(R) Theories

A second generalization of the Einstein-Hilbert Lagrangian is given by the replacement
of R by a function of it, f(R):

S =

∫
d4x
√
−gf(R) + Sm. (1.37)

It is easy to get the field equations associated to the action (1.37). With this purpose, we
observe that

δf(R) = f ′(R)δR = f ′(R)Rµνδg
µν + gµνf ′(R)δRµν =

= f ′(R)Rµνδg
µν + gµνf ′(R)

[
∇ρδΓ

ρ
µν −∇(µ|δΓ

ρ
ρ|ν)

]
. (1.38)

From eq. (1.38) it is possible to see that the presence of f(R) causes additional contribu-
tions coming from δRµν , which is no longer a boundary term.
Moreover, to simplify the computation of filed equations, it is useful to write the following
variations

δΓλµν =
1

2
gρλ
(
2∇(µδgν)ρ −∇ρδgµν

)
, (1.39)

δΓλµλ =
1

2
gλρ∇µδgρλ = −1

2
gλρ∇µδg

ρλ. (1.40)

Then, the variation of the action (1.37) with respect to the metric tensor can be obtained
in the following way (integrating by parts and ignoring total derivative contributions):∫
d4xδ[

√
−gf(R)] =

∫
d4x[δ(

√
−g)f(R) + (

√
−g)δf(R)] =

=

∫
d4x
√
−g
ï
− 1

2
gµνf(R)δgµν + f ′(R)δR

ò
=

=

∫
d4x
√
−g
ï
− 1

2
gµνf(R)δgµν + f ′(R)Rµνδg

µν + f ′(R)gµνδRµν

ò
=

=

∫
d4x
√
−g
ï
− 1

2
gµνf(R)δgµν + f ′(R)Rµνδg

µν + f ′(R)gµν∇ρ(δΓ
ρ
µν − δρµδΓλλν)

ò
=

=

∫
d4x
√
−g
ï
− 1

2
gµνf(R)δgµν + f ′(R)Rµνδg

µν − gµν∇ρf
′(R)(δΓρ µν − δρµδΓλλν)

ò
=

=

∫
d4x
√
−g
ï
− 1

2
gµνf(R)δgµν + f ′(R)Rµνδg

µν+

− 1

2
gµν∇ρf ′(R)(2∇µδgρν −∇ρδgµν − gρµgαλ∇νδgαλ)

ò
=
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1.3 Other Metric Theories: ETG

=

∫
d4x
√
−g
ï
− 1

2
gµνf(R)δgµν + f ′(R)Rµνδg

µν+

−∇µ∇νf
′(R)δgµν +

1

2
�f ′(R)gµνδg

µν +
1

2
�f ′(R)gµνδg

µν

ò
=

=

∫
d4x
√
−g
ï
f ′(R)Rµν −

1

2
gµνf(R)−∇µ∇νf

′(R) + �f ′(R)gµν

ò
δgµν , (1.41)

therefore,

−1

2
gµνf(R) + f ′(R)Rµν −∇µ∇νf

′(R) + gµν�f
′(R) = 0. (1.42)

Adding the matter term and putting in evidence the Einstein tensor (adding the null
quantity 1/2gµνf

′(R)R− 1/2gµνf
′(R)R), these field equations take the form

Gµν =
Tµν
f ′(R)

+
1

f ′(R)

ß
1

2
gµν [f(R)− f ′(R)R] +∇µ∇νf

′(R)− gµν�f ′(R)

™
. (1.43)

The second term in the second side of (1.43) can be interpreted as an extra gravitational
energy-momentum tensor due to higher-order curvature effects.

Scalar-tensor theories and f(R)-theories are only two examples of GR extensions.
This thesis does not aim to list all possible generalizations. However, what seems inter-
esting is to analyze the possibility of combining these two approaches, considering both
curvature functions and a non-minimal coupling with a scalar field. This possibility will
be discussed later, both with the relation between non-metricity and the violation of EEP.
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Chapter 2

Affine-Structure of Spacetime

The previous Chapter ends with the description of two examples of metric theories aiming
to generalize GR. A different way to obtain interesting changes with respect to GR is to
modify the affine connection of the manifold that describes spacetime. What happens
when the connection is no longer the Levi-Civita connection?
The most general connection is neither metric-compatible nor symmetric. Spaces charac-
terized by a general connections are broadly known as non-Riemannian geometries.

Several alternative theories are based on this geometrical modification of GR. Among
the first attempts, there are Weyl’s [62] and Cartan’s [63]. Weyl’s connection is symmetric
but not metric-compatible, while Cartan’s connection is metric-compatible but has an
antisymmetric part. Subsequently, Einstein discovered what is today known as Palatini’s
method [64]. One considers metric tensor gµν and the torsionless affine connection Γλµν of
a manifold to be independent; then the connection acts as a rank-3 gravitational tensor
field and all the curvature invariants are defined through the connection and not through
the metric. A relation among them may be found only after using the field equations.
However, the matter part of the action does not depend on the connection.

A more general formulation of gravitation in such geometry is called Metric-Affine
Gravity [33, 65, 66]. In the Metric-Affine general formulation, the metric tensor and the
affine connection are treated as independent variables but both the gravity and matter
sectors can depend on the affine connection. Hence, the additional contributions in the
Metric-Affine theories come from torsion and non-metricity but also from the dependence
of the Lagrangian of matter on the connection.

To better understand this point of view, one can start from the Palatini formalism by
varying the Einstein-Hilbert action S ∼

∫
d4x
√
−ggµνRµν with respect to metric tensor

gµν and to the connection Γλµν . Then, the following equation are obtained:

R(µν) −
1

2
gµνR = 0 (2.1)

∇α(
√
ggµν) = 0 (2.2)

12



2.1 Metric-Affine Geometry

where R(µν) is the symmetric part of Rµν and ∇ denotes the covariant derivative with
respect to Γλµν . The equation (2.2) constraints the connection Γλµν , which is a priori
arbitrary, to coincide a posteriori with the Levi-Civita connection of the metric gµν :
Γλµν = {λµν}. Notice that the fact that Γ is the Levi-Civita connection of g is no longer
an assumption, but it is the outcome of the field equations.
However, this is only a coincidence due to the simple form of the action. Considering other
Lagrangians, field equations in metric and Palatini formalisms are, in general, different.
Thus, it is possible to obtain field equations equivalent to GR with a different connection.

The situation does not change if matter is present by means of a matter Lagrangian
Lm (independent of Γ but just depending on gµν and other external matter fields), that
generates the energy-momentum tensor Tµν . If the total Lagrangian is then assumed to
be L ≡ LPE + Lm, field equations are replaced by

R(µν) −
1

2
gµνR = κTµν , (2.3)

and again, the eq. (2.2) implies, a posteriori, that (2.3) reduces to the Einstein equa-
tions.

In the case of Matric-Affine Gravity, the situation changes radically when one allows
matter to couple the connection. Here a new tensor needs to be defined

∆λ
µν = − 2√

−g
δSm
δΓλµν

, (2.4)

that is called Hypermomentum-tensor or energy-momentum tensor associated to Γλµν .

Therefore, GR is based on several assumptions and has some fundamental roots. Both
field equations and action are covariant, this means that they do not depend on the
coordinates choice. In addition, the only field that mediates gravity is the metric, which
contains all the necessary information to describe the gravitational interactions. The
connection is symmetric and metric-compatible. Finally, all the matter fields couple
directly (and only) to the metric.
If someone changes one or more of the above assumptions, the theory changes completely.
This is the reason why is interesting to explore the properties of a metric-affine spacetime,
with particular attention to the consequences of a non-metric connection.

2.1 Metric-Affine Geometry

Spacetime is described by a 4-dimensional differentiable manifold M, the metric gµν (a
symmetric rank-2 covariant tensor on M) and the affine connection Γλµν . The affine
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2.1 Metric-Affine Geometry

connection is related to the parallel transport of a tensor and therefore it defines the
covariant derivative as follows

∇µv
ν = ∂µv

ν + Γν µλv
λ, (2.5)

∇µων = ∂µων − Γλµνωλ, (2.6)
∇µT

ν
ρ = ∂µT

ν
ρ + Γν µλT

λ
ρ − ΓλµρT

ν
λ. (2.7)

It is known from differential geometry [65] that a generic affine connection can be decom-
posed into the following three parts

Γλµν = {λµν}+Kλ
µν + Lλµν , (2.8)

where the second term is the contorsion tensor, defined through the torsion tensor

Kλ
µν =

1

2
gλρ(Tµρν + Tνρµ + Tρµν) (2.9)

= −1

2
gλρ(Tµνρ + Tνµρ + Tρνµ) = −K λ

νµ , (2.10)

and the third term is the disformation tensor, defined through the non-metricity tensor
as

Lλµν =
1

2
gλρ(−Qµρν −Qνρµ +Qρµν) = Lλνµ, (2.11)

The torsion and the non-metricity tensor are given by

T λµν = 2Γλ [µν] = Γλµν − Γλνµ, (2.12)

Qαµν = ∇αgµν = ∂αgµν − Γλαµgλν − Γλανgµλ. (2.13)

In addition, through this connection, one can define the Riemann tensor as

Rµ
νρσ = ∂ρΓ

µ
σν − ∂σΓµρν + ΓµρλΓ

λ
σν − ΓµσλΓ

λ
ρν , (2.14)

The contraction of the first index with the third one of the Riemann tensor gives the
Ricci tensor, Rµν = Rλ

µλν , which is not symmetric in general; by contracting Rµν with
the (inverse of the) metric, one obtains the Ricci scalar, R = gµνRµν ; the contraction of
the first index with the second one of the Riemann tensor provides a new tensor named
homothetic curvature Řµν = Rλ

λµν .
It is important to underline that curvature, torsion and non-metricity are all properties

of the connection (which determines the free fall and not the casual-structure). Moreover,
the connection can have an arbitrary number of these different geometric entities. To each
of these objects a geometric interpretation can be given: the curvature tensor is associated
to the variation of a vector when parallelly transported along a closed curve; the torsion
tensor describes the not-closure of an infinitesimal parallelogram obtained by the parallel
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2.1 Metric-Affine Geometry

transport of one vector along the direction of another vector; the non-metricity tensor
leads to the change of a vector’s norm when it is parallelly transported.

Mathematically, the Riemann tensor and the torsion compete in the calculation of the
covariant derivative components commutator acting on a tensor. For a function, a vector,
a covector and, in particular, for the metric tensor, the action of the covariant derivative
commutator gives

[∇µ,∇ν ]f = −T λµν∇λf, (2.15)
[∇µ,∇ν ]v

ρ = Rρ
λµνv

λ − T λµν∇λv
ρ, (2.16)

[∇µ,∇ν ]ωσ = −Rλ
σµνωλ − T λµν∇λωσ, (2.17)

[∇µ,∇ν ]gρσ = −Rλ
ρµνgλσ −Rλ

σµνgρλ − 2T λµν∇λgρσ = 2∇[µQν]ρσ. (2.18)

It naturally follows that if the torsion and the non-metricity are “switched off”, then the
connection turns into the Levi-Civita one and the theory reduces to GR.
The remarkable fact is that, working individually with the properties of the connection,
it is possible to formulate two other theories equivalent to GR. The three theories go all
together under the name of Geometrical Trinity of Gravity [34]. In GR, gravitational
effects are manifested through the curvature of the spacetime, characterized by the Levi-
Civita connection which is symmetric and metric-compatible, completely determined by
the metric tensor which represents the dynamical field. Setting the curvature to zero
and choosing a metric-compatible but not symmetrical connection, one can obtain the
Teleparallel Equivalent to General Relativity (TEGR) [35–37, 39, 41], wherein gravity is
mediated by torsion on a flat spacetime and the dynamical field are the tetrads which, as
will be shown in the next Chapter, can be seen as a “deeper” description of the metric.
Choosing a symmetric connection with vanish curvature, one can obtain the Symmetric
Teleparallel Equivalent to General Relativity (STEGR), wherein gravitational effect are
associated to the non-metricity [37, 38, 67].

These two theories will be treated in the next Chapter, together with some of their
extensions [68, 69]. However, in literature there are also more generic teleparallel theories
with both torsion and non-metricity (e.g. [70]).

From this point onwards and only in this Chapter, the quantities relating to a
generic (“complete”) connection will be characterized by a “bar” (e.g. Ā), exclud-
ing torsion and non-metricity tensors whereas it understood, while the traditional
symbology will be used for Levi-Civita connection, i.e. Γλµν ≡ {λµν}. The choice
of this notation seemed to be the most convenient since all quantities will be ex-
pressed in terms of Levi-Civita connection.

2.1.1 Geodesic

Unlike what happens in GR, in a general Metric-Affine framework the auto-parallels curves
are not the same as the extremal curves of functional length (1.3). Taking the definition
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2.2 Torsion Tensor

(1.14), in a local chart an affinelly parametrized auto-parallels curve is described by the
following equation

d2xµ

dλ
+ Γµρν

dxρ

dλ

dxν

dλ
= −(Kµ

ρν + Lµρν)
dxρ

dλ

dxν

dλ
, (2.19)

or, equivalently
d2xµ

dλ
+ Γµρν

dxρ

dλ

dxν

dλ
= −(T µ

ρ ν + Lµρν)
dxρ

dλ

dxν

dλ
. (2.20)

For this reason, geodesics of space and auto-parallels curves are, in general, different.
It is necessary to emphasize that the affine parameter does not coincide with the proper
time due to the presence of non-metricity. Indeed, non-metricity does not allow (generally)
the conservation of vector length. Moreover, it is no possible to raise up or to lower down
indices of vector under covariant derivative. This because gµν is not covariantly conserved
and it is necessary use the Leibniz rule to link derivatives of covariant components of
a tensor with its contravariant components, i.e. gµν∇̄αv

ν = ∇̄αvµ − vν∇̄αgµν 6= ∇̄αvµ.
However, this will be shown more comprehensively in the following sections.

2.2 Torsion Tensor

As already seen, the torsion tensor is defined by (3.20). It is possible to define an associated
vector by indices contraction:

Tµ = T λµλ, (2.21)

and, from this it is possible to see that

Kµλ
λ = T µ, (2.22)

Kλ
λµ = −Tµ, (2.23)

Kλ
µλ = 0. (2.24)

Moreover, a second pseudo-vector can be defined contracting the torsion tensor with the
Levi-Civita tensor,

T̃ µ = εµνρσTνρσ. (2.25)

Torsion has a particular geometrical meaning: it represents the not-closure of an
infinitesimal parallelogram obtained by parallel transportation of two vectors, one to the
direction of the other and vice versa. Therefore a vector suffers the influence of the
vortices produced by the torsion which causes the rotation of the vector with respect to
the parallel transport of Levi-Civita connection.
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2.3 Non-Metricity Tensor

2.3 Non-Metricity Tensor

Non-metricity is the failure of connection to covariantly conserve the metric. From its
definition, Qαµν = ∇̄αgµν it is possible to define the expression of the non-metricity with
last two indices raised,

Q ρσ
α ≡ gµρgνσ∇̄αgµν = −∇̄αg

ρσ. (2.26)

Having defined the non-metricity tensor, there exist two independent associated vectors:

Qα = gµνQαµν = Q λ
αλ = Q λ

α λ, (2.27)

Q̃ν = gαµQαµν = Qλ
λν = ∇̄µgµν . (2.28)

From the above considerations it is easy to obtain the following

Lλµλ = −1

2
Qµ = Lλλµ = Lλλµ, (2.29)

Lµλ λ = −Q̃µ +
1

2
Qµ. (2.30)

Finally, it follows the relation:
Qµ = g−1∇̄µg, (2.31)

where g = det(gµν).
The presence of non-metricity has special consequences, starting from the impossibility

to raise up or to lower down indices of a vector which is under covariant derivative.
As stated above, generally, the non-metricity does not preserve the length of a vector.
To demonstrate such a propriety, let v = vµ∂µ and w = wν∂ν be two vectors parallel
transported along a curve γ with tangent vector T = T ρ∂ρ, i.e. ∇̄Tv = 0 and ∇̄Tw = 0;
let consider their scalar product evolution along the curve:

T ρ∇̄ρ(gµνv
µwν) = T ρ∇̄ρ(∇̄ρv

µ)wµ + vµT ρ∇̄(wµ) + T ρ∇̄(gµν)v
µwν = (2.32)

= T ρ∇̄(gµν)v
µwν = QαµνT

αvµwν , (2.33)

and if w = v, it follows
T ρ∇̄ρ(gµνv

µvν) = QαµνT
αvµvν . (2.34)

For this reason it is not possible to normalize the norm of a vector, and this causes the
impossibility to define a proper time (and a 4-velocity) as in GR, because the length
of a vector is not constant. Moreover, let γ be a generic curve with tangent vector T,
then it is possible to define two independent “accelerations” associated to T, one for its
contravariant components (as usual) and another one for its covariants components:

aµ = T ρ∇̄ρT
µ, (2.35)

ãν = T ρ∇̄ρTν = T ρ∇̄ρ(gµνT
µ) = aν +QρµνT

ρT µ. (2.36)
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2.4 Riemann Tensor and Curvature

Here ã will be called anomalous acceleration. As additional consequence, there is no longer
perpendicularity between 4-velocity and 4-acceleration:

Tµa
µ = TµT

ρ∇̄ρT
µ =

= T ρ∇̄ρ(T
µTµ)− (T ρ∇̄ρTµ)T µ =

= T ρ∇̄ρ(gµνT
µT ν)− ãµT µ =

= QρµνT
ρT µT ν + 2Tµa

µ − ãµT µ, (2.37)

hence
aµTµ = ãµT

µ −QρµνT
ρT µT ν , (2.38)

or equivalently
(aµ − ãµ)T µ = −QρµνT

ρT µT ν . (2.39)

So, in a metric-affine space, an auto-parallels curve has an acceleration, too, the anomalous
one:

aµ = T ρ∇̄ρT
µ = 0, (2.40)

ãν = T ρ∇̄ρTν = T ρ∇̄ρ(gµνT
µ) = QρµνT

ρT µ. (2.41)

Therefore, from this point o view it is worth remarking the two consequences which
follow:

1. the length of a vector is not preserved, generally;

2. the auto-parallels curves have an anomalous acceleration.

This two “inconveniences” could be deleted asking for non-metricity:

1. Q(αµν) = 0 ⇒ T ρ∇̄ρ(gµνT
µT ν) = QαµνT

αT µT ν = Q(αµν)T
αT µT ν = 0;

2. Q(αµ)ν = 0 ⇒ ãν = QρµνT
ρT µ = Q(ρµ)νT

ρT µ = 0.

However, these conditions are too stringent constraints. They do not take into consid-
eration any explicit form of the non-metricity tensor. In the final Chapter, a special
non-metricity tensor will be considered and the consequences (1) and (2) will be cancelled
by using a deeply different way.

2.4 Riemann Tensor and Curvature

It is easy to verify that under shift of the connection Γ̄λµν by a tensor Nλ
µν , the Riemann

tensor associated to the new connection Γ̂λµν = Γ̄λµν +Nλ
µν transforms [65] as following:

R̂α
βµν = R̄α

βµν + T̄ λµνN
α
λβ + 2∇̄[µ|N

α
|ν]β + 2Nα

[µ|λN
λ
|ν]β. (2.42)
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2.4 Riemann Tensor and Curvature

In particular, using the relation (2.42) for Γ̄λµν = Γλµν+Nλ
µν , where Nλ

µν = Kλ
µν+Lλµν ,

one obtains

R̄µ
νρσ = Rµ

νρσ + 2∇[ρ|N
µ
|σ]ν + 2Nµ

[ρ|λN
λ
|σ]ν =

= Rµ
νρσ +Kµ

νρσ + Lµνρσ + Iµνρσ, (2.43)

where
Rµ

νρσ = 2∇[ρΓ
µ
|σ]ν + 2Γµ [ρ|λΓ

λ
|σ]ν (2.44)

Kµ
νρσ = 2∇[ρK

µ
|σ]ν + 2Kµ

[ρ|λK
λ
|σ]ν (2.45)

Lµνρσ = 2∇[ρL
µ
|σ]ν + 2Lµ [ρ|λL

λ
|σ]ν (2.46)

Iµνρσ = 2Kµ
[ρ|λL

λ
|σ]ν + 2Lµ [ρ|λK

λ
|σ]ν , (2.47)

and it is easily verifiable that Kµν
ρσ is antisymmetric in the first two indices and in the

second ones.

From (2.43) it is possible to get the following quantities:

• the Ricci tensor, contracting the first and the third indices,

R̄µν = R̄λ
µλν = Rµν +Kµν + Lµν + Iµν , (2.48)

where

Rµν = 2∇[λΓ
λ
|ν]µ + 2Γλ [λ|αΓα|ν]µ (2.49)

Kµν = 2∇[λK
λ
|ν]µ + 2Kλ

[λ|αK
α
|ν]µ =

= ∇λK
λ
νµ +∇νTµ − TαKανµ −

1

4
T α
µ λ(T

λ
ν α + 2T λ

α ν) (2.50)

Lµν = 2∇[λL
λ
|ν]µ + 2Lλ [λ|αL

α
|ν]µ

= ∇λL
λ
νµ +

1

2
∇νQµ −

1

2
QαL

α
νµ −

1

4
(Q λ

ν αQ
α

µλ + 4Qλα
νQ[αλ]µ) (2.51)

Iµν = 2Kλ
[λ|αL

α
|ν]µ + 2Lλ [λ|αK

α
|ν]µ

= −TαLανµ −Kλ
ναL

α
λµ −

1

2
QαK

α
νµ − LλναKα

λµ; (2.52)

• the homothetic curvature is achieved contracting the first two indices,

Řµν = R̄λ
λµν = 2∇̄[µΓ̄λν]λ = 2∂[µL

λ
ν]λ = −∂[µQν], (2.53)
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2.4 Riemann Tensor and Curvature

or, in analogous way, using the relation (2.18),

Řρσ = gµνR̄(µν)ρσ = gµν(−∇̄[ρQσ]µν −
1

2
T λρσQλµν) =

= −∇̄[ρQσ] +Q[σ|µν∇̄|ρ]g
µν − 1

2
T λρσQλ =

= −∇̄[ρQσ] −������Q[σ|µνQ
µν
|ρ] −

1

2
T λρσQλ =

= −∇[ρQσ] +
1

2
T λρσQλ −

1

2
T λρσQλ =

= −∇[ρQσ] = −∂[ρQσ] (2.54)

Therefore a generic connection leads to a new symmetric contribution in the first
two indices of Riemann tensor, characterized by the only symmetric object, the
non-metricity;

• the scalar curvature takes the form,

R̄ = gµνR̄µν = R +K + L+ I, (2.55)

where

K = 2∇λT
λ − TλT λ +KλµνK

µλν

= 2∇λT
λ − TλT λ +

1

4
Tµνλ(T

µνλ + 2T λνµ) (2.56)

L = ∇λ(Q
λ − Q̃λ)− 1

4
QλQ

λ +
1

2
QλQ̃

λ +
1

4
QµλαQ

µλα − 1

2
QµλαQ

λµα (2.57)

I = Tλ(Q̃
λ −Qλ) + LαλµK

αλµ. (2.58)

2.4.1 Generalized Bianchi Identities

In this Subsection we set out to discuss the generalized Bianchi identities for a generic
connection, i.e. torsionfull and nonmetric-compatible. These identities are also known as
Weitzenböck identities [33]. By fully anti-symmetrizing the Riemann tensor in its three
lower indices, it is possible to obtain the first identity,

R̄µ
[νρσ] =

2

3!
(R̄µ

ν[ρσ] + R̄µ
σ[νρ] + R̄µ

ρ[σν]) =

=
2

3!
(R̄µ

νρσ + R̄µ
σνρ + R̄µ

ρσν) =

= ∇̄[νT
µ
ρσ] − T

λ
[νρT

µ
σ]λ. (2.59)

The second identity is achieved as

∇̄[λ|R̄
µ
ν|ρσ] = −R̄µ

να[λT
α
ρσ]. (2.60)
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2.5 Lie Derivative

From eq. (2.60), two other equations can be derived:
by contracting the indices µ and ν, the homothetic curvature satisfies the equation

∇̄[λŘρσ] = −2Řα[λT
α
ρσ], (2.61)

while, by contracting µ and λ, it follows

∇̄λR̄
λ
νρσ − 2∇̄[ρ|R̄ν|σ] = R̄ναT

α
ρσ + 2R̄λ

να[ρT
α
σ]λ. (2.62)

If one considers a torsionless and nonmetric-compatible connection, it results:

R̄µ
[νρσ] = 0 ⇒ Rµ

[νρσ] = 0, Lµ [νρσ] = 0 (2.63)

∇̄[λŘρσ] = 0 ⇒ ∂[λŘρσ] = 0 (2.64)

2.5 Lie Derivative

It is worth including in this framework the Lie derivative: to change the connection of
space means to change the relationship between the Lie derivative and the covariant
derivative, which allows a practical local formulation.

