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Introduction

The brain is a fascinating and complex machine presenting a wide range of
features that modern computers are still far from reaching, as they are able to
outperform it only in the matter of tasks based on arithmetic. This powerful
instrument is composed of around 1011 neurons, cells arranged in networks
and capable of rapidly propagating signals over large distances by generating
electrical pulses, also known as spikes, that can travel along nerve fibers
called dendrites. Such networks of cells connected with many others exhibit
properties that cannot be inferred by simply studying the individual
components, i.e. the single neurons, alone: this is the main characteristic of
what are usually defined as complex systems, such as spin glasses, electrons
in metals, polymers, climatic systems, etc. It is also for this reason that the
study and the modelling of neural networks have benefited from the
contributions of methodologies typical of statistical mechanics, ranging from
the reformulation of McCulloch and Pitts model in terms of a spin magnetic
system, passing through the introduction of an energy function by Hopefield
and up to the employment by Amit et al. of the methods developed in the
theory of spin glasses.
The following work aims to study, through the simulation of its
time-evolution, the correlation functions of a neural network according to the
number and the nature of the connections between its neurons. The model
underlying this analysis is a stochastic version of the sigmoid rate model
introduced by J. Cowan, also called the stochastic rate model, in which each
neuron spikes with a probability per unit time dependent on its total synaptic
input coming from the neurons connected to it, whereas the spiking activity
decays in time at a constant rate.
This thesis is composed of three chapters and is organised as follows.
In the first chapter we discuss the neuron’s structure and its main properties,
focusing on the aspects that are most relevant to the modelling of neural
networks. Subsequently, we describe how neurons communicate with each
other and present the processes that make their interactions possible, namely
the generation of action potentials. Moreover, we discuss another relevant
aspect that affects neural activity: plasticity, responsible for learning,
memory, and brain’s ability to adapt.
In the second chapter we start by introducing one of the first significant
models of neural networks: the model introduced by McCulloch and Pitts,
which describes interactions between neurons using spin magnetic systems
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as an example, in particular in terms of the Ising model. After this, we
present the model used for our study, what we shall call the stochastic rate
model, addressing its main characteristics and highlighting the aspects most
relevant for our work focused on the study of time correlations. In this
context, we shall also discuss the Gillespie algorithm, which we used to
simulate the time evolution of our network.
Lastly, the third chapter is dedicated to the presentation of the numerical
aspects for the main quantities characterising the model we recurred to in our
work, and the simulations we have made with the aim to study, under a
wide-sense stationarity hypothesis, how the number and the nature of the
connections each nerve cell has in output affect the time-evolution of the
network’s activity in terms of a related autocorrelation coefficient.



Chapter 1

Neurons: physiology and
properties

In the present chapter we focus on describing the general structure and the
basic properties of the neuron, the cell representing the fundamental unit of
neural networks, and on discussing how it works and communicates with
other neurons.

A neuron, the elementary unit and main component of the nervous tissue in
almost all animals, is an electrically excitable cell with the ability to
communicate with other cells via electric pulses. The brain alone contains
around 1011 of these cells [4]. Neurons can perform three possible functions,
based on which we can make a first classification of their types: sensory
neurons respond to external inputs such as light, temperature, and touch,
thereby sending signals to the brain; this, in turn, communicates with motor
neurons by sending them signals and enabling them to control aspects such
as muscle contractions; lastly, the connector neurons’ function is to connect
neurons to other ones, specifically enabling connections between nerve cells
in the central nervous system (consisting primarily of spinal cord and brain)
and motor or sensory ones.
Neurons are mostly arranged in groups known as neural networks, which
present several properties (very little power required to work, limited
dimensions, high flexibility, efficient parallelisation etc.) that are highly
desirable in artificial systems: this is also the reason behind the strong
interest in neural computation.

1.1 Neuron Morphology
In biology there is no such a thing as a unique specimen of neuron, as there
are different types of nerve cells inside the human brain and body [1]: what
we will describe here is to be considered as an abstract neuron (”the” neuron)
presenting the most generic and common characteristics shared by many of
them that are regarded as the most relevant in their modelisation and artificial
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1.1. Neuron Morphology 2

implementation.
The neuron (see Figure 1.1) is a eucaryotic cell composed of three main parts:
the cell body, also known as soma, the dendrites, and the axon.

The soma is the center of the cell and contains the nucleus, where the
DNA is stored, the endoplasmatic reticulum, where the cell’s proteins are
synthesised, and several organelles, which perform specialised tasks.
From the soma extends a series of ramifying fibers called dendrites, which

Figure 1.1: Here is an ideal neuron with all its main components discussed
in this section. The arrows emphasise the unidirectionality of signal
transmission in input and output, from one cell to another: the dendrites drive
information inwards to the cell body, whereas the axon carries the signal (the
action potential) outwards to other cells (not only neurons but also other kinds
of cells, such as muscular ones) through synaptic terminals.
Figure adapted from [1].

are specialised in receiving chemical input-signals from other neurons in
order to convert them into electrical ones to be sent to the cell body.
Dendrites, together with the soma, constitute the input area of the neuron:
their complex branching tree-structure allows each neuron to receive input
signals from many other ones connected to it, usually leading to around
103 − 104 connections per single nerve cell.

Similarly to the dendrites, another element protrudes away from the cell
body, at a point of the soma called the axon hillock, namely the axon: it is a
tubular structure whose function is to carry signals to other neurons and that
can traverse large parts of the brain or even, in some particular cases, the
whole body [3]. Near its end, the axon arborizes into branches that connect
with other neurons, and the point at which two neurons communicate is
called synapse; the cell transmitting the signal along the axon is also referred
to as presynaptic cell, whereas the one receiving it in input is known as
postsynaptic cell: such a distinction entails that there is a specific
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directionality in the transmission of information from one neuron to the
other, and goes under what is known as the principle of dynamic polarisation
[2]. The presynaptic cell transmits signals from the end of its axon’s
branches, the presynaptic terminals, without having direct contact with the
postsynaptic neuron: the two interacting elements, the terminal and what is
typically a dendrite or the postsynaptic cell’s soma, are actually separated by
an empty space, the synaptic cleft.

The nerve cell is enclosed by a neuronal membrane which separates the
intracellular plasma from the molecules and the interstitial fluid outside and,
through the ion-channels that span on it, participates in controlling the flow
of ions inwards and outwards, thereby regulating the neuron’s electric
potential and allowing response to stimuli and communication via signal
transmission.

Ion channels are selective proteins that allow only one or a few types of
cations and anions per each kind of channel to pass, predominantly
potassium K+, sodium Na+, chloride Cl− and calcium Ca2+. Many
channels are said to be gated, in other words they allow ions to flow across
the membrane depending on external stimuli, with the kind of stimulus
needed to change their state being different for each type: for example,
voltage-gated channels are regulated by changes in voltage. On the other
side, resting channels are non-gated channels that are normally open when
the cell is at rest (i.e. it is not transmitting any signal) and are not influenced
by extrinsic factors.

Figure 1.2: Examples of different gated ion channels, with their possible
open and closed states, and a resting channel, which is always open; their
function is to control the flow of ions across the membrane, thus regulating
the neuronal potential and allowing the emission of signals from one neuron
to others.
Figure adapted from https://www.news-medical.net/health/
Importance-of-Ion-Channels-in-the-Body-(Italian)
.aspx.

https://www.news-medical.net/health/Importance-of-Ion-Channels-in-the-Body-(Italian).aspx
https://www.news-medical.net/health/Importance-of-Ion-Channels-in-the-Body-(Italian).aspx
https://www.news-medical.net/health/Importance-of-Ion-Channels-in-the-Body-(Italian).aspx
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1.2 Neural communication
Neurons communicate with each other via the generation and transmission of
electrical pulses, namely action potentials, that travel down the axon of the
presynaptic nerve cell and reach the input areas of the postsynaptic cells. Such
signals in turn induce a change in the input-receiving neuron’s potential and, if
this potential varies above a common threshold, the signal can be transmitted
further to other neurons.
In order to better understand neural communication, we must first discuss
what affects the neuron’s potential resting value and how it can change.

