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Introduction

Quantum mechanics is the physical theory which describes microscopic phe-
nomena, developed in the �rst half of the 20th century thanks to the work
of outstanding physicists such as Heisenberg and Schrödinger. It became
immediately extremely popular on one hand thanks to the excellent ac-
cord between experimental data and theoretical results and, on the other
hand, for its wide range of applications �elds, among which we �nd nu-
clear physics, condensed matter, quantum optics and, in more recent years,
cryptography and quantum computing. In its standard formulation, quan-
tum states are represented as trace class, semi-positive de�nite, trace one
operators on a proper separable complex Hilbert space, which represents
the quantum system, while observables are described as self-adjoint oper-
ators on the same Hilbert space. Nevertheless, this approach proved to
be strongly counter intuitive and very far from the standard mathemati-
cal language in which classical mechanics is usually described. Bearing in
mind this fact, the work of Wigner, Weyl, Moyal and Grönewold gave birth
to an alternative description of quantum mechanics, which tries to mimic
classical mechanics as best as possible. This phase space quantization is un-
doubtedly founded on the work of Wigner of 1932 [50], who was trying to
�nd the quantum corrections to the Boltzmann distribution at low temper-
atures. For this purpose, a suitable function on phase space associated with
a quantum state ψ was introduced, nowadays called the Wigner function
(or quasidistribution),

Wψ(q, p) =

∫
Rn×Rn

dx e−i2πp·xψ
(
q − x

2

)
ψ
(
q +

x

2

)
.

This function, although it could not be interpreted as a classical state since
it is not positive de�nite, has been the milestone of the description of quan-
tum mechanics on phase space [41, 42].
On the other hand, strictly related with Wigner's work, Weyl was looking
for a standard representation of classical observables in quantum mechan-
ics, a well known problem in the quantization of classical quantities, which
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is strictly related with the transition from a commutative theory (classi-
cal mechanics) to a non-commutative one (quantum mechanics). For this
purpose, Weyl introduced the following map∫

Rn×Rn
dqdp ei

π
~ (pq̂−qp̂)f(q, p), f ∈ L2(Rn × Rn),

often referred at as the Weyl transform, which give a non ambiguous quan-
tization rule. The link with the Wigner function is very strict, indeed it
turned out that they are, in a certain way, one the adjoint map of the other
[38, 52]. However, it comes without surprise that this is not the unique
possible association between classical and quantum objects (respectively,
we may �nd other dequantization maps in place of the Wigner function);
some other popular are also found for example in quantum optics and has
been applied pro�tably [41]. Nevertheless, the scheme developed from the
works of Weyl and Wigner (the Weyl-Wigner correspondence) is the only
one which reproduce faithfully the probability distributions in positions and
in momenta [41, 47].
The picture was completed in the following decade, when the works of
Grönewold [23] and Moyal [36] put things together introducing a suitable
product of functions, the ?-product, that allows the study of the dynamical
evolution of a quantum state from the point of view of the Wigner function.
In light of these facts, the phase space approach to quantum mechanics has
been applied in various �elds of research, for example in quantum transport
processes, and it can be fruitfully used to study the quantum-classical tran-
sition, which is governed by decoherence [47]. Anyhow, the Wigner function
founds its use in many areas other than quantum mechanics, such as clas-
sical optics [47] and signal analysis, where the Wigner function may be
used to represent time varying signals. Indeed, it is strictly linked with the
most fundamental tool of time-frequency analysis, the short time Fourier
transform, which allows a simultaneous analysis of a signal both in time
(positions) and in frequency (momenta) [22]. Moreover, the Wigner func-
tion (and, in general, the phase space approach) o�ers some insights in
wavelet theory too [2, 7].

In recent years, the interest in the Weyl-Wigner scheme has increased
drastically thanks to the development of quantum tomography, a technique
that allows a direct reconstruction of the Wigner function from experimen-
tal measurements [47].
Another important reason behind the popularity of the Wigner function
may be found in the birth of quantum information theory and quantum
computing, because �nite quantum systems can be described in terms of
a generalized phase space approach. For instance, in quantum information
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theory, quantum teleportation of �nite quantum states [37] can be studied
in terms of the Weyl-Wigner correspondence only. On the other hand, the
phase space approach o�ers an alternative point of view in quantum com-
puting too, where quantum algorithms, such as Grover's algorithm, can be
regarded as quantum maps and can be fruitfully studied in the classical
limit, thanks to the common playground between classical and quantum
o�ered by the Weyl-Wigner correspondence [11, 34]. Still this is not the
only remarkable �eld of research which has taken advantage of the Wigner
function: some problems in many-body physics can be described using a
suitable phase space approach [1, 25].
In order to successfully apply the Weyl-Wigner correspondence to such a
vast plethora of applications, this scheme needs to be suitably generalized
so that groups di�erent from Rn × Rn can be taken in consideration. In
particular, there are two turning points. The �rst step is to recognize
that harmonic analaysis on Abelian groups o�ers a reliable mathematical
background where the standard Wigner functions is naturally entailed. In-
deed, the whole framework is founded on the irreducible representations of
Rn × Rn, precisely the projective ones since its unitary representations are
physically trivial, because one-dimensional [18, 45]. Projective representa-
tions, more speci�cally, arise in a natural way in quantum mechanics due
to Wigner's theorem [35], which �xes simmetry groups to be represented
by unitary (or anti-unitary) operators up to phase factors.
Thence, the Wigner function can be introduced as a Fourier transform (the
symplectic Fourier transform [5, 7, 9]) of

B2(L2(Rn)) 3 ρ 7→ tr(S(·, ·)∗ρ) ∈ L2(Rn × Rn),

where S is an irreducible (in�nite dimensional) projective representation
of Rn × Rn which acts on L2(Rn). The latter map is usually called the
characteristic function for the analogies with probability theory [5], or the
dequantization map, since it associates a square integrable function to a
Hilbert-Schmdit operator. Then, the Weyl transform is recovered consider-
ing the adjoint of the Wigner function and the ?-product of functions can
be introduced as the dequantizer (Wigner function) of the product of the
quantized functions (by the Weyl map) [7]. The second fundamental step to
generalize the Weyl-Wigner correspondence is given by the notion of square
integrable representation. Indeed, it turns out that we can suitably de�ne a
dequantization map everytime the considered group admits a square inte-
grable (projective) unitary representation [2, 7, 9]. In particular, this map is
an isometry de�ned on the space of Hilbert-Schmidt operators on the space
of the representation, and it takes value in the space of square integrable
functions of the group considered. Moreover, it admits a pseudo-inverse
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map, a generalized Weyl transform, which can be regarded as a quantiza-
tion map. Square integrable representations, on the other hand, also allow
an extended study on coherent states, which can be generalized fruitfully
to various groups [2].

In this thesis work we will study the Weyl-Wigner scheme from the group
theoretical point of view, choosing to give a particular emphasis on discrete
phase space, introducing the Weyl-Wigner correspondence in analogy with
the standard correspondence that holds for Rn×Rn. Representation theory
of locally compact second countable groups and harmonic analysis will be
introduced so that we can give, as far as possible, a comprehensive intro-
duction to the subject. In particular, we will always discuss the continuous
phase space �rst; next, thanks to the tools developed with the help of rep-
resentation theory, a similar analysis shall be done for the discrete phase
space.
We will start noticing that the symplectic structure of the standard phase
space arises from the classi�cation of its projective representations, which
can be performed considering a suitable extended group whose unitary rep-
resentations can be completely analyzed [6, 45]. By an inversion procedure,
under suitable hypothesis, we disregard the central character (namely, the
irreducible representation of the centre of the extended group) and deduce
the projective representations seeked. In particular, the central extension
of Rn × Rn via R is the Heisenberg-Weyl group Hn(R), whose irreducible
unitary representations can be classi�ed by an application of the Mackey
machine - a standard technique to classify unitary representations of semi-
direct product groups - which also guarantee us that Stone-von Neumann's
theorem holds true [20]. Moreover, a rigorous formulation of the canonical
commutation relations (CCRs) is also available in terms of Weyl systems,
families of jointly irreducible representations which satisfy the CCRs in
their exponentiated version; these maps can also be regarded as projective
representations of Rn × Rn [4].
To generalize to the case of discrete phase space, the �rst step is to recog-
nize that Rn×Rn is a group given by the direct product of an Abelian group
for its unitary dual, namely G× Ĝ, where Ĝ is the group of all equivalence
classes of its irreducible unitary representations [18, 40]. Thus, one shall
demand that this group structure is preserved in order to have a suitable
phase space. Indeed, an interesting counterxample is given by the simplest
candidate to be a discretized phase space, namely Z × Z. Studying the
representations of its central extension via Z, which is given by H(Z), one
realizes that positions and momenta do not keep their dual role, while this
can be achieved with a group of the form G× Ĝ (with G Abelian). Hence,
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the same analysis will be performed for a discrete phase space ZN × ZN ,
which this time satisfy the condition G × Ĝ. However, some di�erences
arise. Firstly, the dimension of the irreducible unitary representations of
the central extension of ZN ×ZN via ZN - namely the discrete Heisenberg-
Weyl group H(ZN) - depends on the choice of the representation; in many
cases (when such dimension does not match the order of the con�gurations
space ZN) a rescaling of the quantum system considered is entailed in such
a choice.
Another important di�erence with the standard phase space arises in the
study of the discrete Wigner function. Indeed, in the standard case, it is
known that the Wigner function can be written in terms of phase-point
operators (the quantum counterpart of the phase space points) as [2]

W ρ
S (q, p) = tr(A(q, p)ρ), A(q, p) ∝ S(q, p)ΠS(q, p)∗,

where Π is the parity operator, S is a projective representation of the phase
space (continuous or �nite) and ρ is a quantum state on the space of the
representation. On the other hand, in the discrete case, this alternative
formulation of the Wigner function fails when the discrete phase space con-
sidered is of even order [34, 46, 53], since the phase-point operators form a
basis in the vector space of matrices on a N -dimensional Hilbert space only
if N is an odd number. In this sense, the discrete Wigner function intro-
duced by means of a square integrable projective representation of ZN×ZN

is slightly more general than the one de�ned in terms of phase-point oper-
ators.
The description of �nite quantum systems in terms of the Weyl-Wigner cor-
respondence �nd a natural application in the separability problem [29, 31].
This is a well known problem in quantum information theory, where vari-
ous important criteria - such as the PPT criterion - provide some conditions
which establish if a given state is separable. In particular, we will see that
the Weyl-Wigner correspondence o�ers an interesting alternative point of
view, founded on functions of (quantum) positive type.

We summarize these facts in the following chapters:

1. In the �rst chapter, we will review the most important facts con-
cerning representation theory of locally compact (second countable)
groups. We will �rstly introduce unitary representations (section 1.2),
together with the most important results of the theory, such as Schur's
lemma (theorem 1.2.7). We will also investigate the case of compact
groups (section 1.2.1), whose irreducible representations are �nite di-
mensional (theorem 1.2.11), while the reducible ones enjoy the com-
plete reducibility property (theorem 1.2.12). A general decomposition
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for arbitrary unitary representations will be discussed too, introducing
the direct integral of representations (section 1.2.2). Next, the Mackey
machine will be discussed (section 1.3.1) in order to characterize the
unitary representations of the Heisenberg-Weyl group, both continu-
ous and �nite. Nevertheless, the link between the Heisenberg-Weyl
group and the phase space (theorem 1.4.8) will also require a more
comprehensive discussion on the notion of projective representations
(section 1.4).

2. The second chapter is devoted at studying continuous and �nite phase
space. At �rst, we will introduce some elementary facts concerning the
Heisenberg-Weyl groups, pointing out its semi-direct product struc-
ture. Secondly, we will classify the multipliers of Rn × Rn (section
2.2.1); the corresponding projective representations will be obtained
classifying the unitary ones of its group extension, Hn(R), by an ap-
plication of the Mackey machine (section 2.2.2). Then, an abstract
formulation of the CCRs will be discussed introducing Weyl systems
(section 2.2.3) and Stone-von Neumann's theorem (theorem 2.2.3).
Next, we will focus on discrete phase space. Studying the representa-
tions of H(Z), we will observe that a general phase space shall be of
the form G×Ĝ, with G Abelian (section 2.3). Hence, we will focus on
the case of ZN × ZN and we will retrace the same classi�cation done
for Rn × Rn up to Stone-von Neumann's theorem, which holds in the
�nite case too (section 2.4).

3. In the third chapter we study harmonic analysis on locally compact
(second countable) Abelian groups. In the �rst part the Fourier trans-
form will be introduced by virtue of functions of positive type and
group algebra (section 3.1); then, we will face the most important
theorems such as the inversion formulas (3.3). Finally, the Fourier-
Plancherel operator (theorem 3.3.9) and Pontrjagin's duality theorem
(theorem 3.3.12) will be discussed (section 3.3.1).
In the second part of the chapter we de�ne the most important tools
to deal with the Weyl-Wigner correspondence. Hence, the symplec-
tic Fourier transform (section 3.4.1), the twisted convolution (section
3.4.2) and time-frequency analysis (section 3.4.3) will be introduced.
At last, we will deal with square integrable representations and the
wavelet transform will be de�ned (section 3.5), and we will discuss
Du�o-Moore's theorem (theorem 3.5.2).

4. In the last chapter we study the Weyl-Wigner correspondence. The
�rst paragraph (section 4.1) is dedicated to the general formulation of
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the Wigner (and the Weyl) transform on groups which admit square
integrable projective representations. Then, restricting our attention
to unimodular groups, we will study the ?-product of functions in-
duced by the Weyl-Wigner correspondence (section 4.1.1).
In the second part of the chapter the general framework will be ap-
plied to continuous and discrete phase space. Firstly, the standard
Wigner function will be de�ned as the symplectic Fourier transform
of the Wigner transform. Some of its most important properties will
be examinated too. Then, the discrete phase space case will be stud-
ied (section 4.3), pointing out analogies and di�erences with respect
to the standard phase space. Lastly, functions of quantum positive
type will be analyzed, with a particular attention to the discrete case,
so that the separability problem can be discussed from the point of
view of the Weyl-Wigner correspondence (section 4.4).



Chapter 1

Basic facts on representation

theory

In this chapter we give a brief introduction to representation theory of lo-
cally compact second countable (l.c.s.c. in brief) groups, in order to analyze
the irreducible representations of the Heisenberg-Weyl groups and the phase
space in the future. Naturally, this is an extremely vast subject, thus we
will recall just the most elementary facts of our interest.
The chapter is structured as follows. Firstly, we will de�ne the strong and
weak operator topologies so that we can introduce the concept of unitary
representations of a l.c.s.c. group and the most important facts, such as
Schur's lemma. We also brie�y study the case of compact groups and the
celebrated Peter-Weyl's theorem, which concerns the decomposition into
direct sum of irreducible representations of an arbitrary representation of a
compact group. Then we will introduce the direct integral decomposition of
a unitary representation, which is the unique decomposition into irreducible
representations that holds in the most general case.
Next, we will focus on the induced (unitary) representations of locally com-
pact groups, introducing the Mackey machine, by means of which we can
analyze the irreducible representations of semi-direct product groups.
Finally, we will spend some time with the theory of projective representa-
tions of groups, which are fundamental in quantum mechanics and will be
extremely useful when we will deal with Weyl systems.

1.1 Unitary operators

To introduce unitary representations, we recall some basic facts concerning
unitary operators, in particular about two topologies which will play an

11
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important role soon.
Let H be a Hilbert space of arbitrary dimension and denote with ‖·‖ the
usual norm on H. In the following we will denote with B(H) the set of
bounded linear operators on H.

De�nition 1.1.1. A bounded linear operator U ∈ B(H) is unitary if it is
an isometry, i.e. ‖ψ‖ = ‖Uψ‖ ∀ψ ∈ H, and RanU = H.

U(H) ≡ {U ∈ B(H) | U unitary} will denote the group of all unitary
operators on H. For the applications is worth recalling the fact that the
following assertions are equivalent [39]:

1. U is a unitary operator.

2. RanU = H and 〈Uφ, Uψ〉 = 〈φ, ψ〉 ∀φ, ψ ∈ H.

3. U∗U = UU∗ = Id, where Id denotes the identity operator in H.

4. U∗ is a unitary operator.

As an immediate consequence we have that U is bijective and U−1 = U∗.
We observe that U(H) can be equipped with the relative topology with re-
spect to B(H), i.e. the operator norm topology, but this choice is too strict
for physical application. Indeed, if we consider for example a one-parameter
group of unitary operators R 3 t 7→ e−itH ∈ U(H), this group is continuous
in the norm topology if and only if H is a bounded operator [39]. Hence,
if we require our operators to be continuous in the norm topology, we can-
not consider unitary transformations associated with unbounded operators.
Therefore it is useful to de�ne the following topologies:

1. The strong topology : it is the initial topology induced by the following
maps:

Eφ : B(H)→ H, Eφ(T ) := Tφ, φ ∈ H. (1.1)

We have the following equivalence for strong convergence [39]:

Tα
s−→ T ⇐⇒ ‖Tαψ − Tψ‖ → 0 ∀ψ ∈ H, (1.2)

where {Tα}α is a net in B(H) and the 's' �means �strong convergence�.

2. The weak topology : it is the initial topology induced by the following
maps:

Eψ,φ : B(H)→ C, ψ, φ ∈ H, Eψ,φ(T ) := 〈φ, Tψ〉. (1.3)

Weak convergence is equivalent to require that [39]

|〈φ, Tαψ〉 − 〈φ, Tψ〉| → 0 ∀φ, ψ ∈ H. (1.4)
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We observe that these topologies are weaker than the norm topology, indeed
the map B(H) × B(H) 3 (A,B) 7→ AB ∈ B(H) is continuous in the norm
topology, but it is not in the weak and in the strong topology [39].

If we restrict our attention to U(H), it is worth mentioning that, in such
a case, the weak and the strong topologies coincide [39]. Lastly, recall that
U(H) equipped with strong topology is a completely metrizable space.

1.2 Unitary representations

De�nition 1.2.1. Let G be a l.c.s.c. group. The map π : G → U(H) is a
unitary representation if it is a strongly continuous homomorphism.

In order to have proper representations, we demand H to be a nonzero
space; the latter is usually called the representation or carrier space and its
dimension is called the dimension of the representation. Observe that, due
to unitarity, π(g−1) = π(g)−1 = π(g)∗.
It is also worth mentioning that a group homomorphism π : G → U(H)
is strongly continuous i� it is weakly Borel, namely the map G 3 g 7→
〈φ, π(g)ψ〉 ∈ C is a Borel map ∀φ, ψ ∈ H [45].

De�nition 1.2.2. Let π1 : G → U(Hπ1), π2 : G → U(Hπ1) be two unitary
representations. We will say that π1, π2 are intertwined if there exists a
bounded linear operator T : Hπ1 → Hπ2 such that Tπ1(g) = π2(g)T ∀g ∈ G,
operator that will be called the intertwining operator.

We will denote with C (π1, π2) the set of all the intertwining operators
between π1 and π2; we also observe that if T ∈ C (π1, π2), then T ∗ ∈
C (π2, π1), because

T ∗π2(g) = (π2(g−1)T )∗ = (Tπ1(g−1))∗ = π1(g)T ∗.

De�nition 1.2.3. We will say that the representations are unitarily equiv-
alent if C (π1, π2) contains a unitary operator U , so that π2 = Uπ1U

∗. The
set C (π) ≡ C (π, π) will be called the commutant or centralizer of the rep-
resentation π.

Example 1.2.4. Let us consider the left and right translations (Lgf)(h) :=
f(g−1h), (Rgf)(h) := f(hg), where f : G→ C.
Let H = L2(G, λ,C), where λ is the left Haar measure on G. The map

πL : G→ U(L2(G, λ,C)), (πL(g)f)(h) := f(g−1h) (1.5)
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is a unitary representation, called the left regular representation. Indeed we
have:

(πL(g1g2)f)(h) = f(g−1
2 g−1

1 h) = πL(g2)f(g−1
1 h) = πL(g1)πL(g2)f(h).

Moreover, it is unitary, because Lg is a surjective map and πL is an isometry
due to the left-invariance of the Haar measure.
In a similar way, (πR(g)f)(h) := f(hg), where f ∈ L2(G, ρ,C) and ρ is
the right Haar measure on G, is a representation, called the right regular
representation.
We can also de�ne a right regular representation on L2(G, λ,C) thanks to
the modular function, as

π̃R : G→ U(L2(G, λ,C)), (π̃R(g))f(h) := ∆(g)1/2f(hg).

Obviously, we can do the analogous on L2(G, ρ,C).
The right regular representations πR and π̃R are unitarily equivalent. In-
deed, recalling that the map M2 : L2(G, λ,C) → L2(G, ρ,C) such that
(M2f)(g) := ∆(g)1/2f(g) is an isomorphism between Banach spaces [18],
by direct calculation we have that(

M−1
2 πR(g)M2f

)
(h) = ∆(g)1/2f(hg) = (π̃R(g)f) (h).

A similar proof will show that π̃L and πL are unitarily equivalent.

We can now discuss of the notion of irreducibility of unitary represen-
tations.

De�nition 1.2.5. If π : G → U(Hπ) is a unitary representation, a closed
subspace I ≤ Hπ is invariant with respect to π if π(g)I ⊆ I ∀g ∈ G.

We notice that, if I 6= 0, the strongly continuous homomorphism

πI : G→ U(Hπ) | πI (g)ψ := π(g)ψ ∀ψ ∈ H (1.6)

is a unitary representation, called the subrepresentation of π.

De�nition 1.2.6. We will say that the unitary representation π : G →
U(H) is reducible if admits a non-trivial invariant subspace, i.e. there exists
an invariant subspace I ≤ Hπ di�erent from H and {0}; otherwise the
representation is called irreducible.
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An easy way to obtain reducible representations is via a direct sum of
representations: let {πi}i∈I be a sequence of unitary representation with
carrier space Hπi . The map

π :=
⊕
i∈I

πi | π(g)(
∑
i∈I

ψi) :=
∑
i∈I

πi(g)ψi, (1.7)

where ψi ∈ Hπi is called the direct sum representation. This representation
is reducible, since each Hπi is an invariant subspace for π; therefore each πi
is a subrepresentation of π. Another useful fact worth mentioning is a way
to decompose the representation space. Indeed it is easy to prove that if
I is an invariant subspace of H, then I ⊥ is invariant too [18]. Therefore,
if π is a reducible representation with invariant subspace I , we can write
π = πI ⊕πI⊥ , where πI and πI⊥ denote the respective subrepresentations
on I and I ⊥.
We can now introduce Schur's lemma, one of the most important results in
unitary representation theory [18]:

Theorem 1.2.7 (Schur's lemma). Let π1, π2, π be unitary representations
of a l.c.s.c. group G. Then the following sentences hold:

• π is irreducible i� C (π) = {cId}c∈C.

• Suppose π1, π2 are irreducible. If they are also unitary equivalent, then
C (π1, π2) is one-dimensional. Otherwise, the commutant is empty.

Proof. Suppose �rstly that M is a closed subspace of Hπ and let P be
the orthogonal projection onto M. If P ∈ C (π) and v ∈ M, then we
have π(g)v = π(g)Pv = Pπ(g)v ∈ M, hence M is invariant. Conversely,
if M is invariant, we have π(g)Pv = π(g)v = Pπ(g)v if v ∈ M and
π(g)Pv = 0 = Pπ(g)v if v ∈ M⊥. Hence P ∈ C (π). Therefore we have
proven thatM is invariant i� P ∈ C (π).
Now let us suppose π is a reducible representation. Then C (π) contains a
nontrivial projections. Conversely, if T ∈ C (π) where T 6= cId, then the
self-adjoint operators A = 1

2
(T + T ∗) and B = 1

2i
(T − T ∗) are elements of

C (π) and at least one of them is di�erent from a multiple of the identity
operator. Suppose for example A 6= cId. Thus C (π) is reducible, because it
contains nontrivial projections. Indeed, spectral theory guarantees us that
every operator that commutes with A, commutes with all the projections
χE, E ⊂ R [18, 39], where χE is the characteristic function of E.
Suppose now T ∈ C (π1, π2), hence T ∗ ∈ C (π2, π1). Then we have T ∗T ∈
C (π1), because

TT ∗π2 = Tπ1T
∗ = π2TT

∗.
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A similar argument shows that T ∗T ∈ C (π1), so we have T ∗T = cId and
TT ∗ = c′Id, hence we must have T = 0 or c−1/2T is a unitary operator.
Thus if π1 and π2 are inequivalent, C (π1, π2) = {0} and it consists of
scalar multiples of unitary operators. Therefore, if T1, T2 ∈ C (π1, π2), then
T−1

2 T1 = T ∗2 T1 ∈ C (π1), so we have T−1
2 T1 = cId, so dim C (π1, π2) = 1.

The following corollary is fundamental in physics:

Corollary 1.2.8. If G is an Abelian group, its irreducible unitary repre-
sentations are one-dimensional.

Proof. If π : G → U(H) is a unitary irreducible representation, then
π(g1)π(g2) = π(g2)π(g1), which means π(G) ⊆ C (π). Thus, we have π(g) =
cgId ∀g ∈ G, therefore every invariant subspace is one-dimensional.

As a last topic of this section, we present a �rst way to decompose a
unitary representation into a direct sum of cyclic representations.

De�nition 1.2.9. Let π : G→ U(Hπ) be a unitary representation and let
ψ ∈ Hπ. Then

Iψ := clos(span{π(g)ψ | g ∈ G}) (1.8)

is a closed subspace of Hπ, called the cyclic subspace of Hπ generated by
ψ.

We notice that Iψ is an invariant subspace. Indeed let us consider∑
n∈N cnπ(gn)ψ,

∑
n∈N cnπ(ggn)ψ ∈ Iψ. Then we have

π(g)(

‖·‖∑
n∈N

cnπ(gn)ψ) =

‖·‖∑
n∈N

cnπ(ggn)ψ ∈ Iψ,

where the apex means the sum converges in the norm sense. If Iψ is a cyclic
subspace such that Iψ = Hπ, then we will say that ψ is a cyclic vector and
the corresponding representation will be called the cyclic representation of
ψ.

Theorem 1.2.10. A unitary representation π : G → U(H) can be written
as a direct sum of cyclic representations.

Proof. Let us consider the following poset of cyclic subspaces:

{I ′
β}β∈B ≤ {Iα}α∈A ⇐⇒

⊕
β∈B

I ′
β ⊂

⊕
α∈A

Iα. (1.9)
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Now let {{I (i)
αi }α∈A}i∈I be a chain. Then it is possible to show that⋃

i∈I
⊕

αi∈Ai I
(i)
αi = H0 is an upper bound for that chain. By Zorn's

lemma1, there will exist a maximal family of mutually orthogonal sub-
spaces, denoted by {Iα}α∈A. Now suppose there exists ψ ∈ H, ψ 6= 0
such that ψ ⊥ Iα ∀α ∈ A. Hence Iψ := span{π(g)ψ | g ∈ G} is or-

thogonal to Iα ∀α ∈ A. Therefore we have ψ ∈
(⊕

α∈A Iα

)⊥
and, by

invariance of each Iα, Iψ ⊂
(⊕

α∈A Iα

)⊥
, but this is in contradiction with

the maximality of {Iα}α∈A. Hence we must have

Hπ =
⊕
α∈A

Iα π =
⊕
α∈A

πIα . (1.10)

1.2.1 Unitary representations of compact groups

We now discuss the case of compact groups, whose representations possess
the �complete reducibility� property, namely an arbitrary representation
can be decomposed into a direct sum of irreducible ones.
Let G be a compact group with Haar measure dg normalized in such a way
that

∫
G
dg = 1. In the following Ĝ will denote the set of equivalence classes

of irreducible representations of G, and will be called the dual of G. We
can observe that, in the compact case, the only important representations
are the unitary ones. Indeed, if V : G→ GL(V) is a representation, where
V is a �nite dimension vector space and 〈·, ·〉0 is a scalar product in V, we
can de�ne the inner product

〈φ, ψ〉 :=

∫
G

dg〈V (g)φ, V (g)ψ〉0 (1.11)

with respect to V is unitary. Indeed,

〈V (h)φ, V (h)ψ〉 =

∫
dg〈V (hg)φ, V (hg)ψ〉0

=

∫
dg〈V (g)φ, V (g)ψ〉0 = 〈φ, ψ〉,

where we have used the left invariance of the Haar measure g 7→ h−1g.
Lastly, with respect to the topology induced by 1.11, V is still continuous
[10].

1 Suppose a partially ordered setX, i.e. a set endowed with a re�exive, antisymmetric
and transitive binary relation, has the property that every chain in X, that is a totally
ordered subset, has an upper bound in X. Then X contains at least one maximal element
[15].
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For each unitary representation U : G→ U(H), let us consider a vector
ψ ∈ H : ‖ψ‖ = 1 and de�ne the following operator:

TU :=

∫
G

dg〈U(g)ψ, ·〉U(g)ψ ≡
∫
G

dgU(g) |ψ〉 〈ψ|U(g)∗. (1.12)

Observe that TU is a positive linear operator:

〈TUφ, φ〉 =

∫
〈φ, U(g)ψ〉〈U(g)ψ, φ〉dx =

∫
|〈φ, U(g)ψ〉|2dx ≥ 0,

Hence, TU is self-adjoint, since it is positive [39]. Moreover, it belongs to
C (U). Indeed, let g′ ∈ G and ψ ∈H . Then we have

U(g′)TUφ =

∫
G

dg〈U(g)ψ, φ〉U(g′)U(g)ψ

=

∫
G

dg〈U(g′)U(g)ψ,U(g′)φ〉U(g′g)ψ

=

∫
G

〈U(g)ψ,U(g′)φ〉U(g)ψ = TUU(g′)φ,

(1.13)

where we have used the unitarity of U(g) and the left invariance of the
Haar measure with the substitution g′g 7→ g. Lastly, we notice that TU is a
compact operator [18, 10].
As a consequence, if π is an irreducible unitary representation, then Tπ =
cId, c > 0. Thus, we deduce the representation space Hπ must be �nite
dimensional, because the identity operator is not a compact operator in
in�nite dimension. Therefore, we have proven that the following fact holds
true:

Theorem 1.2.11. If G is a compact group, every irreducible unitary rep-
resentation π : G→ U(Hπ) is �nite dimensional.

By the properties of the operator 1.12 and an application of Zorn's
lemma as in the proof of 1.2.10, we also have that the following fundamental
fact holds [18]:

Theorem 1.2.12. If G is a compact group, its unitary representations are
fully reducible. Namely, if U : G → U(H) is a unitary representation, we
have that

U =
⊕
α∈A

πα, H =
⊕
α∈A

Hπα , (1.14)

where πα is an irreducible representation of G on Hπα.
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Such decomposition is far from being unique. Indeed, if we consider the
trivial representation ι : G 3 g 7→ Id ∈ U(H), dimH > 1, any orthonormal
basis of H gives a decomposition of H into irreducible invariant subspaces.
Anyway, there is a way to make the decomposition unique in the following
sense. We will denote with irrsp(U) the set of all the invariant subspaces
I of U such that U |I are irreducible. Moreover, let

Mπ ≡M[π](U) := spanC{I ∈ irrsp(U) | U |I ∈ [π]} (1.15)

be the set of complex linear combination of I such that the subrepresen-
tation of U is still equivalent to the irreducible representation π. Then, it
can be shown that Mπ ⊥Mπ̃ if [π] 6= [π̃] and

H =
⊕
[π]∈Ĝ

Mπ, Mπ =
⊕
α∈A

Lα, (1.16)

where Lα is an irreducible subspace of Mπ (the decomposition of Mπ is
never unique, unless we have only one addend in the direct sum) [18].
With these notations, it is possible to prove that the cardinality of A is
the same for all the decompositions 1.16; moreover, it is also true that
](A) ≡ mult(π, U) = dim(C (π, U)) [18].

We now sketch the contents of Peter-Weyl's theorem, which concerns
the link between the aforementioned decomposition and the left regular
representation πL. Let U : G→ U(H) a unitary representation. The maps

cUψ,φ : G 3 g 7→ 〈U(g)ψ, φ〉 ∈ C, φ, ψ ∈ H (1.17)

are called matrix elements or coe�cient functions of U . Then, the set

EU := span({cUψ,φ | φ, ψ ∈ H}) (1.18)

is a subspace of Lp(G) for each p [18, 10] and depends only on the unitary
equivalence class of U . Indeed,

U ′(g) = TU(g)T−1 =⇒ 〈U(g)ψ, φ〉 = 〈U ′(g)Tψ, Tφ〉.

The latter set is also an invariant subspace for the left (and right) regular
representation [18]. The coe�cients 1.17 will give us an orthonormal basis
in L2(G). Indeed, the following orthogonality relations discovered by Schur
hold true [18]

Theorem 1.2.13. Let π, π′ two irreducible representations of a compact
group G and let us consider the associated subspaces Eπ,Eπ′ of L2(G). Then
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• If [π] 6= [π′], then Eπ ⊥ Eπ′.

• If {ψj} is an orthonormal basis forHπ, then {
√
dππi,j | i, j = 1, . . . , dπ}

is an orthonormal basis for Eπ, where dπ = dim(Hπ) and πi,j =
〈π(g)ψi, ψj〉.

Moreover, if φ1, φ2, ψ1, ψ2 ∈ Hπ, the following orthogonality relations hold:∫
dg〈φ1, π(g)ψ1〉〈π(g)ψ2, φ2〉 = 〈cπψ1,φ1

, cπψ2,φ2
〉L2(G) = d−1

π 〈φ1, φ2〉〈ψ2, ψ1〉.
(1.19)

In section 3.5 we will introduce square integrable representations, which
satisfy some orthogonality relations similar to 1.19; these representations
will play a fundamental role in the construction of quantum mechanics on
phase space.

Let now ψ ∈ H be a nonzero normalized vector: ‖ψ‖ = 1. The isometry

Wπ
ψ : H 3 φ 7→ d1/2

π cπψ,φ ∈ L2(G) (1.20)

intertwines π with the left regular representation of G [18]. Indeed, let us
consider the following equivalence:

cπψ,πL(g)φ = 〈π(·)ψ, πL(g)φ〉 = 〈πL(g−1)π(·)ψ, φ〉.

Then we have
cπψ,π(g)φ = 〈π(g−1(·))ψ, φ〉 = πL(g)cπψ,φ.

We now observe the following facts [18]:

• RanWπ
ψ ≤ Eπ is an invariant subspace of πL. The restriction πL|Eπ is

unitarily equivalent to π.

