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Chapter 1

INTRODUCTION

In 1783 John Michell, an amateur astronomer, hypotized the existence of a

star whose escape velocity was the speed of light. Setting the Newtonian

formula for the escape velocity equal to the speed of light, c, he found that

the radius of this hypotetical star was R = 2GM/c2. In terms of the mass of

the Sun, MS, R = 2.95(M/MS)km. However this resulting radius seemed to

be unrealistically small, so the scientist lost interest about this theoretical

speculation. In 1905, the "annus mirabilis", Albert Einstein published four

articles on the scientific paper "Annalen der Physik" revolutionizing the

concepts of space and time. In one of these articles Einstein exposed the well

known formula, E = mc2, and the special relativity theory which claims that

time is relative to the inertial reference frame losing the concepts of absolute

space and time. Indeed, he affirms the principle of constancy of the speed

of light, that assumes the same value c = 2.9979× 108km/s, indipendently

from the inertial observer. Subsequently, in 1915, Einstein published the

general theory of gravity which extends the special relativity theory to the

accelerated reference frames, based on the equivalence principle, according

to which the inertial mass mi is equivalent to the gravitational mass, mg.
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Furthermore he showed that gravity is due to the presence of a mass which

curves the so called spacetime (a four-dimensional vectorial space that is

made up of the eculideian three-dimensional space and a fourth dimension

represented by the time), as shown by the famous Einstein fields equations.

Before Einstein, the most accepted theory of gravity was the Newton’s one

with its universal gravitational law, Fg = GM1M2/R
2. According to

Newton’s theory, time is absolute and does not depend on the observer and

the gravitational force is istantaneous. Nowadays, thanks to Einstein we

know that every signal transmits at a maximum velocity that is the speed

of light in vacuum. The first solution of the Einstein field equations was

found by K. Schwarzschild in 1916, now called Schwarzschild metric. This

metric represents the gravitational field outside of a compact, non-rotating,

discharged object and is two time singular in the (t, r, θ, φ) coordinates;

in particular in r = 0 and in r = 2MG
c2

. However, in 1924 A. Eddington

introduced a new coordinate system in which the singularity at r = 2MG
c2

disappear (see appendix). This particular value of r is called Schwarzschild

radius. Instead, the r = 0 singularity is a true singularity because it does

not depend on the particular coordinate system, as we will see in the second

chapter. According to the Birkhoff theorem [1], the Schwarzschild metric

is the most general spherically symmetric vacuum solution of the Einsten

fiedl equations. Later, in 1931 Chandrasekhar [2] found that a non-rotating

body of electron degenerate-matter above a certain mass limit ( now called

Chandrasekhar limit corresponding to 1, 44 MS ) has no stable solutions.

In 1939, indeed Oppenheimer and others [3], using the Pauli exclusion

principle [4], predicted that neutron stars beyond another mass limit (the

Tolman-Oppenheimer-Volkoff (TOV) limit corresponding to 0.7MS)

would collapse further for the same reasons predicted by Chandrasekhar and
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concluded that no physical law would have prevented the star from collapsing

beyond its Schwarzschild radius, into a so called a Black Hole, BH. Later,

the TOV limit was redefined first in 1996 [5] (between 1, 5 and 3, 0 solar masses)

and then through the neutron star merging event, GW170817 (2, 17MS) [6,

7, 8, 9, 10]. However, Oppenheimer understood also that the Schwarzschild

radius was the radius of a limit surface on which time stops from the view-

point of an external observer. Later, Finkelstein and Kruskal extended the

analysis to the view-point of an hypothetical infalling observer into the BH

(as we will see in the second chapter). They found that this limit surface acts

like an unidirectional membrane, through which nothing can escape, neither

the light, once passed through. However, the Schwarzschild metric is not the

only solution of the Einstein field equations; infact between 1916 and 1918

Reissner and Nordstrom [11, 12] found a solution for a charged, spherical,

non-rotating body. Indeed, in 1963 R. Kerr [13] found the exact solution

for a rotating BH. Contemporarely to this important developments, other

discoveries were done: the pulsars by Jocelyn Bell [14, 15] in 1967, which by

1969 were shown to be rapidly rotating neutron stars. Moreover, thanks to

W. Israel [16] and others [17, 18, 19] the no-hair theorem emerged, stating

that a stationary BH solution is completely described by the three parameters

of the Kerr-Newmann metric [20, 21]: mass, angular momentum and

electric charge . However, in the late 1960s R. Penrose [22] and S. W.

Hawking used global techniques to prove that singularities appear generically,

indipendently from the symmetries imposed. Other important results were

done by Hawking [23] and others [24, 25, 26] in the early 1970s, which led

to the formulation of BH thermodynamics. Hawking himself in 1974, using

quantum field theory, showed that BHs should radiate like a black body,

predicting the effect now called Hawking radiation [27]. Contemporarely
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to the black hole developments, in 1916 with L. Flamm [28] first and with

A. Einstein and N. Rosen [29] later, it turns out the existence of a non-

trivial topology consisting in a bridge, known as Einstein–Rosen bridge,

connecting two areas of space-time that can be modeled as vacuum solutions

of the Einstein field equations, sometimes called two different "universes"

and that are now understood to be intrinsic parts of the maximally extended

version of the Schwarzschild metric describing an eternal black hole with no

charge and no rotation. Subsequently this non trivial structure can be seen

in a space-time diagram that uses Kruskal–Szekeres coordinates. For this

reason this structure is also known as Schwarzschild wormhole. However,

in 1962, John Archibald Wheeler and Robert W. Fuller [30] published a paper

showing that this type of wormhole is unstable if it connects two parts of

the same universe, and that it will pinch off too quickly for light (or any

particle moving slower than light) that falls in from one exterior region to

make it to the other exterior region. Although Schwarzschild wormholes are

not traversable in both directions, their existence inspired Kip Thorne and

Mike Morris [31] to imagine traversable wormholes created by holding the

"throat" of a Schwarzschild wormhole open with exotic matter (matter that

has negative mass/energy density), as we will see in the chapter 3. In the last

chapter, the fourth one, we will see a general approach to wormhole solutions

using the Morris-Thorne metric. So let us start with BHs introducing in

the next chapter the Schwarzschild metric, which is the first solution of the

Einstein field equations describing a BH, as we have seen. We will analyze

its properties and discuss what we mean with the concept of singularity.

Finally we will show important theorems of Penrose and Hawking, which

characterize singularities. Note that from now on I will use the (+,−,−,−)

signature and use the natural units, G = 1 and c = 1.
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Chapter 2

SINGULAR SOLUTIONS IN

METRIC THEORIES OF

GRAVITY

2.1 THE GENERAL RELATIVITY THEORY:

A BRIEF INTRODUCTION

General Relativity is the physical theory of gravity formulated by Einstein in

1915 and represents the best accepted theory of gravity nowaday. It is based

on the above mentioned Equivalence principle, that establishes that the

laws of physics to which the objects of a reference system in free-fall obey,

for sufficiently small regions of space-time, are those of the Special Relativity.

Another fundamental principle is the principle of General Covariance,

which places all reference systems on the same level of equality. In special

relativity, instead, there is a privileged class of reference systems, the inertial

ones for wchich the laws of physics are covariant. In general relativity the
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laws of physics are required to be covariant in all the reference systems. From

these principles Einstein find out his famous gravitational field equations:

Rαβ − 1
2
Rgαβ + Λgαβ = 8πTαβ

where Rαβ, R, gαβ, Λ and Tαβ are the Ricci tensor, the Ricci scalar,

the metric tensor, the cosmological constant and the stress-energy tensor,

respectively. This tensor equation represents a set of non-linear partial

differential equations and suggests that gravity is a manifestation of the

curvature of spacetime caused by matter, but also that curvature of matter is

a manifestation of gravity. The two aspects are equivalent. In particular, in

the presence of matter, spacetime cannot be described by a pseudo-Euclidean

metric, rather by a pseudo-Riemannian variety. Even the path of light, which

in vacuum is straight, will be curved in presence of a mass. The experimental

verification of this consequence of general relativity was carried out by A.