1.2.1 Membrane potential
All cells, neurons included, maintain at rest an electric potential difference
between the intracellular fluid and the external medium, the resting
membrane potential Vm; in the case of typical resting nerve cells this
difference amounts to a value in a range between 60 and 100 millivolts [2,6],
with the cell’s interior being more negative than the exterior. By
conventionally setting the external potential to zero, we say that the resting
membrane potential is about −65 mV and the cell is polarised.

Such a gradient in the electric potential is reached and maintained thanks
to the unequal distribution of ions on both sides of the membrane and to the
permeability of the membrane to one in particular of those charged particles,
the potassium cation K+. The sodium-potassium pump, specifically, pumps
sodium ions out of the cell and potassium back inside, in order to keep the
concentration of the first species about ten times lower than on the outside and
the one of the latter about twenty times higher [2]. Simultaneously, the elevate
number of potassium-specific resting ion channels lets the K+ cations leak
out of the cell, according to the difference in the concentration gradient, at a
rate higher than the rate at which sodium ions are allowed in, thus leading to
a reduction of the inner positive charge, ergo to a minor potential if compared
to the outside. In addition to this, inside the neuron there are also negative
organic ions (A−) that, since they are too large to diffuse across the membrane
through the channels spanning its surface, cannot leave the cell and therefore
contribute to its total negative potential.

Nernst and Goldman equations

As we have already stated, the diffusion of K+, due to a chemical gradient,
influences the electrical potential difference across the cell walls: higher
potential outside the cell, lower inside; this difference tends to grow bigger
as more and more potassium cations flow outside. Nevertheless, since they
are positively charged, the increasing external potential tends to hinder their
further flow through the ion channels; thus, ions are in general subject to two
different kind of forces opposing each other: an electrical force, that depends
on the potential difference (e.g. leading K+ inside the cell), and a chemical
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Figure 1.3: The sodium-potassium pump, on the left, is a transmembrane
protein that helps to maintain the membrane potential constant in resting
conditions. It expels 3 Na+ for every 2 K+ it leads in, consuming ATP in
the process. This active pumping is in turn balanced by the passive flux of
ions through membrane pores, the ion channels.
On the right are shown the typical chemical gradients for resting potential.
Figure adapted from https://ib.bioninja.com.au/
standard-level/topic-6-human-physiology/
65-neurons-and-synapses/resting-potential.html.

force, which on the other hand drives ions in order to compensate the
concentration gradient across the membrane and, in the specific case of
potassium ions, leads them outside the cell. At a certain point, the diffusion
of ions across the soma walls makes the potential reach a value at which both
forces balance each other: this is said to be the equilibrium potential Veq of
that particular species of ion.
The equilibrium potential for a generic ion, be it X , can be calculated
through what is called the Nernst equation [2]:

V (X)
eq =

RT

zF
ln

[X]out
[X]in

where, specifically,

• R is the universal gas constant, around 8.31 J/molK;

• T is the temperature expressed in kelvins;

• z is the valence of the ion X;

• F is the Faraday constant: F = NA · e ' 9.65× 104 C/mol;

• [X]out and [X]in are the concentrations of the ion outside and inside the
cell, respectively.

https://ib.bioninja.com.au/standard-level/topic-6-human-physiology/65-neurons-and-synapses/resting-potential.html
https://ib.bioninja.com.au/standard-level/topic-6-human-physiology/65-neurons-and-synapses/resting-potential.html
https://ib.bioninja.com.au/standard-level/topic-6-human-physiology/65-neurons-and-synapses/resting-potential.html
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For example, for potassium cations (for which z = 1) across a membrane
of a squid axon at room temperature (25◦ C, i.e. 298.15 K), we have that
V

(K+)
eq = −75 mV [2].

In order to determine the value of the resting membrane potential,
however, one has to take into account the contribution of the main ions
flowing across it, namely K+, Na+ and Cl−: the potential is indeed not one
only species equilibrium potential or a combination of all of them, as it is
rather determined by their respective intra- and extracellular concentrations
and also on how easily each chemical species can cross the membrane. This
last aspect is taken into account via the introduction of the permeability P
(expressed in units of velocity, cm/s), which resembles a diffusion constant
and represents each ions’ crossing rate. At this point, the membrane potential
can be written as follows:

Vm =
RT

F
ln
PK [K+]out + PNa[Na

+]out + PCl[Cl
−]in

PK [K+]in + PNa[Na+]in + PCl[Cl−]out
.

This is known as the Goldman equation and is only valid when the neuron is at
rest and the potential is not changing [2]. In particular, when the permeability
to one type of ion is higher than the permeability to the others, the former
equation reduces to the Nernst equation for that specific ion species [2].

1.2.2 Action potential
The basis of neurons’ signalling mechanism lies in their ability to alter
quickly and significantly their membrane potential. The direct cause of such
a change is of chemical nature: when an impulse reaches the presynaptic
terminals, it activates voltage-gated ion channels, hence provoking an influx
of Ca2+ that brings the vesicles present in the axon’s ends to release
neurotransmitters. These molecules cross the synaptic cleft and bind to the
receptors on the synaptic membrane. At this point, the chemical action at the
receptor sites, by activating gated channels, produces a change in the
postsynaptic cell’s membrane permeability to certain ion species, which
results in a flux of ions inside or outside the cell that alters the membrane
potential.

Depolarisation and hyperpolarisation: inhibitory and excitatory neurons

The activation of gated ion channels following the incoming of a signal can
have two opposite effects on the membrane potential. If the net flow of ions
is such that Vm increases towards the threshold limit (at −55 mV , [2]), the
membrane is subject to depolarisation; since depolarisation enhances the
neuron’s ability to generate an action potential, such an effect is said to be
excitatory. On the contrary, if the neurotransmitters induce Vm to grow more
negative, ergo away from the threshold, the nerve cell incurs
hyperpolarisation, which makes it less likely to transmit signals.
Consequently, such an influence is defined as inhibitory.
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Figure 1.4: Representation of the steps constituting the process of chemical
transfer across synapses.
Figure adapted from http://www.old-ib.bioninja.com.
au/standard-level/topic-6-human-health-and/
65-nerves-hormones-and.html.

Most neural models, as the ones presented in the next chapter, take into
account the inhibitory and excitatory nature of interactions that occur among
nerve cells by assuming that all synapses coming from a neuron have the same
nature, being either all depolarising or all hyperpolarising [1]. It is hence
logical, under such circumstances, to characterise neurons directly as either
excitatory or inhibitory, depending on their influence on the statuses of the
neurons they synapse upon.

Since a neuron receives electrical pulses from several neurons connected
to it, two or more incoming signals combine their effects in the postsynaptic
cell in what is known as summation; in particular, such a combination can
lead to a reciprocal cancellation in case an inhibitory and an excitatory inputs
cancel each other out. When spike-inducing stimuli arrive simultaneously
from different presynaptic neurons, we say that the summation is spatial,
whereas, in case they are generated in succession by a single presynaptic
neuron and combine in the postsynaptic cell thereby letting the potential
reach the threshold value, the summation is said to be temporal.

