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There's so many di�erent worlds

So many di�erent suns

And we have just one world

But we live in di�erent ones
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Introduction

Homo sum, humani nihil a me alienum puto.

(Publius Terentius Afer, Heautontimorùmenos, 165 BC)

The Nobel-prize laureate Chandrasekhar expressed the simplicity of the mathematical description of
a rotating black hole saying that

�Rotating black holes are the most perfect macroscopic objects in the Universe. And, as
the theory of General Relativity provides a single, unique, two-parameter solution for their
description, they are also the simplest objects.�

Nevertheless, two such simple black holes together are already too di�cult to handle, as they form
a remarkable complex dynamical system for which only approximate methods allow us to grasp the
physics behind it. Even in scenarios where our approximation and idealisation can make sense in some
e�ective way, the orbital dynamics remains truly complicated. The detailed description of the entire
process will involve inspiral and merger phases, and it has been a key theme in gravitational research
for almost 50 years, driven by the ambition to predict the pattern of gravitational waves through which
such systems can be observationally studied.
The landmark observation of merging black holes by the LIGO-Virgo Collaboration in 2015 [1] has

conclusively brought black holes, inspiraling black-hole binaries and gravitational waves in the realm
of physics rather than mathematical speculation, marking the birth of gravitational-wave astronomy.
The LIGO-Virgo discoveries would not have been possible without an accurate model of the inspiral
and merger; actually their analysis [2] concluded that the quality of science extractable from future
observations may well be limited not by experimental precision, but by the accuracy of available
theoretical models.
One of the next steps in the gravitational astronomy programme is the observation of an inspiral

scenario where one of the black holes is much lighter than the other one � the so-called �extreme-mass-
ratio inspiral�, or EMRI. Nature seems to abound with EMRIs, which are expected to emit gravitational
waves in millihertz frequencies, impossible to be detected by Earth-borne detectors. Indeed, EMRIs
are prime targets for the planned LISA mission, whose peak sensitivity will be exactly in the milli-
hertz band. The will to hunt these sources of gravitational waves is explained by their nature as an
extraordinary laboratory for strong-gravity physics.
Our journey will begin in chapter 1 with an introduction to the astrophysical background and the

primary scienti�c motivations that bring our attention to EMRIs. We will explore the detectability
of these sources at LISA and illustrate how they bring an immediate problem in the study of their
dynamics, making the development of new approaches to the Einstein equations absolutely essential.
The �nal focus of the chapter will be on the interplay of the gravitational self-force technique with the
other methods developed so far for tackling the evolution problem of binaries.
Once we have de�ned the physical background in which we will move, in chapter 2 we will go on

setting out the technical basis and developments of the self-force method. The discussion will start
from the early works at the end of the 1990s, passing through the more modern reformulations and
introducing the issue concerning the implementation of numerical methods. We will thus have set the
stage to discuss the orbital evolution of EMRIs, capitalising on the adiabatic nature of the inspiral
process. Finally, we turn to a discussion of the radiative e�ects of the gravitational self-force.
In chapter 3 we will pause for a moment the main discussion in order to motivate and introduce the

concept of Extended Theories of Gravity. What is the point of considering them and what theories
should we consider in the vast panorama of possible extensions of a theory so praised as General
Relativity? We will �rst try to answer these queries and then deal with the analysis of the self-force
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Introduction

in scalar-tensor gravity, �nally specialising our discussion to the case where both objects in question
are black holes.
The analysis of the conservative e�ects of the self-force will then engage us throughout chapter 4.

The reason why we delayed the discussion at this point is that we will be able to examine these e�ects
�rst in General Relativity, and then move on to an �e�ective� theory � relying on a theory-agnostic
parametrisation � that takes into account the corrections induced by extended theories, as discussed
in the previous chapter.
Throughout this work, the use of geometrized units � in which G = c = 1 � is implied, unless

otherwise speci�ed. In this system all units are expressed in terms of powers of length, as it is customary
in the literature of General Relativity.
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1. Scienti�c background and motivations

How many bodies are required before we have a problem?

In 18th-century Newtonian Mechanics, the 3-body problem was insoluble. With the birth of

General Relativity around 1910 and Quantum Electrodynamics in 1930, the 2- and 1-body

problem was insoluble. And, within modern Quantum Field Theory, the problem of zero

bodies (vacuum) is insoluble. So, if we are out after exact solutions, no bodies at all is

already too many!

(Richard Mattuck, 1976)

When two black holes (BHs) are in orbit around each other, they form a strikingly complex dynamical
system. No closed-form solutions are known, and even numerical solutions have been forbiddingly hard
to obtain until well into the 21st century. It is true beyond a shadow of a doubt that the complex-
ity of the gravitational two-body problem in General Relativity (GR) stands in stark contrast to its
elementary nature in the context of point-particle Newtonian gravity, where all possible orbital con�g-
urations are simple conical sections. First, point-particle idealisation is problematic in GR; second, a
gravitationally bound system of two masses admits no stationary con�gurations, as gravitational waves
(GWs) constantly carry orbital energy away from the system and back-reaction from that radiation
gradually drives the two objects closer together, and, given enough time, the two bodies will eventually
merge. If these bodies are Kerr black holes, a single, larger Kerr black hole eventually forms.1

Observational evidence indicates that the centres of most galaxies contain supermassive black holes
(SMBHs), with masses between a few tens of thousands and a few billion solar masses. Mergers
involving SMBHs are powerful sources of GWs, but these can only be observed from space: that is
because of the seismic noise limiting the sensitivity of ground-based detectors to frequencies above
approx. 1 Hz, and hence with total mass no greater than a few hundred solar masses.
The Laser Interferometer Space Antenna (LISA) will have sensitivity to GWs in the millihertz band

generated by merging systems having total mass in the range 104−107 M�, and is expected to observe
a great variety of sources. However, the primary source for LISA are the SMBHs in the centres of
galaxies, that generate GWs either when they merge with other SMBHs � which is expected to occur
following mergers between their host galaxies � or when they merge with much smaller, stellar-mass
compact objects � such as white dwarfs, neutron stars or stellar-mass BHs.2 The latter systems are
called extreme-mass-ratio inspirals (EMRIs), because of the large di�erence in mass between the two
objects involved.
EMRIs describe the long-lasting inspiral (from months to a few years) and plunge of stellar-origin

BHs, with mass of 10− 60 M�, into SMBHs of 105 − 106 M� in the centre of galaxies. The orbits of
EMRIs are expected to be generic and highly relativistic. These events, which constitute one of the
eight science objectives of LISA [3], are tremendously interesting because, depending on the chirp mass
of the system, the signal can stay in the LISA bandwidth for years; the small object may then spend
many cycles in close vicinity of the SMBH, with its orbit displaying extreme forms of periastron and
orbital plane precession. The intricate GW signal cleanly encodes within it a detailed mapping of the
spacetime around the SMBH, allowing us to test its geometry and providing accurate measurements

1Recent direct observations of the gravitational wave emission from a binary black hole merger indicate that the resulting
black hole remnant of a binary black hole merger is in general boosted along a particular direction with respect to the
asymptotic Lorentz frame at null in�nity where such emissions have been detected. In this general case an additional
parameter � the boost parameter � has to be added, so that the solution has three parameters (mass, spin and boost)
and corresponds to the most general con�guration that an astrophysical black hole can have, reducing to the standard
Kerr solution when the boost parameter is zero. [7]

2A normal star would be tidally disrupted by the central BH.

3



1. Scienti�c background and motivations

Figure 1.1.: Examples of GW sources in the frequency range of LISA, compared with its sensitivity for
a 3-arm con�guration. [3]

of its mass and spin, con�rm whether it is a BH as GR predicts and eliminate or tightly constrain a
heap of proposed alternatives to GR: an �ideal experiment� of Nature in strong gravity.

1.1. LISA mission

Space-based GW interferometry will open the low-frequency window (mHz to Hz) in the GW landscape,
which is complementary to Earth-based detectors (Hz to kHz) and pulsar timing array experiments
(nHz).
The proposed LISA mission [3] enables the detection of GWs from SMBHs coalescences within a

vast cosmic volume encompassing all ages, from cosmic dawn to the present, across the epochs of the
earliest quasars and of the rise of galaxy structure. LISA will provide the �nest possibility to map
the spacetime around the SMBHs which populate the centres of galaxies, using compact objects as
particle-like probes; this great science objective will be achieved using three arms and three identical
spacecrafts in a triangular formation (constellation) in a heliocentric orbit trailing the Earth by about
20° � between 50 and 65 million km from Earth. The expected sensitivity and some potential signals,
including EMRIs, are shown in �g. 1.1. An observatory that is expected to deliver �ne-detailed science
is described by a sensitivity curve which, below 3 mHz, will be limited by acceleration noise at the
level demonstrated by LISA Path�nder; interferometry noise instead dominates above 3 mHz. Such a
sensitivity can be achieved with a mean 2.5 million km arm-length constellation (the inter-spacecraft
separation) with 30 cm telescopes and 2 W laser systems.
GWs change the optical path-length along the three sides of a triangular con�guration de�ned by

free-falling test masses. The test masses will follow their geodesic trajectories with sub-femto g/
√

Hz
spurious acceleration and will be located inside the three identical co-orbiting drag-free spacecrafts.
Laser interferometers, all-sky monitors of GWS, will measure the pm = 10−12 m to nm = 10−9 m
path-length variations caused by GWs. These distance changes are small compared to the variations
caused by solar system celestial dynamics (some 104 km), but they can be distinguished because the
former are at mHz frequencies (timescale of 103 s), whereas the latter are quiet at mHz frequencies
(with periods of many months).
The constellation is fully symmetric, with similar measurements taking place in both direction along

each of the three arms. Three independent interferometric combinations of the light travel time meas-
urements between the test masses are possible, allowing the synthesis of two virtual Michelson inter-
ferometers (allowing the simultaneous measurement of the two polarisations of the GW) plus a third,
�Sagnac� con�guration (insensitive to GWs, used to characterise the instrumental noise background).

4



1. Scienti�c background and motivations

The yearly rotation of the constellation about itself and its orbit around the Sun allows to reconstruct
the source direction for sources that can be observed for, at least, several weeks. Noisy non-gravitational
interactions acting on the spacecrafts require the use of test masses as geodesic reference: these test
particles are actually shielded by the containing spacecrafts. Two test masses per spacecraft are used,
each one dedicated to a single interferometry arm.

1.1.1. EMRIs@LISA

When the orbit as a function of time is not a simple harmonic motion, we do not expect the radiated
power to be monochromatic. In fact, computing the frequency spectrum of the radiated power, one
�nds that the circular orbit value P◦ gets replaced by [4]

P◦ =
32G4µ2m3

5c5a5
−→ P =

+∞∑
n=1

Pn =
32G4µ2m3

5c5a5

+∞∑
n=1

gn (e) ,

where gn (e) depends on the eccentricity e through Bessel functions in such a way that, when e = 0,
one gets back the result for circular motion, i.e. gn (0) = δn2. For a generic value of 0 < e < 1 all
harmonics contribute, and radiation at all frequencies ωn = nω0 appears for all integer values n ≥ 1.
Increasing the ellipticity, increase also the value of n = n̄ where gn (e), as well as Pn, is maximum and
the total radiated power. Furthermore, for a generic orbit one has three fundamental frequencies �
corresponding to radial, azimuthal and polar motion3 � with the corresponding harmonics. The signal
then has a set of harmonics, which in an inspiraling binary evolve simultaneously in time, giving in
principle a very speci�c signature.
A raw EMRI signal will have an instantaneous amplitude an order of magnitude below the instru-

mental noise of LISA and (at low frequencies) several orders of magnitude below the GW foreground
from galactic compact binaries [5], making detection a rather di�cult problem to address. However,
the signals are very long lived and will be observed over at least 104 cycles, which in principle allows
the signal-to-noise ratio (SNR) to be built up over time using matched �ltering. One can estimate, for
instance, that a binary with

M = 106 M� and m = 10 M�,

at z ' 1.2, spends about 105 inspiral cycles in the LISA bandwidth. This large number of cycles gives
the possibility of extracting a small signal from the noise, and allows in principle extremely precise
measurements of the parameters of the system. Hence, EMRIs can bring a wealth of information.
However, the computational problem becomes formidable: we need templates able to track the signal
accurately enough for 104 − 105 cycles. This not only requires very accurate theoretical waveforms,
but also the scanning of a very �ne grid in the parameter space of the binary. Furthermore, their
orbits are quite relativistic, with generic inclination with respect to the spin of the central BH, and
display extreme forms of periastron and orbital precession, therefore providing a real �map� of the
(Kerr) geometry produced by the central SMBH. The important lesson we are taught is that, in order
to gain access to this opulence, accurate templates for the sources must be developed.
The theoretical uncertainty in the rate of formation of EMRIs is relatively large � typical estimates

are of order 10−8−10−6 yr−1 for a central SMBH with massM = 106 M�, corresponding to a detection
rate for LISA ranging from a few to hundreds of events per year (see [4, 5] and references therein).
Captures occur when two objects in the dense stellar cusp4 surrounding a galactic SMBH undergo a
close encounter, sending one of them into an orbit tight enough that the orbital decay through emission
of gravitational radiation dominates the subsequent orbital evolution. The latter may be qualitatively
divided into three stages: in the �rst and longest stage, the orbit is extremely eccentric and GWs

3Stated di�erently, there are (i) the orbital frequency, (ii) the perihelion precession frequency and (iii) the frequency
of precession of the orbital plane.

4The evolution of a star cluster containing a SMBH has been (robustly, but only theoretically) proven to admit a
quasi-steady state solution, where the stellar density takes a power-law form ρ ∝ r−γ , the so-called stellar density
cusp, fully developed after a relaxation time, necessary for the randomisation of the cluster phase space via close
encounters between stars.
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1. Scienti�c background and motivations

Figure 1.2.: Domains of the two-body problem in GR. Di�erent principle lead to di�erent methods: PN
expands about �at spacetime, GSF expands about the exact �eld geometry of the central
BH, while NR digs into the full non-linear dynamics. Synergistic work seeks to interface
between these results [21].

are emitted in pulses which slowly remove energy and angular momentum from the system, and the
orbit gradually shrinks and circularises; after 103 − 108 years (depending on the two masses and the
initial eccentricity), the evolution enters its second stage, when the orbit is su�ciently circular so that
the emission becomes approximately continuous; �nally, the adiabatic inspiral transitions to a direct
plunge, as the object reaches the last stable orbit, quickly plunges through the SMBH horizon and
the GW signal cuts o�. We will talk more extensively about these stages in subsection 4.2.1. While
individually-resolvable captures will mostly be detectable during the last 1 − 100 years of the second
stage, radiation emitted during the �rst stage (mostly in the form of short bursts near periastron
passages) will contribute signi�cantly to the confusion background [6]. The detection will be further
complicated by the fact that about 107 galactic white-dwarf binaries generate a stochastic background
that is above the LISA noise �oor for frequencies below 2−3 mHz. One also expects that there will be
a stronger signal form the merger of a few SMBH binaries, and all these signals will be superimposed
in time and frequency. Therefore, one needs techniques for separating the various signals, removing
the stronger source before being able to see the signals due to EMRIs.

1.2. Waveforms and synergies

The GW strain signal, h (t), called waveform, together with its frequency domain representation, h̃ (ν),
encodes exquisite information about both intrinsic (e.g., mass and spin) and extrinsic (e.g., inclination,
luminosity distance, location) parameters of the source. The desire to maximise the science return from
GW experiments drives the theory programme to improve waveform models across the full parameter
space relevant to observation. However, the theoretical computation of templates able to follow the
actual waveforms with high accuracy over 104 − 105 cycles is a highly non-trivial issue.
For EMRIs, the post-Newtonian (PN) expansion is not adequate, since EMRIs are quite relativistic

and it would converge too slowly. Numerical relativity (NR) is also not suitable, since relatively long
numerical simulations are currently only possible for mass ratios up to about 5-10, due to the numerical
complications introduced by the di�erent length-scales associated with the two BHs � and, even in that
case, they cover �only� O

(
102
)
inspiral cycles. One can however make use of the fact that in EMRIs

the mass ratio is small, e.g. of order 10−4 − 10−6, so one can perform an expansion in this parameter.
A technique that is particularly suitable in the case of EMRI systems is the self-force approach,

which we will be dealing with throughout this work. As will become more clear in the following,
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1. Scienti�c background and motivations

a comparison of results from di�erent techniques provide a powerful overall check and mutual tests
for di�erent methods, as each relies on subtle procedures and computational manipulations. But
such comparison can achieve more than just mutual tests: the gravitational self-force (GSF) and PN
methods are both systematic approximation approaches to the two-body problem in GR, each based
on a perturbative expansion in a di�erent limiting domain of the problem. In fact, the PN method
expands about the limit of large separation keeping the mass ratio η arbitrary, while the GSF method
expands about the limit η → 0 keeping the separation arbitrary. Joining forces is useful in di�erent
ways, as the results of one method can become a benchmark for the other, or can help predicting
higher order terms that are di�cult to determine. But what is perhaps best is the chance to enhance
the science return by exploiting synergies and �sew� predictions in intermediate domains, which may
not be accessible to either of the approximation methods separately.
The synergistic approach shall be expanded to include NR, which enables us to directly solve the

fully non-linear problem describing the inspiral and merger dynamics of BH binaries. NR simulations
result in the best tool to model the two-body dynamics of two comparable-mass BHs close to their
merger, but unfortunately become computationally prohibitive when the separation is large or the
mass ratio too small (. 1 : 10, in practice).
The idea of a three-fold synergy is depicted in �g. 1.2, showing the respective domain of applicability

of each of the three methods in the essential parameter space of the two-body problem, i.e. mass ratio
vs. separation. Exploring the interfaces between the approaches � and reaching across them � is
often done within the framework of the e�ective-one-body (EOB) approach, which aims to provide a
universal, semi-analytical model of the two-body dynamics across its entire parameter space. For a
full review on the overlap between the various approaches to the binary BH problem, refer to [29].
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2. Gravitational self-force

Es ist nicht das Ziel der Wissenschaft, der unendlichen Weisheit eine Tür zu ö�nen,

sondern eine Grenze zu setzen dem unendlichen Irrtum.

(Bertolt Brecht, Leben des Galilei , 1938)

The �rst encounter with the concept of �self-force�, through which an object does �feel its own �eld�,
usually happens in the case of a Galilean-relativistic accelerating charge in �at spacetime. In fact,
when actually taking into account the change in the �eld due to the acceleration of the particle, one
�nds that the motion obeys the Abraham-Lorentz equation [21, 8]

m
d2z

dt2
= f ext +

2e2

3m

df ext

dt
.

The second term is a self-force; more speci�cally, it is a radiation-reaction. Unlike the Coulomb
potential of the static charge, the Liénard-Wiechert potentials of the accelerating charge contain an
unbound piece [9], which carries energy-momentum out to in�nity in the form of radiation (dissipation).
That emission causes a recoil, pushing the particle in the opposite direction.
The Abraham-Lorentz equation does not evince a particularly direct relationship between the self-

force and the �eld of the particle. In order to obtain a more physically compelling picture and to un-
derstand GSF physics, it is instructive to start from the back-reaction problem for a special-relativistic
electric charge, moving in a Minkowski spacetime under the in�uence of some external force.

2.1. Electromagnetic self-force in �at spacetime

A typical situation would consist of an electron moving in a bound orbit in the �eld created by a
positive charge, taken to be very massive. The motion of the electron generates an electric current jµ,
which sources the electromagnetic (EM) �eld. In the Lorenz gauge, ∂µA

µ = 0, the EM �eld satis�es
the equation

�Aµ = −4πjµ. (2.1)

If we assume that the electron is point-like, the current jµ has a support only on the electron's worldline.
Given the trajectory of the electron, jµ induces radiative solutions at in�nity for Aµ in eq. (2.1). These
out-going EM waves carry away energy and angular momentum; the electron will therefore lose energy
and angular momentum, and will inspiral onto the central massive charge, at least as long as the
classical description is still appropriate. In other words, the EM �eld generated by the electron acts
back on the electron itself, producing a back-reaction force, which should be included in the equations
of motion of the electron, at least iteratively.
When solving eq. (2.1) to compute the electromagnetic waves produced at in�nity, one uses the

retarded Green's function, leading to the solution

Aµret (x) =

∫
d4x′Gret

(
x, x′

)
jµ
(
x′
)
.

A problem that immediately arises in the computation of the self-force on the electron is that the �eld
Aµret (x) generated by the electron is singular at the position of the electron itself, so one might fear that
the self-force is also divergent. But that's not the case. The situation considered here, in which the
radiation is propagating outward and the charge is spiraling inward, breaks the time-reversal invariance
of Maxwell's theory: a speci�c time direction was adopted when, among all possible solutions to the
wave equation, we chose the retarded one as the physically relevant solution. Speci�cally, observation

8



2. Gravitational self-force

of the motion of a single particle could not give an indication as to the direction of time � only the
statistical behaviour of systems with a large number of degrees of freedom single out a direction. The
asymmetry is therefore introduced by the, somewhat arbitrary, rejection of the advanced solution.
Re�ecting the time-symmetry of the laws, any �eld can be described equivalently by an initial or �nal
value problem (with arbitrary boundary conditions). Hence one can always decompose the �eld as

Aµret (x) =
1

2

[
Aµret (x) +Aµadv (x)

]
+

1

2

[
Aµret (x)−Aµadv (x)

]
. (2.2)

This decomposition tells us something very important. The linear superposition

AµS ≡
1

2

[
Aµret +Aµadv

]
restores time-reversal invariance: outgoing and incoming radiation would be present in equal amounts,
there would be no net loss nor gain of energy and momentum by the system, and the charge would
undergo no radiation reaction. While AµS does not exert a force on the charged particle, it is just as
singular as the retarded �eld in the vicinity of the world line. This follows from the fact that Aµret, A

µ
adv

and AµS all satisfy eq. (2.1), whose source term is in�nite on the worldline: despite di�erent wave-zone
behaviours, they share the same singular behaviour near the worldline (dominated by the particle's
Coulomb �eld). So, the subscript �S� stands for �symmetric� as well as �singular�.
Because AµS is just as singular as Aµret, removing it from the retarded solution gives rise to a well

behaved �eld in a neighbourhood of the worldline; and, because AµS is known not to a�ect the motion
of the charged particle, this new �eld must be entirely responsible for the radiation reaction. We
therefore introduce the �eld

AµR ≡ A
µ
ret −A

µ
S =

1

2

[
Aµret −A

µ
adv

]
,

which coincides with the second term in the decomposition (2.2).1 This �eld satis�es the homogeneous
version of eq. (2.1), �AµR = 0, so there is no singular source to produce a singular behaviour on the
worldline. Furthermore, satisfying the homogeneous wave equation, AµR can be thought of as a free
radiation �eld, and the subscript �R� stands for �radiative� as well as �regular�.
The self-action of the charge own �eld can then be understood as follows: a singular �eld AµS can be

removed from the retarded �eld and shown not to a�ect the motion of the particle; what remains is a
well behaved �eld AµR that must be solely responsible for the radiation reaction. From the regular �eld
we form an electromagnetic �eld tensor, FR

µν = ∂µA
R
ν − ∂νAR

µ , and we take the equations of motion
(EoMs) of the particle to be

maµ = f ext
µ + eFR

µνu
ν ,

where uµ ≡ dzµ/dτ is the charge four-velocity, aµ = duµ/dτ its acceleration, m its (renormalised2)
mass and f ext

µ an external force potentially acting on the particle. Computing the regular �eld on the
worldline yields the Abraham�Lorentz�Dirac equation3

maµ = fµext +
2e2

3m
(δµν + uµuν)

dfνext

dτ
,

where the second, O
(
e2
)
term is the self-force responsible for the radiation reaction, which is orthogonal

to the four-velocity and depends on the rate of change of the external force.