Eddington in 1919 and constituted proof of validity and correctness of the

theory. It must also be said that general relativity has been able to predict

also gravitational waves, black holes, wormholes, gravitational lensing and

more. Some of these phenomena have only recently been experimentally

verified. Let us present the first solution of the Einstein field equations, the

Schwarzschild metric.

2.2 THE SCHWARZSCHILD SOLUTION

In 1915 Karl Schwarzschild [32] found the first exact solution of the Einstein

field equations other than the trivial flat space solution and published it
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in January 1916 [18], a little more than a month after the publication of

Einstein’s theory of general relativity. The Schwarzschild solution can be

written as

ds2 = (1− 2M
r

)dt2 − 1
1− 2M

r

dr2 − r2(dθ2 + sen2θdφ2) (2.1)

in the coordinates (t, r, θ, φ). This solution is asymptotically flat, since,

as r tends to infinity, it tends to the Minkowski metric in polar coordinates.

This metric depends on the positive constant M, which can be interpreted

as the black hole mass. The Schwarzschild solution is spherically symmetric;

furthermore, it is static. As a consequence, the Schwarzschild metric is

invariant for temporal translations and for time reversal t = −t. It is possible

to show that any asymptotically flat and spherically symmetric solution of

Einstein’s equations in vacuum is also static, and then it is the Schwarzschild

solution. This result, named the Birkhoff theorem, is very important;

it implies, for instance, that the exterior of spherically symmetric stars is

described by the Schwarzschild solution, and that spherically symmetric

objects cannot be sources of gravitational radiation. The metric, in these

coordinates, is singular at r = 0 and at r = 2M. However, the singularity at

r = 2M depends of the coordinate choice and can be removed by changing

coordinates (and then it is called “coordinate singularity”); the singularity

r = 0, instead, is a true singularity of the metric (and is called “curvature

singularity”). Let us consider in detail the surface r = 2M, and the other

hypersurfaces r = constant. The normal of a hypersurface whose equation is

Σ : r − const = 0 is :
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nµ = Σ,µ = (0, 1, 0, 0) (2.2)

Let us consider a generic hypersurface. At any point of such hypersurface

we can introduce a locally inertial frame and rotate it in such a way that the

components of the normal vector are:

nα = (n0, n1, 0, 0) (2.3.a)

and

nαn
α = (n0)2− (n1)2 (2.3.b)

Consider a vector tα tangent to the surface at the same point. tα must be

orthogonal to nβ:

nαt
α = n0t0−n1t1 = 0 (2.4.a)

from which :

t0

t1
= n1

n0 (2.4.b)

thus:

tα = Λ(n1, n0, a, b) (2.5)
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where Λ, a e b are constant and arbitrary. Consequently the norm of the

tangent vector is:

tαt
α = Λ2[(n1)2− (n0)2− (a2 + b2)] = Λ2[nαn

α− (a2 + b2)] (2.6)

We have that:

• if nµnµ < 0, the hypersurface is called timelike, and tµ is necessarily a

timelike vector.

• if nµnµ > 0, the hypersurface is called spacelike, and tµ can be timelike,

spacelike or null.

• if nµnµ = 0, the hypersurface is called null, and tµ can be timelike or

null.

Let us consider a point P on a surface Σ = 0. From (2.2), (2.1), in the case

of an r = constant surface:

nµnνg
µν = grr = −(1− 2M

r
) (2.7)

thus the surfaces r = constant are spacelike if r < 2M , null if r =

2M , timelike if r > 2M . The null hypersurface r = 2M , then, separates

regions of spacetime where r = const are timelike hypersurfaces from regions

where r = const are spacelike hypersurfaces; therefore, an object crossing a

null hypersurface r = const can never come back; for this reason, the null
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hypersurface r = 2M is called horizon. The horizon r = 2M separates the

spacetime in two regions:

• the region with r > 2M , where the r = const. hypersurfaces are timelike;

the r tends to infinity limit, where the metric becomes flat, is in this

region, so we can consider this region as the exterior of the black hole;

• the region with r < 2M , where the r = const. hypersurfaces are

spacelike; an object which falls inside the horizon and enter in this

region can only continue falling to decreasing values of r, until it reaches

the curvature singularity r = 0; this region is then considered the

interior of the BH; the name BH is due to the fact that nothing, neither

objects nor signals of any kind, can escape from this region.

2.3 SINGULARITIES

A singularity of the metric is a point at which the determinant of either it

or its inverse vanish. The fact that r = 0 is a curvature singularity can be

shown by computing the curvature scalar:

RαβγδR
αβγδ = 48M

2

r6
(2.8)

which diverges at r = 0. The fact that r = 2M is a coordinate singularity

is less easy to prove: the finiteness of the polynomials in the curvature tensor

does not exclude, in principle, that there is a curvature singularity there.

Therefore we need to study this singularity, finding the coordinate change

which allows to remove it.
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2.4 SPACETIME EXTENSION.

To study the structure of singularities, we must first define rigorously the

concept of singularity in general relativity. This is not obvious, since a

singularity does not belong to the spacetime manifold. The key notion is the

lenght of geodesics.

definition 2.1 An n-dimensional pseudo-Riemannian manifold is a

pair (M, g), where M is an n-dimensional differentiable manifold and g is a

symmetric, nondegenerate 2-tensor field on M (called the metric). A pseudo-

Riemannian manifold is said to be Riemannian if g has signature (+ . . .

+), and is said to be Lorentzian if g has signature (−,+...+).

definition 2.2 [33] Let M be a connected smooth manifold endowed with

a smooth Riemannian metric g, i.e. gp varies smoothly in p on M. The length

of a piecewise smooth curve γ : s ∈ [0, 1] 7→M is defined by

L(s) =
∫ 1

0
||γ(s)′||ds (2.9)

where ||γ(s)′||=
√
gp(γ(s)′, γ(s)′) denotes the norm of γ(s)′ ∈ TpM with

respect to g and TpM is the tangent space in p .

definition 2.3

Let (M, g) be a Pseudo-Riemannian manifold. A curve, γ : I 7→ M ,

(where I ⊆ R is an interval) is a geodesic iff γ(s)′ is parallel along γ, that is,

iff
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Dγ′

ds
= ∇γ′γ

′ = 0 (2.10)

where γ′ is the derivative with respect to s. From (2.10) we have the so

called geodesic’s equation

d2xλ

ds2
+Γλµν

dxµ

ds
dxν

ds
= 0 (2.11)

where Γλµν is the Levi-Civita connection and ∇γ′ is the covariant derivative

with respect to γ′.

definition 2.4 [34]

If the geodesic is timelike, then it’s a possible world line for a freely falling

particle, and its uniformly ticking parameter s (called affine parameter) is

a multiple of the particle’s proper time τ :

s = aτ + b (2.12)

In Schwarzschild spacetime, for instance, an observer falling into the

BH reaches the singularity r = 0 in a finite amount of proper time, thus its

(timelike) geodesic has a finite length and cannot be extended; this means that

r = 0 is a singularity: whatever coordinate frame we choose, that geodesic

has a finite length. Therefore, to characterize a singular behaviour we need

the notion of geodesic completeness:
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definition 2.5 [35]: "A spacetime is geodesically complete if every

timelike and null geodesic can be extended to values arbitrarily large of the

affine parameter. If instead the spacetime admits at least one incomplete

(i.e., which cannot be extended) timelike or null geodesic, we say that it is

geodesically incomplete and this means that there is a singularity (either

a true curvature singularity or a coordinate singularity)".