The Lie derivative is the first method to derivate a tensorial object which is used on
a generic manifold where a locally defined vectorial field is present. It maps a tensorial
quantity, of l-covariant and m-contravariant type, in an another one of the same type [61].
The defining properties of Lie derivative guarantee its uniqueness, unlike the covariant
derivative. There are two equivalent definitions of the Lie derivative: the first one is based
on the properties that the Lie derivative must have, like linearity, Leibniz rule, action on
vector as commutator, action on a function and commutation with respect to contraction
of indices; the second one uses the induced maps by a diffeomorphism on the manifold on
the tangent and co-tangent space, respectively push-forward and pull-back.

Let us now outline the properties of the Lie derivative in a local map. Let f be a
diffeomorphism, X = Xµ∂µ, Y = Y µ∂µ vectorial fields and ω = ωµdx

µ an 1-form, each
locally defined on the manifold. It follows that

LX(f) = X(f) = Xµ∂µf, (2.65)
LX(Y ) = [X, Y ] = (Xν∂νY

µ − Y ν∂νX
µ)∂µ, (2.66)

LX(ω) = (Xν∂νωµ + ων∂µX
ν)dxµ, (2.67)

LX(g) = (Xρ∂ρgµν + gρν∂µX
ρ + gµρ∂νX

ρ)dxµdxν . (2.68)

In GR, wherein the connection is symmetric and metric-compatible, eq.s (2.65), (2.66),
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2.5 Lie Derivative

(2.67) and (2.68) take the form

LX(Y ) = (Xν∇νY
µ − Y ν∇νX

µ)∂µ, (2.69)
LX(ω) = (Xν∇νωµ + ων∇µX

ν)dxµ, (2.70)
LX(g) = (Xρ∂ρgµν + gρν∂µX

ρ + gµρ∂νX
ρ)dxµdxµ =

= (Xρ∂ρgµν + ∂µXν −Xρ∂µgρν + ∂νXµ −Xρ∂νgρµ)dxµdxν =

= (∇µXν +∇νXµ)dxµdxν . (2.71)

In GR the Lie derivative can be interpreted, a posteriori, as the directional derivative
along X of a tenso,r when the local chart {xµ} is “adapted ” to the field X, i.e. for
some µ = µ̄, X = ∂µ̄. Moreover, it is possible to show that there exists a deep relation
with one-parameter transformation groups: if a one-parameter transformation group is a
symmetry for a tensor, then the Lie derivative with respect to the infinitesimal generator
of the transformations is null (see [61] for a detailed explanation). This allows to express
or to recognize a symmetry using the local form of the Lie derivative. For these reasons
it can be useful to know how eq.s (2.69), (2.70) and (2.71) change in a non-Riemannian
space:

LX(Y ) = (Xρ∇̄ρY
µ − Y σ∇̄σX

µ − T µρσXρY σ)∂µ, (2.72)
LX(ω) = (Xν∇̄νωµ + ων∇̄µX

ν − T λµνXνωλ)dx
µ, (2.73)

LX(g) = [∇̄µXν + ∇̄νXµ + 2(Kλ
(µν) + Lλµν)Xλ]dx

µdxν =

=

ï
∇̄µXν + ∇̄νXµ + 2

Å
T λ
µ ν −Q λ

µ ν +
1

2
Qλ

µν

ã
Xλ

ò
dxµdxν . (2.74)
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Chapter 3

The Geometrical Trinity of Gravity

As stated in the previous Chapters, EEP enables a geometric formulation of gravity. This
means that gravitational effects are geometric properties of spacetime and are indepen-
dent of the internal structure of matter.
GR is the most elegant and simple geometric formulation of gravity which is mediated by
the curvature, entirely determined by the metric tensor. Actually, gravity can be equiv-
alently described by a “pure torsion space”, giving rise to the Teleparallel Equivalent to
General Relativity (TEGR), or by a “pure non-metricity space”, giving rise to the Sym-
metric Teleparallel Equivalent to General Relativity (STEGR). These three formulations
of gravity go under the name of Geometrical Trinity of Gravity [34].
In the next sections we stress out the main aspects of these two theories.

3.1 Teleparallel Gravity

Using the tetrad formalism [41, 61, 71], it is possible to address gravity exclusively to the
torsion, considering a metrical flat space-time with a metric-compatible connection. This
connection is named Weitzenböck. The term Teleparallel is related to the condition of
flatness of the space, or teleparallel condition. In this theory tetrads are the dynamical
fields and, their “field strength” is the torsion. Moreover, this treatment of gravity can
be seen as a gauge theory [72] for the translation group. The geometrical framework is
the principal bundle [61] associated to the tangent bundle of spacetime, with translation
group T(1,3) as structure group. While, SO(1, 3) transformations are used to evidence the
inertial effects and to work with general Lorentz frames [39–41].

The action of this theory must be built from torsion invariant quadratic forms. The
most general action of this type is

ST =
c4

16πGN

∫
d4x(
√
−gT + λ νρσ

µ R̄µ
νρσ + λ̃αµνQαµν), (3.1)
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3.1 Teleparallel Gravity

where the last two terms are Lagrange multipliers, while T is the generic torsion scalar
defined as

T = −c1TαT
α + c2

1

4
TµναT

µνα + c3
1

2
TµναT

ανµ. (3.2)

Notice that the Lagrange multipliers have the obvious symmetries λ νρσ
µ = λ

ν[ρσ]
µ , λ̃αµν =

λ̃α(µν), and are defined as tensorial densities of weight −1 for convenience.
According to (2.55) and (2.56), if c1=c2=c3 = 1, eq. (3.1) is equivalent to the E-

H action (up to a total derivative term) when imposing, from the outset, flatness and
symmetry of the connection:

0 = R̄ = R +K =⇒ R = −K = TλT
λ − 1

4
TµνλT

µνλ − 1

2
TµνλT

λνµ − 2∇λT
λ =

= −T(c1 = 1, c2 = 1, c3 = 1)− 2∇αT
α

= −
◦
T− 2∇αT

α, (3.3)

where
◦
T ≡ T(c1 = 1, c2 = 1, c3 = 1).

Thus, varying the action with respect to tetrad one gets the same equations as the Ein-
stein theory, proving that the two approaches are equivalent. This can be a problem
because, having the same equations of motion, the two theories cannot be experimentally
distinguished. However, this “degeneration” of the field equations could be solved by the
presence of some little violations of EEP due, for example, to the coupling between torsion
and spin particles.

In what follows, useful tools and further developments of the theory will be discussed.

3.1.1 Tetrad Formalism

To better understand the equivalence between GR and TEGR, it is necessary to intro-
duce the tetrad formalism for a generic Riemannian manifold. In order to do this, useful
relations will be listed for future calculations (specifically in case of a flat and torsionfull
space).

Let M be the differential manifold representing the space-time; tetrad, or vierbein
(vielbeins, if it is many dimensional), are the set of coefficients {eaµ} ∈ GL(4,R) associ-
ated to a non-coordinate basis {êa} ∈ TM and to relative dual basis {θ̂a} ∈ T ∗M , defined
as:

êa(x) = e µ
a (x)∂µ, (3.4)

θ̂a(x) = eaµ(x)dxµ, (3.5)
g
(
êa(x), êb(x)

)
= e µ

a (x)e ν
b (x)gµν(x) = ηab, (3.6)

gµν(x) = eaµ(x)eb ν(x)ηab, (3.7)
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3.1 Teleparallel Gravity

from which the following relation can be obtained,

g = gµνdx
µdxν = ηabθ̂

a(x)θ̂b(x), (3.8)
eaµ(x) = gµν(x)ηabe ν

b (x), (3.9)
eaµ(x)e ν

a (x) = δνµ, (3.10)
eaµ(x)e µ

b (x) = δab . (3.11)

In this way, the point-like dependence of metric is absorbed into {eaµ(x)} - from now on,
the point-like dependence will no longer be made explicitly.
In the used notation, the Latin indices are relate to the local Lorentz space-time (or local
laboratory) coordinates, while the Greek ones to the general space-time coordinate.
The non-coordinate basis has a non-vanishing Lie bracket whose structure constants f c

ab

read and depend on the point as:

[êa, êb] = f c
ab êc, (3.12)

where
f c
ab = ecν(e

µ
a ∂µe

ν
b − e

µ
b ∂µe

ν
a ) = −e µ

a e
ν
b (∂µe

c
ν − ∂νecµ). (3.13)

The above equation can be obtained after replacing the quantity {êa} with its definition,
êa = e µ

a ∂µ.
Moreover, it is possible to define the connection coefficient with respect to the non-
coordinate basis as following

∇aêb = Γc abêc, (3.14)

where
Γc ab = ec νe

µ
a (∂µe

ν
b + Γν µλe

λ
b ) = ec νe

µ
a ∇µe

ν
b . (3.15)

In this basis the components of torsion and Riemann tensor are

T abc = Γa bc − Γa cb − f a
bc (3.16)

Ra
bcd = êc(Γ

a
db)− êd(Γa cb) + Γa ceΓ

e
db − Γa deΓ

e
cb − f e

cd Γa eb. (3.17)

This formalism presents the possibility to introduce a matrix-valued 1-form {ωab} called
connection 1-form,

ωab ≡ Γa cbθ̂
c (3.18)

= ωabµdx
µ, with ωabµ = Γa cbe

c
µ. (3.19)

The peculiarity of ωab is that it allows to express the curvature and the torsion by what
are called Cartan’s structure equations1 [61],

T a ≡ 1

2
T abcθ̂

b ∧ θ̂c = dθ̂a + ωab ∧ θ̂b (3.20)

Ra
b ≡

1

2
Ra

bcdθ̂
c ∧ θ̂d = dωab + ωac ∧ ωc b, (3.21)

1Maurer-Cartan structure equations are defined in Lie Groups framework.
A group G is a set of elements {g}, closed with respect to two binary operations, which are called product
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3.1 Teleparallel Gravity

where d is the usual exterior derivative and ∧ is the anti-symmetrized product2, therefore:

dθ̂a = d(ea νdx
ν) = ∂µe

a
νdx

µ ∧ dxν =
1

2
(∂µe

a
ν − ∂νeaµ)dxµ ∧ dxν (3.22)

dωab = d(ea νdx
ν) = ∂µdω

a
bνdx

µ ∧ dxν =
1

2
(∂µdω

a
bν − ∂νdωabµ)dxµ ∧ dxν . (3.23)

Moreover, the eq.s (3.20, 3.21) provide the Bianchi identities for RG in a easier way.
Indeed, taking their exterior derivative, result

dT a + ωab ∧ T b = Ra
b ∧ θ̂b (3.24)

dRa
b + ωac ∧Rc

b −Ra
c ∧ ωc b = 0. (3.25)

Then, setting T a = 0, it follows

Ra
b ∧ θ̂b = 0 ⇒ Ra

bcdθ̂
b ∧ θ̂c ∧ θ̂d = 0 (3.26)

dRa
b + ωac ∧Rc

b −Ra
c ∧ ωc b = 0 ⇒ DRa

b = 0, (3.27)

where D = d + ω is a new exterior derivative such that increases the order of a form
according to the rule fixed by the equation (3.27). Therefore, the exterior derivative D
allows to express T a in a more compact form,

T a = Dθ̂a. (3.28)

Computing the eq. (3.20) and eq. (3.21), torsion and curvature have the following
“mixed-components”:

T aµν = ∂µe
a
ν − ∂νeaµ + ωabµe

b
ν − ωabνeb µ, (3.29)

Ra
bµν = ∂µω

a
bν − ∂νωabµ + ωacµω

c
bν − ωacνωc bµ. (3.30)

P (·, ·) and inversion I(·, ·), and it satisfies three axiom: 1. associativity of the product; 2. existence of
identity e; 3. P (g, I(g)) = e = P (I(g), g), ∀g ∈ G.
A group G is a Lie group if it is possible to give a parametrization of G by using an homeomorphism
φ : G 3 g → φ(g) = (a1, ..., an), where n ≡ dimG, which defines a differential manifold structure, and if
the composition maps, P and I, are differentiable maps. Therefore, every Lie group is a differentiable
manifold.
On a group manifold, it is possible to define a left action La : G 3 g → ag with a ∈ G. To the left action
is associated its push-forward on the group manifold. Then, a vector field X is called left-invariant if
La∗(X|g) = X|ag. The set of all left-invariant field on a group manifold is denoted by L(G). It is possible
to show that L(G) equipped with a Lie bracket [·, ·] defines a finite-dimensional Lie algebra. Moreover,
L(G) is isomorphic to the tangent space of G in e, TeG. {TeG, [·, ·]} is called Lie algebra of G.
The Lie algebra of G is characterized by its structure constants c λ

µν : [Xµ, Xν ] = c λ
µν Xλ. The dual

basis {θµ} associated to a basis of left-invariant field {Xµ} satisfies the Maurer-Cartan structure equation:

dθλ = −1

2
c λ
µν θµ ∧ θν .

2Let ω = ωνdx
ν be a 1-form on M, ω ∈ T ∗M . The exterior derivative acts in the following way:

dω = ∂µωνdx
µ ∧ dxν , where dxµ ∧ dxν =

1

2
(dxµdxν − dxνdxµ).
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3.1 Teleparallel Gravity

Therefore, the relations between the connection 1-form and the affine connection are

Γλµν = e λ
a eb νω

a
bµ + e λ

c ∂µe
c
ν , (3.31)

ωabµ = eaλe
ν

b Γλµν + ea ρ∂µe
ρ

b . (3.32)

Often, these relations are summarized with the tetrad postulate, ∇µe
a
ν = 0:

∇µe
a
ν ≡ ∂µe

a
ν − Γλµνe

a
λ + ωabµe

b
ν = 0. (3.33)

In addition to the above, the introduction of the connection 1-form grants to write a
covariant derivative with respect to the coordinate basis of non-coordinate tensors com-
ponents in a easy way; namely

∇µv
a = ∂µv

a + ωabµv
b, (3.34)

∇µX
a
b = ∂µX

a
b + ωacµX

c
b − ωc bµXa

c, (3.35)
∇µηab = −ωc aµηcb − ωc bµηac = −ωbaµ − ωabµ. (3.36)

The last equation is particularly interesting; if Γλµν is a metric-compatible connection
then the associated connection 1-form take the name of Spin connection (or Lorentz
connection), defined by the propriety

ωab = −ωba. (3.37)

In particular, ωab can be seen as a 1-form with values in the Lie algebra of Lorentz group,

ωµ =
1

2
ωabµS

ab (3.38)

where Sab is a given representation of the Lorentz generators, and it is used, for example,
to describe spinors in a curved space-time.
The validity of the eq. (3.37) follows from the metricity condition:

0 = ∇µgρσ = ∂µgρσ − Γλµρgλσ − Γλµσgλρ =

= ∂µ(ηabe
a
ρe
b
σ)− (eb ρω

a
bµ + ∂µe

a
ρ)ηace

c
σ − (eb σω

a
bµ + ∂µe

a
σ)ηace

c
ρ =

= −(ωabµ + ωbaµ)ea ρe
b
σ. (3.39)

Moreover, by means of the following relations:

ωcab ≡ ωcaµe
µ
b = Γcdae

d
µe

µ
b = Γcdaδ

d
b = Γcba, (3.40)

T cab = ωc ba − ωc ab − f c
ab → ωc ba − ωc ab = T cab + f c

ab , (3.41)

the last equation for three different combinations of indices, gives

1

2
(f c
a b + f c

b a + f c
ab ) = ωcba −Kc

ab = Γcab −Kc
ab, (3.42)
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3.1 Teleparallel Gravity

where Kc
ab is the contortion tensor associated to T cab.

If the torsion-free condition is satisfied, the first Cartan’s equation becomes

dθ̂a + ωab ∧ θ̂b = 0, (3.43)

and the anholonomy coefficients are the only antisymmetric part of the connection in the
non-coordinate basis

f c
ab êc = [êa, êb] = ∇aêb −∇bêa, (3.44)
f c
ab = Γc ab − Γc ba = −(

◦
ωc ab −

◦
ωc ba), (3.45)

◦
ωcab =

1

2
(f c
a b + f c

b a + f c
ab ), (3.46)

where ◦
ωcab is the spin connection of General Relativity. Then the Riemann tensor com-

ponents are

Ra
bcd = êc(Γ

a
db)− êd(Γa cb) + Γa ceΓ

e
db − Γa deΓ

e
cb − (Γe cd − Γe dc)Γ

a
eb. (3.47)

3.1.1.1 Local Lorentz Transformation

The degrees of freedom of tetrad eaµ are n2 = 16 in a 4-dimensional Lorentzian manifold,
while gµν has n(n+1)/2 = 10 degrees of freedom. This is not surprising because there are
many non-coordinate bases which correspond to the same metric, each of which is related
to the other by the local pseudo-orthogonal transformation Λ(x) ∈ SO(1, 3):

êa −→ Λ b
a êb, (3.48)

θ̂a −→ Λa
bθ̂
b, (3.49)

eaµ −→ Λa
be
b
µ, (3.50)

where Λ b
a = (Λ−1)b a. Requiring that the torsion T a transforms as a vector under local

Lorentz transformations (or, equivalently, Ra
b transforms as a (1,1)-tensor), the connec-

tion 1-form transforms in the following way

ω′ab = Λa
cω

c
d(Λ

−1)d b + Λa
c(dΛ−1)c b. (3.51)

This way of transforming characterizes what in the gauge theories are interpreted as lo-
cal connection 1-forms on fibre bundles, which is the geometric interpretation of gauge
potentials [61]. Fibre bundles represent a powerful geometric framework which allow to
describe gauge theories in an unified way. Gauge potentials, in this description, transform
according to eq. (3.51) under transformations of the gauge group.
In other words, fibre bundles are constituted by a base manifold and a fiber on which a
structure group acts (the gauge group).
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3.1 Teleparallel Gravity

Thanks to the eq. (3.51), it is possible to compare the spin connection and the curvature
to the gauge potentials and field strength of gauge theories in particle physics. Common
aspects are the existence of an “internal” vector space, which is influenced by gauge trans-
formations, and the description of the interaction. The latter is taken into account by
introducing a covariant derivative, which contains the internal degree of freedom through
the local connection 1-forms. However, a big difference between tetrad formalism and
gauge theory is the nature of the internal space. While for a gauge theory the internal
space is independent from the base manifold, in Riemannian geometry the internal space
is built from tangent space and cotangent one. Consequently, there is the constraint that
the tangent space and its related quantities are “intimately” associated with the manifold
itself, and are naturally defined once the manifold is set up. There is no other gauge
theory involving tetrads, which relate orthonormal bases to coordinate bases.

Therefore, it is important to stress out some reasons why GR cannot be considered a
gauge theory3 [41]:

• In a generic gauge theory, the dynamical field (with to respect which variations are
taken) is the gauge potential, i.e. the connection. In GR the variation is taken with
respect the metric tensor.

• In GR, the Einstein-Hilbert action is not quadratic in the curvature and R depends
on the metric tensor and on its first and second derivatives.

• There exists always a local inertial frame wherein the gravitational effect can be
neglected. Thus, gravity does not appear as a force but as a geometrical effect.

• The group of diffeomorphisms cannot be considered the gauge group of gravitation
because any theory can be written covariantly under diffeomorphisms without any
dynamical meaning.

• Contrary to gauge theories, the curvature is not given by the external covariant
derivative D = d+ ω.

With the aim to modifying GR, many attempts to find a gauge theory for gravity that is
equivalent to GR in its validity ranges occurred.
In this regard, it can be interesting noting that, while Ra

b 6= Dωab, for the torsion it results
T a = Dêa. Furthermore, in case of flat and torsionful spacetime, Ra

b = dωab+ωac∧ωc b = 0

and, from structure equations, it follows DT a = D2êa = 0. Therefore, the torsion would
3There are two ways to use the term “gauge theory”: one simply expresses an internal freedom of

theory that has no physical consequences; the other one is strictly related to fibre bundles formalism, used
for the particle physics [61]. The latter requires the existence of a connection 1-form ω, which defines a
covariant derivative on the fibre bundle D, and a field strength Ω = Dω. When we say that GR is not a
gauge theory, we mean that any internal freedom cannot be expressed in the same way as particle physics.
However, one can refer to the GR as a gauge theory taking into account the local Lorentz invariance of
the tetrad formalism or the invariance under diffeomorphisms of Einstein linearised field equations.
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3.1 Teleparallel Gravity

seem to behave like a gauge field strength but, again, there is a difference: the covariant
derivative, containing the gauge potential, must act on the gauge potential itself to provide
the field; here, D = d+ ω acts on the tetrad, êa.

However, before dealing with teleparallel Lagrangian, let us consider Palatini action,

S =

∫
ΩV Rab ∧ ∗(θ̂a ∧ θ̂b), with ΩV = θ̂0 ∧ θ̂1 ∧ θ̂2 ∧ θ̂3 = d4x

√
−g (3.52)

which is equivalent to Einstein-Hilbert action but in tetrad formalism. The ∗ in eq.
(3.52) is called Hodge star. It is a linear map which decreases the order of a r-form on
M , ∗ : Ωr(M)→ Ωr−1(M), defined by

∗(dxµ1 ∧ .. ∧ dxµr) =

√
−g

(m− r)!
εµ1µ2...µrνr+1...νm

dxνr+1 ∧ ... ∧ dxνm , (3.53)

where ε is the totally anti-symmetric tensor [61].
Without going into the details of calculations, considering tetrad eaµ and the 1-form

ωaµ as independent quantities, it is possible to obtain two equations: the equation ob-
tained varying with respect to eaµ represents GR field equations in tetrad formalism; the
equation obtained varying with respect to ωaµ leads to the torsion-free condition.
Therefore, even using the Palatini action and tetrad, there are some differences from a
gauge theory: the action is not quadratic in the field strength and the connection 1-form
is not the dynamical field, which gives the curvature, but tetrads (which are a deeper
description of the metric). This aspect will be clarified in the subsequent paragraphs.

