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Introduction

The aim of the quantum gravity research program is to find a description of the dy-
namics of spacetime which is consistent with the laws of quantum mechanics. There
are several different approaches to this problem [3]. They differ not only with respect
to the mathematical frameworks involved but also on the logic and philosophical as-
pects of their foundations. It seems very difficult to find common ground between two
or more of these approaches in this scenario, and it is not even known if one of these
approaches is the "correct" one. In this regard, the few properties or predictions that
arise from different approaches are very precious because they give us the opportu-
nity to study properties that are more likely to be "true" characteristics of the quantum
gravity realm, independently of the particular mathematical structure adopted to de-
scribe the theory.

One of these properties is that, at the fundamental level, spacetime is characterized
by a "quantum nature", although this can imply very different things depending on the
approach. With this in mind, it is no surprise that the (General Relativistic) Riemannian
picture of the geometry of spacetime needs to be replaced by something else, able to
manage its quantum nature. This implies, for example, that we cannot correctly define
the dimension of spacetime as it is usually defined in Riemannian geometry with the
topological or the Hausdorff dimension, so we need something to replace this notion.

The major efforts done in the literature to replace the notion of Hausdorff dimen-
sion focus on the spectral dimension as a suitable candidate; this geometric quantity
is defined by means of a fictitious diffusion process on the spacetime and its defini-
tion is strictly linked to another property shared by some quantum gravity models: the
deformed (or modified) dispersion law, which means that the spacetime is character-
ized by a dispersion law that is different from (and tends to, in the classical limit) the
Lorentzian one. The reason why such a deformation occurs depends on the details of
the various models.

Although the spectral dimension has been widely studied, some authors [26] have
pointed out that this notion might be not physical because of its dependence on the
off-shell modes and because it relies on the Euclideanization of spacetime and, conse-
quently, of the dispersion law. For this reason the physical notion of thermal dimension
has been introduced by the same authors. The thermal dimension and the spectral di-
mension agree in most cases and they differ only when the unphysical content of the
latter plays a significant role. The thermal dimension is defined noting that there are
some thermodynamical relations that are sensitive to the dimensionality of spacetime,
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such as the Stefan-Boltzmann law. The thermal dimension is then extracted from these
relations that are deduced by calculating the partition function for a photon gas, the
on-shellness for the photons being enforced via the deformed dispersion law (not its
Euclideanized version).
Both the spectral dimension and the thermal dimension depend on the scale of the
probes used to investigate the properties of spacetime. This gives rise to the concept
of "dimensional flow" which simply means this: the effective dimension of spacetime
"felt" by the probes depends on their energy.

When studying Quantum Gravity, the scale which is considered to be the charac-
teristic onset scale for the phenomena is the Planck scale. This scale is a really small
length scale (or a really high energy scale), namely 10−35 m (1019 Gev), therefore the
effects of the Quantum Gravity phenomena are expected to show up in this extreme
ultraviolet regime. However, contrary to what could be expected, there are some cases
where the effects of quantum gravitational phenomena are significant not only in the
ultraviolet (i.e., high energy) regime, but also in the infrared (i.e., low energy) regime.
This characteristic is called "UV/IR mixing". For our purposes the main effect of this
property is that it gives rise to modified dispersion relations (MDRs) which are non-
trivial both in the ultraviolet (UV) and in the infrared (IR) regimes.

The purpose of this thesis work is to study the IR behavior of the Spectral dimension
and the Thermal dimension and to study the interplay between the UV/IR mixing and
the dimensional flow: even though these two notions have been around for a while,
there are no studies that link them in the quantum gravity literature.

The structure of the thesis is the following: chapter one is devoted to an (informal)
introduction to the quantum gravity research program; in chapter two the notions of
spectral dimension and thermal dimension are introduced; in chapter three and four
the computation of spectral dimension and thermal dimension in different UV/IR mix-
ing scenarios is presented; in chapter five two novel IR effects are considered, namely
compactification and horizons; finally in the first appendix there is a proof of a mathe-
matical method adopted in chapter three and the last two appendices give some back-
ground on Rindler space and noncommutative spacetime. The chapters from three to
five are the bulk of this thesis in which the original material is shown.
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Why Quantum Gravity?

The aim of this chapter is to (informally) answer the question: why should we care
about Quantum Gravity at all?
The term "Quantum Gravity" (QG) collects under the same umbrella all the different
attempts to find a consistent theory that describes the gravitational field with the laws
of Quantum Mechanics (QM); given that in General Relativity (GR) the gravitational
field is identified with spacetime dynamics, QG is the attempt to find a theory that de-
scribes the spacetime dynamics at really small scales and gives the usual GR dynamics
at macroscopic scales.

Physicists succeeded in describing the dynamics at microscopic scales for all the
(known) interactions and the matter: elementary particles (such as electrons and quarks)
and Electromagnetic, Weak and Strong interactions are described together with the
Higgs field in the Standard Model of particle physics (SM) and this model works ex-
perimentally really well. The framework in which this model works is Quantum Field
Theory (QFT): it describes the dynamics of the fields, which in turn describe the inter-
actions and the particles, with the laws of QM. What is the problem in doing the same
with gravity? Can’t we just repeat the trick?

The answer would seem: not at all. The problem in doing this with gravity is that,
while QFT is based on the assumption that the fields live on a static background which
may be curved as well giving rise to QFT on curved spacetime, in GR this assumption
makes no sense: we want to find the theory that describes the dynamics of spacetime,
that is the dynamics of the background itself which is consequently neither static nor,
properly speaking, a "background". This is clearly not the only problem, there are sev-
eral "technical" or mathematical problems, such as non-renormalizability, which I will
not present here. There are also several somewhat "philosophical" issues when we
stand in the common ground between the two theories, with "one foot in QM and the
other in GR"; some of these will be briefly described below.

1.1 The Planck scale

Before going on, it should be analyzed what "microscopic" means in QG: we should
talk about the Plank scale. The Plank scale is commonly accepted to be the character-
istic scale of QG, that is the energy (or the distance) such that quantum gravitational
effects become not negligible. There are several ways by which one could argue that
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Figure 1.1: The emergence of Planck scale from the intersection between QM and GR
forbidden regions (left-wedge and right-wedge respectively). Image taken from [9].

the Plank scale emerges as the scale of QG; the following is my favorite one.
Imagining to place all the known objects in a plane, plotting linear dimension vs mass,
as shown in fig. 1.1, there are two lines that fix the boundaries of "what we know": the
first line is the one defined by the Compton wavelength, the second line is the one
fixed by the Schwarzschild radius. The Compton wavelength is the "QM boundary":
there can be no object localized more sharply than its Compton wavelength, so we
have l ≥ h

Mc , where h is the Planck constant, M is the rest mass of the object and c is
the speed of light in vacuum. The Schwarzschild radius is the "GR boundary": there
can be no object with a mass density greater than the one realized by an object with
linear size given by this radius, that is a Schwarzschild black hole, so we have l ≥ 2GM

c2

where G is the Newton constant. Combining these two relations one gets 1 ħ
lc . l c2

G

that is l & lP =
√

ħG
c3 . Once the Planck length is obtained, all the other scales can be

build by combining in the right way the fundamental constants ħ, G , c and the Boltz-

mann constant kB : MP =
√

ħc
G , EP = MP c2 =

√
ħc5

G , tP = lP
c =

√
ħG
c5 ,ΘP = EP

kB
=

√
ħc5

Gk2
B

are

respectively the Planck mass, energy, time and temperature. Putting all these scales

1I don’t report the numerical factors because the order of magnitude is the only thing that matters.
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together with their numerical values we have:

lP =
√

ħG

c3
≈ 10−35 m , tP =

√
ħG

c5
≈ 10−44 s

MP =
√

ħc

G
≈ 1019 GeV

c2
, EP =

√
ħc5

G
≈ 1019 GeV (1.1)

ΘP =
√

ħc5

Gk2
B

≈ 1032 K

Setting the constants ħ, c and kB to 1, these scales can be related with a simple relation

lP = tP = E−1
P = M−1

P =Θ−1
P (1.2)

The important thing to notice here is the magnitude of these scales: they are either
ridiculously small (Planck length and time) or ridiculously big (Planck energy, mass
and temperature). This means that the quantum gravitational effects manifest them-
selves at scales that are hitherto undreamed of and that probably will never be attain-
able for humanity.

Given that the quest for QG seems to be very difficult from a technical/mathematical
point of view and that the characteristic scales are way out of our league, why should
we care about Quantum Gravity at all?

1.2 The Pragmatic point of view

If there was not a way to test the predictions of the approaches to QG with experiments
we could forget about doing science in this field, indeed the only way to "solve" the
problem would be to (arbitrarily) decide that the most "beautiful" theory from a math-
ematical/logical point of view is the correct one; we could equally well toss a coin. This
was pretty much the situation in the 90’s of the last century, but then people started to
find a way to test the predictions of some of the approaches to QG [44], [45], [46], [47].
To understand how this is possible, we should first make a distinction between "steep
onset" and "smooth onset" effects.

Steep onset effects are the ones that manifest themselves only at a given scale; for
example if one wants to ionize an hydrogen atom, they should throw on it a photon
with an energy E ≥ 13.6 eV. If only photons with energies lesser than this value are
available, it doesn’t matter how many are thrown at the atom, it will not be ionized:
the energy does not accumulate at every collision, we cannot "amplify" the effect. The
only way to study such effects is to run experiments at the characteristic scale, so if this
was the case for QG there would be no hope to achieve anything.

Smooth onset effects are those that are always there and that can be detected if the
measures have the right sensitivity. They can also be amplified. The most paradig-
matic example of this type is the Brownian motion. In 1827 the botanic Robert Brown
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observed a strange motion performed by pollen particles immersed in a sample of wa-
ter. He had no clue about molecules and even if he had he could not see them be-
cause he had not a microscope sensitive enough to let him observe them. Yet he was
(unknowingly) observing the effects of the collisions between pollen particles and the
water molecules, as explained by Einstein almost 80 years later. How was it possible?
The ratio between the linear dimension of a single molecule of water and a pollen par-
ticle is roughly 10−5 so the latter is a giant compared to the former, it should not feel
the effects of those collisions; indeed it does not feel the single collision but rather the
cumulative result of an Avogadro number (≈ 1023) of collisions: the amplifier here is
the number of molecules.

If the right amplifier can be found there is the possibility to test the predictions of
those approaches to QG that are characterized by smooth onset effects. For example,
in theories with modified dispersion relations f (E 2, p2) = 0, corrections to the speed
of photons can be derived such that, up to the leading order correction, it takes the
form c(E) = 1−ηE n

E n
P

where n is an integer (typically n = 1 or n = 2). The correction is of

course negligible for the energies that can be reasonably achieved directly but, if pho-
tons with different energies emitted simultaneously from a source travel for enough
time, differences in arrival times can be measured and these can be linked to the en-
ergy dependent speed of light. This can be done with astronomical sources such as
gamma ray bursts [47]. The idea is to fight the smallness of the effects with the large-
ness of the Universe, to use the Universe itself as a laboratory.

Having dealt with the issue of experimental measures, I can now address the fol-
lowing: what kind of questions can we answer with QG?

1.2.1 Information paradox

The information paradox is one of the mysteries that arise when trying to put together
QM and GR. It is known that all the matter and radiation that falls into a black hole
is lost forever, there is no measure that can be made to get information from the re-
gion of spacetime beyond the event horizon. This would not be a problem per se. The
problems come when the fact that black holes emit thermal radiation is taken into
account; this result was obtained by Stephen Hawking [48] and it is based on a "semi-
classical" approximation, that is studying a QFT on the (background) classical geom-
etry of a black hole. The black hole mass decreases as an effect of the emission and
eventually the black hole itself will evaporate, the only residual being the thermal ra-
diation so that there will be no clue about what the black hole was made of, because a
thermal radiation contains only one information: the temperature. A bit of formalism
is needed to understand why this is a problem. In QM the evolution of a mixed state is
given by the von Neumann equation

i ħ ∂ρ
∂t

= [H ,ρ]

12
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The solution to this equation is

ρ(t ) = e−i
H t
ħ ρ(0)e i

H t
ħ (1.3)

So if ρ(0) is a pure state ρ2(0) = ρ(0), ρ(t ) is a pure state too. Defining the von Neumann
entropy as

S =−kbTr
[
ρ logρ

]
it is clear that S ≥ 0, with S = 0 only for pure states. The entropy so defined is preserved
by the evolution eq. (1.3) because it is a unitary evolution and unitary transformations
preserve von Neumann entropy; given that the entropy is a measure of the information
contained in a system (the more the entropy the lesser the information) we have that
information is preserved in QM.

Returning to the paradox, pure states can cross the event horizon and fall inside the
black hole and the latter will give back a thermal radiation which is described by

ρ = e
− H

kB T

Tr
[

e
− H

kB T
]

which is not a pure state. The overall result is a loss of information that is not accept-
able in QM for the analyses of the Von Neumann entropy.

Information is also trivially preserved in classical physics which includes GR. In-
deed the only situation when information could be lost is when black holes are in-
volved, but from a logical point of view there is no need for the information to be ac-
cessible, it is just needed that it is "stored" somewhere.

Another way of looking at the problem, which does not involve information at all
and so could be less confusing, is noting that time evolution is reversible both in QM
and in GR 2 while the process of black hole evaporation is not: we end up with thermal
radiation which does not tell us anything besides the mass of the black hole, so a lot
of different black holes (i.e., initial states) could give us the same radiation (i.e., final
state). This is a mathematical inconsistency of the two theories when combined in a
"semi-classical" way.

QG could solve the paradox by introducing a better description of the black hole
physics, in particular of the final phases of evaporation, or it could give an explanation
about why information is not preserved, maybe introducing a new notion, tailored for
a new description of physics.

2Time reversibility is not to be confused with time reversal symmetry. Physical laws are reversible
if there is a unique initial state for every final state while they are symmetric under time reversal if they
are the same when time goes backward. It could be argued that the measurement process in QM vio-
lates time reversibility because different wavefunctions can give the same result after the measurement,
but this is not the case since the time evolution, described for example by the Schrödinger equation, is
time reversible; the result of a measurement is better understood as an initial state for the subsequent
evolution not as a final state for the evolution prior to it.

13
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To conclude it should be said that, although Hawking’s calculation are very robust,
the Hawking radiation phenomena has not been observed yet; it has been observed
only in analog systems such as acoustic black holes [49], [50]. The problem for the ob-
servation of this phenomenon for actual black holes is that the estimated evaporation
time is about 1067 years for a black hole with a mass equal to the mass of the Sun and
about 10100 years for supermassive black holes.

1.2.2 Cosmology and the singularities problem

Other questions that could be answered with QG are the ones concerning the Early
Universe. The modern cosmological models predict an expanding Universe with a sin-
gularity at the beginning of time: the Big Bang. The existence of this singularity is
commonly accepted and is also rigorously demonstrated to be a necessity in the GR
framework under some circumstances [51]. The problem is that we do not actually
know what happens when distances and time intervals lesser than the Planckian ones
are involved. The validity of GR in these regimes is highly questionable and the same
argument can be used whenever a singularity emerges in GR: these are the regimes
where the quantum mechanical and the gravitational effects become comparable. It is
probable that, in order to investigate the Early Universe regime, as well as to get a com-
plete description of black hole physics and all the situations when a singularity shows
up in GR, a complete theory of QG is needed.