In our analysis we only consider timelike or null geodesics because they

represent worldlines of massive or massless particles. Let us consider the

Schwarzschid metric (2.1). This is not defined at r = 0 and at r = 2M ; in

particular the second one r = 2M is a coordinate singularity and a geodesic

corresponding to an observer falling into the BH cannot be extended across

the hypersurface r = 2M and such a geodesics terminates at a finite value

of the affine parameter (notice that the observer arrives at r = 2M with

t = +∞). Howevere this singularity can be removed introducing the Kruskal

frame (U, V, θ, φ), for which

ds2 = 32M3

r
e−

r
2M dUdV−r2(dθ2+sen2θdφ2) (2.13)

where r = r(U, V ) and UV = (1− r
2M

)e
r

2M (see appendix).
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Figure 2.1 Interior and exterior of a Schwarzschild black hole in Kruskal

coordinates.

In these coordinates (see Fig. 2.1), the BH exterior r > 2M corresponds

to (U < 0, V > 0) and the BH interior r < 2M corresponds to (U > 0, V > 0

with UV < 1); the singularity r = 2M (and t = +∞) corresponds to the

semiaxis (U = 0, V > 0); the curvature singularity r = 0 corresponds to

the upper branch of the hyperbole UV = 1. We can notice that in this

new coordinate frame at the value r = 2M the metric does not become

singular. Furthermore we can extend this frame first considering the semiaxis
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U = 0, V > 0, since the line element (2.13) is not singular there. So we are

considering a new manifold M such that:

M ⊂M1UM2 (2.14)

defined by

V > 0, UV < 1 (2.15)

and where M1 and M2 are the r < 2M and the r > 2M manifold,

respectively ( the interior and the exterior of the BH). Therefore, in order to

eliminate a coordinate singularity we have to extend the spacetime manifold.

The manifold M should still be extended considering V ≤ 0: so we can extend

in this way our geodesics backward. Therefore (−∞ < U < +∞,−∞ <

V < +∞, with UV < 1) is the maximal extension (i.e., which can not be

furthet extended) of the Schwarzschild spacetime. This is the usual Kruskal

construction, shown in Fig. 2.2; In the Kruskal coordinates (2.13) the null

worldlines with θ, φ constant, are straight lines at 45°, i.e. U = const. and V

= const.; this can be seen easily from the line element (2.13): assuming θ, φ

constant, if either dU = 0 or dV = 0, then ds = 0. Therefore, the light-cone

can be drawn as in Minkowski spacetime:
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Figure 2.2: Maximal extension of the Schwarzschild spacetime in Kruskal

coordinates. the dashed line represents the worldline of an observer falling into

the black hole, and the wave-like curves represent the curvature singularity

r = 0.

We can see that signals (matter and energy) can only go from sector I

to sector II and not viceversa. Idem for the sectors IV and III, all signals
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can go only from sector III (white hole) to sector IV. Note that sector IV

is causally disconnected from sector I. One consideration about the r = 0

singularity: all the geodesics of the maximally extended manifold M that reach

this singularity are incomplete because they cannot be extended through

r = 0. So this singularity, as we have already seen, is a true singularity.

For instance, we can consider an observer falling inside a BH: its geodesic

reachs the singularity in a finite amount of proper time and cannot be further

extended. Another important consideration is that the Kruskal construction

presented above describes an eternal BH because we consider also the semiaxis

U < 0, V = 0 that corresponds to t = −∞, while BHs are astrophysical

object resulting from stellar collapse, which happen in a finite value of t. So

sectors III and IV have no physical meaning in this case.

Figure (2.3) The spatial geometry of the t=0 hypersurface of Schwarzschild’s

space-time shows what it would look like if it were embedded in a flat space.

One dimension is suppressed, that is the topology of the hypersurface is

R× S2 and not R× S1. Consequently, each circle represents a 2-sphere. The

portion of the surface placed above r = 2M corresponds to region I of Fig.
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(2.2); similarly, the portion of the surface located below r = 2M corresponds

to region IV.

2.5 NAKED SINGULARITIES AND THE COS-

MIC CONJECTURE CENSORSHIP

The singularity at r = 0 that occurs in spherically symmetric collapse is

hidden in the sense that no signal from it can reach I+(future null infinity).

This is not true in the Kruskal spacetime manifold since a signal from r = 0

in the white hole region can reach I+. This singularity is naked (in the sense

that there is not an event horizon from which nothing can escape). Another

example of a naked singularity is the M < 0 Schwarzschild solution:

ds2 = (1 + |2M |
r

)dt2− 1

(1+
|2M|
r

)
dr2− r2dΩ2 (2.16)

This solves Einstein’s equations so we have no a priori reason to exclude

it. Neither of these examples is relevant to gravitational collapse because

it can be shown that M ≥ 0 for physically reasonable matter (the positive

energy theorem [36] ); moreover, a white hole is the time reverse of a black

hole and both black and white holes are allowed by G.R. because of the time

reversibility of Einstein equations, but white holes require very special initial

conditions near the singularity, whereas black holes do not, so only black

holes can occur in practice. So the possibility illustrated above (formation of

a naked singularity in spherically-symmetric collapse) cannot occur. There

remains the possibility that naked singularities could form in non-spherical
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collapse. If this were to happen the future would eventually cease to be

predictable from data given on an initial spacelike hypersurface, Σ, called

Cauchy hypersurface ; this scenario led Penrose to suggest the:

Cosmic Conjecture Censorship: "Naked singularities cannot form

from gravitational collapse in an asymptotically flat spacetime that is non-

singular on some initial spacelike hypersurface (Cauchy surface)".

In other words, all singularities in the universe (with the exception of a

possible initial singularity) are covered by horizons. So there is no naked

singularity. So the fact that we cannot say what happens to the observer as

it reaches the singularity, constitutes a problem for the theory; on the other

hand, such problem is not severe from an operational point of view, since no

signal from the observer reaching the singularity can be sent outside the black

hole: the consistency of the theory, in a certain sense, is preserved by the

existence of the horizon. There is no definitive proof of this conjecture, but

there are indications supporting it. Therefore, it is commonly believed that

the cosmic censorship hypothesis is likely to be correct. As we mentioned

above, astrophysical BHs are the product of gravitational collapse, and then

are not eternal black holes. It is important to stress that, although we have

discussed the entire Schwarzschild solution, only the r > 2M region is directly

relevant for astrophysical observations: no signal can come from the interior

of the BH. Therefore, the most physically relevant properties of black holes

are the properties of the exterior region. On the other hand, it is impossible

to have a general understanding of the physics of black holes (and then of

the behaviour of astrophysical black holes) without having at least a general

idea of what’s going on inside; for this reason we have briefly discussed the
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features of the entire solution.

2.6 SINGULARITY THEOREMS

I want to finish this chapter showing two important theorems due to Penrose

(1965) and Hawking (1965-1966) which characterize singularities:

Theorem 2.6.1, R.Penrose, 1965

A spacetime which:

• admits a non-compact Cauchy hypersurface

• for which the null energy condition T (n, n) = Ric(n) ≥ 0 holds and

• which admits a trapped surface namely a surface for which both ingoing

and outgoing lightlike geodesics contract

is future null geodesically incomplete.

In 1965-66 Stephen Hawking immediately realizes that Penrose’s argument

works for the universe as a whole.