1Sources actually determine only the di�erence Aµret − A
µ
adv, similar to −iT = S − 11 in the interaction picture of the

S-matrix in QFT.
2Aµret is singular on the worldline. It can be shown that this does not a�ect the EoM, but gives a divergence that can
be reabsorbed into a renormalisation of the mass of the particle.

3The original equation, established in 1938, actually involved the rate of change of the acceleration, resulting into the
well-known (unphysical) runaway solutions. In order to eliminate this problem, one can replace the term daν/dτ
with m−1dfνext/dτ on the right-hand side. The order-reduced equation delivers a description of the motion whose
expected accuracy is just as high as that of the original one, nevertheless su�ering from none of the problems of the
original equation. (See [20] and references therein for a discussion)
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2. Gravitational self-force

2.2. Notion of force in curved spacetime and gravitational self-force

One would now like to repeat a similar analysis for a light mass moving in a gravitational �eld,
which is the typical situation of EMRIs. But the question arises: is there any place for the notion of

(gravitational) �force� in General Relativity (GR)? In GR, test masses simply move on geodesics and
no concept of force is required. But a useful notion of gravitational force can be introduced as follows.
Consider a particle moving in a metric decomposable as

g′µν = gµν + hµν , |hµν | � 1. (2.3)

At this level, hµν is a smooth, weak gravitational perturbation (e.g. an incident GW) of the background
spacetime. The geodesic equation in the full metric is

d2xµ

dτ ′2
+ Γ

′µ
νρ

dxν

dτ ′
dxρ

dτ ′
= 0, (2.4)

where Γ
′µ
νρ is the connection in the metric g′µν and τ ′ is an a�ne parameter along the trajectory.

Adopting the decomposition (2.3) means that it is possible to reinterpret the particle's motion in
terms of a trajectory in the background spacetime. Under this interpretation, the trajectory (in the
background gµν) is no longer geodesic; rather, the particle experiences an �external gravitational force�,
which is of course �ctitious. This leads to

d2xµ

dτ2
+ Γµνρ

dxν

dτ

dxρ

dτ
= aµgrav, (2.5)

where Γµνρ is the connection in the background metric gµν . Note that, in this non-covariant description,
hµν (Γµνρ) is treated as a tensor (pseudo-tensor) �eld in gµν , and similarly aµgrav and uµ ≡ dxµ/dτ are
regarded as vectors in the full metric. To determine aµgrav in terms of the perturbation hµν , one can
make use of

d

dτ
=

(
dτ ′

dτ

)
d

dτ ′

in eq. (2.5) and introduce the quantity ∆Γµνρ ≡ Γ
′µ
νρ − Γµνρ. In light of eq. (2.4), this gives

aµgrav = −∆Γµνρu
νuρ + ζuµ,

with ζ ≡ (dτ/dτ ′)
(
d2τ ′/dτ2

)
. From its de�nition in eq. (2.5), aµgrav must be perpendicular to uµ;

hence, projecting aµgrav orthogonally to uµ keeps it unchanged, thus giving

aµgrav = −
(
δµλ + uµuλ

)
∆Γλνρu

νuρ.

Expanding now ∆Γλνρ to linear order in hµν , one obtains

aµgrav = −1

2

(
gµλ + uµuλ

)
(∇σhλρ +∇ρhλσ −∇λhρσ)uρuσ ≡ ∇µβγhβγ , (2.6)

where ∇µ is the covariant derivative with respect to the background metric. The particle moves
along the geodesic of the full metric g′µν ; however, to �rst order in the perturbation hµν , its EoM
can be formally written as a geodesic equation with respect to the background, supplemented by a
gravitational �force� Fµgrav = maµgrav, m being the mass of the particle. The di�erential operator ∇µβγ ,
explicitly given by

∇µβγ =
1

2

(
gµδuβ − 2gµβuδ − uµuβuδ

)
uγ∇δ, (2.7)

determines the gravitational force exerted by any given external perturbation.
We must readily observe that Fµgrav � just like the metric perturbation itself � is gauge-dependent,

as can be checked by considering a small gauge displacement,

xµ −→ x′µ = xµ + ξµ (x) ,

10



2. Gravitational self-force

(with ξµ assumed to scale like the external perturbation) under which the perturbation transforms as

hµν (x) −→ h′µν
(
x′
)

= hµν (x)− (∇µξν +∇νξµ) , |∇µξν | . |hµν | , (2.8)

inducing a change in the gravitational force given by4

δξF
µ
grav = m∇µβγ (∇βξγ +∇βξγ) . (2.9)

This has to be expected since, because of the equivalence principle, there can be no di�eomorphism-
invariant notion of gravitational force in GR.

One might be tempted to simply interpret the gravitational self-force (GSF, or sometimes just SF) as
an example of a gravitational force of the type just discussed, with the source of the metric perturbation
now being the particle itself. This naïve interpretation would be problematic.
The physical perturbation due to the particle � a retarded solution of the linearised Einstein equa-

tions, hret
µν � is singular at the location of the particle, and the statement that the particle follows a

geodesic of
g′µν = gµν + hret

µν

is therefore physically meaningless. Obviously, trying to apply eq. (2.6) with the perturbation replaced
by the self-perturbation hret

µν would yield a singular, hence meaningless, result. Relatedly, since we are
now considering the self-gravity of the particle (it is no longer a test particle), we must make a mathem-
atical sense of its being �point-like�. This is not a trivial matter to address in curved spacetime, since,
mathematically, the usual delta-function representation of a point particle stress-energy is inconsistent
with the non-linearity of the full Einstein equations (see appendix B). The mathematical consistency
of a delta-function source can be restored in the linear theory, but it remains a challenging task to
understand how the notion of a point particle might emerge � rather than be pre-assumed � from a
suitable limiting procedure.
A more profound consideration is as follows. The GSF is conceptually di�erent from the external

forces discussed above, in that the latter are, in truth, just �ctitious forces resulting from our insistence
to arti�cially split the physical spacetime into a background plus a perturbation. The GSF, in contrast,
must be viewed as a genuine physical e�ect � even if a delicate one, as it is gauge dependent. There
indeed exists an interpretation of the motion wherein the particle moves freely on a geodesic of a certain
smooth, perturbed spacetime, subject to no GSF. However, in this description the smooth geometry
will not be the physical spacetime of the background plus particle system � i.e., the metric of this
geometry is not a retarded solution of the linearised Einstein equations.
In 1997 two independent groups � Mino, Sasaki, Tanaka [12], and Quinn, Wald [13] � published

three independent derivations of the GSF. This initial work was crucially inspired by the classical
analyses of the electromagnetic SF problem, both in �at (Dirac, 1938 [10]) and curved (DeWitt and
Brehme, 1960 [11]) spacetimes. Both groups pre-assumed a notion of point particle without seeking
to make a consistent sense of this notion; however, in [12] an implementation of the idea of matched
asymptotic expansions was pursued as well. This approach relies on the assumption that there can
be identi�ed two separate lenghtscales in the problem: one associated with the particle's mass m, and
another, much larger, associated with the typical radius of curvature of the geometry in which the
particle is moving (that, in the EMRI problem, is provided by the mass of the central BH, M � m).
The two separate scales in the setup de�ne a �near zone�, r � M , and a �far zone�, r � m (r is a
suitable measure of distance from the small BH). In the near zone, the geometry is approximately that
of the small Schwarzschild BH with small tidal-type corrections from the background geometry. As
we zoom away from the small object and enter the far zone, the e�ect of the small object's detailed
structure becomes gradually less important, and at the far zone limit the geometry becomes that of
the background spacetime, weakly perturbed by what is now a distant �point particle� � it is indeed
the far zone limit through which a notion of point mass can be de�ned in a consistent way. When

4Terms arising from the gauge transformation of ∇αβγ are quadratic in the magnitude of ξ and are neglected.
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2. Gravitational self-force

m� r �M , one has a �bu�er region�: both near zone and far zone descriptions of the geometry are
expected to be valid. Matching the near and far zone metrics (expressed as asymptotic expansions
in r/M and m/r, respectively) constrains the motion of the particle (from a far zone point of view)
and thus yields an expression for the GSF. This independent approach o�ered for the �rst time a fully
GR-consistent treatment of the problem.
More recently, Gralla and Wald [14] developed a new procedure for deriving the GSF, o�ering

improved mathematical rigour as well as a generalisation of the MiSaTaQuWa formula. Rather than
relying on two separate asymptotic expansions of the metric, they introduced a single one-parameter
family of metrics, which, through two di�erent limiting procedures, can produce both near and far
zone metrics in a natural way. The analysis proves that in the far-zone limit the particle is described
precisely by the usual delta-function distribution, and that at the very limit m→ 0 this particle moves
on a geodesic of the background. Furthermore, the analysis relaxes all assumptions about the nature
of the small object: it no longer need to be a Schwarzschild BH, but can assume the form of any
su�ciently small BH or even a blob of ordinary matter. This allows, in particular, for a spin-force
term to appear in the resulting, generalised version of the MiSaTaQuWa formula.
The main end product of these theoretical developments is a �rmly established general formula for

the SF in a class of background spacetimes including Kerr. It is worth nothing that the GSF formula
stems from nothing else than the Einstein equations with the usual conservation laws. It does not � and
should not, as a matter of principle5 � rely on any form or regularisation or subtraction of in�nities.

2.3. MiSaTaQuWa equation

Stating the formula, we ignore spin-force terms and focus on the self-interaction part.
Consider a timelike geodesic Γ in a background spacetime with metric gµν . For concreteness, let us

think of Γ as a test particle orbit outside a Kerr BH, so gµν is the Kerr metric. Let τ be the proper
time along Γ, and let xµ = zµ (τ) describe Γ in some smooth coordinate system and uµ ≡ dzµ/dτ be
the four velocity of the test particle. Denote by hret

µν the physical, retarded metric perturbation from a
particle of mass m whose worldline is Γ. Assume hret

µν is given in the Lorenz gauge, i.e.

∇µh̄ret
µν = 0, h̄ret

µν ≡ hret
µν −

1

2
gµνg

αβhαβ, (2.10)

where we introduced the trace-reversed perturbation h̄ret
µν . Throughout the discussion indices are raised

and lowered by the background metric gµν , and covariant derivatives are taken with respect to this
metric.

Figure 2.1.: The direct and tail contributions.

At any spacetime point x, the retarded per-
turbation can be written as a sum of two pieces,

h̄ret
µν = h̄dir

µν + h̄tail
µν ,

the former being the �direct� contribution from
the intersection of the past light-cone of x with
Γ, and the latter being the �tail� contribution
arising from the part of Γ inside the light-cone
(see �g. 2.1). The occurrence of a tail term is a
well-known feature of the wave equation in 3+1D
curved spacetime: Huygens' principle no longer
holds and the tail term can be interpreted phys-
ically as arising from the e�ect of waves being
scattered o� spacetime curvature.6 Both h̄ret

µν and

5At a fundamental level, there should be no need for regularisation in GR, because, apart from curvature singularities
inside BHs, everything in the problem should be �nite.

6The move to curved spacetime brings a major change to the physics of the problem. In �at spacetime, waves propagate
at the speed of light, along null rays, while in curved spacetime, waves scatter o� the spacetime curvature, causing
solutions to propagate not just on light-cones, but also within them. Because of this, the retarded �eld depends not
only on the state of the particle at the retarded point zµ (τret), but on its state at all prior points zµ (τ < τret).
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2. Gravitational self-force

h̄dir
µν obviously diverge when evaluated on Γ; however, h̄tail

µν is continuous and di�erentiable everywhere,
including on the worldline. Notably, though, the tail �eld is not a smooth (i.e., analytic) function on
the worldline, and is not a vacuum solution of the linearised Einstein equations.
The MiSaTaQuWa formula states that the GSF at a given point z along Γ results simply from the

back reaction of the tail �eld,
Fµself (z) = m∇̄µβγ h̄tail

µν (z) . (2.11)

Here

∇̄µβγ ≡ 1

4

(
2gµδuβuγ − 4gµβuγuδ − 2uµuβuγuδ + uµgβγuδ + gµδgβγ

)
∇δ

is the �force operator� in terms of the trace-reversed metric perturbation de�ned along the worldline
of the oarticle, as it depends upon the four-velocity uµ and the background metric gµν at point z.7

Remark In the original MiSaTaQuWa formulation the SF is not expressed directly in terms of this
�gradient�. The EoM was found to be

D2zµ

dτ2
= −1

2
εPµν

(
2htail

ναβ − htail
αβν

)
uαuβ +O

(
ε2
)
, (2.12)

where D/dτ ≡ uµ∇µ is the directional covariant derivative, Pµν ≡ gµν + uµuν projects orthogonally
to the worldline, and the tail term is given by

htail
µνρ (z (τ)) = 4m

∫ τ−

−∞
∇ρḠµνµ′ν′uµ

′
uν
′
dτ ′; (2.13)

the integral covers all of the worldline earlier than the point zµ (τ) at which the force is evaluated.
The bar atop Gµνµ′ν′ again denotes a trace reversal. We must note as well that Gµνµ′ν′ is a bitensor,
an object which lives in the tangent spaces of two di�erent points x and x′.
The intuitive picture to glean from the MiSaTaQuWa result is that the direct piece of the �eld is

analogous to a Coulomb �eld, moving with the particle and exerting no force on it, in the same way
the self-�eld exerts no force on a body in Newtonian gravity. Loosely speaking, from the perspective
of the particle, the tail, consisting as it does of backscattered radiation, is indistinguishable from any

other incoming radiation. In other words, it is e�ectively an external �eld, and like an external �eld it

exerts a force.

2.3.1. Detweiler-Whiting reformulation

In 2003 Detweiler and Whiting [15] replaced the direct/tail decomposition of the retarded perturbation

h̄ret
µν = h̄S

µν + h̄R
µν .

The R(egular)-�eld includes all the backscattered radiation in the tail, but, unlike the tail �eld, is
a smooth, vacuum solution of the perturbation equations, which, nonetheless, gives rise to the same
physical SF as the tail �eld; i.e.,

Fµself (z) = m∇̄µβγ h̄R
βγ (z) . (2.14)

The S(ingular)-�eld, which mimics the singular behaviour of the retarded �eld near the particle, exerts
no SF and does not a�ect the motion of the particle.
The breakthrough of the discovery that the SF can be expressed as the back-reaction force from a

smooth vacuum perturbation leads to an interesting re-interpretation of the GSF e�ect: the particle

e�ectively moves freely along a geodesic of a smooth perturbed spacetime with metric gµν + hR
µν ≡ g̃µν .

That is very welcome, because in this alternative picture, which is more in the spirit of GR equivalence

principle, the notion of a SF becomes arti�cial (and obsolete) in much the same way that the notion
of an external gravitational force is arti�cial.

7A crucial point to have in mind is that the MiSaTaQuWa formula (2.11) is guaranteed to hold true only if h̄ret
µν satis�es

the Lorenz gauge condition (2.10).
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Anyway, the R-�eld does not represent the actual physical perturbation from the particle, which is
of course h̄ret

µν . The R-�eld has peculiar causal properties, since its value at an event x depends not
only on events in the causal past of x, but also on events outside the light-cone of x. Rather than
an entity of physical substance, it should be viewed as an e�ective �eld that allows us to describe the
dynamics in terms of geodesic motion.
The two descriptions of the perturbed motion � self-accelerated motion in gµν vs. geodesic motion

in gµν + hR
µν � are alternative, equivalent interpretations of the same, genuine physical e�ect. The two

points of view are not contradictory, but rather they are complementary in their perspective on the
problem. Therefore we can say that eqs. (2.11), (2.14) prescribe the correct regularisation of the GSF
and form the fundamental basis for all modern calculations.

Remark In the original formulation, this translates into

D2zµ

dτ2
= −1

2
εPµν

(
2∇βhR

να −∇νhR
αβ

)
uαuβ +O

(
ε2
)
, (2.15)

or explicitly as the geodesic equation in the metric g̃µν ,

D̃2zµ

dτ̃2
= O

(
ε2
)
, (2.16)

where D̃/dτ̃ ≡ ũµ∇̃µ is a directional covariant derivative compatible with g̃µν , ũ
µ = dzµ/dτ̃ is the

four-velocity normalised in g̃µν and τ̃ is the proper time along zµ as measured in g̃µν . Eq. (2.15) is
equivalent to eq. (2.12), because on the worldline hR

µν di�ers from htail
µν only by (i) Riemann terms that

cancel in eq. (2.15) and (ii) terms proportional to the worldline acceleration, which can be treated as
e�ectively higher order because the acceleration is already O (ε).

2.3.2. Generalised Equivalence Principle

It is worth to dwell longer on the interpretation of the R-�eld. Because g̃µν = gµν + hR
µν is a smooth

vacuum solution, at the position of the particle an observer cannot distinguish it from gµν . Although
a part of g̃µν comes from the retarded �eld sourced by the particle, to the observer on the worldline
it appears just as would any metric sourced by a distant object. However, this interpretation of the
e�ective metric as an e�ectively external metric is delicate. To realise a split into S- and R-�elds,
both of them must be made a-causal when evaluated o� the worldline. More precisely, in addition
to depending on the causal past of the particle, hR

µν (x) depends on the particle at spatially related
points x′; so in this sense its interpretability as a physical external �eld is limited. Yet when evaluated
on the worldline, hR

µν and its derivatives are causal, and this is the sense in which g̃µν appears as a

physical metric on the worldline. These properties of hR
µν are what makes eq. (2.16) a meaningful

result. Although it may not be an obvious fact at �rst glance, any equation of motion can be written
as the geodesic equation in some smooth piece of the metric.

Remark This is most easily seen by writing the EoM in a frame that comoves with the particle. In
locally Cartesian coordinates

(
t, xi

)
adapted to that frame, such as Fermi-Walker coordinates,8 the

particle's EoM reads ai = Fi, where a
µ ≡ D2zµ/dτ2 is the covariant acceleration of the particle and

Fµ is the force (per unit mass) acting on it. Now suppose we were to de�ne some smooth �eld hrµν and
a corresponding singular �eld hsµν ≡ hµν − hrµν . In the comoving coordinates, the linearised geodesic
equation in the regular metric gµν + hrµν , in the form analogous to eq. (2.15), reads

ai = −∂thrti +
1

2
∂ih

r
tt.

No matter what force Fµ acts on the particle, the EoM ai = Fi could be written as the geodesic
equation in gµν + hrµν simply by choosing

∂th
r
ti|γ = 0 and ∂ih

r
tt|γ = 2Fi.

8See section A.1.
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Besides those two conditions, the regular �eld could be entirely freely speci�ed. Regardless of the
speci�cation we made, we would have de�ned a split hµν = hsµν + hrµν in which hsµν is singular and
exerts no force, and gµν + hrµν is a regular metric in which the motion is geodesic.

Given this, it is of no special signi�cance that the MiSaTaQuWa equation is equivalent to geodesic
motion in some e�ective metric. But it is signi�cant that this equation is equivalent to geodesic
motion in the particular e�ective metric g̃µν = gµν +hR

µν identi�ed by Detweiler and Whiting, because
of the particular properties of this metric: g̃µν is a smooth vacuum solution that is causal on the
particle's worldline. And, because of these properties, we may think of the MiSaTaQuWa equation
as a generalised equivalence principle: any object, if it is su�ciently compact and slowly spinning,

regardless of its internal composition, falls freely in a gravitational �eld g̃µν that can be thought of as
the physical �external� gravitational �eld at its �position�.

2.4. Gauge, motion and long-term dynamics

In spite of di�erences between the concepts of a general (external) gravitational force and that of the
SF, the two notions share a common feature: they are both de�ned via a mapping of the physical
trajectory from a perturbed spacetime to a background spacetime. In both cases, such a procedure
gives rise to a gauge ambiguity. Consider a small9 gauge displacement,

xµ −→ xµ − εξµ (x) .