The hope to find such traces of quantum gravitational phenomena in the Early Uni-
verse physics relies on the observations of the remnants of that phase: the cosmic mi-
crowave background (CMB) and the gravitational wave background (GWB). The for-
mer is background electromagnetic radiation already widely studied, it is the furthest
in time peek we can achieve. The observations of the latter are in their infancy; physi-
cists have already detected gravitational waves: these are made up by ripples in the
fabric of spacetime itself, originating from mergers of black holes and neutron stars
or supernova explosions or any other phenomena involving these extreme energies.
It is known that such phenomena have been happening for all of the cosmic history
and probably in the early instants of life of the Universe insanely energetic events took
place, producing gravitational waves. The Universe should be hence filled everywhere
and all time with these ripples; this is the GWB. The human made apparatus are able
to detect just a small part of the GWB: the wavelengths that are detectable with LIGO,
for example, range from 10 Km to 105 Km; it is not sensible to the gravitational waves
with higher (or smaller) wavelength. To observe the entire GWB we need an apparatus
sensible to ripples with single oscillations that span the solar system or the distance to
the nearest star. In order to do that a galaxy spanning gravitational wave observatory is
needed, returning to the idea of the Universe as a laboratory. This observatory is pro-
vided by a (galaxy spanning) collection of bizarre stars called pulsar timing arrays. This
is exactly what has been done recently [52], [53], [68].

The hope for a theory of QG is that it could address questions concerning the birth
of the Universe, fill in the gaps we have in our cosmological models and give us a better
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understanding of the most extreme phenomena we know, the singularities that arise in
GR. The technology needed to study these situations is already here or it is reachable
within reasonable time.

1.3 The Philosophical point of view

Science is done with facts and this is why I chose to put the pragmatic reasons to mo-
tivate the QG quest first. But I think that we should not forget to address foundational
issues as well, which overlap in some extent with philosophy. QG probably offers the
most fertile ground to reshape our understanding of reality.

1.3.1 Quantum foundations

One of the obstacles in the quest for QG might be that, while GR is a theory based on
physical postulates, QM is a mathematical framework based on axioms. This is a major
difference in my opinion because it means that we cannot compare the two theories
on a foundational level.

Physicists stopped to ask foundational questions about QM, dismissing the prob-
lem by saying "shut up and calculate". This was a successful and rewarding behavior
in the second half of the last century because it led to tremendous developments in
particle physics, solid state physics, atomic physics and nuclear physics. Maybe it’s
time now to address the elephant in the room, to switch from "shut up and calculate"
to "shut up and contemplate": we might be at a crossroad in fundamental physics that
demands us to return to the investigation techniques of the first half of the last cen-
tury, when addressing the foundational problems of physics led to the revolutions of
QM and GR.

In the last 20 years there was an increasing interest in the quantum foundations
research, the major efforts being in trying to reformulate QM from first (physical) prin-
ciples [8], [54] and maybe disentangle it from the swampland of interpretations. There
is also a recent interest in finding theories beyond QM in which the problem of locality
of the wavefunction collapse is addressed, leading to the so called "superdeterministic
theories" [56], [57],[58], [69].

Maybe it is no wonder that this research program developed alongside the quan-
tum technologies one: in order to unlock the full potential of QM from a technological
point of view, we might need first to truly understand it.

Maybe along the road to QG we could find a new understanding of quantum theory.

1.3.2 Spacetime and locality

Another issue is the one concerning the nature of spacetime. Part of the QG commu-
nity thinks that QG demands for a reshaping of the notions of space and time. When
probed at distances of the order of the Planck length or time intervals of the order of
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Planck time, there is no intuition about the nature of spacetime. It might be something
that differs dramatically from our current notion thought as a coarse-grained version
of this fundamental entity, just like the dynamics of planets is not even comparable to
the dynamics of the electrons and protons they are made of. The notions of "where"
and "when" might even not make sense at all at super-Planckian scales. Among other
things this means, for instance, that the classical notion of spacetime dimensionality
should be replaced by some other effective notion, tailored to tame the quantum na-
ture of spacetime.

There are also some approaches that predicts that the features of spacetime de-
pend on the energy of the probes used to probe it; this means that the spacetime re-
constructed by different observers depends on the energy of the probes they use [61],
[62], [63].

Time

Time occupies a peculiar position in this context. Phenomena evolve with time in
physics, they are described by differential equations that relate a state at one instant
of time to the same state at another instant; it may be a quantum state or a classical
state, the difference being in the equations and the framework involved. There is no
problem with time neither in QM nor in GR, the problems arise when trying to de-
scribe the dynamics of spacetime in the QM framework. In quantizing the structure
of spacetime, being it the metric or spacetime itself since the two concepts get inter-
twined in GR, the notion of a quantum state representing spacetime at a given instant
and its evolution make little sense because there is no classical time that can be used
to evolve the state nor real "instants" [70].

There are also some authors [59] that questioned the nature of time as fundamental
entity, claiming that it can emerge (together with gravity) as a sort of coarse-gained
notion from a timeless non-dynamical space.

Locality

Returning to the idea that the structure of spacetime might depend on the energy of
particles, the proposal of relative locality might be the most interesting one [61], [62].
In this proposal it is claimed that we never actually "see" spacetime but rather we
"see" particles with a given energy at given times, we as observers are the equivalent
of "calorimeters with clocks" (setting aside the time issue). Indeed when we measure a
distance we are actually observing photons coming from the object we are measuring
the distance of. So the correct arena to describe (classical) physics is not spacetime but
phase space, spacetime being a projection of this arena made by observers.

The main ingredient of this proposal is the idea that momentum space might be
curved; this is an old idea, dating back to Born [60]: a theory of quantum gravity should
accommodate a curved momentum space because in QM the descriptions on momen-
tum and position space are dual to each other and in GR we have a curved spacetime.
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Momentum preserving particle interactions are then studied taking into account such
a curved structure for momentum space, interactions being understood as worldlines
intersections. This leads quite straightforwardly to the prediction that worldlines in-
tersect at one point only for an observer local to the interaction itself, while distant
observers see the interaction as non local, with the coordinates of the particles be-
ing spread over a certain region. This is not of course a physical non locality because
for every momentum preserving interaction there exists a local observer that sees the
interaction to be local. This "just" means that different observers construct different
spacetimes, with the coordinates of the particles being mixed with momentum space
and becoming energy dependent.

Maybe along the road to QG we will find a new understanding of the notions of
space, time, locality and maybe even causality itself.

1.4 Summary

This introduction has no claim to be a thorough discussion neither of all the problems
with the QG research program nor of all the possible answers that might be addressed
with QG. To be concise I only chose the ones that I personally think are the most inter-
esting ones.

To sum up, why should we care about QG at all? The possible answer is that QG
research program aims at:

• Deepening our understanding of the Early Universe and cosmological models,
as well as the extreme phenomena of spacetime such as black holes.

• Reshaping our notions of time, space, locality and causality, possibly leading us
to a new revolution in physics and philosophy, comparable to the ones produced
by QM and GR about a century ago.

These two claims alone should be enough to address the answer which opened this
introduction and to lure us to see how deep the rabbit hole goes.
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Spectral and Thermal dimensions

This chapter starts with an argument intended to convince the reader that the famil-
iar notion of Hausdorff dimension cannot handle the problem of quantum spacetime
dimensionality. I then introduce the concept of spectral dimension, showing why this
definition makes sense when the classical limit is considered, developing the formal-
ism and giving some examples in known cases. Lastly, I will introduce the notion of
thermal dimension and the physical reasons that motivate the introduction of this no-
tion.

2.1 Setting the Hausdorff dimension aside

In everyday life the notion of "number of dimensions" represents the minimum num-
ber of measurements an observer needs to do in order to locate an object. This every-
day notion can be formalized and generalized with the notion of Hausdorff dimension.

Given a metric space X , a set S ⊆ X , a real positive number d ∈ [0,∞[ and a collec-
tion of sets {Ei ⊂ X / i ∈ I }, where I is a family of indexes, the Hausdorff d-dimensional
outer measure of S is defined as 1

H d (S) := lim
r→0+

i n f

{∑
i∈I

(
di am Ei

)d / S ⊆ ⋃
i∈I

Ei ∧ 0 < di am Ei < r , ∀i ∈ I

}

Given this definition, the Hausdorff dimension of S is defined by

dH (S) := i n f
{

d ≥ 0 / H d (S) = 0
}

(2.1)

This definition gives rise to the usual notion of dimension for smooth manifolds, so
that the Hausdorff dimension of spacetime is 4 (or, more generally, D = d + 1) in the
General Relativistic picture, which simply means that a "volume" or a region in a d-
dimensional space scales as r d , where r is the linear size of the region.

1The diameter of subset A of a metric space X is given by
di am A = sup { g (x, y) / x, y ∈ A} where g is the metric defined on the metric space X . Usually the sets
of the collection are balls Ei = B(xi ,ri ) in which case the diameter is replaced with the radius ri .
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What happens when we turn to the Quantum Gravity realm? The quantum nature
of the spacetime forbids us to give a reasonable definition of Hausdorff dimension, be-
cause it relies on some notions that are ill-defined in a spacetime with a non-classical
behavior, such as sharp points or distances that can be infinitesimally small. I give two
examples of this argument:

• In a discrete approach to Quantum Gravity, like the Causal Sets framework, the
continuous spacetime is replaced with a discrete set of points, called "events".
Being the set of events discrete there cannot be infinitesimally small distances
between them.

• In the the Non-Commutative spacetime (NCST) approach to Quantum Gravity,
the coordinates of spacetime are replaced with (non-commuting) operators on a
Hilbert space; this gives rise to uncertainty principles between the coordinates,
so the notion of a sharp point in spacetime becomes ill-defined, since all the co-
ordinates cannot be defined with arbitrary precision. Moreover, the allowed dis-
tances between the (fuzzy) points in this spacetime are given by the spectrum of
an operator and this spectrum is typically discrete and has a non-zero minimum
eigenvalue. An example of this property can be found in Appendix B.

These features are obviously at odds with the definition in eq. (2.1). So, if we want
to address the problem of the quantum spacetime dimensionality, we need a notion of
dimension different from the Hausdorff one: we need to set the Hausdorff dimension
aside.

2.2 Spectral dimension

2.2.1 Definition and premises

The spectral dimension is a geometrical observable that is defined by means of a fic-
titious diffusion process on the spacetime. Generally speaking this notion describes
how "things" spread over (diffusion) time. For example an ink drop in a tank of water
spreads differently according to how many closest neighbors each molecule of water

has; if the tank is a common 3-dimensional region a cloud of ink grows as τ
3
2 , where τ

is the diffusion time, while if the tank is a Sierpiński gasket the cloud grows as τ0.6826,
which means a spectral dimension of 3 and 1.3652 respectively. For spacetime the idea
is similar: we imagine to drop a probe into one building block of spacetime; from there
the probe walks randomly and the number of other building blocks that are touched
after a given period of (diffusion) time 2 depends on the the effective dimension of
spacetime. After this simple introduction, it is now possible to give a formal definition
of spectral dimension.

2Not to be confused with the time variable on spacetime which is part of the geometry that is being
probed.
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If s is the fictitious diffusion time of the process, the spectral dimension can be
defined as

ds(s) :=−2
d logP (s)

d log s
=−2s

P ′(s)

P (s)
(2.2)

where P (s) is the return probability of the diffusion process. The parameter s sets the
energy scale of the probe used in the diffusion: high values of s mean that the probe
is characterized by low energies (IR regime) while low values of s mean that the probe
is characterized by high energies (UV regime); or, stated equivalently, the more the en-
ergy of the probe, the lesser the (fictitious) time it takes to return to the initial position.

Before going on with the spectral dimension, we should make some preliminary
remarks in order to define the framework adopted in this thesis work. It is known
[10], [11], [13], [18], [21] that the spectral dimension is sensible also to the curvature
of spacetime; in this regard, three main regimes can be identified

• When the parameter
p

s is comparable with the radius of curvature of spacetime
R, the spectral dimension is sensible to the geometry of spacetime.

• When lP ¿p
s ¿ R, the spacetime is effectively flat as seen by the probe and the

energy of the latter is very high if compared to the Plack energy, so the spectral
dimension should agree with the Hausdorff dimension. This is true unless the
UV/IR mixing plays a significant role; this second regime is what is considered
the IR limit in this thesis work, so we will deal only with flat spacetimes.

• When
p

s ≈ lP , the quantum nature of spacetime should undoubtedly manifest
itself, so we expect that ds 6= dH , unless the properties of spacetime becomes
trivial in the UV regime, as could happen with UV/IR mixing phenomena; this
will be the UV regime in this thesis work.

2.2.2 The connection to MDRs

In the Introduction I said that a key ingredient for the spectral dimension is the MDR of
the spacetime, but, looking at the definition in eq. (2.2), the former seems to be clueless
about the latter. To make the connection between the two explicit it is necessary to
calculate the return probability from the diffusion equation. This diffusion equation
will be defined by the Euclideanized version of the deformed Laplacian of the theory;
we can focus preliminarily on the case of a deformed Laplacian of the formΩ(∂2

x0 ,−∇2)
so that the diffusion equation on a spacetime of Hausdorff dimension dH = d + 1 is
defined by 

[
∂

∂s
+Ω(E)

(−∂2
x0 ,−∇2

)]
ρ(x, x ′; s) = 0

ρ(x, x ′;0) = δ(d+1)(x −x ′)

(2.3)

whereΩ(E)(−∂2
x0 ,−∇2) is the Euclideanized Laplacian obtained by a Wick rotation x0 7→

i x0 andδ(d+1)(x−x ′) is the (d+1)−dimensionalδ function; eq. (2.3) means thatρ(x, x ′; s)
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is the probability density that the probe starts its diffusion in x ′ and arrives in x after a
diffusion time s. Fourier analysis can be used to solve the equation on a flat spacetime

ρ(x, x ′; s) =
∫ d d p dE

(2π)d+1
e i E(t−t ′)+i~p·(~x−~x ′)ρ̃(E ,~p ; s)

Inserting this into eq. (2.3)
[
∂

∂s
+Ω(E)

(
E 2,

∣∣~p∣∣2)

]
ρ̃(E ,~p; s) = 0

ρ̃(E ,~p;0) = 1

=⇒ ρ̃(E ,~p ; s) = e−sΩ(E)
(

E 2,|~p|2)

The return probability is obtained from the density by setting x = x ′ (definition of
"return")

P (s) = ρ(x, x, s) =
∫ d d p dE

(2π)d+1
e−sΩ(E)

(
E 2,|~p|2)

In this last result, the direct link between the MDR and the return probability can be
easily seen; this expression can be generalized to theories in which the MDR is given
byΩ (E ,~p ) so that the return probability is given by

P (s) =
∫ d d p dE

(2π)d+1
e−sΩ(E)(E , ~p ) (2.4)

With this equation, we can forget about the diffusion equation and take this as a defi-
nition of return probability of the diffusion process. This also resolves a subtlety I did
not mention: how can a diffusion process be defined with eq. (2.3), where the initial
condition is defined with a δ function, implying that there is a notion of sharp point,
if we are dealing, for instance, with a noncommutative spacetime, where sharp points
do not exist? The answer is that in defining eq. (2.3) we are considering a sort of semi-
classical limit of the theory in which the spacetime is trivial and yet the dispersion
relation is deformed; once we obtain the result in eq. (2.4), which has no memory of
eq. (2.3), we can infer that this is a good notion of return probability for the diffusion
process on the quantum spacetime. It is also possible to define a smeared δ function,
which is a Gaussian distribution, as initial condition as done by some authors [13].

2.2.3 The classical limit

In order for the definition in eq. (2.4) to make sense, it would be nice if it agreed with the
classical value d +1 when the dispersion relation is not deformed, i.e. when E 2+∣∣~p∣∣2 =
m2 3. It is an easy calculation to show this:

P (s) =
∫ d d p dE

(2π)d+1
e−s(E 2+|~p|2) = S(d)(1)

(2π)d+1

∫ ∞

0
dr

∫ ∞

0
dE e−sE 2

e−sr 2
r d−1

3The mass term is not considered in the definition of the return probability because the diffusion
equation is defined by means of the deformed Laplacian, the mass being its eigenvalue.
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The two integrals can be computed by means of 4∫ ∞

0
xme−px2

d x = 1

2
p−m+1

2 Γ
(m+1

2

)
, p > 0 , m ∈N0

with m = 0 for the integral in the variable E , m = d −1 for the integral in the variable r
and p = s for both integrals. Calling a the product of all the numerical constants P (s)
is given by

P (s) = as−
d+1

2

so that

ds(s) =−2s
P ′(s)

P (s)
=−2s

(
− d +1

2

)
as−

d−1
2

as−
d+1

2

= d +1

We end up with a result that is equal to the classical value of the Hausdorff dimension
for all values of s.