Theorem 2.6.2, S.W.Hawking, 1965-66

A spacetime which satisfies

• it admits a Cauchy hypersurface

• the (timelike unit) normals to the Cauchy hypersurface are expanding

(universe expansion), and

• Ric(v) ≥ 0 for every timelike vector,
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is timelike geodesically past incomplete.

Like we have already said, contemporarely to the developments about BHs,

other theoretical conjectures arised, wormholes, WHs. In the next chapter

we will see them starting from their definition and we will see that there are

various types of wormholes depending on particular properties, for instance,

their traversability.
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Chapter 3

WORMHOLE SOLUTIONS AND

THE PROBLEM OF

TOPOLOGY CHANGE

3.1 WORMHOLES: DEFINITION

Wormholes have been defined both geometrically and topologically. From

a topological view-point, an intra-universe wormhole (a wormhole between

two points in the same universe) is a compact region of spacetime whose

boundary is topologically trivial, but whose interior is not simply connected.

Formalizing this idea leads to definitions such as the following, by Matt Visser

[37]:

definition3.1 If a Minkowski spacetime contains a compact region Ω and

if the topology of Ω is of the form Ω ∼ R×Σ, where Σ is a three-manifold of

the nontrivial topology, whose boundary has topology of the form ∂Σ ∼ S2,
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and if, furthermore, the hypersurfaces Σ are all spacelike, then the region Ω

contains a quasipermanent intrauniverse wormhole.

Geometrically, wormholes can be described as regions of spacetime that

constrain the incremental deformation of closed surfaces. For example, in [38],

a wormhole is defined informally as: " a region of spacetime containing aworld

tube (the time evolution of a closed surface) that cannot be continuously

deformed to a world line (the time evolution of a point)". We can distinguish

various types of wormholes: for example, intra-universe and inter-universe

wormholes. Intra-universe wormholes are those which connect two different

regions of the same universe; while inter-universe wormoholes connect two

different universe. The difference between these two classes of wormholes

arises only on a global level (geometry and global topology): an observer who

limits himself to making local measurements, in the vicinity of the wormhole,

he cannot tell if he is traveling to another universe or to a different region of

the universe in which he is located. This is a trivial consequence of the fact

that wormholes are solutions of the equations of Einstein field, which do not

place constraints on the topology of the solutions. Another distinction is made

based on the variety in which the wormhole is immersed. In fact, we speak of

a Lorentzian wormhole if the manifold is Lorentzian (pseudo-Riemannian)

or of a Euclidean wormhole if the manifold is Riemannian (with Euclidean

metric).

3.2 THE EINSTEIN-ROSEN BRIDGE

Schwarzschild wormholes, also known asEinstein–Rosen bridges (named

after Albert Einstein and Nathan Rosen) are connections between areas of
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space that can be modeled as vacuum solutions to the Einstein field equations,

and that are now understood to be intrinsic parts of the maximally extended

version of the Schwarzschild metric describing an eternal black hole with no

charge and no rotation. As we have seen previously, the Schwarzschild metric

is :

ds2 = (1− 2M
r

)dt2 − 1
(1− 2M

r
)
dr2 − r2(dθ2 + sen2θdφ2) (3.1)

with r > 2M , θ from 0 to π, φ from 0 to 2π.

The vanishing of the determinant of the gµν for θ = 0 is unimportant,

since the corresponding (spatial) direction is not preferred. If one introduces

in place of r a new variable according to the equation:

u2 = r − 2M (3.2)

one obtains for ds2 the expression:

ds2 = −4(u2+2M)du2−(u2+2M)2(dθ2+sen2θdφ2)+ u2

u2+2M
dt2 (3.3)

where u ∈ (−∞,+∞) and c = Gn = 1.

In this new variable u = 0 corresponds to r = 2M and, indeed, r ∈ [0, 2M)

is not considered while the asimptotically flat region r ∈ [2M,+∞) twice.
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The four-dimensional space is described mathematically by two congruent

parts or "sheets", corresponding to u > 0 and u < 0, which are joined by a

hyperplane r =2m or u=0 in which g vanishes. We call such a connection

between the two sheets a bridge. We can easily generalize the result of

Einstein and Rosen considering that, without losing generality, a spherically

symmetrical metric can always be written in the form:

ds2 = e−2φ(r)(1− b(r)
r

)dt2 − dr2

(1− b(r)
r

)
− r2dΩ2 (3.4)

This metric has horizons corresponding to those values of r such that

b(rH) = rH . If a horizon is present, the geometry describes a black hole. We

introduce the u coordinate by placing:

u2 = r− rH (3.5)

Then (3.4) becomes:

ds2 = e−(u2+rH) rH+u2−b(rH+u2)
rH+u2

dt2 − 4 rH+u2

rH+u2−b(rH+u2)
u2du2 − (rH + u2)2dΩ2

(3.6)

The region close to u = 0 is the bridge connecting the asymptotically flat

region close to u = +∞ to the asymptotically flat one close to u = −∞. Let’s

analyze the trends of the metric (3.6) for u ≈ 0 and u 7→ ±∞: in the first

case, that is, near the throat of the wormhole:
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ds2 = e−φ(rH) u
2[1−b′(rH)]

rH
dt2−4 rH+u2

1−b′(rH)
du2− (rH +u2)2dΩ2 (3.7a)

where with the apex we have indicated the derivative with respect to the

radial coordinate r. In the second case, however, the asymptotic trend implies

that φ 7→ 0 and b 7→ 2m, for which the metric becomes:

ds2 = rH+u2−2M
rH+u2

dt2 − 4 rH+u2

rH+u2−2M
u2du2 − (rH + u2)2dΩ2 (3.7b)

The narrowest part of the geometry is defined as the throat. In the

Schwarzschild wormhole, the throat is located right at the event horizon. The

region near the throat, however, it is called bridge.
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Figure 3.1(a) Wormhole inter-universe. The radial coordinate u is related

to r by the relation u = ±
√
r − rH , with the + sign referring to the universe

placed higher and the sign - referring to that placed further down. The graph

represents the geometry of the wormhole at a given instant of time (t = cost).

Figure 3.1(b) Intra-universe wormhole. Similarly to Fig. (3.2), the graph

represents the geometry of the wormhole at a given instant of time (t = cost).

We also note that for this bridge construction we must take m > 0, as if

we have assumed m < 0, our bridge construction will fail since we require the

existence of a horizon for this coordinate transformation to work. Howevere,

from this description, it is clear that the main feature of Schwarzschild

wormhole is the presence of an event horizon. Now an important question:

are Einstein-Rosen bridges traversable? No. When we began the construction
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of our Schwarzschild wormhole, we started with the Schwarzschild solution

which is static, with a finite throat with circumference of 2m. This is true in

the region far away from the throat, since the Schwarzschild solution carries

no time dependence. Can we say that it is the same for the regions close to

the Schwarzschild throat? No! As we have already said in the introduction, it

was argued by Fuller and Wheeler that the Schwarzschild throat is dynamic,

that the throat opens and closes. This “pinch off” of the throat as they called

it, happens so fast that even a particle travelling at the speed of light cannot

get through the wormhole. The light will be pinched off and trapped in a

region of infinite curvature when the throat closes. So they are not traversable

since:

• Tidal gravitational forces at the throat are great. Traveller is killed

unless wormhole’s mass exceeds 104MS so the throat circumference will

exceed 105 km.

• Schwarzschild wormhole is not static but dynamic. As time pass, the

throat starts from zero circumference to a maximum circumference and

back again to zero. This happens so fast that even light will be trapped.

• the horizon is unstable under small perturbations.