• If ψ1, ψ2 ∈ H are such that ψ1 ⊥ ψ2, then RanWπ
ψ1
⊥ RanWπ

ψ2
.

Therefore if we consider an orthonormal basis {ψj}dπj=1 in H, we have the
following decomposition:

Eπ =
dπ⊕
j=1

Ran(Wπ
ψj

), (1.21)

where dim Ran(Wπ
ψj

) = dπ ∀j.
With these ingredients, we can enounce the Peter-Weyl's theorem [18]:
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Theorem 1.2.14 (Peter-Weyl). Let G be a compact group and let π : G→
U(Hπ) an irreducible representation. Let us consider an orthonormal basis
{ψj}dπj=1 in Hπ. Then we have

L2(G) =
⊕
[π]∈Ĝ

Eπ =
⊕
[π]∈Ĝ

(
dπ⊕
j=1

Ran(Wπ
ψj

)

)
. (1.22)

Moreover,
{d1/2

π πjk ≡ cπψπj ,ψπk | j, k = 1, . . . , dπ, [π] ∈ Ĝ}, (1.23)

is an orthonormal basis in L2(G) and Ran(Wπ
ψj

) is invariant under the
action of the left regular representation. Lastly, de�ning the restriction
π(j) := π|Ran(Wπ

ψj
), we have the following de�nition for the left regular rep-

resentation:

πL =
⊕
[π]∈Ĝ

(
dπ⊕
j=1

π(j)

)
, (1.24)

where π(j) is unitarily equivalent to π for each j. Therefore, each [π] occurs
with multiplicity dπ in the decomposition 1.24.

Example 1.2.15. We want to sketch the representation theory of SU(2),
i.e. the group of unitary matrices whose determinant is 1. Recall that the
most general element in SU(2) is of the form

U =

(
a b
−b̄ ā

)
, a, b ∈ C, |a|2 + |b|2 = 1. (1.25)

Let P be the space of the complex polynomials in two variables P (z, w) =∑
j,k cjkz

jwk and let Pm be the space of homogeneous polynomials of de-
gree m, i.e. the space of the polynomials which can be written as P =∑m

j=1 cjz
jwm−j. If we look at P as a subset of L2(σ), where σ is the surface

measure of the unit sphere S3 such that σ(S3) = 1, we can endow P with
the following inner product:

〈P,Q〉 =

∫
S3

QP̄dσ, (1.26)

with respect to P is not complete, but so it is each Pm, because they are
�nite dimensional. Observe that a suitable choice of orthonormal basis of
Pm is {A(m, j)zjwm−j} [18], where A is a normalization constant depending
on m and j. We observe that

U

(
z
w

)
=

(
az + bw
−b̄z + āw

)
,
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where (z, w) ∈ C2 and U is as in 1.25. Then we can de�ne the representation
π of SU(2) onto P as follows:

(π(U)P )(z, w) := P (U−1(z, w)) = P (āz − bw, b̄z + aw). (1.27)

Pm is invariant under π by de�nition, hence we can consider the subrep-
resentation πm ≡ π|Pm : SU(2) → Pm, which is unitary because we are
considering a rotational invariant inner product. For each m ≥ 0, πm is
an irreducible representation and {πm}m form a complete list of irreducible
representations of SU(2). Lastly, the matrix coe�cients of these represen-
tations {πj,0m | 0 ≤ j ≤ m} span Pm [18]. If we compute the matrix elements
of πm with respect to the basis {A(m, j)zjwm−j}, we see that the functions

πj0m (a, b) = A(m, j)bjam−j, 0 ≤ j ≤ m (1.28)

span Pm [18].

1.2.2 Direct integral of representations

We now brie�y review how the decomposition of a generic unitary represen-
tation of a l.c.s.c. group into a direct integral of irreducible representations
is performed. The construction requires several ingredients concerning mea-
sure theory which are beyond our aims, so we will sketch only the most basic
facts.
Let (A,M) a measurable space. The family of nonzero separable Hilbert
spaces {Hα}α∈A will be called �eld of Hilbert spaces over A and the map
f : A→

∏
α∈AHα will be called vector �eld over A. Due to separability, we

can consider the countable set {ej(α)}∞j=1 in H; the couple ({Hα}, {ej(α)})
will be called measurable �eld of Hilbert spaces if:

1. The maps A 3 α 7→ 〈ej(α), ek(α)〉α ∈ C, where the subscript means
the scalar product is in the α's Hilbert space, are measurable for all
j, k ∈ N.

2. span{ej(α)}∞j=1 is dense in Hα for each α.

We will say the vector �eld f on A is measurable if, given a measurable
�eld of Hilbert spaces ({Hα}, {ej(α)}) on A, the map f 7→ 〈f(α), ej(α)〉α is
a measurable function on A for each j. We also notice that, if f and g are
two measurable vector �elds, then 〈f(α), g(α)〉α is a measurable function
[18]. This fact allows us to give the following
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De�nition 1.2.16. Suppose ({Hα}, {ej(α)}) is a measurable �eld of Hilbert
spaces over A and suppose µ is a measure on A. The direct integral of the
Hα with respect to the measure µ, denoted as

∫ ⊕Hαdµ(α), is the space of
measurable vector �elds f on A such that

‖f‖2 =

∫
‖f(α)‖2

αdµ(α) <∞, (1.29)

where ‖·‖α denotes the α's Hilbert space norm.

In particular, such space is complete under the following inner product
[18], [19]:

〈f, g〉 :=

∫
〈f(α), g(α)〉αdµ(α), (1.30)

hence it is an Hilbert space2.

Example 1.2.17. Let H be a separable Hilbert spaces and let {ej} be an
orthonormal basis in H. The constant �eld is a measurable �eld of Hilbert
spaces over A, where we have set Hα = H and ej(α) = ej ∀α ∈ A. Hence∫ ⊕Hαdµ(α) is the space of measurable square integral functions from A to
H with respect to µ, sometimes denoted by L2(A, µ,H).

Example 1.2.18. Now we can see that the direct integral is a correct
generalization of the direct sum of Hilbert spaces. Indeed, suppose A is a
discrete set so that its σ-algebra is simply the power set P(A) and let {Hα}
be an arbitrary �eld of Hilbert spaces over A. For each α ∈ A, {ej(α)}d(α)

j=1 is
an orthonormal basis for Hα. {Hα} is a measurable �eld if we set ej(α) = 0
for each j > d(α). Now, because A is discrete, we can choose µ as the
counting measure on A, hence

∫ ⊕Hαdµ(α) is nothing but
⊕

α∈AHα.

Let now ({Hα}, {ej(α)}) be a measurable �eld of Hilbert spaces over
the parameter space A. The element T : A → Πα∈AB(Hα) is called �eld
of operators over A. We will say T is measurable if the maps α ∈ A 7→
T (α)f(α) ∈ Πα∈AHα are measurable.
Let now µ be a measure on A with respect to the measurable �eld of op-
erators T is such that ‖T‖∞ < ∞. Hence ‖T (α)f(α)‖α ≤ ‖T‖∞‖f(α)‖α,
which means T de�nes a bounded operator on

∫ ⊕
A
Hαdµ(α), denoted by∫ ⊕

T (α)dµ(α), and called the direct integral of the �eld T .

2 This de�nition depends on the equivalence class of the measure µ, indeed, if µ′

is another measure on A such that µ, µ′ are mutually absolutely continuous, the map
f 7→

√
dµ/dµ′ is a unitary isomorphism between

∫ ⊕Hαdµ(α) and
∫ ⊕Hαdµ

′(α) [18].
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De�nition 1.2.19. Suppose G is a l.c.s.c. group and let πα be a unitary
representation of G on Hα, where α ∈ A. Suppose the map α 7→ πα(g) is
a measurable �eld of operators for each g ∈ G. The set {πα}α∈A is called
measurable �eld of representations of G.

Since the πα are unitary representations, we can form the direct integral

π(g) :=

∫ ⊕
πα(g)dµ(α), (1.31)

which is still a unitary representation of G on
∫ ⊕Hαdµ(α) [18]. 1.31 is

called the direct integral of the representations πα. Then, the following fact
holds:

Theorem 1.2.20. If G is a l.c.s.c. Abelian group and if U : G→ U(H) is
a unitary representation, then U is unitarily equivalent to a direct integral
of irreducible unitary representations.

When G is non Abelian, we must ful�ll stricter conditions. In particular,
if π is a unitary representation of a l.c.s.c. group G, we will say that π is
primary if C (π) coincides with scalar multiples of the identity (hence every
irreducible representation is primary thanks to Schur's lemma). If every
primary representation of G is a direct sum of copies of some irreducible
representation, then G is a type I group. In this setting, it is possible to
prove that, in order to have a unique direct integral decomposition (up to
unitarily equivalence) of a unitary representation of a group G, G shall be a
type I group [18], otherwise terrible things happen. Indeed, in such a case,
a primary representation σ may be such that

σ ∼
∫ ⊕

παdµ(α) ∼
∫ ⊕

π̃βdν(β), (1.32)

where all the πα's and the π̃β's are irreducible and no πα is equivalent to
any π̃β [18]. Thus, the direct integral decomposition would not be unique
anymore.

1.3 Induced representations

In this section we show a way to build up unitary representations of a locally
compact (second countable) group starting from unitary representations of
its closed subgroups.

Let G be a locally compact group, H a closed subgroup and σ : H →
U(Hσ) a unitary representation of H. We denote with q the canonical
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quotient map of G on G/H. We will suppose G/H admits a Radon measure
µ, which is invariant under the following left-action of G on G/H [18, 28]:

g[g̃H] := (gg̃)H, g ∈ G, g̃H ∈ G/H. (1.33)

The inducing construction starts considering the following space of function:

F0 := {f ∈ C(G,Hσ) | q(supp f) compact, f(gξ) = σ(ξ−1)f(g), (1.34)

g ∈ G, ξ ∈ H},

where C(G,Hσ) denotes the space of continuous functions from G to Hσ.
Observe that all the functions of the form

fα(g) :=

∫
H

σ(h)α(gh)dh, (1.35)

where α : G→ Hσ is continuous with compact support, are in F0. Indeed,
because q(supp fα) ⊂ q(suppα), we have q(supp fα) is compact. Moreover,
by de�nition,

fα(gξ) =

∫
H

σ(h)α(gξh)dh =

∫
H

σ(ξ−1h)α(gh)dh = σ(ξ−1)fα(g),

where we have used the left-invariance of dh and the substitution h 7→ ξ−1h,
thus f ∈ F0. We can also prove the converse, but we have to recall the fol-
lowing fact: if f ∈ Cc(G), there exists a unique function f̂ ∈ Cc(G/H) such
that f̂(gH) =

∫
H
f(gh)dh ∀g ∈ G [28].

Therefore, if φ ∈ Cc(G/H), there exists f ∈ Cc(G) such that f̂ = φ [28]
(the correspondence is still true if we replace Cc(G/H) with C+

c (G/H) and
Cc(G) with C+

c (G), where C+
c (G) denotes the set of strictly positive func-

tion with compact support [18]).
Now let us suppose f ∈ F0. Then there exists φ ∈ Cc(G) such that∫
H
φ(gh)dh = 1 for g ∈ supp f . If we set α = φf , we have

fα(g) =

∫
H

φ(gh)σ(h)f(gh)dh =

∫
H

φ(gh)f(g)dh = f(g),

thus f = fα. We also remark these functions are left uniformly continuous
[28].

Now we can naturally consider an action of G on F0 by left translation
f(h) 7→ Lgf := f(g−1h). Indeed, Lhf ∈ F0, because

Lhf(gξ) = f(h−1gξ) = σ(ξ−1)f(h−1g) = σ(ξ−1)Lhf(g).
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Moreover, recall these maps are surjections, hence we have to �nd an inner
product with respect to such translations are isometries in order to obtain
unitary operators. If f, g ∈ F0, we observe that 〈f(g), h(g)〉σ, where σ
denotes the inner product in Hσ, depends only on the coset q(g) of g since
σ is unitary, thus it de�nes a function in Cc(G/H). Recalling that if µ is
a left Haar measure then

∫
fdµ > 0 ∀f ∈ C+

c (G) [18], we can de�ne the
following inner product in F0:

(f, g) :=

∫
G/H

〈f(g), h(g)〉σdµ(gH), (1.36)

which is preserved under left translation thanks to left invariance of the
Haar measure [28]. Finally, denoting with F the Hilbert space completion
of F0, the translation operators Lg extend to unitary operators on F . We
also note that g 7→ Lgf is continuous from G to F ∀f ∈ F0. Moreover,
the maps Lg are strongly continuous on F [28]. Consequently, we have a
unitary representation on G, called the representation induced by σ which
will be denoted by indGH(σ).

1.3.1 The Mackey machine

We now give a brief introduction to the Mackey machine [45], a technique
that is very useful to analyze the irreducible representations of a semi-direct
product group [45, 18]. Because most of the proofs require the notion of
systems of imprimitivity, which are beyond our interest, we only expose the
main results of the theory without demonstrations (we refer to [18, 28, 45]
for them).

Let G be a l.c.s.c. group and suppose N 6= {e} is a closed Abelian
normal subgroup ofG. We can consider the action ofG onN by conjugation
n 7→ gng−1, which induces an action of G on the dual group N̂ as follows:

〈n, gν〉 := 〈g−1ng, ν〉, g ∈ G, ν ∈ N̂ , n ∈ N. (1.37)

where 〈n, ν〉 ≡ ν(n). Let Gν := {g ∈ G | gν = ν} be the stabilizer of ν
for each ν ∈ N̂ and let Oν = {gν | g ∈ G} the orbit of ν for each ν ∈ N̂ .
Nevertheless, the action of G on N̂ is never transitive and the structure of
the set of all the orbits could be very hard to analyze, since, for example,
we have that Oe = {e} [18]. Thus we shall introduce a less strict condition
for such action.

De�nition 1.3.1. We will say the action of G on N̂ is regular if:
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• There exists a countable family of G-invariant Borel set {Ej} in N̂

such that each orbit in N̂ is the intersection of all the Ej's that contain
it.

• ∀ν ∈ N̂ the map G/Gν 3 gGν 7→ gν ∈ Oν is a homeomorphism.

We remark that, for second countable groups, these two conditions are
both implied by requiring that there exists a Borel set in N̂ which intersects
each orbit in exactly one point [18].
With these notations, if π : G → U(H) is an irreducible unitary represen-
tation, there exists ν ∈ N̂ and an irreducible representation σ of Gν , with
σ(n) = 〈n, ν〉Id ∀n ∈ N , such that π is unitarily equivalent to indGGν (σ)
[18, 28, 45]. Observe that the choice of ν in the orbit Oν is arbitrary, al-
though Oν is uniquely determined. Indeed, if ν ′ ∈ Oν , namely ν ′ = gν,
we have that Gν

∼= Gν′ since Gν′ = gGνg
−1 [18]. Moreover, if σ, σ′ are

representations respectively of Gν and Gν′ , where σ
′(h) = σ(g−1hg), then

there exists a bijection between these representations and the induced rep-
resentations indGGν (σ), indGGν′ (σ

′) are unitarily equivalent [18].

The converse is also true. Namely, if ν ∈ N̂ and σ is such that σ(n) =
〈n, ν〉Id, ∀n ∈ N , then the representation π = indGGν (σ) is irreducible.

Lastly, if σ′ is another such representation of Gν such that indGGν (σ) =

indGGν (σ
′), then σ and σ′ are unitarily equivalent [18, 28, 45].

We have to remark that these results are not satisfactory when the
representations of Gν are not easy to analyze. In such cases, however, we
can restrict the analysis to G/N . Indeed, if ν ∈ N̂ , we can extend ν to a
representation of Gν , which will be denoted by ν̃ : Gν → T, such that ν̃|N =
ν. If ρ is an irreducible representation of Gν/N , then σ : Gν → U(Hρ)
with σ(y) = ν̃(y)ρ(yN) and σ(n) = 〈n, ν〉Id for n ∈ N , is an irreducible
representation, because ρ is irreducible [18].
Observe that every representation of Gν is of this kind. Indeed, if σ is an
irreducible representation of Gν with σ(n) = 〈n, ν〉Id, n ∈ N , we have that
the representation σ′, which is such that σ′(y) = ν̃(y)−1σ(y), is irreducible
and it is trivial on N by construction, thus σ′(y) = ρ(yN) and σ(y) =
ν̃(y)ρ(yN).

This phenomenon occurs every time we analyze semi-direct product
groups. Let G = N n H where N is a closed normal subgroup and H
is a closed subgroup of G and suppose G acts regularly on N̂ . Recall that
the composition law in G is given by the conjugation, i.e.

(n1h1)(n2h2) :=
(
n1(h1n2h

−1
1 )
)

(h1h2),
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where n1, n2 ∈ N, h1, h2 ∈ H. Now suppose N is an Abelian subgroup and
let us call the irreducible representations of N (which are one dimensional
due to Schur's lemma) characters. For each ν ∈ N̂ we de�ne the little
group Hν := Gν ∩ H. Hence we have Hν

∼= Gν/N , because Gν ⊃ N
and Gν = N n Hν [18]. Moreover, by de�nition of left action of G on N̂ ,
every character ν can be extended to a homomorphism ν̃ : Gν → T with
ν̃(nh) = ν(n) ≡ 〈n, ν〉. Therefore, if ν ∈ N̂ and ρ : Hν → U(Hρ) is a
unitary irreducible representation of Hν , then

(νρ)(nh) = 〈n, ν〉ρ(h), (1.38)

is an irreducible representation of Gν and every irreducible representation
of Gν is of this form [18] . Moreover, observe that νρ is equivalent to νρ′,
where ρ′ is an irreducible representation of Hν′ , i� ρ is equivalent to ρ′

[18]. Hence we can sum up our results in a complete classi�cation of the
irreducible representations of G = N n H, where N is Abelian, in terms
of the characters ν of N and the irreducible representations of their little
groups Hν .
Lastly, observe that, sinceN acts trivially on N̂ , theG-orbit of the character
ν ∈ N̂ is the same as its H-orbit. Moreover, if ν ′ = gν, where g ∈ H, then
the little groups of ν and ν ′ are such that Hν′ = gHνg

−1, then we have
Hν′
∼= Hν [18].

Example 1.3.2. We sketch the classi�cation of the irreducible represen-
tations of the Poincaré group, which was �rstly done by Wigner in his
remarkable paper [49]; more details can also be found in [10].
Recall that the Lorentz group SO(3, 1) is the group of matrices in Λ ∈
M4(R) such that

ΛηΛT = η, η =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


or, equivalently, the group of transformations that leave the Lorentz pseudo-
inner product invariant. SO(3, 1) admits two non trivial homomorphism
in {±1}, the determinant Λ 7→ det Λ and the sign map Λ 7→ sgn Λ.
We usually prefer to use the proper orthochronus Lorentz subgroup, de-
noted by SO↑0(3, 1), whose matrices are such that det Λ = 1, sgn Λ =
1, Λ ∈ SO↑0(3, 1). In literature we often see the SL(2,C) group instead
of SO↑0(3, 1), because it is its universal covering group [10]. The Poincaré
group is therefore given by the semi-direct product between the proper or-
thochronus Lorentz group and the group of translations T (4) in R4 which is



CHAPTER 1. BASIC FACTS ON REPRESENTATION THEORY 29

Abelian and therefore is normal; hence, we will write P = T (4)nSO(3, 1).
The group composition law is the natural composition given as follows:

(a,Λ)(a′,Λ′) := (a+ Λa′,ΛΛ′). (1.39)

As in the case of the Lorentz group, we can also consider the universal
covering of the Poincarè group Π := T (4) n SL(2,C). Observe that this
group is simply connected, because T (4) and SL(2,C) are, therefore Π is
properly the universal covering group of P [10].
We can now sketch how representation theory works for Π. Observe that
we can identify T̂ (4) with T (4). The characters are given by the pairing
〈n, n̂〉 = e2πinµn̂µ , µ = 0, 1, 2, 3, where n ∈ T (4), n̂ ∈ T̂ (4). We can then
write the action of Π on T̂ (4):

〈Λn, n̂〉 = e2πiΛnµn̂µ = e2πinµΛT n̂µ = 〈n,Λ−1n̂〉, (1.40)

therefore the action of Λ is such that n̂ 7→ Λ−1n̂. Hence we have that every
orbit is contained in the following hyperboloids:

n̂2
0 − n̂2

1 − n̂2
2 − n̂2

3 = m2, m2 ∈ R. (1.41)

We can now distinguish three cases, which will require to analyze the irre-
ducible representations of di�erent stabilizer groups:

• Case m2 > 0. In this case 1.41 describes a two-sheet hyperboloid.
The stabilizer group is SU(2) (SO(3) for P ) and the irreducible rep-
resentations of Π are labelled by a integer or semi-integer numbers.

• Case m2 < 0. In this case 1.41 describes a one-sheet hyperboloid and
the stabilizer group is SL(2,R).

• Case m2 = 0. In this case 1.41 describes a cone which will consist
of three possible orbits: the origin, the upper cone and the lower
cone. These orbits are stabilized by the Euclidean group E(2), whose
representations can be studied again with the theory of induced rep-
resentation [10].

1.4 Projective representations

We now introduce the theory of projective (unitary) representations, which
are fundamental for the phase space description of quantum mechanics.
Roughly speaking, projective representations arise in physics because uni-
tary representations are not always the most suitable ones to describe phys-
ical simmetries. Indeed, due to Wigner's theorem, we know that simmetries
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in quantum mechanics are represented by unitary (or anti-unitary) trans-
formations, which are uniquely determined up to phase factors3 [35]. We
will analyze such representations using a standard procedure: starting with
a group, we will �lift� such group via the central extension and we study
the irreducible unitary representations of the latter. Then, we restrict such
representations, obtaining the projective ones.

Firstly we need to de�ne the projective group. Let H be a separable
Hilbert space and let U(H) be the group of unitary operators on H and let
Z(U(H)) := {zId | z ∈ T} ≡ T (H) be its center.

De�nition 1.4.1. The quotient group P(H) := U(H)/T (H) is called the
(unitary) projective group.

It can be shown that such group is a polish second countable group [45].
In the following, p : U(H) → P(H) will denote the canonical projection
epimorphism. Now let ψ ∈ H be a normalized vector, then set ψ̂ ≡ |ψ〉〈ψ|
and de�ne the following maps:

τφ̂,ψ̂(p(V )) := Tr
(
φ̂V ψ̂V ∗

)
= |〈φ, V ψ〉|2 ∀φ̂, ψ̂ ∈ P1(H), ∀p(V ) ∈P(H)

(1.42)
(here we denote with P1(H) the set of rank 1 projectors). The quotient
topology is equivalent to the initial topology given by the maps 1.42 [45]

{τφ̂,ψ̂ : P(H)→ R}φ̂,ψ̂∈P1(H). (1.43)

We can now introduce the notion of projective representation.

De�nition 1.4.2. Let G be a group and K be an Abelian group. The map
µ : G×G→ K such that µ is Borel and

µ(g1, g2g3)µ(g2, g3) = µ(g1g2, g3)µ(g1, g2), (1.44)

µ(g, e) = µ(e, g) = 1 ∀g ∈ G.

is called K-multiplier. If K ≡ T, we just say µ is a multiplier.

We denote with M̃K(G) the group of the K-multipliers, where the
composition law is given by the pointwise product. If µ1, µ2 are two K-
multipliers and there exists a Borel map B : G→ K such that

µ2(g, g̃) = β(gg̃)β(g)−1β(g̃)−1µ1(g, g̃) ∀g, g̃ ∈ G, (1.45)

3 To be fair, it is possible to prove that we can also consider unitary transformations
and transpositions instead of unitary and anti-unitary transformations [35].
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then µ1, µ2 are said to be equivalent and we will write µ1 ∼ µ2; if µ ∼ 1,
then µ is exact. Exact K-multipliers form an Abelian group with the point-
wise product, denoted by EK(G), which is a normal subgroup of M̃K(G).
Therefore we can consider the group MK(G) := M̃K(G)/EK(G), called the
K-multipliers group.

De�nition 1.4.3. Let G be a l.c.s.c. group and let µ : G × G → T a
multiplier. The map U : G→ U(H) is a µ-representation if:

1. g 7→ U(g) is weakly Borel.

2. U(e) = Id.

3. U(gh) = µ(g, h)U(g)U(h), ∀g, h ∈ G.

We will say that U is a projective representation if there exists a µ-multiplier
such that U is a µ-representation.

Observe that if p is the projection epimorphism, then Ŭ ≡ p ◦U : G→
P(H) is a homomorphism, because

Ŭ(gh) = p(µ(g, h)U(g)U(h)) = p(U(g))p(U(h)) = Ŭ(g)Ŭ(h).

Moreover, Ŭ is continuous [45]. Viceversa, if Ŭ is a Borel homomorphism,
Ŭ is continuous and there exists a projective representation U such that
Ŭ = p(U). The following fact also holds [45]:

Proposition 1.4.4. If U, V are projective representations with multipliers
µ, ν respectively, such that V̆ (g) = Ŭ(g) ∀g ∈ G, then µ ∼ ν.
Conversely, if ν ∼ µ, there exists a ν-representation V such that Ŭ(g) =
V̆ (g) ∀g ∈ G.

Another important fact is the existence of a µ-representation:

Proposition 1.4.5. If µ : G × G → T is a multiplier, then there exists a
µ-representation U .

Proof. Let us consider H = L2(G, λ,C), where λ is the left Haar measure,
and consider U : G→ U(H) de�ned as follows:

(U(g)f)(h) := µ(h−1, g)−1f(g−1h), f ∈ L2(G). (1.46)

Hence we have

(U(gg̃)f)(h) = µ(h−1, gg̃)−1f(g̃−1g−1h). (1.47)
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and

U(g)U(g̃)f(h) = µ(h−1, g)−1µ(h−1g, g̃)−1f(g̃−1g−1h). (1.48)

By 1.47 and 1.48 we have

U(gg̃) = µ(h−1, gg̃)−1µ(h−1, g)µ(h−1g, g̃)U(g)U(g̃)

= µ(h−1, gg̃)−1µ(g, g̃)µ(h−1, gg̃)U(g)U(g̃)

= µ(g, g̃)U(g)U(g̃).

The previous results lead us to the following important corollary [45]:

Corollary 1.4.6. If U is a µ-representation, µ is an exact multiplier i�
there exists a unitary representation V : G → U(H) such that the projec-
tions p◦V, p◦U coincide. Moreover, if V, Ṽ are two unitary representations
of G on H such that p ◦ V = p ◦ Ṽ , then there exists a continuous homo-
morphism χ : G → T (which we will call a character in the future) such
that Ṽ (g) = χ(g)V (g) and viceversa.

Therefore, if we have an exact multiplier, we can always �nd a unitary
representation projectively equivalent to the projective one.

We now introduce the notion of group extension. Let G,K be two
l.c.s.c. groups, K Abelian, let MK(G) be the group of K-multipliers and
let us consider a topological group H.

De�nition 1.4.7. If i : K → H is a monomorphism which restrict to an
isomorphism from K to K̃ ≡ i(K) / H and if j : H → G is a continuous
epimorphism such that K̃ = ker(j), the triad (H, i, j) is called the group
extension of G via K.
If im(K) = K̃ ⊆ Z(H), the extension is central.

Notice that, in general, we may consider equivalence classes of group
extension de�ned as follows. If (H, i, j), (H ′, i′, j′) are group extensions of
G via K, they are equivalent if there exists an isomorphism φ : H → H ′

such that φ(i(k)) = i′(k) ∀k ∈ K and j′(φ(h)) = j(h) ∀h ∈ H.
A fundamental result due to Mackey plays a central role in the analysis of
projective representations; roughly speaking, its statement gives the stan-
dard form of the central extension of a group [45]:
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Theorem 1.4.8 (Mackey). Let µ : G × G → K be a K-multiplier and let
us consider the group K ×µ G of pairs in K ×G such that

(k, g)(k̃, g̃) = (kk̃µ(g, g̃), gg̃), (1.49)

(k, g)−1 = (k−1µ(g, g−1), g−1), (1.50)

where (1, e) is the identity element. Then there exists a unique topology,
called the Weil topology, with respect to K ×µ G is a l.c.s.c. group and
the Borel structure induced by the Weil topology coincides with the Borel
structure of the product topology.
Furthermore, if i0 : K → K ×µ G, j0 : K ×µ G→ G are such that i0(k) :=
(k, e) and j0(k, g) := g, then (K ×µ G, i0, j0) is a central extension of G.
Each central extension of G is of this kind and the central extensions are
equivalent i� the respective K-multipliers are.

It is easy to show that the Haar measure on K ×µ G is given by the
product κ ⊗ ρ, where κ is the Haar measure on H and ρ is the left Haar
measure on G. Indeed, for each f ∈ L1(K ×µ G, κ⊗ λ) we have∫

K×G
dκ⊗ λ(k, g)f((k̃, g̃)(k, g)) =

∫
G

dλ(g)

∫
K

dκ(k)f(k̃kµ(g̃, g), g̃g) =

=

∫
K

dκ(k)

∫
G

dλ(g)f(k, g) =

∫
K×G

dκ⊗ λ(k, g)f(k, g),

where we have used Fubini-Tonelli's theorem and the left invariance of the
Haar measures κ, ρ. Moreover, it is still a Radon measure because the prod-
uct of two Radon measures is still Radon.

Finally, let us brie�y discuss the link between projective representations
of the l.c.s.c. group G and unitary representations of its central extensions
via the Abelian group K.

Proposition 1.4.9. Let ν : G×G→ K be a K-multiplier and let h : K →
T be a group homomorphism. Then,

µ ≡ νh := h ◦ ν : G×G→ T (1.51)

is a multiplier.

Proof. Observe that h is a Borel map, because it is a homomorphism be-
tween polish spaces [45]. Then, since ν is a multiplier, 1.44 holds, hence

µ(g1, g2g3)µ(g2, g3) = h(ν(g1, g2g3)ν(g2, g3)) =

= h(ν(g1g2, g3)ν(g1, g2)) = µ(g1g2, g3)µ(g1, g2).
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Similarly,

µ(g, e) = h(ν(g, e)) = h(e) = 1 = h(ν(e, g)) = µ(e, g).

Moreover, µ is a Borel map, because it is the composition of the Borel maps
ν and h [45].

Similarly, we also have the following fact:

Proposition 1.4.10. If U : G → U(H) is a µ-representation, where µ ≡
νh, the map

V : K ×ν G 3 (k, g) 7→ h(k)−1U(g) ∈ U(H) (1.52)

is a unitary representation. Conversely, if U : G → U(H) is such that
U(g) := V (1, g) and if V (k, e) = h(k)−1Id, then U is a µ-representation.

Proof. By a direct computation we have:

V ((k, g)(k̃, g̃)) = h(kk̃ν(g, g̃))−1U(gg̃)

= h(k)−1h(k̃)−1h(ν(g, g̃))−1µ(g, g̃)U(g)U(g̃)

= h(k)−1h(k̃)−1U(g)U(g̃) = V (k, g)V (k̃, g̃)

Moreover, V is a weakly Borel homomorphism from K×µG to U(H), hence
it is a strongly continuous map.
Suppose now U : G → U(H) is such that U(g) := V (1, g) and suppose
V (k, e) = h(k)−1Id. Then U is a µ-representation, because

U(gg̃) = V (1, gg̃) = V ((ν(g, g̃)−1, g)(1, g̃)) = V ((ν(g, g̃)−1, e)(1, g)(1, g̃))

= h(ν(g, g̃)−1)−1V (1, g)V (1, g̃) = µ(g, g̃)U(g)U(g̃).

Such a map is continuous i� the multiplier µ is continuous [45].



Chapter 2

The Heisenberg-Weyl group and

Weyl systems

In this chapter we will study the Heisenberg-Weyl group, a fundamental
tool in the description of quantum mechanics on phase space, which helps
us in the classi�cation of the irreducible projective representations of the
phase space translations group. In particular, in order to study the discrete
Heisenberg-Weyl group, it is convenient to consider the standard one at
�rst, because the classi�cation of their irreducible unitary representations
can be done in a similar way thanks to the Mackey machine.
The chapter is structured as follows. In the �rst part we introduce the stan-
dard Heisenberg-Weyl group, both in its unpolarized and polarized form,
the last one which is useful for generalizations. We will also review the
latter from a symplectic point of view.
Then, we will study the projective representations of R2n, which, by cen-
tral extension with R, will lead to the irreducible unitary representations of
the Heisenberg-Weyl group. Next we will deal with Weyl systems and the
canonical commutation relations and we will discuss the celebrated Stone-
von Neumann's theorem.
In the second part we will consider the discrete version of the Heisenberg-
Weyl groups. In particular, by mean of an interesting example, we will see
that it is convenient to consider a general phase space in the form G × Ĝ,
where G is a l.c.s.c. Abelian group (these phase spaces are very interesting
for many physical application, for example in many body systems and in
quantum information [1]).
Finally, we will concentrate our attention on the discrete case ZN × ZN ,
studying the irreducible unitary representations of the discrete Heisenberg-
Weyl group. In this context we will also point out an interesting di�erence
with respect the standard Heisenberg-Weyl group, which is due to the �nite-

35
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ness of the group considered. As a last topic, we will discuss of the discrete
analogue of Weyl systems and Stone-von Neuamnn's theorem.

2.1 Some fundamentals on the

Heisenberg-Weyl group

In this section we de�ne the Heisenberg-Weyl group, which play a crucial
role in the classi�cation of the projective representations of the phase space,
since it is its central extension (see section 2.2.1). We will illustrate di�erent
realizations of such a group, which are equivalent to each other.

De�nition 2.1.1. The set of upper triangular matrices

M(τ, q, p) =

1 p τ
0 1 q
0 0 1

 ∈M(n+2)(R), (2.1)

where q, p ∈ Rn and τ ∈ R, is a group with respect to the standard ma-
trix product, called the polarized Heisenberg-Weyl group and it is usually
denoted as HPOL

n (R).