2.2.4 Two examples with MDR’s

I now consider two examples with MDR’s: in the first example the spectral dimension
agrees with the value given by the thermal dimension, in the second example the two
notions of effective dimension give different results. The thermal dimension is dis-
cussed in the following section.

• Consider the MDR E 2 = p2 + l 2γp2(1+γ) where l is a length scale and γ > 0. The
return probability is given by

P (s) =
∫ d d p dE

(2π)d+1
exp

[− s(E 2 +p2 + l 2γp2+2γ)
]

The integral over E is trivial and gives
p
πs−

1
2 while the integral over ~p gives

S(d)(1)
∫ ∞

0
d p pd−1 exp

[− s(p2 + l 2γp2+2γ)
]

This integral cannot be evaluated exactly for every value of γ but for the calcu-
lation of the spectral dimension in the UV and IR limit this is not needed: there
are some asymptotic expansion that can be considered. For large (small) values
of s, corresponding to the IR (UV) limit, the smallest (biggest) power of p in the
exponential will give the major contribution. This means that 5

P (s) ∼ s−
1
2

∫ ∞

0
d p pd−1e−sp2 ∼ s−

d+1
2 (s →∞)

4G&R, 3.461.2b.
5I neglect all the numerical factors in P (s) because they have no role in the computation of the

spectral dimension.
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P (s) ∼ s−
1
2

∫ ∞

0
d p pd−1e−sl 2γp2+2γ ∼ s−

1
2 s−

d
2(1+γ) (s → 0)

where the second integral can be computed, defining t := sl 2γp2(1+γ), as follows

∫ ∞

0
d p pd−1e−sl 2γp2+2γ = l

dγ
1+γ

2(1+γ)
s
− d

2(1+γ)

∫ ∞

0
d t e−t t

d
2(1+γ)

The remaining integral is a dimensionless numerical factor (a Γ function), the

only useful information is the factor s
− d

2(1+γ) ; note that this procedure can be
applied also to the IR limit integral by setting γ = 0. The spectral dimension is
then given by

ds(∞) = d +1 , ds(0) = 1+ d

1+γ (2.5)

A general proof of the method adopted here can be found in Appendix A.

• As second example, consider the MDR E 2 = p2 + l 2γ(p2 −E 2)1+γ where l and γ

have the same role as in the previous example. In this case P (s) is given by

P (s) ∝
∫ ∞

0
dρ ρd exp

[− s(ρ2 + l 2γρ2+2γ)
]

where ρ := E 2 +p2. The same method applied before can be applied to this inte-
gral, giving

P (s) ∼
∫ ∞

0
dρ ρd e−sρ2 ∼ s−

d+1
2 (s →∞)

P (s) ∼
∫ ∞

0
dρ ρd e−sl 2γρ2+2γ ∼ s−

d+1
2(1+γ) (s → 0)

so that the spectral dimension is given by

ds(∞) = d +1 , ds(0) = d +1

1+γ (2.6)

In both the above examples the spectral dimension coincides with the Hausdorff
dimension in the IR limit; this is obvious and happens every time there is only a UV
deformation in the MDR, which can be neglected in the IR limit. The opposite will
happen, that is trivial (non-trivial) spectral dimension will show up in the UV (IR) limit,
when the dispersion relation will be deformed with a IR deformation.

2.3 Thermal dimension

2.3.1 Benefits and flaws of the Spectral dimension

Spectral dimension is a useful notion of effective dimensionality in some cases. For in-
stance it can be shown that, by means of a change of integration variables which trans-
forms the dispersion relation into the trivial one, the spectral dimension can be inter-
preted as the Hausdorff dimension of the momentum space. In several approaches
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to QG there is the prediction of dimensionality reduction to the value of 2 in the UV
using the spectral dimension [14]; this has some important consequences in cosmo-
logical models [15], [16], [17] and suggests that there could be the hope to construct a
quantum field theory for gravity which is renormalizable.

The spectral dimension suffers however of some flaws:

• First of all, it is defined by means of a Euclideanization of spacetime, which is
unphysical to begin with. The characteristic, properties and predictions of the
Euclideanized version of a theory can differ significantly from the counterparts
of the actual theory.

• Secondly, the integration is carried out over the whole momentum space, mean-
ing that there is an important contribution given by the off-shell modes, which
are unphysical.

The two observations above imply that the spectral dimension cannot be a physical
definition of spacetime dimensionality. If there is the possibility that the dimensional
flow is an actual characteristic of the "true" quantum theory of gravity, we should seek a
physical notion of spacetime dimensionality, maybe linked to some observable quan-
tities.

2.3.2 Thermodynamical preliminaries

The thermal dimension can be defined by noting that, in classical spacetime, there
are some thermodynamical quantities which scale with the number of dimensions.
Consider a gas of photons in a "cubic" box with volume V = Ld in thermodynamical
equilibrium at temperature T . The partition function is given by

Z = ∑
{n~k,ε}

e−βE(~k,ε)

where {n~k,ε} symbolizes all the configurations of the system, ε is the polarization of

the photons and β := T −1. Given that E(~k,ε) =ω(~k,ε)n~k,ε, where n~k,ε is the number of

photons with momentum~k and polarization ε, the partition function become 6

Z =∏
~k,ε

∞∑
n~k,ε=0

e−βω(~k,ε)n~k,ε =∏
~k

[
1

1−e−βω(~k)

]d−1

so the logarithm of the partition function is

log Z =−(d −1)
∑
~k

log
(
1−e−βω(~k)

)
6In D = d +1 spacetime dimensions photons have D −2 = d −1 polarization states.
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The momenta of the photons are quantized because they are in a finite box

ki = π

L
ni , ni ∈N0 , i = 1,2, ...,d

and the spacing of the modes is constant πd V −1. If the box is sufficiently big so that
the mean energy is much bigger than the spacing between the modes, a continuum
approximation can be applied. In order to do so, the infinitesimal density of states is
needed; it is given by the ratio between the volume of the momentum space, dV~k =
S(d)(1)

2d kd−1dk, and the spacing between modes

dn =V
S(d)(1)

(2π)d
kd−1dk

In the continuum limit, the logarithm of the partition function is then given by

log Z = −(d −1)V
S(d)(1)

(2π)d

∫ ∞

0
d p

∫ ∞

0
dE pd−1 log

(
1−e−βE

)
δ(E −p) =

= −2π(d −1)V
∫ d d p dE

(2π)d+1
2E θ(E)δ(E 2 −p2) log

(
1−e−βE

)
(2.7)

where in the second line the integral is carried out on the whole momentum space and
the θ and the δ functions constrain the variables on the physical submanifold of the
momentum space (on-shell modes with positive energy). This is the standard manifest
covariant expression for the logarithm of the partition function of a photon gas.

2.3.3 Thermal dimension: definition

The partition function in (2.7) can be used to compute all the thermodynamical vari-
ables of the system. The integral in the first line of (2.7) can be easily done

log Z = −(d −1)V
S(d)(1)

(2π)d

∫ ∞

0
dE E d−1 log

(
1−e−βE

)
= (d −1)(d −1)!ζ(d +1)

S(d)(1)

(2π)d
V β−d ∝

∝ V β−d (2.8)

From log Z the energy density and the pressure are defined as

ρ :=− 1

V
∂β log Z , P := 1

β
∂V log Z (2.9)

From these definition it is easy to see that

ρ∝β−(d+1) = T d+1 , w := P

ρ
∝ 1

d
(2.10)
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The two parameters in eq. (2.10) scale with the number of dimensions of (classical)
spacetime. There are therefore two physical observables that can be used to define
an effective physical notion of spacetime dimensionality, called Thermal dimension of
spacetime dT [26], [27], which is given by

ρ∝β−dT (UV or IR limit) , dT (β) = 1

w(β)
+1 (2.11)

where the first definition, which is a generalization of the Stefan-Boltzmann law, can
be used only in the limit of high/low temperature, while the second, which is linked to
the measurable parameter w , can be used to see the flow of the dimensionality with
the temperature. This is because, with general MDRs, the dependence from β of ρ and
P is not trivial, so the first relation in eq. (2.11) will hold only asymptotically and the
parameter w will not be a constant anymore. The only difference in (2.7) when a MDR
is considered is the substitution of E 2 −p2 with the MDRΩ(E ,~p ) inside the δ function

log Z =−2π(d −1)V
∫ d d p dE

(2π)d+1
2E θ(E)δ

(
Ω(E ,~p )

)
log

(
1−e−βE

)
(2.12)

From this definition it is easy to see that this is a pure physical notion: it is derived
from physical quantities and everything depends only on the physical on-shell modes.
It can be said that the thermal dimension is defined by the following statement: the
thermodynamics of a photon gas behaves as if spacetime had a number of dimensions
given by the thermal dimension. This new notion of effective dimensionality of space-
time agrees of course with the Hausdorff dimension in the classical case, as can be seen
from (2.8) and it agrees also with the spectral dimension in most cases; the two notions
give different results only when the unphysical characteristics of the latter play a major
role as can be seen from the examples below.

2.3.4 Two examples with MDR’s

The two examples are the same used in the case of the spectral dimension in order to
compare the two notions.

• With E 2 = p2 + l 2γp2(1+γ) the logarithm of the partition function is given by

log Z ∝V
∫ ∞

−∞
dE

∫ ∞

0
d p pd−1 E θ(E)δ

(
E 2 −p2 − l 2γp2(1+γ)

)
log

(
1−e−βE

)
defining u :=βp and t :=βE

log Z ∝V β−(d+2)
∫ ∞

−∞
d t

∫ ∞

0
du ud−1 t θ(t )δ

(
t 2β−2 −u2β−2(1+ l 2γβ−2γu2γ)

)
log

(
1−e−t )

In the low temperature limit, which is the high β limit, since γ> 0 the argument
of the δ function can be approximated with (t 2−u2)β−2 which gives the standard
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result dT (∞) = d +1 in the IR limit. In the high temperature/low β/UV limit, the
dominant part of the argument of the δ function is β−2t 2 − l 2γu2+2γβ−2−2γ so
log Z takes the form

log Z 'V β−(d+2)
∫ ∞

−∞
d t

∫ ∞

0
du ud−1 t θ(t )

δ(u − ū)

ū2γ+1
β2+2γ log

(
1−e−t )

where ū = t
1

1+γ l
− γ

1+γβ
γ

1+γ therefore

log Z 'V β−(d+2)β2+2γβ
−γ(2γ+1)

1+γ β
(d−1)γ

1+γ
∫ ∞

0
d t t

d−1
1+γ t t

−2γ+1
1+γ log

(
1−e−t )

log Z 'V β
− d

1+γ

From this partition function it is easy to see that dT (0) = 1+ d
1+γ which agrees

with eq. (2.5).

• With the MDR E 2 = p2 + l 2γ(p2 −E 2)1+γ lesser effort is needed to see that the
two notions of dimensionality do not give the same result. The logarithm of the
partition function is given by

log Z ∝V
∫ ∞

−∞
dE

∫ ∞

0
d p pd−1 E θ(E)δ

(
E 2 −p2 − l 2γ(p2 −E 2)1+γ

)
log

(
1−e−βE

)
The solution of the δ function gives

(E 2 −p2)2[1− l 2γ(E 2 −p2)γ] = 0 ⇒ E = p ∧ E =
√

p2 + 1

l 2

At low temperature/low energies, only the first solution is accessible to the sys-
tem, while at high energies, when also the second solution becomes accessible,

there is no difference between E = p and E =
√

p2 + 1
l 2 so we should expect that

the thermal dimension is 4 in both limits. Defining u :=βp and E :=βE as in the
previous example log Z becomes

log Z ∝V β−d
[∫ ∞

0
d t t d−1 log

(
1−e−t )+∫ ∞

βl−1
d t t (t 2 −βl−1)

d
2 −1 log

(
1−e−t )]

From this it is easy to see that in both UV and IR limits the behavior is the classical
one: in the UV limit β→ 0 so the two integrals become the same integral and the
leading order in β is β−d ; in the IR limit β→∞ so the second integral becomes
negligible compared to the first one. The thermal dimension is not trivial, how-
ever, there is indeed a running with the temperature in intermediate regimes.

The difference between the thermal dimension and the spectral dimension in this
last example can be explained as follows. The thermal dimension depends only upon
the on-shell modes and we have seen that in the UV and IR limits this modes coin-
cide with the classical ones; the spectral dimension relies on a Euclideanization of the
dispersion relation so we have E 2 + p2 + l 2γ(E 2 + p2)1+γ in the MDR, and it is easy to
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understand where the problem is: in the UV limit we can neglect E 2 +p2 with respect
to (E 2 + p2)1+γ while for the on-shell modes we cannot do the same for E 2 − p2 and
(E 2 −p2)1+γ.

This is one of the cases where the unphysical content of the spectral dimension
plays a major role in the computations, showing that it is necessary to rely, in partic-
ular in these cases, on a different, physical notion of effective dimensionality for the
spacetime, the thermal dimension being the best candidate so far presented in the lit-
erature.
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; Third Chapter <

Spectral dimension with UV/IR mixing

In this chapter the computations done for the spectral dimension in the scenarios with
UV/IR mixing are shown. Several MDRs are considered, some of them previously in-
troduced in the literature. Some MDRs, which are not present in the literature but are
similar to the previous ones, are also considered in order to understand more deeply
the mechanisms behind the dimensional flow in the scenarios with UV/IR mixing. The
considered MDRs are:

• E 2 = p2 +αp 1

This is the most interesting MDR considered for the obtained results. This MDR
is widely considered in the literature [34], [36], [38] and emerges in two models: it
arises in a quantum spacetime model inspired by the semiclassical limit of Loop
Quantum Gravity [37] and in a model of NCST [42], θ light-like noncommutativ-
ity, that is

[xµ, xν] = iθµν , θµνθ
µν = 0 2

• E 2 = p2 +αp1

This MDR can be derived in the same model of θ noncommutativity considered
for the previous one [39].

• E 2 = p2 + 4α1
θ2ρ2 +α2m2 log

(
−1

4θ
2ρ2m2

)
, ρ2 :=∑d−1

i=1 p2
i

3

This MDR can be derived [40] in a model with θ noncommutativity where the
matrix θµν is given by

θ0ν = 0 , θi j = 1

2
εi j kδ

kdθ

• E 2 = p2 +αE
This is the first MDR we considered that has no justification in the literature and
we considered it to for two reasons: the first one is that we wanted to point out
that energy and momentum play the same role for the spectral dimension; more
importantly is that this expression might be used to define a DSR with an IR de-
formation, which is something yet not studied in the literature. If this is realized

1α and all the deformation parameters have dimension of energy unless otherwise stated.
2The entries of the matrix θ have units of (lenght)2

3α1 and α2 are dimensionless.
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the computation of the spectral dimension could be repeated with a deformed
integration measure.

• E 2 = p2 +α√
p2 −E 2

As the previous one, this MDR is not justified in the literature; we considered
it to show that a IR deformed MDR with deformation given by f (p2 −E 2) give
the same differences between spectral and thermal dimension which arises with
analogous UV deformations [26].

The computation of the spectral dimension for these scenarios is presented in the
following sections.