Generation of an action potential

If a neuron is depolarised sufficiently to have its membrane potential reach
and even cross the threshold level, voltage-gated sodium channels start
opening quickly: the following change in membrane permeability to such
cations causes the inward flux of Na+ to exceed the outward flow of K+,
hence resulting in a net influx of positive charges that induces an additional
increase in depolarisation. This increment then causes even more

http://www.old-ib.bioninja.com.au/standard-level/topic-6-human-health-and/65-nerves-hormones-and.html
http://www.old-ib.bioninja.com.au/standard-level/topic-6-human-health-and/65-nerves-hormones-and.html
http://www.old-ib.bioninja.com.au/standard-level/topic-6-human-health-and/65-nerves-hormones-and.html
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voltage-gated sodium channels to open, therefore bringing to more Na+

crossing the membrane inwards and accelerating the depolarisation process
even further. This avalanche progression produces then a pulse (the neuron is
also said to be firing) with an amplitude of 100 mV that lasts for about 1 ms
[3], the aforementioned action potential or spike, which travels down the
axon (without changing its form, [5]) and reaches other cells.
The generation process of the action potential, the elementary unit of signal
transmission, is all-or-none: this means that all stimuli below threshold will
not produce any signal, whereas all stimuli above threshold will result in the
same type of signal.
The form of the spikes does not carry any relevant information, as all the
pulses of a neuron look alike: what rather matters is the number of pulses
and the time intervals between them (with a chain of subsequent action
potentials emitted by the same nerve cell being called a spike train).
Furthermore, given the all-or-none nature of the signal generation, what
really conveys information about the nature of the generating stimuli is the
neural pathway along which the resulting signal travels [2].
While the potential peak is being reached, the variation of concentration
gradients and membrane potential lets us assume a set of permeability ratios
equal to PK : PNa : PCl = 1.0 : 20 : 0.45 [2] and, because of the dominance
of the membrane permeability to sodium, the Goldman equation, as
anticipated before, reduces the Nernst equation relative to Na+:

Vm ' V (Na+)
eq =

RT

F
ln

[Na+]out
[Na+]in

= 55 mV.

Therefore at the peak of the action potential, when the membrane is the most
permeable to sodium cations, Vm approaches V (Na+)

eq . Nevertheless, the
non-absent permeability to K+ and Cl− results in respectively an influx of
cations and an efflux of anions that oppose the further flow of sodium inside
the soma, hence preventing Vm from actually reaching the equilibrium
potential of sodium.

Once the peak has been reached at about 40 mV , two processes that end
the action potential start coming into play: this phase is called
repolarisation, which brings the membrane potential back to its resting
value. Already during the spiking activity, sodium ion-channels begin to
close, reducing the influx of Na+; at the same time, the change in potential
activates voltage-gated potassium channels, causing an increase in the K+

flow outside the cell. These two processes combine to reduce the number of
positive charges, thus inducing hyperpolarisation in the cell which brings it
back to its resting membrane potential [2].

For a few milliseconds after firing, it is impossible for a neuron to start
another pulse, since the equilibrium distribution of Na+ and K+ has to be
re-established by the sodium-potassium pump: this time interval is called
absolute refractory period; in addition, due to the hyperpolarisation process
occurring after the spiking, for a longer period known as the relative
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Figure 1.5: The graphic on the left shows the generation over time on the
action potential, while explaining on the right its different phases in terms of
the evolution of membrane permeability.
Figure adapted from http://www.old-ib.bioninja.com.
au/standard-level/topic-6-human-health-and/
65-nerves-hormones-and.html.

refractory period it is very unlikely for a neuron to fire again. The
contribution of both these intervals characterises the neuron’s refractory
period [3].

1.2.3 Synaptic plasticity
The strength of synaptic transmission is not static, but can actually change
over time: this neural feature is called synaptic plasticity and it consists in
either the strengthening or the weakening over time of the synaptic
interaction between neurons in order to enable the reshaping of the
connections and, therefore, of the whole neural circuit. Plasticity is thought
to be the mechanism underlying brain development, information storage and
the ability to learn [3, 23].
There are several factors, of both presynaptic and postsynaptic nature, that
can affect the intensity of the synaptic transmission between two nerve cells
[23], thus contributing to the expression of plasticity:

• increase in the number of postsynaptic receptors;

• increase in receptors’ response efficiency;

• increase in the neurotransmitter’s concentration in the synaptic cleft
either due to more releasing or less inactivation;

• increase in the number of synapses per cell;

http://www.old-ib.bioninja.com.au/standard-level/topic-6-human-health-and/65-nerves-hormones-and.html
http://www.old-ib.bioninja.com.au/standard-level/topic-6-human-health-and/65-nerves-hormones-and.html
http://www.old-ib.bioninja.com.au/standard-level/topic-6-human-health-and/65-nerves-hormones-and.html
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• extension of the synaptic surface or reduction of the synaptic cleft’s
size.

In 1949 Donald Olding Hebb, trying to describe synaptic plasticity and how
connections are modified, stated what is known as Hebb rule or principle,
which postulates that if one neuron drives the spiking activity of another
neuron it synapses upon, then the connection between them is potentiated
[24]. Indeed, it has been observed that stimulating synapses through spike
trains induces an increase in the synaptic strength that can last for periods
ranging between tens of millisecond, in which case it is known as short-term
potentiation (STP), to tens of minutes or longer, which is referred to as
long-term potentiation (LTP) and is due to postsynaptic depolarisation,
influx of Ca2+ and rise in the events of neurotransmitters release at
presynaptic level [3, 5, 23]. Although excitatory and inhibitory synapses can
exhibit plasticity, however, this has been generally less investigated for the
latter [3], under both a theoretical and an experimental aspect, hence we shall
refer strictly to the case of excitatory synaptic connections undergoing
plasticity-related mechanisms.

Figure 1.6: Spike-Time Dependent Plasticity (STDP). Here the change of the
synaptic connections is shown as a function of the time-difference between
pre- and postsynaptic spiking activities.
Figure adapted from http://www.scholarpedia.org/article/
Spike-timing_dependent_plasticity (schematically redrawn
after the results in [26]).

Hebb’s original idea has been to this day extended to a general form in order
to include another observed plasticity-related mechanism, namely the
long-term depression (LTD) of the synaptic strength, which consists in the

http://www.scholarpedia.org/article/Spike-timing_dependent_plasticity
http://www.scholarpedia.org/article/Spike-timing_dependent_plasticity
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weakening of the synaptic connection between the neurons that occurs when
the input nerve cell fails to affect the other neuron’s activity [3].
In agreement with Hebb’s rule, it has been observed that changes in synaptic
efficacy between the presynaptic neuron j and the postsynaptic cell i, ∆wij ,
depend on the time difference ti − tj between their respective spike times
(spike-time dependent plasticity, STDP) [5, 25-27; see figure 1.6].
Specifically, the connection between them is strengthened (∆wij > 0) if the
presynaptic spike occurs shortly before the postsynaptic neuron’s spiking
activity, whereas it is weakened (∆wij < 0) in case the sequence is reversed
and the presynaptic neuron fires after the cell it synapses upon. In fact, if we
look at such results in the light of Hebb’s principle, this means that, in the
first case, the presynaptic nerve cell takes part in the other cell’s activity,
while it does not in the other case, since the latter generates an action
potential without the other driving it.



Chapter 2

Modelling neural networks

In the following chapter we show how several neural networks’ features are
included in their modelisation by first introducing McCulloch and Pitts model
and then the stochastic rate model, the latter being the model underlying our
whole analysis.