We will also write the composition law in the form

M(τ, q, p)M(τ ′, q′, p′) = M(τ + τ ′ + pq′, q + q′, p+ p′), (2.2)

hence the inverse element of (τ, q, p) is given by

M(qp− τ,−q,−p). (2.3)

Observe that HPOL
n (R) is decomposed as NPOL ×′α HPOL, where αp(τ, q) =

(τ + qp, q) is the semi-direct product action and NPOL = {(τ, q, 0) | τ,∈
R, q ∈ Rn} and HPOL = {(0, 0, p) | p ∈ Rn}.
The polarized Heisenberg-Weyl group admits another equivalent realization:

De�nition 2.1.2. The (unpolarized) Heisenberg-Weyl group Hn(R) is the
group of triples (τ, q, p), τ ∈ R, q, p ∈ Rn with respect to the composition
law

(τ, q, p)(τ ′, q′, p′) :=

(
τ + τ ′ +

1

2
(qp′ − pq′), q + q′, p+ p′

)
, (2.4)

and where the inverse element of (τ, q, p) is given by

(τ, q, p)−1 = (−τ,−q,−p). (2.5)
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Indeed, it is straightforward to prove the following fact:

Proposition 2.1.3.

j : HPOL
n (R) 3 (τ, q, p) 7→

(
1

2
qp− τ, q, p

)
∈ Hn(R), (2.6)

is a group isomorphism, whose inverse is

j−1 : Hn(R) 3 (τ, q, p) 7→
(

1

2
qp− τ, q, p

)
∈ HPOL

n (R).

We remark that

Z(Hn(R)) = {(τ, 0, 0) ∈ Hn(R) | τ ∈ R}

is the center of the Heisenberg-Weyl group. Indeed, (τ, q, p) ∈ Z(Hn(R)) i�

(τ, q, p) = (τ ′, q′, p′)(τ, q, p)(τ ′, q′, p′)−1 =

=

(
τ ′ + τ − τ ′ + 1

2
(pq′ − qp′) +

1

2
[q′(p− p′)− p′(q − q′)], q, p

)
,

hence we must have q = p = 0.

We can now highlight the semi-direct product structure of Hn(R). In
particular, let us consider the subgroups

N = {(τ, q, 0) ∈ Hn(R) | τ ∈ R, q ∈ Rn}, H = {(0, 0, p) ∈ Hn(R) | p ∈ Rn}.
(2.7)

Of course N is a normal subgroup of G since it is Abelian. Moreover,
observe that the following decomposition holds:

(τ, q, p) =

(
τ − 1

2
qp, q, 0

)
(0, 0, p),

thus

(τ, q, p)(τ ′, q′, p′) =

(
τ − 1

2
qp, q, 0

)(
τ ′ − 1

2
q′p′ − pq′, q′, 0

)
(0, 0, p+ p′).

Hence, α̃p(τ, q) = (τ − qp, q) is a semi-direct product action, therefore
Hn(R) = N ×′α̃p H.
Lastly, observe that the map

i : Hn(R) = N nH 3 nh 7→ (n, h) ∈ NPOL ×′α HPOL =: ĤPOL
n (R) (2.8)
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such that
(τ, q, p)(τ ′, q′, p′) = (τ + τ ′ − pq′, q + q′, p+ p′)

is a group isomorphism. We notice that ĤPOL
n (R) is another polarization of

the Heisenberg-Weyl group, which is isomorphic to HPOL
n (R) via the map

i ◦ j : HPOL
n (R) 3 (τ, q, p) 7→ (−τ, q, p) ∈ ĤPOL

n (R). (2.9)

We also remark that the semi-direct product decompositions given above
are not the unique ones possible for the Heisenberg-Weyl group. Indeed,
we can also choose as a normal factor the Abelian subgroup Ñ = {(τ, 0, p) |
τ ∈ R, p ∈ Rn} and as a homogeneous factor the subgroup H̃ = {(0, q, 0) |
q ∈ Rn}; the decomposition still holds (the same holds for the polarized
realization).

2.1.1 The symplectic point of view

Now we clarify some facts concerning the polarizations of the Heisenberg-
Weyl group which are related with the standard symplectic form de�ned on
the phase space.

Let us consider a symplectic space (V, ω), where V is a vector space
and ω : V × V → R is a symplectic form, namely an antisymmetric, non-
degenerate bilinear form. Given a set S ⊂ V, we will consider

Sω := {v ∈ V | ω(v, w) = 0 ∀w ∈ S}, (2.10)

which is the set of �symplectic orthogonal� vectors of S. We will say that S
is a lagrangian set if Sω = S. Moreover, we recall that a symplectic space
must be of even dimension [44].

De�nition 2.1.4. If (V, ω) is a symplectic space (dim V = 2n), the set
{e1, · · · , en} ∪ {e′1, . . . , e′n} is a symplectic basis if

ω(ej, ek) = ω(e′j, e
′
k) = 0, ω(ej, e

′
k) = δj,k ∀j, k (2.11)

We notice that, if (V, ω) is a symplectic space, there exists a symplec-
tic basis in V [44]. Now, if {e1, . . . , en, e

′
1, . . . , e

′
n} is a symplectic basis

of V with dim V = 2n, then the subspaces L = span {e1, . . . , en},L′ =
span {e′1, . . . , e′n} are lagrangian and they are such that L ∩ L′ = ∅, hence
V = L + L′, with dim L = dim L′ = n. Moreover, these two lagrangian
subspaces are isomorphic, since

L 3 w 7→ ω(·, w) ≡ w∗ ∈ L′
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is a linear isomorphism [44].

If we now consider a symplectic space (V, ω), dim V = 2n, we have that
Hω ≡ R× V is a group with respect to the composition law

(τ, v)(τ ′, v′) :=

(
τ + τ ′ +

1

2
ω(v, v′), v + v′

)
, (2.12)

where the inverse element is (−τ,−v) [44].
Hence, we can de�ne a polarization by the choice of a pair of lagrangian
subspaces (L,L′). Indeed, observe that V 3 v = Q+P, Q ∈ L, P ∈ L′ ∼= L∗.
Then let us de�ne P (Q) ≡ P · Q ≡ Q · P := ω(Q,P ) = −ω(P,Q). Thus,
the composition law 2.12 can be written as

(τ,Q+ P )(τ ′, Q′ + P ′) =

=

(
τ + τ ′ +

1

2
ω(Q+ P,Q′ + P ′), (Q+Q′) + (P + P ′)

)
=

(
τ + τ ′ +

1

2
(Q · P ′ − P ·Q′), (Q+Q′) + (P + P ′)

)
.

Moreover, since Q ∈ L, P ∈ L′, we have Q =
∑n

i=1 qiei and P =
∑n

i=1 pie
′
i.

Proposition 2.1.5. The map

ηω : Hω 3 (τ,Q+ P ) 7→ (τ, q, p) ∈ Hn(R) (2.13)

is a group isomorphism.

Proof. By direct calculation and setting q · p ≡
∑n

i=1 qipi, we have that

ηω[(τ,Q+ P )(τ ′, Q′ + P ′)] =

= ηω

(
τ + τ ′ +

1

2
(Q · P ′ − P ·Q′), (Q+Q′) + (P + P ′)

)
=

(
τ + τ ′ +

1

2
(q · p′ − p · q′), q + q′, p+ p′

)
= ηω[(τ,Q+ P )]ηω[(τ ′, Q′ + P ′)].

Thus, Hω is a generalized form of the Heisenberg-Weyl group.
Therefore, we have two possible polarized forms of the Heisenberg-Weyl
group, denoted with HPOL+

ω ,HPOL−
ω , with the following respective product

laws:

(τ,Q+ P )(τ ′, Q′ + P ′) = (τ + τ ′ − P ·Q′, (Q+Q′) + (P + P ′)) , (2.14)

(τ,Q+ P )(τ ′, Q′ + P ′) = (τ + τ ′ + P ·Q′, (Q+Q′) + (P + P ′)) . (2.15)
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2.2 Weyl systems

In this section we will discuss the irreducible representations of the additive
group of phase space translations Rn × Rn ≡ R2n. Since this is an Abelian
group, by Schur's lemma 1.2.7, its irreducible unitary representations are
all one-dimensional, hence physycally trivial, thus we will concentrate on
the projective ones.
In particular, we will study the multipliers of the vector group R2n and its
central extension via R, which will lead us to the (generalized) Heisenberg-
Weyl group Hω, whose irreducible unitary representations will be discussed
by means of the Mackey machine. Finally, we will deal with Weyl systems
and Stone-Von Neumann's theorem.

2.2.1 The projective representations of the phase
space translations group

Let ν : R2n × R2n → R be a R-multiplier. Observe that, if ν is exact, then
ν is symmetric. Indeed, since R2n is an Abelian additive group,

ν(x, y) = β(x+ y)− β(x)− β(y) = ν(y, x) ∀x, y ∈ R2n.

Furthermore, if γ : R2n×R2n → R is a bilinear form, then γ is a R-multiplier.
Indeed, if x, y, z ∈ R2n,

γ(x, y + z) + γ(y, z) = γ(x, y) + γ(x, z) + γ(y, z) = γ(x+ y, z) + γ(x, y),

γ(x, 0) = γ(0, x) = 0.

Besides, we also have that a bilinear symmetric form σ : R2n × R2n → R is
an exact multiplier. Indeed, if we set β = 1

2
σ(x, x), we have that

β(x+ y)− β(x)− β(y) =
1

2
(σ(x+ y, x+ y)− σ(x, x)− σ(y, y)) = σ(x, y).

Therefore, we can analyze γ by observing the behaviour of its antisymmetric
component, de�ned as

α(x, y) =
1

2
(γ(x, y)− γ(y, x));

if α is not null, then the multiplier is not exact.

Let us now consider the covering homomorphism h : R 3 t 7→ eit ∈ T,
which is a Borel map because R and T are polish spaces [19, 45]. Therefore,
following the general construction seen in section 1.4, we have that

h ◦ ν : R2n × R2n → T
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is a multiplier. In particular, by the previous discussion, the latter is non-
exact if ν is non-exact, hence if it is an antisymmetric bilinear form. Thus,
we can consider the group of multipliers

M(R2n) = {[h ◦ α] | α is a bilinear antisymmetric form} (2.16)

(in particular, E(R2n) := [1] is the set of the exact multipliers of R2n).
Hence, the most generic non-exact multiplier R2n × R2n → T is given by

µ(x, y) = β(xy)β(x)−1β(y)−1eiα(x,y), (2.17)

where α is a bilinear antisymmetric form. Therefore, if α ≡ 0, we have an
exact multiplier.

De�nition 2.2.1. We will say that the multiplier µ : R2n × R2n → T is
non-degenerate if the corresponding bilinear form is a symplectic form, i.e.
it is an antisymmetric non-degenerate bilinear form.

Observe that µ is a non-degenerate multiplier of R2n if and only if

∀x ∈ R2n, x 6= 0, ∃y ∈ R2n | µ(x, y)µ(y, x)∗ 6= 1. (2.18)

Indeed,

µ(x, y)µ(y, x)∗ = ei(α(x,y)−α(y,x)) = ei2α(x,y) ∈ [(2α)h].

Let now µ be a multiplier related to the antisymmetric form α as in 2.17
and let us consider the left radicals

radL(α) := {x ∈ R2n | α(x, y) = 0}. (2.19)

Due to antisymmetry, we have that the set of right radicals

radR(α) := {y ∈ R2n | α(x, y) = 0}

will coincide with radL(α), thus we set V0 ≡ radL(α) = radR(α). Let now
W : R2n → U(H) be an irreducible projective representation with multiplier
µ de�ned as in 2.17. The projective representation V de�ned as

V (x) := β(x)∗W (x) ∀x ∈ R2n

is still irreducible, with multiplier αh = eiα(·,·). Let us now consider v ∈ V,
v0 ∈ V0, then we have

V (v0 + v) = eiα(v0,v)V (v0)V (v) = V (v)V (v0),
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because v0 ∈ rad(α). Conversely, if v1, v2 ∈ V, then

V (v1 + v2) = eiω(v1,v2)V (v1)V (v2) = e−iω(v2,v1)V (v2)V (v1),

where ω := α|V×V is a symplectic form. Hence, we have that

V |V0
: V0 → U(H)

is a unitary representation such that V0(V0) ⊂ C (V ) = {zIdH | z ∈ T} due
to Schur's lemma 1.2.7, so V0(v0) = eik·v0IdH. Conversely, the representation
U ≡ V |V : V→ U(H) is projective, with multiplier ωh = eiω(·,·), hence

V (v0 + v) = eik·v0U(v), ∀v0 ∈ V0,∀v ∈ V.

In other words, V is projectively equivalent to the irreducible projective
representation with multiplier ωh. In summary, we can always disregard the
phase factor given by rad(α) and we can focus our attention onto multipliers
related with symplectic forms.
Now, following Mackey's theorem 1.4.8, we can consider the group Hω/2 =
R ×ω/2 V, where ω/2 is the symplectic form associated with the multiplier
eiω(·,·)/2. The composition law of Hω/2 is given by

(τ, v)(τ̃ , ṽ) =

(
τ + τ̃ +

1

2
ω(v, ṽ), v + ṽ

)
, (2.20)

which is exactly the product law of the generalized Heisenberg-Weyl group
associated to a symplectic form. Therefore, the projective representations
of R2n can be analyzed via the irreducible unitary representations of Hω/2,
which is isomorphic to Hn(R). Just for completeness, we explicitly display
those representations that will be studied in the next paragraph:

{Sh : Hn(R)→ U(L2(Rn))}h∈R∗ ∪ {Ru,v : Hn(R)→ U(C)}u,v∈Rn , (2.21)

where
Ru,v(τ, q, p)z = exp(i(u · q + v · p))z, ∀z ∈ C (2.22)

and
(Sh(τ, q, p)f)(x) := e−i

2π
h

(τ+q·p/2)ei
2π
h
p·xf(x− q), (2.23)

with f ∈ L2(Rn) and where q · p =
∑n

i=1 qipi.
Hence, it follows that the map

Rn × Rn 3 (q, p) 7→ Sh(0, q, p) ≡ Sh(q, p) ∈ U(L2(Rn)) (2.24)
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is an irreducible projective representation of R2n [4, 45]. In particular, by
direct calculation,

Sh(q + q′, p+ p′) = ei
π
h

(q·p′−p·q′)Sh(q, p)Sh(q
′, p′)

= ei
π
h
ω((q,p),(q′,p′))Sh(q, p)Sh(q

′, p′),
(2.25)

thus the multiplier µ associated with the representation 2.24 is

µh ((q, p), (q′, p′)) = ei
π
h

(q·p′−p·q′) = ei
π
h
ω((q,p),(q′,p′)). (2.26)

Lastly, we remark that the representation 2.24 can also be expressed in the
form [4]

Sh(q, p) = ei
2π
h

(p·q̂−q·p̂), (2.27)

where q̂ and p̂ are the canonical position and momentum operators, which
satisfy the canonical commutation relations [q̂, p̂] = ih.

2.2.2 The irreducible representations of the
Heisenberg-Weyl group

We now reconsider the classi�cation of the irreducible unitary representa-
tions of the Heisenberg-Weyl group Hn(R) from the point of view of the
Mackey machine. Recall that Hn(R) can be written as N n H, where
N = {(τ, q, 0) | τ ∈ R, p ∈ Rn} ∼= R× Rn and H = {(0, 0, p) | p ∈ Rn} ∼= Rn

and the action is αp(τ, q) = (τ − q · p, q).
Observe that, since N is an Abelian group, the maps

χλ,ξ : N 3 (τ, q, 0) 7→ ei2π(λτ+q·ξ) ∈ C, ξ ∈ Rn, λ ∈ R, (2.28)

are the only irreducible unitary representations, called the (unitary) char-
acters of N . N̂ will denote the group of characters of N . Hence, acting
with H on N̂ , we have

(0, 0, p)[χλ,ξ(τ, q)] = χλ,ξ(τ + q · p, q) = χλ,ξ+λp(τ, q), (τ, q) ∈ N. (2.29)

Thus we have two cases:

• If λ = 0, we have that (0, 0, p)[χ0,ξ] = χ0,ξ, hence we have a singleton
orbit [6, 28] and the stabilizer is all H, which leads us to the family
of one-dimensional representations of Hn(R) 2.22.

• If λ 6= 0, the orbits Oχ = {χλ,ξ | ξ ∈ Rn} are homeomorphic to H and
the action is regular [28]. Moreover, observe that the latter group-
action is free. Thus, for each orbit Oχ there is only one irreducible
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unitary representation, which is induced by the character χλ,0. There-

fore, we can consider the induced representation Sλ ≡ ind
Hn(R)
N (χλ,0)

[28], which can be realized on L2(Rn) as [42]

Sλ(τ, q, p)f(p̃) = ei2πλ(τ− q·p
2

)ei2πλq·p̃f(p̃− p), f ∈ L2(Rn). (2.30)

Therefore, we have completely characterized the irreducible representations
of Hn(R), hence its dual group:

Ĥn(R) = {Ru,v | u, v ∈ Rn} ∪ {Sλ | λ ∈ R∗ ≡ R \ {0}}. (2.31)

As we already pointed out, the �rst class of irreducible representations
of the Heisenberg-Weyl group are physically trivial, since they are one-
dimensional, hence we will focus only on the in�nite-dimensional ones.
We also observe the following fact: the representations built by the Mackey
machine act on the momentum space instead of the con�guration space.
However, this will not bring any trouble. Indeed, we can construct the
Schrödinger representations acting on the con�guration space by swapping
q and p (namely, considering the decomposition of Hn(R) in {(τ, 0, p) | τ ∈
R, p ∈ Rn} and {(0, q, 0) | q ∈ Rn}), and via the Mackey machine (and
setting λ = 1/h) we obtain the representations 2.23, which act on the con-
�gurations space. Moreover, such representations are unitarily equivalent to
2.30, since the Mackey machine gives us a complete set of unitarily inequiv-
alent irreducible representations. In particular, the intertwining unitary
operator is the Fourier-Plancherel operator on L2(Rn) [6, 42], which we will
discuss in section 3.3.1.

We can also investigate the intertwining properties of the representa-
tions Sh, S−h. By the previous discussion, we know that they are unitarily
inequivalent. Equivalently, we can say that they are anti-unitarily equiva-
lent. Indeed, if J : L2(Rn) 3 f 7→ f̄ ∈ L2(Rn) is a complex conjugation, we
have that

(JSh(τ, q, p)J
∗f) (x) = ei

2π
h

(τ+q·p/2)e−i
2π
h
p·x(J∗f̄)(x− q)

= ei
2π
h

(τ+q·p/2)e−i
2π
h
p·xf(x− q) = (S−h(τ, q, p)f)(x).

hence
S−h(τ, q, p) = JSh(τ, q, p)J

∗, (2.32)

Lastly, we remark that the equivalence classes of irreducible representa-
tions of Hn(R) are identi�ed by the central characters, namely by the maps
of the form

Z(HN(R)) 3 (τ, 0, 0) 7→ V (τ, 0, 0) = e−i
2π
h
τ Id, (2.33)

which are all phase factors due to Schur's lemma 1.2.7.



CHAPTER 2. THE HEISENBERG-WEYL GROUP AND WEYL

SYSTEMS 45

2.2.3 Canonical commutation relations (CCRs)

The Schrödinger representation plays an important role in the abstract
formulation of the CCRs

[q̂, p̂] = i~Id, (2.34)

which entails non trivial mathematical issues in this �in�nitesimal form�.
In order to illustrate this point from a very abstract point of view, let us
consider a unital Banach algebra A and suppose A,B ∈ A are such that
[A,B] = cId, for some c ∈ C. Then we have that [18]

σ(AB) ∪ {0} = σ(BA) ∪ {0},
where σ(A) denotes the spectrum of A ∈ A. Hence,

σ(AB) = σ(cId +BA) = c+ σ(BA),

and
σ(BA) ∪ {0} = (c+ σ(BA)) ∪ {0},

which implies c = 0.
From this general argument, since the set of bounded operators forms a
unital Banach algebra, it follows that a pair of bounded operators in an
in�nite-dimensional Hilbert space cannot satisfy the CCRs, since ~ > 0.
Besides, even if q̂ or p̂ is an unbounded operator, it is still troublesome
to give a formal in�nitesimal formulation of the CCRs, since not all the
operators which satisfy 2.34 are canonical pairs of position and momentum
operators.
For example, let us consider the operators

Q : L2([0, 1]) 3 f(x) 7→ xf(x) ∈ L2([0, 1]),

P : D 3 f 7→ −i~df

dx
∈ L2([0, 1]),

where D := {f ∈ C1([0, 1]) | f(0) = f(1) = 0} is a dense domain. Then
we have that D is invariant under the action of Q and [Q,P ] = i~ Id|D,
but they are not �true� position and momentum operators (we can also �nd
more abstract formulations of this kind of operators, see [4, 39]).
Therefore, we are led to an alternative de�nition of the CCRs, an �expo-
nentiated version�, which relies on the de�nition of Weyl systems:

De�nition 2.2.2. For each h ∈ R, a h-Weyl system is a family of 2n unitary
representations

R 3 pj 7→ hMj(pj) ∈ U(H), (2.35)

R 3 qj 7→ hTj(qj) ∈ U(H), (2.36)

where j = 1, . . . , n, such that
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• The representationsMj and Tj are jointly irreducible, namely, ifH0 ≤
H is a closed subspace with hMjH0 ⊂ H0 and hTjH0 ⊂ H0 for each
j, then H0 = {0} or H0 = H.

• The integrated form of the CCRs holds:

hMj(pj)
hTk(qk) = ei

2π
h
δjkpjqk hTk(qk)

hMj(pj), (2.37)

[hMj(pj),
hMk(pk)] = 0 = [hTj(qj),

hTk(qk)] (2.38)

Note that n denotes the number of degrees of freedom of the system.
Moreover, the operators

{q̂1, . . . , q̂n,
hp̂1, . . .

hp̂n} (2.39)

denotes a canonical system of position and momentum observables in the
Schrödinger representation, where

q̂j : L2(Rn) 3 f(q1, . . . , qn) 7→ qjf(q1, . . . , qn) ∈ L2(Rn),
hp̂j := hF∗qjF ,

where F is the Fourier-Plancherel operator de�ned as

(Ff)(ξ) =

∫
Rn
dnxf(x)e−2πiξ·x

(in section 3.3.1 we de�ne such operator for a generic l.c.s.c. Abelian group).
Observe now that, since the Schrödinger representations 2.23 are con-

structed ultimately via the Mackey machine, these are the only irreducible
non-unidimensional representations of the phase space. This is nothing but
the contents of the celebrated Stone-von Neumann's theorem [18, 20, 35],
which we report below:

Theorem 2.2.3 (Stone-von Neumann). For any h > 0 let us consider a
h-Weyl system as in 2.2.2. Then there exists a unique unitary operator
U : H → L2(Rn) - up to phase factors - such that

U ~Mj(pj)U
−1 = exp

(
i

h
pj q̂j

)
, (2.40)

U ~Tj(qj)U
−1 = exp

(
− i
h
qj

~p̂j

)
. (2.41)

Hence, we notice that the operators hT (q) and hM(p), which de�ne the
h-Weyl system, are respectively the displacement operators in position and
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momentum coordinates (or, equivalently, in the language of time-frequency
analysis, they are the translation and modulation operators) [4, 22]. There-
fore, we can also de�ne a Weyl system as an irreducible projective represen-
tation of Rn × Rn. We also remark that the projective representation 2.24
can be expressed in terms of the translation and modulation operators as
[4, 22]

Sh(q, p) = e−i
π
h
q·p hM(p) hT (q). (2.42)

Observe that Stone-von Neumann's theorem holds in the case h < 0
too. Indeed, let us consider the map (τ, 0, 0) 7→ ei

2π
h Id, which is the central

character of S−h and recall that S−h and Sh are anti-unitarily equivalent.
Then, by 2.32 and theorem 2.2.3, we will have that the unique operator
which intertwines the representations will be unitary in the case h > 0, and
anti-unitary in the case h < 0, sinceW = UJ , where U is a unitary operator
and J is a complex conjugation, is an anti-unitary operator [39, 35].
We also observe that if we drop the joint irreducibility in de�nition 2.2.2,
everything still works, but the unitary (or anti-unitary) operator which
appears in theorem 2.2.3 will be such that

U hMj(pj)U
−1 =

⊕
α∈A

exp

(
i

h
pj q̂

α
j

)
, (2.43)

U hTj(qj)U
−1 =

⊕
α∈A

exp

(
− i
h
qj

hp̂αj

)
, (2.44)

where A is a denumerable set and, for each α, {q̂α1 , . . . , q̂αn , hp̂α1 , . . . , hp̂αn} is
a canonical system of Schrödinger operators in L2(Rn)α [4].

Finally, we remark that it is possible to de�ne a Weyl system without
refering to a particular choice of position and momentum variables (namely,
without the choice of a polarization).
Indeed, let us consider a real vector group V, dim V = 2n, n ∈ N, and let Ũ :
V→ U(H) be a projective representation with non-degenerate multiplier µ̃
(i.e. it is similar to the multiplier µ◦ : V × V 3 (v1, v2) 7→ eiπω(v1,v2) ∈ T
where ω is a symplectic form on V). Hence, we can consider a representation
U◦ : V → U(H) with multiplier µ◦ which is projectively equivalent to Ũ
[4]. Then the choice a polarization of V allows us to recover the standard
symplectic form on the phase space and, consequently, the Schrödinger
representations 2.24 [4].

Therefore, we can also identify a Weyl system with an irreducible projec-
tive representation of a real vector group, whose multiplier is nondegenerate
[4].
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2.3 From continuous to discrete phase space

In this section we want to discuss why it is useful to consider a general
phase space of the form G× Ĝ, where G is a l.c.s.c. Abelian group. In par-
ticular, we will sketch with an interesting example how a straightforward
discretization of the Heisenberg-Weyl group will not be the best choice, since
its irreducible representations, which are formally similar to the Schrödinger
representations 2.23, have a very di�erent behaviour (the latter discretiza-
tion would also implie some issues in the de�nition of a discrete Wigner
function, see [25, 37]).

Recall that (Z,+) is an Abelian group which becomes a ring when
equipped with the multiplication. We will consider the group H(Z), i.e.
the discrete Heisenberg-Weyl group of matrices1 j l

0 1 k
0 0 1

 , j, k, l ∈ Z

with the composition law 2.2, namely

(l, j, k)(l′, j′, k′) = (l + l′ + jk′, j + j′, k + k′).

We remark that H(Z) is a proper subgroup of the polarized Heisenberg-
Weyl group HPOL(R) ≡ HPOL

1 (R) ∼= H1(R) ≡ H(R) and its center is given
by the group Z(H(Z)) := {(l, 0, 0) | l ∈ Z}.
Since H(R) is the central extension of the phase space R × R via R, by
analogy, we could also say that we are essentially considering a �discrete
phase space� Z × Z (thus, positions and momenta are discrete variables)
and H(Z) is its central extension via Z.
Let us consider the following representation of H(Z) on L2(R), de�ned in
such a way that

(ρω(l, j, k)f)(t) = ei2πωlei2πωktf(t+ j). (2.45)

We remark that 2.45 is the discrete analogous of the Schrödinger represen-
tation 2.23 (in the �momenta coordinates�) and can be considered as the
restriction of the latter to H(Z) [18, 21, 20]. This representation is reducible
and will reveal a pathological behaviour, as we are going to sketch.

Due to Stone-Von Neumann theorem 2.2.3, the analysis of such repre-
sentations will follow the central characters χω(l) = ei2πωlId, where ω ∈ R,
which are the irreducible representations of Z(H(Z)) (since it is an Abelian
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group, they are the only irreducible ones by Schur's lemma 1.2.7). In par-
ticular, we will see how the representation 2.45 acts in di�erent ways with
respect to the Schrödinger representation 2.23, depending on the nature of
the label ω.

Let us �rstly consider the case of trivial central characters, namely ω =
p, p ∈ Z. In such a case, let us consider the one-dimensional representations
of Z2

Ru,v(l, j, k) ≡ Ru,v(k, j) = ei2π(ju+vk), u, v ∈ R. (2.46)

Hence, the representation ρω=p is unitarily equivalent to the direct integral
representation ∫ ⊕

[0,1]×[0,1]

Ru,pvdudv,

which acts on L2([0, 1]2) ∼=
∫ ⊕

[0,1]×[0,1]
Cdudv [21].

A second decomposition arises when ω is of the form p/q, where
gcd(p, q) = 1 and q > 1 (gcd means here `greatest common divisor'). In
such a case, we have ρω=p/q(l, 0, 0) = Id if q divides l, hence it is convenient
to analyze the group Hq(Z) := {(l, j, k) | j, k ∈ Z, l ∈ Zq}, i.e. a discrete
Heisenberg-Weyl group where the variable l is an integer modulo q (the
composition law is still like 2.2).
A complete list of irreducible representations of such a group is given by an
application of the Mackey machine [18], and these are of the form

πu,v(l, j, k)f(m) = ei2πlp/qei2πk(v−(p/q)m)f(m− j), (2.47)

where f is an element of the q-dimensional Hilbert space

Hu := {f : Z→ C | f(m+ nq) = e−i2πunqf(m) ∀m,n ∈ Z}.

We can again intertwine the representation 2.45, with ω = p/q with the
2.47. In particular, ρp/q is unitarily equivalent to [21]∫ ⊕

[0,1/q)

dudv πu,v⊕ · · ·⊕︸ ︷︷ ︸
p times

∫ ⊕
[0,1/q)

dudv πu,v.

The last case is when ω is a �xed positive irrational number. Here things
are very di�erent, since it cannot be possible to fully use the Mackey ma-
chine, and the irreducible representations have a very di�erent behaviour.
Indeed, if we decompose H(Z) as a semi-direct product N nH, where N :=
{(l, 0, k) | l, k ∈ Z} and H := {(0, j, 0) | j ∈ Z}, we will have that the action



CHAPTER 2. THE HEISENBERG-WEYL GROUP AND WEYL

SYSTEMS 50

ofH on N̂ , whose element are of the form νβ,γ(l, k) = ei2π(βk+γl), β, γ ∈ R\Z,
is not regular [18]. We remark that this is a consequence of the fact that
H(Z) is not a type I group [21].
In such a case, the maps σν : H(Z) → U(L2(Z)) ≡ U(l2(Z)), ν ∈ R such
that

[σν(l, j, k)f ](m) = e2πiωle2πik(v−ωm)f(m− j) (2.48)

are irreducible unitary representations of H(Z) [18] and ρω is unitarily equiv-
alent to [21]

σ :=

∫ ⊕
[0,ω)

σνdν.

The point here is that the representations σν are not all inequivalent, hence
the direct integral decomposition is not unique. We can illustrate this fact
by an application of the Stone-Von Neumann theorem 2.2.3. Firstly, recall
that we are considering ρω as a restriction of an irreducible representation
of HN(R), which we now denote with Sω. Moreover, let us consider an auto-
morphism φ of H(R) that leaves the center �xed pointwise and suppose that
φ is an automorphism of H(Z) too. Then we have that Sω ◦ φ is another ir-
reducible representation with the same central character of Sω, thus, by the
Stone-Von Neumann theorem 2.2.3, they are unitarily equivalent. There-
fore, ∫ ⊕

[0,ω)

σνdν ∼ ρω ∼ ρω ◦ φ ∼
∫ ⊕

[0,ω)

σν ◦ φ dν

(∼ means here �unitarily equivalent�), but each σν ◦φ could be inequivalent
to all the σν , ν ∈ R [21] (this is a consequence of the fact that H(Z) is not
a type I group [18]).

In conclusion, we cannot make a �straightforward discretization� of the
Heisenberg-Weyl group H(R) in order to obtain a description of quantum
mechanics on discrete phase space, because the �discrete Schrödinger repre-
sentation� 2.45 behaves in a deeply di�erent way from the continuous one.
The turning point here is the group-theoretical structure, since Z×Z is not
of the form G× Ĝ (indeed, Ẑ ∼= T, see section 3.2), which is, on the other
hand, what we expect, due to the dual nature of position and momentum
coordinates in the description of physical systems [1]. In the next sections
we will see that this choice will lead us to representations which have the
same behaviour of the Schrödinger representations 2.23.
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2.3.1 The discrete Heisenberg-Weyl group

The previous discussion leads us to consider a general phase space in the
form G × Ĝ, where G is a l.c.s.c. Abelian group; here G may be regarded
as the space of �positions�, whereas Ĝ is the space of �momenta�. We now
choice to focus our attention on the discrete phase space, which has nu-
merous applications in physics, e.g. in quantum information theory and
many-body systems (see [25, 1] for a discussion on the phase space Z × T
too).
We now observe the following fact: since we suppose that G × Ĝ is a dis-
crete group (i.e. it is endowed with the discrete topology), we have that G
and Ĝ shall be discrete groups too. Then, let us now focus on the discrete
group G and recall that Ĝ denotes the group of (equivalence classes of) ir-
reducible unitary representations of G. We also recall that a discrete group
G is compact if and only if it is �nite. Then, we have that Ĝ is a compact
Abelian group, since G is a discrete Abelian group (see proposition 3.2.3).
However, Ĝ is also discrete by hypothesis, hence it is �nite.

Conversely, we can consider the dual group of Ĝ, namely
ˆ̂
G, which can be

identi�ed with G itself (see Pontrjagin's theorem 3.3.12). Therefore, since
Ĝ is discrete, we also have that G is compact (and discrete by hypothesis),
hence it is a �nite group. As a consequence, the discrete group G × Ĝ,
where G is Abelian, is a �nite group.

As a next step, we can observe that we can focus on the �nite group
Z/NZ ≡ ZN only. Firstly, recall that ZN is the Abelian group of equiv-
alence classes of remainders modulo N with respect to the addition law.
In particular, we will say that a is congruent a′ modulo N if a − a′ is an
integer multiple of N , and we will write a ∼= a′ mod N . We also observe
that ẐN

∼= ZN (see section 3.2). Moreover, ZN is a ring when endowed with
the product law de�ned as the product of the representatives [a][b] := [ab].
The addition and multiplication are well-de�ned, since they do not depend
on the choice of representatives [15]. We also remark that (ZN ,+, ·) is in
general a ring and it is a �eld if and only if N is a prime number (or it can
be extended to a �eld if and only if N is a power of a prime) [15]. In the
future we will drop the square bracket, and we will identify the equivalence
classes with their representatives.
We can now notice that, when dealing with a discrete phase space, we can
restrict our attention to ZN × ZN only. Indeed, by the structure theorem
for �nite Abelian groups, we have that, if G is a �nite Abelian group, the
following decomposition holds [15]:

G = Zp1n1 × · · · × Zpk
nk ,
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where p1, . . . , pk are prime numbers (not necessary distinct between each
other).