The change this induces on the physical SF can be computed and found to have exactly the same form
as the gauge transformation law for the external gravitational force [17], which is not surprising, given
the similar geometrical origin of the gauge freedom in both cases.
Two important facts must be understood: in perturbation theory, motion is intimately related to

gauge freedom; and, in problems of astrophysical interest, the most important dynamical e�ects occur
on the very long time scale ∼ 1/ε.
At leading order, the object's motion is geodesic in the background metric gµν and all deviation

from this motion is driven by an order-ε force. Suppose the self-accelerated worldline γ is a smooth
function of ε; then one can write its parametric relation as an expansion [16]

zµ (s, ε) = zµ0 (s) + εzµ1 (s) +O
(
ε2
)
, (2.17)

where s is an a�ne parameter on the worldline, and the zeroth-order term zµ0 is a geodesic of gµν .
Considering the e�ect of a gauge transformation generated by a vector εξµ, zµ is shifted to a curve
z′µ = zµ − εξµ + O

(
ε2
)
. Since the vector ξµ is generic, nothing prevents us from choosing ξµ = zµ1 ,

which leaves us with z′µ = zµ0 (s) +O
(
ε2
)
, entirely eliminating the �rst-order deviation from zµ0 . This

same reasoning can be carried to arbitrary order, meaning we can precisely set z′µ = zµ0 : the e�ect of
the SF appears to be pure gauge.
The MiSaTaQuWa equation is not gauge invariant and cannot by themself produce a meaningful

answer to a well-posed physical question; to obtain such an answer it is necessary to combine the EoMs
with the metric perturbation so as to form gauge-invariant quantities that will correspond to direct
observables. This point is very important and cannot be over-emphasized.
But let us take a closer look at the issue. If we examine any �nite region of spacetime and consider

the limit ε → 0 in this region, the deviation from a background geodesic is, indeed, pure gauge. This
does not mean it is irrelevant: in any given gauge, it must be accounted for to obtain the correct metric
in that gauge. But it need not be accounted for in the linearised metric, since we can always substitute
the expansion (2.17) into h1

µν (x; z) to obtain

εh1
µν (x; z) = εh1

µν (x; z0) + ε2δh1
µν (x; z0, z1) +O

(
ε3
)
, (2.18)

9Small compared to the mass m of the particle; recall that ε counts powers of m. This contrasts with the argument in
section 2.2, where the gauge displacement should be assumed to scale like the external perturbation hµν .
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so we can transfer the term δh1
µν into the second-order perturbation, ε2h2

µν .
However, this analysis assumes that one works in a �xed, �nite domain � and one does not typically

work in such a domain in problems of interest. Consider an EMRI: GWs carry away orbital energy
from the system at a rate Ė/E ∼ ε, then the inspiral occurs on the time scale trr ∼ 1/ε (the so-called
radiation-reaction time). So, in practice, we are not looking at the limit ε→ 0 on a �nite time interval
[0, T ], where T is ε-independent; instead, we are looking at that limit on a time interval [0, T/ε] that
blows up.
This consideration forces to adjust the thinking about motion and gauge. Loosely speaking, the

deviation from geodesic motion, εzµ1 , is governed by an equation of the form d2zµ1 /dt
2 ∼ Fµ1 . On the

radiation-reaction time scale, it therefore behaves as

εzµ1 ∼ εF
µ
1 t

2
rr ∼ F

µ
1 /ε,

and it blows up in the limit ε → 0. So, on this domain, one cannot rightly write the worldline as a
geodesic plus a self-forced correction, and one cannot use a small gauge transformation to shift the
perturbed worldline onto a background geodesic � the gauge transformation would have to blow up
in the limit ε → 0. But there is a way out of this situation, when we observe that these arguments
about time scales translate into arguments about spatial scales. So, if one's accuracy is limited to a
time span ∆t, then it is also limited to a spatial region of similar size.
Let us denote by Dρ(ε) a spacetime region of size, both temporal and spatial, ρ (ε). Call an asymptotic

solution to the Einstein equations a �good solution� in Dρ(ε) if it is uniform in that region, that is, the
asymptotic expansion

gµν = gµν +
+∞∑
n=1

εnhnµν

must satisfy

lim
ε→0

εh1
µν

gµν
= 0 and lim

ε→0

εnhnµν

εn−1hn−1
µν

= 0

uniformly (e.g., in a sup-norm).
For the EMRI problem, we are interested in obtaining a good solution in a domain of size ρ = trr ∼

1/ε. Suppose we use an asymptotic expansion of the form (2.18) and incorporate δh1
µν into h2

µν . In
a gauge such as the Lorenz gauge, zµ1 grows as ∼ Fµ1 t

2
rr, and so δh1

µν likewise grows as t2rr. Hence, on
D1/ε its contribution to ε2h2

µν behaves at best as ε0, comparable to gµν � clearly, this is not a good
approximation. Suppose we instead eliminated zµ1 using a gauge transformation generated by ξµ = zµ1 .
This removes the o�ending growth in h2

µν , but it commits a worse o�ence: it alters εh1
µν by an amount

2εξ(µ;ν), which behaves at best as εtrr, or as ε
0 on D1/ε. Hence: if we are in a gauge where the SF is

non-vanishing, h2
µν behaves poorly; if we are in a gauge where the SF is vanishing, even h1

µν behaves
poorly.
Let us chase the consequences of this. To obtain a good approximation in D1/ε, we need to work

in a class of gauges compatible with uniformity in D1/ε. This means, in particular, that if we obtain
a good approximation in a particular gauge � call it a �good gauge� � we must con�ne ourselves to a
class of gauges related to the good one by uniformly small transformations. In turn, this means that
the e�ects of the SF are not pure gauge on D1/ε. In more physical words, due to dissipation, zµ will
deviate from any given geodesic zµ0 by a very large amount in D1/ε, but, by using an allowed gauge
transformation, we may shift it only by a very small, order-ε amount on that domain.
At the end of the day, we learn that, although the self-forced deviation from zµ0 is pure gauge on a

domain like Dε0 , it is no longer pure gauge in the domain D1/ε.
The gauge dependence of the SF by no means implies that there is something �unphysical� about

it � the SF is as physical as the (gauge-dependent) metric perturbation itself. The gauge dependence
does mean, however, that one needs to exercise some care in decoding the physical content of the SF,
if based on the value of the SF alone.
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2.5. Equations of motion

Given the GSF, the EoM of the particle becomes

m
D2zα

dτ2
= muβ∇βuα := Fαself . (2.19)

This equation, along with the MiSaTaQuWa equation (2.11), describes the dynamics of the particle
given the metric perturbation (and assuming one has a way of extracting the tail piece out of the
full perturbation). To close the system of equations, we need to know how the metric perturbation
is determined from the trajectory of the particle; this is provided by the linearised Einstein equation,
which takes the Lorenz-gauge form

∇σ∇σh̄µν + 2Rα β
µ ν h̄αβ = −16πm

∫
γ
δ4 (x, z (τ))uµuνdτ, (2.20)

where g ≡ det gµν and δ4 (x, z) ≡ δ4 (xµ − zµ) /
√
−g is the invariant four-dimensional delta-function.

The �eld equation (2.20) is to be supplemented by the gauge condition (2.10) and by suitable boundary
conditions.
The set of equations (2.11), (2.19), (2.20) and (2.10) (together with a method to obtain h̄tail

µν out of
the retarded solution h̄µν) should in principle determine the dynamics of the orbit at linear order in
perturbation theory. But there is a slight problem: the �eld equation (2.20) is only consistent with
the Lorenz gauge condition (2.10) if the particle is moving strictly along a geodesic � which would
then be inconsistent with the EoM (2.19). To resolve this inconsistency while allowing for orbital
evolution, Gralla and Wald suggested a �Lorenz gauge relaxation� approach, wherein one relaxes the
gauge condition and consider solutions of the set (2.11), (2.19), (2.20). One then expects that, in
situations where the orbit is very nearly geodesic (as is usually the case with LISA-relevant astrophysical
inspirals), such solutions would give a faithful, albeit approximate description of the actual orbit
[13, 14].
Other proposals were put forward, like to use self-consistent solutions of the set (2.11), (2.19),

(2.20) for modelling the slow orbital evolution at linear order in perturbation theory; or a di�erent
mathematical framework, based on techniques from multi-scale perturbation theory.10

2.6. Survey of computational methods

Using the di�erential operator (2.7), the EoM can be cast in the form

m
D2zα

dτ2
= m lim

x→z
∇αβγhR

βγ (x) := Fα (z) . (2.21)

The argument x represents a �eld point in a neighbourhood of the worldline and z is the worldline
point where the GSF is evaluated. Writing the R-�eld as the di�erence between the physical (retarded)
metric perturbation sourced by the particle and the S-�eld,11 the EoM can be written as

Fα (z) = m lim
x→z
∇αβγ

[
hret
βγ (x)− hS

βγ (x)
]
. (2.22)

The limit procedure is necessary here because the individual �elds, unlike their di�erence, are each
singular at x→ z, and so are their derivatives. Suppose that the full perturbation satis�es the Lorenz-
gauge form of the linearised Einstein equations, that we already saw in eq. (2.20); then, choosing a
point-particle source, we can write it schematically as

�̃hαβ = Sαβ. (2.23)

10More on this in subsection 2.7.2.
11Choosing between the direct+tail and the S+R decomposition of the retarded �eld does not alter the discussion;

the only exception is that statements referring to the smoothness of the R-�eld would need to be formulated more
carefully to re�ect the irregularity in the higher derivatives of the tail �eld.
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In fact, recall again that the linearised Einstein tensor (B.3) in the Lorenz gauge takes the simple,
hyperbolic form

δGαβ [h] = −1

2
�h̄αβ −R α β

µ ν h̄αβ,

where R α β
µ ν is the Riemann tensor of the background metric. This gives the explicit form of the wave-

like operator �̃ in eq. (2.23), and Sαβ is the linearised energy-momentum tensor associated with the
particle, with support (a delta-function) con�ned to the worldline of the particle. Eq. (2.23) has to be
solved with physical, retarded boundary conditions, which are most conveniently imposed at in�nity
and on the BH event horizon. The conditions are that no radiation should be coming in from (past
null) in�nity, and that no radiation should be coming out from inside the BH.
From a computational point of view, solving (2.23) and evaluating (2.22) pose two main di�culties:

1. the Lorenz-gauge �eld equations (2.23) constitute a complicated set of coupled partial di�erential
equations (PDEs). Even though these equations are linear and manifestly hyperbolic, solving
them numerically is computationally expensive and technically challenging � due, in particular,
to the need to resolve the diverging �eld near the particle with su�cient accuracy and also to
the occurrence of certain mode instabilities;

2. there is a �subtraction problem�: to implement (2.22) and obtain the GSF, one has to subtract
one divergent quantity from another (which is usually given only numerically), before taking the
regular limit to the particle. This is obviously problematic in practice.

2.6.1. Mode-sum and puncture methods

Let us move on now to describe two methods for tackling the second technical di�culty, the subtraction
problem.

Mode-sum This method is a general procedure addressing the subtraction problem. The basic idea
is simple: instead of directly subtracting the divergent �eld ∇αβγhS

βγ (x) from the other divergent

one ∇αβγhret
βγ (x), (i) decompose each of these �elds into multipolar-mode components (using a basis

of angular harmonics de�ned on spheres around the large BH), then (ii) perform the subtraction
mode-by-mode; �nally (iii) add up all the �regularised� modal contributions.
The bene�t of such an approach is twofold. First, due to the particular Coulomb-like form of

the singularity of the �eld near the particle, the individual multipole modes of ∇αβγhS
βγ (x) (and of

∇αβγhret
βγ (x)) have �nite values even at the location of the particle, so one only ever subtracts �nite

quantities. Second, the perturbation �eld hret
βγ (x) is typically solved for mode-by-mode anyway, so the

necessary input for the mode-sum procedure is readily available without any extra work.
To describe this more precisely (while avoiding technical details that can be found, for example in

[18, 19]) de�ne the �elds

Fαret (x) ≡ m∇αβγhret
βγ (x) and FαS (x) ≡ m∇αβγhS

βγ (x) (2.24)

in the (Kerr) BH geometry, introducing the standard Boyer-Lindquist coordinates (t, r, θ, φ) covering
the exterior of the BH. Then consider the decomposition of these �elds into spherical-harmonic modes,
de�ned on spheres of constant t and r around the BH, i.e.

Fαret =
+∞∑
`=0

Fα`ret, Fα`ret ≡
∑̀
m=−`

F`m (t, r)Y`m (θ, φ) ,

with Y`m being the usual spherical harmonics; similarly for FαS . Eq. (2.22) thus becomes

Fα (z) = lim
x→z

+∞∑
`=0

[
Fα`ret (x)− Fα`S (x)

]
.
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The individual mode-sums of Fα`ret and F
α`
S both diverge at the particle: in the multipolar space, the

Coulomb-like particle singularity has turned into a large-` (i.e. ultraviolet) divergence. However, the
mode-sum of the di�erence Fα`ret (x)−Fα`S (x) converges faster than any power of 1/` everywhere, even
at the particle, since hR

βγ (x) in eq. (2.22) has to be a smooth �eld. This implies that Fα`ret and Fα`S

share the same ultraviolet singularity structure. In fact, based on the detailed form of the singular
�eld, one can show that12

Fα`S (z) ∼ Aα`+Bα + Cα`−1, `� 1, (2.25)

where Aα, Bα and Cα are `-independent expansion coe�cients encoding the local ultraviolet structure,
whose values depend on the background geometry as well on the the particle's location and velocity.
We can thus write

Fα (z) =
+∞∑
`=0

[
Fα`ret (x)−

(
Aα`+Bα + Cα`−1

)]
−Dα,

Dα ≡
+∞∑
`=0

[
Fα`S −

(
Aα`+Bα + Cα`−1

)]
,

where the two individual sums are convergent (at least as ∼ `−1). Neglecting the acceleration caused
by the force, the GSF has historically been calculated by approximating the source orbit as a geodesic;
to this end, these four parameters have been derived analytically for arbitrary geodesic orbits in Kerr
spacetime. In particular, it has been shown that, when the acceleration is neglected, Cα and Dα always
vanish identically. One thus arrives at the working form of the mode-sum formula, i.e.

Fα (z) =

+∞∑
`=0

[
Fα`ret (x)− (Aα`+Bα)

]
. (2.26)

This provides a practical means of evaluating the GSF at any point along a given (geodesic) orbit:
�rst obtain the multipole modes of the physical �eld hret

αβ by solving a suitable version of the linear-
ised Einstein equations mode-by-mode (usually done numerically); from each mode then subtract the
analytically given quantity Aα`+Bα, and �nally add up all the modal contributions.
The above schematic description suppresses important details and one should also mention that the

mode-sum in eq. (2.26) converges only slowly, since the summand typically falls o� only as ∼ `−2 �
this means that one normally has to compute a large number of `-modes (`max ∼ 50 is typical), which
can become computationally expensive. Anyway, the mode-sum scheme, in its many variants, has been
the primary framework for GSF calculations.

Puncture (or �e�ective source�) This other method begins by recognizing that an approximation
to the exact singular potential can be used to regularise the delta-function source term of the original
�eld equation. The puncture method addresses the subtraction problem di�erently from mode-sum,
since the �regularisation� is performed already at the level of the �eld equation (2.23). Instead of
solving for the physical �eld hαβ and then subtracting the singular �eld, one solves directly for a local
approximation to the regular �eld hR

αβ [21]. Speci�cally, it is designed an analytic function hPαβ (x)

that approximates the singular �eld hS
αβ (x) near the particle su�ciently well that

lim
x→z

(
hPαβ − hS

αβ

)
= 0 and lim

x→z

(
∇αβγhPβγ −∇αβγhS

βγ

)
= 0.

Then it is perfectly allowable to replace the true singular �eld in eq. (2.22) with its puncture-�eld
approximant

Fα (z) = m lim
x→z
∇αβγhRβγ (x) , (2.27)

where we have introduced the residual �eld hRβγ ≡ hβγ − hPβγ . We then make hRβγ the subject of the
�eld equation (2.23), i.e.

�̃hRαβ = Sαβ − �̃hPαβ ≡ Seff
αβ. (2.28)

12See [19]; as a simple example to understand this general behaviour, see appendix C.
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The e�ective source Seff
αβ contains no delta function on the particle worldline; its residual non-smoothness

there is determined by how well the puncture �eld approximates the S-�eld. The �eld hRαβ is at least
once di�erentiable (unlike the physical �eld hαβ , which is divergent), and it directly yields the GSF,
via eq. (2.27).
In practice, one can restrict the support of Seff

αβ to within a small region around the particle worldline,
so as to avoid having to control the behaviour of the puncture �eld and e�ective source far from the
particle. This can be achieved with a suitable window function or by introducing a �worldtube� around
the worldline, such that one solves for hRαβ inside the worldtube and for the original perturbation hαβ
outside it, with the analytically known value of the puncture �eld used to communicate between the two
variables across the boundary of the tube. This scheme can be implemented numerically without any
multipole decomposition, directly evolving the hyperbolic PDE (2.28) from initial conditions in 3+1
dimensions. The relevance of this method is that it has also proved useful when applied in conjunction
with a mode decomposition: one can separate the �eld into azimuthal modes, ∼ eimφ, and evolve each
of the m-modes separately in 2+1 dimensions (this is possible and useful even on a Kerr background,
thanks to its axial symmetry).
The utility and signi�cance of this idea becomes fully manifest when coming to solve the second-

order �eld equation (B.4), where applying the mode-sum method becomes impossible in general. Recall
that the source term appearing in that second-order equation is su�ciently singular that the equation
does not actually admit a globally valid solution. Even restricting to xµ 6= zµ, the singularity in the
second-order solution is strong enough (a consequence of the distributionally ill-de�ned source) that
its individual ` modes diverge at the particle: this means that, even if one were given the modes
of the retarded �eld, one could not apply mode-sum regularisation to extract the regular �eld. For
these reasons, the puncture idea takes on a more fundamental status in second-order GSF calculations.
Finally, we mention that the basic idea can also be applied to control the behaviour of the second-order
solution near the horizon and at large distances, in circumstances where one would otherwise encounter
infrared-type divergences.

Note on �regularisation� In the GSF literature, one often speaks of �regularising� the �eld or the
SF. This can mistakenly give the impression that one has introduced in�nities into the problem, and
that one must regularise them to recover the physical result. But in the formalism we described, one
only ever deals with �nite quantities. The various �regularisation� methods that have been used to
remove the �singular part� of the �eld arise only as a practical necessity: we cannot easily determine the
physical metric inside the object, nor are we interested in doing so, which prompts us to replace it with
the �ction of a singular �eld solely as a means of calculating the physical metric outside the object.
Computational techniques such as puncture schemes and mode-sum �regularisation� are not methods
of removing singularities; they are simply methods of calculating the particular, �nite quantities in
question. In mode-sum regularisation, for example, one rigorously writes a spherical-harmonic mode
decomposition of hµν (z) by decomposing hR

µν (z) = limx→z
(
hµν − hS

µν

)
, with hµν being the �eld of a

point mass. Every quantity in the calculation is �nite every step of the way.

2.6.2. Alternative choices of gauge

We turn now to a brief discussion of the �rst technical di�culty. It has often been referred to as
the �gauge problem�, since, when it was �rst derived, the correct GSF was only known in the Lorenz
gauge, meaning one had to calculate the perturbation in a gauge which, despite being convenient for
describing the local singularity near the particle, does not sit very well with the global symmetries of
the BH background.
The application of both the mode-sum and puncture methods involves, in some form, solving linear

�eld equations for the metric perturbation (or for its multipole modes), which must usually be done
numerically. In the above discussion we have referred speci�cally to the Lorenz-gauge form of these
equations, (2.23) or (2.28). This form is convenient for a number of reasons: �rst and foremost, it
yields the perturbation �eld in a gauge consistent with that assumed in the original GSF formulation,
and so ready to be used in calculations; related to this, the singularity of hS

µν in the Lorenz gauge has
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an intuitive, Coulomb-like form; �nally, the �eld equations themselves are hyperbolic and form part of
a mathematically well-posed initial value problem.
However, the direct Lorenz-gauge approach has several serious weakness [21]. Prime among these is

the fact that the Lorenz-gauge �eld equations (2.23) cannot be decomposed into individual, decoupled
multipole modes on a Kerr background, in any known form; this restricts one to time-domain numerical
evolutions in 3+1 or 2+1 dimensions, which are computationally expensive and cumbersome. Second,
even on a Schwarzschild background where the equations are separable into (tensorial-type) spherical
harmonics, they still constitute a complicated set of 10 equations that couple between the various
tensorial components. Third, time-domain evolutions of the Lorenz-gauge equations appear to su�er
from linear instabilities associated with certain non-physical gauge modes, whose removal is still an
open issue.
These complications have motivated the development of methods of calculating the GSF in altern-

ative gauges, facilitated by theoretical work to extend the GSF formalism beyond the Lorenz gauge.13

These developments have focused on the most traditionally useful gauges in BH perturbation theory:
the Regge-Wheeler-Zerilli gauge in the Schwarzschild case, and the so-called �radiation gauge� in the
Kerr case. In these gauges, the �rst-order metric perturbation can be obtained from one or more scalar
quantities that satisfy fully separable �eld equations, reducing the numerical calculation of hµν to
solving a set of ordinary di�erential equations. For example, in the case of radiation gauge, the scalar
quantity is the linear perturbation of one of the Newman-Penrose curvature scalars � either Ψ0 or Ψ4

� constructed from the Riemann tensor; the separable �eld equation is then the well-known Teukolsky
equation.
Unfortunately, these alternative gauges become poorly behaved in the presence of a point-particle

source, introducing pathological singularities into the metric perturbation. However, by analysing the
local form of the transformation to the Lorenz gauge, it has been showed that the GSF and related
quantities can still be rigorously calculated from a mode-sum formula in the radiation gauge. This has
e�ectively resolved the �gauge problem�.

2.7. Orbital evolution in EMRIs � perturbative approach

The calculation of the local GSF acting on the small object in an EMRI system is a �rst, crucial step
in the programme to model the long-term orbital dynamics and emitted GWs. One must also devise a
method that uses the GSF information to construct a su�ciently accurate description of the evolving
orbit and emitted radiation. Such a method is based on a systematic perturbative expansion that
exploits the adiabatic nature of the inspiral process [21].

2.7.1. Bound geodesic orbits in Kerr geometry

The geometry of a Kerr spacetime is stationary � so orbital energy is conserved. However, this space
is not maximally symmetric, since there is no longer spherical symmetry � so total angular momentum
is not conserved and orbits are generally non-planar. Nonetheless, the geometry is axially symmetric,
meaning that the projection Lz of the angular momentum along the symmetry axis (the direction of
the BH spin) is conserved. As a result, the orbital plane performs a simple precession motion about
the direction of the BH spin. Bound geodesic orbits around a Kerr BH are thus, generally, tri-periodic.
Each orbit has: an epicyclic period Tr, equal to the time between two successive periapsis passages; a
�rotational� period Tφ, associated with the mean azimuthal motion; a �longitudinal� period Tz, equal
to the time interval between two successive minima of the longitudinal angle of the object. The
combination of two precessional (libration-type) motions traces out a complicated trajectory, which is
generically ergodic.
The conserved quantities E and Lz constitute �rst integrals of the geodesic EoM. The conserved

mass of the particle, m, is a third such integral. Carter identi�ed also a fourth integral, Q, that is

13Recall, e.g., footnote 7 on page 13.
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associated with a more subtle symmetry of the Kerr geometry.14 Orbits that are initially equatorial
remain equatorial (due to the symmetry of the geometry under re�ection across the �equatorial plane,
i.e. the plane orthogonal to the BH spin direction) and have Q = 0. The set of constants {E,Lz, Q}
completely and uniquely parametrises all geodesic orbits in Kerr spacetime, up to initial phases.15

The existence of four �rst integrals of motion � the above mentioned trio, in addition to the mass
� allows to write the geodesic EoMs in a convenient form. Moreover, as noted by Carter [23], one
can choose the a�ne parameter along the orbit so that the radial and longitudinal libration motions
become manifestly decoupled from one another. Let xαp (λ) = (tp (λ) , rp (λ) , θp (λ) , φp (λ)) represent
the particle geodesic trajectory in Boyer-Lindquist coordinates, where λ is the Carter's parameter (also
known as �Mino time�). The equations of geodesic motion in Kerr geometry take the remarkably simple
form

drp

dλ
= ±

√
R (rp),

dθp

dλ
= ±

√
Θ (cos θp),

dφp

dλ
= Φr (rp) + Φθ (θp) ,

dtp
dλ

= Tr (rp) + Tθ (θp) ,

where each of the right-hand-side functions depends only on its indicated argument (as well as on
the constant parameters E/m, Lz/m, Q/m and on the BH mass and spin). Note that, given initial
conditions � say, xαp (0) � the radial and longitudinal motions can be independently determined from
the �rst two of these equations. Then, supplied with rp (λ) and θp (λ), one can solve for the azimuthal
motion using the third equation. The fourth of these equations relates the a�ne parameter λ to the
standard time coordinate t.
Geodesic motion in Kerr is thus manifestly integrable. As such, it proves convenient to formulate

the problem in terms of action-angle variables. Let Jα = {E,Lz, Q,m} be the action variables and
qα =

{
qt, qr, qθ, qφ

}
be the generalised angle variables, associated with the t, r, θ and φ motions. The

equations of geodesic motion in Kerr then take the form

J̇α = 0, q̇α = ωα (Jµ) . (2.29)

Here the over-dots denote di�erentiation with respect to any suitable parameter along the orbit �
like λ, t or the proper time, with suitable rede�nitions of ωα and qα. The four quantities ωα are
generalised frequencies associated with qα; the parameters Jα are the principal elements of the orbit,
which describe the �shape� of the orbit and determine physical attributes such as the orbital eccentricity
and semimajor axis; the parameters qα are the positional elements of the orbit, which contain the phase
information of the orbit and determine physical attributes such as the (time-dependent) direction of
the periapsis and orientation of the orbital plane.
In general, the radial and longitudinal libration motions lead to ergodic behaviour; however, there

is a special class of geodesic orbits for which ωr/ωθ is a rational number. Such resonant orbits are
non-ergodic and precisely periodic: the orbit completes a certain integer number of radial cycles at
the same time it completes a certain integer number of longitudinal cycles. The unusual periodic
nature of resonant orbits manifests itself more profoundly the smaller those integers are: that is why
resonances with small integers are sometimes called �strong�. During the gradual radiative inspiral of an
EMRI system, the orbit will become tangent to numerous such resonances at any moment, including,
generically, ones that are strong. Such resonant crossings have interesting dynamical consequences
[21].