2.1 The McCulloch and Pitts model
When examined under a neurophysiological point of view, many models of
neurons typically used for computational. problems and computer
simulations are considerably simplified and ”meagre”; however, as in many
other modelling situations, many details regarding the single neuron may
prove to be irrelevant in understanding the collective behaviour of systems of
interconnected nerve cells.
In 1943 McCulloch and Pitts first proposed a simple mathematical model of
a neuron [7] which still constitutes the basic reference in the field of neural
modelling. They characterised the nerve cell as a binary threshold unit
whose state can be either firing or not firing; such a state is affected by the
inputs the neuron receives from those synapsing upon it in the following
way: considering it to be the i-th neuron in a neural network, it can be either
active or quiescent at time t+ δt according to

ni(t+ δt) = θ

(∑
j

wijnj(t)− µi

)
, (2.1)

where the sum runs over all the other j-neurons and θ(x) is Heaviside function

θ(x) =

{
1 if x ≥ 0,

0 otherwise.

Hence ni can be either 1 or 0, which means respectively that the cell is firing
an action potential or is depolarised. The weights wij represent the intensity
of the synaptic interaction between neurons i and j and they are equal to

12
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zero if the two are not connected. Moreover, their sign can be either positive
or negative depending on the excitatory or inhibitory nature of the synapses
involved. Lastly, µi represents the threshold potential for the i-th neuron: the
cell starts firing only if the weighted sum

∑
j wijnj is bigger than or equal to

this value: such a feature reproduces what we have previously described as
the all-or-none aspect of neural spiking process.

This quite simple yet effective model therefore takes into account several

Figure 2.1: Graphical schematisation of McCulloch and Pitts model for a
single unit (neuron), whose state (output y) is affected by the weighted
summations of its input values, which is subsequently compared to a threshold
value.
Figure adapted from http://wwwold.ece.utep.edu/research/
webfuzzy/docs/kk-thesis/kk-thesis-html/node12.html.

of the neuronal properties described in the former chapter and also presents
some of the main features of the stochastic rate model that is to be described
in the next section. However, it is to be said that McCulloch and Pitts neuron
fails to include some characteristics that can affect neural network dynamics
[4]:

• the delay time δt is not the same for every cell, nor does the network
evolution result from a synchronous update of the neurons’ states;

• some neural cells can actually perform a nonlinear summation of
weighted inputs and the resulting state can be described by a
continuous number ni(t);

• the synaptic interaction strengths wij can vary over time due to neural
plasticity;

• some features of neural interactions, such as the number of
neurotransmitters released at the synaptic terminals, may change
unpredictably, thus requiring the introduction of stochastic elements in
the model.

http://wwwold.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node12.html
http://wwwold.ece.utep.edu/research/webfuzzy/docs/kk-thesis/kk-thesis-html/node12.html
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Therefore, in order to include some of the aspects mentioned above into a
mathematical model, a direct generalisation of McCulloch and Pitts model
can be done by changing equation 2.1 as follows:

ni(t+ δti) = f

(∑
j

wijnj(t)− µi

)
,

where the state of activation ni(t) is now a continuous-valued number and the
generic (not necessarily linear) function f(x) is called the activation function.

Comparison with the Ising model and the energy function

McCulloch and Pitts neuron exhibits resemblance with the spin unit of the
Ising model for a ferromagnet, as it also is a binary unit whose state si can be
either +1 (up) or −1 (down); as a matter of fact, one can turn the McCulloch
and Pitts unit state variable ni into an Ising one si through a simple linear
transformation

si = 2ni − 1,

which leads to a different formulation of equation 2.1 in terms of the new
variables:

si = sgn

(∑
j

wijsj − µ̃i

)
,

where µ̃i = 2µi −
∑

j wij in the new threshold value and

sgn(x) =

{
1 if x ≥ 0,

−1 otherwise.

The analogy can be drawn further by considering that, taking an Ising magnet
with no external magnetic field into account, the contributions from all other
spins sj influence si by generating a magnetic field

hi =
∑
j

Jijsj,

and the coefficients Jij measure the strength of the interaction between si
and sj similarly as the coefficients wij do with synaptic strengths.
In 1982, in analogy with the Hamiltonian used in Statistical Mechanics,
Hopefield introduced an energy function H into neural network theory [8],
which, for a model based on the McCulloch and Pitts neuron, takes the
following form:

H = −1

2

∑
j

wijsisj.

The matching is now complete: this function, resembling the equivalent
Hamiltonian for an Ising magnetic system, always decreases as the network
evolves according to its dynamical rules.
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2.2 The stochastic rate model
The model underlying our whole analysis is a stochastic version of the
sigmoid rate model introduced by J. Cowan in [9], called the stochastic rate
model by the authors of [10], where they used it to study the formation of
neuronal avalanches, observed in vivo and in vitro in several experiments, in
networks composed of stochastic neurons that can be either excitatory or
inhibitory. Neuronal avalanches are bursts of neural activity in which many
neurons fire synchronously, preceded and followed by configurations that on
the contrary are characterised by an absent firing activity [16]. The size of an
avalanche is the total number of neurons activated during the burst.
The stochastic rate model is able to predict, when excitation and inhibition
are closely balanced, the formation of avalanches whose size s follows a
power-law distribution s−β , also indicating that such a behaviour can be due
to noisy network dynamics rather than a result of the network operating near
criticality, across two different global ways of functioning [10]. The model is
built as follows.
Each neuron can be in either an active (a) state, namely, it is firing or is
going through its refractory period, or in a quiescent (q) one, meaning that it
is at rest, being depolarised and able to turn active again; such states are
designated in terms of a discrete variable a(t) that can be equal to either one
or zero, with the same interpretation as in the McCulloch and Pitts model for
the variable n(t). The nature of the connections each neuron has in output
with other ones depends on its nature, which can be excitatory or inhibitory,
and on the input-receiving neuron’s type.

Figure 2.2: Representation of the state transitions (a → q and q → a),
with transition rates included, for a single neuron; in particular, si(t) =∑

j wijaj(t) + h
(ext)
i .

Figure adapted from [10].

What gives the model its name is that the transition of a neuron from one
state to another has stochastic nature, with the state time evolution of a single
neuron being a continuous-time, two-state Markov process. Specifically, the
transition probability of the i-th neuron from active to quiescent in time dt is

P(a→ q, in time dt) = αdt;
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when dt approaches 0, α stands for the decay rate of the active state of the
unit. On the other hand, the transition probability from quiescent to active in
time dt is generally different for each neuron, as it depends on how it interacts
with the other nerve cells:

P(q → a, in time dt) = f(si(t))dt,

where
si(t) =

∑
j

wijaj(t) + h
(ext)
i

is the total synaptic input to the i-th neuron, resulting from the contribution of
an external and constant input, h(ext)i , and a network input given by the sum
over j above, whose weights wij are the strengths of the synaptic couplings
(particularly, considering the unidirectionality of synaptic connections, wij
represents the intensity of the connection that goes from j to i), and wii = 0
since a neuron does not interact with itself. Ergo, the firing rate is a function
of the total synaptic input.
The function f(s(t)), called response function, is equal for every neuron and
is chosen as follows:

f(s) =

{
tanh(s) if s > 0,

0 if s ≤ 0.

Figure 2.3: Plot of the response function versus the total synaptic input s. As
it can be seen from the picture above, the choice made for the form of f leads
to a neuron’s firing rate to be equal to zero if s is below a threshold (zero, in
the examined case), with growth close to linear as the synaptic input passes
the threshold, until it saturates to a maximum value (i.e. one) when s grows
bigger.
Figure adapted from [10].