It is also important to point out the fact that we will work with a
N -dimensional Hilbert space, which can be identi�ed with CN with a peri-
odicity property (namely, the space L2(ZN) [17]). In particular, the �con�g-
uration� space (this is not e�ectively a positions space, because we cannot
give a direct physical interpretation [1, 34]) will be spanned by the standard
orthonormal basis {ψn}n∈ZN ⊂ CN , where each ψn enjoys the periodicity
property, i.e. ψn(j + lN) = ψn(j) ∀l ∈ Z, j = 0, . . . , N − 1. In Dirac
notation, this is the basis of vectors {|n〉 | n = 0, . . . , N − 1} with the pe-
riodicity property |n+ lN〉 = |n〉, which is often called the computational
basis [1, 34].
The �momenta� space can be introduced via the discrete Fourier transform,
which is de�ned as

(Ff)(k) =
1√
N

∑
j∈ZN

e−i
2π
N
jkf(j), f ∈ L2(ZN)

(we will discuss the latter in section 3.3 example 3.3.8). In particular, the
basis vectors can be written in terms of the positions basis vectors as

ψ̂n(k) =
1√
N

∑
j∈ZN

e−i
2π
N
jkψn(j). (2.49)

We also remark that in this �nite space it is not possible to de�ne position
and momentum operators, since they will not satisfy the CCRs, as we have
seen in section 2.2.3, hence we must introduce the notion of (�nite) Weyl
system.

An important remark: since we have to consider the irreducible projec-
tive representations of ZN × ZN (because the unitary ones are physically
trivial), we have to �nd its group extension and classify its irreducible uni-
tary representations. However, we will obtain the right projective represen-
tations restricting our attention to the ones associated with the antisymmet-
ric, non-exact multipliers, as we have seen for Rn × Rn. Thus, if we extend
ZN × ZN via ZN , the extended group will be the discrete Heisenberg-Weyl
group H(ZN), which is the group of triples such that

(τ, j, k)(τ ′, j′, k′) := (τ + τ ′ + jk′, j + j′, k + k′), (2.50)

(τ, j, k)−1 = (jk − τ,−j,−k), (2.51)
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(τ, j, k), (τ ′, j′, k′) ∈ H(ZN). Here, the addition and multiplication shall be
intended modulo N . Notice that the order of H(ZN) is N3. Here j and k
play respectively the role of labels in positions and momenta space.
In order to analyze its irreducible representations, we notice that - as in
the continuous case - H(ZN) may be written as a semi-direct product group
AnH, where

A := {(τ, 0, k) | τ, k ∈ ZN}, H := {(0, j, 0) | j ∈ ZN}

and the semi-direct product action is de�ned as (0, j, 0)[(τ, 0, k)] = (τ +
jk, 0, k) (the second decomposition with j and k swapped obviously holds
too).
In the next section, analyzing the irreducible representations of H(ZN), we
will see that ZN × ZN provides a good description of a discrete quantum
system.

We conclude this brief presentation mentioning an interesting fact con-
cerning the discrete phase space: it turns out that the order N of ZN plays a
crucial role in ZN×ZN , which has some remarkable consequences in physics.
For example, in the study of the mutually unbiased bases, it is known that
there are exactly N + 1 bases of this kind if we are dealing with a �eld,
while in the general case of a ring we can only say that there are at most
N + 1 mutually unbiased bases [46]. However, we will not investigate these
facts any further, since they are beyond our aims.

2.4 Representation theory of the discrete

phase space translations group

In this section we will discuss the irreducible representations of the discrete
phase space translations group ZN×ZN - obviously the projective ones since
it is an Abelian group - and discrete (or �nite) Weyl systems. Thence, as in
the continuous case, we will �rstly analyze the irreducible representations
of its central extension via ZN , namely the discrete Heisenberg-Weyl group
H(ZN), next we will introduce �nite Weyl systems.

2.4.1 Irreducible representations of the discrete
Heisenberg-Weyl group

The classi�cation of the irreducible unitary representations of H(ZN) is very
similar to the case of the continuous group described in section 2.2.2, but
there are some slight di�erences, since we are considering a �nite group.
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We will consider H(ZN) decomposed as A nH, as we have seen in the
previous section.
In the �nite case we have N2 characters for A, since A is of order N2, which
are given by

χλ,ξ : A 3 (τ, 0, k) ≡ (τ, k) 7→ ei
2π
N

(λτ+ξk) ∈ T, λ, ξ ∈ ZN . (2.52)

Hence, the action of H on Â, which is formally analogous to the action 2.29,
is given by

(0, j, 0)[χλ,ξ(τ, 0, k)] = χλ,ξ−λj(τ, 0, k), (2.53)

and the following fact holds:

Proposition 2.4.1. The orbits of the action of H on Â are given by

Oλ,κ = {χλ,ξ | ξ ≡ κ mod gcd(λ,N)} (2.54)

Proof. Recall that, if a, b ∈ Z and n ≥ 1, the congruence ma = b mod n
has a solution m ≥ 1 if and only if b = 0 mod gcd(a, n) [12]. Therefore,
since χλ1,ξ1 and χλ2,ξ2 belong to the same orbit if and only if λ1 = λ2 ≡ λ
and there exists α ∈ ZN such that ξ1 − αλ = ξ2 mod N ; the latter as a
solution i� ξ1 = ξ2 mod gcd(λ,N).

We notice that, for a �xed character in Â, the stabilizer of its orbit is
the following set [12]:

Gχλ,ξ =

{
(0, j, 0) ∈ H | j ≡ 0 mod

N

gcd(λ,N)

}
∼= Zgcd(λ,N) (2.55)

Thus, we have the following cases [43, 12]:

• λ = 0 (⇐⇒ gcd(λ,N) = N). In such a case, we have N orbits of
order 1, which are stabilized by ZN .

• gcd(λ,N) = 1. Then we have one orbit of order N , stabilized by the
trivial subgroup {(0, 0, 0)}.

• 1 < gcd(λ,N) < N . In such a case, for each λ, there are gcd(λ,N)
orbits of order N/ gcd(λ,N), whose stabilizer group is isomorphic to
Zgcd(λ,N).

Observe that the gcd(λ,N) characters of Gχλ,ξ are given by

σλ,α : Gχλ,ξ 3
(

0, j
N

gcd(λ,N)
, 0

)
7→ ei

2π
gcd(λ,N)

αj ∈ T. (2.56)
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We can now de�ne the little groups Hχλ,ξ := AnGχλ,ξ as

Hχλ,ξ =

{(
τ, j

N

gcd(λ,N)
, k

)
| 0 ≤ j ≤ gcd(λ,N)− 1, τ, k ∈ ZN

}
(2.57)

and we extend χλ,ξ and σλ,α to Hχλ,ξ . Therefore, the family{
ρλ,α,ξ = ind

H(ZN )
Hχλ,ξ

(χλ,ξσλ,α) | λ ∈ ZN , α, ξ ∈ {0, . . . , gcd(λ,N)− 1}
}

(2.58)
is a complete set of irreducible, inequivalent, unitary representations of
H(ZN) [12, 43]. Each representation ρλ,α,ξ has dimension N

gcd(λ,N)
.

Now recall that the Euler totient function, which counts the numbers which
are coprime with N , is de�ned as [46]

ϕ(N) = N
∏
p|N

(
1− 1

p

)
, (2.59)

where the product is over the set of prime numbers which divide N . Then
the following fact holds [12, 43]:

Proposition 2.4.2. For each divisor d of N , H(ZN) has (N
d

)2ϕ(d) irre-
ducible inequivalent representations of dimension N/d.
In particular, there are ϕ(N) N-dimensional representations and N2 one-
dimensional representations.

As in the continuous case, we will focus our attention on the represen-
tations ρλ,0,0 induced by the characters χλ,0, which will be denoted with Sλ
from now on. In this way we will be able to obtain the irreducible projective
representations of ZN ×ZN associated with antisymmetric multipliers from
the unitary ones of the extended group H(ZN). In order to give an explicit
formula for those representations, let us consider the following operators on
L2(Zdλ), dλ ≡ N

gcd(λ,N)
:

• λTj, de�ned by

λTjψ(n) := ψ([n]− [j]), λ, j ∈ ZN , ψ ∈ L2(Zdλ). (2.60)

A matrix representation of these operators is given by

λT j =



0 1 0 . . . . . . 0
0 0 1 0 . . . 0
...

... 0
. . . . . .

...

0 . . .
...

. . . . . . 0

0
...

... . . . 0 1
1 0 0 . . . . . . 0



j

∈Mdλ(C). (2.61)
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• λMk, de�ned by

λMkψ(n) = ei2π
λ
N

[k]·[n]ψ(n), λ, k ∈ ZN , ψ ∈ L2(Zdλ), (2.62)

whose matrix representation is

λMk =



1 0 0 . . . 0

0 ei2π
λ
N

1·k 0
. . .

...

0 0 ei2π
λ
N

2·k 0
...

...
... 0

. . . 0

0 0 . . . 0 ei2π
λ
N

(dλ−1)k

 ∈Mdλ(C).

(2.63)

We remark that such operators - which are the position and momentum
displacement operators - are often called, in the context of signal analysis,
the translation and modulation operators [22, 17].

Example 2.4.3. In the case N = 2 and λ = 1, the matrix representation
for the operators 2.60, 2.62 is

T1 =

(
0 1
1 0

)
, M1 =

(
1 0
0 eiπ

)
, (2.64)

hence, if {σ1, σ2, σ3} are the Pauli matrices, we have that σ1 = T1 and
σ3 = M1.

We can realize the representation Sλ on L2(Zdλ) as [12, 43]

[Sλ(τ, j, k)ψ](n) := e−i2π
λ
N
τ λMk

λTjψ(n) = e−i2π
λ
N
τei2π

λ
N

[k]·[n]ψ([n]− [j]);

(2.65)

in the future we will drop the square brackets that specify the modular
arithmetic operations (which are on Zdλ) if there are no ambiguities. Notice
that 2.65 is a proper unitary representation of H(ZN), indeed:

(S((τ, j, k), (τ ′, j′, k′))ψ)(n) = (S(τ + τ ′ + jk′, j + j′, k + k′)ψ)(n)

= e−i2π
λ
N

(τ+τ ′+jk′)ei2π
λ
N

(k+k′)nψ(n− j − j′),
(2.66)

(S(τ, j, k)S(τ ′, j′, k′)ψ)(n) = e−i2π
λ
N

(τ+τ ′)ei2π
λ
N
knei2π

λ
N
k′(n−j)ψ(n− j − j′).

(2.67)

Here we have to highlight an important fact: every Sλ can of course be
realized on L2(ZN), but they will not be all irreducible, because the only
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N -dimensional irreducible representations of H(ZN) are the ones where λ
is coprime with N , If gcd(λ,N) 6= 1, we have that the dimension of Sλ is
strictly less than N , in particular it is equal to dλ. Thus, in such a case, we
obtain a N -dimensional reducible representation - which we denote with S̃λ
- if we consider the direct sum of gcd(λ,N) copies of Sλ, namely

S̃λ = Sλ ⊕ · · ·⊕︸ ︷︷ ︸
gcd(λ,N) times

Sλ. (2.68)

Therefore, we have that the value of λ (which is the �nite analogous of
~) �xes the �scale� of the system. More speci�cally, the fact the λ is not
coprime with N means that the system must be rescaled in order to recover
the irreducibility.

Example 2.4.4. Let us consider the simple case of H(Z4) and recall that
we denote with {ψn}, n = 0, . . . , 3 the standard basis in L2(Z4). Here we
have that the representations with λ = 1, 3 are irreducible on L2(Z4), while
for λ = 2 we have that S2 acts on L2(Z2) as

[S2(τ, j, k)ψ](n) = e−iπτeiπknψ(n− j), τ, j, k ∈ Z4, ψ ∈ L2(Z2).

Therefore, the 4-dimensional representations will be given by S̃2 = S2 ⊕ S2

and L2(Z4) is decomposed as L2(Z2)⊕ L2(Z2). In particular, observe that
span{ψ+, ψ−}, where

ψ+ =
1√
2

(1, 0, 1, 0) =
1√
2

(ψ0 + ψ2), ψ− =
1√
2

(0, 1, 0, 1) =
1√
2

(ψ1 + ψ3),

is an invariant space under the action of S̃2. Indeed, for j, k ∈ Z4, we have
that

Mkψ+ = ψ+, Tjψ+ =

{
ψ+, j even,

ψ−, j odd
,

Mkψ− = −ψ−, Tjψ− =

{
ψ−, j even,

ψ+, j odd
.

In a similar way, span{φ+, φ−}, where

φ+ =
1√
2

(1, 0,−1, 0) =
1√
2

(ψ0 − ψ2),

φ− =
1√
2

(0, 1, 0,−1) =
1√
2

(ψ1 − ψ3),
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is an invariant subspace for S̃2.
At the same time, we can also consider the representation

(S◦λ(τ, j, k)ψ)(n) = e−i
2π
4
τei2π

λ
4 gcd(λ,4)

knψ(n− gcd(λ, 4)j), τ, j, k, λ ∈ Z4,
(2.69)

which acts on ψ ∈ L2(Z4). In the case λ = 2 the latter is a reducible unitary
representation which is unitarily equivalent to S̃2 (the unitarily equivalence
is realized by the dilation j 7→ gcd(λ,N)j, k 7→ 1

gcd(λ,N)
k). In particular,

we have that span{ψ0, ψ2} and span{ψ1, ψ3} are invariant subspaces for S◦2 .

Lastly, we have to remark two facts. Firstly, we have analyzed the
irreducible unitary representations of H(ZN) on the space of �positions�.
However, as in the continuous case, we can also construct these representa-
tions on the dual space of momenta; the link between the two point of views
is given by the discrete Fourier transform acting on the N

gcd(λ,N)
-dimensional

space of the representation Sλ [43].
Secondly, we remark that these representations are identi�ed uniquely by
the central characters of H(ZN), i.e. by the maps

Z(H(ZN)) 3 (τ, 0, 0) 7→ e−i2π
λ
N
τ Id. (2.70)

2.4.2 Finite Weyl systems

We can now introduce �nite Weyl systems, namely, following the discus-
sion in section 2.2, the irreducible projective representations of the discrete
phase space ZN × ZN . We will mostly focus on the case gcd(λ,N) = 1,
where λ ∈ ZN , in order to consider irreducible representations which are
N -dimensional only. Later on, we will brie�y sketch what occurs when
1 < gcd(λ,N) ≤ N .

As in the continuous case, the CCRs (in their exponentiated version)
hold true. Indeed,

λTj
λTj′ = λTj′

λTj,
λMk

λMk′ = λMk′
λMk, (2.71)

are trivially satis�ed, while, for each ψ ∈ L2(ZN) and j, k, λ, n ∈ ZN ,

[λMk
λTjψ](n) = ei2π

λ
N
knψ(n− j), [λTj

λMkψ](n) = ei2π
λ
N
k(n−j)ψ(n− j),

thus
λMk

λTj = ei2π
λ
N
jk λTj

λMk. (2.72)
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Moreover, if F is the discrete Fourier operator such that

ψ̂(k) :=
N∑
k=0

ψ(j)e−i
2π
N
jk, ψ ∈ L2(ZN)

(see section 3.3 example 3.3.8), the translation and modulation operators
satisfy the following intertwining properties:

Proposition 2.4.5. The discrete Fourier transform intertwines the trans-
lation and modulation operators, namely

F λTλj = λM−jF , F λMj = λTλjF ,
F−1 λTλj = λMjF−1, F−1 λMj = λT−λjF−1.

Proof. Indeed, for ψ ∈ L2(ZN), we have that(
λMjFψ

)
(n) = ei2π

λ
N
jn
∑
m∈ZN

e−i
2π
N
mnψ(m)

= ei2π
λ
N
jn
∑
m∈ZN

e−i
2π
N

(m+λj)nψ(m+ λj)

=
∑
m∈ZN

e−i
2π
N
mn
(
λT−λjψ

)
(m) =

(
F λT−λjf

)
(n).

In the same way,(
λTλjFψ

)
(n) =

∑
m∈ZN

e−i2π
λ
N
m(n−λj)ψ(m) =

∑
m∈ZN

e−i
2π
N
mn
(
λMjψ

)
(m)

=
(
F λMjψ

)
(n).

The proof of the other intertwining relations is straightforward.

We remark that this is exactly what happens in the continuous case too,
where the operator F is the Fourier-Plancherel operator in L2(Rn) [22].

Let us consider again the irreducible N -dimensional unitary representa-
tion 2.65 (recall that we are considering the case λ coprime with N).
Then we have that

Sλ(j, k) ≡ Sλ(0, j, k) = λMk
λTj (2.73)

is an irreducible projective representation of ZN × ZN such that

Sλ(j + j′, k + k′) = ei2π
λ
N
jk′Sλ(j, k)Sλ(j

′, k′), (2.74)
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hence its multiplier is given by

µSλ((j, k), (j′, k′)) = ei2π
λ
N
jk′ , (j, k), (j′, k′) ∈ ZN × ZN . (2.75)

Observe that the latter is similar to the (formal) symplectic multiplier,
which is given by

µλ ((j, k), (j′, k′)) := eiπ
λ
N

(jk′−kj′) (2.76)

Indeed, it is su�cient to consider the Borel map β : ZN × ZN 3 (j, k) 7→
e−iπ

λ
N
jk ∈ T and relation 1.45 is trivially satis�ed:

e−iπ
λ
N

[jk+jk′+j′k+j′k′]

e−iπ
λ
N
jke−iπ

λ
N
j′k′

ei2π
λ
N
jk′ = eiπ

λ
N

(jk′−kj′).

Therefore, by proposition 1.4.4, there exists a projective representation pro-
jectively equivalent to Sλ (namely, the projections de�ned via the canonical
projection epimorphism coincide). In particular, we notice that

Dλ(j, k) = e−iπ
λ
N

[j]·[k] λMk
λTj, j, k ∈ ZN (2.77)

is the aforementioned representation (as already discussed in the previous
section, we will drop the square bracket and identify the equivalence classes
with their representatives). Indeed we have that

(Dλ(j + j′, k + k′)ψ)(n) = e−iπ
λ
N

(jk+jk′+j′k+j′k′)ei2π
λ
N

(k+k′)nψ(n− j − j′),
(2.78)

(Dλ(j, k)Dλ(j
′, k′)ψ)(n) = e−iπ

λ
N
jke−iπ

λ
N
j′k′ei2π

λ
N
knei2π

λ
N
k′(n−j)ψ(n− j − j′)

(2.79)

implies

Dλ(j + j′, k + k′) = eiπ
λ
N

(jk′−kj′)Dλ(j, k)Dλ(j
′, k′). (2.80)

Also observe that this fact can be understood by looking at the commutation
relations of the representations 2.73, 2.77 [17], for which we have:

Sλ(j, k)Sλ(j
′, k′) = ei2π

λ
N

(jk′−kj′)Sλ(j
′, k′)Sλ(j, k),

Dλ(j, k)Dλ(j
′, k′) = ei2π

λ
N

(jk′−kj′)Dλ(j
′, k′)Dλ(j, k).

Because the (formal) symplectic structure is more evident in its multiplier,
we will mostly consider the representation Dλ instead of Sλ hereinafter.
Furthermore, when we deal with the discrete Wigner function in chapter 4,
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we will see that the choice of Dλ is more suitable for some physical appli-
cations. However, until then, choosing Dλ instead of Sλ will not cause any
relevant di�erence in light of Stone-Von Neumann's theorem too, which we
are going to review in the discrete case soon.

We are now ready to de�ne discrete Weyl systems. Infact, since λMk

and λTj are jointly irreducible representations on L2(ZN) [17] and satisfy
the CCRs, we can give the following

De�nition 2.4.6. If λ is such that gcd(λ,N) = 1, then a discrete (or �nite)
λ-Weyl system is a pair of jointly irreducible representations

ZN 3 j 7→ λTj ∈ U(L2(ZN)), ZN 3 k 7→ λMk ∈ U(L2(ZN)) (2.81)

which satisfy the relations

[Mk,Mk′ ] = [Tj, Tj′ ] = 0, λMk
λTj = ei2π

λ
N
jk λTj

λMk. (2.82)

Equivalently, a �nite λ-Weyl system is an irreducible N -dimensional pro-
jective representation of ZN × ZN .

Stone-von Neumann's theorem holds true in the discrete case too, and
it can be formulated in the following way [17]:

Theorem 2.4.7 (Stone-von Neumann). Let us consider a λ-Weyl system
Dλ for ZN × ZN de�ned as in 2.73, where λ is such that gcd(λ,N) = 1.
If ρ is another projective irreducible representation of ZN × ZN , then ρ is
unitarily equivalent to Dλ.
Equivalently, if U and V are jointly irreducible representations on L2(ZN)
which satisfy the CCRs, then there exists a unitary operator W - unique up
to a phase factor - such that W ∗UW = λTj and W

∗VW = λMk.

Lastly, let us consider the case 1 < gcd(λ,N) < N , which corresponds
to drop the hypothesis of joint irreducibility of the translation and modu-
lation operators. If Γ is a denumerable index set, then D̃λ =

⊕
l∈ΓD

l
λ is

a reducible representation on a complex separable Hilbert space H, where
each Dl

λ(j, k) = e−i
π
λ
jk λM l

k
λTj

l acts on a di�erent L2(Zdλ), dλ ≡ N
gcd(λ,N)

.

Observe that, since each L2(Zdλ) is disjoint from the others, we have the
following slightly generalized form of the CCRs:

λ
M l

k
λTmj = ei2π

λ
N
δl,mjk λTmj

λ
M l

k. (2.83)
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In such a case, by Stone-von Neumann's theorem, if U and V are unitary
representations which satisfy the above CCRs, there exists a unique unitary
operator W such that

WUW ∗ =
⊕
l∈Γ

λ
T lj , WVW ∗ =

⊕
l∈Γ

λ
M l

k. (2.84)



Chapter 3

Harmonic analysis on Abelian

groups

This chapter aims at introducing some fundamental tools of harmonic anal-
ysis on l.c.s.c. Abelian groups (and, in particular, on phase space), an
important topic in representation theory (the theory still works if we drop
the second countability, but proofs become trickier [18, 40]). Since we will
mostly deal with Abelian groups, we recall that such groups are unimodu-
lar, thus the left and right Haar measures will coincide [18]. The chapter
is structured as follows. We will brie�y recall the notion of group algebra
and function of positive type at �rst. In this way, we will �nally be able
to introduce rigorously the group Ĝ of (equivalence classes of) irreducible
unitary representations of the Abelian group G, called the characters of G.
Next, we will de�ne the Fourier transform and the Fourier-Stieltjes trans-
form and we will study the most important theorems, such as Fourier's
inversion formulas and Plancherel's theorem.
In the second part of this chapter we will brie�y deal with harmonic analy-
sis on phase space, introducing some tools which will play a relevant role in
the discussion of the Wigner function. We also remark that this is a topic
of great interest in signal analysis too, since it corresponds to the time-
frequency analysis [22]. In particular, we will �rstly de�ne the symplectic
Fourier transform on phase space. Next we will introduce the twisted group
algebra, an �alternative� Banach ∗-algebra, which can be de�ned for every
group which admits non-exact multiplier and it is connected with the no-
tion of ?-product of functions. Then we will de�ne the Gabor transform in
the continuous case of Rn and in the �nite case of ZN .
As a last topic, we recall the notions of square integrable representation of
a l.c.s.c. group (dropping the Abelian hypothesis) and wavelet transform,
two fundamental tools in harmonic analysis on phase space and, in general,

63
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in the discussion of the Weyl-Wigner correspondence.

3.1 Some basic facts

In this section we introduce some preliminary notions before we discuss
Fourier analysis. At �rst, we will not assume the group to be Abelian, since
the concepts we will recall are quite general.
In particular, in the �rst part of this section we will recall some facts con-
cerning the Banach space of complex Radon measures [19], then we intro-
duce an important subspace, i.e. the group algebra L1(G, λ,C) (λ is a left
Haar measure on G). In the second part we will brie�y recall the link be-
tween functions of positive type and cyclic representations.

3.1.1 The group algebra

Let us denote withM(G) ≡M(G,C) the space of complex Radon measures
on a l.c.s.c. group G. Recall that, by Riesz's theorem [19], if

Fµ,ν(φ) :=

∫
dµ(g)

∫
dν(h)φ(gh), µ, ν ∈M(G), φ ∈ C0(G,C), (3.1)

is a bounded linear functional, we can �nd a unique complex Radon measure
µ ∗ ν such that∫

d(µ ∗ ν)(g)φ(g) :=

∫
dµ(g)

∫
dν(h)φ(gh) = Fµ,ν(φ), (3.2)

which will be called the convolution measure of µ and ν. This operation is
associative and it is commutative if and only if G is an Abelian group [18].
Moreover, the Dirac measure de�ned as

δg(E) :=

{
1, g ∈ E ,
0, g /∈ E ,

(3.3)

where E is a Borel set of G, is the identity element with respect to the
measure convolution.
Lastly, we can endowM(G) with an involution de�ned as∫

dµ∗(E) := µ(E−1). (3.4)

Hence we have thatM(G) is a unital ∗-algebra with respect to the convo-
lution 3.2 and the involution 3.4 [19].
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We now recall that L1(G) can be embedded inM(G) via the following
map:

L1(G, λ,C) 3 f 7→ f(g)dg ∈M(G), (3.5)

where dg ≡ dλ(g), g ∈ G is a left Haar measure on G. Hence the following
fact holds:

Proposition 3.1.1. The space L1(G, λ,C) of C-valued integrable functions
on G is a Banach ∗-algebra when equipped with the convolution

(f1 ∗ f2)(h) :=

∫
G

dλ(g)f1(h)f2(h−1g), f1, f2 ∈ L1(G, λ,C) (3.6)

and the involution I which maps f ∈ L1(G, λ,C) in

f ∗(g) := ∆(g−1)f(g−1) (3.7)

(∆ denotes the modular function on G).

De�nition 3.1.2. The Banach ∗-algebra (L1(G, λ,C), ∗, I) is called the
group algebra of G.

We notice that the convolution 3.6 does not admit a unit element un-
less G is a discrete or compact group [20]. Moreover, observe that the
convolution between functions coincides with the convolution measure (the
correspondence is given by 3.5) [18].
We also remark that f ∈ L1(G, λ,C) is positive if it can be written in the
form f ′ ∗ f ′∗ for some f ′ ∈ L1(G, λ,C) [18].

Lastly, we observe that there is a correspondence between the unitary
representation of G and the representations of L1(G) by virtue of the fol-
lowing fact [18]:

Proposition 3.1.3. If π : G→ U(H) is a unitary representation, we have
that

π̃(f) :=

∫
G

dλ(g) f(g)π(g), f ∈ L1(G), (3.8)

is a ∗-representation of the group algebra into the ∗-algebra B(H), i.e. it is
an algebra homomorphism and π̃(f ∗) = π̃(f)∗.
Conversely, if π̃ is a non-degenerate ∗-representation of L1(G), it arises
from a unique unitary representation of G as in 3.8.

We remark that the operator π̃ is de�ned in the weak sense; namely if
〈·, ·〉 is the inner product in H, then 3.8 is to be intended as

〈φ, π̃(f)ψ〉 =

∫
G

dλ(g)f(g)〈φ, π(g)ψ〉.
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Example 3.1.4. If πL is the left regular representation, we have that the
convolution is the corresponding ∗-representation, indeed

((π̃L(f1))f2) (g) =

∫
G

dλ(y)f1(h)f2(h−1g) = (f1 ∗ f2)(g), f1, f2 ∈ L1(G).

We remark that 3.8 is essentially the prototype of the Weyl quantiza-
tion map. Indeed, if we consider a group which admits square integrable
representations (see section 3.5), then 3.8 is well-de�ned even for L2(G). In
particular, in the latter case, the image of the ∗-representation π̃ will be a
Hilbert-Schmidt operator [7], while in general it is only a bounded linear
operator [18].

3.1.2 Functions of positive type

Suppose G is a l.c.s.c. group and dλ(g) ≡ dg is a left Haar measure on
G. Then λ is σ-�nite, since λ is regular on compacts. Hence we have that
L∞(G) = L1(G)∗1 [19].

De�nition 3.1.5. A function of positive type is a positive linear functional
χ on L1(G, λ,C), i.e. it is a function χ ∈ L∞(G) such that∫

dλ(g) χ(g)(f ∗ ∗ f)(g) ≥ 0 ∀f ∈ L1(G). (3.9)

Proposition 3.1.6. If π : G → U(H) is a unitary representation, and if
ψ ∈ H, then the map cφ : G 3 g 7→ 〈φ, π(g)φ〉 is a function of positive type.

Proof. Observe that cφ is a continuous map. Then, if f ∈ L1(G), we have∫
dλ(g)dλ(h) f(g)f(h)cφ(h−1g) =

∫
dλ(g)dλ(h) 〈f(h)π(h)φ, f(g)π(g)φ〉

= ‖π(f)φ‖2 ≥ 0,

where we have used the de�nition 3.8 and the unitarity of π.

These functions are important for our aims since it is possible to asso-
ciate a cyclic representation to a function of positive type in the following
way [18, 40]:

Theorem 3.1.7. If χ is a function of positive type, and if πχ : G→ U(Hχ)
is a unitary representation, there exists a cyclic vector ψ of πχ such that
χ(g) = 〈ψ, πχ(g)ψ〉 locally a.e..

1 Recall that L∞(G,µ,C) ≡ L∞(G) is a Banach space with the norm ‖f‖∞ :=
inf{α ∈ R | µ({g ∈ G | |f(g)| < α}) = 0}.
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This fact leads us to two interesting properties of functions of positive
type, which we summarize in the following [18]

Proposition 3.1.8. Every function of positive type agrees locally a.e. with
a (bounded) continuous function in L∞(G).
Moreover, if χ is a function of positive type, then we have

‖χ‖∞ = χ(e), χ(g−1) = χ(g). (3.10)

Therefore, we can always consider our functions of positive type to be
continuous. In particular, we will denote with P (G) the set of all continu-
ous functions of positive type on G.
A last remark on the link between functions of positive type and cyclic rep-
resentations; with the same notations of theorem 3.1.7, the representation
πχ is canonical in the following sense [18, 40]:

Theorem 3.1.9. If π : G → U(H) is a ciclyc representation with cyclic
vector ψ such that χ(g) = 〈ψ, π(g)ψ〉, then π and πχ are unitarily equivalent.

Observe now that, thanks to proposition 3.1.8, we can consider the set
of normalized functions of positive type

P1(G) := {χ ∈ P (G) | ‖χ‖∞ = 1} (= {χ ∈ P (G) | χ(e) = 1}) , (3.11)

which is a convex set, as well as P (G) [18]. Thus we can consider the set
of its extremal points. The following result holds [18, 40]:

Theorem 3.1.10. If χ ∈ P1(G) and πχ : G→ U(Hχ) is the canonical cyclic
representation associated with χ, then χ is an extremal point in P1(G) if
and only if πχ is irreducible.

Lastly, recall that L1(G) ⊂ L∞(G)∗ via the embedding

L1(G) 3 f 7→ Ff (φ) := φ(f) =

∫
G

dλ(g)φ(g)f(g) ∈ L∞(G)∗ (3.12)

for each φ ∈ L∞(G). Hence we can de�ne the weak* topology on L∞(G).
This is the initial topology given by the maps

Ff : L∞(G)→ C, f ∈ L1(G). (3.13)

Thus we can induce this topology on P (G) and P1(G) [18]. Observe that
in the case of P1(G) the weak* topology is equivalent to the compact con-
vergence topology, whose neighbourhood basis is given by the open sets of
the form Nξ0(ε,K) := {ξ ∈ Ĝ | |ξ(g)− ξ0(g)| < ε ∀x ∈ K} where K is a

compact subset of Ĝ [18].
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3.2 The dual group Ĝ

Let G be a l.c.s.c. Abelian group. By Schur's lemma 1.2.7, if π : G →
U(H) is an irreducible unitary representation, then H = C, thus π(g)z =
ξ(g)z, ∀g ∈ G, ∀z ∈ C, ξ(g) ∈ T := {z ∈ C | |z| = 1}.

De�nition 3.2.1. With the above notations, the continuous homomor-
phism ξ : G→ T is called the (unitary) character of the group G.

The set of all characters of G will be denoted with Ĝ. We notice that
this is an Abelian group with respect to the pointwise product, because the
Torus group is Abelian. We can also observe that, if ξ ∈ Ĝ, ξ is a function
of positive type normalized at 1, since we can write ξ(g) = 〈1, π(g)1〉 and
of course ξ(e) = 1. Thus we have Ĝ ⊂ P1(G); in particular, since each
character is an irreducible representation of G, Ĝ coincides with the set of
extremal points of P1(G). Therefore we can endow Ĝ with the compact
convergence topology, with respect to it is a l.c.s.c. Abelian group [18].

De�nition 3.2.2. The group Ĝ of all characters of G, endowed with the
compact convergence topology, is called the (unitary) dual group of G.

We can now observe that, if G is a compact group with a normalized
Haar measure λ (λ(G) = 1), then Ĝ is an orthonormal set in L2(G).
Indeed, if ξ ∈ Ĝ, then |ξ|2 = 1, hence ‖ξ‖2 = λ(G)1/2 = 1, where λ is
the Haar measure on G such that λ(G) = 1. Now let us consider ξ1, ξ2 ∈
Ĝ, ξ1 6= ξ2. Then there exists g0 ∈ G such that 〈g0, ξ

−1
1 ξ2〉 6= 1. Therefore

we have ∫
G

dλ(g) ξ1(g)ξ2(g) =

∫
dλ(g) 〈g, ξ−1

1 ξ2〉

= 〈g0, ξ
−1
1 ξ2〉

∫
dλ(g) 〈g−1

0 g, ξ−1
1 ξ2〉.

If we now apply the substitution g 7→ g0g we have∫
G

dλ(g) ξ1(g)ξ2(g) = 〈g0, ξ
−1
1 ξ2〉

∫
dλ(g) 〈g, ξ−1

1 ξ2〉,

for 〈ξ1, ξ2〉L2 6= 0. Hence, if ξ1 6= ξ2, then 〈ξ1, ξ2〉L2 = 0.

We will say the group G is discrete if it is endowed with the discrete
topology. Then the following fact holds [18]:
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Proposition 3.2.3. Let G be a l.c.s.c. Abelian group. If G is discrete, Ĝ
is compact.
If G is compact, Ĝ is discrete.

In the following examples, we list some dual groups which we have al-
ready encountered in chapter 2.

Example 3.2.4. R̂ ∼= R with 〈x, ξ〉 = ei2πxξ [18]. Indeed, let us consider
f ∈ R̂. Hence, there exists α > 0 such that

A =

∫ α

0

dx f(x) 6= 0.

Moreover, since f is a continuous homomorphism and f(0) = 1, we have
that the expression

Af(t) =

∫ α

0

dx f(x+ t) =

∫ α+t

t

dx f(x)

is di�erentiable, thus f is di�erentiable and we have

f ′(x) =
f(x+ t)− f(x)

A
.