3.1.2 Teleparallel Field Equations

Once clarified the role and the features of tetrad fields, it is possible to rewrite the La-
grangian (3.1) and to solve the constraints:®

R̄µ
νρσ = 0 ⇒ Ra

bcd = 0 ⇒ Γa bc = 0 (3.54)
∇̄λgµν = 0 (3.55)

In order to solve the first equation, note that the affine curvature is the gauge field strength
of the connection for general linear transformations GL(4,R). We can use this fact to
argue that, since eq. (3.54) is trivially solved by vanishing connection, then it must be
satisfied by any connection obtained by a general linear transformation. In the tetrad
language the general linear transformation is eab, so that the connection reads as:

Γ̄λµν = e λ
c ∂µe

c
ν , (3.56)

then,
T λµν = 2e λ

c ∂[µe
c
ν]. (3.57)
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3.1 Teleparallel Gravity

Here, torsion is given exclusively by the anholonomy coefficient of tetrad since T cab =

Γc ab − Γc ba − f c
ab = −f c

ab . The second constraint (3.55) provides the relation between
the derivatives of the metric and of the tetrad field

0 = ∇̄λgµν = ∂λgµν − 2Γ̄ρ λ(µgν)ρ =

= ∂λgµν − 2e ρ
c ∂λe

c
(µgν)ρ, (3.58)

thus
∂λgµν = 2e ρ

c ∂λe
c

(µgν)ρ. (3.59)

Now, the connection is fixed and totally determinate by tetrad. Therefore we can calculate
the variation with respect to the tetrad and to get the field equations. For this reason,
the following variation will be useful:

δe ν
b = −e µ

b e ν
a δea µ; (3.60)

δgµν = δ(ηabe
a
µe
b
ν) = ηab(e

a
µδe

b
ν + eb νδe

a
µ); (3.61)

δ‖e‖ = δ
√
−g = 1/2

√
−ggµνδgµν = ‖e‖e µ

a δeaµ; (3.62)
δgµν = −gµσgρνδgρσ = −gµσe ν

a δeaσ − gρνe µ
a δea ρ = −(gµλe ν

a + gλνe µ
a )δeaλ; (3.63)

δT λµν = δ(2e λ
c ∂[µe

c
ν]) = −e λ

a T γ
µνδe

a
γ + 2e λ

c ∂[µδe
c
ν]. (3.64)

It is quite simple to find the first order variations of the following quadratic combinations
of torsion component:

δ(TµT
µ) = δ(gµνTµTν) = TµTνδg

µν + 2T µδTµ =

= −(gµλe ν
a + gλνe µ

a )δeaλTµTν + 2T µ(−e λ
a T γ

µλδe
a
γ + 2e λ

c ∂[µδe
c
λ]) =

= −2(T λTµ + T ρT λρµ)e µ
a δeaλ + 2(T µe λ

c − T λe µ
c )∂µδe

c
λ; (3.65)

δ(T λµνTνµλ) = δ(T λµνT
ν
ρλg

ρµ) = 2T νµλδT
λ
µν + T λµνT

ν
ρλδg

ρµ =

= 2T νµλ(−e
λ

a T γ
µνδe

a
γ + 2e λ

c ∂[µδe
c
ν])+

+ T λµνT
ν
ρλ(−(gµσe ρ

a + gσρe µ
a )δeaσ) =

= −2T νµλT
γ
µνe

λ
a δea γ + 2(T νµλ − T

µν
λ)e

λ
c ∂µδe

c
ν =

= 2(T γ
µ ν − T γ

µν)T
νµ
λe

λ
a δea γ + 2(T νµλ − T

µν
λ)e

λ
c ∂µδe

c
ν ; (3.66)

δ(T λµνTλµν) = (T λµνT
γ
ρσgλγg

µρgνσ) =

= 2T µν
λ δT λµν + T λµνT

γµνδgλγ + 2T λµνT
ν

λρ δgµρ =

= 2T µν
λ (−e λ

a T γ
µνδe

a
γ + 2e λ

c ∂[µδe
c
ν]) + T λµνT

γµνηab(e
a
λδe

b
γ + eb γδe

a
λ)+

+ 2T λµνT
ν

λρ (−(gµσe ρ
a + gσρe µ

a )δeaσ) =

= −4TλµνT
γµνe λ

a δea γ + 4T µν
λ e λ

a ∂µδe
c
ν + 2TλµνT

γµνe λ
a δea γ+

− 4T λσνTλµνe
µ

a δeaσ =

= −4T λσνTλµνe
µ

a δeaσ + 4T µν
λ e λ

a ∂µδe
c
ν , (3.67)
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where, in the last line, we used the antisymmetry of e λ
a δea γ.

Therefore, the variation of TEGR action is:

δST =

∫
d4x

Å
δ‖e‖

◦
T + ‖e‖δ

◦
T
ã

= 0. (3.68)

Replacing the above calculated terms, it follows

δST =

∫
d4x‖e‖

ï
◦
Te λ

a δeaλ+

+ 2(T λTρ + T µT λµρ)e
ρ

a δe
a
λ − 2(T µe λ

a − T λe µ
a )∂µδe

a
λ+

+ (T λ
µ ν − T λ

µν)T
νµ
ρe

ρ
a δe

a
λ + (T λµν − T µλν)e ν

a ∂µδe
a
λ+

− T µλνTµρνe ρ
a δe

a
λ + T µλ

ν e ν
a ∂µδe

a
λ

ò
. (3.69)

Now it is useful introduce the superpotential Sλµν such that
◦
T = 1/2TλµνS

λµν :

Sλµν ≡ Kµλν + gλµT ν − gλνT µ = −Sλνµ. (3.70)

In this way, integrating by part the second terms of every line, the variation turns out to
be

δST =

∫
d4x

ï
‖e‖

◦
Te λ

a − 2‖e‖SµλνTµρνe ρ
a + 2∂µ(S λµ

ν e ν
a ‖e‖)

ò
δeaλ. (3.71)

Thus, for the arbitrariness and not-degeneracy of tetrad, the equations got are

‖e‖
◦
Te λ

a − 2‖e‖SµλνTµρνe ρ
a + 2∂µ(S λµ

ρ e ρ
a ‖e‖) = 0, (3.72)

Finally, it is possible to multiply by eaσ, and to rewrite last term in the following way,
using the Levi-Civita connection and the antisymmetry of Sλµν :

eaσ∂µ(S λµ
ρ e ρ

a ‖e‖) = eaσ∂µ(S λµ
ρ )e ρ

a ‖e‖+ eaσS
λµ

ρ ∂µ(e ρ
a )‖e‖+ eaσS

λµ
ρ e ρ

a ∂µ(‖e‖) =

= ∂µ(S λµ
σ )‖e‖ − Γ̄ρ µσS

λµ
ρ ‖e‖+ Γρ ρµS

λµ
σ ‖e‖ =

= ‖e‖(∇µS
λµ

σ − ΓλµρS
ρµ

σ + Γρ µσS
λµ

ρ − ΓµµρS
λρ

σ +

− Γρ µσS
λµ

ρ −Kρ
µσS

λµ
ρ +

+ Γρ ρµS
λµ

σ )

= ‖e‖(∇µS
λµ

σ −Kρ
µσS

λµ
ρ ), (3.73)

where, ∂µ‖e‖ = ∂µ
√
−g = 1/2

√
−ggρσ∂µgρσ = −1/2‖e‖gρσ(Γλµρgλσ+Γλµσgλρ) = ‖e‖Γλµλ.

Therefore, the field equations read

∇µS
λµ

ρ − Sµλν(Tµρν +Kµνρ) +
1

2

◦
Tδλρ = 0. (3.74)
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The equation (3.74) can be written as

−Kµν + 1/2Kgµν = 0, (3.75)

having in mind the relations (2.50) and (2.56). Then, from the teleparallel condition,
0 = R̄µ

νρσ = Rµ
νρσ + Kµ

νρσ ⇒ Rµν = −Kµν and R = −K, the equivalence between the
eq. (3.74) and the Einstein equations in vacuum is immediate.

It is necessary, at this level, to make some comments regarding the approach used to
obtain the field equations. The procedure consists in resolving first the constraints in the
Lagrangian (3.1). In this way, the field equations are obtained by varying with respect to
eaµ and the connection results fixed (entirely determined by tetrad).
The connection defined by eq. (3.56) is called Weitzenböck connection. It has the property
of null curvature, but non-vanishing torsion, and it characterizes any frames with null spin
connection.
However, it is possible to consider the connection as further degrees of freedom and to vary
the action with respect to ωabµ. This further degrees of freedom is associated with inertial
effects. Indeed, unlike GR wherein the spin connection represents both gravitation and
inertial effects, Teleparallel Gravity inherits from SR the interpretation of spin connections
as pure inertial effects.
To understand how natural this association is, let us just consider the equations of a free
particle, in a Minkowski space and in a general frame:

dua

ds
= 0 −→ dua

ds
+ Γa cbu

cub = 0, (3.76)

dua

ds
+ ωaµbu

µub = 0. (3.77)

The free particle equations (3.77) guarantees the local Lorentz invariance thanks to the
spin connection property of transformation (3.51). Therefore, the choice of a specific
frame breaks this invariance:

dua

ds
= 0 −→, d(Λa

bu
b)

ds
= 0, (3.78)

Λa
b

dub

ds
+ ∂µ(Λa

b)u
µub = 0

and, multiplying by Λ c
a , it results

duc

ds
− •
ωc bµu

µub = 0, (3.79)

where
•
ωc bµ ≡ Λa

b∂µΛ c
a = −Λ c

a ∂µΛa
b, (3.80)

that is called purely inertial/gauge connection.
This also happens when we choose the Weitzenböck connection. A local Lorentz trans-
formation leads to the appearance of other terms due to the inertial connection, which
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3.1 Teleparallel Gravity

breaks the invariance. Thus, although one starts from the Lagrangian (3.2), which is in-
variant under local Lorentz transformations (due to the propriety of the torsion to change
covariantly T aµν → Λa

bT
b
µν), the choice of the vanishing spin-connection frame in TEGR

breaks this invariance, changing the transformation rule of the torsion

T aµν → Λa
bT

b
µν + (eb ν∂µΛa

b − eb µ∂νΛa
b), (3.81)

that is no longer local Lorentz covariant. This means that the torsion scalar is Lorentz
violating. However, this is not a problem because the Lorentz violating term in the torsion
scalar gives just a boundary term [32, 35, 36], which does not contribute when integrated,

◦
T(eaµ,

•
ωabµ) =

◦
T(eaµ, 0) +

4

‖e‖
∂µ(‖e‖ωabνe ν

a eb µ). (3.82)

This means that any linear combination of the torsion scalar in the action will be Lorentz
invariant (up to a total derivative term).

3.1.2.1 The spin connection of Special Relativity

Before concluding the Subsection, some clarification about the spin connection in SR is
worth. In absence of gravity, the space-time is the Minkowski one, fully described by the
metric ηµν = diag(+1, −1 −1 −1).Here the Lorentz connection represents inertial effects
of a given frame; if the frame is inertial the Lorentz connection vanishes identically. Let
{xµ} be the chart on the base space and {x′a} an inertial (holonomic) frame of the fiber,
i.e. [e′a, e

′
b] = f ′ c

ab = 0, in a general coordinate system it results

dθ′c = −1

2
f ′

c
ab θ′a ∧ θ′b = 0 (3.83)

e′aµ = ∂µx
′a, (3.84)

while in the specific case of Cartesian coordinates

e′aµ = δaµ. (3.85)

Under a local Lorentz transformation Λ b
a = Λ b

a (xµ), {e′a} becomes {ea}, which is no more
holonomic but anholonomic, as follows

ea = Λ b
a e
′
b = Λ b

a e
′ µ
b ∂µ

= e µ
a ∂µ, (3.86)

xa = Λa
bx
′b = Λa

be
′b
µx

µ = eaµx
µ, (3.87)

eaµ = Λa
be
′b
µ. (3.88)
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Now it is possible to compute the last equation using the first two,

eaµ = Λa
b(x

ν)e′bµ =

= Λa
b(x

ν)∂µx
′b =

= ∂µ(Λa
b(x

ν)x′
b
)− x′b∂µΛa

b(x
ν) =

= ∂µx
a − Λ b

c (xν)xc∂µΛa
b(x

ν) =

= ∂µx
a +

•
ωacµx

c

≡
•

Dµx
a, (3.89)

where the quantity
•
ωabµ = Λa

e∂µΛ e
b , (3.90)

is called purely inertial connection, just because it represents the inertial effects, and
•

Dµ

is the associated covariant derivative.
Another way to get the purely inertial connection is to use the Lorentz symmetry of the
internal space and to compute the Spin connection using its transformation rule4, starting
from an holonomic frame:

ωabµ = 0, (3.91)
•
ωabµ = Λa

eω
e
dµΛ d

b + Λa
e∂µΛ e

b = Λa
e∂µΛ e

b . (3.92)

Now, it is possible to use the definition of f c
ab in terms of eaµ to get the relations between

the anholonomy coefficient and the purely inertial connection:

f c
ab =

•
ωcba −

•
ωcab, (3.93)

•
ωcba =

1

2
(f c
a b + f c

b a + f c
ab ) ≡ ◦

ωcab, (3.94)

where •
ωcab =

•
ωcaµe

µ
b . Furthermore it results5:

•
Γλµν = e λ

c ∂µe
c
ν + e λ

c
•
ωc bµe

b
ν ≡ e λ

c

•
Dµe

c
ν , (3.95)

•
ωabµ = eaλe

ν
b

•
Γλµν + ea ρ∂µe

ρ
b ≡ ea ρ

•
∇µe

ρ
b , (3.96)

•
Ra

bµν = ∂µ
•
ωabν − ∂ν

•
ωabµ +

•
ωaeµ

•
ωebν −

•
ωaeν

•
ωebµ = 0, (3.97)

•
T aµν = ∂µe

a
ν − ∂νeaµ +

•
ωaeµe

e
ν −

•
ωaeνe

e
µ = 0. (3.98)

4The spin connection can be seen as a connection 1-form with values in the Lie algebra of Lorentz
group; indeed, considering an infinitesimal Lorentz transformation, then it results Λae∂µΛ e

b = (δ +
1/2εijS

ij)ae∂µ(δ − 1/2εlmS
lm) e

b = −1/2∂µ(εlm)(Slm)ab, where (Slm)ab are the Lorentz transformations
generators.

5It is possible to observe that
•
T aµν = 2

•
D[µe

a
ν] but

•
Rabµν 6= 2

•
D[µ|

•
ωab|ν] .
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In SR, therefore, Lorentz connections represent inertial effects only, and are crucial for
the local Lorentz invariance of relativistic physics. Equations (3.90) and (3.96) highlight
the correspondence between the inertial connection and the affine connection. The first
one is obtained by performing a local Lorentz transformation, while the second one is
related to a generic coordinate transformation. Therefore, there is an equivalence be-
tween local Lorentz and general coordinate transformation (or diffeomorphism) [41] and,
since diffeomorphisms are empty of dynamical meaning, local Lorentz transformations are
consequently empty of dynamical meaning as well.

3.1.3 Extended TEGR Theories

A first extension of TEGR is the f(
◦
T) -theories of gravity [68, 73, 74]. Similarly to what

happens for GR and f(R)-theories, the scalar torsion
◦
T is replaced by its function, f(

◦
T).

The action of an f(
◦
T)-theory reads

S
f(

◦
T)

=

∫
d4x‖e‖f(

◦
T) + Sm. (3.99)

Before describing this family of theories, it is important to stress out that TEGR La-
grangian and related field equations are invariant under local Lorentz transformations,
although the vanishing spin-connection frame. However, when one moves to generaliza-
tions of the form of f(

◦
T), things change. What for TEGR is a boundary term, now, is no

longer such. This happens in f(R)-theories too, but in f(
◦
T)-theories there is the problem

of the local Lorentz symmetry breaking. To overcome this problem, there are two possible
alternatives [32]: the first one is to keep working in Weitzenböck frames, with null spin
connection, and selecting, a posteriori, those tetrads that provide field equations with
matching solutions with GR, in the limit of f(

◦
T)→

◦
T; the second one is to work in a gen-

eral frame, with a non-vanishing spin connection, and varying the action with respect eaµ
and ωabν . The latter guarantees the local Lorentz invariance, but greatly complicates the
calculations. Coming back to the action (3.99) with respect to the tetrad, tthe variational
principle with respect to the tetrad provides

δS
f(

◦
T)

=

∫
d4x

Å
δ‖e‖f(

◦
T) + ‖e‖f ′(

◦
T)δ

◦
T
ã
. (3.100)

Then, integrating by part, the variation results to be

δST =

∫
d4x

ï
‖e‖f(

◦
T)e λ

a −2‖e‖f ′(
◦
T)SµλνTµρνe

ρ
a +2∂µ(f ′(

◦
T)S λµ

ν e ν
a ‖e‖)

ò
δeaλ. (3.101)

In this way, the field equations are

∇µ

(
f ′(

◦
T)S λµ

ρ

)
− f ′(

◦
T)Sµλν(Tµρν +Kµνρ) +

1

2
f(

◦
T)δλρ = κT λ

ρ , (3.102)
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where T λ
ρ ≡ − 1

2‖e‖e
a
ρδSm/δe

a
λ. Obviously, replacing f(

◦
T) →

◦
T the (3.102) becomes

(3.74) adding the contribute of the matter.

Finally, it is interesting to notice that, despite the Teleparallel theory is completely
equivalent to GR, generally, the same does not happen for f(R) and f(

◦
T) theories. This

happens because the boundary term becomes completely arbitrary, for non-linear terms
of the torsion tensor. Anyhow, often, one finds that the correspondence between TEGR
and f(

◦
T) is more natural than that between GR and f(R)-theories, because in the latter

the field equations are of the fourth order, while in GR, TEGR and f(
◦
T)-theories the

equations are the of second order.

3.1.4 Gravity as Gauge Theory of Translation Group

As already mentioned, TEGR can be seen as a gauge theory for the translation group.
The base space is a general flat pseudo-Riemannian space-time M with metric gµν . The
fiber is a Minkowski tangent-space TM = R1,3 with metric ηab, on which the gauge
transformations, translations, take place.

Let {xa} be a local chart of the tangent bundle. Let us consider the following infinites-
imal local translation

xa → x̃a = xa + εa(xµ). (3.103)

The generators of infinitesimal translations are the differential operators Pa = ∂/∂xa = ∂a
which satisfy the commutation relations

[Pa, Pb] = [∂a, ∂b] = 0. (3.104)

The corresponding infinitesimal transformation can then be written in the form

δεx
a = εbPbx

a
(

= εbδab = εa
)
. (3.105)

Let Bµ be the potential gauge of theory which belongs to the Lie algebra of the translation
group

Bµ = Ba
µPa. (3.106)

This gauge potential allows to obtain the right covariant derivative of the theory (sim-
ilarly to what happens with electromagnetic potential). Let ψ be a general source field
(which represents a local Section of the associate fiber bundle with G = T 1, 3). Under an
infinitesimal tangent space translation, it transforms according 6 to

δεψ = εa(xµ)∂aψ (3.107)
6Generally, this variation is called “total variation”. In case of a function f , under translation x →

x′µ = xµ + δxµ the total variation is defined as δ0f = f̃(x)− f(x) = −δxµ∂µf .
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while its partial derivative does not transform in the same way,

δε(∂µψ) = ∂µ(δεψ) = ∂µ(εa(x)∂aψ) = ∂µ(εa)∂aψ + εa∂a∂µψ 6= εa∂a∂µψ. (3.108)

The gauge covariant derivative such that the derivative of field transform covariantly is

∂µψ → hµψ = ∂µψ +Ba
µ∂aψ = ha µ∂aψ, (3.109)

where
ha µ = ∂µx

a +Ba
µ = e′aµ +Ba

µ, (3.110)

and the translational potential transforms as follows

δεB
a
µ = −∂µεa(x). (3.111)

In fact,

δε(hµψ) = δε(∂µψ +Bb
µ∂bψ) =

= ∂µ(εa)∂aψ + εa(x)∂a∂µψ + δεB
b
µ∂bψ +Bb

µ∂bδεψ =

= ∂µ(εa)∂aψ + εa(x)∂a∂µψ + δεB
b
µ∂bψ +Bb

µ∂b(ε
a∂aψ) =

= εa∂a(∂µψ +Bb
µ∂bψ) + ∂µ(εa)∂aψ + δεB

b
µ∂bψ =

= εa∂a(hµψ), (3.112)

where Ba
µ = Ba

µ(xν) and, since εa = εa(xµ), it results δε∂bψ = ∂bδεψ.
Now it is possible to compute the field strength of the theory by the commutator of

the covariant derivative: using the gauge viewpoint (not explaining internal degrees of
freedom), it follows

[hµ, hν ]ψ =(∂µ +Bµ)(∂ν +Bν)ψ − (µ↔ ν) =

= ∂µ∂νψ + ∂µBνψ +Bν∂µψ +Bµ∂νψ +BµBν − (µ↔ ν) =

= (∂µBν − ∂νBµ)ψ = (∂µB
a
ν − ∂νBa

µ)∂aψ ≡ T aµν .∂a (3.113)

What happens if a local Lorentz transformation xa → x̃a = Λa
bx
b is performed on the

internal space? In literature is present the following treatment [41].
A new tetrad is defined, assuming that Ba

µ → Λ b
a B

b
µ

haµ = ∂µx
a +

•
ωabµx

b +Ba
µ =

•
Dµx

a +Ba
µ, (3.114)

where •
ωabµ = Λa

c∂µΛ c
b is the usual purely inertial Lorentz connection. In this class of

frames, the internal coordinates {xa} are related to an holonomic frame of the internal
space. In this class of frame, the gauge potential Ba

µ transforms under the group of
translations according to

δεB
a
µ = −

•
Dµε

a. (3.115)
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Then, the field strength is archived as

[hµ, hν ] = T aµνPa, (3.116)

where

T aµν = ∂µB
a
ν − ∂νBa

µ +
•
ωabµB

b
ν −

•
ωabνB

b
µ =

•
DµB

a
ν −

•
DνB

a
µ (3.117)

Moreover, using the relation
[

•
Dµ,

•
Dν ]x

a = 0. (3.118)

it is possible to write

T aµν =
•

Dµh
a
ν −

•
Dνh

a
µ = ∂µh

a
ν − ∂νhaµ +

•
ωabµh

b
ν −

•
ωabνh

b
µ. (3.119)

The tetrad haµ defined by (3.114) allows to obtain the translational (gravitational) cou-
pling prescription and it is consistent to the so-called general covariance principle [41]
thanks to the presence of the inertial spin connection.
In this way, the connection is given by

Γλµν = h λ
a ∂µh

a
ν + h λ

a
•
ωabµh

b
ν , (3.120)

while the torsion is
T λµν = h λ

a T aµν = Γλµν − Γλνµ, (3.121)

and the relation between the connection (3.120) and the Levi-Civita one is

Γλµν = {λµν}+Kλ
µν . (3.122)

In this framework the torsion plays the role of gravitational force and its form is really
similar to the electromagnetic one (but with an universal coupling). In fact, the spacetime
interval of a particle trajectory can be written as

ds2 = gµνdx
µdxν → ds = gµνu

µdxν = ηabu
ahb, (3.123)

where uµ = dxµ/ds is the holonomic 4-velocity and ua ≡ haµu
µ is its anholonomic version.

This allows to generalize the description of a free particle in SR to the description of a
free particle in teleparallel gravity:

S = −mc
∫ B

A

uah
a = −mc

∫ B

A

ua(dx
a +

•
ωabµx

bdxµ +Ba
µdx

µ). (3.124)

Now, varying with respect to xµ, the equations of motion are
dua
ds
− •
ωb aνubu

ν = T baνubu
ν = −Kb

aνubu
ν . (3.125)

Finally, contracting with tetrads and using the relation between the tetrad connection
and the connection of the spacetime, the (3.125) becomes

duµ
ds
− Γλµνuλu

ν = −Kλ
µνuλu

ν , (3.126)

which is nothing but the force equation.
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3.2 Symmetric Teleparallel Gravity

General relativity can be presented in terms of other geometries besides Riemannian, as
already discussed. In this Section, the attention is payed on another alternative: the
Symmetric Teleparallel Equivalent to General Relativity (STEGR) [67, 75–77], in which
the torsion vanishes but the non-metricity ∇g does not, carrying the “gravitational force”.
In this framework there is the special possibility to globally remove the connection by
choosing appropriate coordinates, so that the spacetime is trivially connected.This choice
of coordinate represents a preferred call of frames wherein the computations are greatly
simplified.

The action of this theory must be built from the non-metricity even-parity second
order quadratic forms. The most general action of this type is

SQ =
c4

16πGN

∫
d4x(−

√
−gQ + λ νρσ

µ R̄µ
νρσ + λ̃ µν

α Tαµν), (3.127)

where λ νρσ
µ = −λ νσρ

µ , λ̃ µν
α = −λ̃ νµ

α are the Lagrangian multipliers and Q is the generic
non-metricity scalar, defined as

Q =
c1

4
QµναQ

µνα − c2

2
QµναQ

νµα − c3

4
QλQ

λ + (c4 − 1)Q̃σQ̃
σ +

c5

2
QρQ̃

ρ. (3.128)

In this case there are a 5-parameter family of quadratic theories.
Obviously, for ci = 1 and by constraining the connection to be torsionless and with
vanishing curvature from the outset, (3.127) is equivalent to the E-H action since the eq.s
(2.55) and (3.129), but they differ by a total derivative term:

0 = R̄ = R + L =⇒ R = −L =

=
1

4
QλQ

λ − 1

2
QλQ̃

λ − 1

4
QµλαQ

µλα +
1

2
QµλαQ

λµα −∇λ(Q
λ − Q̃λ)

= −Q(ci = 1)−∇λ(Q̃
λ −Qλ)

= −
◦
Q−∇λ(Q̃

λ −Qλ), (3.129)

where
◦
Q ≡ Q(ci = 1).