As regards the aforementioned weights wij , their values depend only on the
type of cells they connect, not on any other neural aspect: by introducing NE

and NI , respectively the total number of excitatory and inhibitory neurons
composing the network (the two satisfy, of course, the constraint
NE + NI = N , where N is the total number of neurons), we have that the
outgoing synaptic strength is set equal to
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Figure 2.4: Representation of the synaptic strengths between the neurons of
excitatory (E) and inhibitory (I) populations. The arrows indicate the direction
of the input.
Figure adapted from [10].

• wEE

NE
, if it goes from an excitatory unit to another excitatory one;

• −wII

NI
, if it goes from an inhibitory unit to another inhibitory one;

• wIE

NE
, if it goes from an excitatory unit to an inhibitory one;

• −wEI

NI
, if it goes from an inhibitory unit to an excitatory one.

All the four coefficients, wEE, wII , wIE , and wEI , are positive. Such
assumptions result in two populations of excitatory and inhibitory nerve cells
interacting through different weights as in figure 2.4.

2.2.1 Network dynamics in the case of all-to-all connectivity
In case each neuron is connected to all the other neurons in the network,
namely, when there is all-to-all connectivity, stochastic rate model network
dynamics can be depicted as a random walk in a two-dimensional discrete
states space, where each state is defined in terms of the k excitatory and l
inhibitory active neurons, namely each state is a couple (k, l). Such a
random walk goes from one state to another through one-step,
single-component processes: this means that the total number of active units
can either increase or decrease by one at a time. The effect is that the
network state evolution can be represented as the system wandering on a
lattice, as it is shown in figure 2.5 [10].
The system’s stochastic evolution can be treated analytically by writing
down the master equation relatively to the probability distribution pk,l(t),
which indicates the probability that there are k excitatory and l inhibitory
active neurons at time t, ergo the system is in the state (k, l). By looking at
the central lattice point and the arrows in figure 2.5, we can see that we need
to take 8 steps into account in order to express the time variation of the
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Figure 2.5: Random walk on a two-dimensional lattice representing the
evolution of the network in terms of the number of active neurons belonging to
the excitatory and inhibitory populations. Next to each arrow, which indicates
the direction of the random walk single step, is the transition probability for
that particular process.
Figure adapted from [10].

probability pk,l(t), with 4 of those steps giving a positive contribution and
the other four a negative one.
Therefore, we shall now consider separately each of those 8 steps, according
to the model’s characteristics:

• from (k, l) to (k − 1, l): there are k active excitatory neurons, each
turning quiescent at a rate equal to α, hence there is a flow of rate αk
out of the state (k, l) proportional to pk,l(t), which means that the
contribution to the time evolution of pk,l(t) is −αkpk,l(t);

• from (k+1, l) to (k, l): similarly to the former case, the k+1 excitatory
neurons become quiescent at a rate α, thus leading the state towards
(k, l) and resulting in a total positive contribution to the probability
variation equal to α(k + 1)pk+1,l(t);

• from (k, l) to (k, l− 1): the situation is analogous to the one in the first
case analysed, now with a negative term −αlpk,l(t);

• from (k, l+ 1) to (k, l): positive probability flow in the state (k, l) with
a total contribution α(l + 1)pk,l+1(t);

• from (k, l) to (k+ 1, l): there are NE − k quiescent excitatory neurons,
each of them being ready to spike at a rate f(sE(k, l)), yielding a term
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−(NE − k)f(sE(k, l))pk,l(t), where

sE(k, l) =
wEE
NE

k − wEI
NI

l + h
(ext)
E ;

• from (k − 1, l) to (k, l): we have now a positive flow of rate given by
(NE − k + 1)f(sE(k − 1, l))pk−1,l(t);

• from (k, l) to (k, l+ 1): the spiking of NI − l inhibitory neurons results
in a rate term equal to−(NI − l)f(sI(k, l))pk,l(t), where the total input
is now

sI(k, l) =
wIE
NE

k − wII
NI

l + h
(ext)
I ;

• from (k, l − 1) to (k, l): this last addend is similar to the one from
(k−1, l) to (k, l), as it is a positive rate flow caused by the activation of
an inhibitory neuron, with a contribution equal to (NI−l+1)f(sI(k, l−
1))pk,l−1(t).

On the whole, all the deduced terms lead to the following master equation for
the probability distribution pk,l(t):

dpk,l
dt

(t) = α[(k + 1)pk+1,l(t) + (l + 1)pk,l+1(t)]− α(k + l)pk,l(t)

+ (NE − k + 1)f(sE(k − 1, l))pk−1,l(t)

+ (NI − l + 1)f(sI(k, l − 1))pk,l−1(t)

− [(NE − k)f(sE(k, l)) + (NI − l)f(sI(k, l))pk,l(t)]pk,l(t).

2.2.2 The Gillespie simulation algorithm
Generally speaking, the method of evaluating the stochastic time evolution
of a system is to derive and solve the relative master equation, which
describes the time evolution of the probability distribution of the system’s
states through time, as we did in the former section by considering the case
of all-to-all connectivity for a stochastic neural network. Nevertheless,
although the master equation can be easy to write, solving it is a quite hard
task; given this circumstance, despite being an exact and an elegant
formulation of the stochastic evolution problem, it is not of much use. It is
then useful to put the former approach aside and focus on how to simulate
the stochastic time evolution of the neural network.
For this purpose, we resort to the Gillespie algorithm, an event-driven
algorithm (in the sense that the simulation time advances only when the state
of the network changes) first introduced by D.T. Gillespie in [12] in 1976
and originally intended to deal with the description of the time behaviour of
a spatially homogeneous chemical system, whence the formalism we shall
use to present it.
We firstly suppose that a volume V contains a mixture of Xi molecules of
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chemical species Si at thermal equilibrium, where i = 1, . . . , N , and that
these N species interact through M different chemical reaction channels Rµ,
where µ = 1, . . . ,M [13]. The system state at time t is therefore determined
by the n-uple (X1, . . . , XN), and we define hµ as the number of distinct
molecular combinations that react accordingly to the Rµ available in that
state. Then we can introduce a total of M constants cµ, which depend solely
on the physical properties of the molecules and the system’s temperature,
such that the quantity cµdt represents the probability that a particular
combination of molecules will react according to Rµ in the next infinitesimal
time interval dt.
Starting from a given state (X1, . . . , XN) at time t, we need to know when
the next reaction will occur and which of the M possible reactions it will be,
so as to be able to tell how the system will evolve in time [12,13]. Because of
the nature of the reactions, this is to be discussed in a probabilistic sense: we
start by defining the probability distribution P (µ, τ), that is the probability
that, supposing to be in the state (X1, . . . , XN) at time t, the next reaction
will be Rµ and will occur in a time interval equal to [τ, τ + dτ ]. In particular,
τ ∈ [0,+∞[ and the joint probability density function P (µ, τ) is called by
Gillespie the reaction probability density function [13].
Hence, we are interested in determining the analytical expression for
P (µ, τ): this requires the definition of aµ as

aµdt = hµcµdt,

representing the probability that an Rµ reaction will occur in [t, t+ dt], when
the state of the system is (X1, . . . , XN) at time t. The reaction density
probability function can be then written as

P (µ, τ)dτ = P0(τ)aµdτ,

where P0(τ) is the probability that, in the state (X1, . . . , XN) at time t, no
reaction will occur in the time interval [t, t+τ ], whereas aµdτ now represents
the probability that an Rµ reaction will occur in [t+ τ, t+ τ + dτ ]. However,
since 1 −

∑
ν aνdτ

′ is the probability that no reaction will happen in a time
period dτ ′ if we start from state (X1, . . . , XN) at time t [13], we have

P0(τ
′ + dτ ′) = P0(τ

′)