3.3 TRAVERSABLE WORMHOLES

We can ask ourselves whether or not traversable wormholes exist. Let’s try

to understand what then must be the properties satisfied by the metric in

order to solve the problem of traversability. Considering, for simplicity, the

case of spherical symmetry (and static), we expect that:
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• Metric should be both spherically symmetric and static. This is just to

keep everything simple.

• Solution must everywhere obey the Einstein field equations. This

assumes correctness of GR.

• Solution must have a throat that connects two asymptotically flat

regions of spacetime.

• No horizon, since a horizon will prevent two-way travel through the

wormhole.

• Tidal gravitational forces experienced by a traveler must be bearably

small.

• Traveler must be able to cross through the wormhole in a finite and

reasonably small proper time.

• Physically reasonable stress-energy tensor generated by the matter and

fields.

• Solution must be stable under small perturbation.

• Should be possible to assemble the wormhole, i.e. assembly should

require both much less than the total mass of the universe and much

less than the age of the universe.

Our construction of the wormhole should at least satisfy the first four

criteria. Morris and Thorne calls this the “basic wormhole criteria”. The

following three criteria ( from the fifth to the seventh) are called “usability

criteria” since it deals with human physiological comfort. Thus we need to

find a solution that will satisfy the basic wormhole criteria. We will take the
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simple approach of Morris and Thorne. In 1987 Morris and Thorne realized

that this type of structure was possible and thus they began their analysis on

traversable wormholes , considering first of all a geometry that satisfied the

above requirements. They passed then to the computation of the components

of the Riemann tensor and used the equations of Einstein’s field to deduce

what the mass-energy distribution should be. In particular, they observed that

the impulse-energy tensor, near the throat, violated the so-called weak energy

condition (WEC). Of fundamental importance in the study of wormholes and,

in general, of Einstein’s field equation are the conditions on energy.

Weak Energy Condition (WEC). "The weak energy condition states

that for any timelike vector V:

TµνV
νV µ ≥ 0 (3.8)

Physically, this implies that the weak energy condition forces the local

energy density to be positive measured by any timelike observer. In terms of

principal pressures,

WEC ⇐⇒ ρ ≥ 0 and ρ+ ρj ≥ 0, ∀j (3.9)

where ρ is the energy density ".
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3.4 THE MORRIS-THORNE METRIC

To simplify the discussion, Morris and Thorne considered a spherically sym-

metrical, time-independent, non-rotating wormhole. The variety of interest it

was therefore that of a spherically symmetrical and static space-time, with

two asymptotically flat regions. Let’s start with the following metric, the

Morris-Thorne metric (in this section and in the next one we will use the

signature (−,+,+,+), as done by Morris and Thorne in their original article):

ds2 = −eφ(r)dt2 + dr2

1− b(r)
r

+ r2dΩ2 (3.10)

where b(r) and φ(r) are functions of the radial coordinate only and

represent, respectively, the shape function and the redshift function.

The throat of the wormhole is defined by the minimum value of the radial

coordinate, rmin = r0 given by the condition b(r0) = r0. Hence, r varies from

r0 to infinity. To be more precise, r has a non-monotone trend: decreases from

+∞ to r0 when moving through the universe placed further down, increases

from r0 to +∞ when you move out of the throat, towards the universe placed

higher. In any static and asymptotically flat metric, including one that

describes a wormhole, horizons are defined as non-singular surfaces in which

g00 7→ 0. Then, in order to satisfy the third requirement , φ(r) is forced to

have finite value ∀r. It is also required that the fields go to zero fast enough

for r 7→ ∞, in such a way as to have an asymptotically flat space-time:

b
r
7→ 0 and φ(r) 7→ 0 for r 7→ ∞ (3.11)
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Another fundamental ingredient in wormhole physics is the flaring-out

condition, which requires that (for more details see appendix):

b−b′r
2b2

> 0 (3.12)

Finally, the last constraint for the function b(r) is that b(r)
r
≤ 1, with the

valid equality only at the throat. This condition ensures that the proper

radial distance:

l(r) = ±
∫ r
r0

dr√
1− b(r)

r

(3.13)

has finite value and that the grr component of the metric tensor does not

change sign ∀r ≥ r0.

3.5 THE STRESS-ENERGY TENSOR

Birkoff’s theorem tells us that only one kind of vacuum, spherical, static and

asymptotically flat wormhole is allowed by Einstein field equations: a (non

traversable) Schwarzschild wormhole. Thus, a traversable wormhole must

be threated by matter or fields with a non-zero (non-vacuum) stress-energy

tensor. So let’s write the field equations in matter for the metric (3.10). We

will observe that the properties to be satisfied by the functions b(r) and φ(r)

will imply a strong constraint for the components of the momentum-energy

tensor that generates the space-time curvature. Below, we report only the

results obtained by Morris and Thorne in their 1987 paper, that we have

already cited in the introduction. In particular, for the components of the
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Einstein tensor, they obtained ( using natural units, c = 1, G = 1):

Gtt = b′

r2
(3.14)

Grr = − b
r3

+2(1− b
r
)φ
′

r
(3.15)

Gθθ = Gφφ = (1− b
r
)(φ′′− b′r−b

2r(r−b)φ
′+φ′2 + φ′

r
− b′r−b

2r2(r−b)) (3.16)

Non-vanishing stress-energy tensor components should be the same non-

vanishing components as the Einstein tensor. We denote the following:

Ttt = ρ(r) Trr = −τ(r) Tθθ = Tφφ = p(r) (3.17)

where ρ(r) is the total mass-energy density, τ(r) is the radial tension per

unit area, and p(r) is the pressure in the lateral direction (orthogonal to the

radial one). Now we use,

Gµν = 8πTµν (3.18)

Morris and Thorne arrived at the following field equations, as seen by

static observers in an orthonormal frame :

b′ = 8πr2ρ (3.19)
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φ′ = −8πτr3+b
2r(r−b) (3.20)

τ ′ = (ρ− τ)φ′ − 2p+τ
r

(3.21)

which can also be reversed and written in the form:

ρ = b′

8πr2
(3.22)

τ =
b
r
−2(r−b)φ′

8πr2
(3.23)

p = r
2
[(φ− τ)φ′ − τ ′]− τ (3.24)

We use the latter to write the following scalar function in terms of the

geometric functions b(r) and φ(r):

ζ
.
= τ−ρ
|ρ| =

b
r
−b′−2(r−b)φ′

|b′| (3.25)

which we can conveniently rewrite as:

ζ = 2b2

r|b′|
b−b′r
2b2
−2(r−b) φ′|b′| (3.26)

(3.25) and (3.26), together with the finite value of ρ and consequently of

b’ (eq. (3.22)) and to the fact that, in the throat, (r − b)φ 7→ 0, makes the
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condition (3.12) be written as:

ζ0 = τ0−ρ0
|ρ0| > 0 (3.27)

at or near the wormhole throat. The constraint that follows:

τ0 > ρ0 (3.28)

is very strong: in the throat of the wormhole, the tension must be suf-

ficiently large to exceed the total mass-energy density. Materials with the

property τ > ρ > 0 is called, exotic. The exotic nature of the wormhole’s

throat material is especially troublesome because of its implications for mea-

surements made by an observer who moves through the throat with a radial

velocity close to the speed of light, γ >> 1. Such an observer see in his

frame a negative energy density. So clearly the WEC condition is violated

by the result we obtained previously. So we may investigate whether this

violation can occur or not. At least we can see some examples of observing

this violation, due to quantum effects. An example of violation of energy

condition is the Casimir effect [39].