14Q does not have a simple physical interpretation or a Newtonian analogue, except in the weak-�eld or Schwarzschild
limits, where it roughly corresponds to L2

x + L2
y.

15One could think that the trio of periods {Tr, Tφ, Tθ} is another parametrisation; actually, as pointed out in [22], it is
not, as there are (in�nitely many) pairs of physically distinct orbits exhibiting the same three periods.
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2. Gravitational self-force

A distinctive property of orbits around BHs is the presence of an innermost stable circular orbit
(ISCO).16 For rotating BHs, the ISCO location depends on the spin: a higher spin rate gives rise
to a smaller ISCO radius for objects that co-rotate with the BH, and to a larger ISCO radius for
counter-rotation motion.

2.7.2. Self-consistent and two-timescale descriptions of the orbital evolution

The full GSF obtained from the MiSaTaQuWa equation has both a dissipative part � which describes
the change in the particle trajectory due to the emission of radiation at in�nity and down the central
BH event horizon, causing the small object to spiral into it � and a conservative part � which, for
instance, modi�es the precession rate of the periastron. Because the GSF is small, we know that the
spiraling process must be slow: over a single radial period the worldline traced out by the object must
be very nearly a geodesic of the background spacetime. Hence, the inspiral is an adiabatic process,
slowly evolving through a sequence of background geodesics.
As we already noticed in section 2.4, thinking of the inspiral as an evolution through a sequence of

geodesics, we can describe it as a slow change of the �constants� of motion, E, Lz and Q, happening
at the rate Ė/E ∝ m/M2; this introduces the large time scale trr ∼M/m into the system. Just as the
small size of the object, expressed by m, led to a failure of ordinary perturbation theory (motivating
the use of matched asymptotic expansions), the presence of the large scale trr does likewise. To clarify
this point, write the full metric in the explicit form of an ordinary Taylor expansion,

gµν (x, η) = gµν (x) + ηh1
µν (x) + η2h2

µν (x) +O
(
η3
)
, (2.30)

where xµ is any suitable set of background coordinates, such as the Boyer-Lindquist coordinates asso-
ciated with the central BH, and η ≡ m/M is the (small) mass ratio.17 Clearly, the metric perturbation
produced by the object will depend on the worldline zµ, which may lead us to expect that each of the
hnµν depends on zµ. But the worldline satisfying the EoM plainly depends on η, while the coe�cients
hnµν in the above expansion are η-independent. It follows that hnµν cannot depend on the whole of zµ.
Instead, we can only utilise an expansion of the form (2.30) if we also expand zµ in the same way, i.e.

zµ (τ, η) = zµ0 (τ) + ηzµ1 (τ) + η2zµ2 (τ) +O
(
η3
)
. (2.31)

The zeroth-order worldline zµ0 is a geodesic of the background spacetime gµν , and the GSF introduces
small corrections to that worldline. One obtains evolution equations for the individual terms in zµn .
h1
µν depends only on zµ0 and creates the GSF that drives zµ1 ; h

2
µν depends on z

µ
1 in addition to zµ0 , and

it (together with h1
µν) drives z

µ
2 ; and so on. This approach, used systematically by Gralla and Wald

[14], is the only consistent way to apply ordinary perturbation theory to the problem. Unfortunately,
it is not suitable for treating long-term e�ects. Suppose the small object initially moves tangentially
to a geodesic zµ0 ; as the inspiral progresses, the object moves further and further from zµ0 , until the
expansion (2.31) breaks down.
So, ordinary perturbation theory fails miserably in accounting for the long-term changes in the

worldline. We then seek an asymptotic expansion18 that allows the metric perturbation to depend on
the full, unexpanded zµ; we may write this as

gµν (x, η) = gµν (x) + ηh1
µν (x; z) + η2h2

µν (x; z) +O
(
η3
)
,

with each coe�cient containing an implicit functional dependence on zµ. This is the type of expan-
sion implicitly use in the preceding sections. It is called the self-consistent approximation, indicating

16Stable in the sense that a small perturbation applied to the orbit (e.g., one that takes it away from being circular)
remains small over time.

17In the EMRI case, an expansion in the point-particle limit roughly corresponds to an expansion of the metric in powers
of the mass ratio η. In fact, even if in principle η and ε are di�erent parameters, here η ∼ m/R ≡ ε (see appendix
B for the de�nition of R). In the present subsection we have set ε = m/R ≡ 1 and for clarity rede�ned each of the
perturbations hnµν with a factor ηn pulled out.

18Asymptotic series need not be convergent, and a convergent series need not be asymptotic. Denoting the partial sums
of a series by SN (x), convergence is concerned with the behaviour of SN (x) as N → +∞ with x �xed, whereas
asymptoticity (at x = 0) is concerned with the behaviour of SN (x) as x→ 0 with N �xed.
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2. Gravitational self-force

that in it, the trajectory zµ is obtained by solving the coupled �eld equations and EoM together,
self-consistently. This approximation successfully eliminates the growing errors associated with the
expansion (2.31), and it has the advantage of being formulated in a generic (vacuum) spacetime. How-
ever it is not quite ideal for the EMRI problem, since it does not capitalise on the particular, adiabatic
character of the orbital inspiral, which is only slowing evolving and hence very nearly tri-periodic.
Furthermore, it is not designed to accurately incorporate a second type of slow change in the system:
the slow evolution of the large BH. Over time, the BH absorbs energy and angular momentum in the
form of GWs, causing its mass and spin to slowly change and leading again to growing errors.
An approximation more speci�cally tailored to EMRIs is o�ered by a multi-scale expansion (also

known as a �two-timescale� expansion [24, 25]), a method of singular perturbation theory that, in
the case of an EMRI, expresses the evolving worldline as a function of both �slow time� and �fast
time� variables. By likewise writing the metric perturbation in terms of these variables, we can split
the EoM and �eld equations into corresponding slow- and fast-time equations. The cleverness now
becomes evident: at �xed values of slow time, the fast-time equations have the same tri-periodicity as
a background geodesic, providing �snapshots� of the inspiral on the orbital time scale; the slow-time
equations then govern the smooth evolution from one snapshot to the next.
This approximation scheme is most easily described in terms of the action-angle variables (Jα, q

α).
As a slow time, we may use t̃ ≡ ηt; when Boyer-Lindquist time t is comparable to the radiation-
reaction time, t ∼ M/η, the slow time is of order 1, t̃ ∼ M . As fast-time variables, we can use the
angle variables qα. The expansion of the metric then becomes

gµν (t, xa, η) = gµν (xa) + ηh1
µν

(
xa, t̃, qα

)
+ η2h2

µν

(
xa, t̃, qα

)
+O

(
η3
)
, (2.32)

where xa can be any set of coordinates on spacetime slices of constant t, such as the Boyer-Lindquist
coordinates xa = (r, θ, φ). The coe�cients in the expansion are required to be bounded functions of t̃
and periodic functions of qα, with Fourier expansions

hnµν =
∑
kα

hn,kαµν

(
xa, t̃

)
e−ikαq

α
, (2.33)

where the sum runs over sets of integer constants kα. From the coe�cients hn,kαµν one can obtain the
slow evolution of the �constants� Jα, which, instead of eq. (2.29), now satisfy an equation of the form

J̇α =
∑
kA

[
ηG1,kA

α

(
t̃
)

+ η2G2,kA
α

(
t̃
)

+O
(
η3
)]
e−ikAq

A
. (2.34)

Here the over-dot denotes di�erentiation with respect to t. The Fourier coe�cients Gn,kAα are con-
structed from those of the GSF (therefore, from the coe�cients hn,kαµν ). Here the sum is over pairs of
integers kA = (kr, kθ); because the background is stationary and axially symmetric, the �forces� in eq.
(2.34) are independent of qt and qφ. Once the evolution of the action variables is determined, one can
obtain the evolution of the angle variables simply by integrating

q̇α = ωα (JA) = ωα0
(
t̃
)

+ ηωα1
(
t̃
)

+O
(
η2
)

; (2.35)

this gives

qα =
1

η

∫
ωαdt̃ =

1

η

[
qα0
(
t̃
)

+ ηqα1
(
t̃
)

+O
(
η2
)]
. (2.36)

Finally, with Jα (t, η) and qα (t, η) in hand, one obtains the metric perturbations coe�cients (2.33) as
ordinary functions of t, xa and η [26].
One is generally interested in the phase evolution, i.e. the scalar ψ ≡ kAqA, since accurately tracking

the phase of the waveform is the critical requirement for matched �ltering (see subsection 1.1.1). It
has been found [26] that in order to obtain the leading term in the phase evolution (2.36), one requires
only the time-averaged dissipative piece of the �rst-order force (sometimes referred to as an �adiabatic
approximation�). In order to obtain both the leading and sub-leading term in eq. (2.36), one requires
the entire �rst-order force, along with the time-averaged dissipative piece of the second-order force

24



2. Gravitational self-force

(sometimes referred to as a �post-adiabatic approximation�). Because the sub-leading term is of order
η0, a post-adiabatic approximation is absolutely necessary for accurate modelling; hence one concludes
that EMRI science requires at least part of the second-order metric perturbation. This has been the
primary motivation for developing second-order GSF theory.
Given its clear advantages, the multi-scale expansion is the most promising method of tackling

long-term evolution; yet this method has failings of its own. One limitation is that it breaks down
on large distances, where length scales become comparable to the radiation-reaction time scale. This
failure manifests itself as an infrared divergence in the retarded solution. A similar failure can also
occur near the large BH event horizon, which � as regards wave propagation � plays a role similar
to that of in�nity. Overcoming these failures calls for the introduction of additional, complementary
expansions near in�nity and the horizon, which can be combined with multi-scale expansion by once
again appealing to the method of matched asymptotic expansions.

2.7.3. Transient resonances

Generically, all the kA 6= 0 modes in eq. (2.34) are oscillatory, averaging out to zero on the radiation-
reaction time. The long-term, average evolution is then driven by the (approximately constant) kA = 0
modes, giving rise to an equation of the form

˙〈Jα〉 = ηG1,0
α

(
t̃
)

+ η2G2,0
α

(
t̃
)

+O
(
η3
)
, (2.37)

where 〈·〉 denotes an average over the torus with coordinates
(
qr, qθ

)
. However, this situation changes

near a resonance, where for some period of time one of the kA 6= 0 modes becomes approximately
stationary. In order to understand how this occurs, and its dynamical consequences, let us examine
how the phase ψ = kAq

A evolves near a resonance. Suppose a resonance occurs at a time tres, meaning
that the ratio ωr (tres) /ω

θ (tres) is rational. For some integers kA = kres
A , then the combination

kres
A ωA (tres) = kres

r ωr + kres
θ ωθ

vanishes. Now consider the resonant phase ψres ≡ kres
A qA near tres. Expanding q

A (t) around qA (tres),
recalling that q̇A = ωA

(
t̃
)
, we get

ψres (t) = ψres
(
t̃res

)
+ kres

A ωA
(
t̃res

)
(t− tres) +

η

2
kres
A

dωA

dt̃

∣∣∣∣
t̃res

(t− tres)
2 +O

(
(t− tres)

3
)
.

In usual circumstances, away from a resonance, the second term on the right-hand side dominates the
evolution, and the phase varies on the orbital timescale ∼ 1/kAω

A ∼M , causing the exponential term

e−ikAq
A
to oscillate and average to zero. But because kres

A ωA
(
t̃res

)
= 0, near the resonance the third

term dominates the evolution. The phase then varies slowly, on the long timescale of order√
ηkres

A

dωA

dt̃

−1

∼ M
√
η
.

Over periods shorter than this, the terms G
n,kres

A
A e−iψ

res
in eq. (2.34) become approximately stationary.

They then appear as additional, driving terms on the right-hand side of eq. (2.37), altering the
average rate of change. After a time of order m/

√
η, when the orbit has completed its passage through

resonance, the additional driving term will have shifted the action variables Jα by an amount ∼
J̇α/
√
η ∼ √η, that induces a corresponding order-

√
η shift to the orbital frequencies, inducing an

order-
√
η term in eq. (2.35). Since the remainder of the inspiral, after the resonance, lasts a time of

order M/η, the shift in the frequencies leads to a dramatic, ∼ 1/
√
η cumulative shift in the orbital

phases.
The emergence of the dynamical time scale invalidate the assumed form (2.32) of the metric, causing

the multi-scale approximation to break down. The signi�cant issue is that the resonance leads to
an overall loss of accuracy, even if the passage through it is accurately modelled. And that is a
subtle consequence of the sensitive dependence of the dynamics on the resonant phase ψres � resonant
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phenomena are harbingers of the onset of dynamical chaos. The details of the radiative dynamics across
the resonance depend sensitively on ψres; thus, to model the radiative transition across a resonance
one has to know the exact phase of the orbit as it enters the resonance.
Studies [27, 28] have shown that essentially all astrophysically relevant systems encounter one � pos-

sibly even more � strong resonance while in the LISA band, and it has been estimated that resonances
are expected to reduce the number of EMRI detections with LISA by no more than ∼ 4%.

2.8. Dissipative e�ects and orbital evolution

As we already mentioned, the GSF is made up of a conservative and a dissipative piece. By this we
mean that it can be written as a sum of a time-symmetric and a time-antisymmetric piece. Recall
the decomposition (2.2) and think at the gravitational analogue, adapting that discussion to a curved
spacetime; then we have a de�nition of F cons

α and F diss
α , alluding to the retarded and advanced metric

perturbations: F cons
α is the force exerted by the perturbation

(
hadv
αβ + hret

αβ

)
/2 − hS

αβ , while F
diss
α is

exerted by
(
hadv
αβ − hret

αβ

)
/2− hS

αβ .
We now shift our attention to a set of concrete results from numerical GSF calculations. This series

of results concerns conservative and dissipative e�ects: the latter will be analysed in the next sections,
while the former will be the focus of chapter 4. So, we start now with a brief discussion of the dissipative
(or radiative) e�ects, analysing in particular their impact on the orbital evolution.

2.8.1. Balance laws and adiabatic evolution

What is perhaps the most intuitive aspect of GSF physics is the back-reaction from emission of GWs.
The dissipative piece of the GSF �does work�19 on the particle, dissipating its orbital energy and angular
momentum and thereby driving its gradual inspiral deeper and deeper into the potential well of the
central BH. The lost energy and angular momentum of the particle is transferred into the gravitational
�eld, which then carries them away to in�nity in the form of GWs. In this intuitive picture, the loss of
orbital energy and angular momentum is �balanced� by the emitted radiation. The only slight problem
is that � due to the fundamental absence of a notion of local energy in GR � such a balance cannot
usually be established in a momentary sense20: there is no meaningful way to relate the momentary
rate of, say, orbital-energy dissipation to the momentary �ux of energy in the GWs.
In certain circumstances, however, even in GR it is possible to formulate balance relations holding

in a certain time-averaged sense. It has been shown [30, 31] for bound geodesic orbits in Kerr that
�balance laws� for energy and angular momentum, when a suitable orbital averaging is applied, take
the simple form 〈

F diss
t /ut

〉
=

〈
Ė∞
〉

+
〈
ĖH

〉
,

−
〈
F diss
φ /ut

〉
=

〈
L̇∞
〉

+
〈
L̇H

〉
,

(2.38)

where on the right-hand side are time-averaged asymptotic �uxes of energy and angular momentum
out to in�nity and down the event horizon of the BH, and throughout the rest of this subsection
an over-dot denotes d/dt. Some clarifying remarks are necessary. Following the logic of the adiabatic
approximation, quantities on both sides are calculated while approximating the orbit as a �xed geodesic.
We use 〈·〉 to denote t-averaging; for intrinsically periodic geodesic orbits it su�ces to average over one
period of the motion, but in general for ergodic geodesic one must average over an in�nite amount of
time, while still treating the orbit as a �xed geodesic � or, equivalently, over the orbital

(
qr, qθ

)
torus.

On the left-hand side of the balance equations (2.38) are the averaged t and φ components of the local
GSF, normalised by the time component of the local four-velocity.21 Notice that the left-hand sides
here are always positive, and so are the �uxes

〈
Ė∞
〉
and

〈
L̇∞
〉
. However, the �uxes

〈
ĖH

〉
and

〈
L̇H

〉
of

radiation absorbed by the BH can be either positive or � for certain orbits in Kerr � negative. Negative

19Ich entschuldige mich feierlich, Onkel Albert.
20Unlike in the analogous �at-space relativistic electrodynamics problem that inspires it.
21ut simply translates from the local proper time used in the de�nition of the GSF to the usual coordinate time used in

de�ning the asymptotic �uxes.
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horizon �uxes mark a super-radiant behaviour, in which some of the BH rotational energy and angular
momentum are, in e�ect, transferred to the orbit [32].
One may also write the balance laws in the more enlightening form〈

Ė
〉

= −
〈
Ė∞
〉
−
〈
ĖH

〉
,〈

L̇z
〉

= −
〈
L̇∞
〉
−
〈
L̇H

〉
.

Hence, if we compute the �uxes on the right-hand side for a given geodesic with parameters E and Lz,
these laws allow us to evolve to a new geodesic with parameters E+

〈
Ė
〉
δt and Lz+

〈
L̇z
〉
δt. This gives

us a way of grasping the dominant, adiabatic evolution without actually resorting to a calculation of
the local GSF, and that is because computational methods for asymptotic �uxes in BH perturbation
theory have been well developed since the early '70s. Such calculations are much less computationally
expensive than local GSF calculations and can be done in the convenient framework of Teukolsky's
perturbation formalism, working with Ψ0 or Ψ4 instead of the full metric perturbation [33].
To get a full description of the adiabatic evolution for a generic orbit, one must also be able to

calculate the evolution of the third constant of motion, Q. However, there is no way to relate
〈
Q̇
〉

to some asymptotic �uxes of radiation, as the formula for
〈
Q̇
〉
involves both quantities encoded in

the asymptotic radiation (readily calculable within the Teukolsky formalism) and quantities locally
de�ned as integrals along the orbit (nonetheless also calculable) [31]. With this in hand, it is completely
feasible to calculate the evolution of generic EMRI orbits in Kerr � at leading, adiabatic order � without
performing an actual GSF calculation.
What is possibly even more important, is that the balance laws (2.38) provide an important bench-

mark for GSF calculations. GSF codes all involve both a calculation of the local GSF and a calculation
of the global perturbation �eld, from which the time-averaged asymptotic �uxes may readily be ex-
tracted. Thus, GSF codes o�er the opportunity to test the balance relations (2.38) � or, conversely,
depending on one's point of view, the balance relations o�er the opportunity to test codes. Explicit
numerical calculations demonstrating the validity of (2.38) have been actually carried out for a variety
of cases [34, 35].

2.8.2. Inspiral orbits with the full (�rst-order) GSF

The adiabatic, �ux-based calculations described above capture the main, average dissipative e�ect of
the (�rst-order) GSF, but they completely neglect the conservative piece, as well as subleading e�ects
of the dissipative �rst-order force that average out at leading order in the two-timescale approximation
[21]. These neglected e�ect of the �rst-order GSF contribute at the �rst post-adiabatic order, together
with that of the averaged dissipative second-order GSF. These post-adiabatic terms, including the
conservative piece of the GSF, do have an important secular e�ect on the phase evolution in EMRI
systems and it is important to include them in EMRI models.
The most direct way of incorporating these e�ects would be to directly integrate the EoM in a self-

consistent manner, but this is a computationally challenging task. In a time-domain implementation,
one would need to compute the GSF time-step by time-step, and at each step accelerate the orbit that
sources the �eld by a suitable amount. Computing entire EMRI inspirals using this method does not
seem to be a realistic prospect without a major improvement in numerical methodology. Frequency-
domain implementations seem to be even less viable for such direct integrations of the EoM, as, at
least in their current form, they all assume a �xed geodesic source, with a given, unevolving frequency
spectrum.
Orbital-evolution calculations so far have been based on the idea of osculating geodesics. In this

approach, the inspiral orbit is reconstructed as a smooth sequence of geodesics, each lying tangent
to (or �osculating�) the true orbit at a particular moment. This amounts to modelling the true orbit
as an evolving geodesic with dynamical orbital elements. At each instant t0, one then approximates
the GSF by computing it as if, for all t < t0, the particle had been moving on the geodesic that is
instantaneously tangential to the evolving orbit at the instant t0. This GSF is then used to calculate
the momentary rate of change in each of the orbital elements � principal as well as positional; this is a
key di�erence from the adiabatic approximation, which likewise models the orbit as a smooth sequence
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of geodesics, but does not account for the GSF conservative e�ect on the evolution of the positional
elements. The osculating-geodesics equations are precisely equivalent to the original EoM; the only
non-numerical source of error introduced in this procedure is in the use of the GSF calculated while
treating the orbit as a �xed geodesic (rather than as the true, evolving orbit). The resulting error
in the momentary self-acceleration is a priori comparable to the error introduced by neglecting the
second-order GSF. The problem is that assessment of the actual magnitude of error from using the
�geodesic� GSF would require comparison with calculations based on a direct time-domain evolution.
From the implementations of the osculating-geodesics method one can actually see how radiation

reaction drives the orbit to become more and more circular until very near the �nal plunge, where the
eccentricity can brie�y increase. Important information can be also provided in the form of the number
of radians by which the periastron position will rotate under the e�ect of the conservative piece of the
GSF from a given point until plunge � indicating the total phase error that one would be making by
neglecting the e�ect of the conservative GSF. Notice that GSF acts to decrease the rate of periastron
advance.
The full inspiral trajectories of the osculating-geodesics method are still rather slow to evaluate in

practice.22 While this evolution method represents signi�cant progress compared to the leading-order
adiabatic model, it still misses several important pieces, all formally second order in the GSF ap-
proximation, but all expected to contribute at the �rst post-adiabatic order just like the �rst-order
conservative GSF. Missing is the dissipative piece of the second-order GSF, and missing too are the
aforementioned corrections due to the use of the �geodesic� GSF approximation. If the small BH is spin-
ning, the Papapetrou force must also be included, along with dissipative forcing terms associated with
the spin. Eventually, work on orbital evolution has so far concentrated on the Schwarzschild problem
as the main hurdle for the programme to extend its reach to the Kerr case is, again, computational.

22That is because the forcing terms in the evolution equations depend explicitly on the orbital phases, so one must resolve
the inspiral trajectory over the short orbital timescale. This problem can be partly circumvented by means of what
is known in the theory of dynamical systems as a near-identity transformation: apply a �small� transformation to the
phase-space variables, such that the resulting forcing terms no longer depend on the orbital phase, while the solution
to the modi�ed problem remains uniformly close to the original solution. This procedure leads to a substantial gain
in computational e�ciency [36].
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Causas rerum naturalium non plures admitti debere, quàm quæ et veræ sint et earum

phænomenis explicandis su�ciunt.

(Isaac Newton, Philosophiæ Naturalis Principia Mathematica, 1687)

Gravity is allegedly the most poorly understood among the fundamental interactions. Seeking desper-
ately the guidance of experimental facts, GWs promise to turn research into a data-driven �eld, letting
those facts take the lead in the development of new concepts and potentially providing invaluable and
much needed insights into fundamental physics.
As we already mentioned, extracting useful information from GW observations is never an easy task,

for the signal is buried inside noise and extracting it requires precise modelling. Doing so in GR is
already a formidable feat � it only gets harder when one tries to add new ingredients. Nonetheless,
the motivation is strong, since the forthcoming experimental perspectives will provide us with an
unprecedented opportunity to unveil the gravitational Universe.