(
1−

M∑
ν=1

aνdτ
′

)
,

from which we can derive the following form for P0(τ
′):

P0(τ) = e−a0τ ,

where a0 ≡
∑M

ν=1 aν is the total transition rate. Finally, we obtain the
analytical form for P (µ, τ):

P (µ, τ) =

{
aµe

−a0τ if τ ∈ [0,+∞[ and µ = 1, . . . ,M ;

0 otherwise,
(2.2)
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which is a joint probability density function on the space of the continuous
variable τ and the discrete variable µ. Now, the simulation of the system’s
time evolution proceeds through the generation of couples (µ, τ) that follow
the probability distribution whose form we have just obtained. In order to do
so, we shall primarily write

P (µ, τ) = P1(τ)P2(µ|τ), (2.3)

where P2(µ|τ) is the conditional probability that the next reaction that will
happen will be Rµ, given that it will occur at t+ τ . Because of the properties
of joint probability density functions [22], we know that

P1(τ) =
M∑
ν=1

P (ν, τ)

and, by substituting this into equation 2.3, we get that

P2(µ|τ) =
P (µ, τ)∑M
ν=1 P (ν, τ)

,

which, if we go back to equation 2.2, leads finally to

P1(τ) = a0e
−a0τ , 0 ≤ τ <∞, (2.4)

P2(µ|τ) =
aµ
a0
, µ = 1, . . . ,M. (2.5)

It can be easily seen that both distributions are normalised.
Therefore, the Gillespie algorithm for simulating the stochastic time evolution
of a chemically reacting system is composed of the following steps:

• the system is initialised by setting t to zero and choosing the initial
values for theM reaction constants cµ and theN numbersX1, . . . , XN ;

• the terms aµ and their sum a0 are calculated and stored;

• a couple (µ, τ) is generated according to the distributions in equations
2.5. Specifically, in order to generate those two numbers one can resort
to using a random number generator of couples (u1, u2), where both u1
and u2 are extracted according to a uniform distribution on the interval
[0, 1]: as a matter of fact, by making use of the inversion generating
method (see Appendix), one can calculate τ as

τ = − 1

a0
ln(u1)

and µ as the number such that

µ−1∑
ν=1

aν < u2a0 ≤
µ∑
ν=1

aν ;
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• time t is increased by τ and the populations Xi are modified according
to the occurring of reaction Rµ;

• the new values of the rates aµ are updated and so is a0 afterwards.

The whole time evolution process is then obtained by repeating those steps
until some predetermined halting condiction is verified, thus stopping the
iterations.

Since we are dealing with neural networks modelled according to the
stochastic rate model, we need to adapt the formalism above to our case. In
particular, given a network of N excitatory and inhibitory neurons with
generic connections, we have a total number of N ”chemical species” Si and
the state of the system at time t is determined, once the connections among
neurons are established, by (X1, . . . , XN), where in our case Xi can be
either 1 or 0 depending on whether the i-th neuron is active or quiescent
respectively. Hence, for each neuron are available two mutually exclusive
reactions:

active→ quiescent

quiescent→ active

in which case the aforementioned rates aµ are respectively

a
(1)
i = Xi(t)α;

a
(2)
i = (1−Xi(t))f(si(t)).

Gillespie algorithm for all-to-all connectivity

If we consider a neural network with all-to-all connectivity, the number of
variables Xi in the Gillespie algorithm reduces considerably. In fact, if we
suppose to deal with N neurons, NE of which are excitatory and NI

inhibitory, we can describe the system’s state only in terms of the number of
active excitatory and inhibitory neurons, k and l respectively, as we have
already shown when deriving the system’s master equation for this particular
case.
Therefore, the number of Xi’s shrinks to just 2 and we shall refer to them as
k and l, whereas the total number of reactions becomes 4, namely

(k, l)→ (k − 1, l)

(k, l)→ (k + 1, l)

(k, l)→ (k, l − 1)

(k, l)→ (k, l + 1),

with respective rates aµ:

a1 = kα;

a2 = (NE − k)f(sE);

a3 = lα;

a4 = (NI − l)f(sI).
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Specifically, in our simulations, in the wake of what was done in [10], we
choose that wE ≡ wIE = wEE , wI ≡ wEI = wII and h(ext)i ≡ h0 ∀i, thereby
leading to sE = sI ≡ s, where

s(k, l) =
wE
NE

k − wI
NI

l + h0.



Chapter 3

Correlations analysis

In this last chapter we describe the main aim of our work, that is the study,
by simulating the dynamic evolution of a neural network through the use of
the Gillespie algorithm, of a specific type of time autocovariance function in
dependence on how neurons are connected with each other. After discussing
the premises and the principal quantities for our analysis, we present the
results we have obtained and the conclusions we have come to.

3.1 Autocorrelation coefficient and connectivity
index

Modern technologies such as multielectrode arrays have made it easier to
measure correlations in neural networks and to understand their properties.
Indeed, understanding how the brain works and how information is
processed requires to study correlations between neurons [17]: for example,
they can provide enlightening details about the architecture of neural
networks, as with the connectivity in the retina and between nerve cells in
cortex [17-19].
Dealing with a system of N interconnected nerve cells, NE of which are
excitatory and NI inhibitory, we characterise its temporal evolution in terms
of the total number of active neurons at time t and indicate it with n(t),
which can be regarded as an indicator of the network’s activity. Specifically,
in the hypothesis of wide sense stationarity [14] for the discrete stochastic
process {n(t1), n(t2), . . . , n(tm)}, one of the two central quantities for us is
a normalised version of autocovariance, that is the autocorrelation coefficient

ρ(t) =
〈n(ti)n(ti + t)〉 − n2

σ2
, (3.1)

where, since in general 〈A〉 is the average of A, n ≡ 〈n〉 and σ2 = 〈(n−n)2〉,
while ti is a generic time. In fact, the stationarity of the time-evolution process
lets us assert that the function above only depends on the time difference
between two states n(ti) and n(ti + t) and that n and σ2 are constant in time.

24
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In particular, we have chosen ti as tin, namely the time such that n(tin) is
the initial state of the network at the beginning of each single time-evolution
simulation process with the Gillespie algorithm.
We are then interested in studying the time evolution of ρ(t) in dependence
of the number of connections the units of the network can form with each
other. Hence, another quantity of relevant interest is what we call the neural
network’s connectivity index γ: by indicating with NO the number outgoing
connections each cell has, we define it as

γ =
NO

N
.

Moreover, once we have set a specific value for γ, we investigate and compare
the functional forms of the related ρ(t) for two different cases:

• Case A: each neuron can be connected only once with another unit,
therefore NO represents how many other units each cell is connected
to;

• Case B: each neuron can establish more than one connection with the
same j-th neuron, which then results in a stronger synaptic connection
between the two. This in turn implies that the number of different other
units each cell is linked to can be actually smaller than the expected
value NO = γN , and that the synaptic strengths are not the same for
every excitatory or inhibitory connection, which is what on the contrary
happens in case A as we shall see from our choice for the wij in the next
section.