Therefore, setting a = f(t)−1
A

, we have that f(x) = eat. Moreover, since
|f | = 1, we must have a = 2πiξ for some ξ ∈ R and so the assertion is
proven.

Example 3.2.5. Let us consider the torus group, i.e. the group of elements
z ∈ C such that |z| = 1, and the set of integer numbers Z, which is a group
with respect to the addition.
Hence, T̂ ∼= Z with the pairing 〈α, n〉 = αn, α = ei2πx ∈ T, n ∈ Z. Indeed,
everything works the same as in the case G = R, but the character f must
satisfy the condition f(x + 2π) = f(x) too, since T can be identi�ed with
R/Z [18, 40].
Conversely, we have that Ẑ ∼= T via the pairing 〈n, α〉 = αn, because, given
φ ∈ Ẑ, we have α = φ(1) ∈ T and φ(n) = φ(1)n = αn.

Example 3.2.6. Let us consider the group Z/NZ ≡ ZN , i.e. the group of
equivalence classes of numbers which are congruent modulo N with respect
to the addition [a+ b] := [a] + [b].

Hence, ẐN
∼= ZN via the pairing 〈m,n〉 = ei

2π
N
mn, because the characters of

ZN are the characters of Z which are trivial on NZ [18, 40], therefore they
are of the form φ(n) = αn, where α is the Nth root of 1.



CHAPTER 3. HARMONIC ANALYSIS ON ABELIAN GROUPS 70

Lastly, if G1, . . . , Gn are l.c.s.c. Abelian groups, we can consider the
dual group of G1 × · · · ×Gn, which is isomorphic to Ĝ1 × · · · × Ĝn.
Indeed, ξ = (ξ1, . . . , ξn) ∈ Ĝ1×, . . . ,×Ĝn is a character of G1×· · ·×Gn via
the natural pairing

〈(g1, . . . , gn), (ξ1, . . . , ξn)〉 = 〈g1, ξ1〉 . . . 〈gn, ξn〉 (3.14)

and each character ξ̃ of G1 × · · · × Gn is of this form, since each ξi can be
de�ned as

〈gi, ξi〉 = 〈(e, . . . , e, gi, e, . . . , e), ξ̃〉.

Therefore, we have that every �nite Abelian group is self-dual, i.e. Ĝ ∼= G.
Indeed, since by the structure theorem for �nite Abelian group

G = Zp1n1 × · · · × Zpk
nk ,

and since Zn is self-dual for each n ∈ N, the assertion follow from 3.14.
Moreover, we will also have that R̂n ∼= Rn, T̂n ∼= Zn and Ẑn ∼= Tn.

3.3 The Fourier transform on l.c.s.c. Abelian

groups

De�nition 3.3.1. Let G be a l.c.s.c. Abelian group and let dg ≡ dλ(g) be
its Haar measure. If f is a function in L1(G) the Fourier transform of f is
the map F : L1(G)→ C0(Ĝ) such that

(Ff)(ξ) ≡ f̂(ξ) :=

∫
G

dg 〈g, ξ〉f(g), (3.15)

Observe that f̂ is a continuous function. Moreover, F is a norm-
decreasing linear map and the Riemann-Lebesgue lemma holds, i.e. RanF
is a dense subspace of C0(Ĝ) [18]. We can also observe that F is a ∗-
homomorphism, since C0(Ĝ) is a ∗-algebra, where the convolution is the
pointwise product and the involution is f ∗(g) = f(g−1). Indeed, if f, f1, f2 ∈
L1(G), we have F(f1 ∗ f2) = (Ff1)(Ff2) and F(f ∗) = Ff , since∫

G

dg 〈g, ξ〉(f1 ∗ f2)(g) =

∫
G

dg 〈g, ξ〉
∫
G

dhf1(h)f2(h−1g)

=

∫
G

dgdh 〈hg, ξ〉f1(h)f2(g) = F(f1)F(f2),
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G

dg 〈g, ξ〉f ∗(g) =

∫
G

dg 〈g, ξ〉f(g−1) =

∫
G

dg 〈g−1, ξ〉f(g)

=

∫
G

dg 〈g, ξ〉f(g) = Ff.

It is useful to extend the Fourier transform on L1(G) toM(G):

De�nition 3.3.2. The Fourier-Stieltjes transform of a Radon measure µ
is the map F : M(G) → BC(G), where BC(G) is the set of continuous
bounded function on G, such that

µ̂(ξ) :=

∫
G

dµ(g) 〈g, ξ〉. (3.16)

It is still true that µ̂ ∗ ν = µ̂ν̂, where µ, ν ∈M(G), since

µ̂ ∗ ν(ξ) =

∫
dµ(g)dν(h) 〈gh, ξ〉 =

∫
dµ(g)dν(h) 〈g, ξ〉〈h, ξ〉 = µ̂(ξ)ν̂(ξ).

We can also de�ne a Fourier transform on Ĝ instead of G (this is possible

since we can identify
ˆ̂
G with G, as we will see in theorem 3.3.12): this will

be a mapM(Ĝ)→ BC(Ĝ) such that

φµ(g) ≡ µ̆(g) :=

∫
Ĝ

dµ(ξ) 〈g, ξ〉 ∈ BC(Ĝ). (3.17)

Observe that Bochner's theorem holds [18]:

Theorem 3.3.3. µ ∈M+(Ĝ) ⇐⇒ µ̆ ≡ φµ ∈ P (G).

We remark that, if µ is a probability measure and χ ∈ P1(G), then µ̆ = χ
for some µ ∈M+(Ĝ) such that µ(Ĝ) = 1. Hence, functions of positive type
play an important role in physics, since they are nothing but the Fourier-
Stieltjes transform of probability measures, which are the classical states in
classical statistical mechanics (we will return on this fact in section 4.4).
Let us now consider B(G) := {µ̆ ∈ BC(G) | µ ∈ M+(Ĝ)} (we remark that
B(G) contains all the functions of the form f1 ∗f2, with f1, f2 ∈ Cc(G) [18])
and de�ne

Bp(G) := B(G) ∩ Lp(G), p <∞, (3.18)

which is a dense set in Lp(G) [18]. Hence the following Fourier's inversion
formula holds [18]:
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Theorem 3.3.4. If f ∈ B1(G), then f̂ ∈ L1(Ĝ). Moreover, if the Haar
measures dg ∈M(G), dµ(ξ) ∈M(Ĝ) are suitably normalized, we have that

dµ(ξ) = f̂(ξ)dξ ⇐⇒ µ̆ = f. (3.19)

Hence

f(g) =

∫
Ĝ

dµ(ξ) 〈g, ξ〉 =

∫
Ĝ

dξ 〈g, ξ〉
∫
G

dh〈h, ξ〉f(h) ∀f ∈ B1(G). (3.20)

If we now �x dg to be an Haar measure on G, there will exist a unique
normalization of the measure dξ on Ĝ such that 3.20 holds. In such a case,
we will say that the Haar measures (dg, dξ) are conjugate.
We also point out the following interesting result [18, 40]:

Proposition 3.3.5. If G is a compact group and its Haar measure is nor-
malized in such a way that |G| = 1, then the dual measure on Ĝ is the
counting measure. Conversely, if G is discrete and the Haar measure is the
counting measure, then the dual measure on Ĝ is normalized to the unit.

Example 3.3.6. The Lebesgue measure on R is self-dual [18] if R̂ ∼= R with
the pairing 〈x, ξ〉 = e2πixξ; in such a case we have

f̂(ξ) =

∫
dx e−2πixξf(x), f(x) =

∫
dξ e2πixξf̂(ξ),

then we have

f(x) =

∫
R
dξ e2πixξ

∫
R
dx′ e−2πix′ξf(x′).

Observe that, if we identify R̂ with R via the pairing 〈x, ξ〉 = eixξ, the dual
measure of dx will be (2π)−1dξ, hence

f̂(ξ) =
1√
2π

∫
dx e−ixξf(x), f(x) =

1√
2π

∫
dξ eixξf̂(ξ).

Example 3.3.7. Let us consider G ≡ T, hence T̂ ∼= Z. If λ = (2π)−1dθ
is the normalized Haar measure on T, then the dual measure on Z is the
counting measure. Therefore, by Fourier's �rst inversion theorem 3.3.4, we
have

f̂(k) =

∫ 2π

0

f(θ)e−iθk
dθ

2π
, (3.21)

f(θ) =
+∞∑

k=−∞

f̂(k)eiθk.
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Example 3.3.8. We now consider G ≡ ZN , thus ẐN
∼= ZN . Since ZN is

a �nite compact group the dual of the counting measure is still a counting
measure up to a rescaling factor that preserves the normalization. Hence
we will have

f̂(k) =
N∑
k=0

f(j)e−2πijk/N , (3.22)

f(j) =
1

N

N∑
k=0

f̂(k)e2πijk/N .

Of course, the normalizing factor can be placed in the Fourier transform,
it is a matter of choice (as well as the choice 1/

√
N both for the transform

and the anti-transform). In such a case, the �rst Fourier's inversion formula
is given by

f(j) =
1

N

∑
k∈ZN

e
2πi
N
jk
∑
l∈ZN

e−
2πi
N
lkf(l).

3.3.1 Other useful theorems

Let us consider f ∈ L2(G). Then f ∗ f ∗ ∈ P (G), since

〈f, πL(g)f〉 =

∫
dh f(h)f(g−1h) =

∫
dh f(h)f ∗(h−1g) = f ∗ f ∗.

Thus, if f ∈ L1(G)∩L2(G), we have that f ∗ f ∗ ∈ L1(G)∩ P (G) ⊂ B1(G).
Moreover, since the Fourier transform on L1(G) is a ∗-homomorphism, we

have that f̂ ∗ f ∗ = |f̂ |
2
. Now, if f ∈ L1(G) ∩ L2(G) and if dg and dξ are

conjugate measures, we have∫
G

dg|f(g)|2 =

∫
G

dg f(g)f(e−1g) = (f ∗ f ∗)(e) =

=

∫
Ĝ

dξ 〈e, ξ〉f̂ ∗ f ∗(ξ) =

∫
Ĝ

dξ f̂ ∗ f ∗(ξ) =

∫
Ĝ

dξ |f̂(ξ)|
2
.

Therefore

‖f‖L2(G) ≡
∫
G

dg |f(g)|2 =

∫
Ĝ

dξ |f̂(ξ)|
2
≡ ‖f̂‖ L2(Ĝ). (3.23)

Hence we have proven that f 7→ f̂ is an isometry in the L2 norm. The latter
extends uniquely to an isometry from L2(G) to L2(Ĝ), which is also sur-
jective, hence it is a unitary map [18]. Thus, we have that the Plancherel's
theorem holds:
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Theorem 3.3.9 (Plancherel). If f ∈ L1(G) ∩ L2(G), then F(f) ≡ f̂ ∈
L2(Ĝ) and this is true ∀f ∈ L1(G)∩L2(G) if dx and dξ are conjugate Haar
measures. Moreover, the map

L1(G) ∩ L2(G) 3 f 7→ f̂ ∈ L2(Ĝ) (3.24)

extends uniquely to a unitary operator F : L2(G)→ L2(Ĝ), which is called
the Fourier-Plancherel transform.

Corollary 3.3.10. If G is a compact Abelian group and λ is its Haar
measure such that λ(G) = 1, then Ĝ is an orthonormal basis in L2(G)

Proof. We have seen in the previous section that Ĝ is an orthonormal set
in L2(G). Observe that, if f ∈ L2(G) ⊥ ξ ∀ξ ∈ Ĝ, we have that

0 =

∫
dλ(g) ξ(g)f(g) =

∫
dλ(g) 〈g, ξ〉f(g) = f̂(ξ) ∀ξ ∈ Ĝ,

hence, by Plancherel's theorem, we have f ≡ 0 and Ĝ is an orthonormal
basis in L2(G).

As a last topic of this section, we consider the dual group of Ĝ, namely
ˆ̂
G.

Theorem 3.3.11 (Gelfand-Raikov). Let G be a locally compact group. The
irreducible representations of G separate points, i.e. if g, h ∈ G, g 6= h,
hence there exists an irreducible unitary representation π such that π(g) 6=
π(h).

Suppose now g ∈ G and let us consider the map 〈g, ·〉 : Ĝ 3 ξ 7→ 〈g, ξ〉 ≡
ξ(g) ∈ T and observe that 〈g, ξ1ξ2〉 = 〈g, ξ1〉〈g, ξ2〉. Hence we have that g is
a character of Ĝ. If we now consider the map Φ : G 3 g 7→ 〈g, ·〉 ∈ ˆ̂

G, we
have that

Φ(g1g2) = 〈g1g2, ·〉 = 〈g1, ·〉〈g2, ·〉 = Φ(g1)Φ(g2) ∀g1, g2 ∈ G,

hence Φ is a group homomorphism from G to
ˆ̂
G and it is injective due to

the Gelfand-Raikov's theorem 3.3.11. It is also possible to prove that Φ is
a continuous surjection , hence we have the following duality theorem, due
to Pontrjagin [18]:

Theorem 3.3.12 (Pontrjagin). The map Φ : G 3 g 7→ 〈g, ·〉 ∈ ˆ̂
G is an

isomorphism of topological groups.
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Therefore we will identify G with
ˆ̂
G from now on and we will not pay

attention to the pairings 〈g, ξ〉 and 〈ξ, g〉.
We have various interesting corollaries and here we present two of them.

The �rst is a second inversion formula:

Theorem 3.3.13. If f ∈ L1(G) and f̂ ∈ L1(Ĝ), then f(g) =
ˆ̂
f(g−1) a.e.,

i.e.

f(g) =

∫
Ĝ

dξ 〈g, ξ〉f̂(ξ) =

∫
Ĝ

dξ 〈g, ξ〉
∫
G

dh 〈h, ξ〉f(h). (3.25)

If f is also a continuous function, the equivalence is true pointwise.

Proof. Observe that, by Bochner's theorem 3.3.3, for each f ∈ L1(G) we
have that f̂ ∈ B(Ĝ), because

f̂(ξ) =

∫
G

dg 〈g, ξ〉f(g) =

∫
G

dg 〈g−1, ξ〉f(g) =

∫
G

dg 〈g, ξ〉f(g−1).

Hence we have that µ̆ = f̂ = ̂f((·)−1), where dµ(g) = f(g−1)dg and
f ∈ L1(G), then f̂ ∈ B(Ĝ). Suppose now f̂ ∈ L1(Ĝ) (and f̂ ∈ B1(G)).
Then, by the �rst Fourier's inversion theorem 3.3.4, we have that µ̆ = f̂

implies f(g−1)dg = dµ(g) =
ˆ̂
f(g)dg, hence f(g−1) =

ˆ̂
f(g) a.e..

If f is a continuous function,
ˆ̂
f is also continuous, therefore f(g−1) =

ˆ̂
f(g) ∀g ∈ G.

The second one is the so called Fourier uniqueness theorem [18]:

Theorem 3.3.14. If µ, ν are two complex Radon measure such that µ̂ = ν̂,
then µ = ν. In particuar, if f1, f2 ∈ L1(G) are such that f̂1 = f̂2, then
f1 = f2.

3.4 Harmonic analysis on phase space

Harmonic analysis on phase space is at foundation of the phase space de-
scription of quantum mechanics. In this section we will introduce the most
important facts regarding this topic, which are related with the symplectic
structure of the phase space, and will be used in the next chapter to de�ne
the Wigner function.
In particular, after we have de�ned the symplectic Fourier transform, we
will brie�y recall the notion of twisted group algebra, which is strictly re-
lated with the ?-product of functions [7]. Then, we will introduce the Gabor
transform, which is at foundation of time-frequency analysis and it is an
interesting tool due to its link with wavelets and coherent states [2].
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3.4.1 The symplectic Fourier transform

The symplectic Fourier transform, as the name suggests, is strictly inter-
twined with the symplectic structure of the phase space (the link will be
explicit in examples 3.4.2 and 3.4.3). Recall that the symplectic structure
arises from the underlying group structure, as we have seen in chapter 2.

Let G be a l.c.s.c. Abelian group. If we consider the (abstract) phase

spaceG×Ĝ, then, by Pontrjagin's duality theorem 3.3.12, Ĝ× Ĝ = Ĝ×G ∼=
G× Ĝ. Hence we can give the following de�nition:

De�nition 3.4.1. The symplectic Fourier transform is the unitary operator
FSp : L2(G× Ĝ)→ L2(G× Ĝ) such that

(FSpf)(t, ω) :=

∫
G×Ĝ

dxdξ 〈x, ω〉〈t, ξ〉f(x, ξ), f ∈ L2(G× Ĝ). (3.26)

The quantity

〈(x, ξ), (t, ω)〉 = 〈x, ω〉〈t, ξ〉 = 〈(t, ω), (x, ξ)〉 (3.27)

is called the symplectic character of G× Ĝ.

We will also denote FSpf as f̂ .
We remark that it is also possible to give an alternative de�nition of the
symplectic Fourier transform, given by the complex conjugate of the sym-
plectic character as 〈x, ω〉〈t, ξ〉 = 〈(x, ξ), (t, ω)〉. The alternative de�nition
of FSp is analogous to 3.26.
We observe that, due to Pontrjagin's duality theorem 3.3.12 and due to the
second inversion formula 3.25, we have that F2

Sp = Id. Indeed,

(FSpf̂)(x, ξ) =

∫
G×Ĝ

dtdω 〈t, ξ〉〈x, ω〉f̂(t, ω)

=

∫
G×Ĝ

dtdω 〈t, ξ〉〈x, ω〉
∫
G×Ĝ

dx′dξ′ 〈x′, ω〉〈t, ξ′〉f(x′, ξ′)

= f(x, ξ),

Therefore, since it is a unitary and self-inverse operator, the symplectic
Fourier transform is a self-adjoint operator. We remark that the Fourier
transform 3.15 does not enjoy this property, because it is such that F4 = Id,
while F2 is the parity operator [19].
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Example 3.4.2. Let us consider the continuous phase space Rn × Rn.
Hence, since the characters on Rn are given by 〈q, p〉 = ei2πq·p, the sym-
plectic character will be

〈q, p′〉〈p, q′〉 = e−i2π(q·p′−p·q′) = e−i2πω((q,p),(q′,p′)), (3.28)

where ω is the standard symplectic form on Rn × Rn and q · p =
∑n

i=1 qipi.
Hence, the symplectic Fourier transform 3.26 is de�ned as

(FSpf)(q, p) :=

∫
Rn×Rn

dq′dp′ ei2πω((q,p),(q′,p′))f(q′, p′), f ∈ L2(Rn × Rn).

(3.29)

Example 3.4.3. For the �nite phase space ZN × ZN , since the characters
on ZN are of the form 〈j, k〉 = ei

2π
N
jk, the symplectic characters are de�ned

as
〈j, k′〉〈k, j′〉 = e−i

2π
N

(jk′−kj′), (3.30)

and the discrete symplectic Fourier transform is given by

(FSpf)(j, k) =
1

N

N∑
j′,k′

ei
2π
N

(jk′−kj′)f(j′, k′), f ∈ L2(ZN × ZN). (3.31)

3.4.2 The twisted group algebra

We can now see how it is possible to endow L1(G) with an algebraic struc-
ture alternative to the group algebra (namely, the twisted group algebra)
in the case of groups which admit projective representations. In particular,
we see that the twisted convolution plays an important role in the phase
space description of quantum mechanics, since it is strictly related with the
?-product of functions [5, 7, 42, 52].

De�nition 3.4.4. Let G be a l.c.s.c. group and let µ : G × G → T be a
multiplier. If ψ1, ψ2 ∈ (L1(G), dλ(g) ≡ dg,C), then the function de�ned by

(ψ1 ~µ ψ2)(g) :=

∫
G

dh ψ1(h)ψ2(h−1g)µ(h, h−1g) (3.32)

is called the twisted convolution of ψ1 and ψ2.

We remark that the integral is well-de�ned since µ is a bounded, weakly
Borel function [16].

Proposition 3.4.5. (L1(G),~µ) is a Banach algebra.
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Proof. for ψ1, ψ2, ψ3 ∈ L1(G) we have

((ψ1 ~µ ψ2)~µ ψ3) (g) =

∫
dhdk ψ1(k)ψ2(k−1h)ψ3(h−1g)·

· µ(h, h−1g)µ(k, k−1h)

and

(ψ1 ~µ (ψ2 ~µ ψ3)) (g) =

∫
dhdk ψ1(k)ψ2(h)ψ3(h−1k−1g)·

· µ(h, h−1k−1g)µ(k, k−1g).

Hence, by the substitution h 7→ kh in the �rst expression, we have

((ψ1 ~µ ψ2)~µ ψ3) (g) =

∫
dhdk ψ1(k)ψ2(h)ψ3(h−1k−1g)·

· µ(kh, h−1k−1g)µ(k, h).

Then, since µ is a multiplier, we have

µ(kh, h−1k−1g)µ(k, h) = µ(k, k−1g)µ(h, h−1k−1g)

and the equivalence is proven.
Moreover,∣∣∣∣∫ dgdh ψ1(h)ψ2(h−1g)µ(h, h−1g)

∣∣∣∣ ≤ ∫ dgdh |ψ1(h)ψ2(h−1g)µ(h, h−1g)|

=

∫
dgdh |ψ1(h)ψ2(g)| = ‖ψ1‖L1‖ψ2‖L1 .

We can also de�ne the map Iµ : L1(G) 3 ψ 7→ ψ~µ ∈ L1(G), where

ψ~µ(g) := ∆(g−1)µ(g, g−1)ψ(g−1), (3.33)

which is an involution, because we have [7, 16]

‖ψ~µ‖1 = ‖ψ‖, (ψ~µ)
~µ = ψ, ∀ψ ∈ L1(G). (3.34)

Moreover [16],
(ψ1 ~µ ψ2)~µ = (ψ2)~µ ~µ (ψ1)~µ ,

hence we can give the following de�nition:
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De�nition 3.4.6. The Banach ∗-algebra (L1(G),~µ, Iµ) is called the twisted
group algebra of G.

Observe that in the case of exact multipliers, the twisted convolution
reduces to the ordinary one, as well as the twisted involution, hence the
twisted group algebra coincides with the group algebra of G.
We also note incidentally that the twisted group algebra is a unital algebra
if and only if G is a discrete group [16]. Moreover, it is a commutative
algebra if and only if µ ∼ 1 and G is an Abelian group.
Hence, we can observe that twisted convolution is a good candidate to
�mimic� the product of operators on the space of functions on the phase
space. In particular, it turns out that twisted convolution is involved in the
Weyl-Wigner scheme, which we will discuss in the next chapter, because
it arises when we consider the ?-product induced by a square integrable
projective representation of the phase space [7]. In such a case, if ψ, φ ∈
L2(G × Ĝ), then ψ ~µ φ ∈ L2(G × Ĝ) [5, 7, 20, 22]. Moreover, L2(G ×
Ĝ) becomes a non-commutative ∗-algebra when equipped with the twisted
convolution and the twisted involution [5, 7].

Example 3.4.7. Let us consider the continuous phase space Rn × Rn and
an irreducible projective representation with multiplier µ((q, p), (q′, p′)) =
eiπ(q·p′−p·q′) (h = 1). The twisted convolution 3.32 is given by

(f ~µ g)(q, p) :=

∫
Rn×Rn

dq′dp′ f(q′, p′)g(q − q′, p− p′)eiπ(q·p′−p·q′), (3.35)

where f, g ∈ L1(Rn × Rn). We again remark that it is the �standard� ?-
product of functions, which is well-de�ned in L2(Rn × Rn) too.

Example 3.4.8. We now consider the discrete phase space ZN × ZN ,
and a �nite Weyl system with symplectic multiplier µ ((j, k), (j′, k′)) ≡
µ1 ((j, k), (j′, k′)) = ei

π
N

(jk′−kj′) (λ = 1). Then,

(f ~µ g)(j, k) =
∑

j′,k′∈ZN

f(j′, k′)g(j − j′, k − k′)ei
π
N

(jk′−kj′), (3.36)

where f, g ∈ L1(ZN × ZN)(∼= CN×N ∼= MN(C)). We also observe that,
by construction, the twisted group algebra on ZN × ZN coincides with the
matrix algebraMN(C), where the latter is a Banach ∗-algebra with respect
to the trace norm ‖A‖2

HS := tr(AA∗) (in the �nite case all the operator
norms are equivalent [39]) and the involution is given by the adjoint map
[17].
Finally, by compactness of ZN × ZN , we also have that the irreducible



CHAPTER 3. HARMONIC ANALYSIS ON ABELIAN GROUPS 80

projective representations of ZN × ZN Dλ(j, k) de�ned in 2.77 form an
orthonormal basis for the twisted group algebra L1(ZN × ZN) [17].

A last remark on twisted group algebra: it turns out that a projec-
tive representation of a l.c.s.c. group G gives rise to a ∗-representation
of its twisted group algebra, in the same way as we have seen for unitary
representations and ∗-representations of the group algebra in section 3.1.1
[16, 17].

3.4.3 Gabor analysis on �nite Abelian groups

In the context of signal analysis it turns out that the Fourier transform is
not the best tool. Indeed, let us consider for example the signal t 7→ f(t)
in L1(R) ∩ L2(R). We are often interested in both the time and frequency
information of such signal, but we cannot �select� the spectral information
for a �xed frequency ω, since, by F , it is related to all times. In other
terms, in order to evaluate f̂(ω), we need to know f(t) ∀t ∈ R.
Moreover, we also �nd out that the uncertainty principle holds, hence the
concept of �istantaneous frequency� is also troublesome [22].
To accomplish this task it is necessary to introduce time-frequency analysis
and the Gabor transform, which is, roughly speaking, the Fourier transform
of f restricted to an interval by a smooth cut-o� g, often called window
[13, 22]. We remark that the time-frequency plane is nothing but the phase
space, since it can also be identi�ed with the direct product of an Abelian
group for its unitary dual [17, 22].
Hence, we now de�ne the Gabor transform on discrete phase space ZN×ZN ;
we will brie�y discuss the case Rn × Rn too, bearing in mind that, in such
a case, things can be trickier because of convergence issues (in particu-
lar, some facts require the notion of square integrable representations, see
section 3.5). For convenience, in the following we will set the label of the
projective representations of the phase space (both discrete and continuous)
to 1.

De�nition 3.4.9. Let D(j, k) ≡ D1(j, k) = e−i
π
N
jkMkTj be the projec-

tive irreducible representation of ZN × ZN de�ned in 2.77. The short-time
Fourier transform or Gabor transform of f ∈ L2(ZN) with respect to a
�xed window 0 6= w ∈ L2(ZN) is the map Gw : L2(ZN) → L2(ZN × ZN)
such that

Gwf(j, k) := 〈D(j, k)w, f〉L2(ZN ) =
∑
l∈ZN

ei
π
N
jke−i

2π
N
klw(l − j)f(l). (3.37)
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We notice incidentally that the discrete Gabor transform can be ex-
pressed as a convolution product as follows:

e−i
π
N
jk (f ∗Mkw

∗) (j) = e−i
π
N
jk
∑
l∈Zn

f(l) (Mkw
∗) (j − l) =

= e−i
π
N
jk
∑
l∈Zn

f(l)ei
2π
N
k(j−l)w(l − j) =

=
∑
l∈ZN

ei
π
N
jke−i

2π
N
klf(l)w(l − j) = Gwf(j, k).

We also observe that Schur's orthogonality relations 1.19 hold, namely:

〈Gw1f1,Gw2f2〉L2(ZN×ZN ) = 〈f1, f2〉L2(ZN )〈w1, w2〉L2(ZN ). (3.38)

In the context of analysis on phase space, the latter identity is often called
the Moyal's identity.

In the case of G = R things are not much di�erent, but proofs become
trickier since we have to deal with the domain of the Gabor operator (see
e.g. [22]). For future reference, the Gabor transform with respect to the
window w is usually de�ned as

Gwf(q, p) :=

∫ +∞

−∞
dx f(x)w(x− q)e−i2πx·p (3.39)

(the generalization to Rn is straightforward). Obviously, if we consider
the projective representation S(q, p) of R × R given in 2.24, we have that
Gwf(q, p) = 〈S(q, p)w, f〉 (up to a phase factor). We can also give an-
other simple, but interesting, equivalent expression for 3.39. Indeed, by the
substitution x 7→ x+ q

2
, we will have

Gwf(q, p) := e−iπqp
∫ +∞

−∞
dt f

(
x+

q

2

)
w
(
x− q

2

)
e−2πixp. (3.40)

This expression is also known as the Fourier Wigner transform [20] (or,
in time-frequency analysis, as the cross-ambiguity function [22]) and will
return (as its discrete counterpart) in the de�nition of the Wigner map on
the continuous (respectively, the discrete) phase space. Indeed, we will see
that the Wigner map is given by the symplectic Fourier transform of the
Fourier Wigner transform.
We also remark that the Moyal's identity 3.38 holds in the continuous case
as well [22, 20] (see next section).
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3.5 Square integrable representations and

wavelets

In the discussion of harmonic analysis on phase space we have understood
that the notion of square integrable representation is an invaluable tool in
the phase space description of quantum mechanics. Moreover, in the next
chapter, we will see that the Weyl-Wigner correspondence solely relies on
the existence of square integrable representations. Thus, as a last topic of
this chapter, we will give some basic results regarding the latter concept
and we will introduce the wavelet transform. We will also sketch how the
(standard) wavelet transform, which is an alternative tool to time-frequency
analysis [13, 22], arises from group theoretical considerations.

Let G be a l.c.s.c. group with left Haar measure dλ(g).

De�nition 3.5.1. Let U : G→ U(H) be a unitary (projective) representa-
tion and let cψ,φ : G 3 g 7→ 〈U(g)ψ, φ〉 ∈ C be its matrix coe�cients. The
set

A(U) := {ψ ∈ H | ∃φ ∈ H, φ 6= 0 : cψ,φ ∈ L2(G, λ,C)} (3.41)

is called the set of admissible vectors for the representation U . In other
words, ψ ∈ H is an admissible vector if∫

G

dλ(g) |〈U(g)ψ, ψ〉|2 <∞. (3.42)

If A(U) 6= {0}, the representation U is said to be square integrable (or,
equivalently, U is in the discrete series).

Observe that A(U) is always nonempty, since 0 ∈ A(U). The elements
φ ∈ A(U) such that ‖φ‖ = 1 are often called wavelets. We notice that
everything works the same if we consider right invariant measures. Indeed,
recall that if dλ(g) is a left Haar measure, then dλ(g−1) is a right Haar
measure, [18]. Hence, from the admissibility condition 3.42, we have∫

G

dλ(g) |〈U(g)φ, φ〉|2 =

∫
G

dλ(g)
∣∣〈φ, U(g−1)φ〉

∣∣2
=

∫
G

dλ(g−1) |〈φ, U(g)φ〉|2.

Thus we can restrict our attention to left Haar measures only.
Moreover, A(U) is also a stable under the action of U(g). Indeed, if φ ∈
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A(U), then∫
G

dλ(g′) |〈U(g′)U(g)φ, U(g)φ〉|2 =

∫
G

dλ(g′)
∣∣〈U(g−1g′g)φ, φ〉

∣∣2
=

∫
G

dλ(g′) |〈U(g′g)φ, φ〉|2

=
1

∆(g)

∫
G

dλ(g′) |〈U(g′)φ, φ〉|2,

where we have used the left invariance of λ, ∆ is the modular function on
G, and dλ(g−1) = ∆(g−1)dλ(g) [18]. It is also remarkable that A(U) is a
dense linear span in H [2].
The next theorem, due to Du�o and Moore [14] (see also [6]), will provide
us some orthogonality relations that are analogous to Schur's orthogonality
relations 1.19 which holds for compact groups:

Theorem 3.5.2 (Du�o-Moore). Let U : G → U(H) be a unitary (projec-
tive) representation. Then for any pair of vectors φ ∈ H and ψ ∈ A(U),
the coe�cient cφ,ψ is an element of L2(G, λ,C). Moreover, there exists a
unique positive selfadjoint, injective linear operator DU such that its domain
corresponds with A(U) and the following orthogonality relations hold:

〈cψ1,φ1 , cψ2,φ2〉L2 = 〈φ1, φ2〉〈DUψ2, DUψ1〉 ∀φ1, φ2 ∈ H, ∀ψ1, ψ2 ∈ A(U).
(3.43)

Lastly, DU is a bounded operator if and only if G is a unimodular group; in
such a case we also have that DU = dU Id, where dU is a positive constant.

Notice that the Du�o-Moore operato DU is linked to the normalization
of the Haar measure. In particular, recall that a Haar measure on a lo-
cally compact group G is unique up to positive factors [18]. Hence, if we
rescale the Haar measure by a positive constant k > 0, DU will be rescaled
correspondly by the square root of k [2, 7].

As a consequence of the Du�o-Moore's theorem, we have that, for 0 6=
ψ ∈ A(U) and φ1, φ2 ∈ H,

〈φ1, φ2〉 = ‖DUψ‖2

∫
G

dλ(g) 〈φ1, U(g)ψ〉〈U(g)ψ, φ2〉 (3.44)

or analogously, in the Dirac notation, the following resolution of the identity
holds:

Id = ‖DUψ‖2

∫
G

dλ(g) |U(G)ψ〉〈U(g)ψ| . (3.45)

Moreover, theorem 3.5.2 allows us to introduce the following concept:
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De�nition 3.5.3. If U : G → U(H) is a square integrable representation
of G and if ψ ∈ A(U), then the linear operator

Wψ
U : H 3 φ 7→ 1

‖DUψ‖
cψ,φ ∈ L2(G, λ,C) (3.46)

is called the (generalized) wavelet transform generated by U with �ducial
(or analyzing) vector ψ.

Observe that 3.46 is an isometry. We can also easily compute the adjoint
operator, which will be a map from L2(G, λ,C) to H; if f ∈ L2(G) and
φ ∈ H, we have

〈φ, (Wψ
U )∗f〉H = 〈Wψ

Uφ, f〉L2 =
1

‖DUψ‖
〈cψ,φ, f〉L2

=
1

‖DUψ‖

∫
G

dλ(g) 〈U(g)ψ, φ〉Hf(g)

=
1

‖DUψ‖

∫
G

dλ(g) 〈φ, U(g)ψ〉Hf(g).