As for TEGR it is more comfortable solving the constraints before getting the field equa-
tion. Again, the flatness condition requires the connection to be by a general element
eaµ ∈ GL(4, R),

Γ̄λµν = e λ
a ∂µe

a
ν . (3.130)

The torsion related to the connection (3.130) is, again,

T λµν = e λ
a ∂[µe

a
ν]. (3.131)

Requiring the torsionless condition, from eq. (3.131) one obtains the following constraint
on the tetrads

T λµν = e λ
a ∂[µe

a
ν] = 0⇒ ∂[µe

a
ν] = 0. (3.132)

40



3.2 Symmetric Teleparallel Gravity

Reversing the argument, {êa}must be an holonomic frame. Therefore, the general element
eaµ ∈ GL(4, R) can be parametrized by a set of functions ξa = ξa(xµ) as follows

Γ̄λµν = e λ
a ∂µe

a
ν =

∂xλ

∂ξa
∂µ∂νξ

a. (3.133)

The equation (3.133) shows that the connection can be trivialized by a coordinate trans-
formation − see eq. (1.5). The possibility to choose ξa can be interpreted as a gauge
freedom. The particular gauge where ξµ ≡ xµ is called coincident gauge and it corre-
sponds to choose the origin of the tangent space coincident with the space-time origin.
Therefore, one obtains:

0 = Γ̄λµν = Γλµν + Lλµν ⇒ Γλµν = −Lλµν and Qαµν = ∂αgµν , (3.134)

and then the action (3.127) reads [34, 37, 38]:

SCGR = SQ(Γ̄ = 0) = − c4

16πGN

∫
d4x
√
−ggµν(LααλLλµν − LαµλLλνα) (3.135)

=
c4

16πGN

∫
d4x
√
−ggµν(ΓααλΓλµν − ΓαµλΓ

λ
να). (3.136)

Coming back to STEGR, let us work with the following action

SSTEGR =
c4

16πGN

∫
d4x
√
−g

◦
Q. (3.137)

It is possible introduce a superpotential (non-metricity conjugate) Pα
µν s.t.

◦
Q = Pα

µνQ
µν

α ,
defined as

Pα
µν ≡

1

4

ï
−Qα

µν + 2Q α
(µ ν) +Qαgµν − Q̃αgµν − δα(µQν)

ò
= (3.138)

= −1

2
Lαµν +

1

4

Å
Qα − Q̃α

ã
gµν −

1

4
δα(µQν). (3.139)

In order to calculate the variation of action with respect to the metric tensor, there are
several useful equations:

Lλλν = −1

2
Qν ; (3.140)

Lλµ µ = −Q̃λ +
1

2
Qλ; (3.141)

δQαµν = ∇̄αδgµν = ∇αδgµν − 2Lλα(µ|δgλ|ν); (3.142)
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δQα = δ(gµνQαµν) = Qαµνδg
µν + gµνδQαµν =

= −Q µν
α δgµν + gµν∇αδgµν − 2Lµ ν

α δgµν ; (3.143)

δQ̃ν = δ(gαµQαµν) = −Qαµ
νδgαµ + gαµ∇αδgµν − 2gαµLλα(µ|δgλ|ν); (3.144)

δ(QαµνQ
αµν) = 2QαµνδQαµν −QµαβQν

αβδgµν − 2QαβµQ ν
αβ δgµν =

= 2∇α(Qαµνδgµν)+

+ (−2∇αQ
αµν − 4QαβµLν αβ −QµαβQν

αβ − 2QαβµQ ν
αβ )δgµν ; (3.145)

δ(QαµνQ
µαν) = 2QµανδQαµν + (−QαβµQν

αβ −QµαβQ ν
αβ −QαβµQ ν

βα )δgµν =

= 2∇α(Qµανδgµν)+

+ (−2∇αQ
µνα − 2QαβµLν αβ − 2QµαβLν αβ+

− 2QαβµQν
αβ −QαβµQ ν

βα )δgµν ; (3.146)
δ(QαQ

α) = 2QαδQα −QµQνδgµν =

= 2∇α(Qαgµνδgµν)+

+ (−2QαQ µν
α − 2∇α(Qαgµν)− 4QαgµβLν αβ −QµQν)δgµν ; (3.147)

δ(Q̃αQα) = QαδQ̃α + Q̃αδQα −QµQ̃νδgµν =

= ∇α(Qνgαµδgµν) +∇α(Q̃αgµνδgµν)+

+ (−QαQµν
α −∇α(Qνgαµ)−QνgαβLµαβ −Q

βgαµLν αβ+

− Q̃αQ µν
α −∇α(Q̃αgµν)− 2Q̃αgµβLν αβ −QµQ̃ν)δgµν . (3.148)

In this way, the variation of the action gives

2∇αP
αµν −Q[αβ](µQ

ν)
αβ +

1

4
QµαβQν

αβ +
1

4
QαQ µν

α − 1

2
QαQ(µν)

α +
1

2
gµν

◦
Q = 0, (3.149)

which are equivalent to the E-H field equations by imposing the teleparallel condition:

−L(µν) + 1/2Lgµν = 0. (3.150)

3.2.1 Extending STEGR

The most straightforward modification is the generalization of the action to an arbitrary
function of the non-metricity scalar

◦
Q, [69] just as with f(R) and f(T). The action of

the theory reads

S
f(

◦
Q)

=

∫
d4x
√
−gf(

◦
Q) + Sm. (3.151)

Varying the action (3.151) with respect to the metric (δgµν), it results

δS
f(

◦
Q)

=

∫
d4x
√
−g
Å

1

2
gµνf(

◦
Q)δgµν + f ′(

◦
Q)δ

◦
Q
ã

+ δSm. (3.152)

With the prime accounting for the derivative with respect to Qαµν , similarly to what
happens in f(R) and f(T), the boundary terms written in the precedent variations are
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no longer such, due to the presence of the factor f ′(
◦
Q) in the second term of variation

(3.152). Therefore, taking into account the variations used for the non-metricity scalar,
one has to do a further integration by parts. Consequently, with respect to eq. (3.149),
one can obtain the new field equations multiplying by f ′(

◦
Q) the superpotential Pαµν and

the terms of the variations proportional to δgµν , and replacing
◦
Q with f(

◦
Q). Then, adding

the matter contribute and dividing all by f ′(
◦
Q), the field equations read:

2∇α(f ′(
◦
Q)Pαµν)

f ′(
◦
Q)

−Q[αβ](µQ
ν)

αβ +
1

4
QµαβQν

αβ+

+
1

4
QαQ µν

α − 1

2
QαQ(µν)

α +
1

2
gµν

f(
◦
Q)

f ′(
◦
Q)

=
T µν

f ′(
◦
Q)
, (3.153)

where T µν ≡ − 1√
−gδSm/δgµν . It seems that there are some interesting models, at least in

cosmology that need further investigation.

In addition to f(
◦
Q)-theories, there are two other interesting extensions of the STEGR

that it worth to mention in this Subsection [32].
It is possible to consider a function of every independent quadratic invariant form present
inside the non-metricity scalar, getting the most general f(Q) theory:

S =

∫
d4x
√
−gf(A, B, C, D, E) + Sm, (3.154)

where

A = QµναQ
µνα, B = QµναQ

νµα, C = QλQ
λ, D = Q̃σQ̃

σ, E = QρQ̃
ρ. (3.155)

Finally, similarly to the treatment of Scalar-Tensor theories, one can consider the pos-
sibility to include scalar fields [78, 79]. In particular, one can consider the action [32]

S =
1

2

∫
d4x
√
−g (Lg + L`) + Sm(gµν , ψ), (3.156)

where the gravitational Lagrangian density is given by

Lg = −A (φ)
◦
Q−B(φ)∂µφ∂

µφ− 2V (φ), (3.157)

the Lagrange multiplier terms are

L` = 2λ νρσ
µ R̄µ

νρσ + 2λ̃ µν
α Tαµν , (3.158)

and the matter action depends only on the metric and matter fields coupled on it.
When A = 1 and B = 0 = V the theory (3.156) reduces to STEGR.
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Chapter 4

Isometries, Conformal Transformations
and Weyl Rescaling

In physics, to understand a system, i.e. to solve a problem, the starting point is to analyze
the symmetries of the system under consideration. Symmetries help to examine and to
simplify physical problems that otherwise would be unsolvable. One of the main objects
of physics is metric tensor, particularly in GR. For this reason, physicists are interested in
the transformations which leave unchanged the metric, or “almost”. These transformations
are linked to diffeomorphisms on the spacetime and they identify an equivalence class of
frames and define a subgroup of diffeomorphisms.
In this Chapter, the attention is focused on the transformations called isometries and on
conformal transformations of the metric [50, 80]. Then the dissertation will be focused on
what is called Weyl rescaling, or Weyl transformation, or also conformal transformation of
metric. The interest for this argument turns around the research of conformally invariant
theories.

4.1 Isometries

Just to make the notation unambiguous, here some definitions are recalled.
Let (M, g) be a pseudo-Riemannian manifold, under a general coordinate transformation,
the components of metric tensor change in analogue way to any (0, 2)-type tensor:

g(p) = gµν(xp)dx
µdxν

= g̃µν(yp)dy
µdyν ,

gµν(xp) = g̃ρσ(yp)
∂yρ

∂xµ
∂yσ

∂xν
. (4.1)

Let f : M → M , {xµ}p → {yα}f(p) be a diffeomorphism, then it induces on vectors
and co-vectors the maps called respectively push-forward and pull-back, which act on the
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components of tensor like coordinate transformation. Let g ∈ F (M), V ∈ TpM and
ω ∈ T ∗f(p)M , then

f∗ : TpM → Tf(p)M, (f∗V )[g] ≡ V [g ◦ f ], Ṽ α
(
f(p)

)
= V µ(p)∂yα/∂xµ, (4.2)

f ∗ : T ∗f(p)M → T ∗pM, (f ∗ω)[V ] = ω[f∗V ], ω̃µ(p) = ωα
(
f(p)

)
∂yα/∂xµ. (4.3)

According to the notation used, it is possible to define an isometry as a diffeomorphism,
f : M →M which preserves the metric:

f ∗gf(p) = gp, (4.4)

or equivalently,

gf(p)(f∗X, f∗Y ) = gp(X, Y ) for X, Y ∈ TpM. (4.5)

Explicating the coordinate dependence, the condition (4.4) becomes

gµν(p) = gρσ
(
f(p)

)∂yρ
∂xµ

∂yσ

∂xν
, (4.6)

where {xµ} and {yν} are the local charts in p and f(p), respectively.
Easily, it is possible to observe that the set of all isometries forms a group [61]. From a
more practical point of view, the eq. (4.4) states that an isometry preserves the length of
a vector.
Let us consider an infinitesimal displacement, f : xµ 7→ xµ + εXµ , which preserves the
metric. Then, according to (4.6) it satisfies

∂(xρ + εXρ)

∂xµ
∂(xσ + εXσ)

∂xν
gρσ(x+ εX) = gµν(x). (4.7)

Expanding gρσ(x+ εX) with respect to x at the first order in ε, then what follow are the
Killing equations :

Xλ∂λgµν + gµλ∂νX
λ + gλν∂µX

λ = 0, (4.8)

and X is called Killing vector field, infinitesimal generator of the isometry. Taking into
account the eq. (2.68), Killing equations can be expressed in terms of the Lie derivative
of the metric tensor (

LXg
)
µν

= 0, (4.9)

where
(
LXg

)
µν

are the component of LXg. Moreover, as seen in Chapter 2, by using eq.s
(2.71) and (2.74), it is possible to rearrange the Lie derivative and then the eq. (4.9)
splits in the two alternatives form

∇µXν +∇νXµ = 0, (4.10)

∇̄µXν + ∇̄νXµ + 2(T λ
µ ν −Q λ

µ ν +
1

2
Qλ

µν))Xλ = 0, (4.11)
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where ∇ the Levi-Civita connection and ∇̄ a general connection.
As already mentioned, the Lie derivative LX( · ) can be seen as a directional derivative
along X direction if one uses the adapted frame to X. Then, from eq. (4.9) it follows that
the metric does not depend on X. To be more precise, the metric tensor is unchanged
along the integral curves of the vector field X, i.e. along the flow of X [61]. Moreover,
setting a parametrization of the integral curves, the flow ofX defines a 1-parameter group,
φt : M → M which generates the Killing vector field X [61]. This correspondence allows
to interpret eq. (4.9) as an invariance of the local geometry along φt.
A metric can have different Killing vectors fields. However the the maximum number of
linearly independent Killing vectors are limited by the dimension of the metric tensor [50].
To see that, it is necessary to consider the action of commutator of Levi-Civita connection
on Xσ,

∇µ∇νXρ −∇ν∇µXρ = −Rσ
ρµνXσ. (4.12)

Using the eq. (4.10), it reads

∇µ∇νXρ +∇ν∇ρXµ = −Rσ
ρµνXσ. (4.13)

Then, let us consider the following cyclic permutation of the eq. (4.13):

(+) ∇µ∇νXρ +∇ν∇ρXµ = −Rσ
ρµνXσ, (4.14)

(−) ∇ν∇ρXµ +∇ρ∇µXν = −Rσ
µνρXσ, (4.15)

(+) ∇ρ∇µXν +∇µ∇νXρ = −Rσ
νρµXσ. (4.16)

Summing these three permutation and using the first Bianchi identity, it provides

∇µ∇νXρ = Rσ
µνρXσ. (4.17)

This identity allows to define a second order Cauchy problem for Xµ, with n(n + 1)/2

initial conditions, by using the tensor Lµν ≡ ∇µXν [50]:
D

dλ
Lνρ = T µRσ

µνρXσ (4.18)

D

dλ
Xν = T µLµν (4.19)

Thus, the number of Killing vector fields for a metric gµν corresponds to the number
of possible linearly independent initial condition sets. A metric with n(n + 1)/2 Killing
vector fields is called maximally symmetric metric.

If gµν = ηµν , it is immediate to see {Xµ} satisfy the equation

∂µXν + ∂νXµ = 0. (4.20)

It easy to see that Xµ is, at most, of the first order in x, and the solutions are the
generators of Poincaré group [50, 61].
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4.2 Conformal Transformations

4.2 Conformal Transformations

Another interesting set of transformations is that of conformal transformations. These
transformations preserve the scalar product up to a scale, which implies that the angles
between the vectors are unchanged.
The formal definition of a conformal transformation is a diffeomorphism f : M →M such
that

f ∗gf(p) = e2ωgp ω ∈ F (M). (4.21)

In components, the condition (4.21) becomes

gρσ
(
f(p)

)∂yρ
∂xµ

∂yσ

∂xν
= e2ω(p)gµν(p). (4.22)

As for isometries, the set of conformal transformations is a group, called the conformal
group Conf(M). From eq. (4.22) it is possible to notice that the angle between two
vectors is preserved; in other words, a conformal transformation changes the scale but
not the shape:

cos θ =
gµνX

µY ν√
gρσXρXσgληY λY η

=
e2ωgµνX

µY ν√
e2ωgρσXρXσe2ωgληY λY η

= cos θ′. (4.23)

Therefore, the isometries can be viewed as a special case of conformal transformations,
with ω(p) = 0 ∀p ∈M .
If f : xµ 7→ xµ + εXµ, ε being infinitesimal, is a conformal transformation, according to
(4.22) it satisfies

∂(xρ + εXρ)

∂xµ
∂(xσ + εXσ)

∂xν
gρσ(x+ εX) = e2σgµν(x), (4.24)

where X is called conformal Killing vector field.
Making a first order expansion in ε with respect to x, then what follows is the conformal
Killing equation:

ε
[
Xλ∂λgµν + gµλ∂νX

λ + gλν∂µX
λ
]

= (1− e2ω)gµν , (4.25)

hence, (
LεXg

)
µν

= (1− e2ω)gµν . (4.26)

Now, multiplying both the sides by gµν , it results

(1− e2ω) =
ε

n

[
Xλgµν∂λgµν + 2∂λX

λ
]

(4.27)

where n = dimM . If gµν = ηµν , it is immediate to see {Xµ} satisfies the equation

∂µXν + ∂νXµ =
2

n
ηµν∂ ·X. (4.28)
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Multiplying by ∂µ∂λ and relabelling the indices, it follows[
ηµν� + (n− 2)∂µ∂ν

]
(∂ ·X) = 0, (4.29)

which is a “wave equation” for Killing conformal vector fields [61].
Due to the presence of third derivatives of X, the solution are quadratic in x, at most.
For n > 2, Xµ corresponds to the generators of SO(p + 1, q + 1), where p + q = n. In
particular, for n = 4 the solutions are the generators of the conformal group1 SO(2, 4):

• constant, translation, Xµ = aµ;

• linear proportional, scale transformation, Xµ = cxµ;

• linear, Lorentz transformation, Xµ = ωµνx
ν ;

• quadratic, conformal boost/special conformal transformation, Xµ = bµx2− 2xµb ·x.

Again, it is possible to see the isometries like a special case of conformal transformations,
as Poincaré group is a subgroup of the conformal one.
For n = 2, the conformal algebra is infinite-dimensional (even if SO(p+ 1, q+ 1) is again
obtained obtained by exponentiation). This algebra is called Witt algebra or, if there is
another object which commutates with every element of the algebra (central charge), it
is named Virasoro algebra (the unique central extension of the Witt algebra).

4.3 Weyl Rescalings

A Weyl Rescaling is a transformation of the metric tensor such that

gp → g̃p = e2ω(p)gp. (4.30)

The metric g̃ is said to be conformally related to g. Therefore, the eq. (4.30) defines an
equivalence relation among the set of metrics on a manifold M . The equivalence class is
called the conformal structure. The set of Weyl rescalings on M is a group denoted by
Weyl(M).
What is interesting is that a conformal transformation on a Lorentz manifold (M, g) pre-
serves the local light cone structure; therefore, if two metric manifold (M, g) and (M, g̃)

have identical causal structure, consequently g̃µν must be related to gµν by a Weyl rescal-
ing, and vice versa.

Often, saying “conformal transformations” physicists means what we here called here
Weyl rescalings. In the same way, most call “conformal isometries” what we here called

1The generators of the conformal group are Pµ = −i∂µ, Lµν = i(xµ∂ν − xν∂µ), D = −ixµ∂µ,
Kµ = −i(2xµxν∂ν − x2∂µ).
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4.3 Weyl Rescalings

here conformal transformations [50]. This sometimes makes some confusion about the
two transformations. The ambiguity is “broken” when the conformal transformation is
related to the metric, instead of coordinates. For this reason, in this Section no doubts
occur, as only transformations of the metric tensor are considered.
However, before proceeding with the analysis of the Weyl rescalings, it is necessary to
stress the difference that exists between them.
A Weyl rescaling is not a coordinate transformation on the spacetime; it is a physical
change of the metric, gµν(x) 7→ e2ω(x)gµν(x) which changes the proper distances at each
point by a local factor. It should be emphasized that a Weyl transformation is not, in
general, associated with a diffeomorphism of M [50].
This transformation is far from being a metric symmetry, as it stands, in fact the metric
and every objects connected to it change.
However, these transformations are taken into account due to the possibility that they
could represent a new symmetry of the Universe. Therefore, there is a great interest in
actions invariant under Weyl rescaling, which could give a more complete description of
gravity.

The first susceptible object to Weyl transformation is GR connection, ∇ → ∇̃; to
know how Christoffel symbols change it is enough to put the transformation gµν(x) 7→
g̃µν = e2ω(x)gµν(x) in the eq. (1.4). Then, it results

Γλµν → Γ̃λµν = Γλµν +
(
δλµ∂νω + δλν∂µω − gµν∂λω

)
= Γλµν + Lλµν . (4.31)

The additive term, Lλµν , can be seen as the disformation tensor with respect to the
original metric gµν . In this way, the nonmetricity tensor associated to Lλµν is

Qαµν = ∇̃αgµν = −Lναµ − Lµαν = −2gµν∂αω (4.32)
⇒ Qα = gµνQαµν = −2n∂αω (4.33)

⇒ Q̃µ = gανQαµν = −2∂µω ⇒ Q̃µ = Qµ/n. (4.34)

It is possible use equation (4.31) to compare the geodesic with respect to ∇ with those
with respect to ∇̃.
Let γ be an affinely parameterized geodesic with respect to ∇, with tangent vector T ,

γ : T µ∇µT
ν = 0. (4.35)

Then, it follows
T µ∇̃µT

ν = 2T νT µ∂µω − T λTλ∂νω. (4.36)

Thus, in general Weyl transformations does not preserve geodesics. However, in the case of
null geodesic, gµνT µT ν = T µTµ = 0, the equation (4.36) is just non-affinely parameterized
geodesic equation (1.14) with α = 2T µ∂µω. Taking into account (4.31) it is possible also
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4.3 Weyl Rescalings

to derive the Riemann and Ricci tensors transformation law using what we have seen in
Chapter 2:

R̃µ
νρσ = Rµ

νρσ − 2gν[σ∇ρ]∇µω + 2δµ[σ∇ρ]∇νω+

+ 2δµ[ρ∇σ]ω∇νω − 2gν[ρ∇σ]ω∇µω − 2∇λω∇λωδµ[ρgσ]ν ; (4.37)

R̃µν = Rµν − (n− 2)∇µ∇νω − gµν�ω + (n− 2)∇µω∇νω − (n− 2)gµν∇λω∇λω; (4.38)

R̃ = g̃µνR̃µν = e−2ω
[
R− 2(n− 1)�ω − (n− 1)(n− 2)∇λω∇λω

]
. (4.39)

where � = gµν∇µ∇ν , and ∂µω = ∇µω ([∇µ, ∇ν ]ω = 0).
If n > 3 it is possible to define the “trace-free part” of Riemann tensor, called Weyl tensor
which satisfies some key proprieties of the Riemann tensor:

Cµνρσ = Rµνρσ −
2

n− 2

(
gµ[ρRσ]ν − gν[ρRσ]µ

)
+

2

(n− 1)(n− 2)
Rgµ[ρgσ]ν . (4.40)

Now, using the above written transformation laws, it is possible to verify that the Weyl
tensor is unchanged by a conformal transformation of the metric, i.e.

C̃µ
νρσ = Cµ

νρσ. (4.41)

It is important to notice that the equality crucially depends on the index position, indeed

C̃µνρσ = g̃µλC̃
λ
νρσ = e2ωgµλC̃

λ
νρσ = e2ωCµνρσ (4.42)

The Weyl tensor associated to Levi-Civita connection has the following key proprieties:

i. Cµ
νρσ = −Cµ

νσρ;

ii. Cµ
[νρσ] = 0;

iii. Cµνρσ = −Cνµρσ;

iv. ∇λC
λ
νρσ = 2 (n−3)

n−2
∇[ρ

Å
Rσ]ν − R

2(n−1)
gσ]ν

ã
;

v. in vacuum, according to GR, Cµ
νρσ = Rµ

νρσ.

The property (iv) can be easily proved by using a contraction of the second Bianchi
identity: ∇λR

λ
νρσ = 2∇[ρRσ]ν .