3.1. Beyond Einstein's gravity

Over the last few decades several shortcomings of Einstein's theory have prompted scientists to wonder
whether GR is the only theory capable of explaining the gravitational interaction. Its groundbreaking
predictions � such as the light de�ection, the Shapiro time delay, the precession of perihelia and the
Nordtvedt e�ect � passed experimental tests with �ying colours. Nevertheless it has received little,
direct experimental veri�cation in the strong-�eld regime, leaving room for alternative or extended
theories of gravity which reduce to GR in a weak-�eld limit.
On the other hand, GR is a classical theory which is not expected to be a fundamental one; so,

scientists' concern is naturally about seeking a quantum description of spacetime and gravity. When
you put it that way, it may seem like quantum gravity has more to do with philosophy than science,
because of that sort of �human discomfort� with the fact that we have:

� on one side, our present description of electro-weak and strong interactions, uni�ed within the
Standard Model of particle physics, which is a quantum �eld theory;

� on the other side, gravity, described by GR, which is governed by the laws of classical mechanics.

What we should deal with is the well-de�ned, scienti�c problem concerning the objective of getting
quantitative predictions for measurements in which both gravity and Standard-Model e�ects cannot be
neglected. We do not already have scienti�c data in these situations, but we already expect our current
theories to fail in describing those data. Some logical and mathematical inconsistencies are encountered
even before getting to the point of a numerical prediction: like two tesserae of di�erent mosaics, GR and
the Standard Model cannot be put together without modi�cations. The very fact that our theories fail
to generate consistent predictions, albeit in some hard-to-produce contexts, should make us concerned
about the general robustness of these theories. While these problems typically involve energy scales
higher than the Planck energy scale

EP ≡
√

~c5

G
∼ 1019 GeV,

it is legitimate and appropriate to wonder whether the necessary new elements might a�ect � in some
however indirect way � also some processes which do not involve higher-than-EP energies. Even at low
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energies we should, at the very least, expect small quantum-gravity corrections to the predictions of
our current theories. Stated di�erently, the GR-picture of spacetime as a Riemannian manifold breaks
down around the Planck length scale

`P ≡
√

~G
c3
∼ 10−33 cm,

where quantum �uctuations of the gravitational �eld become important, but deviations in the strong-
�eld regime may be exhibited even at macroscopic length scales.
Proposing a tentative semi-classical description of gravity may turn out to be a crucial attempt in

order to shed light on the full problem of quantum gravity. In this direction, one of the most fruitful
approaches comes from the so-called Extended Theories of Gravity (ETGs), a broad class of theories
which enlarge Einstein's theory by adding higher-order curvature invariant, drawing their motivation
from e�ective quantum gravity actions [37], and scalar �elds that can be non-minimally coupled to
gravity in the action.
There are desirable advantages coming from this approach. In fact, ETGs can:

� act as e�ective �eld theories for describing certain e�ects and phenomena;

� provide a framework for obtaining predictions for binary evolutions and waveforms;

� combine constraints coming from the strong-gravity regime with other bounds from, say, weak-
�eld regime, cosmology, astrophysics, laboratory tests, etc.

Nevertheless, there are also unpleasant drawbacks not to be underestimated, since ETGs:

� require a theory-dependent modelling, which can be really demanding;

� can lead to ill-posed initial value problem (IVP) for the metric, altering dramatically the character
of the theory and potentially undermining its physical viability.

Modelling the evolution of a binary system for given initial data is a type of IVP. Recall that an IVP
is said to be well-posed (in the sense of Hadamard) if a solution (i) exists, (ii) it is unique and (iii)
exhibits a continuous dependence on the initial data. A theory with an ill-posed IVP cannot make
predictions, so one may be tempted to use well-posedness as a selection criterion for ETGs � as, if there
is to be science, a theory certainly needs to be predictive.1Regarding the candidate theories, well-posed
formulations are generally not known, or presently available only in the form of a continuous limit to
GR or linearisation around some background (see table 1 in [40]). Noticeable exceptions are scalar-
tensor (ST) theories of gravity and, through mathematical equivalence, a subset of f (R) theories,
inheriting the well-posedness of GR through the Einstein-frame formulation.
Overcoming the technical barrier of the theory-dependent modelling may initially be achieved using

theory-agnostic, strong-�eld parametrisations. This rather simple idea underlines the fact that, for a
given theory, it proves very di�cult at present to distinguish between GR and non-GR spacetimes, mo-
tivating an approach independent of the particular details of any speci�c theory. This brings a crystal-
clear advantage, as it drastically simpli�es the modelling in a theory-independent way. Obviously, all
of the consequent constraints for such phenomenological parameters need then to be interpreted within
the framework of a speci�c theory.

3.2. Scalar-tensor gravity

Among the copious possibilities, one of the simplest ways to modify GR is to introduce a scalar �eld
that is non-minimally coupled to gravity. The emergence of a scalar �eld is a well-known generic

1However, as we mentioned, these theories can be thought of as e�ective theories, i.e. intrinsically limited in their
range of validity and often containing spurious degrees of freedom (e.g. ghosts) that lead to pathological dynamics.
In linearised theories it is possible to remove such pathologies, but there is no unique prescription of doing so in
general. Hence, instead of setting aside theories that appear to be ill-posed, perhaps one should look for a way to
�cure� them and convey predictability at non-linear level.
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property of dimensionally-reduced higher-dimensional models, such as string theory.2

ST theories bene�t from a well-posed Cauchy formulation [40], a necessary feature in order to be
amenable for numerical relativity simulations. But some post-Newtonian results indicate that binary
BHs in ST theory are indistinguishable from binaries in GR [41, 42], just like the end-state of collapse,
isolated BHs in the general proof of Faraoni and Sotiriou [43]. Howbeit, if the scalar �eld is made
time-dependent or is given inhomogeneities through an external mechanism like a potential, the binary
also emits dipolar radiation: a dramatic e�ect on the binary BH dynamics � due to accretion of the
scalar �eld by the merging BHs � and noticeable di�erences on the GW emission are found [44].
Furthermore, ST theories would present one of the most conspicuous strong-�eld deviation from GR,

the spontaneous scalarization of isolated neutron stars [45], a phenomenon occurring when a non-zero
value of the scalar �eld inside the neutron star becomes energetically favourable over the zero-�eld
con�guration, hence developing a sudden scalar charge when previously having none.
A primary motivation for studying ST gravity in the EMRI regime is to provide an additional and

possibly more appropriate framework to constrain these theories by means of the e�ects of GSF. This
task has been recently addressed by Zimmerman [47]. As we will see, even when the scalar �eld
con�guration is the trivial one, as in the BH scenario, there is room for promising constraints due to
the existence of a scalar component of the GSF in addition to the gravitational one.
The leading-order EoMs for small compact objects in ST theories were provided by Gralla [48].

Building on the �Bianchi identity� for the theory, he showed that the linearised equations for a small
extended body of mass m and (scalar) charge q in the Einstein frame reduces to the point-particle
form

δGαβ − 8πδTαβ = 8π

∫
γ
m (τ)uαuβδ4 (x, z (τ)) dτ,

δ�φ = −8π

∫
γ
q (τ) δ4 (x, z (τ)) dτ,

where γ is a timelike worldline, Gαβ is the Einstein tensor, Tαβ is the stress-energy tensor of the
bulk scalar �eld, � ≡ gαβ∇α∇β is the covariant wave operator in the background spacetime and
δ4 (x, z) ≡ δ4 (xµ − zµ) /

√
−g is the invariant four-dimensional delta-function. Note that the charge is

not constrained by any evolution equation inherent to ST theory; a separate postulate describing the
internal structure of the object is required.

3.2.1. Basic concepts and �eld equations

Following [47], the action for a generic ST theory in the Jordan frame can be written in full generality
as

S =
1

16π

∫
d4x
√
−ḡ
[
a
(
φ̄
)
R̄− b

(
φ̄
)
ḡµν∇̄µφ̄∇̄ν φ̄− 2c

(
φ̄
)]

+ SM (ḡµν ,Ψ) , (3.1)

where Ψ collectively denotes the matter �elds, a, b and c are �eld-dependent ST parameters and the
over-bar indicates that we are dealing with Jordan frame. Nothing prevents us from rede�ning the
scalar �elds in such a way that a

(
φ̄
)
7→ φ̄, leaving the theory with two free functions: the coupling

function, which precedes the kinetic term (more typically written as ω), and a cosmological function.
The coupling is responsible for the scalarization phenomenon, while the cosmological function provides
the scalar �eld with mass and plays the role of the cosmological constant Λ.
In ST gravity the inertial mass and the structural properties of the small body are generally in�uenced

by the scalar �eld, due to the variability of the Newton's gravitational constant � more on that later.
This introduces a dependence incorporated into the point-particle model by allowing the mass to vary
with the scalar �eld. The point-particle action for the theory is thus given by

Spp
M = −

∫
γ
m
(
φ̄
)

dτ̄ .

2Considering a (4 + d)-dimensional spacetime, one can write a higher dimensional Hilbert action, which can be dimen-
sionally reduced by performing the integral over the extra, compacti�ed dimensions d. This turns the action into
that of a scalar �eld (known as the dilaton) coupled to gravity in the Einstein frame and characterising the size of
the extra-dimensional manifold [38].
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Performing the conformal transformation

gµν = a
(
φ̄
)
ḡµν ,

χ
(
φ̄
)

=

∫ (
3

4

(
a′ (φ)

a (φ)

)2

+
b (φ)

2a (φ)

)
dφ,

A (χ) = a−1/2
(
φ̄
)
,

F (χ) =
c
(
φ̄
)

a2
(
φ̄
) ,

one gets the Einstein-frame action

S =
1

16π

∫
d4x
√
−g [R− gµν∇µχ∇νχ− 2F (χ)]−

∫
γ
A (χ)m (χ) dτ. (3.2)

A variation with respect to the metric yields, as usual, the �eld equations in the 22tein frame

Gαβ = 8π
(
T bulk
αβ + T pp

αβ

)
, (3.3)

having de�ned

T bulk
µν ≡ 1

8π

[
∇µχ∇νχ−

1

2
gµν (∇σχ∇σχ+ 2F )

]
as the stress-energy tensor associated with the bulk scalar �eld, and

T pp
αβ ≡

∫
γ
A (χ)m (χ)uµuνδ4 (x, z) dτ

as the stress-energy tensor associated with the point particle. Varying the action with respect to the
scalar �eld produces the scalar wave equation

�χ− F ′ (χ) = 8π

∫
γ

dAm

dχ
δ4 (x, z) dτ, (3.4)

which governs the evolution of χ; here again � ≡ gµν∇µ∇ν and F ′ (χ) ≡ dF/dχ.
The point-particle gives rise to perturbations of the �elds around their background values. We can

make this explicit by adopting the decompositions

gµν = g0
µν + hµν , χ = Φ + f, (3.5)

for the metric and scalar �elds; g0
µν ≡ gµν (0) and Φ ≡ χ (0) denote the background �elds, i.e. full

�elds taken at m = 0. For the sake of notation, we drop the superscript 0 as we always work with
either the perturbation or the background metric, and we conveniently de�ne the trace-reversed metric
perturbation as

h̄αβ ≡ hαβ −
1

2
gαβh,

with h = gρσhρσ, since it has a vanishing divergence in the Lorenz gauge. We can consider a slight
generalisation of the Lorenz gauge as a one-parameter family of gauge conditions, reading

∇αh̄αβ = 2λf∇βΦ, (3.6)

where λ is a free dimensionless parameter, which proves useful in order to put the �eld equations in a
weakly hyperbolic form.3

From eq. (3.4) stems that the perturbed scalar �eld then according to the linearised equation

�f +N ·|αβh̄
αβ +N ·|·f = −4πρ, (3.7)

3The advantage of this gauge over the standard Lorenz gauge is that it eliminates the derivative coupling when λ = 1.
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with4

N ·|αβ = −
(
∇α∇βΦ− 1

2
F ′gαβ

)
,

N ·|· = −
(
2λ∇σΦ∇σΦ + F ′′

)
,

playing the role of external potentials, and the scalar source given by

ρ = −2

∫
γ
m (Φ)A (Φ)

(
A′ (Φ)

A (Φ)
+
m′ (Φ)

m (Φ)

)
δ4 (x, z) dτ

≡ −2

∫
γ
m (Φ)A (Φ)α (Φ) δ4 (x, z) dτ.

The perturbed Einstein equation coming from (3.3) takes the form

δGαβ = 8π
(
δT bulk

αβ + tαβ

)
,

where the perturbed Einstein tensor is given by

2δGαβ = −�h̄αβ + 2∇(α|∇σh̄σ|β) − gαβ∇γ∇δh̄
γδ − 2Rγ δ

α βh̄γδ

+2Rρ(α h̄
ρ
β) + gαβR

γδh̄γδ −Rh̄αβ,

which is sourced by the perturbed stress-energy tensor of the bulk scalar �eld,

8πδT bulk
αβ = 2∇(α f∇β)Φ− gαβ∇σΦ∇σf − gαβF ′f +

1

2
gαβh̄

γδ∇γΦ∇δΦ

−
(

1

2
∇ρΦ∇ρΦ + F

)
h̄αβ +

1

2
gαβFg

σν h̄σν ,

and by the stress-energy of the point particle,

tαβ =

∫
γ
m (Φ)A (Φ)uαuβδ4 (x, z) dτ.

Putting all the nightmarish pieces together, the perturbed Einstein �eld equation reads

�h̄αβ +Mαβ
|·σ∇

σf +Nαβ
|γδh̄

γδ +Nαβ
|·f = −16πtαβ, (3.8)

where

Mαβ
|·σ = 2 (1− λ)

(
δασ∇βΦ + δβσ∇αΦ− gαβ∇σΦ

)
,

Nαβ
|γδ = 2Rα β

(γ δ) − δ
α
(γ∇

βΦ∇ δ)Φ− δ
β
(γ∇

αΦ∇ δ)Φ,

Nαβ
|· = −2

[
(1− λ) gαβF ′ + 2λ∇α∇βΦ

]
.

Note that selecting the gauge parameter to be λ = 1, which implies Mαβ
|·σ = 0, removes the derivate

coupling from the �eld equations (3.8).

3.2.2. Field decomposition and regular �eld

The two coupled �eld equations, (3.7) and (3.8), can be jointly handled all at once using a convenient
notation introduced in [46], called condensed index notation.
This notation introduces a meta-index A, which can stand for di�erent types of tensorial indices:

a pair of indices, A = αβ, which is understood to be symmetrised; or a single index, A = α; or no
index, A = ·. This enable us to collect tensor, vector and scalar �elds into a single meta-object. In the

4The dot-and-bar notation to be brie�y discussed below is borrowed from [46]. For what concerns the present discussion,
one could safely replace N ·|αβ 7→ Nαβ and N ·|· 7→ N .
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present case, we are concerned with a 2-tensor, h̄αβ , and a 0-tensor, f , which are then combined into
the �eld �doublet� ψA =

{
f, h̄αβ

}
. In a similar fashion, the source terms tαβ and ρ are collected into

the meta-object

µA =

∫
γ
gAM (x, z) qM (τ) δ4 (x, z) dτ,

where

qA ≡

{
4m (Φ)A (Φ)uαuβ, A = αβ

−2m (Φ)A (Φ)α (Φ) A = ·
,

and gAM de�nes the parallel propagator5 which transports tensors at x to x′ [20],

gAB′
(
x, x′

)
≡

{
g

(α
γ′ (x, x

′) g
β)
δ′ (x, x

′) , A = αβ, B = γ′δ′

1, A = B = ·
.

In the more explicit notation, a vertical bar has been used to separate the indices collected in A from
those collected in B; e.g., NA

B is denoted Nαβ
|· when A = αβ and B = ·.

In this condensed notation, both perturbation equations are combined into the single equation

�ψA +MA
Bσ∇σψB +NA

Bψ
B = −4πµA.

As it is a linear wave equation, its solution can be represented as

ψA =

∫
d4x′
√
−ḡGAB′µB

′
,

where GAB′ is a Green's function, i.e. a solution of the equation

�GAB′
(
x, x′

)
+MA

Bσ∇σGBB′
(
x, x′

)
+NA

BG
B
B′
(
x, x′

)
= −4πgAB′δ4

(
x, x′

)
,

chosen to satisfy retarded boundary conditions, as all radiation is purely outgoing. The principal parts
of the o�-diagonal Green's functions are solutions to homogeneous equations, e.g. �G· |αβ = 0; whereas
the principal parts of the diagonal Green's functions have distributional sources.
It can be shown that, in a normal neighbourhood of the worldline γ described by relations zµ (τ),

the retarded solution takes the form

ψA (x) =
1

r
UAB′

(
x, x′

)
qB
′
(u) +

∫ u

τ<

V A
M (x, z) qM (τ) dτ +

∫ τ<

−∞
GAM (x, z) qM (τ) dτ, (3.9)

where UAB′ and V A
B′ are smooth bi-tensors, u is the retarded time at the point z (u) where a past-

directed null ray starting from x intersects the worldline, v is the advanced time of a point connecting
x to the worldline by a future-directed null ray, r is the retarded distance from x to z (u) and τ< is the
proper time where the worldline intersects the convex normal neighbourhood of x [20]. This solution
takes the form of a local leading-order 1/r piece plus tail integrals.
The near-zone behaviour of the full, retarded solution (3.9) exhibits the Coulomb-type 1/r behaviour

leading to a singularity at the location of the particle, r = 0. As it is now well established, the Detweiler-
Whiting prescription involves a singular �eld ψSto be subtracted from the retarded �eld, yielding its
regular part ψR ≡ ψ−ψS. As in GR-GSF theory, the S-�eld is built from a �singular� Green's function
which (i) vanishes in the causal future and past of the point, (ii) is symmetric in its arguments and
(iii) solves the inhomogeneous wave equation [20]. The R-�eld is then found to be

ψAR (x) =
1

2r
UAB′

(
x, x′

)
qB
′
(u)− 1

2radv
UAB′′

(
x, x′′

)
qB
′′

(v) (3.10)∫ u

τ<

V A
M (x, z) qM (τ) dτ +

1

2

∫ v

u
V A
M (x, z) qM (τ) dτ

+

∫ τ<

−∞
GAM (x, z) qM (τ) dτ,

5For the notion of parallel propagator, see section A.2.
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where radv is the advanced distance from x to the worldline and v is the advanced time at that point.
To evaluate the R-�elds, it proves useful to choose local coordinates; in particular, one can ad-

opt Fermi normal coordinates6 (FNC) adapted to the worldline of the body. To that end, the re-
tarded/advanced time dependencies in eq. (3.10) must be translated into dependencies on x̄ (details
can be found in [20, 46]). Recalling that s2 = 2σ (x, x̄) is the perturbatively small geodesic distance
between x and x̄, the R-�eld in FNC through O (s) can be found to be

ψAR (t, xa) = − (1− acxc) U̇A (t) +
1

3
UA (t) ȧcx

c + ψAtail +O
(
s2
)

= −gAĀ
(

˙̂qĀ + q̂B̄U ĀBt

)
(1− acxc) + gAĀ

(
1

3
q̂Āȧc + q̂B̄U̇ ĀB̄c + ˙̂qB̄U ĀB̄c + q̂B̄U ĀB̄tc

)
xc

+
1

2
q̂B̄RAB̄tcx

c + ψAtail +O
(
s2
)
,

where aa = aᾱe
ᾱ
a and similar are components of tensors in FNC (evaluated at x̄), q̂A = qA, q̂ = q/2,

and ψAtail denotes the contribution from the chronological past,

ψAtail (x) =

∫ t−

−∞
GAB (x, z) qB (τ) dτ.

This tail integral is cut short at t− ≡ t − 0+ to avoid the singular behaviour of the retarded Green's
function at the coincidence point x̄. Explicitly, the R-�elds to next-to-leading-order in the geodesic
displacement parameter s are given by

fR = − (1− acxc) ˙̂q +
1

6
q̂ (2ȧcRtc)x

c + ftail +O
(
s2
)

(3.11)

and

h̄αβR = −q̇tteαte
β
t − 2q̇tbe

(α
t e

β)
b

+

[
eαte

β
t

(
3acq̇

tt +
1

3
qttȧc +

1

6
qttRtc

)
+ eαte

β
b

(
4q̇tbac − qttRbtct

)]
xc (3.12)

+h̄αβtail +O
(
s2
)
.

In eqs. (3.11) and (3.12), the tail terms are de�ned by

h̄αβtail ≡
∫ t−

−∞
Gαβ|γδ (x, z) qγδ (τ) dτ +

∫ t−

−∞
Gαβ|· (x, z) q̂ (τ) dτ,

ftail ≡
∫ t−

−∞
G· |γδ (x, z) qγδ (τ) dτ +

∫ t−

−∞
G· |· (x, z) q̂ (τ) dτ.

Since the EoMs are written in terms of the non-trace-reversed metric perturbation, the latter can be
computed using FNC. It also turns out that one gets an additional local contribution from the time
derivatives of the tail terms in the normal neighbourhood at the present time t [47].

3.2.3. Equations of motion

Recalling the Einstein-frame action (3.2) and the de�nition (3.5) of the perturbed scalar �eld, one can
write the point-particle action in the background geometry as

S0,pp
M = −

∫
γ
A (Φ)m (Φ) dτ.

Just as we did for the �eld equations, we �nd the EoMs in the background from the stationarity of the
action, which yields

(mA) aµ = − (mAα)wµν∇νΦ ≡ qwµν∇νΦ, (3.13)

6See section A.3.
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where wµν ≡ gµν + uµuν projects along the direction orthogonal to uµ, and q ≡ −mAα can be
interpreted as the charge of the body. The inertial mass parameter satis�es the evolution equation

d (mA)

dτ
= −quµ∇µΦ.

In the same way, the EoMs in the perturbed geometry can be found by varying the �rst-order
perturbed point-particle action

S1,pp
M =

1

8

∫
γ
qµνhµνdτ +

∫
γ
q̂fdτ

with respect to the worldline coordinate zµ. Working �rst in FNC, employing the background EoM
(3.13), using the expression Rta = ∇tΦ∇aΦ + O (s) for the Ricci tensor in terms of the background
scalar �eld, and having de�ned m ≡ m (Φ)A (Φ), q ≡ q̂ (Φ), one can show that the local SF term is
given by [47]

F loc
α = qwβα∇βΦ +

[
23

6
q2 − 11

6
m2 +

1

3

( q

m

)2 (
2q2 + m

(
αq−mα′

))
(3.14)

−11

3
m
(
αq−mα′

)
+
(
αq−mα′

)2]
wβαu

γ∇γΦ∇βΦ

+
1

3

(
q3

m
− 5qm

)
wβαu

γ∇γ∇βΦ

in covariant form.
In addition to the local term acting at the present time, one also �nds a non-local contribution coming

from the tail part of the SF, which depends on the chronological past. Within the past light-cone of
the present, the order-reduced tail contribution is

F tail
α = wαβ

[
−αq∇βΦftail +

(
αq−mα′

)
∇βΦftail + q∇βftail − q∇γΦhtail,β

γ (3.15)

−q∇βΦhtail
γδ u

γuδ +
1

2
m
(
∇βhtail

γδ − 2∇γhtail,β
δ

)
uγuδ

]
.

What is absolutely new with respect to GR is that the perturbed R-�eld also contributes to the
evolution equation for the particle's mass, i.e.