3.1 Spectral dimension with E 2 = p2 +αp MDR

Considering the MDR
E 2 = p2 +αp (3.1)

the return probability eq. (2.4) is given by

P (s) = S(d)(1)

(2π)d+1

∫ +∞

0
d p pd−1e−sp2−sαp

∫ +∞

−∞
dE e−sE 2

The integral in the variable E is Gaussian and gives
p
πs−

1
2 . The integral in the variable

p can be computed by means of 4

∫ +∞

0
d x xν−1e−βx2−γx = (2β)−

1
2 Γ(ν)exp

(
γ2

8β

)
D−ν

(
γ√
2β

)
, Re (β) > 0 , Re (ν) > 0

Consequently, imposing β= s , γ= sα , ν= d

P (s) = S(d)(1)

(2π)d+1

p
πΓ(d)2− d

2 s−
d+1

2 e
α2s

8 D−d

(p
s
αp

2

)
Neglecting the numerical constant

P ′(s) ∝
[

d +1

2
− s

α2

8
− α

p
s

2
p

2

D ′
−d

(p
s αp

2

)
D−d

(p
s αp

2

)] s−
d+1

2 −1e
α2s

8 D−d

(p
s
αp

2

)

From this, using eq. (2.2) and renaming z := αp
2

p
s the variable,

ds(z) = d +1− z

[
z

2
+ D ′

−d (z)

D−d (z)

]
4G&R , 3.462.1
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The derivative of the Parabolic cylinder functions can be computed by means of D ′
p (z) =

1
2 zdp (z)−Dp+1(z) 5 so the spectral dimension becomes

ds(z) = d +1− z

[
z

2
+

z
2 D−d (z)−D−d+1(z)

D−d (z)

]
(3.2)

For the UV limit it is sufficient to observe that 6

Dp (z) = e− z2

4

Γ(−p)

∫ ∞

0
e−xz− x2

2 x−p−1 d x , Re (p) < 0

so that

Dp (0) = 1

Γ(−p)

∫ ∞

0
e− x2

2 x−p−1 d x <∞

therefore ds(0) = d + 1 since in eq. (3.2), setting z = 0, there would be a product of a
finite number given by the square brackets and a factor which is equal to 0.
For the IR limit it is necessary to study the asymptotic behavior of the Parabolic cylin-
der functions; for this asymptotic behavior it is necessary to pay attention to the sign
of the parameter α. In particular 7

Dp (z) ∼ e−
z2

4 zp
[

1− p(p −1)

2z2 +o
(
z−4

)]
, |z|À 1 , |z|À∣∣p∣∣ ,

∣∣ar g z
∣∣< 3π

4
(3.3)

Dp (z) ∼ e−
z2

4 zp
[

1− p(p −1)

2z2
+o

(
z−4

)]
−

p
2π

Γ (−p)
epπi e

z2

4 z−p−1
[

1+ (p +1)(p +2)

2z2
+o

(
z−4

)]
|z|À 1 , |z|À∣∣p∣∣ ,

π

4
< ar g z < 5π

4
(3.4)

The first (second) expansion can be used when α> 0 (α< 0). In the first case

ds(z) ∼ d +1− z

[
z

2
+

z
2 z−d

(
1− d(d+1)

2z2

)− z−d+1
(
1− d(d−1)

2z2

)
z−d

(
1− d(d+1)

2z2

) ]
=

= d +1− z2

[
1

2
+

1
2

(
1− d(d+1)

2z2

)− (
1− d(d−1)

2z2

)(
1− d(d+1)

2z2

) ]
= d +1− z2

2

[
1−

(
1− d(d−3)

2z2

)(
1− d(d+1)

2z2

)]∼

∼ d +1− z2

[
1

2
+ 1

2

(−1+ d(d−3)
2z2

)(
1+ d(d+1)

2z2

)]∼ d +1− z2

[
1

2
− 1

2
− d

z2

]

Therefore

ds(∞) = 2d +1 (3.5)

5G&R , 9.247.3
6G&R , 9.241.2
7G&R , 9.246.1 and G&R , 9.246.2
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Figure 3.1: Spectral dimension eq. (3.2) with d = 3.

(a) IR behavior. (b) UV behavior.

Figure 3.2: UV and IR behaviors of the spectral dimension eq. (3.2) with α = −1 and
d = 3.

This result can be also seen in fig. 3.1 where the full running of the spectral dimension
eq. (3.2) with d = 3 is shown.

Whenα< 0 the computations are analogous; the second square bracket in eq. (3.4)
gives additional contributions to the spectral dimension, making it divergent at −∞ as
can be seen in fig. 3.2.

To summarize, the value of the spectral dimension in the IR limit, which depends
on the sign of α but not on the particular value of the parameter, is given by

ds(∞) =


2d +1 , α> 0
d +1 , α= 0
−∞ , α< 0

(3.6)

The last result means that the probabilistic interpretation of P (s) is lost since its
derivative needs to be positive to have a negative value for the spectral dimension in
eq. (2.2), which means that P (s) is monotonically increasing and exceeding the value 1.
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Physically the MDR in eq. (3.1) might be useful only with α> 0 because if α< 0 in the
IR there is the emergence of imaginary energies, unless it is not postulated that there is
a lower bound on the momentum, p ≥ α. This is why there is the loss of probabilistic
interpretation for P (s) with α < 0: the integration in the definition of P (s) eq. (2.4)
is carried out on the whole momentum space, so this physical lower bound on p is
ignored, resulting in the negative divergence in eq. (3.6).

3.2 Spectral dimension with E 2 = p2+αp1 MDR

Considering the MDR 8

E 2 = p2 +αp1 (3.7)

the return probability eq. (2.4) is given by

P (s) = S(d)
c (1,1)

(2π)d+1

∫ +∞

−∞
dE e−sE 2

∫ +∞

−∞
d p1 e−sp2

1−sαp1

∫ +∞

0
dρ ρd−2 e−sρ2

, ρ2 :=
d∑

n=2
p2

n

The firt two integrals are Gaussian while the last one can be computed using 9∫ +∞

0
xm e−w x2

d x = 1

2
w−m+1

2 Γ
(m+1

2

)
Setting m = d −2 and w = s and neglecting the numerical factor as done before

P (s) ∝ s−
d+1

2 e
α2s

4

thus

P ′(s) ∝ s−
d+1

2 −1 e
α2s

4

(
d +1

2
− sα2

4

)
so the spectral dimension is given by

ds(s) = d +1− s
α2

2
(3.8)

From eq. (3.8) it is easy to get dS(0) = d +1 e ds(∞) =−∞.

As happened with the previous MDR, P (s) can be greater than 1 because of the

factor e
α2s

4 and the reasons are the same: p1 can be both positive and negative and
there is no constraint to its value in the integral defining P (s), so this also means that
imaginary energies are considered in the IR limit. There are two possible ways out; the
first one is consideringα as an energy scale, supposing the necessity to consider a Wick
rotation also for this parameter α 7→ −iα [25] so that the previous relations become

P (s) ∝ s−
d+1

2 e−α
2s
4 ⇒ ds(s) = d +1+ s

α2

2

therefore ds(∞) =+∞ e 0 ≤ P (s) ≤ 1 ∀ s.
The second possibility is to consider a slightly different, "physical" MDR as done below.

8Obviously it does not matter what direction is chosen.
9G&R , 3.461.2b
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3.2.1
∣∣p1

∣∣ deformation

Consider the MDR
E 2 = p2 +α∣∣p1

∣∣ , α> 0 (3.9)

so the return probability eq. (2.4) is given by

P (s) = 2
S(d)

c (1,1)

(2π)d+1

∫ +∞

−∞
dE e−sE 2

∫ +∞

0
d p1 e−sp2

1−sαp1

∫ +∞

0
dρ ρd−2 e−sρ2

The first and last integral are trivial, so they will contribute as d in total to the spectral
dimension; the second integral could be computed with the same formula used for the
first MDR 10 or with the (complementary) error function 11

erfc(z) := 2p
π

∫ ∞

z
e−t 2

The same techniques of asymptotic expansion could be adopted in this case. However,
there is a general technique, whose proof can be found in Appendix A, by which it is
possible to compute the spectral dimension in the UV and IR limits simply by looking
at the biggest and the smallest power of p in the MDR. Adopting the same notations
used in the proof in the apppendix, the second integral will contribute to the spectral
dimension as 1

γM+1 in the UV limit and as 1
γm+1 in the IR limit, where γM = 0 and γm =

−1
2 . Therefore

ds(0) = d +1 , ds(∞) = d +2 (3.10)

The IR limit in this scenario is useful to observe that every component of ~p gives a
double counting in the dimension when the deformation is with a modulus: with the
MDR considered in the first section, the result is 1+ 2d because in the deformation
there are all the d components of ~p; here the result is d +2 because there is just one
component of ~p in the deformation. From this we get the result that "each dimension
counts twice" in the IR limit when a linear deformation is considered. Given the sym-
metry between energy and momentum in the definition eq. (2.4) this statement can be
also extended to the temporal dimension, as can be seen with the following MDR.

3.3 Spectral dimension with E 2 = p2+αE MDR

Considering the MDR
E 2 = p2 +αE (3.11)

the return probability eq. (2.4) is given by

P (s) = S(d)(1)

(2π)d+1

∫ +∞

0
d p pd−1e−sp2

∫ +∞

−∞
dE e−sE 2−i sαE

10G&R , 3.462.1

11The methods are actually equivalent since D−1(z) = e
z2

4
√

π
2 erfc

( zp
2

)
36



3.3. E 2 = p2 +αE MDR Chapter 3

;=<

The second integral is Gaussian∫ +∞

−∞
e−bx2+cx d x =

√
π

b
e

c2

4b

while the first integral can be computed with the same integral used in the previous
sections (G&R , 3.461.2b); setting b = s, c = i sα, m = d −1 and p = s

P (s) ∝ s−
d+1

2 e−s
α2

4

therefore

ds(s) = d +1+ s
α2

2
⇒ ds(0) = d +1 , ds(∞) =∞ (3.12)

In this case the dimension is divergent but is positive: this happens because E is the
variable that is Wick rotated, so there is a factor i in the computation of the Gaussian
integral. It should be noted that if α is considered an energy parameter, so that α 7→ iα
should be considered, there is again a negative divergence in the spectral dimension
and a probability that can be greater than one:

P (s) ∝ s−
d+1

2 e s
α2

4

ds(s) = d +1− s
α2

2
⇒ ds(0) = d +1 , ds(∞) =−∞

So the opposite of what happened with the deformation linear in p1 happens with this
MDR. As done in the previous section, there is the possibility of avoiding these troubles
by considering a "physical" deformation.

3.3.1 |αE | deformation

As done in the previous section consider the MDR

E 2 = p2 +|αE | , α> 0 (3.13)

which is the same thing of saying that E should be restricted to positive values. Con-
sidering a Wick rotation of both α and E the return probability is given by 12

P (s) = 2
S(d)(1)

(2π)d+1

∫ +∞

0
d p pd−1e−sp2

∫ +∞

0
dE e−sE 2−sαE

As happened with the deformation in p1 it is possible to do the computations of the
second integral using the complementary error function but to study the IR and UV
limits it is not necessary, thanks again to the machinery developed in Appendix A. The
first integral will give a contribution of d to the spectral dimension while the second

12It is also possible to consider a MDR of the form E 2 = p2+α|E | , α> 0 and considering only a Wick
rotation of E . The return probability and hence the spectral dimension are the same.
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integral will contribute as 1
γM+1 in the UV limit and 1

γm+1 in the IR limit, where γM = 0

and γm =−1
2 . Therefore

ds(0) = d +1 , ds(∞) = d +2 (3.14)

As already stated in the previous section, the temporal dimension gives a double
counting too in the IR limit. It is easy to guess what will happen if a deformation with√

E 2 −p2 is considered: the IR limit should give 2+2d if this double counting is met
when first order deformations are considered. This is shown in the following section.

3.4 Spectral dimension with E 2 = p2+α
√

E 2−p2 MDR

Considering the MDR

E 2 = p2 +α
√

E 2 −p2 (3.15)

the return probability eq. (2.4) is given by 13

P (s) ∝
∫ ∞

0
dρ ρd e−s(ρ2+αρ)

This integral can be easily computed with Mathematicar; the return probability is

P (s) ∝ s−
d
2 U

(
1+ d

2
,

3

2
,
α2s

4

)
The derivative of this probability reads

P ′(s) ∝ 1

8
s−1−d

2

[
−4d U

(
1+ d

2 , 3
2 , α

2s
4

)−α2 (
1+ d

2

)
U

(
2+ d

2 , 5
2 , α

2s
4

)]
the spectral dimension is then given by

ds(s) = d + s
α2 (2+d) U

(
2+ d

2 , 5
2 , α

2s
4

)
4 U

(
1+ d

2 , 3
2 , α

2s
4

) (3.16)

Therefore, computing the limits of this expression

ds(∞) = 2d +2 , ds(0) = d +1 (3.17)

This is in perfect agreement with what has been found for the MDRs of the previ-
ous sections; for every component of the D-momentum in the deformation there is a
"+1" in the spectral dimension counting in the IR limit as can be seen from eq. (3.6),
eq. (3.10), eq. (3.14) and eq. (3.17).

13In order to obtain an Euclidean dipsersion relation we consider a Wick rotation of both the energy
E →−i E and α, α→−iα [25].
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3.5 Non-analytic MDRs

In this section we consider the other class of MDRs which is considered in phenomeno-
logical scenarios in quantum gravity; this MDRs are peculiar because they are charac-
terized by a non analytic behavior for small momenta, and this is probably the reason
why, in the end, we obtain a divergent spectral dimension.

Consider firstly the MDR

E 2 = p2 + 4α1

θ2ρ2
, ρ2 :=

d−1∑
n=1

p2
n

the return probability eq. (2.4) is given by

P (s) = S(d)
c (1,1)

(2π)d+1

∫ +∞

−∞
d pd e−sp2

d

∫ +∞

−∞
dE e−sE 2

∫ +∞

0
dρ e

−sρ2−s
4α1
θ2ρ2

ρd−2

The first two integrals are Gaussian, the last one can be computed by means of

∫ +∞

0
xν−1e

β
x −γx d x = 2

(
β

γ

)ν
2

Kν

(
2
√
βγ

)
, Re (β) > 0 , Re (γ) > 0 14

setting ρ2 = x, β= 4α1s
θ2 and ν= d−1

2 the return probability is

P (s) ∝ s−1K d−1
2

(
2s

√
4α1
θ2

)

therefore, calling u := 2
√

4α1
θ2 the spectral dimension reads

ds(u) = 2

[
1−u

K ′
d−1

2

(u)

K d−1
2

(u)

]

and using the relation

K ′
ρ(u) =−Kρ−1(u)− ρ

u
Kρ(u)

it becomes

ds(u) = 2

[
1+u

K d−3
2

(u)+ d−1
2u K d−1

2
(u)

K d−1
2

(u)

]
(3.18)

The asymptotic expansions of the Bessel functions are given by

Kρ(u) ' 1

2
Γ(ρ)

(
u

2

)−ρ
, u → 0

14G&R , 3.471.9
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Kρ(u) ∼
√

π

2u
e−u

[
1+ 4ρ2 −1

8u
+o(u−2)

]
, u →∞

therefore

ds(u) = d +1+2u

K d−3
2

(u)

K d−1
2

(u)
' d +1+2u

Γ
(d−3

2

)
2−d−3

2 u−d−3
2

Γ
(d−1

2

)
2−d−1

2 u−d−1
2

⇒ ds(0) = d +1

when d ≤ 3 the previous calculation is not well defined because of the divergent Γ
(d−3

2

)
in the numerator, so the limit has to be computed manually without the auxiliary
asymptotic expansion of the numerator giving

ds(u) ' d +1+2u

K d−3
2

(u)

Γ
(d−1

2

)
2−d−1

2 u−d−1
2

→ d +1 for u → 0

which holds for d = 2 and d = 3. For d = 1 the denominator suffers the same problem,
however using K−ρ(u) = Kρ(u) the same behavior of the case d = 3 is obtained.

In the u →∞ limit the spectral dimension reads

ds (u) ∼ 2

[
1+u

1+ (d−3)2−1
8u + d−1

2u

(
1+ (d−1)2−1

8u

)
1+ (d−1)2−1

8u

]
∼

∼ 2+2u

[
1+ (d −3)2 −1

8u

][
1− (d −1)2 −1

8u

]
+(d −1)

[
1+ (d −1)2 −1

8u

][
1− (d −1)2 −1

8u

]
∼

∼ 3+2u ⇒ ds (∞) =∞ (3.19)

As already mentioned, the spectral dimension diverges with this MDR in the IR
limit.