3.6 THE TOPOLOGICAL CENSORSHIP

Morris and Thorne’s work also represents the starting point for development

of the "no wormhole" theorems. The types of wormholes discussed so far had

some particular characteristics that simplified the treatment. However, in

general, a wormhole could be asymmetrical, with an arbitrarily long throat
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and with a time-dependent geometry. The analysis of such configurations is

rather difficult and requires the use of global techniques. Let’s see, therefore,

what are the topological properties and the related theorems that characterize

a completely generic wormhole. First some definitions:

• definition 3.1 : Null Energy Condition (NEC) This condition

states that the matter energy-momentum tensor Tµν obeys:

Tµνn
µnν ≥ 0, (3.29)

for any null (light-like) vector nµ , i.e., for any vector satisfying gµνnµnν =

0.

• definition 3.2 : Averaged Null Energy Condition (ANEC)

∫
Γ
Tµνn

µnνdλ ≥ 0 (3.30)

where Γ is a null curve, λ is a generic affine parameterization of the

curve Γ, whose corresponding tangent vector is n.

• definition 3.3: Globally Hyperbolic Spacetime

A spacetime M is globally hyperbolic if it has a Cauchy surface Σ

(a hypersurface which is met exactly once by every inextendible causal

curve).

• definition 3.4: Trivial Causal Curve
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A trivial causal curve is a curve which moves from the infinite past

to the infinite future, lying in the asymptotically flat region.

theorem 3.1: Topological Censorship

"In any globally hyperbolic and asymptotically flat spacetime, such that

every inextensible, null type geodesic satisfies the ANEC, every causal curve

from the past infinity to the future infinity is deformable to a trivial causal

curve."

The topological censorship theorem allows us to have a mathematically

precise and general definition of traversable wormhole:

• definition 3.5 "If an asymptotically flat space-time M has a causal

curve γ that extends from the past infinity to the future infinity and

such that is not deformable to a trivial causal curve, then M has a

traversable wormhole and the curve γ passes through the wormhole".

The fundamental point, therefore, is that a light ray (or an observer)

is able to cross the wormhole and reach the other side. Starting from this

definition, we obtain the inverse of the topological censorship theorem:

theorem 3.2

Any space-time containing a traversable wormhole or (1) is not globally

hyperbolic or (2) is such that there exists at least one null inextensible geodesic

along which the ANEC is violated.

The inverse theorem, therefore, states that a globally hyperbolic space-time
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that contains a traversable wormhole that satisfies Einstein’s field equations

must violate the ANEC. In the next chapter, as we have already anticipated

in the ontroduction, we will utilize the Morris-Thorne metric to find out two

wormhole solutions.
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Chapter 4

A GENERAL APPROACH TO

SPHERICALLY SYMMETRIC

WORMHOLES

4.1 THE RICCI CURVATURE SCALAR IN

SPHERICAL SYMMETRY

As standard, the Ricci scalar can be written as

R = gµνRµν = gµν [Γαµν,α−Γαµα,ν+ΓβαβΓαµν−ΓαβµΓβνα] (4.1)

where

Γαµν is the Christoffel symbol defined as:
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Γαµν = 1
2
gασ(gµσ,ν + gνσ,µ − gµν,σ). (4.2)

The most general spherically symmetric metric can be written as follows :

ds2 = A(t, r)dt2 −B(t, r)dr2 − r2dΩ2 (4.3)

and, imposing the spherical symmetry (4.3), the Ricci scalar in terms of

gravitational potentials A(r) and B(r) reads:

R(t, r) = B[ȦḂ−A′2]r2+A[r(Ḃ2−A′B′)+2B(2A′+rA′′−rB̈]−4A2[B2−B+rB′]
r2A2B2 (4.4)

where the prime indicates the derivative with respect to r while the dot

with respect to t. If the metric is time-independent, i.e., A(t, r) = A(r),

B(t, r) = B(r), we have :

R(r) = A(r)[2B(r)(2A′(r)+rA′′(r))−rA′(r)B′(r)]−B(r)A′(r)2r2−4A(r)2(B2−B(r)+rB′(r))
2r2A(r)2B(r)2

(4.5)

where the radial dependence of the gravitational potentials in now explicitly

shown. This expression can be seen as a constraint (a lagrangian bond) for

the functions A(r) and B(r) once a specific form of Ricci scalar is given. In

particular, it reduces to a Bernoulli equation of index two, that is:

B′(r) + h(r)B(r) + l(r)B(r)2 = 0, (4.6)
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with respect to the metric potential B(r) [40, 41, 42]:

B(r)′ + r2A′(r)2−4A(r)2−2rA(r)[2A(r)′+rA(r)′′]
rA(r)[4A(r)+rA′(r)]

B(r) + 2A(r)[2+r2R(r)]
r[4A(r)+rA′(r)]

B(r)2 = 0

(4.7)

4.2 WORMHOLE SOLUTIONS USING THORNE-

MORRIS METRIC

Now we propose to find wormhole solutions using a particular spherically

symmetric metric,the Morris-Thorne metric:

ds2 = e2φdt2 − 1

1− b(r)
r

dr2 − r2dΩ2 (4.8)

where , in this case, :

A(r) = e2φ

and

B(r) = 1

1− b(r)
r

Inserting the Thorne- Morris metric into the equation (4.7):

we have a first-order linear equation of b(r) :
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b′(r)(2r+r2φ′)+b(r)(−rφ′+2r2φ′2+4rφ′+2r2φ′′)−2r3φ′2−4r2φ′−2r3φ′′+

r3R(r) = 0 (4.9)

whose general solution can be expressed in the following form :

b(r) =

∫ −[2r3φ′2+4r2φ′+2r3φ′′+r3R(r)]

2r+r2φ′
e

∫ (−rφ′+2r2φ′2+4rφ′+2r2φ′′)
2r+r2φ′

dr
+C

e

∫ (−rφ+2r2φ′2+4rφ′+2r2φ′′)
2r+r2φ′

dr
(4.10)

where φ(r) is the so called "redshift function" and b(r) is the "shape

function" of the Morris-Thorne wormhole and C is an integration constant.

Chosing the redshift function as φ(r) = k
r
, where k is an arbitrary constant

and substitung it into the equation (4.10) and integrating with respect to r,

we obtain the following expression for the denominator D(r) of (4.10):

D(r) =
∫ k

r
+ 2k2

r2

2r−k dr = r−5(r − k
2
)5e

2k
r

and for the numerator N(r):

N(r) =
∫ −D(r)(r3R(r)+ 2k2

r
)

2r−k dr =∫ −r−5(r− k
2

)5e
2k
r ( 2k2

r
+R(r)r3)

(2r−k)
dr + C

= −
∫ (r− k

2
)4k2e

2k
r

r6
dr

−
∫ R(r)e

2k
r (r− k

2
)4

2r2
dr
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where we can solve the first one, D(r), considering that:

(r − k
2
)4 = r4 + 4r3(−k

2
) + 6r2(k

2

4
) + 4r(−k3

8
) + k4

16

and using the reduction formula :

∫
xnexdx = xnex − n

∫
xn−1exdx

So we have for the shape-function, b(r), the following expression:

b(r) =
−

∫
e
2k
r
2

[r2−2kr+ 3
2
k2− k

3

2r
+ k4

16r2
]R(r)dr−f(r)+C

e
2k
r r−5(r− k

2
)5

(4.11)

where f(r) = Ke2k/r(2K4−20K3r+78K2r2−142kr3+103r4

64r4
) (4.12)

Assuming for the Ricci scalar R(r) = 1
r4

and placing the constant k = 1

,we obtain:

b(r) = −f(r)+C+g(r)
D(r)

(4.13)

where g(r) is:

g(r) = −
∫ e

2
r (r2−2r+ 3

2
− 1

2r
+ 1

16r2
)