Dm

dτ
= −quα∇αΦ + 2qm

(
∇γ∇δΦ−

1

2
F ′gγδ

)
uγuδ + q2

(
∇αΦ∇αΦ +

1

2
F ′′
)

(3.16)

− 1

12
q2R+ q′2 (uα∇αΦ)2 − q′ (uα∇αΦ) ftail − quα∇αftail,

as well as to the evolution equation for its charge,

Dq

dτ
= q′uα∇αΦ− q′q′′ (uα∇αΦ)2 − 2mq′

(
∇γ∇δΦ +

1

2
F ′gγδ

)
uγuδ

−qq′
(
∇αΦ∇αΦ +

1

2
F ′′
)

+
1

12
qq′R+ q′′uα∇αΦftail + q′uα∇αftail, (3.17)

where q′ ≡ αq−mα′ and q′′ ≡ 2α′q + αq′ −mα′′. Despite the great complication of the equations, a
phenomenon emerges: starting with the initial condition q (Φ (0, ~x)) = 0, eq. (3.17) allows for a non-
zero charge at some later time. In other words, the background scalar �eld can dynamically induce

a charge on the worldline of the body, suggesting that scalarization could be present in the EMRI
context as well [47].
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3.2.4. Stationary black-hole background

The Kerr metric features a distinguished role in GR, its relevance coming mainly from the uniqueness
theorem which states that � under rather general conditions � the Kerr spacetime is the only asymp-
totically �at, stationary, vacuum BH [39]. Therefore, the Kerr metric describes the exterior end-state
of any su�ciently massive, collapsing, isolated system which obeys the cosmic censorship conjecture
(assuming that some equilibrium state is reached).
In light of the general results obtained by Sotiriou and Faraoni [43] � proving that stationary and

axisymmetric BHs are solution of the class of ST theories if and only if they are solutions of GR � the
Kerr-Newman metric supplemented by an external, constant scalar �eld represents the most general
stationary, axisymmetric, and vacuum solution for ST gravity.

Field equations

The condition that the BH be isolated can be translated into the asymptotic �atness requirement:
the metric should approximate Minkowski and the scalar �eld should go over to a constant value.
Resorting to the �eld equation that one derives from the action (3.1) by varying with respect to ḡµν
(see [43]), one gets the condition c

(
φ̄0

)
= 0, where φ̄0 denotes a constant con�guration for the scalar

�eld; by varying with respect to φ̄, one also gets

c′
(
φ̄
)∣∣
φ̄0

= 0,

In the Einstein frame, these conditions read

Φ = Φ0, F (Φ0) = F ′ (Φ)
∣∣
Φ0

= 0. (3.18)

Consequently, the background Ricci tensor vanishes, implying that the stress-energy tensor of the
scalar is also zero; the background Einstein �eld equations are thus given by the vacuum �eld equation,
Rµν = 0.
Considering a non-spinning, massive point-like object moving in the BH spacetime of a ST theory,

its stress-energy perturbs the background geometry. Within the Lorenz gauge, corresponding to λ = 0
in the one-parameter family of gauge conditions (3.6), the �eld equations (3.7), (3.8) governing the BH
perturbations under the conditions in (3.18) take the completely decoupled form

�h̄αβ + 2R µ ν
α β h̄µν = −16πm

∫
γ
uαuβδ4 (x, z) dτ,

�f − µ2f = −8πq

∫
γ
δ4 (x, z) dτ,

where m ≡ m (Φ0)A (Φ0) and q ≡ −m (Φ0)A (Φ0)α (Φ0) = −mα (Φ0) are the constant mass and
charge of the point-like object, respectively, and µ2 ≡ F ′′ (Φ)|Φ0

is the mass associated with the
scalar �eld. The �eld equation governing the metric perturbations is nothing else that the well-known,
Lorenz-gauge wave equation that one gets in GR (see eq 2.15 astro2) and the scalar �eld equation is
the curved-spacetime, massive wave equation.
The retarded solutions are given in terms of the diagonal Green's functions,

h̄αβ (x) = 4m

∫
γ
Gαβγδ (x, z (τ))uγuδdτ,

f (x) = q

∫
γ
G (x, z (τ)) dτ.

Each solution, again, has to be separately regularised, according to the Detweiler-Whiting's prescrip-
tion, in order to obtain the R-�elds responsible for the SF [20].
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3. Extended theories of gravity

Equations of motion

For a stationary BH spacetime with a constant scalar �eld the leading order motion of the particle is
geodesic in the background geometry, i.e. aα = 0.
The next-to-leading order motion is determined by the �rst-order SF which, recalling the conditions

(3.18) and the fact that R = 0, turns out to be the sum of the tail parts of the vacuum gravitational
and scalar SF in eq. (3.15), i.e.

Fαself = Fαtail = Fαg,tail + Fαs,tail

=
1

2
mwαβ

(
∇βhtail

γδ − 2∇γhtail,β
δ

)
uγuδ + qwαβ∇βftail. (3.19)

The absence of coupling terms in the linearised �eld equations manifests itself as the lack of local terms
in the equation of motion, which are seen to vanish from eq. (3.14).
The mass evolves according to (3.16), which reduces to

Dm

dτ
=

1

2
q2µ2 − quα∇αftail,

while the charge, which follows eq. (3.17), evolves according to

Dq

dτ
= −1

2
qq′µ2 + q′uα∇αftail.

What might have been less obvious is that the mass and the charge of the particle as well ex-
perience a local self-�eld correction due to the mass µ associated with the scalar �eld, the charge
q ≡ −α (Φ0)m (Φ0) = − m′ (Φ)|Φ0

and the pro�le of the charge q′ = − m′′ (Φ)|Φ0
at the present time,

along with a history-dependent term from the scalar �eld.7

At the end of the day, the result to take home is that the EoM decompose into the form

maµ = Fµback + Fµloc + Fµtail, (3.20)

where m ≡ m (Φ)A (Φ) is the ST mass parameter and with the SF splitting into:

� a term exerted by the background �eld in the background spacetime, Fµback;

� a local contribution, Fµloc, built from background quantities evaluated on the worldline at the
present position of the particle;

� and a tail contribution, Fµtail, depending on the past history of the particle.

However, the absence of coupling in the asymptotically �at, constant scalar �eld BH scenario leads to
a SF which is simply given by the tail part, in turn given by the sum of the gravitational and scalar
SF; i.e.

maµ = Fµtail = Fµg,tail + Fµs,tail.

3.3. E�ective gravitational constant

In the framework of ETGs the strength of gravity, given by the local value of the gravitational coupling,
may depend on time and location. The variation of the gravitational constant Geff (which is, in
general, distinct from the standard Newton's constant G) implies that ETGs need not necessarily
satisfy the strong equivalence principle (SEP). Talking about ST gravity for de�niteness � or, through
mathematical equivalence, f (R) � this amounts to say that local gravitational physics depends on the
scalar �eld strength.

7Cosmological constraints imply bounds as low as µ ∼ 10−33 eV; so local changes in mass and charge of the particle
would be far from relevant with respect to the tail pieces.

38



3. Extended theories of gravity

Besides the variability of the gravitational coupling, another e�ect that one expects on general
grounds is that the standard Newtonian potential is modi�ed by a Yukawa-like correction. This
occurrence was �rst noticed by Stelle [49], who added terms proportional to RµνR

µν and R2 to the
Lagrangian; a recent review with an eye on astronomy and cosmology can be found in [50].
Yukawa-like corrections come into the story when one starts considering a rather general class of

higher-order-ST theories (in four spacetime dimensions), whose action in the Jordan frame can be
written as

S =

∫
d4x
√
−g
[
F
(
R,�R, . . . ,�kR,φ

)
− ε

2
gµν∇µφ∇νφ

]
+ SM, (3.21)

where F is a generic function of curvature invariants and a scalar �eld φ, ε = ∓1, 0 is a constant which
merely speci�es the nature and the dynamics of the scalar �eld (whether it a standard, a phantom or
a dynamics-free scalar �eld, respectively), and SM represents the minimally coupled ordinary matter
contribution (considered as a perfect �uid). This action encompasses a great variety of theories, as
lots of information is packed in F , which by de�nition is a Lagrangian density containing also the
contribution of a potential V (φ); from time to time, one can consider to deal with functions of �elds
without a potential, and this will be made clear by the lower case letter f . Formalities aside, by varying
the action (3.21) with respect to φ, one gets the Klein-Gordon-like equation

ε�φ = −∂F
∂φ

.

Considering as an example F = f (φ)R−V (φ) and ε = −1, with the generic functions f (φ) and V (φ)
describing the coupling and the potential of the scalar �eld, one gets

�φ−Rdf

dφ
+

dV

dφ
= 0;

for a constant coupling and a time-independent �eld, this reduces to(
4−m2

)
φ = 0,

where the e�ective mass m is given by the minimum of the potential V (φ). It should be clear now
what one should expect: the mass term smears out the 1/r behaviour, introducing a Yukawa-like
correction to the Newtonian potential, which of course disappears at spatial in�nity and therefore
allows to recover the Newtonian limit and the cherished Minkowski spacetime.
Quite in general, a great deal of ETGs admit a weak �eld limit that, momentarily restoring SI units,

can be expressed as (see again [50])

Φ (r) = −GM
r

(
1 +

n∑
k=1

αke
−r/rk

)
≡ −GeffM

r
,

where rk is a characteristic length-scale for the interaction introduced by the k-th component of the
non-Newtonian corrections, and Geff is the e�ective gravitational constant. The amplitude αk of each
component is appropriately normalised to the standard Newtonian term and its sign indicate whether
the correction is attractive or repulsive. As the Yukawa-like terms are negligible for r � max rk, G
stands for the gravitational constant as measured at the spatial in�nity. Also note that in this picture
the inverse-square law holds, as the changes with respect to GR are encoded in the coupling Geff . In
general, any correction will introduce a characteristic range, acting at a certain length-scale, which can
be translated into the mass mk of a pseudo-particle, whose Compton's length is given by

rk =
~
mkc

.

From a quantum-�eld point of view, this suggests that, in the low-energy limit, e�ective theories
attempting to unify gravity with the other interactions introduce massive particles which carry the
gravitational interaction along with the massless graviton.
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3. Extended theories of gravity

Figure 3.1.: Newtonian (purple) vs. non-Newtonian (orange); contour lines are projected on the co-
ordinate plane.

Taking into account just one component � or, alternatively, the leading-order term of the summation
� one has

Φ (r) = −GM
r

(
1 + αe−r/λ

)
.

This potential is depicted in �g. 3.1 together with the Newtonian case (α = 0), showing how the
former amounts to a tiny modi�cation of the latter. In a nutshell, the e�ect of a non-Newtonian term
can be conveniently parametrised by (α, λ). For distances r � λ, the exponential vanishes and the
gravitational coupling is G; when r � λ, one can linearise the last equation and get

−GM
r

(
1 + α

(
1− r

λ

))
r�λ−→ −GM

r
(1 + α) ,

which, compared to the gravitational force measured in the laboratory, implies

Glab ' G (1 + α) .

Here Glab = 6.674 30 (15)×10−11 m3kg−1s−2 denotes the usual Newton's constant as measured by the
Cavendish-like experiments. Of course, G ≡ Glab in standard GR gravity.
The variability of the e�ective gravitational constant, as given by

Geff (r) ≡ G
(

1 + αe−r/λ
)
,

implies that a measured value of the ratio G (r1) /G (r2) ≡ β at some distances r1 and r2 constrains α
and λ to lie on a curve in the (α, λ) plane, i.e.

α (λ) =
β − 1

e−r2/λ − βe−r1/λ
. (3.22)

Varying β within the limits of experimental errors causes the curve to sweep out an allowed region.
For example, in �gure 3.2 we plotted eq. (3.22) using four values of β, corresponding to variations of
±1% and ±2% of Glab = 6.674 30 (15)× 10−11 m3kg−1s−2. In this plot, α is expected to lie between
the curves, in the shaded area. Note that we chose to plot |α| against λ in order to have positive values
only and therefore adopt a log-log scale. Also note that, due to the singularity in eq. (3.22), neither
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3. Extended theories of gravity

Figure 3.2.: |α| plotted against λ in a log-log scale for eq. (3.22).

curve can be extended inde�nitely for small and large λ � of course, one should be comfortable with
that, as these parameters are e�ective.
In conclusion, there is room for experimentally constraining λ and α, and this has been actually

done in the range 1 cm < r < 108 cm with a great deal of di�erent techniques, giving the estimates

|α| . 10−2, λ & 104 cm

for the parameters. Very-long-baseline interferometry imposes a limit of |α| ∼ 1.4 × 10−2, while
binary-pulsar experiments provide a limit in the range 10−2 . |α| . 10−4.
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4. Conservative e�ects

Wir müssen wissen � wir werden wissen!

(David Hilbert, address to the Society of German Scientists and Physicians, 1930)

The crucial point of our analysis of the actual predictions of the GSF theory was the acknowledgement
that di�erent pieces in the MiSaTaQuWa equation contribute to di�erent e�ects. As we mentioned
in section 2.8, a second set of concrete results from numerical calculations comprises various speci�c
conservative physical e�ects of the GSF.
At least at �rst order, the conservative e�ects can be cleanly disentangled from those of dissipation

by writing the GSF as a sum of a time-symmetric piece, F cons
α , and a time-antisymmetric one, F diss

α ,
and then considering the EoM with the full GSF replaced with either F cons

α or F diss
α . As it is equi-

valent, we can de�ne the conservative and dissipative components as the parts of the GSF which are
(correspondingly) symmetric and antisymmetric under ret ↔ adv,

Fα (≡ Fαret) = Fαcons + Fαdiss,

where

Fαcons ≡
1

2
(Fαret + Fαadv) , Fαdiss ≡

1

2
(Fαret − Fαadv) . (4.1)

What we may call the �conservative dynamics� is thus described by the solution of the EoM

m
D2zα

dτ2
= Fαcons (z) ,

obtained from (2.21) by setting Fαdiss to zero. The extraction of the conservative and dissipative
pieces through, say, the mode-sum formula (2.26) entails a calculation of both retarded and advanced
perturbations. This would normally double the computation time, as it requires one to solve the
perturbation equations twice, changing the boundary conditions in order to obtain the retarded and
advanced solutions. Fortunately, in the case of a Kerr (and consequently Schwarzschild) background
one can avoid this extra computational burden. For an eccentric geodesic, following [52, 26], we think
of the SF as a function of τ along the orbit. Without loss of generality, we can take τ = 0 to correspond
to a certain periapsis passage, rp (0) = rmin. Then one gets the symmetry relation

Fαadv (τ) = ε(α)F
α
ret (−τ) ,

with no summation over α where ε(α) = (−1, 1, 1,−1) in Schwarzschild coordinates. This trick enables
us to write

Fαcons (τ) =
1

2

[
Fαret (τ) + ε(α)F

α
ret (−τ)

]
, (4.2)

Fαdiss (τ) =
1

2

[
Fαret (τ)− ε(α)F

α
ret (−τ)

]
, (4.3)

i.e. eq. (4.1) in terms of the retarded SF alone. This welcome feature allows to extract the conservative
and dissipative pieces without resorting to a calculation of the advanced perturbation.
In section 4.1 we set the stage for analysing the shift in location and frequency of the ISCO in

a Schwarzschild background (section 4.2) and addressing the GSF-induced modi�cation of the spin-
precession rate (section 4.3). It is worth a mention that the conservative GSF modi�es also the
standard relativistic periastron advance [62]. Finally, in section 4.4 we build on our previous discussions
to consider these e�ects within the framework of ETGs. As we will occasionally remark, conservative
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4. Conservative e�ects

Figure 4.1.: E�ective radial potential for geodesics around a Schwarzschild BH. The dashed line rep-
resents the Newtonian e�ective potential with rest mass energy (RME) added to match
the relativistic case. In this plot, M = 1 and L = 2.

e�ects may happen to be buried underneath dissipative e�ects � as exempli�ed by eq. (4.26). However,
this by no means implies that our analysis becomes less useful, since the conservative part of the GSF
does in�uence the positional elements of the orbit, i.e. parameters containing phase information of the
orbit and determining physical attributes such as the (time-dependent) direction of the periapsis and
orientation of the orbital plane.

4.1. Perturbed geodesics in Schwarzschild

We consider a bound orbit of a non-spinning point-like particle with mass m around a Schwarzschild
BH of massM � m. In the limit m→ 0 the trajectory becomes a timelike geodesic of the background
spacetime, which, in Schwarzschild coordinates, we parametrise by the proper time τ in the form

zµp (τ) = (tp (τ) , rp (τ) , θp (τ) , φp (τ)) ,

with four-velocity uµ = dzµp/dτ . Without loss of generality we can set θp (τ) = π/2,1 so that the
geodesic equations are given by

dtp
dτ

= E

(
1− 2M

rp

)
,

dφp

dτ
=
L

r2
p

,

(
drp

dτ

)2

= E2 − V (rp, L) , with V (r, L) ≡
(

1− 2M

r

)(
1 +

L2

r2

)
, (4.4)

where E ≡ −ut and L ≡ uφ are the integrals of motion corresponding to the (speci�c, i.e. per unit
mass) energy and angular momentum of the particle.
When L2 > 12M2, the e�ective potential V (r, L) of the well-known radial motion develops a max-

imum and a minimum, and hence eccentric (bound) orbits exist � see also �g. 4.1. These orbits can

1Recall that the Killing vectors of the Schwarzschild metric that lead to conservation of the direction of angular
momentum imply that the particle will move in a plane. We can choose this to be the equatorial plane of our
coordinate system; if the particle is not in this plane, we can rotate coordinates until it is.
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be parametrised by the values of rp at the turning points, rmin and rmax (�periastron� and �apastron�,
respectively) or, alternatively, by the semilatus rectum p and the eccentricity e, de�ned through

p ≡ 2rminrmax

M (rmin + rmax)
, e ≡ rmax − rmin

rmax + rmin
. (4.5)

From the conditions V (rmin) = V (rmax) = E2, one obtains

E2 =
(p− 2− 2e) (p− 2 + 2e)

p (p− 3− e2)
,

L2 =
p2M2

p− 3− e2
.

Bound geodesics have 0 ≤ e < 1 and p > 6 + 2e; stable circular orbits have e = 0 and p ≥ 6, for
which E2 equals the minimum of V (r, L); the point (p, e) = (6, 0) is referred to as the innermost stable
circular orbit (ISCO) [51].
The notion of ISCO can actually be looked at from another point of view in the unperturbed, exactly

geodesic, O
(
m0
)
case. The radial equation that one obtains by di�erentiating (4.4) with respect to τ

reads
d2rp

dτ2
= Feff (rp, L) , with Feff (r, L) ≡ −1

2

∂V (r, L)

∂r
. (4.6)

When dealing with a slightly eccentric orbit that represents an e-perturbation of a circular orbit with
radius r◦, one can write

rp (τ) = r◦ + er1 (τ) +O
(
e2
)
, (4.7)

assuming that r1 (τ) is e-independent. Substituting in eq. (4.6) and reading the O (e) term gives

e
d2r1

dτ2
=
∂Feff (rp, L)

∂rp

∣∣∣∣
e=0

δerp +
∂Feff (rp, L)

∂ (L2)

∣∣∣∣
e=0

δeL
2,

where δe denotes a linear variation with respect to e (holding r◦ �xed). Since

δeL
2 ≡ d

dα
L2 (e+ αδe)

∣∣∣∣
0

=
2p2M2δe

(p− 3− e2)2

vanishes for a geodesic (δe = 0) and δerp = er1, we obtain

d2r1

dτ2
= −ω2

rr1, (4.8)

with

ω2
r ≡ −

∂Feff (rp, L)

∂rp

∣∣∣∣
e=0

=
1

2

∂2V (rp, L)

∂r2
p

∣∣∣∣
e=0

=
M (r◦ − 6M)

r3
◦ (r◦ − 3M)

.

Thus O (e) radial motion is simple-harmonic in τ with frequency ωr and the orbit is stable under
small-e perturbation when ω2

r > 0, namely for r◦ > 6M , and is perturbatively unstable when ω2
r < 0.

The ISCO is identi�ed by the condition ω2
r = 0, giving risco = 6M . Integrating eq. (4.8) with the

initial condition of a periapsis passage at τ = 0, we obtain r1 = −r◦ cosωrτ , and hence

rp (τ) = r◦ (1− e cosωrτ) +O
(
e2
)
.

Dealing with the �niteness of m (yet still much smaller than M), we consider the O (m) correction
to the orbit caused by the conservative piece of the GSF. The EoMs become [34]

m
dẼ

dτ̃
= −F cons

t , m
dL̃

dτ̃
= F cons

φ , (4.9)
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m
d2r̃p

dτ̃2
= mFeff

(
r̃p, L̃

)
+ F rcons, (4.10)

where an over-tilde indicates quantities associated with the SF-corrected orbit (i.e. no longer geodesic).
The SF-corrected speci�c energy and angular-momentum Ẽ (τ̃) and L̃ (τ̃) � not expected to be integrals
of motion any longer � are de�ned through

dt̃p
dτ̃

= Ẽ

(
1− 2M

r̃p

)
,

dφ̃p

dτ̃
=
L̃

r̃2
p

. (4.11)

Assuming, as it is reasonable, that the orbit remains bounded under the e�ect of the conservative
SF, we write r̃min ≤ r̃p (τ̃) ≤ r̃max and de�ne p and e as in eq. (4.5), replacing rmin → r̃min and
rmax → r̃max (we leave e and p untilded for notational clarity). Without loss of generality, we take
r̃ (τ̃ = 0) = r̃min.
The radial component F rcons, recalling eq. (4.2), is an even and periodic function of τ along the

geodesic zp (τ); hence also, at leading order in m, an even and periodic function of τ̃ along the
perturbed orbit z̃p (τ̃).2 Since r̃p (τ̃) too is even and periodic in τ̃ � and monotonically increasing
between r̃min and r̃max � one may express F rcons as a function of r̃p only (for given p and e), and we
shall indicate this by F rcons = F rcons (r̃p; p, e). In eq. (4.10) the quantities r̃p (τ), d2r̃p/dτ̃

2 and F rcons

are all periodic and even in τ , and we conclude that L̃ too is periodic and even in τ . Hence, we write
L̃ = L̃ (r̃p; p, e).

Specialising to a slightly eccentric and GSF-perturbed orbit, through O (e) we can write

r̃min = r◦ (1− e) and r̃max = r◦ (1 + e) , (4.12)

where r◦ = pM + O
(
e2
)
is the radius of the unperturbed circular orbit. In analogy to the eq. (4.7),

we write
r̃p (τ) = r◦ + er̃1 (τ) +O

(
e2
)
,

and similarly we �nd
F rcons = F rcons (r̃p; r◦, e) and L̃ = L̃ (r̃p; r◦, e) .