At this point, it is interesting to consider the transformation of the quadratic contractions
of the curvature tensors (looking for what could be a “papabile” quadratic conformally
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4.3 Weyl Rescalings

invariant action):

(R̃µ
νρσ)2 = e−4ω

[
(Rµ

νρσ)2 + 8Rµν∇µω∇νω − 8Rµν∇µ∇νω − 4R(∇λω)2+

+ 4(n− 2)(∇µ∇νω)2 − 8(n− 2)(∇µ∇νω)(∇µω)(∇νω)+

+ 8(n− 2)(�ω)(∇λω)2 + 2(n− 2)(n− 1)(∇λω)4 + 4(�ω)2
]
, (4.43)

(R̃µν)
2 = e−4ω

[
(Rµν)

2 − 2(n− 2)Rµν∇µ∇νω + 2(n− 2)Rµν∇µω∇νω+

− 2R�ω − 2(n− 2)R(∇λω)2 + (3n− 4)(�ω)2+

+ (n− 1)(n− 2)2(∇λω)4 + (n− 2)2(∇µ∇νω)2+

− 2(n− 2)2(∇µ∇νω)(∇µω)(∇νω) + 2(n− 2)(2n− 3)(�ω)(∇λω)2
]
, (4.44)

R̃2 = e−4ω
[
R− 2(n− 1)�ω − (n− 1)(n− 2)∇λω∇λω

]2
, (4.45)

then, from the invariance of the Weyl tensor, we have

(C̃µ
νρσ)2 = e−4ω(Cµ

νρσ)2, (4.46)

(Cµ
νρσ)2 = (Rµ

νρσ)2 − 4

n− 2
(Rµν)

2 +
2

(n− 1)(n− 2)
R2. (4.47)

For reasons that will be clear later, it is interesting to observe the transformation law
of the following quadratic term:

G = (Rµ
νρσ)2 − 4(Rµν)

2 +R2, (4.48)

G̃ = e−4ω
[
G − 8(n− 3)Rµν∇µω∇νω + 8(n− 3)Rµν∇µ∇νω+

− 2(n− 3)(n− 4)R(∇λω)2 − 4(n− 3)R�ω + 4(n− 3)(n− 2)(�ω)2+

+ 8(n− 2)(n− 3)(∇µ∇νω)(∇µω)(∇νω)− 4(n− 2)(n− 3)(∇µ∇νω)2

+ 4(n− 2)(n− 3)2(�ω)(∇λω)2 + (n− 1)(n− 2)(n− 3)(n− 4)(∇λω)4
]
. (4.49)

For the specific case of a 4-dimensional manifold, G transforms as

G̃ =e−4ω
[
G − 8Rµν∇µω∇νω + 8Rµν∇µ∇νω − 4R�ω+

+ 8(�ω)2 + 16(∇µ∇νω)(∇µω)(∇νω)− 8(∇µ∇νω)2 + 8(�ω)(∇λω)2
]
. (4.50)

All these terms emerge frequently as quantum corrections to GR, in particular in the
frameworks of semiclassical approach to gravity and in string theory [81].

4.3.1 Conformal Invariance

An equation for a field ψ is said to be conformally invariant (with respect to Weyl) if
there exists a number s ∈ R (called the conformal weight of the field) such that ψ is a
solution with metric gµν iff ψ̃ = esωψ is a solution with the metric g̃µν = e2ωgµν .
The two traditional examples of conformally invariant equations are the generalization of
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4.3 Weyl Rescalings

massless Klein-Gordon scalar field and the electromagnetic field.

Let φ be a scalar field, solution of generalised Laplace’s equation in a curved spacetime:

gµν∇µ∇νφ = 0. (4.51)

It is easy show the above equation can be conformally invariant only for n = 2 choosing
s = 0:

g̃µν∇̃µ∇̃νφ̃ = e−2ωgµν∇̃µ(∇νe
sωφ) =

= e−2ωgµν
[
∇µ∇ν(e

sωφ)− Lλµν∇λ(e
sωφ)

]
=

= e−2ωgµν [∇µ(esωs∇νωφ+ esω∇νφ)− sesωφLλµν∇λω − esωLλµν∇λφ
]

=

= e(s−2)ωgµν [s2∇µω∇νωφ+ s∇µ∇νωφ+ 2s∇µω∇νφ+∇µ∇νφ+

− sφ
(
2δλµ∇νω − gµν∇λω

)
∇λω −

(
2δλµ∇νω − gµν∇λω

)
∇λφ

]
=

= e(s−2)ωgµν∇µ∇νφ+

+ e(s−2)ω
[
sφ�ω + sφ(n− 2 + s)∇λω∇λω + (n− 2 + 2s)∇λω∇λφ

]
, (4.52)

noting that ∇̃µφ = ∂µφ = ∇µφ. Thus, if n = 2 it is possible to choose s = 0, then
g̃µν∇̃µ∇̃νφ̃ = 0 iff gµν∇µ∇νφ = 0; if n 6= 2, there is no choice of s that makes conformally
invariant the equation. However, it is possible to modify the eq. (4.51) for n > 1,
so that it becomes conformally invariant: choosing s = 1 − n/2 and adding αRφ with
α = −(n− 2)/4(n− 1), namely

gµν∇µ∇νφ−
(n− 2)

4(n− 1)
Rφ = 0, (4.53)

then

− (n− 2)

4(n− 1)
R̃e(s−2)ωφ = − (n− 2)

4(n− 1)
e(s−2)ω

[
R− 2(n− 1)�ω − (n− 1)(n− 2)∇λω∇λω

]
φ =

= e(s−2)
[
− (n− 2)

4(n− 1)
Rφ− sφ�ω + s2φ∇λω∇λω

]
. (4.54)

The equation (4.53) is the conformally invariant generalization to curved spaces of the
Laplace and Klein-Gordon equation in flat spaces.

Unlike the scalar field φ, the Maxwell equations are conformally invariant only in n = 4

assuming a conformal weight s = 0:

gµλ∇λFµν = 0→ g̃µλ∇λF̃µν = e−2ωgµλ∇̃λ(e
sωFµν) =

= e(s−2)ωgµλ
[
∇λFµν − Lρ λµFρσ − L

ρ
λνFµρ + sFµν∇λω

]
= e(s−2)ωgµλ

[
∇λFµν + (n− 4 + s)Fµν∇λω

]
; (4.55)

∇[λFµν] = 0→ ∇̃[λ(e
sωFµν]) = esω

[
∇[λFµν] + sF[µν∇λ]ω

]
. (4.56)
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Moreover, it is easy to note that the Einstein tensor is not invariant under Weyl trans-
formations and this has the consequence that Einstein’s field equations are not conformally
invariant. There are only two exceptions: the energy-momentum tensor transforms so as
to counter the anomalous transformation of the Einstein tensor, or the case in which
the conformal transformation is an isometry of the metric, acting as diffeomorphism and
leaving all tensor equations invariant.
On the other hand, it is necessary to observe that the energy-momentum tensor conserva-
tion ∇µT

µν = 0 is conformally invariant only under special restrictions. To show that, let
us evaluate the covariant derivative of the conformally transformed Energy-Momentum
tensor:

∇̃µ(esωT µν) = esω
[
∇µT

µν + LµµλT
λν + Lν µλT

µλ + sT µν∇µω
]

=

= esω
[
∇µT

µν + (n+ 2 + s)∇µωT
µν − T∇νω

]
=

= esω
[
∇µT

µν +
(
(n+ 2 + s)T µν − Tgµν

)
∇µω

]
, (4.57)

where T = gµνT
µν . Thus, the conservation of energy-momentum tensor is conformally

invariant iff T = 0 and s = −n− 2, or conversely, if T µν = Tgµν/(n + 2 + s) ⇒ s = −2.
This problem can be possibly overcame by introducing the cosmological constant (asking
for a peculiar transformation law for Λgµν).
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Chapter 5

Classical Conformally Invariant Gravity

With the aim to unify GR and electromagnetism, Weyl replaced the geometrical view of
GR with a formalism such that the electromagnetic field plays a geometric role. In this
way the equations of motions are invariant under a gauge/conformal transformations.
Weyl received the biggest criticism from Einstein: he believed that it was unacceptable
that Weyl’s covariant derivative did not preserve the metric and, as a consequence, the
lengths of parallel transported vectors.
However, Weyl’s work led to think conformal invariance as a more general physical sym-
metry, a fundamental symmetry of spacetime. Over time, the accumulation of studies and
works has pushed more and more towards this direction, and here are some of them:

• the analysis of Maxwell’s equations which are invariant both under the Lorentz
group and under the conformal group (only for n=4), together with invariance of
the causal structure under conformal transformations;

• the I.E. Segal’s observation about the conformal group that does not result as a
limit of other Lie algebra, while the Galilei group is a limiting case of the Poincaré
group, and the Poincaré group comes from a contraction of the conformal group
[82];

• the Penrose’s conformal treatment of infinity which shows how to use a conformal
transformation to “compactify” an infinite spacetime to a finite region [83];

• the development of the Conformal Field Theory;
• the link between the conformal invariance in a flat spacetime and the invariance
under Weyl rescaling in a curved spacetime;

• the Hawking’s study of a new topology of curved space–time which incorporates the
causal, differential, and conformal structures [84];

These are just some of the steps taken in the search for a theory based on the invariance
under conformal transformations. Therefore, the interest in conformal invariance was fu-
eled by different ideas and characters from the world of physics.
Moreover, the study of conformal invariance can foster progress, not only in classical
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gravitation, but can open new roads to quantum theories of gravity. In this regard, a
conformal theory could give a mass scaling law for high-energy (ultrarelativistic) systems.
Because of the dimensionless of coupling constants [85], a conformal field theory could be
the right renormalizable theory. Moreover, a conformal quantum theory of gravity could
bypass any singularities and/or horizons, pushing them onto infinity in particular classes
of coordinates systems [86]. Additionally, new conformally invariant actions could have
interesting counterpart in String Theory and in the AdS/CFT correspondence (acronym
of “Anti-de Sitter/Conformal Field Theory”). Finally, conformal invariance could be the
theoretical constraint which is necessary to compensate for the lack of experimental evi-
dences in quantum gravity domain.
On the other hand, a conformal theory of gravity has two main problems: the presence
of the massive particles in the Universe which breaks the conformal symmetry and the
conformal anomaly, namely the difficulty in preserving conformal symmetry in the quan-
tization process (the correction can give a non-null trace of the energy-momentum tensor).

However, under the assumption that GR and the SM are only low-energy approx-
imations of a “more fundamental theory”, a legitimate suspicion is that the conformal
symmetry characterizes this “more fundamental theory”. Its spontaneous breaking could
produce the today observed phenomenology, in accordance with GR and SM. Obviously
the breaking of symmetry can take place in different ways and give rises to different phe-
nomena (in presence of anisotropies and/or non-homogeneities). This argument could be
linked to the disparity between matter and anti-matter and the observations associated
with the presence of DE and DM.

In this Chapter, two important classical theories of conformal gravity will be quickly
developed. They preserve the “pleasant” characteristics necessary in a theory of gravity1:
scalar-tensor Weyl gauge gravity and squared-Weyl tensor gravity.

5.1 Weyl’s Conformally Invariant Geometry

Starting from GR, Weyl defined a covariant derivative under conformal transformation of
metric, using the so called Weyl vector 2, which transforms like a gauge potential under

1Gravity as covariant metric theory in which the metric describes the gravitational field (EEP) and
the geometry in the proximity of the Sun is given by the Schwarzschild metric. The differences are the
way in which the immediate presence of mass-energy in some region influences the gravitational field.

2This nomenclature is a little bit improper; it would be better to call it Weyl covector Wµ, because
the definition of the Weyl vector is from its “covariant” components, i.e. Wµ = gµνW

ν , in analogy with
the e.m. potential field Aµ, associated to the 1-form A = Aµdx

µ.
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Weyl rescaling:

Γ̃λµν = Γλµν +
(
gµνW

λ − δλµWν − δλνWµ

)
= Γλµν + Lλµν ; (5.1)

Qαµν = ∇̃gµν = 2Wαgµν . (5.2)

Then, under conformal rescaling

gµν → g′µν = e2ωgµν (5.3)
Wµ → W ′

µ = Wµ + ∂µω (5.4)

the connection coefficients are unchanged, due to δΓ = −δL, while nonmetricity changes
covariantly

Γ̃′
λ

µν → Γ̃λµν , ∇̃αg
′
µν = 2W ′

αg
′
µν . (5.5)

Weyl vector, similarly to electromagnetic potential, is not trivial, i.e. it is not an exact
differential form Wµ 6= ∂µf .
However, if W = Wµdx

µ is an exact differential form (pure gauge case), it is possible to
perform a conformal transformation on the metric such that W ′

µ = 0, by means of the
choice ω = −f ; then ∇̃ turns out to be the Levi-Civita connection associated to e−2fgµν .
If the Weyl vector is a closed form, i.e. W : dW = 0, then ∂[µWν] = 0 ⇒ ∇[µWν] =

∇̃[µWν] = 0, for the Poincaré lemma W is locally exact on any contractible domain.
Therefore, ∇̃ can be locally metric-compatible but two observers in different simply con-
nected neighbourhoods disagree on the form of such a metric and the two metrics turn
out to be conformally related. Moreover, in this case W can be related to the metric
itself as ∇(µWν) ∝ gµν and if ∇(µWν) = 1/n

[
W λ∂λ ln |g|+ 2∂λW

λ
]
gµν ; the Weyl’s connec-

tion can be transformed in the Levi-Civita one by performing an infinitesimal conformal
transformation.
Using the relations obtained in Chapter 2, it is possible to get the expression of the
Riemann tensor associated to the covariant Weyl connection:

R̃[µν]
ρσ = R[µν]

ρσ + 4δ
[µ
[ρ∇σ]W

ν] + 4δ
[µ
[ρWσ]W

ν] − 2W 2δµ[ρδ
ν
σ]; (5.6)

R̃(µν)
ρσ = −2gµν∇[ρWσ] = −2gµνWρσ; (5.7)

R̃(µν) = Rµν + (n− 2)∇(µWν) + (n− 2)WµWν + gµν
(
∇λW

λ − (n− 2)W 2
)
; (5.8)

R̃[µν] = −n∇[µWν] = −nWµν ; (5.9)

R̃ = R− (n− 1)(n− 2)W 2 + 2(n− 1)∇λW
λ; (5.10)

where Wµν = ∇[µWν] = ∂[µWν] is proportional to the homothetic curvature. Note the
consistency with the equations (4.37), (4.38) and (4.39), substituting Wµ = −∇µω.

While Riemann and Ricci tensors end up being unchanged under Weyl rescaling (due to
the conformal invariance of the connection), the curvature scalar changes in the following
way

R̃ = gµνR̃µν → R̃′ = e−2ωR̃. (5.11)
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This shows that the Weyl connection is not sufficient to get a conformally invariant ver-
sion of E-H action, because under conformal transformation of metric

√
−g → enω

√
−g.

Strictly thinking to the electromagnetic potential, for n = 4,the only way to have covari-
antly invariant action is to consider quadratic terms in curvature.

5.2 Scalar-Tensor Weyl Gauge Gravity

A different approach is to consider a scalar-tensor theory of gravity, introducing a field φ
of conformal weight 1− n/2 and coupling it quadratically to the curvature [24, 27, 29]:

S =

∫
dnx
√
−g
(
R̃φ2

)
. (5.12)

It is useful to explicit the form of R̃:

S =

∫
dnx
√
−g
[
Rφ2 +

(
− (n− 1)(n− 2)W 2 + 2(n− 1)∇λW

λ
)
φ2
]
. (5.13)

Varying with respect to Wµ it is easy to derive its equations of motion,

Wµ = − 2

n− 2

∂µφ

φ
, (5.14)

which obviously is conformally invariant. This equation says that the Weyl vector field is
exact in this theory. Hence, varying the action (5.13) with respect to metric we get the
field equations,

Gµν =
1

φ2

ï
− gµν�φ2 +∇µ∇νφ

2 + (n− 1)(n− 2)WµWνφ
2+

− (n− 1)
(
φ∇λW

λ + 2φW λ∇λφ
)
gµν + 4(n− 1)φW(µ∇ν)φ

− φ2

2
(n− 1)(n− 2)W 2gµν + (n− 1)∇λW

λφ2gµν

ò
. (5.15)

Now, substituting the equations of motion of Wµ inside the field equations, it is possible
to cancel out the contribution of the Weyl vector,

Gµν =
1

F (φ)

ï
∇µ∇νF (φ)− gµν�F (φ)− 1

2
∇µφ∇νφ+

1

4
gµν∇ρφ∇ρφ

ò
, (5.16)

where
F (φ) =

n− 2

8(n− 1)
φ2. (5.17)

Therefore, the action (5.12) is equivalent to the Brans-Dicke action (1.33). The same
result is achieved if, starting from E-H action, the following conformal transformation is
performed

gµν → φ2gµν . (5.18)
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Then, using the equation (4.39), it results

S =

∫
dnx
√
−gR→

∫
dnx
√
−gφn−2

ï
R− n− 1

φ2

(
(n− 4)∇µφ∇µφ+ 2φ�φ

)ò
(5.19)

'
∫
dnx
√
−g
ï
φn−2R + (n− 1)(n− 2)φn−4∇µφ∇µφ

ò
, (5.20)

which, after the redefinition of the scalar field φ→ φ2/(n−2), turns out to be proportional
to (1.33). Then, the action exactly coincide with the one in (1.33), if we consider the
transformation φ → φ

√
(n−2)
8(n−1)

. However, the issue of any conformally invariant theory
is to explain the appearance of a mass. Even in this case, the conservation of energy-
momentum tensor leads to a matter source with T = 0, as seen in the previous Chapter.
Considering the field equations with energy–momentum tensor and the equations of mo-
tion associated to the scalar field φ,

Gµν =
Tµν
F (φ)

+
T

(φ)
µν

F (φ)
(5.21)

�φ− (n− 2)

4(n− 1)
Rφ = 0 (5.22)

(where F (φ) = φ2(n − 2)/8(n − 1) and T
(φ)
µν =

[
∇µ∇νF (φ) − gµν�F (φ) − 1

2
∇µφ∇νφ +

1
4
gµν∇ρφ∇ρφ

]
) and taking the trace, it results

2− n
2

R =
T

F (φ)
− n− 2

2
R ⇒ T = 0. (5.23)

This result holds in all dimension (and not just for n = 4).
Therefore, the theory requires some modifications to overcome the problem of energy-
momentum tensor null trace. However, any modification causes conformal symmetry
breaking. A simple example is the addition of a massive therm for the scalar field,
mφ2/2 ⇒ T ∝ −m2φ2 which allows to eliminate φ from the theory.

58



5.3 Weyl-Squared Theory

5.3 Weyl-Squared Theory

To find a conformally invariant action of gravity, the natural suggestion would be to con-
sider an action made of squares of the Weyl tensor (4.40), which is conformally invariant,
as seen in the previous Chapter. From the joint work of Rudolf Bach and Hermann Weyl,
we known that there exists a unique conformally invariant action constructed from the
Weyl tensor in four dimensions, the Weyl-Squared action:

S =

∫
d4x
√
−gCµνρσCµνρσ, (5.24)

where
CµνρσC

µνρσ = RµνρσR
µνρσ − 4

n− 2
RµνR

µν +
2

(n− 2)(n− 1)
R2. (5.25)

For n = 4,

Cµνρσ = Rµνρσ −
(
gµ[ρRσ]ν − gν[ρRσ]µ

)
+

1

3
Rgµ[ρgσ]ν , (5.26)

CµνρσC
µνρσ = RµνρσR

µνρσ − 2RµνR
µν +

1

3
R2. (5.27)

Equations of motion associated to the action (5.24) are called Bach equation.
It can be obtained with the help of the usual relations, here reported in a more practical
form,

δgρσ = −gρµgσνδgµν , (5.28)

δ
√
−g = −1

2

√
−ggµνδgµν , (5.29)

δΓλµν =
1

2
gλρ
(
∇µδgρν +∇νδgρµ −∇ρδgµν

)
, (5.30)

δRµ
νρσ = ∇ρδΓ

µ
σν −∇σδΓ

µ
ρν , (5.31)

δRµν = ∇ρ∇(µδgν)ρ −
1

2
∇ρ∇ρδgµν −

1

2
gρσ∇(µ∇ν)δgρσ, (5.32)

δR = Rµνδg
µν −∇µ∇νδg

µν + gµν∇ρ∇ρδgµν , (5.33)
δ(Rµ

νρσR
νρσ

µ ) = 4R(µ|ρ|ν)σ∇σ∇ρδgµν + 2Rα
βλµR

βλ
α νδg

µν , (5.34)
δ(Ric2) = Rµν∇ρ∇ρδg

µν +Rρσgµν∇ρ∇σδg
µν − 2Rρ(µ∇ν)∇ρδgµν + 2RµρR

ρ
νδg

µν , (5.35)
δ(R2) = 2RRµνδg

µν − 2R∇(µ∇ν)δg
µν + 2Rgµν∇ρ∇ρδg

µν , (5.36)
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together with the Bianchi identities and their derivatives/contractions,

∇λR
λ
µ =

1

2
∇µR, (5.37)

∇µ∇νR
µν =

1

2
�R, (5.38)

∇µR
µ
νρσ = ∇ρRνσ −∇σRνρ, (5.39)

∇ρ∇σRµρνσ = �Rµν −
1

2
∇µ∇νR +RµρνσR

ρσ −RµρR
ρ
ν . (5.40)

To be more general, instead of calculating the field equations associated with (5.24), let
us consider the following Lagrangian

L =
√
−g
Å
aRµνρσR

µνρσ + bRµνR
µν + cR2

ã
. (5.41)

The eq. (5.41) represent a 3-parameter Lagrangian family3. It provides back the Weyl-
Squared scalar if the coefficients are set as (a = 1, b = −2, c = 1/3). The field equations
of ((5.41) have the form:

− 1

2
gµν
(
aRαβρσR

αβρσ + bRρσR
ρσ + cR2

)
+

+ 4aRµρνσR
ρσ + 2aRα

βλµR
βλ

α ν − 2b∇ρ∇(µRν)ρ + 2cRRµν + (−4a+ 2b)RµρR
ρ
ν+

+ (4a+ b)�Rµν + (−2a− 2c)∇µ∇νR +

Å
1

2
b+ 2c

ã
�Rgµν = 0. (5.42)

Then, substituting (a = 1, b = −2, c = 1/3), Bach equations turn out to be

− 1

2
gµν
(
RµνρσR

µνρσ − 2RµνR
µν +

1

3
R2
)
+

+ 4RµρνσR
ρσ + 2Rα

βλµR
βλ

α ν + 4∇ρ∇(µRν)ρ +
2

3
RRµν+

− 8RµρR
ρ
ν + 2�Rµν −

8

3
∇µ∇νR−

1

3
�Rgµν = 0. (5.43)

However, eq. (5.43) is not the final form of the Bach equation. To archive it, we need
to introduce the Gauss-Bonnet Lagrangian [24, 52, 88–90], which belongs to the three-
parameters family of (5.41):

LGB =
√
−g
Å
RµνρσR

µνρσ − 4RµνR
µν +R2

ã
. (5.44)

3The generic quadratic Lagrangian (5.24) was, and still is, an interesting subject of study.It worth
mentioning K.S. Stelle’s work. In [87], he shows that actions including quadratic terms in the curvature
tensor are renormalizable in Quantum Gravity.
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The peculiarity of this Lagrangian is that the corresponding action is a topological term
which can be written as a divergence (boundary term); this term is called Gauss-Bonnet
(or Chern-Gauss-Bonnet) term

SGB =

∫
d4
√
−g
Å
RµνρσR

µνρσ − 4RµνR
µν +R2

ã
. (5.45)

The equation (5.45) is an application, for n = 4 of the Chern–Gauss–Bonnet (CGB)
theorem [91]. It states that the Euler characteristic4 of a closed5 oriented even-dimensional
Riemannian manifold is equal to the integral of a certain polynomial of its curvature.
It is a direct generalization of the Gauss–Bonnet theorem (for 2n surfaces) to higher
dimensions and was first published by Shiing-Shen Chern, connecting global topology
with local geometry6.
It is easy to verify that the action (5.45) is invariant under conformal rescaling of the
metric ( more precisely, it acquires an additive boundary term); indeed, as seen in the
last Chapter,

SGB → S̃GB =

∫
d4x
√
−g
Å
RµνρσR

µνρσ − 4RµνR
µν +R2

ã
+

+

∫
d4x
√
−g
[
− 8Rµν∇µω∇νω

::::::::::::::
+ 8Rµν∇µ∇νω − 4R�ω+

+ 8(�ω)2

:::::::
+ 16(∇µ∇νω)(∇µω)(∇νω)− 8(∇µ∇νω)2

:::::::::::
+ 8(�ω)(∇λω)2],

(5.46)

where the second integral can be deleted, unless boundary terms, using both the contracted
Bianchi identity and the following relations

2(∇µ∇νω)(∇µω)(∇νω) ' −(�ω)(∇λω)2, (5.47)
(∇µ∇νω)2 ' (�ω)2 −Rµν∇µω∇νω. (5.48)

Requiring the variation of (5.45) to be null, a new topological (and dimensional-dependent)
equation is obtained7:

4RµρνσR
ρσ + 2Rα

βλµR
βλ

α ν + 8∇ρ∇(µRν)ρ + 2RRµν − 12RµρR
ρ
ν+

− 1

2
gµν
(
RαβρσR

αβρσ − 4RρσR
ρσ +R2

)
= 0. (5.49)

4Euler characteristic is a topological invariant number number that describes a topological space [61].
5The hypothesis of closed manifold is strong. It can be considered true for spacetime using Penrose’s

argumentations of conformal treatment of infinity [83]; moreover there are a lots of works that aim to
enlarge the validity hypotheses of CGB theorem [92, 93].