2r4
dr = e

2
r (2−20r+78r2−142r3+103r4)

128r4
= f(r)

2

(4.14)
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So, definitively, we have for the shape function, b(r), the following expres-

sion:

b(r) =
C− e

2
r (2−20r+78r2−142r3+103r4)

128r4

r−5(r− 1
2

)5e
2
r

(4.15)

Now we can notice that b(r)
r

goes to 0 if r goes to infinity and , so :

1

1− b(r)
r

goes to 1 if r goes to infinity. So this metric respects the asymptotic

flatness condition. If we consider the symplest spherically symmetric metric:

ds2 = (1− b̃(r)
r

)dt2 − dr2

(1− b̃(r)
r

)
− r2dΩ (4.16)

and put it into the equation (4.7), where , in this case, Ã(r) = 1 − b̃(r)
r

and B̃(r) = 1
Ã(r)

, then we obtain the following equation for b̃(r):

b̃(r)′′ + 2b̃(r)′

r
+ rR(r) = 0 (4.17)

which can be resoluted with the Lagrange’s method of variation of arbitrary

constants, whose solution in function of the Ricci scalar R(r) is:
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b̃(r) = C1+C2

r
−

∫
r2R(r)dr

2
−

∫
r4R(r)dr

2
(4.18)

Assuming for the Ricci scalar ,R(r) = 1
r4

we have :

b̃(r) = C1+C2

r
+ 1

2r
− 1

2
(4.19)

And so:

b̃(r)
r

= C1

r
+ C2

r2
+ 1

2r2
− 1

2r
(4.20)

and if r goes to infinity then b̃(r)
r

goes to 0 and this metric respects the

asymptotic flatness condition too. We can recognize that the second kind

of metric , the metric (4.19) , is a Reissner–Nordström-like metric, for an

opportune choice of the arbitrary constants C2 and C1, even if there is no

charge. In fact the Reissner–Nordström metric is:

ds2 = (1− rS
r

+
r2Q
r2

)dt2− (1− rS
r

+
r2Q
r2

)−1dr2− r2dΩ2, (4.21)

which is a static solution to the Einstein field equations, which corresponds

to the gravitational field of a charged, non-rotating, spherically symmetric

body of mass M. In this metric rS is the Schwarzschild radius, rS = 2GM
c2

, while

r2
Q = Q2G

4πε0c4
and Q is the charge of the body. Howevere, we can notice that for

a particular choice of the constant C2 (C2 = −1
2
) we obtain a Schwarzschild-

like metric. So this is a non-traversable wormhole because presents an event
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horizon. If we consider the equation (4.11) and assume the constant K = r0/2

and for the Ricci scalar, R(r) = g/(4r4), where g is a new constant, we obtain:

φ(r) = b(r)
r

= C1e−r0/rr4

(4r−r0)5
− [(2r20+g)(r40−20rr30+156r20r

2−568r0r3+824r4)]

((2r0)(4r−r0)5)
(4.22)

And, if we assume g = −4r2
0, we obtain the following solution :

φ(r) = − r20(r40−20rr30+156r2r20−568r3r0+824r4

r0(4r−r0)5
+ C1e

− r0r r4

(4r−r0)5
(4.23)

We immediately notice how (4.23) satisfies the asymptotic condition:

tends to zero for r 7→ ∞. We have therefore found a class of functions φ(r)

that satisfy the geometric properties necessary for the traversability of the

wormhole.

4.3 THE FLARING-OUT CONDITION

The flaring-out condition plays a fundamental role in wormhole physics. Its

validity, in fact, implies the violation of the conditions on energy, as we have

could see in the third chapter and, in particular, from (3.27). Let’s see what

happens when it is applied to the metric under consideration, that is (4.23).

First, we observe that the flaring-out condition, in this case, becomes:

φ′(r)
2φ(r)2

< 0 (4.24)
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being φ(r) = b(r)
r
. So, the flaring-out condition is violated if:

φ(r)′

2φ(r)2
≥ 0 (4.25)

Taking into account the solution (4.23) and its derivative:

φ(r)′ = 1
r0(r0−4r)6

[(r0 − 4r)[−4c1r0r
3e−

r0
r − c1r

2
0r

2e−
r0
r + r2

0(−20r3
0

+312r2
0r−1704r0r

2 +3296r3)]−20c1r0r
4e−

r0
r +20r2

0(r4
0−20r3

0r+156r2
0r

2−

568r0r
3 + 824r4)] (4.26)

So, the (4.25) becomes:

r0
r2

e
r0
r

r20+4r2
[(r0 − 4r)(−20r3

0 + 312r2
0r − 1704r0r

2 + 3296r3) + 20(r4
0 − 20r3

0r +

156r2
0r

2 − 568r0r
3 + 824r4)] ≥ c1 (4.27)

It has been demonstrated [43] that (4.23) is a solution only in a particulare

extended gravity theory, the f(R)-gravity. It is not a solution in the GR-case.

Moreover, it’s possible to see that this solution satisfy the conditions on

energy.
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Chapter 5

DISCUSSION AND

CONCLUSIONS

In this thesis work we discussed a general approach to wormhole solutions.

Our starting point was a lagrangian constraint (eq. (4.5)) for the Ricci scalar

R(r) as a function of the gravitational potentials A(r) and B(r) and their

corresponding derivatives, which has led to a Bernoulli equation (see (4.6)

and (4.7)). It is important to stress that this lagrangian constraint yields

different classes of solutions that in general are not solutions also for the

Einstein fields equation. Subsequently, we used a spherically symmetric static

metric, the Morris-Thorne metric, whit the aim to select two general classes

of wormhole solutions, choosing a particular function of the Ricci scalar (

R = RµνR
µν), namely R(r) = 1

r4
. We physically expect this subcase to occur

for particular choices of the starting action. The first class of wormholes,

represented by eq. (4.23), respects the conditions of energy [43] and violate

the flaring-out condition for a specific choice of the arbitrary integration

constant. One can check the physical relevance of such potential by means of

astrophysical data. It is worth noticing that a general case is treated in this
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work, where the scalar curvature does not vanish identically, unlike the well

known Schwarzschild-deSitter case. The solution (4.23), as mentioned above,

is a solution in the f(R)-gravity context, where f(R) is a generic function of

the Ricci scalar. In the cosmological framework, however, the f(R)-gravity

manifests an effective energy-momentum tensor of the gravitational field which

can play the role of Dark Energy. Thanks to astrometric and cosmological

observations an exponentially accelerated universe emerges, which is supposed

to include 4 % of baryonic matter, 20 % of dark matter and 76 % of dark

energy, with exotic properties. Several attempts to explain the origin and

nature of dark energy and dark matter were performed, as well as, the

introduction of the cosmological constant in the field equations. Nevertheless,

it has been observed that its value is enormously smaller than the vacuum

energy predicted by field theory in curved spacetimes. Otherwise we can

think of dark energy and dark matter as unknown forms of energy and

matter which escape direct detection and do not thicken like ordinary matter.

Moreover, this dark energy must have negative pressure (and therefore exotic),

as it is possible to infer from Friedmann’s equations, ä
a

= −4πG
3

(ρ+ 3P ), to

satisfy the accelerated expansion. So this implies the violation of the strong

energy condition, ρ+ 3P ≥ 0. Another explanation for dark energy is the

so called quintessence, according to which the universe expansion should

be driven by a scalar field. However, this does not provide a satisfactory

solution to the problem. So an alternative to dark energy can be found in the

context of extended theories of gravity. In particular, it has been observed

[44, 45] that, for a f(R)-gravity theory, it is possible to obtain a positive

energy density. So the cosmology described by f(R)-theory can reproduce an

accelerated expansion without having to resort to dark energy. Subsequently

the second solution found is a Reissner–Nordström-like solution even if there is
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no charge and are a class of solutions also in the General Relativity case for a

particular choice of the integration constant C2. Therefore this kind of solution

presents an event horizon and cannot be used to describe stable wormholes.