Hence we have the following reconstruction formula:

(Wψ
U )∗f =

1

‖DUψ‖

∫
G

dλ(g)f(g)U(g)ψ, ∀f ∈ L2(G, λ,C). (3.47)

We can now stress the strong analogy with some results that hold for
compact groups. Firstly, observe that, since the irreducible representation
of a compact group G are �nite dimensional, we have that they are also
square integrable, since the Haar measure on G is �nite and every coe�cient
of such representations is a bounded function. Moreover, if λ is normalized
in such a way that λ(G) = 1, then, from theorem 3.5.2,√

dU

∫
G

dλ(g) 〈φ1, U(g)ψ1〉〈U(g)ψ2, φ2〉 = 〈φ1, φ2〉〈ψ2, ψ1〉,

where φ1, φ2 ∈ H, ψ1, ψ2 ∈ A(U), and dU ≡ dimH. Hence we have

DU =
1√
dU

Id. (3.48)

As a consequence, we have that the wavelet transform 3.46 and the isometry
1.20 (which we will refer as the prototype wavelet transform) coincide.
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Example 3.5.4. We now de�ne the standard wavelet transform which is
often encountered in time-frequency analysis [13].
Recall that R n R∗+ ≡ G is the a�ne group with composition law

(b, a)(b̃, ã) := (b+ ab̃, aã); (3.49)

the inverse element is given by (b, a)−1 = (−a−1b, a−1) [2]. This group is
not unimodular, since

dλ(b, a) =
1

a2
dadb, dρ(b, a) =

1

a
dbda

are the left and right Haar measures [2], hence the Du�o-Moore operator is
unbounded. The maps

U (+) : G→ U(L2(R∗+)) | (U (+)(b, a)f)(ξ) := a1/2eibξf(aξ), (3.50)

U (−) : G→ U(L2(R∗−)) | (U (−)(b, a)f)(ξ) := a1/2eibξf(aξ), (3.51)

are irreducible, inequivalent square integrable representations of R n R∗+
[2]. The function f ∈ L2(R∗+) is an admissible element of U (+) if and only

if R∗+ 3 ξ 7→ |ξ|
−1|f(ξ)|2 ∈ L2(R∗+) [2]. The same holds for A(U (−)).

If we now consider the representation U : G → U(L2(R)) such that U :=
U (−) ⊕ U (+) and if F is the Fourier-Plancherel transform, we have that

(Ũ(b, a)ψ)(x) := (FU(b, a)F∗ψ)(x) =
1√
a
ψ

(
x− b
a

)
, ψ ∈ L2(R).

(3.52)
The quantity

ψb,a(x) ≡ 1√
a
ψ

(
x− b
a

)
(3.53)

is often called the core of the wavelet transform. The isometry Wψ :
L2(R)→ L2(R nR∗+, λ = a−2dbda) de�ned in such a way that

(Wψφ)(b, a) :=

∫
R
dxψb,a(x)φ(x), φ ∈ L2(R) (3.54)

is called the (standard) wavelet transform with analyzing vector ψ. In par-
ticular, ψ is a mother wavelet for the representation U if the following
admissibility condition hold:

R± 3 ξ 7→ |ξ|−1
∣∣∣(F̂ψ)(ξ)

∣∣∣2 ∈ L1(R±∗ ),

2π

∫
R−∗

|ξ|−1
∣∣∣(F̂ψ)(ξ)

∣∣∣2dξ = 2π

∫
R+
∗

|ξ|−1
∣∣∣(F̂ψ)(ξ)

∣∣∣2dξ = 1.
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Lastly, we brie�y return to the projective representations of Rn × Rn.
In particular, it turns out that the projective representations 2.24 are square
integrable [2, 4, 6, 20], hence orthogonality relations 3.43 hold (we remark
that this is true only for the projective representations of the continuous
phase space, since the irreducible representations of Hn(R) are not square
integrable [2, 6]; in such a case we say that the Schrödinger representation
is square integrable modulo its center). Hence, the Moyal's identity 3.38
holds even for G = Rn × Rn, since it is nothing but a restatement of the
orthogonality relations for square integrable representations. Moreover, we
also have that the Gabor transform is the (generalized) wavelet transform
with respect to the Schödinger representation, since it is de�ned as the
coe�cient of the representation (as we have seen in section 3.4.3).
Lastly, we remark that the square-integrability of representations is the key
property to de�ne coherent states [2]. For instance, as it is well known, the
(canonical) coherent states are generated by the displacement operators
acting on the ground state of the Hamiltonian operator of the harmonic
oscillator as [2, 41]

|α〉 = D(q, p) |0〉 , (3.55)

and satisfy the resolution of the identity 3.45, which is a consequence of
Du�o-Moore's theorem. This scheme is suitable for the study of coherent
states over groups di�erent from the phase space Rn×Rn (see [2]); however,
this is beyond our aims and we will not investigate this facts hereafter.



Chapter 4

Quantum mechanics on phase

space

We are now ready to introduce quantum mechanics on phase space exploit-
ing the tools developed in the previous chapter; here we will review the most
important facts of quantum mechanics, paying more attention to quantum
states, both in continuous and in �nite cases.
The chapter is structured as follows. At �rst, we will describe the general
quantization-dequantization (or Weyl-Wigner) scheme: given a square in-
tegrable projective representation of a l.c.s.c. group G, we will de�ne an
isometry - called the (generalized) Wigner transform or dequantization map
- from the space of Hilbert-Schmidt operators on the space of the represen-
tation to the space of square integrable functions de�ned on G. Then, the
Weyl transform (or quantization map) will simply be the adjoint of the
latter. In such a scheme we have that the Wigner transform is in general
only an isometry, thus its adjoint is a partial isometry, while in the original
Weyl-Wigner scheme of G = Rn × Rn they are unitary operators [20, 38].
Since we are mostly interested in the continuous and the discrete phase
space, we will focus our attention on the case of unimodular groups. Thereby,
we can de�ne the ?-product of functions by means of the Weyl-Wigner
scheme, and we will be able to clarify the link with the twisted group al-
gebra (in the general case of non-unimodular groups the ?-product is not
equivalent to the twisted convolution, see [7] for further details).

Next, we will describe the Wigner function on Rn × Rn and ZN × ZN .
In particular, we will see that the standard Wigner function associated
with the Hilbert-Schmidt operator ρ, which appeared for the �rst time in
[50], is recovered if we consider the symplectic Fourier transform of the
dequantization map; we will also review some interesting properties of the
Wigner function.

87
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The discrete Wigner function will be de�ned in analogy with the standard
one as the discrete symplectic Fourier transform of the discrete Wigner
transform. Furthermore, we will study some fundamental properties and
we will compare it with the Wigner function de�ned by means of phase-point
operators [2, 34], which, roughly speaking, can be regarded as the quantum
counterpart of the phase space points. In particular, we will observe that
the latter is not well de�ned for phase space of even order, unlike the discrete
Wigner function de�ned by means of the Weyl-Wigner correspondence.
Eventually, thanks to Weyl-Wigner correspondence, we will be able to study
quantum states on discrete phase space by means of functions of quantum
positive type, a generalization of functions of positive type encountered in
section 3.1.2. In this way, we will be able to discuss of some criteria which
establish if a state is separable.

4.1 The Weyl-Wigner correspondence

In this section we will introduce the generalized Wigner transform (or de-
quantization map), the basic tool in the phase space approach to quantum
mechanics. By means of a given projective representation of a l.c.s.c. group
G, the dequantization map associates a square integrable function on G to
each Hilbert-Schmidt operator on the space of the representation.

Thus, let us brie�y recall that a bounded linear operator T ∈ B(H) is a
Hilbert-Schmidt operator if trT ∗T <∞; we will denote with B2(H) the set
of such operators. We also need the following facts [39]:

• B2(H) is a ∗-ideal in B(H), namely B2(H) is such that if T ∈ B2(H)
and S ∈ B(H), then TS, ST and T ∗ are still Hilbert-Schmidt opera-
tors.

• B2(H) is a Hilbert space, where the inner product is de�ned as

〈A,B〉 := tr(A∗B), A,B ∈ B2(H). (4.1)

• The norm ‖T‖2 :=
√

trT ∗T , T ∈ B2(H), is such that ‖T‖ ≤ ‖T‖2.
Moreover, the �nite rank operators are dense in B2(H) (with respect
to ‖·‖2).

Let us consider a l.c.s.c. group G (which it is not necessary unimodular
yet), a left Haar measure dλ(g) on G and a square integrable projective
representation U : G → U(H) with multiplier µ. In order to give a proper
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de�nition of the Wigner map, let us consider the rank one operators in H
of the type

|ψ〉〈φ| , ψ ∈ H, φ ∈ Dom(D−1
U ),

where DU is the Du�o-Moore operator associated with the representation U
normalized according to the left Haar measure dλ of the group. The linear
span of such operators corresponds to the set of �nite rank operators in H
[39], hence it is dense in B2(H). Therefore, a �nite rank operator F in H
admits a canonical decomposition of the form F =

∑N
k=1 |ψk〉〈φk|, where N

is a natural number, {φk}Nk=1 and {ψk}Nk=1 are linearly indipendent systems
in H and each φk belongs to Dom(D−1

U ).
Let us now consider the quantity

(DU |ψ〉〈φ|)(g) := tr
(
U(g)∗

∣∣ψ〉〈D−1
U φ
∣∣) = 〈U(g)D−1

U φ, ψ〉, |ψ〉〈φ| ∈ B2(H).
(4.2)

Then, if |ψ1〉〈φ1| and |ψ2〉〈φ2| are rank one operators, by the orthogonality
relations 3.43, we have that∫

G

dλ(g)(DU |ψ1〉〈φ1|) (g) (DU |ψ2〉〈φ2|) (g) =

=

∫
G

dλ(g)〈ψ1, U(g)D−1
U φ1〉〈U(g)D−1

U φ2, ψ2〉

= 〈ψ1, ψ2〉〈φ2, φ1〉 = 〈|ψ1〉〈φ1| , |ψ2〉〈φ2|〉B2(H).

Therefore, we can extend DU to �nite rank operators by linearity and to
the whole B2(H) by continuity, so that we are allowed to give the following

De�nition 4.1.1. Let G be a l.c.s.c. group, let U : G→ U(H) be a square
integrable projective representation with multiplier µ, and let DU be the
associated Du�o-Moore operator.
Then, the map DU : B2(H)→ L2(G) such that

(DUρ)(g) := tr
(
U(g)∗ρD−1

U

)
, ρ ∈ B2(H), (4.3)

is called the generalized Wigner transform or the dequantization map in-
duced by the square integrable representation U .

If G is a unimodular group, since DU = dU Id, dU > 0, the Wigner
transform becomes

(DUρ) (g) =
1

dU
tr(U(g)∗ρ), ρ ∈ B2(H). (4.4)

We also remark that, due to orthogonality relations 3.43, the dequantiza-
tion map is an isometry [7].
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In the following, we will denote with RU the range of the Wigner trans-
form, which depends on the unitary equivalence class of U only [7]. We also
observe that, if Wψ

U is the generalized wavelet transform with analyzing
vector ψ ∈ H de�ned in 3.46, the following relation holds [7]:

RU = span{ψ ∈ RanWψ
U | ψ ∈ A(U), ψ 6= 0}. (4.5)

Proposition 4.1.2. If U : G→ U(H) and V : G→ U(H′) are two square
integrable unitary representations, then the ranges RU ,RV are orthogonal.

Proof. Let us consider the generalized wavelet transform Wψ
U ,W

η
V with an-

alyzing vectors ψ ∈ H and η ∈ H′. Recall that such transforms intertwine
the representation U and V with the left regular representation πL. Thus,
we have that Wη

V
∗Wψ

U : H → H′ intertwines U and V . However, U and V
are inequivalent, hence, by Schur's lemma 1.2.7, Wη

V
∗Wψ

U must be identi-
cally zero. Therefore,

0 = 〈Wη
V
∗Wψ

Uφ, ξ〉 = 〈Wψ
Uφ,W

η
V ξ〉 ∀φ ∈ H, ∀ξ ∈ H

′

and thanks to 4.5 the proof is complete.

Corollary 4.1.3. If G is a compact group, then L2(G) =
⊕

U∈ĜRU .

Proof. Recall that, by Peter-Weyl's theorem 1.2.14,

L2(G) =
⊕
U∈Ĝ

dU⊕
j=1

Ran(Wψj
U ),

where dU is the dimension of the representation. By the previous consider-
ation, we also have that

dU⊕
j=1

RanWψj
U = span{cψ,φ | ψ, φ ∈ H} = RU ,

where cψ,φ are the coe�cients of the representation 1.17, and the proof is
complete.

We can now study the intertwining properties of the Wigner transform;
from now on, we will focus on the case of unimodular groups only in order
to simplify some proofs, hence DU = dU Id, dU > 0.
Let us consider the unitary representation

U∨U : G→ U(L2(G)), U∨U(g)A := U(g)AU(g)∗, ∀g ∈ G, A ∈ B2(H),
(4.6)
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which can be regarded as the symmetry action of the groupG onto quantum-
mechanical operators.
We also consider the map

Tµ : G→ U(L2(G)) | (Tµ(g)f)(g′) := µ�(g, g′)f(g−1g′g), (4.7)

where µ�(g, g′) := µ(g, g−1g′)µ(g−1g′, g), which is a unitary representation
too.

Proposition 4.1.4. Let G be a unimodular l.c.s.c. group and let U be a
projective square integrable representation of G with multiplier µ. Then,

DUU ∨ U(g) = Tµ(g)DU , ∀g ∈ G (4.8)

(namely, the dequantization map intertwines U ∨ U and Tµ). As a conse-
quence, RU is an invariant subspace for Tµ and U∨U is unitarily equivalent
to the subrepresentation Tµ|RU .

Proof. Observe that

(DUU ∨ U(g)A) (g′) = (DUU(g)AU(g)∗) (g′) =
1

dU
tr(U(g′)∗U(g)AU(g)∗)

=
1

dU
tr(U(g)∗U(g′)∗U(g)A).

We notice now that, since U is a projective representation, we have

U(g−1g′g) = µ(g−1, g′g)µ(g′, g)U(g−1)U(g′)U(g).

Thus,

(Tµ(g)DUA) (g′) = Tµ(g)
1

dU
tr(U(g′)∗A) =

=
1

dU
µ(g, g−1g′)µ(g−1g′, g)µ(g−1, g′g)µ(g′, g) tr

(
(U(g−1)U(g′)U(g))∗A

)
=

1

dU
µ(g, g−1g′)µ(g−1g′, g)µ(g−1, g′g)µ(g′, g) tr

(
U(g)∗U(g′)∗U(g−1)∗A

)
By the de�ning property of the multipliers, we have that

µ(g, g−1g′)µ(g−1g′, g)µ(g−1, g′g)µ(g′, g) =

= µ(g, g−1g′)µ(g−1g′, g)µ(g−1g′, g)µ(g−1, g′)

= µ(g, g−1g′)µ(g−1, g′)

= µ(gg−1, g′)µ(g, g−1) = µ(g, g−1).
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Now, recalling that Id = U(gg−1) = µ(g, g−1)U(g)U(g−1), we see that

(Tµ(g)DUA) (g′) =
1

dU
tr (U(g)∗U(g′)∗U(g)A) .

Let us now consider the map Jµ : L2(G)→ L2(G) such that

(Jµf) (g) := µ(g, g−1)f(g−1), ∀f ∈ L2(G) (4.9)

(recall that we are considering unimodular groups only), which is a well-
de�ned involution in L2(G). We also remark that the latter is a selfadjoint
anti-unitary map.

Proposition 4.1.5. Let G be a l.c.s.c. unimodular group and let U be a
square integrable projective representation of G. If J is a standard complex
conjugation in the Hilbert space B2(H), namely J maps A ∈ B2(H) to
A∗ ∈ B2(H), then the dequantization map DU induced by the representation
U intertwines the involution 4.9 with J , i.e.

DUJ = JµDU . (4.10)

Proof. Observe that

(DUJA) (g) = (DUA
∗)(g) =

1

dU
tr(U(g)∗A∗) =

1

dU
tr(U(g)A).

Moreover, we have

(JµDUA) (g) = Jµ
1

dU
tr(U(g)∗A) =

1

dU
µ(g, g−1)tr(U(g−1)∗A).

Again, since U(g−1)∗ = µ(g−1, g)U(g)∗, we have that

(JµDUA) (g) =
1

dU
tr(U(g)A).

We can now introduce the adjoint map of the Wigner transform.

De�nition 4.1.6. Let U be a square integrable projective representation
of a l.c.s.c. unimodular group G and let DU be the corresponding Wigner
transform. The adjoint map

QU ≡ DU
∗ : L2(G)→ B2(H) (4.11)



CHAPTER 4. QUANTUM MECHANICS ON PHASE SPACE 93

such that
QUDU = Id, DUQU = PRU , (4.12)

where PRU is the orthogonal projection on the range of the Wigner map, is
called the Weyl transform (or quantization map).

We remark that, since the Wigner transform is an isometry, the Weyl
transform, which is the pseudo-inverse of DU , is a partial isometry such
that RU = ker QU [7, 39]. As we brie�y mentioned at the end of section
3.1.1, we can observe that the following fact holds [7]:

Proposition 4.1.7. If G is a l.c.s.c. unimodular group, U is a square
integrable projective representation of G and f = DU |ψ〉〈φ|, then the integral

1

dU

∫
G

dλ(g)f(g)U(g) (4.13)

converges weakly to |ψ〉〈φ|. Therefore, if f ∈ RU(G), we have

QUf =
1

dU

∫
G

dλ(g)f(g)U(g). (4.14)

Proof. If ψ′, φ′ ∈ H and L2(G) 3 f = DU |φ′〉〈ψ′| , |φ′〉〈ψ′| ∈ B2(H), by
orthogonality relations 3.43, we have that

1

dU

∫
G

dλ(g)〈φ, U(g)ψ〉f(g) =
1

d2
U

∫
G

dλ(g)〈φ, U(g)ψ〉 tr(U(g)∗ |φ′〉〈ψ′|)

=
1

d2
U

∫
G

dλ(g)〈φ, U(g)ψ〉〈U(g)ψ′, φ′〉

= 〈φ, φ′〉〈ψ′, ψ〉.

Moreover, we have∣∣∣∣∫
G

dλ(g)
1

dU
〈φ, U(g)ψ〉f(g)

∣∣∣∣ ≤ ‖ψ‖‖ψ′‖‖φ‖‖φ′‖. (4.15)

Therefore the integral
1

dU

∫
G

dλ(g)U(g)f(g)

can be interpreted in the weak sense.
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4.1.1 The star-product

We can now introduce the ?-product of functions f1, f2 ∈ L2(G) induced
by the Weyl-Wigner scheme, which, roughly speaking, will be given by the
dequantization map of the product of the operators associated to f1 and f2

via the quantization map.
We will focus our attention on the case of unimodular groups only, because
we are interested in the case of the Weyl-Wigner correspondence in the
phase space. Besides, in the general case of non unimodular groups, it is
much more di�cult to give explicit formulas (see [7] section 5).

De�nition 4.1.8. Let G be a l.c.s.c. unimodular group and let U : G →
U(H) be a square integrable projective representation. If DU (QU) is the
associated dequantization (quantization) map, then the bilinear map

(·) ?U (·) : L2(G)× L2(G) 3 (f1, f2) 7→ DU

(
(QUf1) (QUf2)

)
∈ L2(G)

(4.16)
is the ?-product induced by U .

We can easily prove that the ?-product is associative. Indeed, let us
consider f1, f2, f3 ∈ L2(G) and recall that QUDU = Id. Hence we have

(f1 ?U f2) ?U f3 = DU

([
QUDU

(
(QUf1) (QUf2)

)]
(QUf3)

)
= DU

(
(QUf1) (QUf2) (QUf3)

)
= DU

(
(QUf1)

[
QUDU

(
(QUf2) (QUf3)

)])
= DU

(
(QUf1) (QUf2) (QUf3)

)
= f1 ?U (f2 ?U f2) .

Next, we can observe that

‖f1 ?U f2‖L2 ≤ ‖f1‖L2‖f2‖L2 ∀f1, f2 ∈ L2(G). (4.17)

Indeed, since DU is an isometry and QU is a partial isometry, we have

‖DU ((QUf1)(QUf2))‖L2 = ‖(QUf1)(QUf2)‖B2(H)

≤ ‖QUf1‖B2(H)‖QUf2‖B2(H) ≤ ‖f1‖L2‖f2‖L2 .

Let us now consider a multiplier µ of the representation U and recall that
the involution Jµ de�ned in 4.9 is such that DUJ = JµDU , where J is the
complex conjugation in B2(H). As a consequence, we have that [7]

JQU = QUJµ. (4.18)
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Thus, for each f1, f2 ∈ L2(G) we have that

Jµ (f1 ?U f2) = JµDU ((QUf1)(QUf2)) = DUJ ((QUf1)(QUf2))

= DU ((JQUf2)(JQUf1)) = DU ((QUJµf2)(QUJµf1))

= (Jµf2) ?U (Jµf1).

Therefore, since L2(G) is an algebra with respect to (·) ?U (·) (due to bilin-
earity), we have proved the following

Proposition 4.1.9. The space (L2(G), ?U , Jµ) is a Banach ∗-algebra.

We also notice that RU is a closed two-sided ideal in such algebra,
namely f1 ?U f2 ∈ RU [7].

The ?-product of functions admits an explicit formula in terms of inte-
gral kernels. However, we will not investigate this property (see [7] section
5 for further details), but we will focus on the case of unimodular groups,
where we can recognize the formal expression of the twisted convolution
3.32. Indeed, the following fact holds true [7]:

Theorem 4.1.10. Let G be a l.c.s.c. unimodular group and let U be a
square integrable projective representation. Then, for any f1, f2 ∈ RU and
for almost all g ∈ G, we have that

(f1 ?U f2)(g) =
1

dU

∫
G

dλ(g)f1(h)f2(h−1g)µ(h, h−1g), dU > 0. (4.19)

For compact groups the following fact also holds [7]:

Corollary 4.1.11. Let G be a l.c.s.c. compact group and let λ be an Haar
measure normalized in such a way that λ(G) = 1. Let U be a square inte-
grable representation of G with dimension dU . Then, ∀f1, f2 ∈ L2(G), we
have that

G 3 g 7→
∫
G

dλ(h)f1(h)f2(h−1g) =
∑
U∈Ĝ

dU(f1 ?U f2), (4.20)

where the sum on the right hand side converges in the norm sense, is a map
in L2(G).

4.2 Wigner function on continuous phase

space

We now apply the general formalism developed in section 4.1 to Rn × Rn.
We will focus on the case of a Weyl system S ≡ S1 de�ned in 2.24 whose
symplectic multiplier µ is given in 2.26.
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Firstly, let us brie�y review the intertwining properties, so let ρ be a
Hilbert-Schmidt operator on L2(Rn). Then, the generalized Wigner trans-
form (also called the Fourier-Wigner transform or the characteristic func-
tion in this context) DS : B2(L2(Rn))→ L2(Rn × Rn) is given by

(DSρ)(q, p) := tr(S(q, p)∗ρ) (4.21)

(the Haar measure is normalized in such a way that the Du�o-Moore op-
erator is DS = Id). Let us consider the unitary representation S ∨ S :
Rn × Rn → U(L2(Rn × Rn)) such that (S ∨ S)(q, p)ρ = S(q, p)ρS(q, p)∗ and
observe that

µ((q, p), (q′ − q, p′ − p)µ((q′ − q, p′ − p), (q, p)) =

= exp{−iπ (q · (p′ − p)− p · (q′ − q))} exp{iπ ((q′ − q) · p− (p′ − p) · q)}
= exp{−i2π(q · p′ − p · q′)}.

Thus, S ∨ S is intertwined by DS with the representation 4.7, which turns
out to be de�ned in such a way that

(Tµ(q, p)f) (q′, p′) = e−i2π(q·p′−p·q′)f(q′, p′), ∀f ∈ L2(Rn × Rn). (4.22)

Similarly, bearing in mind that

µ((q, p), (q, p)−1) = eiπ(q·(−p)−p·(−q)) = 1, (4.23)

where µ is the symplectic multiplier 2.26, the generalized Wigner transform
DS intertwines the involution

J : B2(L2(Rn)) 3 A 7→ A∗ ∈ B2(L2(Rn)) (4.24)

with (see proposition 4.1.5)

(Jf)(q, p) ≡ (Jµf)(q, p) = f(−q,−p), ∀f ∈ L2(Rn × Rn). (4.25)

We now observe that, in order to recover the standard Wigner function
[50]

W ψ
S =

∫
Rn
dx e−i2πp·xψ

(
q − x

2

)
ψ
(
q +

x

2

)
, ψ ∈ L2(Rn), (4.26)

it is necessary to consider the symplectic Fourier transform of the char-
acteristic function 4.21. Indeed, let us consider the �nite rank operator
|ψ〉〈φ| , ψ, φ ∈ L2(Rn) at �rst. Then, we see that

(DS |ψ〉〈φ|)(q, p) = tr(S(q, p)∗ |ψ〉〈φ|) = 〈S(q, p)φ, ψ〉L2(Rn)

=

∫
Rn
dxψ(x)eiπq·pe−i2πp·xφ(x− q).

(4.27)
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Hence, mapping x 7→ x+ q
2
, we obtain

(DS |ψ〉〈φ|)(q, p) =

∫
Rn
dxψ

(
x+

q

2

)
φ
(
x− q

2

)
e−i2πp·x (4.28)

(notice that the latter is essentially the Gabor transform of ψ with respect
to the window φ [20, 22]).
Thus, by an application of the symplectic Fourier transform we recover the
�right� Wigner function. Indeed, observe that the �rst Fourier's inversion
formula 3.20 can be realized as

ψ(q) =

∫
Rn
dp′ ei2πq·p

′
∫

Rn
dx e−i2πp

′·xψ(x) ψ ∈ L2(Rn).

Then,

(FSp(DS |ψ〉〈φ|)) (q, p) =

=

∫
Rn×Rn

dq′dp′ e−i2π(q′·p−p′·q)
∫

Rn
dx φ

(
x− q′

2

)
ψ

(
x+

q′

2

)
e−i2πp

′·x

=

∫
dq′ φ

(
q − q′

2

)
ψ

(
q +

q′

2

)
e−i2πp

′·q′ .

Therefore, we can give the following de�nition:

De�nition 4.2.1. The standard Wigner function is a map from B2(L2(Rn))
to L2(Rn × Rn) such that

W ρ
S = FSpDSρ, ρ ∈ B2(L2(Rn)). (4.29)

We remark that de�nition 4.29 can be written in Dirac notation as

W ρ
S (q, p) =

∫
Rn
dx e−i2πp·x

〈
q − x

2

∣∣∣ρ∣∣∣q +
x

2

〉
.

We also notice that, since DS is a unitary operator on L2(Rn×Rn) [38], WS

is unitary too.
Moreover, orthogonality relations 3.43 hold true, because S(q, p) is a square
integrable projective representation. Thus, by the unitarity of the operator
FSp, we have

Theorem 4.2.2. If ψ1, ψ2, φ1, φ2 ∈ L2(Rn), the Wigner function satisfy the
Moyal identity, namely

〈W |ψ1〉〈φ1|
S ,W |ψ2〉〈φ2|

S 〉L2(Rn×Rn) = 〈ψ1, ψ2〉L2(Rn)〈φ2, φ1〉L2(Rn). (4.30)
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Another brief remark concerning the intertwining properties: let us con-
sider the unitary representation

V : Rn × Rn → U(L2(Rn × Rn)), V(q, p) := FSpTµFSp, (4.31)

which is intertwined with S ∨ S, because

WS = FSpDS =⇒ WSS ∨ S = FSpTµFSpWS = VWS.

Observe that V is the translation operator on the phase space, because

(V (q, p)f)(q′, p′) = (FSpTµFSpf)(q′, p′) =

=

∫
dq1dp1 e

i2π(q′·p1−p′·q1)(Tµ(q, p)FSpf)(q1, p1) =

=

∫
dq1dp1 e

i2π(q′·p1−p′·q1)e−i2π(q·p1−p·q1)(FSpf)(q1, p1) =

=

∫
dq1dp1 e

i2π(q′·p1−p′·q1)e−i2π(q·p1−p·q1)

∫
dq2dp2 e

i2π(q1·p2−p1·q2)f(q2, p2) =

= f(q′ − q, p′ − p).

Thus, the simmetry action on Hilbert-Schmidt operators is intertwined with
translations on phase space. In other terms, the latter unitary equivalence
means that the Wigner function behaves �well� under position and momen-
tum translations, namely [9]

ψ(q) 7→ ψ(q − q′) =⇒ W ψ
S (q, p) 7→ W ψ

S (q − q′, p),
ψ(q) 7→ e2πip′qψ(q) =⇒ W ψ

S (q, p) 7→ W ψ
S (q, p− p′),

where ψ is a function on the con�guration space.

Before we go any further, let us brie�y review an alternative expression
of the Wigner function 4.29, that relies on the de�nition of the following
self-adjoint operators, often called the phase-point operators,

A(q, p) := 2S(q, p)ΠS(q, p)∗, (q, p) ∈ Rn × Rn (4.32)

where Π ≡ F2 is the parity operator such that f(x) 7→ f(−x), f ∈ L2(Rn)
(F is the Fourier-Plancherel operator on L2(Rn)); the factor 2 will be neces-
sary in order to retrieve exactly WS. Observe that we have an operator for
each point (q, p) ∈ Rn × Rn; in this sense, these operators are the quantum
mechanical counterparts of the phase space points. Moreover, each phase-
point operator A(q, p) can be interpreted as a displaced parity operator,
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namely as a parity operator around the phase space point (q, p) [46]. Since
the translation and modulation operators are intertwined by the Fourier
transform on L2(Rn) as in proposition 2.4.5 [22], we also have the following
equivalent expressions, which highlight a dilation involved in the de�nition
of the phase-point operator:

A(q, p) = 2S(q, p)ΠS(q, p)∗ = 2e−i2πqpM(p)T (q)ΠM(−p)T (−q)
= 2e−i2πqpM(p)T (q)M(p)T (q)Π = 2e−i4πqpM(2p)T (2q)Π

= 2S(2q, 2p)Π,

or, in a similar way [34],

A(q, p) = 2ei4πqpT (2q)ΠM(−2p).

Hence, the Wigner function 4.29 can be written as [2]

W ρ
S (q, p) = tr(A(q, p)ρ), ρ ∈ B2(L2(Rn)). (4.33)

For instance, if ψ ∈ L2(Rn), we have

tr(A(q, p) |ψ〉〈ψ|) = 2

∫
Rn
dx eiπq·pei2πp·xψ(q + x)e−iπq·pei2πp·xψ(q − x)(

x 7→ −x
2

)
=

∫
Rn
dx e−i2πp·xψ

(
q − x

2

)
ψ
(
q +

x

2

)
= W ψ

S (q, p).

Finally, we review some well-known facts concerning quantum states.
Recall that an operator ρ is a quantum state if

ρ ∈ B1(H), tr ρ = 1, ρ ≥ 0, (4.34)

where B1(H) denotes the set of trace class operators on the Hilbert space
H (namely, A ∈ B1(H) if tr |A| <∞, where |A| =

√
A∗A). We will denote

with S(H) the convex set [35] of quantum states on H. Furthermore, we
recall that every quantum state ρ admits the decomposition

ρ =
∑
i∈Γ

piPi,
∑
i∈Γ

pi = 1,

where Γ is denumerable index set and each Pi is a rank one projector, hence
it can be written as |ψi〉〈ψi| , ψi ∈ H [35].

Firstly, as it was already noted by Wigner [50], the Wigner function 4.29
is not positive de�nite1. Indeed, as a trivial example, let us consider an odd
non-null function ψ ∈ L2(Rn). Then we have

W ψ
S (0, 0) =

∫
Rn
dx ψ

(
−x

2

)
ψ
(x

2

)
= −

∫
Rn
dx ψ

(x
2

)
ψ
(x

2

)
= −2‖ψ‖2

L2 ,

1 Rigorously, it is remarkable that the only (pure) states whose Wigner functions are
non-negative are the gaussian states [20].
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which is a negative quantity, since the norm is positive de�nite. Hence it
cannot be interpreted as a probability density and the correspondence with
quantum states is not �genuine�.

(a)

(b) (c)

Figure 4.1: Some example of Wigner functions, generated with the QuTiP
module of Python [26, 27]. (a) is the ground state of the harmonic oscil-
lator; (b) is a superposition of the following eigenstates of the harmonic
oscillator: |1〉 , |3〉 , |9〉 , |13〉; (c) is a superposition of the coherent states
|α1〉 , |α2〉 , |α3〉, where α1 = 17.45 + i20.01, α2 = 14.24 + i14, α3 = 16.52.

However, it enjoys some other remarkable properties:

Proposition 4.2.3. Let |ψ〉〈ψ| ∈ S(L2(R)n)) be a pure state. Then, W ψ
S

is a real function. Moreover, if ψ,Fψ ∈ L1(Rn) ∩ L2(Rn), where F is the
Fourier-Plancherel operator in L2(Rn), the marginal distributions∫

Rn
dp W ψ

S (q, p) = |ψ(q)|2, (4.35)∫
Rn
dq W ψ

S (q, p) = |(Fψ)(p)|2 (4.36)
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hold true.
Lastly, given two pure states |ψ1〉〈ψ1| , |ψ2〉〈ψ2| ∈ S(L2(Rn)), we have that

|〈ψ1, ψ2〉L2|2 =

∫
Rn×Rn

dqdp W ψ1

S (q, p)W ψ2

S (q, p). (4.37)

Proof. We �rstly observe that the Wigner function is real. Indeed, since

W |φ〉〈ψ|
S (q, p) =

∫
Rn
dx e2πip·xφ

(
q +

x

2

)
ψ
(
q − x

2

)
(x 7→ −x) =

∫
Rn
dx e−2πip·xφ

(
q − x

2

)
ψ
(
q +

x

2

)
= W |ψ〉〈φ|

S (q, p)

where φ, ψ ∈ L2(Rn), we have W ψ
S (q, p) = W ψ

S (q, p).
Now we can prove the marginal properties. Indeed, observe that∫

Rn
dq W ψ

S (q, p) =

∫
Rn×Rn

dqdx e−i2πp·xψ
(
q − x

2

)
ψ
(
q +

x

2

)
(
u = q +

x

2
, v = q − x

2

)
=

∫
Rn×Rn

dudv e−i2πp·uψ(u)e−i2πp·vψ(v)

= |(Fψ)(p)|2.