3.5.1 Logarithmic term

Another MDR with this type of deformation is

E 2 = p2 + 4α1

θ2ρ2
+α2m2 log

(
1

4
θ2ρ2m2

)
(3.20)

the return probability eq. (2.4) is given by

P (s) = S(d)
c (1,1)

(2π)d+1

∫ +∞

−∞
d pd e−sp2

d

∫ +∞

−∞
dE e−sE 2

∫ +∞

0
dρ e

−sρ2−s
4α1
θ2ρ2 −sα2m2 log

( 1
4 θ

2ρ2m2
)
ρd−2 =

= S(d)
c (1,1)

(2π)d+1

∫ +∞

−∞
d pd e−sp2

d

∫ +∞

−∞
dE e−sE 2

∫ +∞

0
dρ e

−sρ2−s
4α1
θ2ρ2

ρd−2
(
θ2ρ2m2

4

)−sα2m2

The first two integrals are Gaussian therefore, calling θ2ρ2m2

4 := x2 the return probability
is

P (s) ∝ s−1
∫ +∞

0
x−2α2sm2+d−2 e

−s

(
4x2

m2θ2 +
α1m2

x2

)
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which can be computed using the same integral of the previous section (G&R , 3.471.9)

P (s) ∝ s−1 (
α1θ

2m4)−α2sm2

2 K−α2sm2+d
2

(
2s

√
4α1

θ2

)
Unfortunately, this expression is too messy to derive the spectral dimension because
the variable s is both in the argument and the order of the Bessel function K . Therefore
we restricted ourselves to a MDR which has only the logarithmic deformation.

Using the MDR
E 2 = p2 −α log(θ2ρ2β) (3.21)

which is the previous MDR with α1 = 0, α2 =−α and β= m2

4 , the return probability is

P (s) = S(d)
c (1,1)

(2π)d+1

∫ +∞

−∞
d pd e−sp2

d

∫ +∞

−∞
dE e−sE 2

∫ +∞

0
dρ e−sρ2+sα log

(
θ2ρ2β

)
ρd−2 ∝

∝ s−1
∫ +∞

0
dρ e−sρ2+sα log

(
θ2ρ2β

)
ρd−2

The last integral can be computed with 15

∫ +∞

0
d x xme−νxn = Γ

(m+1
n

)
nν

m+1
n

, Re (n) > 0 , Re (m) > 0 , Re (ν) > 0

Setting n = 2, m = d−2+2sα, ν= s and supposing d ≥ 2 the return probability becomes

P (s) ∝ s−
d+1

2 e sα log
(θ2β

s

)
Γ
(d−1

2 + sα
)

The derivative reads

P ′(s) ∝−s−
d+1

2 −1e sα log
(θ2β

s

)
Γ
(d−1

2 + sα
)[d−1

2 + sα
(
1+ log

( s
θ2β

))− sαψ0
(d−1

2 + sα
)]

Therefore the spectral dimension is

ds(s) = d +1+2sα

[
1+ log

( s
θ2β

)−ψ0
(d−1

2 + sα
)]

(3.22)

For the UV limit it is sufficient to observe that s → 0, s log
( s
θ2β

)→ 0 and

ψ0
(d−1

2

) <∞, therefore ds(0) = d +1. For the IR limit, instead, the asymptotic expan-
sion of the Polygamma function is

ψ0(z) ∼ log z −
∞∑

k=1

Bk

kzk
, z →∞

15G&R , 3.326.2
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hence

ds(s) ∼ d +1+2sα

[
1+ log s − log(θ2β)− log( d−1

2 + sα)+ 1
d−1+2sα

]
∼

∼ d +1+2sα

[
1+ log s − log(θ2β)− log(sα)+ 1

2sα( d−1
2sα +1)

]
∼

∼ d +1+2sα

[
1− log(θ2βα)− d −1

2sα
+ 1

2sα

]
= 3+ sα log

( e
θ2βα

)
The spectral dimension in the IR limit is therefore given by

ds(∞) =
{

∞, θ2αβ 6= e
3 , θ2αβ= e , ∀ d ≥ 2

(3.23)

Thus the spectral dimension is always divergent in this case too except when the
numerical coincidence in the second line of eq. (3.23) occurs.
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; Fourth Chapter <

Thermal dimension with UV/IR mixing

In this chapter the computations done for the thermal dimension with UV/IR mixing
MDRs are shown. The considered MDRs are the same used for the spectral dimension
with the exception of the ones that have singularities in p = 0 which are rather patho-
logical and give difficulties in interpretation while studying the on-shellness of the
modes. In what follows the IR regime will be T → 0 or β→∞ and the UV regime will be
T →∞orβ→ 0. All the series expansions were done using the software Mathematicar.
We will not focus on the UV results because they are trivial, that is the thermal dimen-
sion in the UV limit is always d +1 as it should be since we are considering IR deforma-
tions.

4.1 Thermal dimension with E 2 = p2+αp MDR

Considering the MDR
E 2 = p2 +αp (4.1)

the logarithm of the partition function eq. (2.12) is

log Z ∝ V
∫ +∞

−∞
dE

∫ +∞

0
d p pd−1 E log

(
1−e−βE )

θ(E)δ(E 2 −p2 −αp)

Expressing in dimensionless form the integral in E by means of βE := t , log Z becomes

log Z ∝ V
∫ +∞

−∞
d t

∫ +∞

0
d p pd−1 β−2t log

(
1−e−t )θ(t )δ(t 2β−2 −p2 −αp)

The next step is solving the δ with respect to p

δ(t 2β−2 −p2 −αp) = δ(p − p̄)∣∣2p̄ +α∣∣
where p̄ is the only positive solution of t 2β−2 −p2 −αp = 0 given by

p̄ = −α+√
α2 +4β2t 2

2

This solution shows the differences between the two cases α > 0 and α < 0 in the IR
regime: when α > 0, the lowest allowed momentum is p̄ = 0 while when α < 0 the
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lowest allowed momentum is p̄ = −α; this is what was observed for the spectral di-
mension, whose problem for α< 0 is that the integration is carried out over the whole
momentum space, allowing p = 0 as lowest momentum and this results in a negative
divergence of the spectral dimension. In this case, this lowest bound will be taken into
account for the integration boundaries.
For both α> 0 and α< 0 the resolution of the δ function gives

δ(t 2β−2 −p2 −αp) = δ(p − p̄)√
α2 +4β−2t 2

so that log Z becomes

log Z ∝ V
∫ +∞

0
d t

(−α+
√
α2 +4β−2t 2

)d−1(
α2 +4β−2t 2)−1

2 β−2t log
(
1−e−t )

In the UV regime we consider an expansion around β= 0 and carry out the compu-
tations to leading order in β. With this expansion the integrand of log Z becomes

(−α+
√
α2 +4β−2t 2

)d−1(
α2 +4β−2t 2)− 1

2 β−2t log
(
1−e−t )'β−d 2−2+d t d−1 log

(
1−e−t )

therefore
log Z ' V β−d , d > 1

which is the same behavior in β and V of the classical case, therefore the thermal di-
mension is d +1 in the UV limit, as it is expected since the MDR is IR deformed.

In the IR regime, the expansion is done in β−1 around β−1 = 0, carrying out the in-
tegration to the leading order in β−1. The expansion of the integrand of log Z depends
on the sign of α in this case leading to

log Z ∼


V β−2d

∫ ∞
0 d t t 2d−1 log

(
1−e−t

)
, α> 0

V β−2
∫ ∞

0 d t t log
(
1−e−t

)
, α< 0

(4.2)

with d > 1
2 in the first line so that the integral converges. The derivative with respect to

β is

−∂β log Z ∼


V 2d β−(2d+1)

∫ ∞
0 d t t 2d−1 log

(
1−e−t

)
, α> 0

V β−3
∫ ∞

0 d t t log
(
1−e−t

)
, α< 0

(4.3)

Since−V −1∂β log Z is the energy density, we can see already here that the Stefan-Boltzmann
law scales with dimensionality 2d +1 for α> 0 and 3 for α< 0. Computing the deriva-
tives of eq. (4.2) with respect to the volume to obtain the pressure defined in eq. (2.9)
and computing the ratio w in eq. (2.10) we get the equation of state in the IR limit

w =


1

2d , α> 0 , d > 1
2

1
2 , α< 0 , ∀ d

(4.4)
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(a) Thermal dimension for eq. (4.2)
with α= 1 and d = 3.

(b) Thermal dimension for eq. (4.2)
with α=−1 and d = 3.

Figure 4.1: Plots of the thermal dimension for eq. (4.2) for the two possible signs of
α. The deformation parameter has been set to unity therefore β is dimensionless, or
equivalently the thermal dimension is plotted as a function of β|α|.

therefore the thermal dimension dT is

dT =


2d +1 , α> 0 , d > 1

2

3 , α< 0 , ∀ d
(4.5)

from both the equation of state and the Stefan-Boltzmann law.

From eq. (4.5) and fig. 4.1 it can be seen that the thermal dimension agrees with
the spectral dimension section 3.1 when α > 0 and it gives a finite result when α <
0 while the spectral dimension eq. (3.2) gives the unphysical result −∞. As already
discussed, this difference arises since the physical momentum is bounded in the IR
and this information gets lost in the spectral dimension due to the integration over the
whole momentum space.

4.2 Thermal dimension with E 2 = p2+αp1 MDR

With the MDR
E 2 = p2 +αp1 (4.6)

the logarithm of the partition function is

log Z ∝V
∫ +∞

−∞
dE

∫ +∞

−∞
d p1

∫ +∞

0
dρ ρd−2 E log

(
1−e−βE )

θ(E)δ(E 2 −ρ2 −p2
1 −αp1)

Expressing in dimensionless form all the integrals with βE := t , βρ := u e βp1 := v the
logarithm of Z becomes

log Z = a V β−d
∫ +∞

−∞
d t

∫ +∞

−∞
d v

∫ +∞

0
du ud−2 t log

(
1−e−t )θ(t )δ(t 2 −u2 − v2 −αβv)
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Solving the δ with respect to u

δ(t 2 −u2 − v2 −αβv) = δ(u − ū)

2ū

where ū =√
t 2 − v2 −αβv must be real, hence

−αβ−√
α2β2 +4t 2

2
≤ v ≤ −αβ+√

α2β2 +4t 2

2

Consequently log Z becomes

log Z ∝V β−d
∫ +∞

0
d t

∫ −αβ+
p

α2β2+4t2

2

−αβ−
p
α2β2+4t 2

2

d v
(
t 2 − v2 −αβv

)d−3
2 t log

(
1−e−t ) (4.7)

The integral in v can be solved using Mathematicar

∫ −αβ+
p

α2β2+4t2

2

−αβ−
p
α2β2+4t 2

2

d v
(
t 2 − v2 −αβv

) d−3
2 =−22−dπ

3
2 (α2β2 +4t 2)−1+d

2
sec( dπ

2 )

Γ( 3
2 − d

2 )Γ( d
2 )

, d > 1

Before throwing away the numerical constants it is important to observe that

sec( dπ
2 )

Γ( 3
2 − d

2 )

is finite for odd values of d when d ≥ 3 since both the numerator and the denominator
have a pole for these values and the order of the pole is the same, so that the ratio in
finite. Therefore log Z becomes

log Z ∝V β−2
∫ +∞

0
d t t

(
α2 + 4t 2

β2

)−1+d
2 log

(
1−e−t ) (4.8)

The UV expansion around β= 0 of this integral gives

log Z 'V β−d
∫ ∞

0
d t t d−1

so that the UV value of the thermal dimension is d +1 in this case too.

For the IR expansion, in this case, the sign of α does not play any role because

α2 + 4t 2

β2 > 0. Expanding in series around β−1 = 0 log Z becomes

log Z ∼V β−2

thus

ρ ∼ 2β−3 , P ∼β−2 ⇒ w = 1

2
(4.9)
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consequently
dT = 3 ∀ d > 1 (4.10)

The spectral dimension in this case eq. (3.8) diverges negatively, unless a Wick rota-
tion of α is considered too; the thermal dimension, instead, gives a finite result and we
get that thermodynamics behaves as if spacetime were 3-dimensional for every value
of d . The failure of the spectral dimension in this case is again the integration over
the whole momentum space; the thermal dimension restricts the integration to the
physical part of the momentum space as can be seen in eq. (4.7).

4.2.1
∣∣p1

∣∣ deformation

Considering the MDR
E 2 = p2 +α∣∣p1

∣∣ (4.11)

log Z is given by

log Z ∝V
∫ +∞

−∞
dE

∫ +∞

−∞
d p1

∫ +∞

0
ρd−2 E log

(
1−e−βE )

θ(E)δ(E 2 −ρ2 −p2
1 −α

∣∣p1
∣∣)

Expressing in dimensionless form in the same way as done before log Z becomes

log Z ∝V β−d
∫ +∞

−∞
d t

∫ +∞

−∞
d v

∫ +∞

0
du ud−2 t log

(
1−e−t )θ(t )δ(t 2 −u2 − v2 −αβ|v |)

Next we solve the δ with respect to u

δ(t 2 −u2 − v2 −αβ|v |) = δ(u − ū)

2ū

where ū =√
t 2 − v2 −αβ|v | must be real therefore

αβ−√
α2β2 +4t 2

2
≤ v ≤ −αβ+√

α2β2 +4t 2

2

Since v ≤ 0 ⇒|v | = −v and v ≥ 0 ⇒|v | = v the integral in v becomes the sum of two
integrals

log Z = a V β−d
∫ +∞

−∞
d t t log

(
1−e−t )[ ∫ 0

αβ−
p
α2β2+4t 2

2

d v
(
t 2 − v2 +αβv

) d−3
2 +

+
∫ −αβ+

p
α2β2+4t 2

2

0
d v

(
t 2 − v2 −αβv

) d−3
2

]

The sum of the two integrals in v can be done with Mathematicar and gives

∫ 0

αβ−
√
α2β2+4t 2

2

d v
(
t 2 − v2 +αβv

) d−3
2 +

∫ −αβ+
√
α2β2+4t 2

2

0
d v

(
t 2 − v2 −αβv

) d−3
2 =

= 21+d+1
2

d −1
β−1t−1+d (

α2 + 4t 2

β2

)−3+d
4

(
α+

√
α2 + 4t 2

β2

) 1−d
2 F2 1

(
d−3

2 , −1+d
2 , 1+d

2 , 1
2 − a

2

√
α2+ 4t 2

b2

)
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with d > 1. This result holds both when α> 0 and when α< 0.

In the UV (β= 0) limit the same result of the previous example is obtained, that is a
trivial thermal dimension.

The IR series expansion around β−1 = 0 will depend upon the sign of α; log Z and
its β derivative are given by

log Z ∼


−V β−d−1 4α−1Γ(d)ζ(2+d) , α> 0

V β−2 4(−α)−2+d πΓ
(d+1

2

)
ζ(3)

sec
(dπ

2

)
Γ
(3−d

2

)
Γ(d)

, α< 0
(4.12)

−∂β log Z ∼


−V β−d−2 4α−1Γ(d +1)ζ(2+d) , α> 0

V β−3 8(−α)−2+d πΓ
(d+1

2

)
ζ(3)

sec
(dπ

2

)
Γ
(3−d

2

)
Γ(d)

, α< 0
(4.13)

therefore the equation of state is

w =


1

d+1 , α> 0 , d > 1

1
2 ∀ d > 1 , α< 0

(4.14)

and the thermal dimension is

dT =


d +2 , α> 0 , d > 1

3 ∀ d > 1 , α< 0
(4.15)

In the case α> 0 we get the same result obtained with the spectral dimension. The
case α < 0 was not considered for the spectral dimension because it gave the same
problems of the MDR without the module; for the thermal dimension we get a sensible
result as happened for eq. (4.6). The problem of the spectral dimension is once again
the integration domain.