Schwarzschild’s wormholes are theoretically plausible but also if they exist,

they will probably never be crossed, even by a very advanced civilization.

On the other hand Morris-Thorne wormholes are certainly traversable and,

therefore, if it were possible to find scientific evidences confirming the existence

of the material that makes them, an advanced civilization could exploit them

to carry out interstellar (and temporal) travel, covering such huge distances

in a short time. Regarding the above mentioned Morris-Thorne wormhole

with exotic matter, the Casimir effect shows that quantum field theory allows

the energy density in certain regions of space to be negative relatively to the

ordinary vacuum energy, and it has been shown theoretically that quantum

field theory allows states where energy can be arbitrarily negative at a given

point. Many physicists, such as Stephen Hawking, Kip Thorne [46] and others,

argued that such effects might make it possible to stabilize a traversable

wormhole. In the Casimir effect, in the region between two conducting plates

held parallel at a very small separation d, there is a negative energy density:

ε = − π2~
720d4

, between the plates. Finally the flaring-out condition, which in

General Relativity implied the above energy constraint, is violated for the

first metric (see equation (4.31)), the traversable wormhole’s one. Therefore

in the f(R)-gravity context it is no longer the exotic matter to support these

structures and make them traversable but they are higher order terms in the

curvature scalar. We have suitably modified only the geometric part of the

field equations of Einstein, planting unchanged that of matter (standard).

It is important to point out right away how wormholes, unlike black holes,

are something purely theoretical: to this date one has never been observed

52



and there is no scientific evidence to suggest its existence. However at the

same time, there is no theoretical reason nor experimental evidence that

these objects cannot exist , therefore it makes sense to talk about them and

hypothesize that they can be used to carry out interstellar travel. Ultimately

the method described in this thesis work is a general approach to wormhole

and black hole solutions of the Einstein field equations and does not depend of

the particular class of the field equation; in fact we have found two solutions:

the first in f(R)-gravity and the second in the General Relativity case. We

have found static solution because we have eliminated the time-dependence

in the constraint (4.5).
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Chapter 6

APPENDIX

6.1 Kruskal and Eddington-Finkelstein Coordi-

nates

The Kruskal coordinates are defined as follows. Let us consider the r > 2M

manifold, and define

u
.
= t−r∗, v

.
= t+r∗ (6.1)

with :

r∗
.
= r+2Mln( r

2M
−1) (6.2)

(also known as Regge-Wheeler range) which tends to −∞ as r tends

to 2M. Notice that r > 2M corresponds to
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−∞ < u < +∞ −∞ < v < +∞ (6.3)

and the limit r 7−→ 2M , t 7−→ +∞ corresponds to u 7−→ +∞, with

finite v.

Since

dr∗
dr

= 1
1− 2M

r

(6.4)

the metric is:

ds2 = (1− 2M
r

)(dt2−dr2
∗)−r2(dθ2 +sen2θdφ2) (6.5)

ds2 = (1− 2M
r

)dudv − r2dΩ (6.6)

We have :

r∗−r
2M

= ln( r
2M
−1) (6.7)

from which :

1− 2M
r

= 2M
r
e
r∗−r
2M

= (6.8)

= (2M
r

)e
−r
2M e

v−u
4M (6.9)
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Thus, defining:

U
.
= −e −u4M V

.
= e

v
4M (6.10)

we have the Kruskal metric:

ds2 = 32M3

r
e−

r
2M dUdV − r2(dθ2 + sen2φ2) (6.11)

with U < 0, V > 0.

Let us now consider the manifold 0 < r < 2M , and define u, v as in (6.12),

u
.
= t−r∗, v

.
= t+r∗ (6.13)

but with a new coordinate sistem:

r∗
.
= r+2Mln(1− r

2M
) (6.14)

which is always negative, tends to zero as r 7−→ 0, and to ∞ as r 7−→ ∞ .

Differentiating this new coordinates we get the same expression as (6.4),

dr∗
dr

= 1
1− 2M

r

(6.15)

56



then the metric in u, v is still given by:

ds2 = (1− 2M
r

)dudv − r2dΩ (6.16)

but :

1− 2M
r

= −2M
r
e
−r
2M e

v−u
4M (6.17)

thus, defining:

U
.
= +e

−u
4M , V

.
= +e

v
4M (6.18)

we have the same metric of eq. (6.11),

ds2 = 32M3

r
e−

r
2M dUdV − r2(dθ2 + sen2φ2) (6.19)

but with U > 0,V > 0.

This metric, with V > 0 and extended to −∞ < U < +∞, describes then

the exterior and the interior of the BH, as anticipated.

57



Actually, there is a simpler coordinate system that covers the region I and

II: the Eddington-Finkelstein (EF) coordinates:

(v, r, θ, φ) −∞ < v < +∞, 0 < r < +∞ (6.20)

these coordinate system is the ingoing Eddington-Finkelstein coor-

dinate system. The two definitions (6.2), (6.15) can be put together as

r∗ = r + 2Mln| r
2M
− 1| (6.21)

and v = t+ r∗.

Then, since

dt2 − dr2
∗ = dv2 − 2dvdr∗ = dv2 − 2dvdr dr∗

dr
= dv2 − 2dvdr

(1− 2M
r

)
(6.22)

the metric in the EF coordinates is

ds2 = (1− 2M
r

)dv22dvdr − r2dΩ (6.23)

This metric covers both the interior and the exterior of the BH, i.e. the

sectors I and II of the Kruskal construction, and is not singular at the horizon,

which is simply r = 2M . Notice that on the horizon v is finite because

t 7→ +∞ and r 7→ ∞, while u is instead divergent.
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6.2 The Flaring-Out Condition

To construct an embedding diagram of the wormhole one considers the

geometry of a t = const. slice. Using the spherical symmetry, we can set

θ = π
2
(an “equatorial” slice). The metric on the resulting two-surface is

ds2 = dr2

(1− b(r)
r

)
+r2dφ2 (6.24)

The three-dimensional Euclidean embedding space metric can be written

as:

ds2 = dz2+dr2+r2dφ2 (6.25)

Since the embedded surface is axially symmetric, it can be described by

z = z(r), sometimes called the “lift function”. The metric on the embedded

surface can then be expressed as:

ds2 = [1+(dz
dr

)2]dr2+r2dφ2 (6.26)

Equation (6.26) will be the same as Eq. (6.25) if we identify the r, φ

coordinates of the embedding space with those of the wormhole spacetime,

and also require:

dz
dr

= ±( r
b(r)
− 1)−1/2 (6.27)
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A graph of z(r) yields the characteristic wormhole picture, like in figure

6.1. For the space to be asymptotically flat far from the throat, Morris and

Thorne require that dz/dr 7→ 0 as l 7→ ±∞, i.e., b/r 7→ 0 as l 7→ ±∞, where

l is the proper lenght, l(r) = ±
∫ r
b0

dr

(1− b(r)
r

)1/2
. In order for this condition to be

satisfied, the wormhole must flare outward near the throat, i.e.,

d2r(z)
dz2

> 0 (6.28)

at or near the throat. Therefore:

d2r(z)
dz2

= b−b′r
2b2

> 0 (6.29)

at or near the throat, r = b = b0, where the prime denotes differentiation

with respect to r. The last equation condition in geometry also represent the

minimality of the wormhole throat.
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Figure 6.1 : the embedded shape of the wormhole
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