6Here, the term Gauss-Bonnet terms is simply considered a boundary term for the variety that
describes the spacetime.

7Here, one can just replace the parameters (a = 1, b = −4, c = 1) inside the generic field equations
(5.42).
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Given that the introduction of the Gauss-Bonnet term into the action does not provide
any new contribution to the field equations, it is possible to define a new conformally
invariant quadratic action which does not contain the squared Riemann tensor:

S = 2

∫
d4x
√
−g
Å
RµνR

µν − 1

3
R2

ã
. (5.50)

By extremizing the action (5.50), we get the “new version” of the Bach equation,

2∇ρ∇(µRν)ρ +
2

3
RRµν − 2RµρR

ρ
ν −�Rµν −

2

3
∇µ∇νR +

1

6
�Rgµν+

+
1

2
gµν
(
RρσR

ρσ − 1

3
R2
)

= 0. (5.51)

Moreover, the equation (5.51) can be written in a more compact form using the Weyl
tensor,

2∇σ∇ρC
µρσν +RσρC

µρσν = 0. (5.52)

Indeed:

∇ρC
ρµνσ = ∇[ν

(
Rσ]µ − 1

6
gσ]µR

)
, (5.53)

2∇σ∇ρC
ρµνσ = −�Rµν +∇σ∇νRµσ +

1

6
�Rgµν − 1

6
∇µ∇νR, (5.54)

RρσC
ρµνσ = RρσR

ρµνσ

:::::::::
−RµρR ν

ρ +
2

3
RRµν +

1

2
gµνRρσR

ρσ − 1

6
R2gµν , (5.55)

RρσR
ρµνσ

:::::::::
= ∇σ∇µRν

σ −
1

2
∇µ∇νR−RρµRν

ρ. (5.56)

With the definition of the Bach tensor

Bµν ≡ 2∇σ∇ρCµρνσ +RσρCµρνσ, (5.57)

the eq. (5.52) in presence of matter becomes

Bµν = κTµν . (5.58)

Bµν is conformally invariant, with conformal weight−2, and divergence-free. The equation
(5.58) is the final form of the Bach equation. Again, the trace of the equation vanishes,
as usual in a conformal theory.
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5.3.1 Schwarzschild-like Solution of the Bach Equation

In developing any alternative theory to GR, what is always taken into account is the need
to find the Schwarzschild solution, at least as a limit of something remarkably close to it.
This is because, to date, it is the metric that describes more precisely the geometry of
the spaces in proximity of the Sun8.
In GR, Schwarzschild solution comes from the vacuum Einstein field equations, Rµν = 0.
A possible approach to get the solution is to start from a general spherically symmetric
metric [3],

ds2 = −A(r, t)dt2 +B(r, t)dr2 + r2dΩ2, (5.59)

calculate the components of the Ricci tensor and impose Rµν = 0. Proceeding in this way,
Birkoff’s theorem is automatically demonstrated: any spherically symmetric solution do
the vacuum field equations must be static9 and asymptotically flat.
The Schwarzschild solution reads

ds2 = −A(r)dt2 +
1

A(r)
dr2 + r2dΩ2, (5.60)

where
A(r) = c2

Å
1− rS

r

ã
with rS =

2GM

c2
. (5.61)

The Bach equations (5.52) is quite far from Rµν = 0. However, since eq. (5.51) de-
pends only on the Ricci tensor, its contraction and derivative, Bµν = 0 admits the
Schwarzschild solutions. Obviously, this is not enough to say that the Bach equation
admits the Schwarzschild metric as the only spherically symmetric solution, because of
the lack of a generalized version Birkhoff’s theorem for higher-derivative theories10 (a
study that takes into account contractions of Weyl tensor and its linear combinations is
for example [94]).
It is possible, however, to consider a general static, spherically symmetric metric, and to
determinate the form of the functions such that the Bach equations are satisfied. This is
the approach used by Mannheim and Kazanas [95]: a general static, spherically symmetric
metric

ds2 = −a(ρ)dt2 + b(ρ)dρ2 + ρ2dΩ2 (5.62)
8The Sun is approximated to a non-rotating spherical source.
9It may be useful to recall the difference between stationary spacetime and static spacetime. A

gravitational field is stationary if admit a time-like Killing vector, i.e. ξ : Lξg = 0 and g(ξ, ξ) < 0;
therefore, it is possible to consider the adapted frame to ξ = ∂t and, as consequence, metric tensor
components are independent of time. A gravitational field is static if it is stationary and admits a foliation
of space-like hypersurfaces orthogonal to ξ; namely, there exists a frame such that the components g0i = 0.

10The lack of a generalized version Birkhoff’s theorem means that there are spherically symmetric
solutions of the Bach’s equations which are not related to the Schwarzschild solution by a transformation
of coordinates. Therefore, the request of static and spherical symmetry metric constraints to a specific
class of solution. This allows to obtain a Schwarzschild.like solution.
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can be written as

ds2 =
p(r)2

r2

ï
− A(r)dt2 +B(r)dr2 + r2dΩ2

ò
, (5.63)

under the general coordinate transformation

ρ = p(r), A(r) =
r2a(r)

p(r)2
, B(r) =

r2b(r)p′2(r)

p(r)
. (5.64)

Choosing the arbitrary function p(r) such that

− 1

p(r)
=

∫
dr

r2[a(r)b(r)]1/2
(5.65)

then it results
ds2 =

p(r)2

r2

ï
− A(r)dt2 +

1

A(r)
dr2 + r2dΩ2

ò
. (5.66)

The metric (5.66) is conformally related to a Schwarzschild-like solution, by the identi-
fication e2ω = p(r)2/r2. Therefore, from the invariance of the theory under conformal
transformations, it is possible to consider the line element of the eq. (5.60) with a generic
function11 A(r).
In order to find the function A(r), we need to proceed in the calculation of the Bach
tensor components and imposing Bµν = 0. From [95], it turns out that

A(r) = 1− β(2− 3βγ)

r
− 3βγ + γr − κr2, (5.67)

where β, γ and κ are constants of integration.
The eq. (5.67) defines the functional form of A(r) such that the Bach equations are
satisfied by a Schwarzschild-like metric. By playing with the constants of integration, it
is possible to observe that:

• If γ = 0 = κ and β > 0, the metric is the Schwarzschild solution (and provides the
asymptotic flatness).

• if γ = 0 = β and κ > 0, the metric is the de Sitter solution. In the Einstein theory
we have this solution only in presence of a cosmological constant. Here, it is possible
to have the de Sitter solution without involving a cosmological constant.

• If γ = 0, κ > 0 and β > 0, the metric is the de Sitter–Schwarzschild solution.
11The conditions of static and spherically symmetric solution lead to a Schwarzschild-like solution by

using a coordinate transformation and the invariance under Weyl rescaling of Bach equation. Therefore,
we find only a particular class of spherically symmetric solution which is “spanned” by any possible Weyl
rescaling and coordinate transformation.

64



5.3 Weyl-Squared Theory

• If β, γ, κ are positive, then we can have a solution with a Newtonian ∝ 1/r term
which should dominate at small distances, a term ∝ r which becomes the more
dominant one at larger distances and a term ∝ r2 which should become important
at cosmological distances (working as cosmological constant).

Moreover, it is interesting to analize the case where κ = 0 and γ → 0, i.e. γ is a really
small number with respect to the cosmological distance. In this case, the function (5.67)
can be approximated as

A(r) = 1− 2β

r
+ γr, (5.68)

requiring 2β/r >> γr ⇒ r <<
√

2β/γ. Therefore, it is possible to choose γ small enough,
so that the solution of Bach equations is sufficiently in agreement with the GR regime
and, moreover, γ can explain anomalies galactic rotation curves12 without DM [96].
Unfortunately, by choosing a value of γ high enough to explain galactic rotation curves,
several problems arise: the solution provides excessive non-Newtonian perturbations in
the motions of the local galactic group, which are not observed [97]; the theory does
not reduce to Newtonian gravity, but to some fourth-order theory in the weak-field limit
[52, 98], and much of our intuition about Newton gravity is lost (some deviations are
measurable in the lab); the β and γ disagree with any interior solution which obeys the
weak energy condition; the temperature profile in primordial nucleosynthesis does not
provides the observed elemental abundances.
Other interesting details, with relative references, about the solution of Bach’s equation
are reported in [52]. A more recent discussion about the explanation of flat galactic
rotation curves by using Weyl’s action is present in [99].

In conclusion, these are criticisms about this solution but the study of the Weyl-
squared theory is still open.

12The velocity of orbiting objects should decrease as the distance from the potential center increases.
From experimental observations, it results that galactic rotation curves remain flat as one approaches the
“edge” of galaxies: the orbital velocity does not decline with distance, it remain unchanged or sometimes
it increase. This means that there should exist other matter, besides that associated with luminosity.
Therefore, the mysterious and invisible massive contribution is called dark matter, which does not interact
with baryonic matter, or rather, it only interacts gravitationally [5].
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Chapter 6

Palatini Formalism and Conformal
Frames

The link between conformal transformations and theories with non-metric connections
emerges continuously [24, 27, 29, 100]. In Chapters 5, we showed how the Weyl’s geom-
etry coupled to a non-dynamic scalar field, reproduces a particular case of scalar-tensor
theory.
Deepening Palatini’s method, it is possible to see how the presence of a symmetric but
not metric-compatible connection provides a link between different theories. For specific
scalar potentials, f(R)-theories and the scalar-tensor theories are related by a conformal
transformation in vacuum.
This leads to think that there may be a kind of “physical equivalence” among theories
which can be obtained by performing a conformal transformation.
Historically, this issue was born with the Brands-Dicke action which shows two faces:
Jordan frame and Einstein frame. They are linked by a conformal transformation and,
in absence of a specific transformation law of the matter Lagrangian, their equivalence
produces a violation of the EEP.

Following what is done in [27], the aim of this Chapter is to show the links between
theories that are, a priori, completely different. Therefore, we want to stimulate the idea
that there may be a formalism that includes Weyl connection, f(R)-theories and Scalar-
Tensor theories. In this context, it would be interesting to find a mechanism that breaks
the equivalence and produces the differences between the three approaches.

6.1 The Palatini Formalism

As mentioned in Chapter 2, the Palatini formalism is based on the independence between
the (usually torsion-free) connection Γλµν and the metric tensor gµν . As consequence,
the Riemann tensor and the Ricci tensor depend only on the connection. Despite the
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presence of new degrees of freedom due to the connection, if we consider the E-H action,
the field equations obtained by varying with respect to the connection require that this
is metric-compatible. Then, for the fundamental theorem of Riemannian geometry, the
connection must be the Levi-Civita one.
This leads to think that there is no need to constraint the connection, a priori.
However, the fact that the Palatini formalism applied to the E-H action returns GR is
only a coincidence due to the extreme simplicity of the action itself. The situation is
completely different if one replaces R with a generic function f(R) or if one introduces a
non-minimal coupling with a scalar field. This is the case of Extended Theories of Gravity
(ETG).
To consider the metric gµν and the connection Γλµν as independent fields, means to de-
coupling the metric structure of space-time and its geodesic structure with the connection
Γλµν being distinct from the Levi-Civita connection of gµν . Then, the symmetry condition
provides field equations for the connection which recast the dual structure of spacetime
into a a bi-metric structure of the theory. Γλµν turns out to be the Levi-Civita connection
of the metric hµν = f ′(R)gµν . Therefore, there are two independent metrics, gµν and hµν :
the new metric hµν determines the geodesics and gµν determines the causal structure.
A further generalization can be obtained if we consider other geometric invariants, besides
R, as well as the second-order curvature invariant. Therefore, another possibility is to
take in consideration f(R, RµνR

µν)-theory [101, 102]. A specific case is the conformal
Lagrangian given by the Weyl-squared scalar, subtracting the Gauss-Bonnet term.
Moreover, it is possible to show that in Scalar-Tensor gravity, the second metric hµν is
related to the non-minimal coupling of the Brans-Dicke-like scalar. Therefore, making
some hypothesis on f(R) and F (φ), we can link the two families of theories by conformal
transformations.

It is important to stress out that in this approach the matter Lagrangian does not
depend on the connection (unlike metric-affine theories). Therefore, there is no coupling
even between matter and the scalar field and, as consequence, the presence of matter
breaks the possibility of passing from one theory to another one.

6.1.1 The Palatini Approach and the Conformal Structure

The action of f(R)-theories is

S =

∫
d4x
√
−gf(R) + Sm, (6.1)

where, now, Rµν = Rµν(gµν , Γλµν), with Γλµν a generic connection (and ∇µ related to
Γλµν). Therefore, varying with respect to the metric, gµν , the following field equations
are obtained:

f ′(R)R(µν)(Γ)− 1

2
gµνf(R) = Tµν , (6.2)
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where, as usual, Tµν = − 2√
−g

δSm
δgµν

.

Varying with respect to the connection1, it results

−∇λ(
√
−gf ′(R)gµν) +∇σ(

√
−gf ′(R)gσ(µ)δ

ν)
λ = 0. (6.3)

Taking the trace of the last equation, it follows

∇σ(
√
−gf ′(R)gσν) = 0. (6.4)

Then, the field equations of f(R)-theories turn out to be

f ′(R)R(µν)(Γ)− 1

2
gµνf(R) = Tµν (6.5)

∇λ[
√
−gf ′(R)gµν ] = 0 (6.6)

It is easy to see [100, 104] from the equation (6.6) that
√
−gf ′(R)gµν is a symmetric

tensor density of weight 1, which naturally leads to the introduction of a new metric hµν
conformally related to gµν by

√
−gf ′(R)gµν =

√
−hhµν . (6.7)

As a consequence, Γλµν turns out to be the Levi-Civita connection of the metric hµν , with
the only restriction on the “conformal factor” (Ω2 = e2ω = f ′(R)) relating gµν and hµν to
be non-degenerate.
In case of strictly positive f ′(R), it is possible to consider the conformal transformation
given by

gµν → hµν = f ′(R)gµν (6.8)

and that implies
R(µν)(Γ) = Rµν(h). (6.9)

Therefore f(R)-theories in Palatini formalism correspond to f(R)-theories in metric for-
malism with gµν → g̃µν = hµν . Obviously, this equivalence only holds in presence of
conformally invariant matter (T = gµνT

µν = 0).
Moreover, taking the trace of the eq. (6.5) we obtain the so-called structural equation of
space-time which control the solution of field equations:

f ′(R)R− 2f(R) = gµνTµν ≡ T. (6.10)
1Here there is the constraint of symmetric connection. Relaxing it, one has: δRµνρσ = ∇ρδΓµσν −

∇σδΓµρν + TλρσδΓ
µ
λν . Then, a relation between torsion vector and nonmetricity vectors follows : they

are proportional to each other with proportional constants depending on size (here different conventions
for indices of the connection are used [33]). This “allows” the further step to a generalized Weyl geometry
(e.g. [103]).
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In vacuum or in presence of conformally invariant matter, this scalar equation admits con-
stant solutions. In these cases, Palatini f(R)-gravity reduces to GR with a cosmological
constant [104]. In case of interaction with matter fields, the structural equation (6.10),
if explicitly solvable, provides the expression R = F (T ) and, as a result, both f(R) and
f ′(R) can be expressed in terms of T . Then, matter rules both the bimetric structure of
space-time and the geodesic and metric structures, which are intrinsically different. This
behaviour generalizes the vacuum case.

The Palatini formalism can be extended to non-minimally coupled scalar-tensor the-
ories.
The first step is to consider the generalized scalar-tensor action (seen in Chapter 1)

S =

∫
d4x
√
−g
ï
F (φ)R− ε

2
gµν∇µφ∇νφ− V (φ) + Lm

(
ψ,

g

∇µψ
)ò
, (6.11)

where ε = ±1 refers to the case of ordinary scalar or a phantom field, respectively. The
field equations are

R(µν) −
1

2
gµν =

1

F (φ)

Å
T (φ)
µν + T (m)

µν

ã
(6.12)

∇λ[
√
−gF (φ)gµν ] = 0 (6.13)

ε�φ+ F ′(φ)R− V ′(φ) = 0 (6.14)

Taking the trace of the first field equations, the structural equation of spacetime takes
the form

R = − 1

F (φ)

Å
T (φ) + T (m)

ã
. (6.15)

The bimetric structure of space-time is provided by field equations of the connection
√
−gF (φ)gµν =

√
−hhµν (6.16)

Therefore, hµν is conformally related to gµν if we require F (φ) > 0:

gµν → hµν = F (φ)gµν . (6.17)

In vacuum , T (φ) = 0 = T (m), so that this theory is equivalent to GR.

As a further step, it is possible to consider a more generic framework wherein f(R) is
non-minimally coupled to a scalar field. The action of this theory is

S = S =

∫
d4x
√
−g
ï
F (φ)f(R)− ε

2
gµν∇µφ∇νφ− V (φ) + Lm

(
ψ,

g

∇µψ
)ò
, (6.18)
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which provides the following filed equations

f ′(R)R(µν)(Γ)− 1

2
gµνf(R) =

1

F (φ)

Å
T (φ)
µν + T (m)

µν

ã
(6.19)

∇λ[
√
−gF (φ)f ′(R)gµν ] = 0 (6.20)

ε�φ+ F ′(φ)f(R)− V ′(φ) = 0 (6.21)

and the structural equation of space-time

f ′(R)R− 2f(R) =
1

F (φ)

Å
T (φ)
µν + T (m)

µν

ã
. (6.22)

In this case, the bimetric structure is given by
√
−gF (φ)f ′(R)gµν =

√
−hhµν (6.23)

with gµν and hµν again conformally related if F (φ)f ′(R) > 0:

hµν = F (φ)f ′(R)gµν . (6.24)

In vacuum, the structural equation implies that the theory reduces again to Einstein grav-
ity. With the next generalization, it is possible to show that the possibility to recover GR
in vacuum is related to the decoupling of the scalar field from the metric.

The final generalization of previous cases is the introduction of a general function
K(φ, R):

S =

∫
d4x
√
−g
ï
K(φ, R)− ε

2
gµν∇µφ∇νφ− V (φ) + Lm

(
ψ,

g

∇µψ
)ò

(6.25)

which provides the following filed equations

∂RK(φ, R)R(µν) −
1

2
Kgµν = T (φ)

µν + T (m)
µν (6.26)

∇λ[
√
−g∂RK(φ, R)gµν ] = 0 (6.27)

ε�φ+ ∂φK(φ, R)− V ′(φ) = 0 (6.28)

and the structural equation of space-time

∂RK(φ, R)R− 2K(φ, R) = T (φ) + T (m). (6.29)

The bimetric structure of space-time is given by
√
−g∂RK(φ, R)gµν =

√
−hhµν (6.30)
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and, for K(φ, R) > 0, the the conformal transformation is

gµν → hµν = ∂RK(φ, R)gµν . (6.31)

Form the eq. (6.29), the conformal factor turns out to depend on the matter fields
only through the traces of their stress-energy tensors. In general, in vacuum, GR is
not recovered because the strong coupling between R and φ prevents the possibility of
obtaining constant solutions.
However, an interesting case is the limit for R→ 0. The linear expansion of the analytic
function K(φ, R) reads

K(φ, R) = K0(φ) +K1(φ)R + o(R2), with
K0(φ) = K(φ, 0)

K1(φ) = [∂RK(φ, R)]R=0

. (6.32)

In this case, the structural equation of space-time reads

R = − 1

K1(φ)

ï
T (φ) + T (m) + 2K0(φ)

ò
. (6.33)

Therefore, the value of the Ricci scalar is always determined, in the linear approximation,
in terms of T (φ), T (m) and φ. The bimetric structure is defined by the first term of the
Taylor expansion and if K1(φ) > 0 we can consider the conformal transformation

gµν → hµν = K1(φ)gµν (6.34)

reproducing the scalar-tensor case (6.17).

Finally, there exist also bimetric theories which cannot be conformally related [26] and
torsion will also appear in the most general framework [105]. These more general theories
will not be discussed here.

6.2 Conformal Frames of Brans-Dicke Gravity

Starting from the E-H action, it is possible to choose a conformal factor Ω =
√
Gφ [106]

and, performing the transformation gµν → Ω2gµν , to obtain the Brands-Dicke action2 with
parameter ω = −3/2:

SBD =

∫
d4x
√
−g
ï
φR +

3

2
gµν

1

φ
∇µφ∇νφ

ò
. (6.35)

This form is called Jordan frame. Its standard form is

SBD =

∫
d4x
√
−g
ï
φR− ω

φ
gµν∇µφ∇νφ− V (φ)

ò
+ S(m). (6.36)

2It is necessary to integrate by parts.
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Then, by redefining the scalar field

φ̃(φ) =

…
2ω + 3

16πG
ln

Å
φ

φ0

ã
(6.37)

(where φ 6= 0, ω > −3/2 and φ−1
0 = G), we can rewrite the Brans-Dicke action in the

Einstein frame,

SBD =

∫
d4x

ß√
−g̃
ï

R̃

16πG
− 1

2
g̃µν∇̃µφ̃∇̃νφ̃− U(φ̃)

ò
+ exp

ï
− 8

 
πG

2ω + 3
φ̃

ò
L (m)[g̃]

™
(6.38)

where ∇̃ is the covariant derivative operator of the rescaled metric g̃µν and

U(φ̃) = V [φ(φ̃)] exp−8

 
πG

2ω + 3
φ̃ = V (φ)/(Gφ)2 (6.39)

is the Einstein frame potential. In the Einstein frame, the action has the first term and
the kinetic term of the scalar field in a usual form.
The redefinition (6.37) impose the constraint ω > −3/2, otherwise it is no possible to
perform the conformal transformation. Alternatively, taking the absolute value |2ω + 3|,
the Brans-Dicke theory in the Einstein frame is still pathologic for ω = −3/2.
However ω ≤ −3/2 is not necessary a pathology using particular potential. Then, the
value ω = −3/2 can be seen as a frontier between a standard scalar field and a phantom
field, because for ω < −3/2 the kinetic term of the scalar field has the “wrong” sign in
front of it.
Although the first part of the eq. (6.38) recalls the E-H action, there are two substantial
differences between them. From the interpretation of φ in Jordan frame as the contribute
of all distant astronomical objects, φ̃ cannot be removed and acts as a source of grav-
ity. Therefore, the vacuum GR equations as R̃µν = 0 cannot be obtained. The matter
Lagrangian L (m) inside (6.38) is multiplied by the exponential factor, an anomalous cou-
pling of matter to the scalar φ̃ which has no counterpart in GR.
The latter difference causes a change of energy-momentum conservation, leading to a vi-
olation of EEP. This can be shown using the transformation law of energy-momentum
tensor under conformal transformation (4.57): for gµν → g̃µν = Ω2gµν , setting the confor-
mal weight s = −6, it results

∇̃µT̃
µν = −T̃ g̃µν∇̃ν(ln Ω) (6.40)

in case of non conformal matter (T (m) 6= 0).
In particular, for the Jordan frame, Ω =

√
Gφ then

∇̃µT̃
µν = −1

φ
T̃ g̃µν∇̃ν(φ) (6.41)

72



6.2 Conformal Frames of Brans-Dicke Gravity

while, in terms of the Einstein frame scalar (6.37), φ = φ0 exp φ̃
√

16πG/(2ω + 3),

∇̃µT̃
µν = −

 
4πG

2ω + 3
T̃ g̃µν∇̃ν(φ̃). (6.42)

Now, considering a dust fluid, i.e. a pressureless perfect fluid, from (6.42) it is possible
to notice how geodesic equations change. Therefore, let T̃ (m)

µν be the energy-momentum
tensor of a dust fluid,

T̃ (m)
µν = ρ̃(m)ũµũν (6.43)

where ρ̃(m) is the density and ũµ the 4-velocity.
Then, substituting (6.43) in (6.42) equation splits into the two equations [24, 27, 29], one
for the density an the other for the 4-velocity,

Dρ̃(m)

dλ
+ ρ̃(m)∇̃µũ

µ = 0 (6.44)

Dũµ

dλ
=

 
4πG

2ω + 3
∇̃µφ̃⇒ d2xµ

dλ2
+ Γ̃µρσ

dxρ

dλ

dxσ

dλ
=

 
4πG

2ω + 3
∇̃µφ̃ (6.45)

Thus, in the Einstein frame, geodesic equations are modified with respect to GR equations,
due to the presence the scalar field. Often, the right side of eq. (6.45) is called fifth force
that couples universally to all massive test particles. However, this provides a violation of
the WEP, which is satisfied by all metric theories of gravity [26]. Therefore, the validity
of EEP becomes a property depending on the conformal frame representation.
However, it is important to notice that null geodesics are unchanged by the conformal
transformation and this is consistent with the fact that the equation of null geodesics
can be derived from the Maxwell equations, using the eikonal approximation3. There
is another way to verify the conformal invariance for null geodesics, by computing the
electromagnetic stress-energy tensor:

T (em)
µν = 2

Å
FµρF

ρ
ν −

1

4
gµνF

ρσFρσ

ã
. (6.46)

Since the trace of T (em)
µν is null, it turns out that conservation equation ∇µTµν = 0 does

not change under conformal.
However, the low-energy limit of String Theory provides a correction to the time-like
geodesic equations similar to the fifth force and the scalar field is replaced by a dilaton.
An interesting difference is that, while the dilatonic charge can be setted to zero, the field
scalar cannot be eliminated from the Einstein frame.