4.3 Thermal dimension with E 2 = p2+αE MDR

Considering the MDR
E 2 = p2 +αE (4.16)

focusing firstly on the case α> 0, log Z is given by

log Z ∝V
∫ +∞

−∞
dE

∫ +∞

0
d p pd−1 δ

(
E 2 −p2 −αE

)
θ(E) E log

(
1−e−βE )
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Figure 4.2: Thermal dimension for eq. (4.16) with α= 1 and d = 3.

Solving the δ with respect to p

δ(E 2 −p2 −αE) = 1

2
∣∣p∣∣

p=
p

E 2−αE

δ(p −
√

E 2 −αE)

and considering that with α> 0 energy must be greater than α so that the square root
is real, log Z becomes

log Z ∝V
∫ +∞

α
dE E (E 2 −αE)

d−2
2 log(1−e−βE )

Expressing in dimensionless form by setting βE = t and setting α = 1 by redefining
energies and temperatures α−1β 7→β , αE 7→ E we get

log Z ∝V β−d−2
2

∫ +∞

β
d t t (β−1t 2 − t )

d−2
2 log(1−e−t )

The β derivative is composed of two pieces: the first one is the derivative of the lower
bound of the integral which is zero since the integrand is zero in t =β; the other piece
comes from the derivative of the integrand which is

−∂β
[

t (β−1t 2 − t )
d−2

2 log(1−e−t )
]
=−β

−(d+1)(t 2 −βt )
d
2 [β(2+d)−2d t ]

2t (β− t )2 t log(1−e−t )

Therefore the thermal dimension computed via the equation of state eq. (2.10) is given
by

dT (β) = 1+β−d+2
2

∫ +∞
β d t (t 2 −βt )

d
2 [β(2+d)−2d t ][2t (β− t )2]−1 t log(1−e−t )∫ +∞

β d t t (β−1t 2 − t )
d−2

2 log(1−e−t )
(4.17)

The plot of this result for d = 3 is shown in fig. 4.2.
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From fig. 4.2 we see that the thermal dimension in this case is constantly four un-
til β ' 1 which means, remembering the redefinition of temperature, β ' α−1; for this
value of β the thermal dimension begins to increase and for large values of β it is diver-
gent. We can compare this result with the two cases considered for the spectral dimen-
sion. If we compare it to eq. (3.12) we get that both spectral and thermal dimension are
divergent in the IR; if we compare it to eq. (3.14) we get a completely different behavior,
because in eq. (3.14) the IR value of the spectral dimension is d +2. It could then be
argued that the deformation linear in E produces a divergent notion of dimensionality
for the spacetime, and this could be used, for instance, to bound the value of α: given
that in everyday life, which is the IR regime of quantum gravity for sure, we see four
dimensions, it can be said that α ≥ kB Tmax where Tmax is the maximum temperature
experimentally accessible.

4.3.1 α< 0

When α < 0 in eq. (4.16) we can follow the same steps as before but the square rootp
E 2 −αE will always be well-defined, so there is no constraint on the values that E can

take, therefore

log Z ∝,V β−d−2
2

∫ +∞

0
d t t (β−1t 2 + t )

d−2
2 log(1−e−t )

where −α = 1 with the same redefinition of temperatures and energies done before
−α−1β 7→ β and −αE 7→ E . Expanding in series the integrand around β−1 = 0 (IR limit)
we get

log Z ∼V β−d
2 −1

∫ +∞

0
d t t

d
2 log(1−e−t ) ∝V β− d

2 −1

The β derivative is

−∂β log Z ∝V
(
1+ d

2

)
β−d

2 −2

therefore the thermal dimension is

dT = 2+ d

2
(4.18)

that is different from eq. (3.12) which gives a divergent result.

4.4 Thermal dimension with E 2 = p2+α
√

E 2−p2 MDR

Considering the MDR

E 2 = p2 +α
√

E 2 −p2 (4.19)

focusing firstly on α> 0, log Z is given by

log Z ∝V
∫ +∞

−∞
dE

∫ +∞

0
d p pd−1 δ

(
E 2 −p2 −α

√
E 2 −p2

)
θ(E) E log

(
1−e−βE

)
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The δ can be rewritten as

δ

(
E 2 −p2 −α

√
E 2 −p2

)
= δ(E −p)

p

∣∣∣∣−2+ αp
E 2−p2

∣∣∣∣
p=E

+
δ
(
p −

p
E 2 −α2

)
p

∣∣∣∣−2+ αp
E 2−p2

∣∣∣∣
p=

p
E 2−α2

The derivative in the denominator of the first term diverges so we introduce a regulator

δ

(
E 2 −p2 −α

√
E 2 −p2

)
= δ(E −p)

E

∣∣∣∣−2+αε
∣∣∣∣ +

δ
(
p −

p
E 2 −α2

)
p

E 2 −α2

where ε has dimension of inverse energy and αε→∞; in the second term E ≥ α must
hold. Therefore log Z becomes

log Z ∝V

[
|−2+αε|−1

∫ +∞

0
dE E d−1 log

(
1−e−βE

)
+

∫ +∞

α
dE (E 2 −α2)

d
2 −1 E log

(
1−e−βE

)]
The first integral gives∫ +∞

0
dE E d−1 log

(
1−e−βE

)
=−β−d (d −1)! ζ(d +1)

in the second integral we choseα= 1, making ε dimensionless and redefining the tem-
perature and energy scales: βα→ β and α−1E → E ; expanding the logarithm in the
integrand we get the series∫ +∞

1
dE (E 2 −1)

d
2 −1 E log

(
1−e−βE

)
=−2

d−1
2p
π
Γ

(
d

2

)
β

1−d
2

∞∑
n=1

n−d+1
2 K d+1

2
(nβ)

therefore log Z becomes

V −1 log Z ∝ |−2+ε|−1β−d (d −1)! ζ(d +1) + 2
d−1

2p
π
Γ

(
d

2

)
β

1−d
2

∞∑
n=1

n−d+1
2 K d+1

2
(nβ) (4.20)

and its β derivative is
−∂β log Z ∝ β−d−1 |−2+ε|−1 d ! ζ(d +1) +

+ 2
d−3

2p
π
Γ

(
d

2

)
β

1−d
2

∞∑
n=1

[
(d −1)n−d+1

2 K d+1
2

(nβ) +βn−d−1
2

(
K d−1

2
(nβ)+K d+3

2
(nβ)

)]
(4.21)

With eq. (4.20) and eq. (4.21) the parameter w in the equation of state can be com-
puted with eq. (2.10) and the thermal dimension is dT = 1+ 1

w ; moreover, the limit
ε→∞ has to be considered, therefore the thermal dimension is given by fig. 4.3.

From fig. 4.3 the thermal dimension is 4 for d = 3 in the UV regime and it diverges
in the IR regime. Actually it is constantly equal to 4 until β ' 1 as happened for the
linear in E MDR. It is important to remember that we have redefined the scales so this
means that the dimension is constantly 4 until β'α−1 that is T ' k−1

B α.

This is a completely different behavior with respect to the spectral dimension eq. (3.17)
for which we obtained 2d +2 in the IR; as happened for the previous MDR, this result
could be used to bound the parameter α in the same way.
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Figure 4.3: Thermal dimension for eq. (4.19) with α= 1 and d = 3.

4.4.1 α< 0

When α < 0 we can perform the same computations done before but this time the δ
has only one solution indeed

E 2 = p2 +α
√

E 2 −p2 ⇒
√

E 2 −p2
(√

E 2 −p2 −α
)
= 0

therefore only the solution E = p is available and this means that in eq. (4.20) we have
only the first term; setting −α= 1, log Z is thus given by

log Z ∝V |−2+ε|−1β−d (d −1)! ζ(d +1)

therefore the thermal dimension is trivially

dT = d +1 (4.22)
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Compactified dimensions and Horizons

In the previous two chapters we presented the results obtained in UV/IR mixing sce-
narios for spectral and thermal dimension. The most interesting result is that with the
MDR E 2 = p2 +αp , α> 0 the two notions of effective dimension give the same result.
What would be interesting to study now is the interplay between this UV/IR mixing
phenomena with curvature effect: the difference between UV running and IR running
of effective dimensions is that the latter allows one to study the concomitant effects of
curvature, which is naturally an infrared scale. In this way it would be possible to set
bounds on the values of the parameters which appear in the UV/IR mixing MDRs.

The study of the two notions of effective dimensionality in curved spacetimes is
however rather problematic as explained in the next section. Nonetheless, what we
have found in the attempt of studying curved scenarios is perhaps more interesting: we
found that the spectral dimension is influenced in the IR regime also by the presence
of "boundaries" (horizons) on the spacetime manifold and both spectral and thermal
dimension are affected in the IR regime by compactified dimensions.

5.1 Curved spacetime is tricky

The spectral dimension relies on the Euclideanized version of the Lorentzian space-
time manifold and this is a problem in GR since it is always possible to define new
coordinates on the spacetime and then the notion of Wick rotation is challenged by
the fact that time coordinate is not a physical quantity and there is not a unique time
that can be Wick-rotated [20]. Even setting this question aside, there is the problem
of solving the heat equation on a curved Riemannian manifold: this problem is stud-
ied in the literature mostly by means of series expansions [11], [22], [23], [24] whose
coefficients are written in terms of geometrical invariant quantities; the problem with
these solutions is that they can be used only for smooth manifolds while for quantum
spacetime scenarios the method adopted to calculate the heat trace depends strongly
on the QG model one is considering [11], [12], [13]. This is expected because once the
curvature is introduced there is no way that the details of the theory can be disentan-
gled from the computation of the spectral dimension since we are taking into account
the details of the spacetime structure.
Another problem is the fact that in flat spacetime momentum and energy are the con-
served charges associated to translation symmetry and the dispersion relation comes
from wave equations solved with monochromatic solutions (plane waves) in order to
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build general solutions with Fourier transform. All of this works just because there is
translation symmetry and the equations are linear so that can be solved with Fourier
analysis. On a general curved background there is neither translation symmetry nor
the equations are linear, since the derivative must be replaced with the covariant deriva-
tive. Only when spacetime is maximally symmetric one can compute the Casimir el-
ement of the symmetry algebra and interpret it as a mass-shell condition, but even
restricting to these scenarios (basically, de Sitter spacetime and anti-de Sitter space-
time) there is the problem of interpreting the deformation of the dispersion relation
because, given that there is no plane wave solution like eq. (2.4) to the diffusion equa-
tion, deformations should be introduced at the level of the diffusion equation and this
would add more problems to the solution of this equation making it unsolvable for all
practical purposes.

The problems with the thermal dimension are lesser mathematical and more phys-
ical. The problem that should be addressed is: what is the thermodynamics of a pho-
ton gas on a curved spacetime? Once again we are challenged by different problems.
To compute a partition function there is the necessity of a mode counting to get the
density of states and to do this counting one has to compute the volume in momen-
tum space and the definitions of momentum and energy suffer the same problems as
before. There are anyway some studies of thermodynamics on curved spacetime [28]
which focus on some particular cases. However, in these cases the Stefan-Boltzmann
law in eq. (2.10) does not hold anymore, so the very definition of thermal dimension
might need a revision, since the only way to compute it would be with the equation of
state, so the statement "the thermodynamics of a photon gas behaves as if spacetime
had a number of dimensions given by the thermal dimension" is questionable.

It is clear from these considerations that curved spacetime is a slippery ground on
which little intuition is guaranteed; this is rather unfortunate since curvature is an IR
scale. Having this in mind, in this chapter we focus on two different IR scenarios. Firstly
we consider compactified dimensions, finding that the compactification scale is an IR
scale with effects similar to the ones introduced by other compact, but curved, sce-
narios such as the sphere. Then we consider the "boundary" scenario, that is a flat
spacetime with boundaries (or horizons), focusing on the Rindler spacetime.

5.2 Compactified dimensions

The simplest non-trivial example that can be considered is a flat spacetime with com-
pactified dimensions. This scenario is particularly interesting for string theory in which
compactified dimensions show up. The compactified dimensions are considered as
regular dimensions with periodic conditions, that is

xi
∼= xi +2πRi , i = 1, . . . ,D −p (5.1)

In this case, momentum on the compactified dimensions is quantized. Indeed the
laplacian is undeformed since spacetime is flat so the wave equation is solved by plane
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waves but we have to enforce the periodicity in eq. (5.1)

e i ki xi = e i ki (xi+2πRi ) ⇒ ki = ni

Ri
, ni ∈Z

so the return probability is given by

P (s) = 2D−p S(p)(1)
D−p∏
i=1

∞∑
ni=0

∫ +∞

0
dk kp−1 e

−s

(
n2

i

R2
i
+k2

)

The integral in the variable k is∫ +∞

0
dk kp−1 e−sk2 = 1

2
s−

p
2 Γ

(p

2

)
therefore

P (s) = 2D−p−1 S(p)(1)Γ
(p

2

)
s−

p
2

D−p∏
i=1

∞∑
ni=0

e
−s

n2
i

R2
i ∝ s−

p
2

D−p∏
i=1

∞∑
ni=0

e
−s

n2
i

R2
i (5.2)

With this result it is straightforward to compute the spectral dimension. The derivative
with respect to s is

P ′(s) ∝−s−
p
2

[
− p

2
s

D−p∏
i=1

∞∑
ni=0

e
−s

n2
i

R2
i +

D−p∑
j=1

( ∞∑
n j=0

n2
j

R2
j

e
−s

n2
j

R2
j
∏
i 6= j

∞∑
ni=0

e
−s

n2
i

R2
i

)]

With this equation and (5.2), defining the dimensionless quantities

s

R̄2
:=σ ,

Ri

R̄
:= `i , R̄ :=

D−p∑
i=1

Ri (5.3)

the spectral dimension is given by

ds(σ) = p +2σ
D−p∑
i=1

1

`2
i

(∑∞
n=0 n2e

− σ

`2
i

n2

∑∞
n=0 e

− σ

`2
i

n2

)
(5.4)

It is important to note that

`i = 1−
∑

j 6=i R j∑D−p
i=1 Ri

⇒ 0 < `i ≤ 1

and
D−p∑
i=1

`i = 1

In what follows we refer to 1+d spacetimes with one spatial compactified dimen-
sion as "(1,d)-cylinders".

57



5.2. COMPACTIFIED DIMENSIONS Chapter 5

;=<

(a) Spectral dimension of the (1,1)-cylinder. (b) Spectral dimension of the (1,3)-cylinder.

Figure 5.1: Spectral dimension of the (1,1)-cylinder and the (1,3)-cylinder. The series
were summed up to n = 10000.

5.2.1 (1,1)-cylinder

The simplest example is a (1,1)-cylinder. This is not an interesting example per se but
it is a preliminary example useful to understand what is going on with compactified
dimensions.

We can use eq. (5.4) with D = 2, p = 1 and `= 1 to obtain

ds(σ) = 1+2σ

∑∞
n=0 n2e−σn2∑∞

n=0 e−σn2

The series cannot be summed analytically, so numerical evaluation is needed. The plot
of this spectral dimension is shown in fig. 5.1a.

It is easy to see from fig. 5.1a that in the UV limit the spectral dimension is 2 while
in the IR limit it is 1; this result can be interpreted by saying that in the IR limit the
compactified dimension disappears and this happens because, if

p
s is interpreted as

a "wavelength" of the probe, the IR limit means
p

s >> R so a single oscillation of the
particle spans the entire dimension, therefore the latter becomes point-like. In partic-
ular the transition between ds = 2 and ds = 1 occurs around σ= 1 that is when

p
s is of

the order of the radius of the radius of the compact dimension.

5.2.2 (1,3)-cylinder

We study now the (1,3)-cylinder. For this example also the thermal dimension and the
spectral dimension with the MDR in eq. (3.1) will be studied.