The marginal distribution∫
Rn
dp W ψ

S (q, p) = |ψ(x)|2

follows from a direct application of the �rst Fourier's inversion formula 3.20
[18].
Similarly, we have∫

dqdp W ψ1

S (q, p)W ψ2

S (q, p) =

=

∫
dqdpdx1dx2 e

−i2πp·x1e−i2πp·x2ψ1

(
q − x1

2

)
ψ1

(
q +

x1

2

)
·

· ψ2

(
q − x2

2

)
ψ2

(
q +

x2

2

)
=

∫
dqdx ψ1

(
q +

x

2

)
ψ1

(
q − x

2

)
ψ2

(
q − x

2

)
ψ2

(
q +

x

2

)
=

∫
dudv ψ1(u)ψ1(v)ψ2(v)ψ2(u) = 〈ψ1, ψ2〉〈ψ2, ψ1〉 = |〈ψ1, ψ2〉|2,

where u = q + x
2
, v = q − x

2
.
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Moreover, if q̂i and p̂i denote respectively the i-th position and momen-
tum operators and ψ ∈ L1(Rn) ∩ L2(Rn), we have that [20]∫

Rn
dqdp piW

ψ
S (q, p) = 〈ψ, p̂iψ〉,

∫
Rn
dqdp qiW

ψ
S (q, p) = 〈ψ, q̂iψ〉. (4.38)

We remark that the above results can be suitably extended to any den-
sity operator ρ in S(L2(Rn)), since each quantum state can be decomposed
in a convex combination of pure states [35].

4.2.1 The star-product on the continuous phase space

We can now de�ne the ?-product of functions on Rn×Rn. In particular, from
the discussion in section 4.1.1, we will quickly recall that the twisted con-
volution arises if we consider the characteristic function 4.21. Next, we will
consider the ?-product induced by the standard Wigner transform, which is
linked with the twisted convolution by the symplectic Fourier transform [7].

Recall that, in such a case we have that RS = L2(Rn × Rn) and the
formula given in theorem 4.1.10 holds for every couple of functions on the
phase space. Therefore, 4.16 corresponds exactly with the twisted convolu-
tion 3.35 on the whole L2(Rn × Rn), which we report below for the sake of
completeness:

(f1 ?S f2)(q, p) =

∫
Rn×Rn

dq′dp′ f1(q′, p′)f2(q − q′, p− p′)eiπ(q·p′−p·q′) (4.39)

(as always, S ≡ S1 denotes a Weyl system).
Let us now switch to the case of the ?-product induced by the Weyl-

Wigner scheme induced by the standard Wigner transform. In particular,
the latter will be a map (denoted simply with ?) of the form

L2(Rn×Rn)×L2(Rn×Rn) 3 (f1, f2) 7→ WS ((W ∗
S f1)(W ∗

S f2)) ∈ L2(Rn×Rn).
(4.40)

Hence, since WS = FSpDS,

f1 ? f2 = WS ((W ∗
S f1)(W ∗

S f2)) = FSpDS ((QSFSpf1)(QSFSpf2))

= FSp ((FSpf1) ?S (FSpf2)) .
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In particular, we have that

FSp ((FSpf1) ?S (FSpf2))

=

∫
dq′dp′ ei2π(q·p′−p·q′) ((FSpf1) ?S (FSpf2)) (q′, p′)

=

∫
dq′dp′ ei2π(q·p′−p·q′)

∫
dq2dp2 e

iπ(q′·p′′−p′·q′′)(FSpf1)(q′′, p′′)·

· (FSpf2)(q′ − q′′, p′ − p′′)

=

∫
dq1dq2dp1dp2 κ((q, p), (q1, p1), (q2, p2))f1(q1, p1)f2(q2, p2),

where

κ((q, p), (q1, p1), (q2, p2)) = exp

(
i4π
[
q·p1−p·q1+q1·p2−p1·q2+q2·p−p2·q

])
(4.41)

is the Grönewold-Moyal kernel [7, 38]. We remark that the ?-product 4.40
appears in the evaluation of the dynamical evolution of the Wigner func-
tion as a quantum deformation of the Poisson brackets of classical mechanics
[52]. On the other hand, we must observe that the kernel 4.41 makes sense
for functions in L1(Rn) ∩ L2(Rn) only [7]. Hence, in this sense, the twisted
convolution 4.39 is more useful in practical applications, since it applies for
functions in L2(Rn × Rn).
Nevertheless, we notice that the ?-product 4.40, as well as the twisted con-
volution 4.39, allows us to de�ne an algebra structure on L2(Rn×Rn) too. In
particular, if we consider the standard complex conjugation in L2(Rn×Rn),
we have again a Banach ∗-algebra [7, 38].

4.3 Wigner function on discrete phase space

We can �nally apply the quantization-dequantization scheme on ZN × ZN .
In analogy with the continuous case, the Wigner function will be de�ned
as the discrete symplectic Fourier transform (de�ned in 3.31) of a discrete
Wigner transform (also called dequantization map, or characteristic func-
tion) induced by a square integrable representation of ZN × ZN . In this
section, we will mostly consider the discrete Weyl system D ≡ D1 de�ned
in 2.77, which is a N -dimensional irreducible projective representation of
ZN × ZN acting on L2(ZN) with multiplier µ((j, k), (j′, k′)) = ei

π
N

(jk′−kj′).
We will also observe that the �nite analogous of function 4.33, de�ned by
means of the �nite phase-point operators, will not always enjoy the prop-
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erties of a Wigner function.

Let us now consider a discrete Weyl system D(j, k) ≡ D1(j, k) of ZN ×
ZN with symplectic multiplier 2.76. The Haar measure on ZN×ZN (which is
the counting measure since the group is discrete) is normalized in agreement
with the representation D in such a way that the Du�o-Moore operator is
given by DD = NId. Hence, the generalized discrete Wigner transform (or
the discrete characteristic function) is given by

(DDρ)(j, k) :=
1

N
tr(D(j, k)∗ρ), ρ ∈ B2(L2(ZN)); (4.42)

we remark that, if ρ = |ψ〉〈φ| , ψ, φ ∈ L2(ZN), the latter resembles the
(discrete) Gabor transform 3.37.
We notice that the intertwining properties are formally analogous to the
continuous ones, namely,

DDD ∨D = TµDD, (Tµ(j, k)f)(j′, k′) = e−i
2π
N

(jk′−kj′)f(j′, k′), (4.43)

DDJ = JµDD, (Jf)(j, k) := f(−j,−k), (4.44)

since µ((j, k), (−j,−k)) = 1 ( as well as in the continuous case). Moreover,
for future reference, we explicitly display the discrete Weyl transform, which
is determined by 4.14:

ρ :=
1

N

∑
j,k∈ZN

(DDρ)(j, k)D(j, k). (4.45)

Thence, we de�ne the discrete Wigner function by an application of the
discrete symplectic Fourier transform:

De�nition 4.3.1. If D ≡ D1 is a �nite Weyl system on ZN × ZN , the
discrete (or �nite) Wigner function is a map from B2(L2(ZN)) to L2(ZN ×
ZN) such that

WD := FSp(DDρ), ρ ∈ B2(L2(ZN)), (4.46)

where FSp is the discrete symplectic Fourier transform de�ned in 3.31.

For a pure state |ψ〉〈ψ| ∈ S(L2(ZN)), the discrete Wigner function is
given by

W ψ
D (j, k) :=

1

N2

∑
j′,k′∈ZN

ei
2π
N

(jk′−kj′) (DD |ψ〉〈ψ|) (j′, k′)

=
1

N2

∑
j′,k′∈ZN

ei
2π
N

(jk′−kj′)
∑
l∈ZN

ei
π
N
j′k′e−i

2π
N
k′lψ(l − j′)ψ(l).

(4.47)
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Again, in perfect analogy with the continuous case, the latter intertwines
the unitary representation D∨D with the translation on the discrete phase
space, namely WDD ∨D = VWD, where V := FSpTµFSp is such that

(V(j, k)ψ) (j′, k′) = ψ(j′ − j, k′ − k), ψ ∈ L2(ZN). (4.48)

We remark that, in the following, we can mostly consider pure states
|ψ〉〈ψ| ∈ S(L2(ZN)), since the extension to mixed states is obvious. In-
deed, if ρ =

∑
i pi |ψi〉〈ψi| is a mixed state, we have

W ρ
D(j, k) =

1

N
FSp tr(D(j, k)∗ρ) =

1

N

∑
i

piFSp tr(D(j, k)∗ |ψi〉〈ψi|)

=
∑
i

piW
ψi
D (j, k).

We can now observe that the WD enjoys the same properties of the standard
Wigner function 4.26:

Proposition 4.3.2. Let |ψ〉〈ψ| ∈ S(L2(ZN)) be a pure state. Then, W ψ
D is

a real function.

Proof. Firstly, observe that, for each φ, ψ ∈ L2(ZN),

〈D(j, k)∗φ, ψ〉 = 〈φ,D(j, k)ψ〉 =
∑
l∈ZN

φ(l)e−i
π
N
jkei

2π
N
klψ(l − j)

=
∑
l∈ZN

φ(l + j)ei
π
N
jkei

2π
N
klψ(l).

Hence, we have that

(D(j, k)∗φ) (l) = e−i
π
N
jke−i

2π
N
klφ(l + j) = (D(−j,−k)φ) (l). (4.49)

Therefore,

W ψ
D (j, k) =

1

N2

∑
j′,k′∈ZN

e−i
2π
N

(jk′−kj′)〈D(j′, k′)ψ, ψ〉

=
1

N2

∑
j′,k′∈ZN

e−i
2π
N

(jk′−kj′)〈D(j′, k′)∗ψ, ψ〉

((j′, k′) 7→ (−j′,−k′)) =
1

N2

∑
j′,k′∈ZN

ei
2π
N

(jk′−kj′)〈D(j′, k′)ψ, ψ〉 = W ψ
D (j, k).
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Proposition 4.3.3. If |ψ〉〈ψ| , |ψ1〉〈ψ1| , |ψ2〉〈ψ2| ∈ S(L2(ZN)), then the fol-
lowing relations hold true:∑

j∈ZN

W ψ
D (j, k) = |(Fψ) (k)|2,

∑
k∈ZN

W ψ
D (j, k) = |ψ(j)|2, (4.50)

∑
j,k∈ZN

W ψ1

D (j, k)W ψ2

D (j, k) =
1

N
|〈ψ1, ψ2〉|2. (4.51)

Proof. Indeed, adding all over the j's in ZN equation 4.47, we have∑
j∈ZN

W ψ
D (j, k) =

1

N2

∑
j,j′,k′∈ZN

ei
2π
N

(jk′−kj′)
∑
l∈ZN

ei
π
N
j′k′e−i

2π
N
k′lψ(l − j′)ψ(l)

=
1

N

∑
j′,l∈ZN

e−i
2π
N
kj′ψ(l − j′)ψ(l)

=
1

N

∑
l∈ZN

ψ(l)
∑
j∈ZN

e−i
2π
N
kj′ψ(l − j′)

=
1

N

∑
l∈ZN

ψ(l)e−i
2π
N
kl
∑
j∈ZN

e−i
2π
N
kj′ψ(−j′) = |(Fψ)(k)|2.

The second marginal distribution is a direct consequence of the �rst Fourier's
inversion formula, as in the continuous case. Lastly,∑
j,k∈ZN

W ψ1

D (j, k)W ψ2

D (j, k)

=
1

N4

∑
j,j1,j2,

k,k1,k2∈ZN

ei
2π
N

(jk1−kj1)ei
2π
N

(jk2−kj2)〈D(j1, k1)ψ1, ψ1〉〈D(j2, k2)ψ2, ψ2〉

=
1

N2

∑
j1,k1∈ZN

〈D(j1, k1)ψ1, ψ1〉〈D(−j1,−k1)ψ2, ψ2〉

=
1

N2

∑
j,k,l1,l2∈ZN

ei
2π
N
jke−i

2π
N
k(l1−l2)ψ1(l1 − j)ψ1(l1)ψ2(l2 + j)ψ2(l2)

=
1

N

∑
l∈ZN

ψ1(l)ψ2(l)
∑
j∈ZN

ψ1(−j)ψ2(−j) =
1

N
|〈ψ1, ψ2〉|2.

Before we discuss of the phase-point operators approach, let us brie�y
review why we have choosen the Weyl systemD ≡ D1 2.77 instead of S ≡ S1

de�ned in 2.73 (recall that by Stone-von Neumann's theorem, since D and
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S are projectively equivalent, they describe the same physical system).
For instance, let us consider the pure state |ψ〉〈ψ| ∈ S(L2(ZN)). Then, the
discrete Wigner transform (or characteristic function) induced by S (whose

multiplier µS((j, k), (j′, k′)) = ei
2π
N
jk′ is de�ned in 2.75) is given by

(DS |ψ〉〈ψ|)(j, k) :=
1

N
tr(S(j, k)∗ |ψ〉〈ψ|) (4.52)

(DS di�ers from DD for a global phase factor, sinceD(j, k) = e−i
π
N
jkMkTj =

e−i
π
N
jkS(j, k)). Clearly this is a valid characteristic function and, by propo-

sitions 4.1.4, 4.1.5, we have

DSS ∨ S = TµSDS, (TµSf)(j′, k′) = e−i
2π
N

(jk′−kj′)f(j′, k′), (4.53)

DSJ = JµSDS, (JµSf)(j, k) = e−i
2π
N
jk′f(−j,−k). (4.54)

Hence, bearing in mind the �rst Fourier's inversion formula 3.20, the dis-
crete Wigner function induced by the Weyl system S is given by

W ψ
S (j, k) =

1

N2

∑
j′,k′∈ZN

ei
2π
N

(jk′−kj′)
∑
l∈ZN

e−i
2π
N
k′lψ(l)ψ(l − j′)

=
1

N

∑
j′∈ZN

e−i
2π
N
kj′ψ(j)ψ(j − j′).

(4.55)

Moreover, since 4.53 is formally analogous to 4.43, we have that WS in-
tertwines S ∨ S with the translation on the discrete phase space 4.48 too.
However, since

S(j, k)∗ = e−i
2π
N
jkS(−j,−k),

the Wigner function 4.55 is not real:

W ψ
S (j, k) =

∑
j′,k′∈ZN

e−i
2π
N

(jk′−kj′)〈S(j′, k′)ψ, ψ〉 =
∑
j′∈ZN

ei
2π
N
kj′ψ(j)ψ(j − j′)

6= W ψ
S (j, k).

Therefore, from the point of view of the discrete Wigner function, the choice
of the Weyl system D is more suitable than S. We remark that this di�er-
ent behaviour is a consequence of the explicit expression of the generalized
Wigner transform 4.3, which depends on the choice of the representative in
the equivalence class of the projective representation considered.

For each �nite phase space point (j, k) ∈ ZN × ZN , we now de�ne the
(�nite) phase-point operator as

A(j, k) :=
1

N
D(j, k)ΠD(j, k)∗ =

1

N
D(2j, 2k)Π =

1

N
ei

4π
N
jkT2jΠM−2k,

(4.56)
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where Π = F2 is the parity operator (F is the discrete Fourier transform
3.22). Hence, by analogy with the standard Wigner function de�ned on
Rn × Rn, we can de�ne a function in terms of the phase-point operator as

W̃ ρ
D := tr(A(j, k)ρ), ρ ∈ S(L2(ZN)), (4.57)

which is real by de�nition. However, 4.57 cannot be always interpreted as
a Wigner function. We investigate this fact splitting our analysis in two
di�erent cases, namely N even and odd.

Let us consider the case of N odd at �rst. Then, everything works as
in Rn × Rn and W̃D is a Wigner function:

Proposition 4.3.4. If N ∈ N is an odd number and ρ ∈ S(L2(ZN)), the
functions W ρ

D and W̃ ρ
D will coincide.

Proof. We will work with a pure state ψ ∈ S(L2(ZN)), since the extension
to mixed states is trivial. Observe that, since N is odd, there exists the
inverse of 2 ∈ ZN with respect to the product rule, namely 2−1 = N+1

2
∈ ZN

(recall that a ∈ ZN admits an inverse element with respect to the product
if and only if gcd(a,N) = 1 [15]). Hence, by a simple computation, we see
that

W ψ
D (j, k) =

1

N2

∑
j′,k′∈ZN

ei
2π
N

(jk′−kj′)
∑
l∈ZN

ei
π
N
j′k′e−i

2π
N
k′lψ(l − j′)ψ(l)

=
1

N2

∑
j′,k′∈ZN

ei
2π
N

(jk′−kj′)
∑
l∈ZN

e−i
2π
N
k′lψ (l − 2−1j′)ψ

(
l + 2−1j′

)
=

1

N

∑
j′∈ZN

e−i
2π
N
kj′ψ (j − 2−1j′)ψ

(
j + 2−1j′

)
,

where in the second step we have used the substitution l 7→ l + 2−1j′.
Similarly, we have

W̃ ψ
D =

1

N
〈D(j, k)∗ψ,ΠD(j, k)∗ψ〉 =

1

N

∑
l∈ZN

ei
4π
N
klψ(j + l)ψ(j − l)

(
l 7→ −2−1l

)
=

1

N

∑
l∈ZN

e−i
2π
N
klψ (j − 2−1l)ψ

(
j + 2−1l

)
,

hence, W̃ ψ
D = W ψ

D .

When N is an even number things work di�erently and W̃D does not en-
joy the properties of a standard Wigner function anymore. From a heuristic
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point of view we can understand this fact immediately. Indeed, notice that,
for a pure state |ψ〉〈ψ| ∈ S(L2(ZN)), we have

W̃ ψ
D (j, k) =

1

N

∑
l∈ZN

ei
4π
N
klψ(j + l)ψ(j − l). (4.58)

Hence, if |ψ1〉〈ψ1| , |ψ2〉〈ψ2| ∈ S(L2(ZN)), 〈ψ1, ψ2〉 cannot be expressed in
terms of W̃ ψ1

D and W̃ ψ2

D as in 4.51, indeed∑
j,k∈ZN

W̃ ψ1

D (j, k)W̃ ψ2

D (j, k)

=
∑

j,k,l1,l2∈ZN

ei
4π
N
k(l1+l2)ψ1(j + l1)ψ1(j − l1)ψ2(j + l2)ψ2(j − l2)

=
∑
j,l

ψ1(j − l)ψ1(j + l)ψ2(j − l)ψ2(j − l) 6= |〈ψ1, ψ2〉|2

(similarly, the �rst marginal in 4.50 cannot be written in terms of W̃D).
More formally, the reason why W̃D is not a Wigner function is inscribed in
the de�nition 4.56 of the �nite phase-point operator, which is a�ected by
the �niteness of ZN × ZN . Indeed, the �nite phase-point operators behave
in a very di�erent way with respect to the continuous ones (de�ned in 4.32)
because, ultimately, the dilation involved in their de�nition is not negligible
in the �nite case (this fact was observed by Zak in [53], who called this
property the doubling feature of W̃D).
To unfold this point, it is useful to focus on the following formula, which
highlights the aforementioned dilation of the phase space point involved:

A(j, k) =
1

N
D(2j, 2k)Π, ∀(j, k) ∈ ZN × ZN (4.59)

(roughly speaking, the point (j, k) ∈ ZN × ZN in which we evaluate the
phase-point operator corresponds to the dilated point (2j, 2k) ∈ ZN × ZN

in which we evaluate D). As already pointed out by Wootters [51], we
can de�ne a Wigner function via the phase-point operators if they form a
basis of linear operators on L2(ZN). However, the research of such a basis
is a�ected by the parity of N . In particular, when N is odd, the set of
operators {A(j, k) | j, k ∈ ZN} is a set of N2 independent operators, hence
it is an operator basis on L2(ZN) [53]. On the other hand, when N is even,
we have N2/4 independent operators only [34]. The di�erence between
the even and the odd cases follows from the fact that 2 ∈ ZN , when N is
even, does not admit a multiplicative inverse. Indeed, let us consider the
homomorphism

h : ZN 3 j 7→ 2j ∈ ZN . (4.60)
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Then, if N is odd, ker(h) = {(0, 0)} since there exists the multiplicative
inverse of 2 ∈ ZN , namely 2−1 = N+1

2
, and h is a group isomorphism.

Conversely, if N is even, we have that ker(h) 6= {0} and h is not a group
isomorphism2. Indeed, for example, j = N/2 ∈ ker(h) if N is even.

Example 4.3.5. Let us consider the case N = 4. We observe that

A(0, 0) =
1

4
D(0, 0)Π, A(1, 0) =

1

4
D(2, 0)Π, (4.61)

A(0, 1) =
1

4
D(0, 2)Π, A(1, 1) =

1

4
D(2, 2)Π, (4.62)

are the only independent operators. Indeed, for example, we have that

A(3, 0) =
1

4
D(6, 0)Π =

1

4
D(2, 0)Π, A(3, 3) =

1

4
D(6, 6)Π =

1

4
D(2, 2)Π,

A(2, 0) =
1

4
D(4, 0)Π =

1

4
D(0, 0)Π, A(2, 2) =

1

4
D(4, 4)Π =

1

4
D(0, 0)Π,

and so on. Therefore, the phase-point operators cannot form an operator
basis on L2(Z4).
On the other hand if N = 3 we have for example

A(0, 0) =
1

3
D(0, 0)Π, A(1, 0) =

1

3
D(2, 0)Π, (4.63)

A(2, 0) =
1

3
D(4, 0)Π =

1

3
D(1, 0)Π. (4.64)

Then it is clear that, in such a case, {A(j, k) | j, k ∈ Z3} is a set of 9
independent operators on L2(Z3).

Therefore, from this point of view, the discrete Wigner function de�ned
following the Weyl-Wigner correspondence is slightly more general than the
one de�ned by means of the phase-point operators, since it does not dis-
tinguish the even and the odd cases. However, we remark that a discrete
Wigner function de�ned as in 4.57 can still be de�ned when N is even, but
it requires some ad hoc tweaks [34, 53] which we will not investigate any
further.

Lastly, we recall that, as in the continuous case, the ?-product induced
by the �nite Weyl system D corresponds to the twisted convolution on
ZN × ZN , namely

(f1 ?D f2)(j, k) =
∑

j′,k′∈ZN

f1(j′, k′)f2(j − j′, k − k′)e
iπ
N

(jk′−kj′), (4.65)

2 These facts follow from the �rst isomorphism theorem: if h : G → G̃ is a group
homomorphism, then kerh is a normal subgroup of G and G/ kerh ∼= h(G) [15].
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where f1, f2 ∈ L2(ZN × ZN).

4.3.1 Some simple examples

Here we brie�y present some simple examples of Wigner function 4.47 in-
duced by D ≡ D1, which - for a generic mixed state ρ ∈ S(L2(ZN)) - we
recall is given by

W ρ
D(j, k) =

1

N2

∑
j′,k′∈ZN

ei
2π
N

(jk′−kj′) tr(D(j′, k′)∗ρ) (4.66)

Example 4.3.6. At �rst, let us consider the case of the position pure state
|ψj0〉〈ψj0|. Hence, we have

W j0
D (j, k) =

1

N2

∑
j′,k′∈ZN

ei
2π
N

(jk′−kj′) tr(D(j′, k′)∗ |ψj0〉〈ψj0|)

=
1

N2

∑
j′,k′∈ZN

ei
2π
N

(jk′−kj′)〈D(j′, k′)ψj0 , ψj0〉 =
1

N2

∑
k′∈ZN

ei
2π
N
k′(j−j0)

=
1

N
δN(j − j0),

where δN(j − j0) is such that

δN(j − j0) =

{
0, j 6= j0 mod N,

1, j = j0 mod N.
(4.67)

Figure 4.2: Discrete Wigner function of the position basis vector ψ0 for
N = 3.
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Example 4.3.7. Let us now consider the case of the pure state |ψ̂k0〉〈ψ̂k0|,
where ψ̂k0 is a vector in the �momenta� basis, whose vectors are de�ned as

ψ̂n(k) =
1√
N

∑
j∈ZN

e−i
2π
N
jkψn(j).

Hence we have

W
ψ̂k0
D =

1

N2

∑
j′,k′∈ZN

ei
2π
N

(jk′−kj′)〈D(j′, k′)ψ̂k0 , ψ̂k0〉

=
1

N2

∑
j′∈ZN

e−i
2π
N
j′(k+k0) =

1

N
δN(k + k0).

Figure 4.3: Discrete Wigner function of the momentum basis vector ψ̂1 for
N = 3.

Example 4.3.8. We now brie�y discuss the �nite analogous of position
and momentum operators. Indeed, as already pointed out in section 2.3.1,
we can consider position and momentum coordinates as the elements of a
l.c.s.c. Abelian group and its unitary dual. Hence, let us consider the stan-
dard bases in position and momentum coordinates {ψn}n∈ZN , {ψ̂n}n∈ZN ⊂
L2(ZN), where ψ̂n = Fψn ∀n ∈ ZN . Then, the operators

ĵ :=
∑
j∈ZN

j |ψj〉〈ψj| , k̂ :=
∑
k∈ZN

k |ψ̂k〉〈ψ̂k| (4.68)

are the �nite position and momentum operators (clearly they are de�ned
modulo N). Since ψ̂k = Fψk ∀k ∈ ZN , we have that the discrete Fourier
transform intertwines them, namely k̂ = F ĵF∗ [46]. Of course these are not
�true� position and momentum operators, because they cannot satisfy the
CCRs (recall by section 2.2.3 that this is possible in in�nite-dimensional
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Hilbert spaces only), however they have various applications (see [1, 46]).
Thanks to examples 4.3.6, 4.3.7, we can easily calculate the Wigner func-
tions associated with the operators in 4.68. In particular, we have

W ĵ
D(j, k) =

1

N2

∑
j′,k′∈ZN

ei
2π
N

(jk′−kj′) tr

(
D(j′, k′)∗

∑
j′′∈ZN

j′′ |ψj′′〉〈ψj′′ |

)

=
1

N

∑
j′′∈ZN

j′′δN(j − j′′),

W k̂
D (j, k) =

1

N2

∑
j′,k′∈ZN

ei
2π
N

(jk′−kj′) tr

(
D(j′, k′)∗

∑
k′′∈ZN

k′′ |ψ̂k′′〉〈ψ̂k′′ |

)

=
1

N

∑
k′′∈ZN

k′′δN(k + k′′).

Hence,

tr
(
ĵρ
)

= N
∑

j,k∈ZN

W ĵ
D(j, k)W ρ

D(j, k) =
∑

j,k∈ZN

j W ρ
D(j, k), (4.69)

tr
(
k̂ρ
)

= N
∑

j,k∈ZN

W k̂
D (j, k)W ρ

D(j, k) =
∑

j,k∈ZN

k W ρ
D(j,−k). (4.70)

Next, we want to analyze some simple Wigner functions of states on a
composite system. In this regard, the following result concerning the tensor
product of unitary (projective) representation is necessary [18]:

Theorem 4.3.9. Let G1 and G2 be two l.c.s.c. group and let π1 : G1 →
U(H1) and π2 : G2 → U(H2) be two unitary representations. Let us consider
the unitary representation

π ≡ π1⊗π2 : G1×G2 → U(H1⊗H2), π(g1, g2) = π1(g1)⊗π2(g2). (4.71)

Then, π is irreducible if and only if π1 and π2 are both irreducible.

Hence, if we consider the direct product group ZN×ZN×ZM×ZM , where
N,M ∈ N (namely, a composite system AB), the tensor product of the Weyl
systems on the two discrete phase space ZN × ZN and ZM × ZM , denoted
respectively with DA ≡ DA

1 and DB ≡ DB
1 , is an irreducible projective

representation.
We now present some examples of separable states and entangled states; in
the next section we will introduce some criteria to characterize separability,
which relies on the �nite characteristic function.
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Example 4.3.10. Let us consider a separable state |ψ1〉〈ψ1| ⊗ |ψ2〉〈ψ2| ∈
S(L2(ZN)⊗L2(ZM)). Then, by de�nition of tensor product, we can factorize
the characteristic function:

(DD(|ψ1〉〈ψ1| ⊗ |ψ2〉〈ψ2|))(j1, k1, j2, k2) :=

:=
1

NM
tr ((DA(j1, k1)∗ ⊗DB(j2, k2)∗)(ψ1 ⊗ ψ2))

=
1

N
〈DA(j1, k1)∗ψ1, ψ1〉

1

M
〈DB(j2, k2)∗ψ2, ψ2〉

= (DDA |ψ1〉〈ψ1|) (j1, k1) (DDB |ψ2〉〈ψ2|) (j2, k2),

where (j1, k1) ∈ ZN × ZN and (j2, k2) ∈ ZM × ZM . As a consequence, we
can consider the standard Wigner function of the bipartite system applying
the discrete symplectic Fourier transform, which can be factorized; we will
denote with FASp and FBSp the symplectic Fourier transform on A and B.
Therefore, the discrete Wigner function of the separable state ψ1 ⊗ ψ2 is
given by

W ψ1⊗ψ2

AB (j1, k1, j2, k2) = W ψ1

A (j1, k1)W ψ2

B (j2, k2) (4.72)

(here we prefer to specify in the subscript the quantum system instead of
the representation used to calculate the Wigner function, since we will be
stuck with the 1-Weyl system D = DA ⊗ DB). Observe that the partial
trace of ψ1 ⊗ ψ2 translates in the discrete phase space as the sum all over
the points of only one subsystem, e.g. trA �corresponds� to

∑
j1,k1∈ZN

.

Example 4.3.11. At last, let us consider the Wigner function of some
remarkable entangled states, namely the Bell states. Let A and B two
N -dimensional quantum states. Then, let us consider at �rst the state

θ0(l1, l2) :=
1√
N

∑
n∈ZN

(ψn ⊗ ψn) (l1, l2), (4.73)

which is an entangled state, because its reduced density matrices are mixed
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states [37]. Then we have

W θ0
AB(j1, k1, j2, k2) =

1

N4

∑
j′1,k
′
1∈ZN

∑
j′2,k
′
2∈ZN

ei
2π
N

(j1k′1−k1j′1)ei
2π
N

(j2k′2−k2j′2)×

〈(DA(j′1, k
′
1)⊗DB(j′2, k

′
2))θ0, θ0〉

=
1

N5

∑
j′1,k
′
1∈ZN

∑
j′2,k
′
2∈ZN

ei
2π
N

(j1k′1−k1j′1)ei
2π
N

(j2k′2−k2j′2)×

∑
n,m∈ZN

〈DA(j′1, k
′
1)ψn, ψm〉〈DB(j′2, k

′
2)ψn, ψm〉

=
1

N5

∑
j′1,k
′
1∈ZN

∑
j′2,k
′
2∈ZN

ei
2π
N

(j1k′1−k1j′1)ei
2π
N

(j2k′2−k2j′2)×

∑
l∈ZN

ei
π
N
j′1(k′1+k′1)e−i

2π
N

(k′1+k′2)l

=
1

N4

∑
j′1,k
′
1∈ZN

ei
2π
N

(j1k′1−k1j′1)e−i
2π
N

(j2k′1+k2j′1)

=
1

N2
δN(j1 − j2)δN(k1 + k2).

In a similar way, for i = 1, . . . N − 1, we can de�ne the other Bell's states
as

θi(l1, l2) :=
1√
N

∑
n∈ZN

(IdA ⊗DB(ji, ki)) (ψn(l1)⊗ ψn(l2)) . (4.74)

Therefore, by a similar computation, we see that

W θi
AB(j1, k1, j2, k2) =

1

N2
δN(j1 − j2 − ji)δN(k1 + k2 + ki). (4.75)

4.4 Quantum states as functions of quantum

positive type

In this last section we discuss of functions of quantum positive type, an
alternative point of view on quantum states which is inspired by the duality -
provided by Bochner's theorem 3.3.3 - between function of positive type and
probability measures. For standard phase space, functions of (quantum)
positive type provide a common playground in which classical limit [30]
and classical-quantum interactions [5] can be studied. On the other hand,
for discrete phase space, they also o�er an alternative take on entanglement,
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which we are now going to explore. To be fair, most of the results holds
for compact groups (see [29, 31]), anyhow if we focus on the discrete phase
space we will be able to exhibit the most interesting facts without worrying
of convergence issues.

Let us brie�y sketch the standard cases at �rst. Recall from section
3.1.2 that a function of positive type on phase space χ ∈ P (Rn × Rn) is an
element of L∞(Rn × Rn) such that∫

Rn×Rn
dqdp χ(q, p) (f ∗ ∗ f) (q, p) ≥ 0, ∀f ∈ L1(Rn × Rn). (4.76)

For a bounded continuous function χ ∈ P (Rn×Rn), the latter is equivalent
to say that χ is a positive de�nite function [18], namely∑

j,k

χ(gk − gj)cjck ≥ 0, ∀g1, . . . , gm ⊂ Rn × Rn (4.77)

(gi ≡ (qi, pi)) for every �nite set {g1, . . . , gm} ⊂ Rn×Rn and c1, . . . , cm ∈ C.
We also recall that χ agrees a.e. with a bounded continuous function and,
if it is continuous, we have ‖χ‖∞ = χ(0, 0).
According to Bochner's theorem 3.3.3, normalized functions of positive type
(i.e. χ(0, 0) = 1) can be regarded as the Fourier-Stieltjes transform of
probability measures µ(q, p) ∈ M(Rn × Rn), which are exactly classical
states on the C∗-algebra of classical observables C0(Rn × Rn) of functions
that vanish at in�nity [5]. In this sense, functions of positive type represent
an alternative, more practical, description of classical states. For instance,
the mean value of a classical observable f ∈ C0(Rn × Rn,R) in the state
µ ∈M(Rn × Rn), which is given by

〈f〉µ =

∫
Rn×Rn

dµ(q, p) f(q, p), (4.78)

is often hard to deal with, since probability measures are in general quite
abstract. Thus, it may be useful to consider the symplectic Fourier trans-
form, so that [5]

〈f〉µ =

∫
Rn×Rn

dqdp χ(q, p)f̂(q, p), (4.79)

where

χ(q, p) = µ̆(q, p) =

∫
Rn×Rn

dµ(q′, p′) e−i2π(q·p′−p·q′), (4.80)

f̂(q, p) = (Ff)(q, p) =

∫
Rn×Rn

dq′dp′ ei2π(q·p′−p·q′)f(q′, p′). (4.81)
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To introduce functions of positive type in quantum mechanics, we shall
consider the Weyl-Wigner correspondence, thanks to which quantum states
can be espressed in terms of Wigner functions de�ned as in 4.26 (as al-
ways, we consider the Weyl system S ≡ S1 2.24). Indeed, in such a case,
we already have a suitable ∗-algebra of functions on which we can de�ne
functions of positive type, the twisted group algebra (L2(Rn × Rn), ?S,Jµ)
induced by the Weyl sistem S, where ?S is the twisted convolution 4.39 and
Jµ is the involution 4.25. Hence, since L2(Rn × Rn)∗ can be identi�ed with
L2(Rn × Rn) [19], we can give the following

De�nition 4.4.1. A function χ ∈ L2(Rn × Rn) is of quantum positive type
if ∫

Rn×Rn
dqdp χ(q, p) (ψ∗ ?S ψ) (q, p) ≥ 0, ∀ψ ∈ L2(Rn × Rn), (4.82)

Unfolding the twisted convolution, if χ is continuous, the following
equivalent condition for ψ ∈ Cc(Rn × Rn) holds true [5]:∫

Rn×Rn
dqdpdq′dp′ ψ(q′, p′)χ(q − q′, p− p′)ψ(q, p)eiπ(q′·p−p′·q) ≥ 0. (4.83)

The link with the characteristic function DSρ, ρ ∈ B2(L2(Rn)) 4.21 is real-
ized by continuity [5]:

Theorem 4.4.2. If χ ∈ L2(Rn × Rn) is a continuous function of quantum
positive type, then χ is bounded and ‖χ‖∞ = χ(0, 0). Moreover, χ is a con-
tinuous function of positive type if and only if χ is the characteristic function
induced by the Weyl system S of a positive operator ρ ∈ B1(L2(Rn)), namely
χ ≡ χρ = DSρ, ρ ≥ 0.