3For simplicity, the common procedure is to consider a scalar function φ(xµ) (which will be the proto-
type of the electromagnetic potential) and imposes the following ansatz : φ(xµ) = Re

[
A(xµ) exp iS(x/ε)

]
,

where A is the slowly variable amplitude of the wave, the phase S is the eikonal function and the param-
eter ε → 0 states that S is rapidly variable. Thus, it is possible to expand S with respect to ε powers.
Then, by imposing the D’Alambert equation, one obtains the eikonal equation must be satisfied by S.
The same procedure may be followed for electromagnetic components and it provides null-geodesics for
the wavevector.
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6.2.1 The Problem of Conformal Frames

The possibility to work with the Jordan and the Einstein frame (and with all conformally
related frames) leads to wonder whether there is a physical correspondence, besides that
mathematical one, between the two. Namely: does conformal transformations preserve
the “physical meaning” of the theory?
According to Dicke [106], since physics is invariant for to units of measurement, it must also
be invariant for local rescaling. As consequence, to Dicke the two frames are equivalent.
However, this viewpoint was strongly debated but two main difficulties arised, which
identify the frame issue as a pseudo-problem:

1. Conformal equivalence, understood in the sense of a gauge theory, must be ex-
plicitly verified using the equations which describe physics. It is also necessary to
understand if this equivalence is due to the properties of specific fields, what pro-
cesses/interactions are in favour of it and what equations describe it. In this sense,
the concept of “physical equivalence” is too vague.

2. Dicke’s point of view is purely classical. It is unknown if conformal equivalence plays
some roles to quantum levels and in systems that have extreme characteristics (e.g.
black holes).

Moreover, there is the problem of EEP which is violated in presence of non-conformal
matter and in absence of a rescaling law for the matter Lagrangian. In addition, the
conformal factor makes frames energetically inequivalent and provides difference in the
acceleration of the universe [24].
It is necessary a definition of “physical equivalence” because in some cases the physical
equivalence is verified by considering the coupling of the Brans-Dicke-like scalar field to
matter and a point-like of units in the Einstein frame, but this is not always obvious and
in some cases it does not seem to be consistent [27].
Therefore, the conformal invariance could involve only specific physical aspects and it
could be manifest only at particular energy scales.
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Chapter 7

Considerations on the Weyl Vector

7.1 Non-Metricity of the Weyl Geometry

What discussed in previous Chapter justifies the research of a manner such that the non-
metricity brings to EEP violation and provides back GR in the metric limit. Moreover,
the link between the scalar-tensor action and the Weyl geometry pushes the idea that a
possible non-metric part of the theory could be the Weyl vector.
However, there are immediate differences between the contribution of the fifth force and
contribution of the Weyl vector. In the scalar-tensor theory, Wµ is an exact form while
in general it is not. The fact that the Weyl vector is not an exact differential form causes
several problems, but in some sense it can generalize the concept of scalar field.

As seen in Chapter 2, the presence of the non-metricity tensor changes the autoparallel
curves equation, which become different from the geodesics of a Riemannian space (unlike
what happens in RG). Let T µ = dxµ/dλ = ẋµ be the tangent vector component of an
affinely parametrized autoparallel curve; then, in a local chart, it results in

d2xµ

dλ2
+ Γµρσ

dxρ

dλ

dxσ

dλ
= 2Wν

dxν

dλ

dxµ

dλ
−W µdx

ν

dλ

dxν
dλ

. (7.1)

Obviously, the eq. (7.1) is conformally invariant by definition but it is different from
the geodesics of GR. However, for a light-like particle, the eq. (7.1) can be seen as a
non-affinely parametrized geodesic, with affine parameter α = 2Wν ẋ

ν .
In a locally inertial frame, i.e. gµν(p) = ηµν and ∂αgµν(p) = 0, the equation (7.1) becomes

ẍµ = 2Wν ẋ
ν ẋµ −W µẋν ẋ

ν = (7.2)
= (2W ν ẋµ −W µẋν)ẋν =

= (ẋ(µW ν) + 3ẋ[µW ν])ẋν . (7.3)

Now, to respect the limit of the geometric optics for the light, it is necessary to require
that

Wµẋ
µ = 0, (7.4)
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which looks like what happens by fixing the transversal gauge for the light polarization
vector. The request (7.4) could be valid for both light-like and time-like vectors (it would
be convenient). In this case, for a “free” massive particle, the eq. (7.2) can be recast as

ẍµ = −ẋ2W µ. (7.5)

The equation (7.5) could vaguely recall some sort of viscous friction force. Moreover, the
condition (7.4), for massive and massless particle, provides two other pleasant advantages:
the 4-velocity is normalizable (taking into account the eq. (2.34)) and the anomalous
acceleration, which does not have interpenetration, becomes equal to the 4-acceleration,
vanishing in auto-parallel curves:

ãν ≡ T ρ∇̄ρTν = T ρ∇̄ρ(gµνT
µ) = QρµνT

ρT µ = 2Wρẋ
ρẋν

Wρẋρ=0−−−−−→ 0. (7.6)

Therefore, this situation is very far from what happens with the fifth force due to the
explicit dependence on ẋµ.

7.2 Weyl Vector as Electromagnetic Counterpart of
Non-metricity?

In this Section, the two ideas of the Weyl connection and Curvature-Squared actions will
be merged.
In Weyl geometry, for n = 4, every quadratic term of the Riemann tensor and its contrac-
tions give a conformally invariant Lagrangian. The aim is to build a generic Lagrangian
that provides the “Gauss-Bonnet-Weyl-Squared” action (5.50) for vanishing Weyl vector.
For this reason only specific products will be considered:

S =

∫
d4x
√
−g
Å
a1R̃µνρσR̃

µνρσ + a2R̃µνρσR̃
νµρσ + a3R̃µνρσR̃

ρσµν+

+ b1R̃µνR̃
µν + b2R̃µνR̃

νµ + b3WµνW
µν + cR̃2

ã
. (7.7)

Having in mind the discussion of Chapter 5, there are the following relations for n = 4:

(R̃[µν]
ρσ)2 = (Rµνρσ)2 + 8Rµν∇µWν + 8RµνWµWν − 4RW 2+

+ 8(∇µWν)
2 + 4(∇λW

λ)2 + 12W 4 + 16W µW ν∇µWν − 16W 2(∇λW
λ); (7.8)

(R̃(µν)
ρσ)2 = 16(Wµν)

2; (7.9)

R̃µνρσR̃
µνρσ = (R̃[µν]ρσ)2 + (R̃(µν)ρσ)2; (7.10)

R̃µνρσR̃
νµρσ = −(R̃[µν]ρσ)2 + (R̃(µν)ρσ)2; (7.11)

R̃µνρσR̃
ρσµν = (R̃[µν]

ρσ)2 − (R̃(µν)ρσ)2; (7.12)
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(R̃(µν))
2 = (Rµν)

2 + 4Rµν∇µWν + 4RµνWµWν + 2R∇λW
λ − 4RW 2 + 2(∇µWν)

2+

+ 2(∇µWν)(∇νW µ) + 12W 4 + 8(∇λW
λ)2 + 8W µW ν∇µWν − 20W 2∇λW

λ;

(7.13)

(R̃[µν])
2 = 16(Wµν)

2; (7.14)

R̃µνR̃
µν = (R̃[µν])

2 + (R̃(µν))
2; (7.15)

R̃µνR̃
νµ = −(R̃[µν])

2 + (R̃(µν))
2; (7.16)

R̃2 = R2 − 12RW 2 + 12R∇λW
λ + 36W 4 + 36(∇λW

λ)2 − 72W 2∇λW
λ. (7.17)

If for vanishing Weyl vector the (7.7) has to be like the (5.50), then there are the following
constraint on the parameters of the action:ß

a1 − a2 + a3 = 0⇒ a1 + a3 = a2 (7.18)
b1 + b2 + 3c3 = 0⇒ b1 + b2 = −3c (7.19)

Therefore, b3 is manifestly a free parameter of the theory. This means that it acts as a
“sponge” for termsWµνW

µν . However, someone may want to consider only “genuine terms”
in WµνW

µν , i.e. contributions coming from the contractions of tilde-curvature. Thus, the
possibility to have a single proportional constant for (Wµν)

2 will not be exploited.
Now, by imposing the above constraints, the action (7.7) becomes:∫

d4x
√
−g
ï
− 3c(Rµν)

2 + cR2 + (32a1 + 32b1 + 48c+ b3)WµνW
µν

− 3c

Å
4Rµν∇µWν

::::::::::
+ 4RµνWµWν − 2R∇λW

λ

::::::::
+ 2(∇µWν)

2+

+ 2(∇µWν)(∇νW µ)− 4(∇λW
λ)2 + 8W µW ν∇µWν + 4W 2∇λW

λ

ãò
.

(7.20)

Then, integrating by part, using the contracted Bianchi identity and the following equal-
ities (unless boundary terms),

∇µ∇νW
ν = ∇ν∇µW

ν −RµνW
ν , (7.21)

W 2∇λW
λ ' −2W µW ν∇µWν , (7.22)

(∇λW
λ)2 ' ∇µWν∇νW µ +RµνW

µW ν , (7.23)

the second two lines of the eq. (7.20) contribute to the action as −24c(Wµν)
2. In this

way, the action (7.20) becomes:∫
d4x
√
−g
ï
RµνR

µν − 1

3
R2 + λWµνW

µν

ò
, (7.24)

where λ = (32a1 +32b1 +24c+b3)/(−3c). It is interesting noting that, by setting b3 = 0, it
results λ = 24 for any considered action, such as Weyl-squared, Gauss-Bonnet and Bach
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action.
Consequently, field equations and the equations of motion are respectively:

Bµν = −2λ

Å
WµρW

ρ
ν −

1

4
gµνWρσW

ρσ

ã
(7.25)

�Wµ −∇µ(∇λW
λ)−RµνW

ν = 0 (7.26)

We now wonder whether any action that allows to interpret Weyl vector as the elec-
trodynamic potential, provides a Bach-like equation for vanishing Weyl vector. The pro-
cedure is to impose that the Weyl vector satisfies the equation (7.26). To do this, it is
necessary to rewrite the action (7.7), without imposing constraints on the parameters:

S '
∫
d4x
√
−g
ï
(a1 − a2 + a3)(Rµνρσ)2 + (b1 + b2)(Rµν)

2 + cR2+

+ 16(a1 + a2 − a3 + b1 − b2 + b3)(Wµν)
2+

+ (8a1 − 8a2 + 8a3 + 2b1 + 2b2)(∇µWν)
2+

+ (4a1 − 4a2 + 4a3 + 10b1 + 10b2 + 36c)(∇µWν)(∇νW µ)+

+ (4a1 − 4a2 + 4a3 + 4b1 + 4b2 + 12c)R∇λW
λ+

+ (12a1 − 12a2 + 12a3 + 12b1 + 12b2 + 36c)RµνWµWν+

− 4(a1 − a2 + a3 + b1 + b2 + 3c)RW 2+

+ 12(a1 − a2 + a3 + b1 + b2 + 3c)W 4+

− (24a1 − 24a2 + 24a3 + 24b1 + 24b2 + 72c)W 2∇λW
λ

ò
. (7.27)

Thus, varying with respect to Wµ and imposing the equation (7.26), the following con-
straint results:

a1 − a2 + a3 + b1 + b2 + 3c = 0. (7.28)

The equation (7.28) means that every Lagrangian like the (5.41), which is quadratic
in the Riemann tensor and its contractions, allows to interpret the Weyl vector as a
electromagnetic potential in a Weyl space, if

a+ b+ 3c = 0. (7.29)

Obviously, the equation (7.29) is satisfied by both the Weyl-squared Lagrangian and
Gauss-Bonnet one.
This would seem a geometric way to take into account the presence of an electromagnetic
field in space. However, there are some difficulties with this interpretation.
Looking at the equation (7.2), the Weyl vector can be interpreted as a electromagnetic
potential iff the second term of (7.2) can be interpreted as a electromagnetic force, F µν ẋν
where Fµν = ∂[µAν] is the Maxwell-Faraday tensor. This means that

ẋ(µWν) = 0 (7.30)
ẋ[µWν] ∝ ∂[µAν] (7.31)
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The first equation (7.30) provides the conservation of the 4-velocity norm. Indeed, for an
autoparallel curve, the evolution of the scalar product of tangent vector components is

T ρ∇̄ρ(gµνT
µT ν) = 2T µT ρ(∇̄ρT

µ) + T ρ(∇ρgµν)T
µT ν = QρµνT

ρT µT ν = 2W ·TT 2 (7.32)

and, if the equation (7.30) is valid, it follows

T µT ν(TµWν + TνWµ) = 0 ⇒ 2W · TT 2 = 0 ⇒ W · T = 0. (7.33)

Therefore, the equation (7.33) provides the condition Wµẋ
µ = 0 for both light-like and

time-like vectors, allowing to obtain the limit of the geometric optics and deleting the
anomalous acceleration.

Another point of view, it is to observe that the equation (7.30) has the shape of a
Killing equation for a Riemannian space, if one performs a transformation of the form

ẋµ −→ ∇̂µ, (7.34)

which is coherent with the second equation (7.31).
Moreover, it is interesting to notice what happens multiplying by ẋµ and ∇̂µ the two sides
of the eq. (7.31), respectively:

ẋµẋ[µWν] = ẋ2Wν − ẋµWµẋ
ν Wµẋµ=0−−−−−→ ẋ2Wν (7.35)

∇̂µ∇̂[µAν] ≡ ∇̂µFµν . (7.36)

Therefore, a light-vector (ẋ2 = 0) corresponds to a free electromagnetic field while a time-
vector corresponds to an electromagnetic source in the “hat-space”.
However, the eq. (7.30) results to be dependent on the parametrization, and this can lead
to inconsistencies.

So far, Wµ cannot be interpreted as a electromagnetic potential. In this sense, sup-
posing a violation of the EEP, the existence of Weyl-nonmetricy could improve the Bach
theory, by adding more degrees of freedom, e.g. in a way that the Schwarzschild-like
solution matches both with the Solar system model and the galactic rotation curves. The
problems are: what is the energy range in which violations of EEP occur? How the Weyl
vector could couple the matter?
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The thesis relies and takes into account the possibility that, at some energy scale, the
principle of equivalence could be violated (strictly) due to a nonmetricity of the “physical
connection”.

In order to do this, it is inevitable to end up studying the conformal transformations
of the metric tensor, gµν → g̃µν = e2ω(x)gµν . Conformal transformations allow to link
GR with other Extended Theories of Gravity, as well as f(R)-theories and Scalar-Tensor
gravity in Palatini formalism. These can be seen as possible extensions of GR because each
of them contains Einstein field equations as particular limits. Although these theories are
very different, they share a common aspect: the presence of a modification of the geodesic
equations caused by a symmetric but not-metric connection.

It is natural, therefore, to wonder whether these theories, despite being different, could
be considered as equivalent. The answer is difficult and so far not accessible.

As stated several times, many physicists have thought of conformal symmetry as a
new principle of universal invariance. Despite the different theoretical formulations, there
is still no experimental evidence to support this line of research. It is a strong constraint
on a theory of gravity. If the conformal invariance is a necessary ingredient of quantum
gravity, the space for possible theories would be considerably limited. At same time, such
constraint would be very welcome, as the the quantum gravity domain lacks experimental
constraints.

Among the various classical conformal theories of gravity there is the Weyl-Squared
gravity,

√
−g Cµ

νρσC
νρσ

µ . Using the Gauss-Bonnet term it is possible to simplify the
action, 2

√
−g (RµνR

µν − 1
3
R2), and to obtain the Bach’s equations, Bµν = 0. These

equations admit a Schwarzschild-like solution with some free parameters that can be
tailored to fit the galaxy rotation curves. This solution does not provide the Newtonian
gravity in the weak-field limit, but instead some fourth-order theory which is not observed.
Another conformal theory is the Brans-Dicke one with a conformally invariant scalar field
with conformal weight s = 1 − n/2. The action of this theory can be obtained by using
the Weyl geometry, Qαµν = 2Wαgµν .

These two points of view can be coupled in order to rewrite a general Weyl-Squared in
a Weyl space. Starting from a conformally invariant action, the result is an additive term
proportional to (Wµν)

2 where Wµν = ∇[µWν]. The presence of the Weyl vector produces a
source term. This could explain the modification of galaxy rotation curves with respect to
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the Schwarzschild metric. Inevitably, this would mean that the Weyl vector describes the
presence (at least partially) of the dark matter. In fact, it is easily possible to see from the
geodesic equations that Wµ cannot be interpreted as an electrodynamic potential, despite
the similarity between the two actions and between the equations of motion. Moreover,
the Weyl non-metricity cannot reproduce the fifth force that emerges from the Brans-Dicke
gravity in the Einstein frame.

Based on the above statements, it would be interesting to study other possible rela-
tions that may exist between f(R)-theories, Scalar-Tensor theories and Weyl geometries.
Actually, the Weyl-Squared gravity in a Weyl space can be seen under the point of view
of the f(R, RµνR

µν)-theories with a free Weyl field [107]. Another Lagrangian belong-
ing to the f(R, RµνR

µν)-theories is
√
−g [R + α(RµνR

µν − 1/3R2)] which considers the
Weyl-squared action as a higher order correction to the Einstein-Hilbert action (there-
fore, does not appear to be conformally invariant). Then, the next step1 is to consider√
−g [φ2(R − 6W 2 + 6∇λW

λ) + α(RµνR
µν − 1/3R2) + βWµνW

µν + V (φ)], with φ being
the usual conformally invariant scalar field, or an even more general action of the same
order (e.g. [108] but in view of Weyl’s geometry and a coupling with φ).

The research could be further expanded by considering an even more general connec-
tion, which is also not symmetrical. However, this would significantly increase the number
of quadratic terms into the action. It is possible to consider a Weyl-Cartan-Weitzenböck
space [70, 109] or an Einstein-Cartan-Weyl one [110, 111]. Another option is to consider
a class of geometries, which extend the Weyl geometry [103], wherein the connection con-
tains the trace vector part of the torsion: Γ̄λµν = Γλµν + b1W

λgµν − b2δ
λ
(µWν) + b3δ

λ
[µWν].

Those geometries are defined by the most general connection linearly determined by a
vector field (and without derivatives). By studying quadratic (conformally invariant)
actions, it is possible to display that these vector-tensor theories may arise significant
cosmological implications. The effects of the vector field can be important both in the
early universe or at late times depending on the values of parameters. Therefore, they
can be used to build dark energy/dark matter models or inflationary scenarios. Moreover,
the natural presence of upper bounds for the energy density and/or the curvature might
help evading singularities without resorting to quantum effects. This framework admits
a class of anisotropic solutions that deserves attention.

This type of study could fit into a precise perspective: the universe is described by
a more fundamental theory than GR and SM, and they are a low-energies limit. Thus,
the conformal invariance is elevated to universal symmetry which, during the process of
expansion of the universe, has been broken in different ways. The breaking symmetry
gives rise to regions of space (due to some non-homogeneities/anisotropies of the early
spacetime) dominated by baryon matter and others regions characterized by dark matter

1Of course, an immediate generalization of Brans-Dicke action (in Jordan frame) is to add Wµ dy-
namic, i.e. L =

√
−g
[
φ2(R− 6W 2 + 6∇λWλ) + λWµνW

µν
]
; varying with respect to Wµ the equations

of motion is λ∇νWνµ + 6Wµ + 6∇µφ2 = 0 and, if W is a closed form, it results Wµ = −∇µφ2 and the
action becomes the usual Brand-Dicke theory in Jordan frame.
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and dark energy. Perhaps, such a more fundamental theory could also come close to
explaining the disparity between the amount of matter and antimatter we observe in the
universe.

One of the reasons why the DM has not yet been detected at the LHC might be due to
the still low energy scale. An alternative way to test the high-energy physics is by doing
high-precision experiment. This would allow to probe Standard Model Extension (SME)2

and, in general, quantum gravity effects.
The state-of-the-art of high-precision measurements3 achieves its ultimate performance in
space [55]. Small fleets of satellites may probe EEP in different ways, by searching for tiny
deformations of spacetime, which are not classically expected, indicating the presence of a
new phenomenology. An example of technology designed for such investigative purposes is
the satellite STE-QUEST (Space-Time Explorer and QUantum Equivalence Space Test)
[16, 54]. The main purpose of STE-QUEST is testing the different aspects of EEP4

and searching for its violation with high precision quantum sensors. By using differential
atom interferometer, it is possible to compare the free-falling of atoms, linking the possible
differences in the acceleration with internal differences (e.g. atomic number, mass number,
spin, etc.). In STE-QUEST specific case, the test masses are two isotopes of the Rubidium
atoms (85Rb and 87Rb). The subject of the investigation is the so-called Eöstöv ratio,
which denotes the correlation between inertial mass and gravitational one5. Moreover,
STE-QUEST can test the gravitational red-shift by comparing time intervals measured
by identical clocks, which are placed at different points of a gravitational field. Any
anomalies would show the violation of LPI.

Improving the sensibility of these tests, not only has the goal of finding an actual
violation, but also, it allows to discriminate against unified theories which carry a EEP
violations at some level. In addition, spacial probes could detect quantum effects asso-
ciated to small frequencies having a cosmological origin. Even if we cannot overcome
a certain energy range, extreme high-energy cosmological phenomena (e.g. black holes
collisions and gamma ray bursts) could produce very small frequency signals. Therefore,
the detection of such data could show non-metric (quantum) effects, giving validity tests
for high-energies theories.

2SME is the most general effective (quantum) field theory that describes Lorentz violations for elemen-
tary particles, by including all Lorentz-violating operators coming from Standard Model fields [112, 113].
Moreover, SME can be extended in order to study Lorentz-violating and CPT-violating gravitational
interactions [114], taking into account both curvature and torsion effects.

3We refer to atomic clocks, atom interferometers, high-performance time and frequency links and
classical accelerometers.

4As seen the Chapter 1, EEP can be decomposed in three sub-principles: WEP, LLI, LPI. They
cannot be considered as independent because it possible to “show” that if one of the them is violated,
then so are the other two. This statement is known as Schiff’s conjecture, formulated around 1960 [115].

5Usually, Eöstöv ratio is commonly denoted by ηAB , for two test objects A and B, and it is defined
as ηAB = 2

(mi/mg)A−(mi/mg)B
(mi/mg)A+(mi/mg)B

= 2aA−aBaA+aB
= βA − βB , where ai (i = A, B) is the i -th acceleration and βi

is the WEP-violating parameter.

82



Bibliography

[1] C. M. Will, Theory and experiment in gravitational physics (UK: University Press,
Cambridge, 1993).

[2] C. M. Will, Living Rev. Relativity 17, 1 (2010).

[3] S. Weinberg, Gravitation and Cosmology (John Wiley and Sons, New York, 1972).