We can use eq. (5.4) once again with D = 4, p = 3 and `= 1

ds(σ) = 3+2σ

∑∞
n=0 n2e−σn2∑∞

n=0 e−σn2 (5.5)

The full running of eq. (5.5) is the same as before, as can be seen from fig. 5.1b.
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5.2.3 (1,3)-cylinder with E 2 = p2 +αp MDR

The previous example is very useful to study what happens if we consider the interplay
between the scale of IR deformation of the MDR

E 2 = p2 +αp

and the compactification scale of the cylinder. We need to compute the return proba-
bility which is given by

P (s) ∝
∞∑

n=0

∫ +∞

−∞
dE

∫ ∞

0
dk k e

−sE 2−s

(
k2+n2

R2 +α
√

k2+n2

R2

)

The integral in the variable E is Gaussian, therefore it gives a factor s−
1
2 ; the integral

over k can be rewritten as ∫ ∞

0
d t e

−s

(
t+n2

R2 +α
√

t+n2

R2

)
therefore, calling R := H−1

P (s) ∝−s−
3
2 e

α2

4 s
∞∑

n=0

{
−2e−s

(
nH+α2

)2

+αpπps Erfc
[p

s
(
nH + α

2

)]}
(5.6)

From this the derivative with respect to s can be computed and the spectral dimension
is

ds(s) = 2s∑∞
n=0

{
−2e−s

(
nH+α2

)2

+αpπps Erfc
[p

s
(
nH + α

2

)]} ¯

¯
∞∑

n=0

{
αe−(

α
2 +Hn)2s(α2 +Hn)−2e−(

α
2 +Hn)2s(α2 +Hn)2 +

−
α
p
πErfc

[p
s
(
nH + α

2

)]
2
p

s
+

+ 3
−2e−(

α
2 +Hn)2s +αpπpsErfc

[p
s
(
nH + α

2

)]
2s

+

+ α2
2e−(

α
2 +Hn)2s −αpπpsErfc

[p
s
(
nH + α

2

)]
4

}
(5.7)

Two possible scenarios can be considered: α > H and α < H . These two cases are
shown in fig. 5.2 and fig. 5.3.

What we get from these results is that there is an interplay between the two IR scales
but when

p
s reaches the IR scale for the curvature, the compactified dimension disap-

pears as in the undeformed case.
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(a) Complete plot with n = 100, H = 0.01
and α= 10.

(b) UV magnification computed with n = 10000,
H = 0.01 and α= 0.1.

Figure 5.2: IR and UV behavior of the spectral dimension for the (1,3)-cylinder with
MDR and H <α.

Figure 5.3: Spectral dimension for the (1,3)-cylinder with MDR and H > α. n = 100,
α= 0.1 and H = 10 were considered.

When H <α, which means R >α−1 1, we see from fig. 5.2a that there is a UV regime
for both α and H where the spectral dimension is four; then the spectral dimension
goes up to seven, which is the value we found in section 3.1 without the compacti-
fication, in an intermediate regime which is "UV" for the compactification scale and
"IR" for the deformation scale; finally there is the IR regime for both scales where the
spectral dimension goes down to 5, which means that the compactified dimension has
disappeared but the other dimensions are anyway "doubled" by the deformation. In
fig. 5.2b we did a focus on the UV zone because the problem in truncating the series
up to some value of n is that resolution is lost for small values of

p
s
(
nH + α

2

)
, so we did

another plot with more terms in the series but with a smaller interval for s to see that
1In this case we would have a large compactified dimension.
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in the far UV regime the spectral dimension reaches the value of four.

When H <α, which means R <α−1 2, we see from fig. 5.3 that a behavior similar to
the previous one is exhibited: there is a far UV regime where the dimension is four, an
intermediate regime where the dimension is three and a far IR regime where it reaches
the value of five as happened before.

In both cases the compactified dimension disappears in the far IR regime and so it
is not even doubled by the deformation. What changes is the intermediate regime: it
depends upon which IR scale is turned on first by the probe.

5.2.4 Thermal dimension for the (1,3)-cylinder

The last case we considered for the compactified dimension scenario is the computa-
tion of the thermal dimension for the (1,3)-cylinder, to see if the intuition that "com-
pactified dimensions disappear in the IR regime" is preserved by the physical notion
of dimensionality.

The logarithm of partition function for the photon gas on the cylinder is

log Z ∝V
∞∑

n=0

∫ +∞

−∞
dE

∫ +∞

0
dk kE θ(E)δ

(
E 2 −k2 − n2

R2

)
log

(
1−e−βE

)
∝

∝V
∞∑

n=0

∫ +∞
n
R

dE E log
(
1−e−βE

)
where the δ function has been used for integration over k and the integration over E

has lower bound n
R since the δ function gives k =

√
E 2 − n2

R2 . We can change variables

by E → RE and β→βR−1 to get rid of R so that

log Z ∝V
∞∑

n=0

∫ +∞

n
dE E log

(
1−e−βE

)
therefore

log Z ∝V β−2
∞∑

n=0

[
βn Li2

(
e−βn)+Li3

(
e−βn)]

(5.8)

From this the β derivative can be computed and the equation of state is

w =
β−2 ∑∞

n=0

[
βn Li2

(
e−βn

)+Li3
(
e−βn

)]
∑∞

n=0

{
2β−2

[
βn Li2

(
e−βn

)+Li3
(
e−βn

)]−n2 log
(
1−e−βn

)}
2In this case we would have a small compactified dimension.
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Figure 5.4: Thermal dimension for the (1,3)-cylinder. The series where truncated to
n = 750.

therefore the thermal dimension is

dT (β) = 1+

∑∞
n=0

{
2β−2

[
βn Li2

(
e−βn

)+Li3
(
e−βn

)]−n2 log
(
1−e−βn

)}

β−2 ∑∞
n=0

[
βn Li2

(
e−βn

)+Li3
(
e−βn

)] (5.9)

whose plot is shown in fig. 5.4.

We see from fig. 5.4 that the UV and IR limits for the thermal dimension are the
same of the spectral dimension eq. (5.5): we get a dimension of four (three) in the UV
(IR) regime; that is, the compactified dimension disappears in the IR regime.

5.3 Spectral dimension of Rindler space

The last scenario we considered is the one with an accelerated (or Rindler) observer.
Spacetime is flat, there is no compactification nor deformation of dispersion relation
and yet there is a nontrivial spectral dimension; this is because Rindler observers are
characterized by a causal horizon which means that the manifold has a boundary. Re-
markably enough, the presence of boundaries is a I R effect just like curvature and
compactification. A short review of the necessary concepts for what follows can be
found in Appendix C .

In Rindler coordinates the metric is

d s2 = e2aξ(−dη2 +dτ2)+d y2 +d z2

We now focus on the nontrivial part of this spacetime: the y and z variables are "spec-
tators", they give nothing different from the Minkowski case; therefore we do the calcu-
lation in η−ξ coordinates only and add a +2 to the dimension at the end. Considering
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the change of variables

T := a−1eaξ sinh(aη) , X := a−1eaξ cosh(aη) (5.10)

we get a spacetime with a boundary

d s2 =−dT 2 +d X 2 , X >|T |
and considering a Wick rotation T , T → i T this manifold becomes an Euclidean half-
plane. Therefore the diffusion equation is the Minkowskian one but the eigenvectors
of the Laplacian must satisfy the correct boundary condition 3.

(
∂2

T +∂2
X

)
fλ =−λ2 fλ

fλ(0, X ) = 0
(5.11)

We consider as a solution

fλ(T, X ) ≡ fω,p (T, X ) = e iωT sin(p X ) (5.12)

where λ2 =ω2 +p2. Consequently[
∂s −

(
∂2

T +∂2
X

)]
ρ(~X , ~X ′; s) = 0 (5.13)

is solved by

ρ(~X , ~X ′; s) =
∫ ∞

−∞
d p

∫ ∞

−∞
dωρ̃(ω, p; s)e iω(T−T ′) sin(p X )sin(p X ′)

Inserting this in eq. (5.13) we get as in the Minkowskian case

ρ̃(ω, p; s) = A e−s(ω2+p2) (5.14)

Setting ρ(~X , ~X ′;0) = δ(2)(~X − ~X ′) we can find the constant A

A

2

∫ ∞

−∞
d p

[
e i p(X−X ′) −e i p(X+X ′)

]
= δ(X −X ′)

The second term in the integral gives δ(X +X ′) which is identically 0 since the X coor-
dinates are positive. Thus we get A = 2 and

ρ(~X , ~X ′; s) = 2
∫ ∞

−∞
d p

∫ ∞

−∞
dωe−s(ω2+p2) e iω(T−T ′) sin(p X )sin(p X ′)

Therefore the return probability is

P (s; X ) = 2
∫ ∞

−∞
d p

∫ ∞

−∞
dωe−s(ω2+p2) [sin(p X )

]2 = π

s
e− X 2

s
(
1−e

X 2

s
)

(5.15)

3The boundary is −T 2 + X 2 > 0 , X > 0; however, after the Wick rotation, this boundary becomes
T 2 +X 2 > 0 , X > 0.
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With this probability it is straightforward to get

ds(s, X ) = 2+ 2 X 2

s

(
−1+e

X 2

s

)
hence, reinserting the trivial dimensions

ds(s, X ) = 4+ 2 X 2

s

(
−1+e

X 2

s

) (5.16)

Defining X 2s−1 := z we get

lim
z→0

2 z(
−1+ez

) = 2 , (I R) (5.17)

lim
z→∞

2 z(
−1+ez

) = 0 , (UV ) (5.18)

hence
ds(UV ) = 4 , ds(I R) = 6 (5.19)

We can interpret this result by observing that

z = X 2

s
= a−2e2aξ

[
cosh(aη)

]2

s
= λ2

u

s

[
(2π)−2 cosh(aη)

]2 (5.20)

where λu := (2π)2α−1 = (2π)2a−1eaξ is the Unruh wavelength. With this identification
there are two ways of interpreting this result. Using the X variable the UV (IR) limit is
s << X 2 (s >> X 2) which can be interpreted as a walker far from (near) the boundary or
horizon. In the IR limit the walker probes the structure of the horizon which increases
the spectral dimension. Using the Unruh wavelength, the UV (IR) limit is

p
s << λu

(
p

s >>λu); therefore in the IR limit the probe can "resolve" the Unruh radiation, while
in the UV it has no clue about the latter and everything looks like Minkowski as far as
the probe is concerned.

5.3.1 Hints for the thermal dimension of Rindler space

We also started to investigate the problem of finding the thermal dimension of Rindler
space. There are some works which focus on the thermodynamics in the presence of
horizons [31], [32] and also specifically for Rindler space [29]. We tried to do something
similar to [29] but in a slightly different way: we studied a gas of photons in a cubic box
as seen from a Rindler observer; the results obtained are still not clear enough to be
shown with a good interpretation, in particular we found that
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• The thermodynamical quantities, such as pressure and energy density, depend
upon the size of the box.

• The energy density is proportional to T 4, suggesting a thermal dimension of 4.

• The equation of state for the photon gas suggests a thermal dimension which
depends upon the size of the box and the Unruh wavelength; in particular a box
which is large compared to the Unruh wavelength (IR regime) gives a thermal
dimension of 5.5 while a box which is small compared to the Unruh wavelength
(UV) gives a thermal dimension of 4.

The apparent contradictory result given by the energy density and the equation of state
is what concerns us the most and it deserves a deeper scrutiny.
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Conclusions and outlook

UV/IR effects in quantum gravity might produce a modification of the dispersion re-
lation governed by a IR scale. We studied the behavior of the spectral and the thermal
dimensions for such models, finding that the effective number of dimensions is mod-
ified, more frequently it is increased, in the IR regime. The most interesting MDRs are
the ones which contain "linear" terms in momenta or energy, while the other class of
MDRs, namely the ones with logarithms or p−2 terms, do not give sensible results; this
should be expected since these MDRs are divergent in the IR regime, therefore they are
pathological from the start.

We found that in the IR regime every linear term in momenta (or energy) gives rise,
for the spectral dimension, to a doubling of the corresponding dimension and this hap-
pens also, to some extent, for the thermal dimension; in particular the most interesting
result in this case is that both spectral and thermal dimension agree on the value 2d+1
for the effective dimension of a spacetime with a MDR with a deformation linear in the
modulus of the spatial part of momentum.

We then shifted our attention to curved spacetime scenarios, in order to study the
interplay between deformation and curvature scales. We understood very soon that
the tools used in flat spacetime are not very well tailored for curved cases. The prob-
lems for the spectral dimension are the Wick rotation, which is not uniquely defined,
and the resolution of the eigenvalue equations for deformed Laplacians in curved space-
time, which in any case is a problem that descends from the interpretation of momen-
tum components as derivative operator and this is another problem per se. For thermal
dimension the problems mainly concern the fact that the thermodynamics of a photon
gas on curved spacetime is needed in order to define the required quantities; this is a
rather non trivial task and preliminary results on Anti-de Sitter spacetime [28] suggest
also that the Stefan-Boltzmann law is no longer valid on curved spacetime.

Despite these difficulties we were able to study some simple cases where the afore-
mentioned problems are more manageable. While studying these scenarios we found
novel IR effects. Compactified dimensions lead to the same results that were obtained
for the sphere and the torus [11], [19] even when a flat manifold is considered, as we
found for the (1,d)-cylinders; what happens for both the spectral and the thermal di-
mension is that the compactified dimensions disappear in the IR regime. We found
also that the spectral dimension is affected by the presence of horizons on the space-
time, in particular we studied the Rindler space, which is also a good test ground for
the near-horizon region of Schwarschild spacetime [30].

67



Conclusions and outlook

;=<

The outlooks of this research program are mainly aimed to tame the curved scenar-
ios and to find a formulation of DSR in the IR regime.
First of all, finding an interplay between curvature effects and deformation, taming
the aforementioned problems, for at least one of the two notions of effective dimen-
sionality would give us the opportunity to set some boundaries on the deformation
parameters.
Secondly, the project of finding a IR Doubly Special Relativity theory is an independent
line of research but it would make it possible to repeat all the analyses done in this work
with a deformed measure on momentum space, which could modify the predictions
for both notions of effective dimensionality and it could also give sensible results for
the "pathological" MDRs.
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A general technique for spectral
dimension limits

It is known [10] that if MDRs such as

E 2 = cw p2w + cw+1p2w+2 + ...+ cz−1p2z−2 + cz p2z

are considered, with 1 ≤ w < z , w, z ∈ N it is possible to find asymptotic expansions
that allow to find the sectral dimension in the UV and IR limits without even computing
the return probability P (s) but simply looking at the MDR. In particular, calling f (p2)
the polinomial expression in p in the MDR,

exp(−s f (p2)) ∼ exp(−scw p2w )[1− scw+1p2w+2 + ...] (A.1)

exp(−s f (p2)) ' exp(−scz p2z)[1− scz−1p2z−2 + ...] (A.2)

when s →∞ and s → 0 respectively. This means that in the IR (UV) limit the smallest
(biggest) power of p is the dominant one. In the series in the square brackets there are
terms of the form sn p2m with m ≥ n(w +1) for eq. (A.1) and m ≤ n(z −1) for eq. (A.2).

Since the MDR is trivial in the energy, it is convenient to write the spectral dimen-
sion as

ds(s) = 1−2s
d log Z (s)

d s

where the factor 1 comes from the E 2 term in the MDR and

Z (s) :=
∫ +∞

0
d p pd−1 exp(−s f (p2))

To compute Z (s) it is possible to exploit the expansions eq. (A.1) and eq. (A.2):

Z (s) ' C

s
d
2z

[
N∑

n=0
an s

n
z +O

(
s

N+1
z

)]
, s → 0

Z (s) ∼ C

s
d

2w

[
N∑

n=0
bn s−

n
w +O

(
s−

N+1
w

)]
, s →∞

70



A.1. PROOF FOR A POLYNOMIAL MDR Appendix A

;=<

from these expansions it is straightforward to get

ds(0) = 1+ d

z
, ds(∞) = 1+ d

w
(A.3)

This method can actually be used also with general deformations of the dispersion
relation f (p2) with some hypothesis on the function f : there cannot be poles in zero
and the pole in ∞ has to be of finite order and the coefficient of the pole in ∞ must
have a real part greater than zero. If w and z are the infinitesimal order in p2 = 0 and
the order of infinity in p2 = ∞ respectively, the two relations in eq. (A.3) hold. For
instance, for the MDR eq. (3.1) with α > 0 the results ds(0) = d +1 and ds(∞) = 2d +1
can be obtained by observing that in this case z = 1 and w = 1

2 .
A proof of the validity of this method for a polynomial MDR can be found in the section
below.