Through O
(
e0
)
, i.e. at the circular-orbit limit, L̃ is constant along the orbit and solving eq. (4.10)

with d2r̃p/dτ̃
2 = 0 gives

L̃2
◦ =

Mr2
◦

r◦ − 3M

(
1− r2

◦
mM

F r◦

)
, (4.13)

where the subscript �◦� denotes circular-orbit values; in particular, F r◦ denotes the circular-orbit value
of F rcons, where we omitted the label �cons� for brevity. Then, through O (e), eq. (4.10) gives

e
d2r̃1

dτ̃2
=
∂Feff

(
r̃p, L̃◦

)
∂r̃p

∣∣∣∣∣∣
r̃p=r◦

δer̃p +
∂Feff

(
r◦, L̃

)
∂
(
L̃2
)

∣∣∣∣∣∣
L̃=L̃◦

δeL̃
2 +m−1δeF

r
cons. (4.14)

The �rst linear variation is trivially given by δer̃p = er̃1; to evaluate δeL̃
2, one can exploit the fact

that, through O (e), L̃ depends on e both explicitly and implicitly, through r̃p (τ̃ ; r◦, e). This can be
seen expanding

L̃ (r̃p; r◦, e) = L̃(0) (r̃p; r◦) + eL̃(1) (r̃p; r◦) +O
(
e2
)
,

where the coe�cients L(n) depend on e only implicitly through r̃p. Now notice that sending e → −e
in eq. (4.12) amounts to replacing r̃min ↔ r̃max; hence L̃ (r̃min; r◦,∓e) = L̃ (r̃max; r◦,±e), which can
hold only if L̃(1) (r̃min; r◦) = −L̃(1) (r̃max; r◦). Assuming that L̃ is a continuous function of r̃p, the last
statement implies that L̃(1) = O (e) for all r̃p; we thus conclude that

L̃ (r̃p; r◦, e) = L̃(0) (r̃p; r◦) +O
(
e2
)
,

2This is because z̃p (τ̃)− zp (τ) ∼ O (m), while F rcons is already O
(
m2

)
.
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i.e., working at O (e), L̃ may depend on e only implicitly through r̃p. The same argument, with the
same conclusion, applies to F rcons. Hence, through O (e), we may write

δeL̃
2 = r̃1δr̃pL̃

2 = er̃1
dL̃2

dr̃p

∣∣∣∣∣
e=0

and δeF
r
cons = r̃1δr̃pF

r
cons = er̃1

dF rcons

dr̃p

∣∣∣∣
e=0

,

casting eq. (4.14) into the simple-harmonic form

d2r̃1

dτ̃2
= −ω̃2

r r̃1, (4.15)

with

ω̃2
r ≡ −

d

dr̃p

[
Feff

(
r̃p, L̃ (r̃p)

)
+m−1F rcons (r̃p)

]∣∣∣∣
r̃p=r◦

. (4.16)

One can �nally work for a more explicit expression for the GSF-shifted radial frequency ω̃r expanding
L̃ and F rcons through O (e). Like before, solving eq. (4.15) with the initial condition r̃p = r̃min one
�nds r̃1 = r◦ cos ω̃r τ̃ . Then we expand

F rcons = F r◦ + er̃1
dF rcons

dr̃p

∣∣∣∣
r̃p=r◦

+O
(
e2
)

= F r◦ + eF r1 cos ω̃r τ̃ +O
(
e2
)
, (4.17)

where we put

F r1 ≡ −r◦
dF rcons

dr̃p

∣∣∣∣
r̃p=r◦

.

Similarly, by also using eq. (4.9), one �nds

F cons
φ = eω̃rF

1
φ sin ω̃r τ̃ +O

(
e2
)
, (4.18)

where we put

F 1
φ ≡ mr◦

dL̃

dr̃p

∣∣∣∣∣
r̃p=r◦

.

Finally, with eqs. (4.17), (4.18) and (4.13) in hand, the GSF-shifted radial frequency (4.16) becomes

ω̃2
r = ω2

r −
3 (r◦ − 4M)

r◦ (r◦ − 3M)
m−1F r◦ +

1

r◦
m−1F r1 −

2

r4
◦

√
M (r◦ − 3M)m−1F 1

φ

=
M

r3
◦ (r◦ − 3M)

[
r◦ − 6M − 3r2

◦ (r◦ − 4M)

mM
F r◦ (4.19)

+
r2
◦ (r◦ − 3M)

mM
F r1 −

2 (r◦ − 3M)
√
M (r◦ − 3M)

mMr◦
F 1
φ

]
,

describing the O (m) conservative shift in the radial frequency o� its geodesic value. Notice that it
requires the knowledge of the GSF through O (e), as the circular-orbit GSF does not su�ce.

4.2. ISCO shift

The GSF shifts the ISCO both in frequency and location. To see this, we resort to the de�ning
condition

ω̃2
r (r◦ = r̃ISCO)

!
= 0

through O (m). Notice that in eq. (4.19) we are allowed to substitute r◦ ' rISCO = 6M in all the three
GSF terms, since such terms are already O (m) and this substitution introduces error only at O

(
m2
)
.

With this in mind, we readily obtain

∆risco ≡ r̃isco − risco = r̃isco − 6M

=
M2

m

(
216F r◦isco − 108F r1isco +

√
3

M2
F 1
φisco

)
(4.20)
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through O (m), where we have put

F r◦isco ≡ F r◦ (r◦ = 6M) , F r1isco ≡ F r1 (r◦ = 6M) , F 1
φisco ≡ F 1

φ (r◦ = 6M) .

This is a nice result obtained by [34], but one has to bear in mind that, since the shift ∆risco in
the position is gauge dependent (just like the GSF itself), it is not very useful as a benchmark for
comparisons among di�erent methods. That is why one may want to consider also another quantity,
the (GSF-corrected) circular-orbit azimuthal frequency,

Ω̃ ≡ dφ̃p

dt̃p
=

(
dt̃p
dτ̃

)−1
dφ̃p

dτ̃
=
ũφ

ũt
.

This quantity, as discussed in subsection 4.2.2, is invariant under all O (m) gauge transformations
whose generators respect the helical symmetry of the circular-orbit con�guration. Using eqs. (4.11)
and (4.13), we get

Ω̃ = Ω

1− r◦ (r◦ − 3M)

2mM
(

1− 2M
r◦

)F r◦
 , (4.21)

where

Ω ≡

√
M

r3
◦

(4.22)

is the geodesic (not GSF-corrected) value. When evaluated at r◦ = r̃isco, the GSF-induced frequency
shift ∆Ω ≡ Ω̃− Ω through O (m) reads [34]

∆Ωisco ≡ Ω̃ (r̃isco)− Ω (risco)

= − 1

63/2M

[
∆risco

4M
+

27M

2m
F r◦isco

]
, (4.23)

where
(
63/2M

)−1
= Ω (risco); notice the minus sign, as the conservative piece of the GSF acts to

decrease the azimuthal frequency at the ISCO.
Despite its gauge-invariant character (in the sense to be speci�ed in subsection 4.2.2), some care must

be exercised while interpreting the quantity expressed in (4.23). In fact, as pointed out in [55], the
Lorenz-gauge metric perturbation has the undesirable feature that its tt component (in Schwarzschild
coordinates) does not fall to zero as r → +∞, but instead to the constant value3

htt
r→∞−→ −2α, α ≡ m√

r◦ (r◦ − 3M)
.

A gauge transformation away from Lorenz into an asymptotically �at gauge is obtained by rescaling
the Lorenz-gauge time coordinate as

t −→ t̂ ≡
√

1 + 2αt = (1 + α) t+O
(
m2
)
.

This leads to a �rescaled� frequency, given through O (m) by

ˆ̃Ω = (1− α) Ω̃,

as this quantity has an explicit reference to t in its de�nition. It is a standard practice in relativistic
gravity to resort to asymptotically �at coordinates, because they relate coordinates to physical units.
This rescaled version now refers to an asymptotically-�at, Poincaré-Minkowski coordinate system �
as the one employed in PN and EOB methods � and it therefore provides a useful reference point

3This peculiarity merely relates to the choice of gauge; the underlying perturbed geometry is, of course, asymptotically
�at.
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for comparison between GSF and PN/EOB calculations, together with a handle on the strong-�eld
conservative dynamics. Hence, it is useful to give also the �t-rescaled� version of eq. (4.23), i.e.

∆Ω̂isco = − 1

63/2M

[
∆risco

4M
+

27

2

M

m
F r◦isco +

1√
18

m

M

]
, (4.24)

where we used α (r◦ = 6M) = (m/M) /
√

18.
In view of eqs. (4.24) and (4.20), the task of calculating the orbital frequency amounts to obtaining

numerical values for F r◦isco, F
r
1isco and F 1

φisco. The �rst one is the GSF along a strictly circular geodesic
with radius r◦ = 6M , while the computation of the remaining is much more delicate, as it requires to
resolve numerically the small variation in SF under a small-e perturbation of a circular orbit (recall
eqs. (4.17), (4.18)). The numerical values, obtained by [34] through mode-sum regularisation, are

F r◦isco = 0.024 466 5 (1) η/M,

F r1isco = 0.062 095 (1) η/M,

F 1
φisco = −1.066 5 (8)m,

and
∆Ω̂isco = Ωisco × 0.251 2 (4) η, (4.25)

where, recall, Ωisco ≡
(
63/2M

)−1
is the geodesic value of the orbital frequency at r = 6M .

4.2.1. Transition regime

Regardless of the shape and orientation of the orbit, the orbital evolution of an EMRI system can be
divided into three regimes:

� the adiabatic inspiral regime, during which the small body gradually descends through a sequence
of geodesic orbits with slowly-varying �constants� of the motion E, Lz and Q (in the general case
of a Kerr spacetime);

� the transition regime, during which the character of the orbit gradually changes from inspiral to
plunge;

� the plunge regime, during which the small body plunges into the horizon along a geodesic with
(nearly) �xed E, Lz and Q.

When the inspiraling body is far away from to the ISCO, it moves on a circular geodesic orbit with
angular velocity Ω. As it moves, the body radiates energy into GWs at a rate ĖGW = −Ė; this energy
loss causes the orbit to shrink adiabatically at a rate given by

dr

dt
= −ĖGW

dr

dE
.

The inspiral continues adiabatically until the body nears the ISCO, where its inspiral gradually ceases
to be adiabatic and it enters the transition regime. Radiation reaction, as controlled by ĖGW, continues
to drive the orbital evolution throughout the transition regime, but gradually becomes unimportant
as the transition ends and pure plunge takes over.
The breakdown of the adiabatic approximation can be understood in terms of the e�ective potential

(4.4) governing the 1D radial motion. Throughout the inspiral and transition regimes, the body moves
along a nearly circular orbit � its change of radius during each revolution around the BH is ∆r � r,
that becomes comparable to r only after the body is well into its �nal plunge. This near-circular
motion guarantees that the radiated energy is proportional to the radiated angular momentum via the
orbital angular velocity of the body [56],

dE

dτ
= Ω

dL

dτ
.
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Figure 4.2.: The gradually changing e�ective potential for radial geodesic motion, plotted for di�erent
values of ξ ≡ L − Lisco. As ξ decreases due to radiation reaction, the body at �rst sits
at the minimum of the potential (inspiral); as ξ nears zero, the body cannot keep up
with the inward motion of the minimum (transition); as ξ becomes negative, the potential
has become so steep that radiation reaction is no longer important and the body plunges
toward the central BH with nearly constant energy and angular momentum (plunge). In
this plot, M = 1 and Lisco =

√
12. Notice that the scales are di�erent from those adopted

in �g. 4.1; ξ = 0 corresponds to the 3L2 case.

Correspondingly, during transition regime, i.e.0 a narrow range of radii around risco, the energy and
angular momentum of the body are related by

E = Eisco + Ωξ, ξ ≡ L− Lisco.

At the end of the day, this means that we could regard the e�ective potential (4.4) as a function of r
and the di�erence ξ of the angular momentum of the body from that at the ISCO. Fig. 4.2 shows

V (r, ξ) ≡
(

1− 2M

r

)(
1 +

(Lisco + ξ)2

r2

)
for a sequence of angular momenta around ξ = 0, where

Lisco ≡
√

12M

is a textbook-result for the value of the angular momentum at the ISCO in a Schwarzschild spacetime.
As ξ decreases to zero, the maximum of the potential (denoted by q) migrates toward larger radii,

until it merges with the minimum (s) at the ISCO, at which point both extrema disappear; in fact,
no extrema occur for ξ < 0.
This situation, neglecting the conservative part of the SF, has been studied in [57], showing that the

width (in terms of the azimuthal frequency) of the transition regime scales with a power of the mass
ratio,

∆Ωdiss

Ωisco
' 4.387η2/5.

Hence,
∆Ωdiss

∆Ω̂isco

' 17η−3/5, (4.26)
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giving, for example, ' 67 700, 17 000 and 4 300 for mass ratios η = 10−6, 10−5 and 10−4, respectively.
Thus, for η in the astrophysically relevant range, the dissipative e�ect which drives the inspiral and
the eventual transition to the plunge is dominant; nevertheless, also the conservative part of the GSF
shifts the location of the ISCO away from risco = 6M by an O (m) amount, quanti�ed by (4.20).
What we should bring home from this discussion is that (i) for a true inspiral process under the

full GSF the notion of a well localized ISCO gets replaced with that of a �smeared out� transition
regime, and (ii) eq. (4.26) provides a �rm justi�cation for omitting the conservative part of the SF
in the analysis. Still, there is a fundamental practical value steaming from (4.25), in that it provides
an accurate, strong-�eld benchmark to inform the development of approximate methods, such as PN,
and make useful comparisons.

4.2.2. More on gauge invariance

We have referred to the azimuthal frequency as to a gauge-invariant feature of circular orbits. But, in
truth, that is not a gauge invariant in the usual sense of perturbation theory.
Let hαβ ∼ O (m) be the metric perturbation due to the particle, given in a speci�c gauge, and

consider the O (η) gauge transformation

xα −→ x′α = xα + ξα (x) .

As we already saw in section 2.2, eq. (2.8), this induces the gauge displacement

δξhαβ ≡ −2∇(α ξβ),

as well as a change in the SF given by eq. (2.9), which we restate here for convenience:

δξF
α = 2m∇αβγ∇(β ξγ).

Restricting the discussion to gauge transformations within the family of the �physically reasonable�
ones � meaning that hαβ has to retain its symmetries � it is possible to show that [53]

δξFt = δξFθ = δξFφ = 0,

δξFr = −3m
L2
◦
r4
◦
ξr. (4.27)

Hence, the �physically reasonable� gauge transformations may a�ect only the radial component of the
GSF. Using eq. (4.27) along with

δξr◦ = ξr, (4.28)

it can be immediately veri�ed that
δξΩ̃ = δξΩ = 0

within the class {
ξα : ξφ = 0 and (∂t + Ω∂φ) ξα = 0

}
of �physically reasonable� transformations [54], whose generators respect the helical symmetry of the
circular-orbit con�guration. The �rst condition prevents ξα from generating a rotation with respect
to the original coordinate system;4 the second condition implies that, along the orbit, dξα/dτ = 0
through O (m), implying that δξu

α = 0, uα being the four-velocity of the particle. This discussion
demonstrates that the azimuthal frequency (4.21) is a gauge-invariant quantity under a suitable class
of transformations, while the radial coordinate of the ISCO is not, as it is trivially seen from eq. (4.28).
The practical problem arises: in perturbation theory gauge conditions are not usually given as

explicit coordinate conditions, being more typically formulated in terms of conditions on the metric

4Take, for instance, ξα = $tδαφ (where $ is some O (η) constant), under which φ → φ − $t and thus Ω → Ω − $.
This (mathematically legitimate) transformation has clearly modi�ed the frequency, as ξα generated a rotation with
respect to the original coordinate system. It is not really surprising to �nd that the frequency de�ned with respect
to the rotating system di�ers from that de�ned in the original coordinate system.
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perturbation itself; hence, given a metric perturbation in a particular gauge, how do we tell if the gauge
is �physically reasonable�? This is an absolutely important question, because it impacts on our ability
to assign a proper physical interpretation to the GSF results and on the ability to compare results
with those obtained in other gauges or using other methods. Therefore, to address this question, we
must accompany the de�nition of each �invariant� quantity with a precise statement about the class of
�physically reasonable� gauges within which it remains invariant. That statement should be in the form
of conditions on the metric perturbation, and these conditions must refer to some genuine invariant
attributes of the spacetime in question. The formulation of conditions to de�ne a class of suitable
gauges is a subtle matter, which ultimately depends on the invariant quantity being calculated. If one
�nds that the gauges most convenient to work with � say, the Lorenz or radiation gauges � fall outside
the class of gauges deemed suitable for a particular calculation, one has to introduce, a posteriori, a
correction to the quantity being calculated, which accounts for the e�ect of a gauge transformation
from the working gauge onto the class of physically suitable ones.

4.3. Spin precession and self-torque

In 1916, Einstein proposed three test of his theory that were supposed to exploit observations of (i) the
precession of Mercury's perihelion, (ii) the de�ection of the light by the Sun and (iii) the gravitational
redshift. In the same year, de Sitter outlined a fourth test based on the precession of the spin of a
system [58]. His prediction was that the rotation axis of the Earth-Moon system as it moves around
the Sun experiences a non-Keplerian precession of ∼ 1.9 arcsec/century, an e�ect con�rmed by the
Lunar Laser Ranging experiment [59].
De Sitter precession, also known as �geodesic precession�, is a familiar e�ect of GR dynamics that is

associated with the failure of a spin vector to return to itself after being parallel-transported along a
closed curve in a curved spacetime. More extreme examples of relativistic precession are found outside
the Solar system: the spin of one member of the (only known) double-pulsar system PSR J0737-3039
appears to be precessing at a rate of Ωs ∼ 4.8°/yr [60]; given the orbital period of the binary of only
2.45 hours, this translates to ∼ 3.7 × 10−6 rad of precession angle per radian of orbital revolution �
a rather meagre e�ect, nevertheless consistent with GR. An extreme manifestation of spin precession
can be found in the late inspiral of compact-object binaries, including EMRIs, where its rate can reach
O (1) radians per radian of orbital revolution.
This e�ect was �rst quanti�ed in the context of GSF by [61], who considered geodesic precession

for a slowly spinning compact body of mass m in a circular orbit around a Schwarzschild BH of mass
M � m, calculating the O (η) shift in the precession rate due to the back-reaction of the conservative
piece of the GSF (which may be viewed as a �self-torque�). Starting with a test-particle in the limit
m→ 0 (back-reaction e�ects are negligible) and assuming that its spin sa is non-zero, but su�ciently
small so as not to a�ect its motion,5 one can state that such a particle follows a timelike geodesics γ,6

Dua

dλ
= ub∇bua = 0, (4.29)

with its spin parallel-transported along the path,

Dsa

dλ
= ub∇bsa = 0. (4.30)

Here, ua is the four-velocity of the particle, D/dλ ≡ ub∇b is the directional covariant derivative with
∇b the covariant derivative compatible with gab. From eqs. (4.29) and (4.30) it follows that the
magnitudes gabu

aub = −1 and gabuaub ≡ s2 are conserved along γ, like the product uasa = 0 as well
(sa is spatial in the rest frame of the object).

5This amounts to the possibility of neglecting the Mathisson-Papapetrou torque, which is a factor of s/m2 smaller than
the self-torque.

6Latin indices a, b, . . . from the beginning of the alphabet are abstract, while the letters i, j, . . . refer to spatial compon-
ents in a particular frame.
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Although the magnitude of the spin is conserved, its direction can precess. Considering an orthonor-
mal triad eai along γ with legs orthogonal to ua, eq. (4.30) can be written as

ds

dτ
= ωs × s,

where (s)i = eai sa are the frame components of the spin vector, τ is the proper time γ and ωs depends on
the choice of the triad. One can single out a natural class of locally de�ned triad by considering circular
orbits and thus exploiting the existence of a time-like Killing vector �eld ka satisfying ka|γ = ua; one
can thus choose the frames that are �comoving� with the particle in the sense that the Lie derivative
along ka vanishes, i.e.

Lkeai = kb∇beai − ebi∇bka = 0.

For any frame within this class, it can be shown that both ωs and ωs · s are constant along γ, and

(ωs)i =
1

2
eai εabcdu

bKcd, K b
a ≡ ∇akb

∣∣∣
γ
,

εabcd being the natural volume element associated with gab. Hence, s undergoes a precession about
the �xed direction of ωs with a proper-time frequency ωs ≡ |ωs| satisfying

ω2
s = −1

2
K b
a K

a
b , (4.31)

where the minus sign comes from the normalisation condition for ua. Notice that this frequency is of
course independent both of the particular choice of triad within the aforementioned class and of the
angle between s and ωs. We specialise now to the Schwarzschild geometry and introduce the standard
coordinates (t, r, θ, φ); then we choose a circular geodesic at θ = π/2 with radius (see eq. (4.22))

rΩ ≡
3

√
M

Ω2
,

where Ω ≡ uφ/ut is the orbital (azimuthal) frequency as seen by a distant stationary observer � as we
learnt from the discussion at the end of section 4.2. The (unique) Killing �eld that coincides with ua

on the geodesic is given by
ka = ut [(∂t)

a + Ω (∂φ)a] ,

where ut = (1− 3M/rΩ)−1/2. One can also show that ωs is aligned with the orbital angular momentum
� thus s precesses in the same sense as the orbital motion � and ωs = Ω. Eventually, one can introduce
a convenient measure of the precession e�ect as given by the angle of spin precession per radian of
orbital motion, which for a particle on a circular orbit around a Schwarzschild BH takes the form

ψ ≡ 1− ωs
uφ

= 1−
√

1− 3M

rΩ
= ψ (rΩ) . (4.32)

Before moving further, we should notice that ψ can be as large as ∼ 0.3 (at the ISCO, rΩ = 6M): this
is some 100° rotation of the spin axis over a single orbital period.
This geodesic e�ect gets perturbed when one endows the particle with a mass m � M , with the

GSF altering the spin-precession rate at O (m). As discussed in subsections 2.3.1 and 2.3.2 (see in
particular eq. (2.16)), eqs. (4.29), (4.30) remain valid through O (m) if one replaces the background
metric with the smooth e�ective metric g̃ab = gab+hR

ab: the perturbed orbit γ̃ is a geodesic of g̃ab. One
can thus write

ũb∇̃bũa = 0, ũb∇̃bs̃a = 0,

where the over-tilde denotes that we are now referring to quantities evaluated with respect to g̃ab. In
the spirit of GR equivalence principle, one can say that, just as geodesic motion in g̃ab corresponds to
self-acceleration in gab, the parallel transport of s̃a in g̃µν corresponds to a self-torque in g̃µν . Thus,
an e�ective torque is exerted on the spinning particle by its own perturbation, modifying the rate of
precession ψ away from its geodesic value (4.32). Since the dynamics we are dealing with is conservative,
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there still exists a Killing vector �eld k̃a
∣∣∣
γ̃

= ũa with respect to g̃ab, which in Schwarzschild coordinates,

given the constants ũt and Ω̃, can be written as

k̃a = ũt
[
(∂t)

a + Ω̃ (∂φ)a
]
.

Again, Ω̃ represents an orbital frequency and the spin precession is recovered through a �tilded� version
of eq. (4.31). The perturbed precession rate is de�ned as

ψ̃ ≡ 1− ω̃s
ũφ

;

letting γ be a circular geodesic of the Schwarzschild background with the same orbital frequency as γ̃,
Ω = Ω̃, we simply have

ka =
ut

ũt
k̃a.

This leads us to consider δψ ≡ ψ̃ − ψ as a function of the invariant quantity Ω, or equivalently the
�gauge-invariant� radius rΩ. Using now eq. (4.31) together with its tilded analog, one can �nd

δψ = −K
abΛab

2uφωs
,

where
Λab ≡ uc

(
∇[ah

R
b]c +Rabcdδγ

d
)
.