[4] N. Deruelle and J.P. Uzan, Relativity in Modern Physics, 1st ed. (Oxford University
Press, New York, 2018).

[5] S.M. Faber and J.S. Gallagher, Annu. Rev. Astron. Astrophys. 17, 135 (1979).

[6] W. Hu and N. Sugiyama, Phys. Rev. D 51, 2599 (1995).

[7] G. Jungman et al., Phys. Rev. D 54, 1332 (1996).

[8] U. Seljak, D.N. Spergel, and M. Zaldarriaga, Astrophys. J. 488, 1 (1997).

[9] D. J. Eisenstein and W. Hu, Astrophys. J. 496, 605 (1998).

[10] D. J. Eisenstein et al., Astrophys. J. 633, 560 (2005).

[11] A. Refregier, Ann. Rev. Astron. Astrophys. 41, 645/668 (2003).

[12] X.P. Wu, T.g Chiueh, L.Z. Fang, and Y.J. Xue, Mon. Not. Roy. Astron. Soc. 301,
861/871 (1998).

[13] N. Benítez et al., Astrophys. J. 501, 539 (1998).

[14] P. Natarajan et al., Monthly Notices of the Royal Astronomical Society 468,
1962/1980 (2017).

[15] P. Ade et al., Astronomy and Astrophysics 571, 66 (2014).

[16] B. Altschul et al., Astronomy and Astrophysics 55, 501/524 (2015).

[17] G.P. Efstathiou, M.P. Hobson, and A.N. Lasenby, General Relativity: An
Introduction for Physicists, 1st ed. (Cambridge University Press, Cambridge, 2007).

83



Bibliography

[18] I. Antoniadis, S. Dimopoulos, and G. Dvali, Nucl. Phys. B 516, 70 (1998).

[19] T. Damour and A.M. Polyakov, Nucl. Phys. B 423, 532 (1994).

[20] S. Dimopoulos and G. Giudice, Phys. Lett. B 379, 105 (1996).

[21] Maartens R. and Koyama K., Living Rev. Relativity 13, 4 (2010).

[22] V.A.Rubakov, Phys. Usp. 44, 871 (2001).

[23] T.R. Taylor and G. Veneziano, Phys. Lett. B 213, 450 (1988).

[24] S. Capozziello and M. De Laurentis, Phys. Rept. 509, 167/321 (2011).

[25] S. Capozziello and G. Lambiase, New Adv. in Physics 7, 13 (2013).

[26] C.M. Will, Theory and experiment in gravitational physics (Cambridge U. Press,
Cambridge, 1993).

[27] S. Capozziello and V. Faraoni, Beyond Einstein Gravity (Springer, Dordrecht, 2011).

[28] A. H. Guth, Phys. Rev. D 23, 347 (1981).

[29] V. Faraoni, Cosmology in Scalar-Tensor Gravity (Kluwer Academic Publishers, Dor-
drecht, 2004).

[30] C.A. Sporea, Notes on f(R) Theories of Gravity, https://arxiv.org/abs/1403.
3852, 2014.

[31] A. Palatini, Rend. Circ. Mat. Palermo 43, 203 (1919).

[32] K.F. Dialektopoulos, Geometric Foundations of Gravity and Applications, Ph.D.
thesis, Università degli Studi di Napoli, 2018.

[33] D. Iosifidis, Metric-Affine Gravity and Cosmology/Aspect of Torsion and Non-
Metricity in Gravity Theories, Ph.D. thesis, Physics Department of Aristotle Uni-
versity of Thessaloniki, https://arxiv.org/abs/1902.09643, 2019.

[34] J.B. Jiménez, L. Heisenberg, and T.S. Koivisto, Universe 5, 173 (2019).

[35] A. Golovnev, T. Koivisto, and M. Sandstad, Classical and Quantum Gravity 34,
145013 (2017).

[36] M. Krššak, Eur. Phys. J. C 77, 44 (2017).

[37] J.B. Jiménez, L. Heisenberg, and T.S. Koivisto, Jour. Cosm. Astrop. Phys. 08, 039
(2018).

84

https://arxiv.org/abs/1403.3852
https://arxiv.org/abs/1403.3852
https://arxiv.org/abs/1902.09643


Bibliography

[38] J.B. Jimenez, L. Heisenberg, and T. Koivisto, Phys. Rev. D 98, 044048 (2018).

[39] M. Krssak, R.J. van den Hoogen, J.G. Pereira, C. G. Boehmer, and A. A. Coley,
Class. Quant. Grav. 36, 183001 (2018).

[40] J.G. Pereira and Y.N. Obukhov, Universe 5, 139 (2019).

[41] R. Aldrovandi and J.G. Pereira, Teleparallel Gravity: An Introduction (Springer,
Dordrecht, Heidelberg, New York, London, 2013).

[42] Y. M. Cho, Phys. Rev. D 14, 10, 2521/2525 (1976).

[43] G. Manolakos, P. Manousselis, and G. Zoupanos, Gauge Theories on Fuzzy Spaces
and Gravity, https://arxiv.org/abs/1911.04483v1, 2019.

[44] J.T. Trujillo, Weyl Gravity as a Gauge Theory, Ph.D. thesis, Utah State University,
Logan, Utah, 2013.

[45] G. Manolakos, P. Manousselis, and G. Zoupanos, Noncommutative Gauge Theories
and Gravity, https://arxiv.org/abs/1907.06280v1, 2019.

[46] D.Z. Freedman and A. Van Proeyen, Supergravity (Cambridge University Press,
London, 2012).

[47] J.B. Formiga, Phys. Rev. D 99, 064047 (2019).

[48] M. Kaku et al., Phys. Lett. B 69, 304 (1997).

[49] R.F. Sobreiro and V. J. Vasquez Otoya, Braz. J. Phys. 40, 370/374 (2010).

[50] R.M. Wald, General Relativity (The University of Chicago Press, Chicago and Lon-
don, 1984).

[51] D.F. Carneiro et al., Grav. Cosmol. 10, 305/312 (2004).

[52] J. Aalbers, Conformal Symmetry in Classical Gravity, Master’s Thesis, Utrecht
University, 2013.

[53] M.P. Dabrowski, J. Garecki, and D.B. Blaschke, Annalen Phys. (Berlin) 18, 13/32
(2009).

[54] STE-QUEST team, Space-Time Explorer and QUantum Equivalence Space Test,
Yellow Book of STE-QUEST, ESA/SRE, https://sci.esa.int/web/ste-quest/
publication-archive, 2013.

[55] L. Cacciapuoti, S. Capozziello, F. Sorrentino, and G.M. Tino, Prog. Part. Nucl.
Phys. 112, 103772 (2020).

85

https://arxiv.org/abs/1911.04483v1
https://arxiv.org/abs/1907.06280v1
https://sci.esa.int/web/ste-quest/publication-archive
https://sci.esa.int/web/ste-quest/publication-archive


Bibliography

[56] C.W. Misner, K. S. Thorne, and J.A. Wheeler, Gravitation (W.H. Freeman Prince-
ton University Press, United States, 1973).

[57] K.S. Thorne and C.M. Will, Astrophysical Journal 163, 595 (1971).

[58] R.H. Dicke, The theoretical significance of experimental relativity, 1st ed. (Gordon
and Breach, New York, London, Paris, 1965).

[59] L.I. Schiff, American Journal of Physics 28, 340 (1960).

[60] R.H. Dicke, American Journal of Physics 28, 344 (1960).

[61] M. Nakahara, GEOMETRY, TOPOLOGY AND PHYSICS, 2nd ed. (CRC Press,
New York, London, 2003).

[62] H. Weyl, Nature 106, 800/802 (1921).

[63] E. Cartan, Journal de mathématiques pures et appliquées 1, 141/204 (1922).

[64] M. Francaviglia M. Ferraris and C. Reina, General Relativity and Gravitation vol-
ume 14, 243/254 (1982).

[65] F.W. Hehl, J.D. McCrea, E.W. Mielke, and Y. Ne’eman, Phys. Rep. 258, 1/171
(1995).

[66] S. Liberati, V. Vitagliano, and T.P. Sotiriou, Annals of Physics 326, 1259/1273
(2011).

[67] J.M. Nester and H.J. Yo, Chinese Journal of Physics 37, 113/117 (1999).

[68] Y.F. Cai, S. Capozziello, M. De Laurentis, and E. N. Saridakis, Reports on Progress
in Physics 79, 106901 (2016).

[69] J.B. Jimenez, L. Heisenberg, T.S. Koivisto, and S. Pekar, Phys. Rev. D 101, 103507
(2020).

[70] J.B. Jimenez, L. Heisenberg, D. Iosifidis, A. Jiménez-Cano, and T.S. Koivisto, Phys.
Rev. B 805, 135422 (2020).

[71] J. Yepez, Einstein’s vierbein field theory of curved space, https://arxiv.org/abs/
1106.2037v1, 2011.

[72] F. Scheck, Classical Field Theory/On Electrodynamics, Non-Abelian
GaugeTheories and Gravitation (Springer, Heidelberg, Dordrecht, London,
New York, 2012).

[73] R. Ferraro, AIP Conference Proceedings 1471, 103 (2012).

86

https://arxiv.org/abs/1106.2037v1
https://arxiv.org/abs/1106.2037v1


Bibliography

[74] G. Bengochea and R. Ferraro, Phys.Rev.D 79, 124019 (2009).

[75] M. Adak, M. Kalay, and O. Sert, Int.J.Mod.Phys. D15, 619/634 (2006).

[76] M. Adak, Ö. Sert, M. Kalay, and M. Sarı, Int.J.Mod.Phys. A28, 1350167 (2013).

[77] I. Mol, Advances in Applied Clifford Algebras 27, 2607/2638 (2017).

[78] L. Järv, M. Rünkla, M. Saal, and O. Vilson, Phys. Rev. D 97, 124025 (2018).

[79] M. Rünkla and O. Vilson, Phys. Rev. D 98, 084034 (2018).

[80] S.W. Hawking and G.F.R. Ellis, The large scale structure of space-time (Cambridge
University Press, United States, 1973).

[81] M.B. Green, J.H. Schwarz, and E. Witten, Superstring Theory, 1st ed. (Cambridge
University Press, Cambridge„ 1987).

[82] I.E. Segal, Duke Math. J. 18, 221/265 (1951).

[83] R. Penrose, Gen. Rel. Grav. 43, 901/922 (1964).

[84] S.K. Hawking, A.R. King, and P.J. McCarthy, J. Math. Phys. 17, 2 (1976).

[85] M.E. Peskin and D.V. Schroeder, An Introduction To Quantum Field Theory (West-
view Press, New York, 1995).

[86] G.’t Hooft, Quantum gravity without space-time singularities or horizons, https:
//arxiv.org/abs/0909.3426v1, 2009.

[87] K.S. Stelle, Phys. Rev. D 16, 953 (1977).

[88] B.A. Dubrovin, A.T. Fomenko, and S.P. Novikov, Modern Geometry-Methods and
Applications, 1st ed. (Springer-Verlag, New York, 1985).

[89] P. Hölscher, Conformal Gravity, Master Thesis in Theoretical Physics, Faculty of
Physics, Bielefeld University, 2015.

[90] D. Kothawala and T. Padmanabhan, Physics Reports 531, 115/171 (2013).

[91] Y. Li, The Gauss-Bonnet-Chern Theorem on Riemannian Manifolds, https://
arxiv.org/abs/1111.4972v4, 2011.

[92] R. Buzano and H.T. Nguyen, The Chern-Gauss-Bonnet formula for singular non-
compact four-dimensional manifolds, https://arxiv.org/pdf/1503.06602.pdf,
2017.

[93] R. Buzano and H.T. Nguyen, The Journal of Geometric Analysis 29, 1043 (2019).

87

https://arxiv.org/abs/0909.3426v1
https://arxiv.org/abs/0909.3426v1
https://arxiv.org/abs/1111.4972v4
https://arxiv.org/abs/1111.4972v4
https://arxiv.org/pdf/1503.06602.pdf


Bibliography

[94] J. Oliva and R. Sourya, Phys. Rev. D 86, 084014 (2012).

[95] P.D. Mannheim and D. Kazanas, Astrophys. J. 342, 635/638 (1989).

[96] P.D. Mannheim, Progress in Particle and Nuclear Physics, 56, 340/445 (2006).

[97] K.S. Wood and R.J. Nemiroff, Astrophys. J. 369, 54/56 (1991).

[98] Hans-Júrgen Schmidt, International Journal of Geometric Methods in Modern
Physics 4, 209/248 (2007).

[99] C. Deliduman, O. Kasikci, and B. Yapiskan, Astrophys. Space Sci. 365, 51 (2020).

[100] G. Allemandi, M. Capone, S. Capozziello, and M. Francaviglia, Gen. Rel. Grav 38,
33 (2006).

[101] G.J. Olmo, H. Sanchis-Alepuz, and S. Tripathi, Phys. Rev. D 80, 024013 (2009).

[102] G. Allemandi, A. Borowiec, and M. Francaviglia, Phys. Rev. D 70, 103503 (2004).

[103] L. Heisenberg, J.B. Jimenez, and T.S. Koivisto, JCAP 04, 046 (2016).

[104] M. Ferraris, M. Francaviglia, and I. Volovich, Classical and Quantum Gravity 11,
1505 (1994).

[105] S. Capozziello, G. Lambiase, and C. Stornaiolo, Ann. Phys. (Leipzig) 10, 713 (2001).

[106] R.H. Dicke, Phys. Rev. D 125, 2163 (1962).

[107] T.P. Sotiriou, V. Vitagliano, and S. Liberati, Phys.Rev.D 82, 084007 (2010).

[108] S. Capozziello and A. Stabile, The Weak Field Limit of Fourth Order Gravity,
https://arxiv.org/abs/1009.3441, 2010.

[109] Z. Haghania, T. Harkob, H. R. Sepangia, and S. Shahidia, Journal of Cosmology
and Astroparticle Physics 10, 061 (2012).

[110] T.Y. Moon, J. Lee, and P. Oh, Mod. Phys. Lett. A 25, 3129/3143 (2010).

[111] D.S. Klemm and L. Ravera, Phys. Rev. D 101, 044011 (2018).

[112] D. Colladay and V.A. Kostelecký, Phys. Rev. D 55, 6760 (1997).

[113] D. Colladay and V.A. Kostelecký, Phys. Rev. D 58, 116002 (1998).

[114] V.A. Kostelecký, Phys. Rev. D 69, 105009 (2004).

[115] L. Schiff, Am. J. Phys. 28, 340 (1960).

88

https://arxiv.org/abs/1009.3441


Appendix

Perplexity About Teleparallel Field Strength

Here personal considerations about the teleparallel gravity as gauge theory of the trans-
lations group follow.
The perplexity is caused by the “intimate” relation between the tangent space and the
internal gauge space. This implies two points of view, the tetrad formalism and the gauge
theory one. They should be equivalent to define with consistency a gauge theory of grav-
ity.
According to who writes, the ambiguities arise from the fact that it is necessary to con-
sider an holonomic frame. This is because the gauge theory is on the group of translations
whose generators are Pa ≡ ∂a the ordinary partial derivatives and [Pa, Pb] = 0. More-
over, the structure of the gauge theory presents substantial differences from the general
framework of gauge theories [61].
In the literature there is another formulation of gravity as a gauge theory on the group
of translations: “Einstein Lagrangian as the translational Yang-Mills Lagrangian” by Y.
M. Cho [42]. The latter theory differs from [41] for the holonomicity of the frame and the
interpretation of translations. In [42], the gauge potential are identified as the non-trivial
part of tetrad and the gauge field strength is given in terms of the commutator coeffi-
cients (i.e, the anholonomicity) of the local orthonormal basis one starts with. Thus, it is
stressed out that although the gauge group T(1,3) is Abelian, it is not an internal-symmetry
group and acts on spacetime itself; therefore, the “abelianicity” is preserved and one can
consider a generic (anholonomic) internal frame.

Returning to the initial point of view, used in Chapter 3, i.e. T(1,3) as symmetry of
the internal space, the following problem arises:

• Usually, when one introduces tetrad, one starts from a coordinate basis {∂µ} which
commutes. The definition (3.109) goes in the opposite direction, starting from the
holonomic tetrad {∂a} and going to {hµ}. Therefore, the usual Cartan’s formulas
for tetrad should be used in reverse.

• The commutator [hµ, hν ] of eq. (3.113) can be calculated from the tetrad point
of view and from the gauge potential point of view. The latter corresponds to
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the equation (3.113) which means [∂a, ∂µ] = [Pa, ∂µ] = 0 because they belong to
different spaces, in contrast with tetrad point of view where there exists a relation
between internal and external space 6.

• Performing a local Lorentz transformation the tetrad haµ results different from the
eq. (3.114). Moreover, the explicit computation of the commutator of the covariants
derivative does not return the expression (3.117).

Let us start with the computation of commutator [hµ, hν ] in absence of inertial effect,
explaining internal degrees of freedom. It results:

[hµ, hν ]ψ = (hd µ∂dh
a
ν − hd ν∂dhaµ)∂a ≡ T aµν∂aψ (37)

=
[
(∂µx

d +Bd
µ)∂d(∂νx

a +Ba
ν)− (µ↔ ν)

]
∂aψ =

= (∂µB
a
ν − ∂νBa

µ)∂aψ+

+
[
(Bd

µ∂dB
a
ν −Bd

ν∂dB
a
µ) + (Bd

µ∂d∂νx
a −Bd

ν∂d∂µx
a)
]
∂aψ. (38)

Here T aµν∂a = (∂µB
a
ν−∂νBa

µ)∂a is obtained iff (Bd
µ∂dB

a
ν−Bd

ν∂dB
a
µ)+(Bd

µ∂d∂νx
a−

Bd
ν∂d∂µx

a) = 0. This means Ba
µ and ∂µxa are independent of internal coordinates and

it corresponds to choose the origin of tangent space coincident with the tetrad one, while
the anholonomy is given by the gauge potential: haµ = δaµ +Ba

µ.
Therefore, this is the link between the gauge viewpoint and the tetrad one. It is ex-
tremely delicate because of the “intimate” relation between the tangent space and the
internal gauge space.

Now, let us perform a local Lorentz transformation inside the internal space 7 :

hµ = haµ∂a → h̃aµΛ b
a ∂b (39)

Bµ → B̃µ = B̃a
µΛ b

a ∂b (40)
∂µ = ∂µx

a∂a → ∂µ(Λa
bx
b)Λ c

a ∂c = ∂µx
a∂a + Λ c

a ∂µ(Λa
b)x

b∂c =

= (∂µx
a − •

ωabµx
b)∂a. (41)

Therefore, if Ba
µ → Λa

µB
a
µ then the new tetrad is

haµ = ∂µx
a − •

ωabµx
b +Ba

µ =
•

Dµx
a +Ba

µ, (42)

that differs from (3.114) by the sign of the inertial connection.
To obtain the tetrad (3.114), taking into account that Ba

µ → Ba
µB

a
µ, one has to manu-

ally replace ∂a with ∂µxa+
•
ωabµx

b that is the anholonomic tetrad (3.89) iff {xa} is referred
6Tetrads by definitions are the set of coefficients {eaµ} ∈ GL(4,R), namely they are invertible.
7In tetrad formalism, one has eq.s (3.86 - 3.89): êa = e µ

a ∂µ, ê′a = e′
µ
a ∂µ and e µ

a = Λ b
a e
′ µ
b .

Therefore, the changing of the internal basis causes the changing of the tetrad and ∂µ is unchanged with
respect to this transformation. If one follows this procedure, considering hµ unchanged, the constraint
to express the covariant derivative with respect to the holonomic bases ∂a ≡ Pa makes sure there is no
change. Therefore the only thing one can do is to transform the inner coordinates into tetrad.
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to the anholonomic coordinate frame.
However, this ambiguity is the consequence to require that the internal space is described
by the holonomic bases {∂a} ≡ {Pa}.
Therefore, it would be more correct to redefine haµ with a generic spin connection, such
that the tetrad is invariant with respect to local Lorentz transformation.

According to who writes, what deceives is the following procedure: one defines

[hµ, hν ] = T aµνPa, (43)

requiring that

T aµν = ∂µB
a
ν − ∂νBa

µ +
•
ωabµB

b
ν −

•
ωabνB

b
µ =

•
DµB

a
ν −

•
DνB

a
µ, (44)

therefore, since [
•

Dµ,
•

Dν ]x
a = 0, it result

T aµν =
•

Dµh
a
ν −

•
Dνh

a
µ = ∂µh

a
ν − ∂νhaµ +

•
ωabµh

b
ν −

•
ωabνh

b
µ. (45)

However, it is not enough to say that

hµ = haµPa, (46)

because (here) one could not use the Cartan’s equation in the usual way and then, the
relation between hµ and haµ is not the usual for tetrads. The Mismatch can be observed
by explicitly calculating the commutator, assuming that haµ = ∂µx

a +
•
ωabµx

b +Ba
µ:

[hµ, hν ]f = hc µ∂c(h
a
ν∂aψ)− (µ↔ ν) =

= hc µ∂c(h
a
ν)∂aψ + hc µh

a
ν∂c(∂aψ)− (µ↔ ν) =

= (∂µx
c +

•
ωc dµx

d +Bc
µ)∂c(∂νx

a +
•
ωabνx

b +Ba
ν)∂aψ+

+ (∂µx
c +

•
ωc dµx

d +Bc
µ)(∂νx

a +
•
ωabνx

b +Ba
ν)∂d∂aψ − (µ↔ ν) =

= (∂µx
c +

•
ωc dµx

d +Bc
µ)∂c(∂νx

a +
•
ωabνx

b +Ba
ν)∂aψ − (µ↔ ν) =

=
[
∂µ

•
ωabνx

b +
•
ωabν∂µx

b + ∂µB
a
ν+

+
•
ωc dµx

d∂c∂νx
a +

•
ωc dµx

d∂c
•
ωabνx

b +
•
ωc dµx

d •
ωacν +

•
ωc dµx

d∂cB
a
ν+

+Bc
µ∂c∂νx

a +Bc
µ∂c

•
ωabνx

b +Bc
µ

•
ωacν +Bc

µ∂cB
a
ν
− (µ↔ ν)

]
∂aψ, (47)
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deleting the inertial spin curvature,

[hµ, hν ]ψ =
[ •
ωabν∂µx

b + ∂µB
a
ν+

+
•
ωc dµx

d∂c∂νx
a +

•
ωc dµx

d∂c
•
ωabνx

b +
•
ωc dµx

d∂cB
a
ν+

+Bc
µ∂c∂νx

a +Bc
µ∂c

•
ωabνx

b +Bc
µ

•
ωacν +Bc

µ∂cB
a
ν
− (µ↔ ν)

]
∂aψ =

=
[
∂µB

a
ν − ∂νBa

µ −
•
ωacµB

c
ν +

•
ωacνB

c
µ

]
∂aψ

+
[ •
ωabν∂µx

b +
•
ωc dµx

d∂c∂νx
a +

•
ωc dµx

d∂c
•
ωabνx

b+

+
•
ωc dµx

d∂cB
a
ν +Bc

µ∂c∂νx
a +Bc

µ∂c
•
ωabνx

b +Bc
µ∂cB

a
ν
− (µ↔ ν)

]
∂aψ =

=
[
∂µB

a
ν − ∂νBa

µ −
•
ωacµB

c
ν +

•
ωacνB

c
µ

]
∂aψ+

+
[ •
ωabν∂µx

b − •
ωabµ∂νx

b
]
∂aψ. (48)

The above expression presents the wrong sign for contractions between Ba
µ and ωabµ with

respect to (45) part and, moreover, considering •
ωabµ, Ba

µ and ∂µxa independent on that
the internal coordinates8, there is the presence of •

ωabν∂µx
b− •

ωabµ∂νx
b, which is in general

non-null.

Finally, a new internal basis is introduced in the eq. (3.124),

ha = dxa +
•
ωabµx

bdxµ +Ba
µdx

µ. (49)

The new basis ha = haµdx
µ is anholonomic and it is not related with hµ = haµ∂a, except

for haµ. There is a change of viewpoint, which now is the usual one: haµ is the usual
tetrad with non-trivial part as Ba

µ, which cannot be interpreted as connection 1-form
with value in the translations group.

8This guarantees the equivalence between the tetrad formalism and the gauge point of view.
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