A.1 Proof for a polynomial MDR

Consider a MDR

E 2 = p2
[

1+ ∑
γ∈Γ

λγp2γ
]

(A.4)

where
Γ :=

{
γ ∈ ]−1,0

[ ∪ ]
0,+∞[

: λγ 6= 0
}

is a countable subset of
]−1,+∞[

\{0}, car d (Γ) ≤ℵ0. In other terms, Γ is the set of the
indexes such that a power of p2 appears in the sum and it is postulated to be countable
for the (discrete) sum to be meaningful.
Let

γm := min
[

0,min
γ∈Γ

{
γ
}]

, γM := max
[

0,max
γ∈Γ

{
γ
}]

where it is assumed that λγm > 0 and λγM > 0 so that the dispersion relation is physi-
cally meaningful both in the IR and in the UV regime; imaginary energies are avoided
in both regimes with this assumption. In the MDR eq. (A.4), in the limit s → ∞ the
modes which give a major contribution are those with p → 0 (IR) and the opposite will
happen in the limit s → 0 (UV). The return probability P (s) is given by

P (s) = S(d)(1)

(2π)d+1

∫ +∞

−∞
dE e−sE 2

∫ +∞

0
d p pd−1 e−sp2

[
1+∑

γ∈Γλγp2γ
]

Calling a the numerical constant, in which all subsequent numerical constants will be
absorbed,

P (s) = a s−
1
2

∫ +∞

0
d p pd−1 e−sp2

[
1+∑

γ∈Γλγp2γ
]

with these considerations, we can study the two limits focusing on the integral in p:
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• In the UV limit γM +1 is the order of the pole in p2 =+∞ therefore

e−sp2
[

1+∑
γ∈Γλγp2γ

]
∼ e−sλM p2(γM+1)[

1+ λpr ec (γM )

λγM

p2(pr ec (γM )−γM ) + ...
]

where pr ec (γM ) indicates the element which precedes γM in Γ and by definition
λ0 := 1. Consequently the integral in p reads∫ +∞

0
d p e−sλM p2(γM +1)

pd−1 +
∫ +∞

0
d p e−sλM p2(γM +1) λpr ec (γM )

λγM

pd−1+2(pr ec (γM )−γM ) + ...

calling sλM p2(γM+1) := t

α

∫ +∞

0
d t e−t t

d
2(γM+1)−1

s
− d

2(γM+1)+

+β
∫ +∞

0
d t e−t t

d+2(pr ec (γM )−γM )
2(γM+1) −1

s
−d+2(pr ec (γM )−γM )

2(γM+1) + ...

where α and β are numerical constants in which all subsequent numerical con-
stants are absorbed. The two integrals give two Gamma functions Γ (ν), in par-

ticular Γ
(

d
2(γM+1)

)
and Γ

(
d+2(pr ec (γM )−γM )

2(γM+1)

)
respectively. The return probability

becomes

P (s) ∼ a s−
1
2 s

− d
2(γM+1)

(
α+β s

−2(pr ec (γM )−γM )
2(γM+1) + ...

)
therefore

ds(0) = 1+ d

γM +1
(A.5)

• In the IR limit p2(γm+1) is the zero of smallest order of the pole in p2 = 0 therefore

e−sp2
[

1+∑
γ∈Γλγp2γ

]
' e−sλm p2(γm+1)[

1+ λsucc (γm )

λγm

p2(succ (γm )−γm ) + ...
]

where succ (γm) indicates the element which comes after γm in Γ and by defini-
tion λ0 := 1. Consequently the integral in p reads∫ +∞

0
d p e−sλm p2(γm+1)

pd−1 +
∫ +∞

0
d p e−sλm p2(γm+1) λsucc (γm )

λγm

pd−1+2(succ (γm )−γm ) + ...

calling sλm p2(γm+1) := t

α

∫ +∞

0
d t e−t t

d
2(γm+1)−1

s
− d

2(γm+1)+

+β
∫ +∞

0
d t e−t t

d+2(succ (γm )−γm )
2(γm+1) −1

s
−d+2(succ (γm )−γm )

2(γm+1) + ...
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where α and β are numerical constants in which all subsequent numerical con-
stants are absorbed. The two integrals give two Gamma functions Γ (ν), in partic-

ular Γ
(

d
2(γm+1)

)
and Γ

(
d+2(succ (γm )−γm )

2(γm+1)

)
respectively. The return probability be-

comes

P (s) ' a s−
1
2 s

− d
2(γm+1)

(
α+β s

−2(succ (γm )−γm )
2(γm+1) + ...

)
therefore

ds(∞) = 1+ d

γm +1
(A.6)

With the results eq. (A.5) and eq. (A.6) all the results obtained for the MDRs eq. (3.1),
eq. (3.7) can be recovered. In particular for E 2 = p2 +αp , α > 0 setting Γ = {−1

2 } and
λ−1

2
= α, we read γm = −1

2 and γM = 0 which inserted in eq. (A.6) and eq. (A.2) re-

spectively give 2d + 1 in the IR and d + 1 in the UV. The methods adopted here can
be extended also to MDRs which are not trivial in the energy, the only requirement is
that the functions which appear in the integrals respect the hypothesis as happens, for
istance, for the MDRs eq. (3.11) and eq. (3.15).
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Noncommutative Spacetime

B.1 The problem of localizability

To understand which are the premises of the NCST approach, we can consider as an
example the problem of localizability of spacetime events. The Einstenian setup to
measure the position of something in space is shown in fig. B.1.

Figure B.1: The Einsteinian setup for the measurement of the position.

The observer (O) sends a light beam towards the object of which the position has
to be measured then this beam is reflected, as example by a mirror (M), and then it is
observed again by O after a time ∆t ; the distance D of the observer from the mirror is
then D = c∆t

2 . This is what happens classically, the position can be measured with arbi-
trary precision. What happens if the probe used to measure the position is a quantum
particle? In that case we have an uncertainty on the initial position, δx0, and we know
that mδx0δv0 &ħ, where m is the mass of the probe, hence

δD = δx0 +δv0∆t & δx0 + ħ
mδx0

∆t &

√
ħ∆t

m

where the last inequality comes from minimizing δD , which happens when δx0 =√
ħ∆t
m . We see therefore that there is a limit on the localizability of an event in space and

this limit would disappear only when m →∞ in which case the probe is not a "probe"
anymore, but it is more kind of a black hole.
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B.2 κ-Minkowski and θ-NCST

NCST approach to QG arises (also) from this "hint" on the non localizability of space-
time events. The idea is that it is possible to implement directly the non localizability
on the spacetime coordinates if these are taken to be non trivial objects which do not
commute; as happens in QM with phase space, where

[
q̂ , p̂

] 6= 0 implies a limit on the
localizability in phase space, in NCST

[
x̂µ, x̂ν

] 6= 0 implies that there is a limit on the
localizability in spacetime.

The most general form of this noncommutative behavior would be[
x̂µ, x̂ν

]= iΓµν(x̂) (B.1)

where Γµν are general functions of the noncommutative coordinates. However, there
are some constraints that could be imposed. First of all, all the terms on the right-hand
side of eq. (B.1) must have dimension of l eng th2; secondly, it is postulated that the
quantum gravitational effects, in this case the noncommutativity of spacetime, mani-
fest themselves at the Planck scale, therefore we could impose that

[
x̂µ, x̂ν

]→ 0 when
`P → 0. Consequently the possible scenarios for NCST are collected under[

x̂µ, x̂ν
]= i`2

Pθ
µν+ i`Pγ

µν
ρ x̂ρ (B.2)

Usually, two classes of noncommutativity are studied, the canonical noncommutative
spacetime 1 [

x̂µ, x̂ν
]= iθµν (B.3)

and κ-Minkowski spacetime[
x̂0, x̂i ]= i`P x̂i ,

[
x̂i , x̂ j ]= 0 (B.4)

B.3 Quantization of distances in Moyal plane

An example of geometrical properties induced by the noncommutativity can be seen
in the Moyal plane [41] which is a 1+2 NCST with[

x̂0, x̂i ]= 0 ,
[

x̂1, x̂2 ]= iθ (B.5)

These coordinates, of course, cannot be interpreted as coordinates of points but they
should be rather interpreted as operators on a Hilbert space. This Hilbert space is an
auxiliary space in which there are no particles, and it is called "pregeometric". The
expected values of the coordinates operators on the states of this Hilbert space give
fuzzy coordinates of points in spacetime.

The Moyal plane is quite simple to study because the Hilbert space induced by
eq. (B.5) is the same Hilbert space of a single one dimensional particle in ordinary QM,

1`2
P is absorbed in θµν which is then dimensionful.
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indeed we could identify x̂1 with q̂ , x̂2 with p̂ and θ with ħ. If we want to define a no-
tion of distance on this spacetime we need at least two points, thus we need a Hilbert
space which is the tensor product of two copies of the Hilbert space of single point 2.
Calling A and B the points [

x̂1
A, x̂2

A

]= iθ = [
x̂1

B , x̂2
B

]
The action of these operators on the states of the Hilbert space in the "x1" representa-
tion is

x̂1
A,Bψ

(
x1

A, x1
B

)= x1
A,Bψ

(
x1

A, x1
B

)
, x̂2

A,Bψ
(
x1

A, x1
B

)=−iθ
∂

∂x1
A,B

ψ
(
x1

A, x1
B

)
With these tools, we can analyze what happens to the distances on this spacetime.

An intuitive definition of distance operator is

d̂ 2 = (
x̂1

A − x̂1
B

)2 + (
x̂2

A − x̂2
B

)2

Defining Q̂ := x̂1
A − x̂1

B , P̂ := x̂2
A − x̂2

B , M := 1
2 and ω := 2 we have[

Q̂, P̂
]= 2iθ

and

d̂ 2 = P̂ 2

2M
+ 1

2
Mω2Q̂2 (B.6)

which is the hamiltonian of a harmonic oscillator; therefore we know already that the
spectrum is discrete and that it is given by

En =ħω
(
n + 1

2

)
, n ∈N0

if [Q̂, P̂ ] = iħ; therefore, identifying ħ with 2θ and using ω= 2 we have for the distance
operator eq. (B.6) that the spectrum is given by

d 2
n = 4θ

(
n + 1

2

)
, n ∈N0 (B.7)

From this spectrum we see that the distances are quantized and that there is a mini-
mum distance of

p
2θ; this is expected since the quantization condition eq. (B.5) im-

plies that it is not possible to define with arbitrary precision both coordinates, there-
fore it is not possible to say that two "points" have distance zero because this statement
would require the knowledge of both coordinates for both "points".

2This is the same thing that happens in QM: when two particles are considered, the states of the
system live in tensor product of two copies of the one particle Hilbert space.
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Rindler space

C.1 Kinematics and Rindler coordinates

Consider an accelerated point particle in Minkowski. First of all, we have to address the
problem of which acceleration we are dealing with. Indeed there are different notions
of acceleration that can be considered. First of all, there is the 4-acceleration; calling τ
the proper time of the point particle, the 4-acceleration is

αµ = d 2xµ

dτ2

which is the simplest geometrical object that can be defined because it is a 4-vector
whose norm is Lorentz invariant. Given a reference frame S of coordinates (t ,~x), the
3-acceleration is defined by

~a = d 2~x

d t 2

Remembering that d t = γdτ the link between these two notions can be derived

aµ = γ2
u

(
γ2

u~u ·~a,γ2
u(~a ·~u)~u +~a

)
where ~u is the velocity of the point particle in the reference frame S with respect to
which the 4-acceleration is computed and γ2

u := (1−~u ·~u)−1. There is a third notion of
acceleration; at each given instant of time we can consider a reference frame S′ which
is instantaneously inertial with a velocity equal to ~u: the 3-acceleration measured in
this inertial frame with an accelerometer is by definition the proper acceleration of the
point particle. By hypothesis the coordinate time measured in S′ is equal to the proper
time of the point particle, that is the proper time depends only upon the (instanta-
neous) velocity and it is independent of the acceleration 1. Therefore we have that in
the reference frame S′ the four acceleration is

aµ = (0,~α)

where ~α is the proper acceleration (it is the 3-acceleration measured in S′). Given that
the norm of a 4-vector is Lorentz invariant we have that

aµaµ =~α ·~α :=α2 (C.1)

1This is called "clock hypothesis".
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holds in every reference frame.

Consider now two observers, A is at rest while B is accelerating with proper accel-
eration α along the x axis of A. The equation of motion for B in the A frame are

a0 = du0

dτ
, a1 = du1

dτ
, a2 = a3 = 0 (C.2)

Remembering that uµuµ =−1 we have uµaµ = 0, hence u1 = a0u0

a1 . From section C.1 we

have also −(a0)2 + (a1)2 =α2. Putting these equations all together

−(a0)2 + (a1)2 =α2

(u0)2 − (u1)2 = 1

u1 = a0u0

a1

therefore a1 =αu0 and a0 =αu1; using these relations in eq. (C.2) we get

d 2u0

dτ2
=α2u0 ,

d 2u1

dτ2
=α2u1

which together with (u0)2 − (u1)2 = 1 give us

u0 = cosh(ατ) , u1 = sinh(ατ)

that is

t (τ) = 1

α
sinh(ατ) , x(τ) = 1

α
cosh(ατ) (C.3)

From eq. (C.3) it is understood that the trajectories are hyperbolas given by −t 2 +
x2 = 1

α2 . From this we see that whenα→∞ the trajectories become the light-like paths
x = ±t ; thus everything that lies outside the wedge of the Minkowski plane between
these two lines (called Rindler wedge or Rindler space) is inaccessible for the Rindler
observer, therefore these two lines define the horizons of the Rindler space.

It is possible to define a set of coordinates for Rindler observers, preserving the
hyperbolic nature of eq. (C.3). Defining

t = 1

a
eaξ sinh(aη) , x = 1

a
eaξ cosh(aη) (C.4)

we have α= ae−aξ and aη= ατ. The coordinates in eq. (C.4) are called "Rindler coor-
dinates": an observer with constant value of ξ is at rest in this reference frame and has
a proper accelerationα= ae−aξ with respect to the Minkowski reference frame. We see
that the horizon α→∞ becomes ξ→−∞. In these coordinates from

d s2 =−d t 2 +d x2 +d y2 +d z2

it is easy to get

d s2 = e2aξ(−dη2 +dξ2)+d y2 +d z2 (C.5)
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C.2 Unruh effect

Considering the vacuum state of a quantum field for a Minkowskian observer, the Un-
ruh effect is the prediction that a Rindler observer will observe a thermal bath out of
this vacuum. More precisely, if the solutions to mass-less Klein-Gordon equation are
considered in the Minkowski reference frame and in the Rindler reference frame

φ(t , x) =
∫ +∞

−∞
dk

2π
√

2
∣∣k∣∣

(
ak e−iωk t+i kx +a†

k e iωk t−i kx
)

φ(η,ξ) =
∫ +∞

−∞
d p

2π
√

2
∣∣p∣∣

(
αp e−iωpη+i pξ+α†

p e iωpη−i pξ
)

it can be shown that the average value in the Minkowski vacuum, ak |0〉(M) = 0, of the
Rindler occupation number operator, n(R)

p :=α†
pαp , is

〈0|n(R)
p |0〉∝

(
e

ħωp

kB Tu −1

)−1

(C.6)

where the dimensional units were restored and

Tu = ħα
2πkB c

(C.7)

is the Unruh temperature. In natural units Tu = α
2π ; moreover we can turn this tem-

perature into a wavelength, that is the wavelength of the thermal radiation seen by the
Rindler observer with temperature eq. (C.7)

kB Tu =ħωu = 2πħ c

λu
⇒ λu = c2 (2π)2

α

In natural units this becomes λu = (2π)2α−1. This is what is called Unruh wavelength.
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