Here, Rabcd is the background Riemann tensor and δγd is a deviation vector7 between γ̃ and γ. For
circular orbits in a Schwarzschild background, this reduces to

δψ (Ω) = rΩ

(
Λrt − Λrφ

Ω

)
(4.33)

in Schwarzschild coordinates. Evaluating this expression requires knowledge of the deviation vector,
which can be cast in the form (see [61] and references therein)

δγb = −1

6

uauc
(
∇bhR

ac − 2∇ahRb
c

)(
1− 2M

rΩ

)
(uφ)

2
,

allowing the gauge-invariant8 function δψ (Ω) to be computed directly from the knowledge of ∇ahR
bc

on the worldline.

4.4. ISCO shift and spin precession in ETGs

The asymptotic �atness of the Schwarzschild spacetime guarantees that the GSF in ST and � through
mathematical equivalence � f (R) theories, eq. (3.20), takes the simpler form of its tail part only, eq.
(3.19), that we restate here:

FαETG = m
D2zα

dτ2
= Fαg,tail + Fαs,tail

=
1

2
mwαβ

(
∇βhtail

γδ − 2∇γhtail,β
δ

)
uγuδ + qwαβ∇βftail. (4.34)

7The one-parameter family γs (t) (s ∈ R) of geodesics parametrised by the a�ne parameter t de�nes a smooth two-
dimensional surface embedded in a manifoldM, i.e. the set of points xµ (s, t) ∈M. The coordinates on this surface
may be chosen to be s and t; one thus �nds two natural vector �elds: the tangent vector to the geodesics, tµ ≡ ∂txµ,
and the deviation vector, sµ ≡ ∂sx

µ. For a small displacement between neighbouring geodesics, we denote the
deviation vector by δγµ � or δγa in coordinate-free, abstract notation.

8In the same sense that we speci�ed in subsection 4.2.2.
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Recall that m ≡ m (Φ0)A (Φ0) and q ≡ −m (Φ0)α (Φ0) = − m′ (Φ)|Φ0
are the mass and charge of the

point-like object, depending on the �xed scalar �eld con�guration Φ0, whose evolution is approximately
given by

Dm

dτ
= −quα∇αftail,

Dq

dτ
= q′uα∇αftail,

showing how both mass and charge of the particle experience a history-dependent scalar self-�eld
correction. This has to be compared to the analogous GR result, given by eq. (2.12), that we restate
here:

FαGR = m
D2zα

dτ2
=

1

2
mwαβ

(
htail
γδβ − 2htail

βγδ

)
uγuδ. (4.35)

The tail term is de�ned by eq. (2.13). For both expressions, wαβ ≡ gαβ + uαuβ projects orthogonally
to the worldline.
Some remarks are necessary at this point. First, the tail �eld is not a nice one, as it does not satisfy

any particular �eld equation, nor is it di�erentiable on the worldline [20]. As we discussed in subsection
2.3.1, Detweiler and Whiting provided a more compelling form of the MiSaTaQuWa equation, replacing
the direct+tail decomposition of the retarded �eld with the S+R decomposition. The advantage is
in bolstering the interpretation of the �elds as self -�elds. In fact, the S-�eld, as the direct piece,
exhibits a 1/r, Coulomb-like divergence at the particle; but, unlike the direct piece, it satis�es the
inhomogeneous linearised Einstein equation Gαβ

[
hS1
]

= −16πT 1
αβ , eq. (2.20). Similarly, the R-�eld

includes the backscattered radiation in the tail, but it is also smooth on the worldline and is a vacuum
solution of the homogeneous wave equation Gαβ

[
hR1
]
. This is what drove our discussion about a

generalised equivalence principle in subsection 2.3.2. But, as already stressed in subsection 2.3.1,
it should be understood that neither of these two �elds represents the actual physical perturbation
from the particle, which is of course the retarded �eld; hence both the descriptions of the perturbed
motion are equally valid interpretation of the same physical e�ect � as such, eqs. (2.12) and (2.15) are
�interchangeable�. In writing eq. (2.22), we adopted the S+R decomposition; nevertheless, one can
perform that �regularisation� procedure using either hdir

αβ or hS
αβ , because both produce the same �nal

value for the GSF ([18] and references therein; see also fn. 11 on page 17).
Second, eq. (4.34) lives in the Einstein frame, while eq. (4.35) lives in the Jordan frame. This might

seem a serious, physical concern, suggesting that the Einstein-frame action (3.2) may not describe the
same physics as the Jordan-frame action (3.1) does. It should be noticed, however, that those are
just di�erent representations of the same theory. A misconception is that sometimes one speaks about
violation of the Einstein equivalence principle or the weak equivalence principle in the Einstein frame
simply implying that the Einstein-frame metric is not the metric whose geodesics coincide with free-fall
trajectories. As discussed in detail in [63], this last point � even though it is correct � by no means
imply a violation of the equivalence principles, simply because all that is required is that there exist
some metric whose geodesics coincide with free-fall trajectories. And indeed there is one: the metric
of the Jordan frame.9 It should be clear that whether or not we choose to represent a theory with
respect to this metric is, after all, simply irrelevant.
Coming back to the point of our discussion, in ETGs, even with a constant background scalar �eld,

the scalar perturbation is also expected to in�uence the motion of a point-particle orbiting a ST-BH,
as it would experience both the metric and scalar tail pieces of the GSF. At the end of the day,
these deviations from GR would likely have observational consequences. In order to establish a full
comparison between the theories, one can imagine to set up a numerical calculation of the GSF on a
point-particle around a BH in ST theory using, e.g., the mode-sum method; but doing so is, in general,
a quite complicated task � we discussed this tremendous technical problem in some detail in section
2.6. Hence, we will rather follow the path outlined in section 3.3.
In order to account for the variability of Newton's constant, we must �rst restore G and c in our

equations; this can be easily accomplished through dimensional analysis. Considering �rst the orbital

9Actually, the popular formulation of the Einstein equivalence principle in terms of the metric postulates (metric
theories) is representation-dependent: in this sense, the Jordan-frame metric has a distinguished status with respect
to any other conformal metric. However, it could be misleading to refer to a representation as �physical� or not; the
fact that it is better highlighted in the Jordan frame that the theory satis�es the Einstein equivalence principle does
not make this frame preferable, in much the same way that the local Lorentz frame is not a preferred one.
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4. Conservative e�ects

Figure 4.3.: The conservative correction to ψ as a function of the orbital radius rΩ. The solid line inter-
polates the numerical GSF data [61] and the dashed line shows the estimate of deviations
from GR for α = 5× 10−2. The inset zooms on the peak.

frequency at the ISCO, this means that

[Ωisco]
!

=
1

T
,

where square brackets indicate that we consider the physical dimensions of the quantity, which are
denoted by capital Roman types. Hence, we require that

T−1 !
=

[
Gacb

63/2M

]
=

1

M

(
L3

MT2

)a(
L

T

)b
= L3a+bM−(1+a)T−(2a+b),

which is solved by a = −1 and b = 3, therefore yielding

Ωisco =
c3

63/2GM

in SI units. We are now in a position to incorporate the correction discussed in section 3.3 by simply
replacing G → G (1 + α). In order to compare with eq. (4.24), we set again G = c = 1, so that our
estimate of the frequency at the ISCO becomes

ΩETG
isco =

1

63/2M (1 + α)
= ΩGR

isco (1 + α)−1 .

Our ansatz is that the shift in the orbital frequency retains its functional form in passing from GR to
ETGs, i.e. ∆ΩETG

isco ≡ ∆ΩGR
isco (Geff); recalling the numerical result given by eq. (4.25), this yields

∆ΩETG
isco

ΩGR
isco

=
0.251 2 (4) η

1 + α
.

In a similar fashion we can deal with the spin-precession shift given by eq. (4.33). Following [61],
we plot δψ/η against

rΩ

M
=

3

√
G

Ω2M2
,

in SI units. Repeating the previous reasoning, we get

rETG
Ω = rGR

Ω
3
√

1 + α (4.36)

for the �gauge-invariant� radius. In �g. 4.3 we plot the numerical results for δψ calculated in [61] and
compare with the shifted result given by eq. (4.36); the solid line is the interpolating cubic spline for
the GSF data, intended only as a guide to the eye as no model is assumed for �tting.
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Discussion and conclusion

The present work moved between two areas of current interest in theoretical physics, namely gravita-
tional self-force and extended theories of gravity. In particular, it has been analysed the still largely
unexplored observational potential that would descend from the latter when we could observe strong-
gravity phenomena such as those that EMRIs will o�er us. The full problem is still unapproachable
due to the technical di�culties that inevitably brings with it. However, the present can be considered a
preliminary work highlighting a wide margin of investigation, which could provide essential indications
to be tested when LISA will be launched into orbit (presumably) in 2034.
We have followed an already �rmly established indication of modi�cations to the equations of motion

in scalar-tensor gravity. Then we used a phenomenological approach to incorporate these modi�cations
in a simple and direct way. Clearly, the rather simple concept of a theory-agnostic parametrisation relies
on the fact that it is very di�cult, at present, to discern between GR and non-GR spacetimes. Hence,
a theory-dependent modelling would prove to be an unnecessary titanic enterprise. This motivates the
theory-independent, phenomenological approach that we pursued, being satisfactory as long as one is
content to capture some preliminary expectations as to the modi�cations one may reasonably expect.
Indeed, we have identi�ed a class of e�ects as a promising test-bed for gravitation theories, and the
results that we derived are summarised in section 4.4.
These results motivate the scienti�c interest in the promising �eld of gravitational self-force tech-

nique, not only for its considerable astrophysical impact, but also for the importance of the additional
constraints it could provide on the plethora of extended theories that have been developed so far. In
conclusion, we note again how in all our discussion the crucial role that future space-borne experiments
will play is prominently highlighted, since they will open for the �rst time a complete window on the
whole gravitational universe.
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A. Useful de�nitions

A.1. Fermi-Walker transport

Let γ be a timelike worldline described by parametric relations zµ (τ), with τ the proper time; let
uµ = dzµ/dτ be the normalised tangent vector of the curve and aµ = Duµ/dτ is its acceleration. A
vector �eld is said to be Fermi-Walker (FW) transported along γ if it is a solution to the di�erential
equation

Dvµ

dτ
= (vνa

ν)uµ − (vνu
ν) aµ.

Note that this reduces to parallel transport when aµ = 0 and γ is a geodesic. FW transport has two
important properties that follow from the de�nition. First, uµ is automatically FW transported along
γ (recall that uµ is orthogonal to aµ); second, if the vectors vµ and wµ are both FW transported along
γ, then their inner product is constant along γ, i.e. D (vµw

µ) /dτ = 0.
The natural moving frame associated with an accelerated observer consists of four orthonormal

vectors, each of which is Fermi-Walker transported along the worldline and one of which is the four-
velocity of the observer, uµ.

A.2. Parallel propagator

Any vector �eld Aµ (z) on a geodesic linking x to x′ can be decomposed in the vierbein eµa as Aµ = Aaeµa ,
and the vector frame components are Aa = Aµeaµ. If A

µ is parallel transported on the geodesic, then
the coe�cients Aa are constants. The vector at x can then be expressed as

Aα (x) =
(
Aα
′ (
x′
)
eaα′
(
x′
))
eαa (x) = gαα′

(
x, x′

)
Aα
′ (
x′
)
, gαα′

(
x, x′

)
≡ eαa (x) eaα′

(
x′
)
.

The object gαα′ is the parallel propagator : it takes a vector at x
′ and parallel-transports it to x along the

unique geodesic that links these points. One can show that the orderings of indices and arguments are
arbitrary. The action on tensors of arbitrary rank is easy to �gure out: there are as many occurrences
of the parallel propagator as indexes.

A.3. Fermi normal coordinates

Constructing the FNC of a point x in the normal convex neighbourhood of a timelike worldline γ
requires considering the unique spacelike geodesic β passing through x and intersecting γ orthogonally.
Denoting the intersection point by x̄ ≡ z (t) � with t denoting the value of the proper time at that
point � the FNC of x are de�ned by

x̂0 = t, x̂a = −eaᾱ (x̄)σᾱ (x, x̄) , σᾱ (x, x̄)uᾱ (x̄) = 0,

where barred indices indicates that the quantity transforms tensorially at the barred point; eaᾱ is
a spatial triad (a runs from 1 to 3) that is FW transported along the worldline; the last equation
determines x̄ from the requirement that the vector−σᾱ, tangent to β at x̄, be orthogonal to uᾱ, the
vector tangent to γ. The distance from x̄ to x along the geodesic β is given by

s2 ≡ δabx̂ax̂b = 2σ (x, x̄) ,

which is perturbatively small relative to the curvature scale. This gives an immediate meaning to x̂a,
the spatial FNC, and the time coordinate x̂0 is simply the proper time at the intersection point x̄. In
the text, hats are removed when no confusion can arise.
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A. Useful de�nitions

Figure A.1.: The retarded point x′ = z (u) is linked to x by a future-directed null geodesic; the simul-
taneous point x̄ = z (t) is linked to x by a spacelike geodesic that intersects γ orthogonally;
the advanced point x′′ = z (v) is linked to x by a past-directed null geodesic. [20]

A.4. Retarded coordinates, retarded/advanced point

FNC are constructed on the basis of a spacelike geodesic β connecting a �eld point x to the worldline
timelike γ. The retarded coordinates are based, instead, on a null geodesic that links the �eld point to
γ. Hence, we let x be within the normal convex neighbourhood of γ, β be the unique future-directed
null geodesic going from γ to x, and x′ ≡ z (u) be the (retarded) point at which β intersects γ � with
u denoting the value of the proper time at this point. The retarded coordinates are de�ned by

x̂0 = u, x̂a = −eaα′
(
x′
)
σα
′ (
x, x′

)
, σ

(
x, x′

)
= 0;

the second equality gives the frame components of the separation vector and the last one states that
x′ and x are linked by a null geodesic. From the fact that σα

′
, tangent to β at x′, is null, and that uα

′

is the tangent to γ at x′, one obtains

r ≡
√
δabx̂ax̂b = uα′σ

α′ ,

and r is a positive-de�nite quantity by virtue of the fact that β is a future-directed null geodesic (making
σα
′
past-directed). To fathom its meaning, consider a �at spacetime, where σα

′
= − (x− x′)α; in a

Lorentz frame momentarily comoving with the worldline, r = t− t′ > 0 is the spatial distance between
x and x′ as measured in this frame (recall that c = 1 here). In curved spacetime, r = uα′σ

α′ can still
be called the retarded distance between the point x and the worldline γ. So, the invariant quantity r
is an a�ne parameter on the null geodesic β that links x to x′, which can be loosely interpreted as the
time delay between x and x′ as measured by an observer comoving with the particle.
It proves convenient to introduce on the world line, along with the retarded and the simultaneous

points, an advanced point associated with the �eld point x. The latter will be denoted x′′ ≡ z (v) � with
v denoting the value of the proper time at x′′. The advanced point is linked to x by a past-directed null
geodesic and can be located by solving σ (x, x′′) = 0 together with the requirement that σα

′′
(x, x′′) be

a future-directed null vector. The a�ne-parameter distance between x and x′′ along the null geodesic
β is given by the positive-de�nite quantity

radv = −uα′′σα
′′

and it is called the advanced distance between x and the worldline γ.
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B. Failure of point-like approximation in full

General Relativity

The failure stems from the non-linearity of the Einstein �eld equation. From a physical perspective,
we know the Einstein equations imply that a su�ciently dense mass distribution will collapse to form
a BH, not a point particle. From a mathematical perspective, we know that the Einstein equations
with a point-particle source do not have a well-de�ned solution within any suitable class of functions.
We consider an object of mass m moving in a spacetime with a much larger external length scale
R � m. In an EMRI system, R can be the mass M of the large BH (in geometrical units, where mass
has dimensions of length). Wishing to take advantage of the separation of scales, we start expanding
the exact metric gµν of the system in the limit m/R → 0, i.e.

gµν = gµν + hµν = gµν +
+∞∑
n=1

εnhnµν = gµν + εh1
µν + ε2h2

µν +O
(
ε3
)
. (B.1)

Here ε is introduced as a formal expansion parameter to count powers of m/R. The zeroth-order term
is referred to as the background metric � in the case of an EMRI, it is the metric of the large BH. The
corrections hnµν describe the gravitational perturbations due to the small object. The full metric must
clearly satisfy the Einstein equation

Gµν [g] = 8πTµν , (B.2)

where Gµν [g] is the Einstein tensor of the spacetime and Tµν is the stress-energy tensor of the matter
content of the system. For simplicity, suppose that the small object represents the only matter, such
that Tµν is the stress-energy tensor of the small object itself. The expansion (B.1) yields

Gµν [g] = Gµν [g] + εδGµν
[
h1
]

+ ε2
(
δGµν

[
h2
]

+ δ2Gµν
[
h1
])

+O
(
ε3
)
,

where

δGµν
[
hn
]
≡ dGµν (g + λhn)

dλ

∣∣∣∣
λ=0

(B.3)

is the linearised Einstein tensor and is therefore linear in hnµν , while

δ2Gµν
[
h1
]
≡ 1

2

d2Gµν
(
g + λh1

)
dλ2

∣∣∣∣∣
λ=0

has the schematic form ∂h1∂h1 + h1∂2h1. Let us also suppose now that, in this limit, Tµν is approx-
imately that of a point particle, such that

Tµν = εT 1
µν + ε2T 2

µν +O
(
ε3
)
,

where T 0
µν = 0 since there is only the large BH and T 1

µν is the stress-energy of a point mass moving in
the background metric gµν .
Through �rst order in ε, no fundamental problem arises: we just get the linearised Einstein equation

with a point-particle source,
δGµν

[
h1
]

= 8πT 1
µν .

This is analogous to �Aµ−RµνAν = −4πjµ for the electromagnetic potential and its solutions can be
expressed in terms of Green's functions. Like in the electromagnetic case, the retarded �eld splits into
singular and regular �elds. The former behaves as hS1

µν ∼ m/r near the particle, r being a measure of

the distance to the particle's worldline; the latter, hR1
µν , is a smooth vacuum solution which contains
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B. Failure of point-like approximation in full General Relativity

the backscattered waves that arise from propagation within � not just on � the light cones of the
background spacetime.
We move now to the second-order term in the Einstein equation, which reads

δGµν
[
h2
]

= 8πT 2
µν − δ2Gµν

[
h1
]
. (B.4)

The second-order perturbation h2
µν is sourced by the quadratic combinations of h1

µν in δ2Gµν
[
h1
]
,

which generally behave like ∼ 1/r4 near the particle: this singularity is too strong to be integrated.
And there is no great hope of curing it. Since this term is constructed from a quadratic operation
on an integrable function (as opposed to a linear one), it is not even well de�ned as a distribution.
Furthermore, the source term 8πT 2

µν , if it is well de�ned at all, must be a distribution solely supported
on the particle's worldline � hence, it cannot cure the non-distributional divergence of δ2Gµν . Hence,
the �eld equation is ill de�ned and the point-particle treatment fails spectacularly. This means that in
gravity we must face the extended size of the small object head on, as point particles pose increasingly
worsening di�culties at non-linear orders in perturbation theory. It is actually well known that, in any
well-behaved space of functions there exists no solution to the fully non-linear eq. (B.2) with a point-
particle source [64]. Despite these obstacles, one might suppose that the point-particle idealisation
could still work as the divergences may be appropriately regularised; evidences for the viability of
this route have been provided by the use of dimensional regularisation in post-Newtonian theory
and by e�ective �eld theories. However, at a fundamental level, there should be no need for such a
regularisation in GR.
A principal goal of the SF theory is to generalise the point-particle approximation: to reduce the

object to a few �bulk� properties (such as mass and spin) supported on a worldline, without representing
it as a delta-function stress-energy tensor. In order to achieve this result, a change of perspective can
be useful. In fact, the key idea in generalising the notion of a point-particle is to focus not on the
small object itself, but on the gravitational �eld in its immediate neighbourhood, so that, rather than
thinking of the point-particle approximation as a statement about the stress-energy tensor of the object,
we can take it to be a statement about its �eld.
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C. Mode-sum method: an elementary example

Consider a point-like particle of mass m at rest in �at space. The location of the particle is xp in a
given Cartesian system. In this simple static con�guration, the perturbed Einstein equations (2.20)
read

4h̄tt = −16πmδ3 (x− xp) , (C.1)

where 4 is the 3D Laplacian and with all other components of h̄αβ vanishing. The static perturba-
tion automatically satis�es the Lorenz-gauge condition (2.10). Of course, in this simple case we can
immediately write down the exact physical (Coulomb-like) static solution,

h̄ret
tt =

4m

|x− xp|
,

and we also trivially have Fαself = 0. However, for the sake of the discussion, let us proceed by
considering the multipole expansion of the perturbation.
To this end, introduce polar coordinates (r, θ, φ), such that the particle is located at xp = (r0, θ0, φ0),

with r0 6= 0; then, expand the solution h̄ret
tt in spherical harmonics on the spheres with r = const, in

the form

h̄ret
tt =

+∞∑
`=0

h̄`tt (r, θ) , where h̄`tt (r, θ) ≡
∑̀
m=−`

h̃`mtt (r)Y`m (θ, φ) .

This expansion separates the �eld equation (C.1) into radial and angular parts, the former reading (for
each `,m)

∂2
r h̃

`m
tt +

2

r
∂rh̃

`m
tt −

` (`+ 1)

r2
h̃`mtt = −16πm

r2
0

Y ∗`m (θ0, φ0) δ (r − r0) ,

where an asterisk denotes complex conjugation. The unique physical `,m-mode solution, continuous
everywhere and regular at both r = 0 and r → +∞, reads

h̃`mtt (r) =
16πm

(2`+ 1) r0
Y ∗`m (θ0, φ0) ·

{
(r/r0)−(`+1) r ≥ r0

(r/r0)` r ≤ r0

,

thus giving

h̄`tt (r, θ) =
4m

r0
P` (cos Θ) ·

{
(r/r0)−(`+1) r ≥ r0

(r/r0)` r ≤ r0

, (C.2)

where P` is a Legendre polynomial and Θ is the angle subtended by the two radius vectors to x and
xp.
Now construct the force �eld Fαret as it is de�ned in eq. (2.24). We �nd F tret = 0, and the spatial

components are F iret = m∇̄itth̄tt = (m/4) ∂ih̄tt. Focus now on the i = r component. The `-mode is
given as F r`ret = (m/4) ∂rh̄

`
tt; using eq. (C.2) and evaluating F r`ret at the particle (taking Θ→ 0 followed

by r → r±0 ), we obtain

F r`ret± (~xp) = ∓Lm
2

r2
0

− m2

2r2
0

, L ≡ `+
1

2
.

Here the subscripts ± indicate the two (di�erent) values obtained by taking the particle limit from
�outside� and �inside�.
Let us note the following features manifest in the above simple analysis:

� the individual `-modes of the metric perturbation, h̄`αβ , are each continuous at the location of
the particle, although their derivatives are discontinuous there;
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C. Mode-sum method: an elementary example

� the individual `-modes Fα`ret have �nite one-sided values at the particle;

� at large `, each of this one-sided values of Fα`ret at the particle is dominated by a term ∝ ` (the
mode-sum obviously diverges at the particle, re�ecting the divergence of the full force Fαret there).

It turns out that all these features are quite generic and they carry over intact to the much more general
problem of a particle moving in Kerr geometry [18]. Speci�cally, one �nds that, at any point along
the trajectory of the particle, the (one-sided values of) modes Fα`ret (and F

α`
S as well) always admit the

large-` form (2.25). In this elementary problem the power series in 1/L ∼ 1/` stops at the L0 term,
but in general the series can be in�nite.
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