3.1.1 Values for the stochastic rate model’s parameters
We shall now discuss some of the simplifications we have made to approach
our simulations and the values we have chosen for the parameters that
characterise the stochastic rate model described in the former chapter.
For all our simulations, we worked with a neural network composed of
N = 1000 units, with half excitatory and half inhibitory neurons.
As regards the deactivation rate, in the wake of paper [10] we have set

α = 0.1 ms−1,

that corresponds to a spiking state with a time constant α−1 = 10 ms: such a
value takes the 1 ms duration of the action potential into account, plus 9 ms
approximating the neuron’s refractory period [10].
As for the activation rate, which depends on the total synaptic input

si(t) =
∑
j

wijaj(t) + hi,

we have set hi ≡ h0 for all neurons, with h0 = 0.001 in order to stimulate
spontaneous network dynamics by choosing a weak external input.
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Furthermore, the synaptic strengths wij are reduced to two different
parameters: since wij represents the intensity of the connection from j to i,
independently of i we have

• if unit j is excitatory, wij = wE/NE;

• if unit j is inhibitory, wij = −wI/NI ;

where wE and wI are both positive, and wij = 0 if the two cells are not
connected. We have chosen for both of them wE = wI = 10, in order to deal
with a balanced network (i.e. inhibition balances excitation), since
w− ≡ wE − wI � w+ ≡ wE + wI as it has been done in [10]. The
connections between units are generated randomly at the beginning of each
run, without considering a significant geometrical structure of the network,
and stay constant during the whole simulation. We have also introduced a
constant β = 1 ms−1 which, similarly to α with the deactivation rate, sets a
characteristic time

β−1 = 1 ms

for the spiking rate. Specifically, the relation defining β is the following:

P(q → a, in time dt) = βf(s(t))dt.

Lastly, the values we have chosen for γ belong in a range between 0.005
(ergo 5 connections per neuron) and 1, where the latter sees each cell have 999
synaptic connections because of the absence of self-interaction. However, of
the two aforementioned cases A and B of connections distributions types that
we shall examine, only the first can be considered of all-to-all connectivity
when γ = 1, as the second only entails that each unit has 999 links that, as we
shall see, are very likely to be established multiple times between the same
couples of neurons. Moreover, given the value of N we have chosen and the
fact that the number of synapses per neuron in cortex is thought to be around
103 − 104 [15], it seems reasonable to take the case of all-to-all connectivity
into account.

The established values for the main quantities that characterise the
stochastic rate model are displayed in the following table:

Parameter N NE α (ms−1) β (ms−1) wE wI h0

Value 1000 500 0.1 1 10 10 0.001

3.2 Simulation protocol and analysis of the
autocorrelations

We have simulated around 50 ms of our network’s activity, collecting
information relevant to the reconstruction of ρ(t) in a linear way every 1 ms
and starting from t = 0, which therefore leads to 51 temporal points for the
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time-evolution evaluation of the autocorrelation coefficient. Between each of
the time steps, the system has been made evolve according to the Gillespie
algorithm. This time evolution process has been repeated in its entirety in
several iterations per each simulation: once arrived at the last time step, the
network’s last state was used as the initial state of next iteration (the
aforementioned n(tin)). For each of the values we have considered for γ, we
have run a total of 100 simulations and calculated ρ(ti), for i = 0, . . . , 50, by
averaging on all the 100 estimations obtained for it.
The starting state of every network had every unit in the quiescent state and
the first iterations of every simulation have been discarded and not included
in the calculation of the correlations, as they have been regarded as a
thermalisation phase.
The two semilogarithmic plots in figures 3.1 and 3.2 show the various
reconstructed ρ(t)’s, depending on different choices for the value of the
connectivity index, in the two cases we have defined as case A and case B.
As it can be visually noticed by looking at the two groups of plots, for each
value of γ the resulting ρ(t) decreases monotonously towards zero as t
grows: the state of spiking activity of the system is less and less dependent
on the initial state as the network evolves. Moreover, we can see that the
outcomes are not the same in the two different cases A and B and we observe
no specific trend for the time evolution of ρ(t) by varying the parameter
gamma γ.

Figure 3.1: Case A: semilogarithmic plot of the time evolution of ρ(t) for γ ∈
{0.005, 0.01, 0.02, 0.05, 0.2, 0.5, 1}, when each neuron can only be connected
to the same neuron once. The time-scale on the x-axis is in milliseconds.
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Figure 3.2: Case B: semilogarithmic plot of the time evolution of ρ(t) for
γ ∈ {0.005, 0.01, 0.02, 0.05, 0.2, 0.5, 1}, when each neuron can establish
more than one connection with the same neuron. The time-scale on the x-
axis is in milliseconds.

For the sake of clarity and in order to better highlight the differences
between the results that out simulations have yielded, we compare now the
plots for ρ(t) considering each of the values for the parameter γ singularly in
figures from 3.3 to 3.9.

Figure 3.3: Comparison of the semilogarithmic plots of ρ(t) in the two cases
for γ = 0.005. The time-scale on the x-axis is in milliseconds.
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Figure 3.4: Comparison of the semilogarithmic plots of ρ(t) in the two cases
for γ = 0.01. The time-scale on the x-axis is in milliseconds.

Figure 3.5: Comparison of the semilogarithmic plots of ρ(t) in the two cases
for γ = 0.02. The time-scale on the x-axis is in milliseconds.

3.2.1 First results and decorrelation time
Now we discuss the first results we have come to through the analysis of the
time evolution of the various ρ’s. By looking at figures 3.3-3.9, the
difference between the time evolution of ρ(t) in cases A and B becomes more
evident as γ grows bigger: as a matter of fact one could expect the chance
that between two neurons more than one connection is established to
increase as the number of connections each nerve cells can form goes from
just 5 to 999, each of them being generated randomly and independently.
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Figure 3.6: Comparison of the semilogarithmic plots of ρ(t) in the two cases
for γ = 0.05. The time-scale on the x-axis is in milliseconds.

Figure 3.7: Comparison of the semilogarithmic plots of ρ(t) in the two
cases for γ = 0.2. Starting from this value of γ the difference between the
time evolutions of the two ρ(t) becomes more evident, resulting in a faster-
decreasing trend in Case B. The time-scale on the x-axis is in milliseconds.

Therefore, under the premises characterising case B, the bigger γ is, the
bigger is the chance that each unit actually forms more than one connection
with the same neuron, which means that the number of different units each
neuron synapses upon tends to be smaller than the value γN . Moreover,
unlike case A, the synaptic strengths do not have the same value for all
excitatory and inhibitory connections: this must play a role in ρ’s time
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Figure 3.8: Comparison of the semilogarithmic plots of ρ(t) in the two cases
for γ = 0.5. The time-scale on the x-axis is in milliseconds.

Figure 3.9: Comparison of the semilogarithmic plots of ρ(t) in the two cases
for γ = 1. Here the difference between the two cases is the most evident. The
time-scale on the x-axis is in milliseconds.

evolution since the difference in trends appears to follow a precise pattern,
whereas it does not if we base it solely on a different effective value of γ, as
seen from figures 3.1 and 3.2.
Hence, the first qualitative information we can deduce is that the evolution of
the autocorrelation function depends on both the connectivity (although ρ(t)
does not appear to change according to a specific trend as γ varies), more
generally considered as the number of connections each neuron has in
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output, and the connection strengths; specifically, we see that it decreases
faster and gets closer to zero when neurons have the chance to form stronger
connections with some of the other neurons.

Decorrelation time

In order to carry out a more quantitative analysis of the results we have
obtained, we introduce the decorrelation time τγ , defined as the time such
that

ρ(τγ) =
1

e
' 0.368, (3.2)

for each of the autocorrelations related to a specific γ.
Given the discrete points we have for the time evolution of ρ(t), we have
extracted τγ by first identifying two consecutive time-step points ta and tb
such that ρ(tb) ≤ 1/e ≤ ρ(ta) with ta < tb, and then by approximating the
analytic form of ρ(t) for t ∈ [ta, tb] through a linear interpolation:

ρ(t) =
ρb − ρa
tb − ta

(t− ta) + ρa,

where ρa ≡ ρ(ta) and ρb ≡ ρ(tb). At this point τγ has been estimated by
solving equation 3.2, which is straightforward, leading to

τγ =
tb − ta
ρa − ρb

(
ρa −

1

e

)
+ ta.