We notice that if χ ∈ L2(Rn × Rn) is a continuous function of posi-
tive type and ρ ∈ B2(L2(Rn)) is the corresponding operator, the positivity
condition 4.82 is equivalent to the positivity of ρ, namely [5]

tr(ρA∗A) ≥ 0, ∀A ∈ B2(L2(Rn)). (4.84)

Lastly, we remark that, since DS is a unitary map, a characteristic function
χρ, viewed as a functional on L2(Rn × Rn) satisfy the following condition:

‖χρ‖2 =
√

((DSρ) ?S (DSρ)) (0, 0) =
√

tr(ρ2) ≤ 1. (4.85)

Therefore ‖χρ‖2 = 1 if and only if ρ is a pure state (the above trace is
indeed called the purity of the quantum state ρ [35]).
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For �nite quantum systems everything works the same. We consider the
twisted group algebra (L2(ZN×ZN), ?D,Jµ), where D ≡ D1 is a �nite Weyl
system with (formal) symplectic multiplier µ((j, k), (j′, k′)) = ei

π
N

(jk′−kj′),
?D is the twisted convolution 4.65 and Jµ is the involution de�ned in 4.44.
In this way, we can give the following

De�nition 4.4.3. A function χ ∈ L2(ZN × ZN), is a function of quantum
positive type if∑

j,k∈ZN

χ(j, k) (ψ∗ ?D ψ) (j, k) ≥ 0, ∀ψ ∈ L2(ZN × ZN). (4.86)

PQ(ZN × ZN) will denote the space of continuous functions of quantum
positive type on ZN × ZN .

Clearly, functions of quantum positive type on discrete phase space cor-
respond to positive de�nite function, since ZN×ZN is a �nite group. Equiv-
alently, we also have that χ ∈ PQ(ZN × ZN) i� for each ψ ∈ L2(ZN × ZN)∑

j,j′,k,k′

ψ(−j′,−k′)χ(j − j′, k − k′)ψ(j, k)µ((j′, k′), (j, k)) ≥ 0. (4.87)

Following the same steps as before, we have that continuous functions of
quantum positive type form a subset of discrete characteristic functions
4.42. In particular, the following result, which relies on the unitarity of the
Wigner (and Weyl) transform, holds true:

Proposition 4.4.4. An operator A on L2(ZN) is positive if and only if
the corresponding characteristic function χA ≡ 1

N
tr(D∗A) is a function of

quantum positive type.

Proof. Suppose χ ∈ PQ(ZN ×ZN) and let us consider a vector ψ ∈ L2(ZN).
For convenience, we introduce the following simpli�ed shorthand notation:
we set g ≡ (j, k) ∈ ZN × ZN and 1

N

∑
j,k∈ZN

≡
∫
dg, so that 1

N

∫
dg = 1.

Hence, by Weyl transform 4.45, we have that there exists an operator Aχ ∈
B2(L2(ZN)) such that

Aχ =

∫
dg χ(g)D(g) (4.88)

(recall that B2(L2(ZN)) ∼=MN(C)). Moreover, if {ϕi}i∈ZN is an orthonor-
mal basis in L2(ZN) then Id =

∑
i |ϕi〉〈ϕi|; hence, denoting with µ the
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symplectic multiplier 2.76, we have

〈ψ,Aχψ〉 =

∫
dg χ(g)〈ψ,D(g)ψ〉 =

1

N

∫
dgdh χ(g)〈ψ,D(g)ψ〉

=
1

N

∫
dgdh χ(g − h)〈ψ,D(g − h)ψ〉

=
1

N

∫
dgdh χ(g − h)〈ψ,D(g)D(h)∗ψ〉µ(h, g)

=
1

N

∑
i

∫
dgdh χ(g − h)〈D(g)∗ψ, ϕi〉〈ϕi, D(h)∗ψ〉µ(h, g) ≥ 0.

We also used the fact that

D(g − h) = µ(g,−h)D(g)D(h−1) = µ(h, g)D(g)D(h)∗ (4.89)

since µ(g, h) ≡ µ((j, k), (j′, k′)) = ei
π
N

(jk′−kj′) is such that µ(−h, h) = 1.
Conversely, if B2(L2(ZN)) 3 A ≥ 0, we have that∫

dgdh ψ(h)ψ(g)µ(h, g)χA(g − h) =

=
1

N

∫
dgdh ψ(h)ψ(g)µ(h, g) tr(D(g − h)∗A) =

=
1

N

∫
dgdh ψ(h)ψ(g) tr(D(h)D(g)∗A)

=
1

N
tr(FF ∗A) ≥ 0,

where F ≡
∫
dhψ(h)D(h).

We observe incidentally that if ρ ∈ S(L2(ZN)) is a quantum state, we
have

χρ(0, 0) =
1

N
tr(ρ) =

1

N
. (4.90)

Moreover, the following fact also holds true:

Proposition 4.4.5. If ρ ∈ S(L2(ZN)), the corresponding function of posi-
tive type χρ is such that ‖χρ‖2

2 ≤ 1; the equivalence holds true if and only
if ρ is a pure state.
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Proof. Suppose ρ ∈ S(L2(ZN)) so that ρ =
∑

l∈ZN
pl |ψl〉〈ψl|. Then, by

orthogonality relations 3.43 we have that

‖χρ‖2
2 =

1

N2

∑
j,k∈ZN

tr(D(j, k)∗ρ) tr(D(j, k)∗ρ)

=
1

N2

∑
j,k,l,m∈ZN

plpm〈ψl, D(j, k)ψl〉〈D(j, k)ψm, ψm〉

=
1

N2

∑
l,m∈ZN

plpm〈ψl, ψm〉〈DDψm, DDψl〉

=
∑

l,m∈ZN

plpm〈ψl, ψm〉〈ψm, ψl〉 =
∑
l

p2
l ≤ 1,

whereDD = NId is the Du�o-Moore operator associated with the projective
representation D. In particular, it is clear that ‖χρ‖2

2 = 1 if and only if ρ is a
pure state, because in such a case we have that ρ = |ψ〉〈ψ| , ψ ∈ L2(ZN).

We also notice that ‖χρ‖2
2 = (χ∗ρ ?D χρ)(0, 0), indeed

(χ∗ρ ?D χρ)(0, 0) =
∑
j,k

χρ(j, k)∗χρ(−j,−k)µ((j, k), (0, 0))

=
∑
j,k

χρ(−j,−k)χρ(−j,−k) =
∑
j,k

χρ(j, k)χρ(j, k).

We are now ready to discuss of bipartite systems. In particular, we
will consider the discrete phase space ZN × ZN and ZM × ZM endowed
respectively with the Weyl systems DA ≡ DA

1 and DB ≡ DB
1 (recall that

DA is a N -dimensional irreducible projective representation of ZN × ZN ,
while DB is aM -dimensional one of ZM×ZM). In this way we can consider
a bipartite system AB whose Hilbert space is given by L2(ZN) ⊗ L2(ZM),
namely the space of the representation D = DA⊗DB of (ZN×ZN)×(ZM×
ZM).
Recall now that a state ρ ∈ S(L2(ZN)⊗ L2(ZM)) is separable if

ρ =
∑
i

pi |ψi〉〈ψi| ⊗ |φi〉〈φi| , (4.91)

where ψi ∈ L2(ZN) and φi ∈ L2(ZM). Hence, we can now prove the follow-
ing correspondence already encountered in the previous section:

Theorem 4.4.6. Let L2(ZN) ⊗ L2(ZM) be a bipartite quantum system.
Then ρ ∈ S(L2(ZN)⊗L2(ZM)) is a separable state if and only if the corre-
sponding function of quantum positive type χρ factorizes.
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Proof. If ρ is separable, we have

χρ ≡ DDρ =
1

NM
tr((DA ⊗DB)∗ρ) =

∑
i

pi
1

N
〈DAψi, ψi〉

1

M
〈DBφi, φi〉

=
∑
i

piDDA |ψi〉〈ψi|DDB |φi〉〈φi| .

Conversely, let us consider χρ =
∑

i piDDA |ψi〉〈ψi|DDB |φi〉〈φi|. Then �x
g1 ≡ (j1, k1) ∈ ZN ×ZN , g2 ≡ (j2, k2) ∈ ZM ×ZM and

∫
dg1 ≡ 1

N

∑
j1,k1∈ZN

,∫
dg2 ≡ 1

M

∑
j2,k2∈ZM

, so that by Weyl transform 4.45 we have

ρ =

∫
dg1dg2 χρ(g1, g2)DA(g1)⊗DB(g2)

=
∑
i

pi

∫
dg1dg2 (DDA |ψi〉〈ψi|)(g1)DA(g1)⊗ (DDB |φi〉〈φi|)(g2)DB(g2)

=
∑
i

pi |ψi〉〈ψi| ⊗ |φi〉〈φi| .

In light of theorem 4.4.6, we can give the following

De�nition 4.4.7. If ρ ∈ S(L2(ZN)⊗L2(ZM)), the corresponding function
of quantum positive type χρ is separable if ρ is a separable state.

Another characterization is available for pure states, which relies on
orthogonality relations [29]:

Theorem 4.4.8. If ρ is a pure state on L2(ZN)⊗ L2(ZM), χρ is separable
if and only if ∑

j1,k1∈ZN

|χρ(j1, k1, 0, 0)|2 =
1

M2
, (4.92)

∑
j2,k2∈ZM

|χρ(0, 0, j2, k2)|2 =
1

N2
. (4.93)
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For instance, if ρ = |ψ〉〈ψ| ⊗ |φ〉〈φ| , ψ ∈ L2(ZN), φ ∈ L2(ZM) so that χρ
is separable, we have∑
j1,k1∈ZN

|χρ(j1, k1, 0, 0)|2 =
∑

j1,k1∈ZN

χρ(j1, k1, 0, 0)χρ(j2, k2, 0, 0)

=
1

N2M2

∑
j1,k1∈ZN

〈(DA(j1, k1)⊗ Id)(ψ ⊗ φ), ψ ⊗ φ〉·

· 〈(DA(j1, k1)⊗ Id)(ψ ⊗ φ), ψ ⊗ φ〉

=
1

M2
|〈ψ, ψ〉|2|〈φ, φ〉|2 =

1

M2

(clearly the proof of the other relation is analogous). On the other hand,
suppose for example that ρ = |Ψ〉〈Ψ| , Ψ ∈ L2(ZN)⊗L2(ZM) is a pure state
and that 4.92 holds true. Then we have

1

M2
=

∑
j1,k1∈ZN

|χρ(j1, k1, 0, 0)|2

=
1

N2M2

∑
j1,k1∈ZN

〈Ψ, (DA(j1, k1)⊗ Id)Ψ〉〈(DA(j1, k1)⊗ Id)Ψ,Ψ〉.

However, in order to satisfy the latter equivalence, Ψ shall be a separable
state; in this way the action of DA ⊗ Id on Ψ factorizes and orthogonality
relations can be applied. The same holds for relation 4.93.
We remark that the above theorem is a group-theoretical equivalent of a
standard result of quantum information, which characterize pure states as
the one and only states such that [24]

trA(trB(ρ))2 = trB(trA(ρ))2 = 1, ρ ∈ S(L2(ZN)⊗ L2(ZM)) (4.94)

We now sketch an alternative take on Horodecki's theorem - an im-
portant characterization of separable states on �nite bipartite systems -
founded on functions of quantum positive type. This will be achieved with
the following steps: �rstly, we brie�y review the standard formulation in the
Hilbert space formalism. Next, we apply some results that holds for com-
pact groups [31] to the case of H(ZN); in particular, we will brie�y discuss of
characteristic functions de�ned on H(ZN), which, on one hand, mimics the
discrete characteristic functions 4.42 and, on the other hand, corresponds to
functions of positive type on H(ZN). Hence, we will enounce an important
theorem which holds for compact groups and that can be regarded as a
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group-theoretical analogous of Horodecki's theorem. Eventually, we exploit
the link between H(ZN) and ZN×ZN given by the central extension via ZN .
In this way, we can relate functions of quantum positive type on ZN × ZN

with functions of positive type on H(ZN), so that we will be able to focus
on discrete phase space.

Let us recall that a linear map Λ : B(HA) → B(HB) is positive if it
preserves positivity, namely ρ ≥ 0 implies Λρ ≥ 0. Moreover, the positive
map Λ : B(HA) → B(HB) is completely positive if, given an arbitrary
Hilbert space K with dimK = k <∞, the map IdK⊗Λ is positive for each
value of k.
Then, Horodecki's theorem holds true [31]:

Theorem 4.4.9 (Horodecki). Let HA⊗HB be a �nite Hilbert space and let
us consider ρ ∈ S(HA⊗HB). Then, ρ is separable i� for all positive linear
maps Λ : B(HB)→ B(HA) the operator (Id⊗ Λ)ρ on HA ⊗HA is positive.

For future reference, we recall the following fundamental result due to
Choi [24]:

Theorem 4.4.10 (Choi). Let Λ : B(HA)→ B(HB) a positive map, dimHA =
d <∞, dimHB = d′ <∞. Then, Λ is completely positive if and only if it
is d-positive, namely IdA ⊗ Λ is a positive map.

Let us now consider the discrete Heisenberg-Weyl group H(ZN) and let
S : H(ZN)→ U(L2(ZN)) be an irreducible unitary representation de�ned as
in 2.58 (with λ = 1). Then, we can de�ne a non-commutative characteristic
function for a given quantum state ρ ∈ S(L2(ZN)) as a continuous function
such that [29]

ξρ(τ, j, k) := tr(S(τ, j, k)∗ρ). (4.95)

Observe that 4.95 can be interpreted as a function of positive type on the
group algebra (L1(H(ZN)), ∗, I), where ∗ is the convolution 3.6 and I is the
involution 3.7) [29, 30]. Indeed, for a given quantum state ρ, we have∫

dgdh ψ(h)ψ(g)ξρ(h
−1g) =

∫
dgdh ψ(h)ψ(g) tr

(
S(h−1g)∗ρ

)
=

∫
dgdh ψ(h)ψ(g) tr(S(g)∗S(h)ρ)

= tr(FF ∗ρ) ≥ 0,

where F ≡
∫
dgψ(g)S(g)∗. As always, in such a case we will denote with

P (H(ZN)) the set of functions of positive type on H(ZN). Next, we consider
a bipartite system AB whose Hilbert space is L2(ZN) ⊗ L2(ZM), which is
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here viewed as the space of the representation S ≡ SA ⊗ SB. In particular,
we remark that SA : H(ZN) → U(L2(ZN)) and SB : H(ZM) → U(L2(ZM))
are two irreducible unitary representations. Hence, we have that a state
ρ ∈ S(L2(ZN)⊗L2(ZM)) is separable if and only if ξρ ∈ P (H(ZN)×H(ZM))
is separable, i.e. it factorizes (the proof is analogous to the one of theorem
4.4.6) [29].
In the following, given a compact group H, ι : Lp(H) 3 φ 7→ φ ∈ Lp(H) will
denote the identity map which sends a function in Lp(H) in itself, where
p = 1, 2, . . . ,∞. In this way we can give the following

De�nition 4.4.11. Let L̃ : L∞(H(ZM)) → L∞(H(ZN)) be a linear map.
Then

• L̃ is a map of positive type if maps functions of positive type in
L∞(H(ZM)) into functions of positive type in L∞(H(ZN)).

• If H is a compact group, L̃ is a map of H-positive type if ι⊗ L̃ is a
map of positive type from L∞(H × H(ZM)) to L∞(H × H(ZN)).

• L̃ is a map of completely positive type if it is of H-positive type for
any compact group H.

We notice that the map ι ⊗ L̃ , is rigorously de�ned on L∞(H) ⊗
L∞(H(ZM)); then, by continuity, we extend it to the whole L∞(H×H(ZM))
[31].
Thence, the following result holds true [31]:

Theorem 4.4.12. ξ ∈ P (H(ZN) × H(ZM)) is separable if and only if for
each map of positive type L̃ : L∞(H(ZM)) → L∞(H(ZN)) we have that
(ι⊗ L̃ )ξ ∈ P (H(ZN)× H(ZN)).

Moreover, we also have the following group-theoretical counterpart of
Choi's theorem [31]:

Proposition 4.4.13. L̃ : L∞(H(ZM))→ L∞(H(ZN)) is a map of H(ZM)-
positive type if and only if it is a map of completely positive type.

We can now observe that the above theorems hold true for functions
of quantum positive type on discrete phase space too, since H(ZN) is the
central extension via ZN of ZN × ZN . In order to better understand this
point, recall that the projective representations of ZN ×ZN are linked with
the unitary ones of H(ZN) (see section 2.4.2). We also consider the group
algebra (L1(H(ZN)), ∗) and the twisted group algebra (L2(ZN × ZN), ?S),
where ?S is the twisted convolution induced by a projective representation S
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with multiplier µS((j, k), (j′, k′)) = ei
2π
N
jk′ de�ned as in 2.75. In particular,

?S is given by

(ψ ?S φ)(j, k) :=
∑

j′,k′∈ZN

ψ(j′, k′)φ(j − j′, k − k′)µS((j′, k′), (j − j′, k − k′))

=
∑

j′,k′∈ZN

ψ(j′, k′)φ(j − j′, k − k′)ei
2π
N
j′k′e−i

2π
N
j′k.

(4.96)

Let σ : ZN 3 τ → ei
2π
N
τ ∈ T be a character on ZN and let ψ, φ ∈

L2(ZN ×ZN). Then we have that Ψ(τ, j, k) := σ(τ)ψ(j, k) and Φ(τ, j, k) :=
σ(τ)φ(j, k) are in L1(H(ZN)) and the following relation holds [20]

(Ψ ∗ Φ)(τ, j, k) =
∑
τ ′,j′,k′

Ψ(τ ′, j′, k′)Φ((τ ′, j′, k′)−1(τ, j, k))

=
∑
τ ′,j′,k′

Ψ(τ ′, j′, j′)Φ(τ − τ ′ + j′k′ − j′k, j − j′, k − k′)

= Nei
2π
N
τ
∑
j′,k′

ψ(j′, k′)φ(j − j′, k − k′)ei
2π
N
j′k′e−i

2π
N
j′k

= Nσ(τ) (ψ ?S φ) (j, k).

Thence, by the extension via the character σ, we can consider functions
of positive type on H(ZN) which act on elements of L2(ZN × ZN). In
particular, given ρ ∈ S(L2(ZN)) and the corresponding non-commutative
characteristic function ξρ ∈ P (H(ZN)), we have that ξρ induces a function
of quantum positive type on ZN × ZN :

0 ≤
∑
τ,j,k

ξρ(τ, j, k) (Ψ∗ ∗Ψ) (τ, j, k)

= N
∑
τ,j,k

tr(S(τ, j, k)∗ρ)σ(τ) (ψ∗ ?S ψ) (j, k)

= N2
∑
j,k

tr(S(j, k)∗ρ) (ψ∗ ?S ψ) (j, k)

(recall that S(τ, j, k) = e−i
2π
N
τMkTj = e−i

2π
N
τS(j, k)). We remark two facts:

�rstly, tr(S(j, k)∗ρ) is - up to a positive factor - the discrete Wigner function
induced by the projective representation S. Secondly, S is projectively
equivalent to D, hence, in the following, we can consider tr(D∗ρ) in place
of tr(S∗ρ) .
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We can now introduce maps of positive type in analogy with de�nition
4.4.11. In particular, given a linear map L : L2(ZM×ZM)→ L2(ZN×ZN),
we will say that

• L is a map of positive type if maps functions of quantum positive type
in L2(ZM × ZM) into functions of quantum positive type in L2(ZN ×
ZN).

• Given a compact group H, L is a map of H-positive type if ι⊗L is
a map of positive type.

• L is a map of completely positive type if it is of H-positive type for
any compact group H.

Hence, bearing in mind the link between functions of positive type on H(ZN)
and functions of quantum positive type on ZN × ZN , thanks to theorem
4.4.14 we have the following

Theorem 4.4.14. A function of quantum positive type χρ on (ZN ×ZN)×
(ZM × ZM) is separable if and only if for each map of positive type L :
L2(ZM×ZM)→ L2(ZN×ZN) the function (ι⊗L )χρ is of quantum positive
type on (ZN × ZN)× (ZN × ZN).

Similarly, proposition 4.4.13 gives us the following result:

Proposition 4.4.15. L : L2(ZM × ZM) → L2(ZN × ZN) is a map of
(ZM × ZM)-positive type if and only if it is a map of completely positive
type.

We now highlight that theorem 4.4.14 is equivalent to Horodecki's the-
orem 4.4.9. To ful�ll this task, let us start with the following result:

Proposition 4.4.16. There is a one-to-one correspondence between maps
of positive type and positive maps.

Proof. Suppose L : L2(ZM×ZM)→ L2(ZN×ZN) is a map of positive type
at �rst. If ρB ∈ B2(L2(ZM)) is a positive operator, then χρB = DDBρB ∈
PQ(ZM × ZM). Hence, L χρB is a function of quantum positive type on
ZN ×ZN which corresponds, via the Weyl transform, to a positive operator
ρA ∈ B2(L2(ZN)). In brief, since all the maps involved preserve positivity
and are linear, we have that

Λ = QDA ◦L ◦DDB : B2(L2(ZM))→ B2(L2(ZN)) (4.97)
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is a positive linear map. The converse also holds true, because the Wigner
and the Weyl transforms are unitary operators. In particular, by 4.97, we
have that

L = DDA ◦ Λ ◦QDB : L2(ZM × ZM)→ L2(ZN × ZN). (4.98)

Hence, if Λ is positive, since D and Q preserves positivity, L is positive.

Suppose now L is a map of (ZM × ZM)-positive type. Following the
proof of proposition 4.4.16, we have that Λ is a completely positive linear
map. Indeed, if B2(L2(ZM)⊗L2(ZM))) 3 ρ ≥ 0 and χρ is the corresponding
function of quantum positive type, we have that (ι ⊗ L )χρ ∈ L2((ZM ×
ZM)×(ZN×ZN)) is a function of quantum positive type, which corresponds
to a positive operator on L2(ZM)⊗ L2(ZN). In other terms, the map

Id⊗Λ = Id⊗(QDA◦L ◦DDB) = (QDB⊗QDA)◦(ι⊗L )◦(DDB⊗DDB) (4.99)

is a positive map from L2(ZM) ⊗ L2(ZM) to L2(ZM) ⊗ L2(ZN) [31], hence
Λ is M -positive and, by Choi's theorem, it is a completely positive map.
Conversely, if Λ is a M -positive linear map, we can suitably de�ne L in
such a way that it is a map of (ZM × ZM)-positive type, hence it is a map
of completely positive type. In short, we have

Theorem 4.4.17. There is a one-to-one correspondence between maps of
completely positive type and completely positive maps.

With these facts in mind we can now see that theorem 4.4.14 corresponds
to Horodecki's theorem 4.4.9. Indeed, ρ ∈ S(L2(ZN)⊗L2(ZM)) is separable
i� χρ ∈ PQ((ZN×ZN)×(ZM×ZM)) is separable. Hence, by theorem 4.4.14,
given an arbitrary map of positive type L : L2(ZM ×ZM)→ L2(ZN ×ZN),
(ι⊗L )χρ is a function of quantum positive type on (ZN×ZN)×(ZN×ZN).
Thus, Λ := QDA ◦L ◦ DDB is a positive map and (Id ⊗ Λ)ρ is a positive
operator on L2(ZN) ⊗ L2(ZN). Therefore, theorem 4.4.14 implies theorem
4.4.9. Clearly, the converse is also true, since these are all �i�� conditions.

Lastly, we quickly discuss the PPT criterion, which in its standard for-
mulation assumes the following form:

Theorem 4.4.18 (PPT criterion). If ρ ∈ S(HA⊗HB) is a separable state,
then the operator ρTB := (Id ⊗ T )ρ is positive, where T is the transposed
operator on HB such that TρB = ρTB, ρB ∈ S(HB).
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Its phase space analogous is quite simple. Indeed, observe that

χρ(−j,−k) =
1

N
tr(D(−j,−k)∗ρ) =

1

N
tr(D(j, k)ρ) = χρ(j, k) (4.100)

(recall that µ((j, k), (−j,−k)) = 1, so that D(−j,−k) = D(j, k)∗).
Hence, recalling separability condition 4.4.6, we have [29, 31]

Proposition 4.4.19. If χρ ∈ PQ(ZN ×ZN ×ZM ×ZM) is a separable func-
tion of quantum positive type, then χ̃ρ(j1, k1, j2, k2) := χρ(j1, k1,−j2,−k2)
is a function of quantum positive type.

The link with the usual formulation is given by the following [29]

Proposition 4.4.20. Given a �nite quantum state ρ in L2(ZN)⊗L2(ZM),
ρTB is a positive operator if and only if χ̃ρ is a function of quantum positive
type.

The proof of this fact is straightforward if we recall that any repre-
sentation determines a contragredient representation, de�ned as D(j, k) :=
D(−j,−k)T , whose matrix coe�cient are the complex conjugate of those
of D(j, k) (such representation depends on the choice of the base because
of the transpose operator) [18]. Indeed, we have that D is still a projective
representation of ZN ×ZN whose multiplier is the complex conjugate of the
multiplier of D:

D(j + j′, k + k′) = D(−j′ − j,−k′ − k)T

= µ((−j′,−k′), (−j,−k)) (D(−j′,−k′)D(−j,−k))
T

= µ ((j, k), (j′, k′)) D(j, k) D(j′, k′).

We also notice that D(j, k) is irreducible, because so it is D [29]. In this
way, we have that

χ̃ρ(j, k) =
1

N
tr(D(−j,−k)∗ρ) =

1

N
tr
(
D(j, k)∗ρT

)
. (4.101)

Hence, returning to L2(ZN)⊗ L2(ZM), by Weyl transform, we have that

ρTB = (Id⊗ T )ρ

=
1

NM

∑
j1,k1∈ZN

∑
j2,k2∈ZM

χ̃ρ(j1, k1, j2, k2)DA(j1, k1)⊗DB(j2, k2),

(4.102)
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therefore, ρTB is positive if and only if χ̃ρ is a function of quantum positive
type.
We conclude with two remarks. First, we observe that only positive maps
are interesting for Horodecki's theorem 4.4.14, because (ι⊗L )χρ is always
a function of quantum positive type if L is a map of completely posi-
tive type. Secondly, Horodecki's theorem, in a certain sense, generalizes
PPT criterion 4.4.19: we obtain a characterization of separable functions
of quantum positive type when we take into account all the maps L such
that (ι⊗L )χρ is a function of quantum positive type. If we merely require
that χ̃ is a function of quantum positive type, as in the PPT criterion, we
have a necessary condition for separability only.



Conclusions

In the present work we have discussed of the phase space quantization, an
alternative formulation of quantum mechanics which is built on group the-
ory. In particular, we have introduced a formulation of quantum mechanics
on �nite Hilbert spaces solely relying on the irreducible projective represen-
tations of a discrete phase space ZN × ZN , suitably chosen in such a way
that the group structure G× Ĝ, where G is Abelian, is preserved.
We have accomplished this task following the steps usually taken to con-
struct quantum mechanics on phase space. Hence, a preliminar discussion
on representation theory of l.c.s.c. groups has been necessary: we have
introduced unitary and projective representations, the seconds which have
been fundamental because, by Schur's lemma, the only irreducible unitary
representations of the continuous and the discrete phase space are one-
dimensional, hence physically trivial.
At this point, the necessary tools to develop quantum mechanics on dis-
crete phase space has been discussed in analogy with the standard phase
space, which has always been discussed �rst as a guide. In particular, in
the case of Rn×Rn (respectively, ZN ×ZN), by a suitable central extension,
we have linked its projective representations with the unitary ones of the
Heisenberg-Weyl group Hn(R) (respectively, H(ZN)). In this context, the
symplectic structure of the phase space has arisen looking at the classi�ca-
tion of its multipliers only. Moreover, by means of such representations, we
have been able to introduce Weyl systems, which allow a mathematically
consistent formulation of the CCRs.
However, due to �niteness, the irreducible representations of H(ZN) be-
haves in a slightly di�erent way with respect to the ones of Hn(R): some
irreducible representations (labeled by a parameter λ ∈ ZN which resem-
bles ~) could bring a rescaling of the �nite system considered. In particular,
the de�nition of �nite Weyl system resembles a continuous irreducible Weyl
system if gcd(λ,N) = 1, otherwise it behaves as a continuous reducible one
when acting on a N -dimensional Hilbert space. Regarding Stone-von Neu-
mann's theorem, analogous considerations hold true.
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Next, we have introduced the main tools of harmonic analysis on phase
space, by means of which on one hand the standard Wigner function has
been retrieved, while on the other hand we have been able to deal with the
discrete Wigner function. The symplectic Fourier transform, which entails
in its character the symplectic structure of G× Ĝ, and the twisted convolu-
tion, namely the ?-product of functions on phase space, has been discussed.
Then, we have de�ned the Gabor transform, the fundamental tool in time-
frequency analysis, that turned out to be a Wigner function disguised. At
last, we have discussed of the notion of square integrable representation, on
which the phase space approach relies entirely. Indeed, we have seen that
we can de�ne a Wigner transform for every l.c.s.c. group G that admits
a square integrable (projective) representation. Then the Weyl transform
is introduced as the pseudo-inverse map of the Wigner transform. As a
result, the space L2(G) has been provided of a non-commutative associa-
tive product, the ?-product (which corresponds to twisted convolution for
unimodular groups), with respect to it is a Banach ∗-algebra. Then, the
standardWigner function on Rn×Rn has been introduced by virtue of square
integrability of Weyl systems, as well as the discrete one on ZN × ZN . We
have also compared this Wigner function with the ones de�ned by means of
phase-point operators. In particular, we have observed that, in the discrete
case, the two de�nitions coincide for a discrete phase space whose order
is odd only, because in the even case the phase-point operators does not
form a basis in MN(C). About that, a possible development of this work
may be a group theoretical resolution of the inconsistency of the Wigner
function de�ned in terms of phase point operators when N is even, intro-
ducing some redundancy as in [34]. As a last topic, we have discussed the
separability problem of quantum states of a �nite bipartite system, which
can be regarded as the product of two discrete phase space. In particular,
we have seen how functions of quantum positive type on L2(ZN×ZN) allow
us to give a phase space formulation of some famous criteria, such as PPT
criterion and Horodecki's theorem.

In summary, in this thesis work we have emphatized the central role
of harmonic analysis in the phase space approach to quantum mechanics,
whose interest in has been renewed in the last years due to various applica-
tions in quantum information and quantum computing. In particular, the
square-integrability of the representations considered has played a crucial
role in the generalization of the Weyl-Wigner correspondence to ZN × ZN ,
which also served at introducing a ?-product of functions.
Of course we have only been able to study the most fundamental facts
of the Weyl-Wigner correspondence applied on discrete phase space and
the possible future developments are various. A �rst route to explore may
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be the study of the behaviour of the discrete Wigner function under the
automorphisms of H(ZN), among them we �nd the (discrete) symplectic
transformations, which are particularly insidious to deal with because of
the underlying �nite geometry of ZN × ZN ; this topic is also closely con-
nected with the study of mutually unbiased bases [46].
On the other hand, there are many things left behind that can be ana-
lyzed more deeply. First of all, we may employ the ?-product to describe
the dynamical evolution of a quantum state in terms of Wigner function.
Infact, here we have only observed that the ?-product induced by the gen-
eralized Wigner transform is the twisted convolution on ZN × ZN ; clearly
the Grönewold-Moyal product can also be introduced in the picture via the
discrete Wigner function. Moreover, only the discrete Wigner function in-
duced by a N -dimensional Weyl system has been studied. However, if we
consider a Weyl system whose dimension is strictly less than N , we may lose
unitarity of the Weyl and Wigner transforms, and things become trickier.
For instance, some proofs concerning functions of quantum positive type
here presented rely heavily on unitarity of the Wigner function; further in-
vestigations in this direction may be interesting.
The discussion on entanglement can be naturally deepened. Firstly, we
have discussed of bipartite systems only and further developments can be
made in this direction, for example trying to �nd new entanglement criteria
relying on the powerful tools of harmonic analysis. On the other hand, the
language of functions of quantum positive type may be applied to multi-
partite systems. At any rate, the deep bound with time-frequency analysis
may allow us to investigate these interesting topics in an alternative way
than the usual approaches to �nite quantum mechanics.

Anyhow, the discrete phase space is not the only generalized phase space
of physical interest on which quantum mechanics can be built. For instance,
the group Z × T is a suitable phase space candidate and represents a con-
siderable playground for some quantum systems [1] which, at least as far as
we know, is approached via the phase-point operators only [25].

From a more abstract point of view, progresses can be made too.
The problem of unitarity of the Wigner transform can be approached in a
more general way, for example investigating wether the general phase space
G× Ĝ always admits a square integrable representation with respect to the
induced dequantization map is unitary.
Lastly, we observe that, from a physical point of view, the Weyl-Wigner
correspondence may be rather a limited approach in some areas of research,
because it relies entirely on the notion of square integrable representation.
For instance, the Wigner dequantization scheme cannot be applied in the
case of the Poincaré group, because the latter does not admit square in-
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tegrable representations [8]. In such a case, we must relax our hypothesis
releasing the square integrability of the representations. Then, a possible
way to deal with the Poincaré group can be the introduction of a weak
wavelet transform [3], which can be used to achieve a representation of the
quantum relativistic vector state on the space of square integrable functions
on the latter group.
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