Figure 3.10: Comparison of the logarithmic plots of τγ(γ), expressed in
milliseconds, in the two cases.
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In Tables 3.1 and 3.2 we display the values we have obtained for τγ
relatively to γ, for both the covered cases. In addition, we can visualise the
differences in the decorrelation times by comparing the two logarithmic plots
of the decorrelation time seen as a function of the connectivity index in
figure 3.10: similarly to what we have already observed, the difference
between the two situations becomes clearer, if considered in terms of τγ , for
bigger values of the connectivity index: specifically, in case B τγ keeps
decreasing as γ grows towards one, while in case A it starts increasing after
γ = 0.2.

γ 0.005 0.01 0.02 0.05 0.2 0.5 1

τγ (ms) 16.8 27.2 24.8 21.1 18.2 18.7 19.8

Table 3.1: Table of decorrelation times τγ relative to each of the values of γ
taken into account, when neurons can only be connected once (case A).

γ 0.005 0.01 0.02 0.05 0.2 0.5 1

τγ (ms) 16.8 27.3 24.8 20.9 17.5 16.3 16.3

Table 3.2: Table of decorrelation times τγ relative to each of the values of
γ taken into account, when neurons can establish more than one connection
with each other (case B).



Conclusions

The study of the brain, and in particular of the networks of neurons that are
part of it, is of relevant interest because of the many implications that a better
understanding of such a complex machine could have: it could shed further
light on how we learn, remember, adapt to change and to physiological
traumas, also allowing us to better comprehend and, thus, medically treat
issues related to damaged or improperly functioning neural circuits. In
addition, getting to know the brain and neural networks more in detail could
let us improve the actual models used in order to artificially reproduce and
exploit their main strengths, such as their high flexibility and their very
efficient parallelisation, be it for faster and more complex calculations or for
the realisation of smarter AI.
Experimental evidence suggests that, in order to study more in depth the
brain’s information processing and computations performing, correlations
between neurons are to be taken into account. Indeed, the recent introduction
of new techniques such as multielectrode arrays has encouraged the measure
of various types of correlations in their temporal and spatial dependence,
hence leading to an increment of data about their properties and the
information they provide about the way the brain works.
In the present work we have considered a neural network of 1000 half
excitatory and half inhibitory neurons described in terms of the stochastic
rate model, whereby neural units can undergo a change in their state from
active to quiescent and vice versa in a probabilistic way. We have
investigated, by simulating our network’s time-evolution for 50 ms, the
time-dependence of the autocorrelation coefficient ρ for the total number of
spiking nerve cells, in the hypothesis of wide-sense stationarity for its
time-evolution process. Specifically, we have carried out our work by
analysing the aforesaid autocorrelation coefficient in dependence of the
number of outwards connections each neuron had, which we expressed
through the introduction of the parameter γ. This parameter has been given
two different connotations: in a first case, referred to case A, we have
considered a network where each neuron could be connected only once to
another neuron, thus letting γ convey directly information about the
percentage of other units each neuron was connected to. Secondly, in case B,
we have loosened our restrictions by giving neurons the chance to form more
than one connection with the same unit, in which case γ only carried
information about the number of outwards branching connections each nerve
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cell had. Moreover, we have chosen to deal, for both excitatory and
inhibitory synaptic transmissions, with constant values for the synaptic
weights wij , setting them equal to each other. This has led to a further
difference between the two cases which has affected the outcomes of our
simulations: the second case, as a matter of fact, differed from the first also
in having different connection strengths between different couples of
neurons, specifically dependent on the number of connections each neuron
had formed with that specific unit.
By exploring the time-evolution of ρ for different values of γ, we have
observed that it decreased monotonously towards zero and, although it
showed a dependence from the value of γ, it did not appear to follow a
specific γ-related trend.
We have subsequently compared ρ′s time-evolution in the two cases, for
each γ-value considered, and we have noticed that the difference in the
time-evolution of the autocorrelation coefficient became clearer for bigger
values of γ, specifically starting from 0.2, which suggested that the
divergence in the effective meaning of γ between the two cases, together
with the different connections distributions, played a relevant role.
Specifically, the comparisons always resulted in the aforementioned case B
presenting a ρ(t) decreasing faster and getting closer to 0: since the different
effective value of γ had not proven itself responsible for this common trend
in the first observations, it had to be ascribed to the different and stronger
synaptic connections available in the second case. In addition, by calculating
and comparing what we referred to as decorrelation time τγ in dependence of
γ, we have once again noticed the same diverging trend between the two
cases for big values of γ.
Further study about the role of connectivity for a stochastic model of neural
networks could be implemented by considering non-constant values for the
synaptic strengths, letting connections, either only excitatory or both
excitatory and inhibitory, to be established only once with one specific unit
and be modified according to plasticity rules as in phenomenological
spike-time dependent plasticity models. This could incorporate aspects of
both the cases we have studied. Moreover, another possible choice could be
to vary some of the parameters that could take part, considered in relation to
γ, in ρ’s time-evolution, such as the total number of neurons and the ratio
between excitatory and inhibitory populations; in addition, spatial
dependence could be introduced in the study by taking a spatial structure into
account and letting connections to be formed only between relatively close
neurons, in dependence of the network’s connectivity.



Appendix

The inversion generating method
The inversion generating method, also known as inverse transform sampling
and inverse transformation method, is a method based on the Monte Carlo
techniques that allows to generate random numbers distributed according to
any selected probability distribution, be it continuous or discrete, using
(pseudo)random numbers extracted according to a uniform distribution.
If we are interested in generating real numbers x following the probability
density function f(x), we first consider the related distribution function
F (x), defined as

F (x) =

∫ x

−∞
f(x′) dx′,

such that F (x0) represents the probability that x is lower than or equal to x0.
From the nature of f(x) and the normalisation condition, we have that F (x)
is a non-decreasing function of x and

lim
x→−∞

F (x) = 0,

lim
x→+∞

F (x) = 1.

In case the random variable is discrete, F (x) is a non-decreasing step
function. Of course, if x belongs to an interval [a, b] instead of (−∞,+∞)
over which f(x) is normalised, the same results hold if we substitute a and b
for −∞ and +∞ respectively.

The inverse generating method consists in first drawing a random number
u from the uniform distribution on [0, 1], and then taking for the sought x the
value that satisfies the equation F (x) = u, ergo

x = F−1(u),

where the existence of F−1(u) is ensured because of the properties of F (x)
we have mentioned above.
In order to prove this, let’s consider the probability that a number x0
generated according to the previous formula will lie between x and x + dx:
this probability is the same as the probability that u above will lie between
F (x) and F (x+ dx), which is equal to their difference because of the nature
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of u’s original probability distribution. Therefore, as a consequence of the
very definition of F (x) and the fundamental theorem of calculus, we have

F (x+ dx)− F (x) = f(x)dx,

thus proving the validity of our initial hypothesis.
In Chapter 2 we are interested in using this method for the generation of a
number x according to the probability density function

f(x) = αe−αx,

where 0 ≤ x <∞ and α is a positive constant number. Hence, since

F (x) = α

∫ x

0

e−αx
′
dx′ = 1− e−αx,

it is easy to see that inverting F (x) = u leads to

x =
1

α
ln

(
1

u

)
= − 1

α
ln(u).

In the discrete case, if we wish to generate an integer i according to the
probability mass function p(i) and define

F (i) =
i∑

j=−∞

p(j),

the inversion generating method tells us to draw a random number r uniformly
on the unit interval and to look for the i such that

F (i− 1) < r ≤ F (i).
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