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Abstract

String Theory provides a huge number of consistent low-energy theories each of them
can be considered as a point in the theory Landscape. The Swampland Program aims at
characterising this Landscape. Through a number of string-inspired conjectures, the so-
called Swampland conjectures. These have the role to reconcile quantum gravity arguments,
phenomenological experience and String Theory arguments in order to constrain the
Landscape. The latter is achieved by requiring that the low-energy effective field theories
can be embedded into a quantum gravity theory. Among the Swampland conjectures,
the thesis work focuses on the so-called No-Global Symmetry and the Weak Gravity
conjectures. Regarding the first conjecture, the methodology used ranges from traditional
String Theory arguments to modern AdS/CFT correspondence as well as black hole physics.
For the second conjecture analysed in the thesis, beside arguing for it by using arguments
born within previous methodology, we also considered the link between quantum gravity
and conformal field theories, that was very recently put forward. The thesis work lays the
foundations for a generalization of the Swampland conjectures beyond String Theory.
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INTRODUCTION

It ain’t what you don’t know that gets you in trouble
It’s what you know for sure that just ain’t so

— Mark Twain

Quantization of gravity surely plays a role among the most mysterious, ambitious, intriguing
and interesting theoretical projects. One can definitely state that many efforts seem to have led
to a dead end. To be more precise, nowadays there are several theories that are candidates for
the description of quantum gravity, but none of them can be completely considered satisfying.
Hence, this looks like a first fire signal of lacking completeness in comprehension of theory
structure. Therefore, it is important to try to find and to fill up the essential keys necessary
to shed light on this drawback. Moreover, it is still unclear which approach is the correct and
consistent one. What is sure is that quantum gravity physics has kicked up a huge fuss during
the last half century, driving the attention of theoretical physicists. However, the physicists
community is not well balanced among the different proposed theories. One of them has
received much more attention in recent years, namely the well-known String Theory. Despite
of its occasional Pindaric leap or too abstract mathematical framework, this theory provides
a unique description for the known fundamental physics as well as a new deeper landscape for
quantization of gravity. Someone has observed that the beauty of the theory resides in its
simplicity, hidden in the only one-dimensional parameter necessary for defining its action, the
string length which in turn defines the sting tension.
While addressing the problem of quantum gravity, String Theory came up with new insights
and new predictions, most of them not having evidence yet in our four-dimensional everyday
world. Nevertheless, if on the one hand String Theory leaves open the door to speculations
regarding its lack of descriptions in terms of less degrees of freedom, on the other hand it is
extremely versatile and represents a lighthouse for all the other quantum gravity theories.
Among the numerous new insights proposed by it, the theory naturally furnishes tools to an
effective description in a four-dimensional spacetime. It is now consolidated and accepted
the prediction of new dimensions as well as the mathematical elegant prescription of the
extra-dimensions reduction. It is indeed due to the latter that String Theory is able to account
for a low-energy description of the four-dimensional spacetime, presumably our world.
So, what are those drawbacks that actually weaken the theory itself? The theory lacks of
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determination in this range of energies because it predicts a huge number of vacuum states in
which we could live. As a result, what is the right vacuum? Is this another fire signal of a
satisfying predictive nature of the model at low energies? Actually, this is not as discouraging
as it seems.

OBJECTIVES OF THE RESEARCH

In order to reduce the number of effective description at lower energies, instead of pursuing the
study and actual research at the energy scale at which the theory itself is defined, it could be
useful to use a bottom-up approach. Therefore, the gaze is on the range of energy at which we
actually live and properties of effective field theories become the new field of study. Hence, it
could be interesting to clean up the vast low-energy description by investigating the properties
that such effective field theories must have in order to be correctly ultraviolet-completed in
a consistent quantum gravity theory. This in turn could provide a useful tool for research
on quantum gravity: while at high energies self-consistency marks the structure of a given
physical theory, the possible empirical constraints on effective field theories could help to
“discriminate” among the possible descriptions at low energies. Hence, self-consistency plays
the role at high energies where the empirical constraints become less accessible. In this sense,
it could be interesting questioning if one can select those empirical constraints which already
encode those crucial, essential properties for a given consistent effective field theory to be
completed into quantum gravity in the ultraviolet. It is at this point that efforts have been
made by the Swampland Program in the last years.

STATE OF THE ART & METODOLOGY

The Swampland Program has its roots in String Theory, but as already observed, the latter
may lead to a large set of effective low-energy theories. Actually, already at this level, it
could be interesting to study properties of such theories because they provide an example
of consistent effective field theories completed into quantum gravity in the ultraviolet. In
literature, these theories are said to live in the so-called Landscape. However, there is also a
huge number of effective field theories that do not share those properties exhibited by the
previous ones, for this reason they are said to live in the so-called Swampland. The properties
of the Landscape theories represent the backbone for the Swampland conjectures, namely
those empirical constraints imposed on an effective field theory in order to let it live in the
Landscape. Actually, the Swampland could be rephrased by using a general notion of quantum
gravity instead of specifically String Theory. Therefore, the Swampland can be defined in this
more general sense.
Specifically, our research drives its attention on other quantum gravity theories that nowadays
are considered valid candidates beyond String Theory.
Before going head first into a deep analysis of the conjectures, we first focused on the most
consolidate ones. Furthermore, we are speculating by keeping feet firmly on the ground
because potential consequences emerging from any action posed by such conjectures can
deeply tear the place apart in the physical, consolidate landscape.
Exactly for this reason, the research project is in some sense one of a long-term work: the
project itself is ambitious and requires several debates as well as careful analysis of all the
aspects. Additionally, it aims to review all the necessary for a further analysis and to set
the tone for future collaborations with local-experts of the quantum gravity theories under

xi
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current examination.
The heart of this research is a profound understanding of some of the Swampland conjectures
by studying various reviews, considered the most complete in literature [BCV17], [Pal19],
[Bee+21].

In particular, attention was focused on the so-called No-Global symmetry and the Weak
Gravity conjectures whose supportive arguments range from String Theory literature to black
hole physics. In fact, the latter provides another useful approach adopted to study Swampland
criteria based on using established quantum gravity arguments. Among the Swampland
conjectures, the Weak Gravity one is perhaps the richest in terms of actual speculations as well
as already established tools. It was originally formulated in [AH+07] where it was conjectured
that gravity is the weakest among the other interactions. By now, there are several statements
applicable in different contexts. For this reason, it can be easily addressed to be the bête
noire for the way it pervades different cases with different dynamics. In fact, a formulation of
the Weak Gravity conjecture incorporates conditions for a black hole to decay and therefore,
this can lead to an immediate test. However, the mere decay of a black hole is not sufficient
for the Weak Gravity conjecture to hold. In fact, there is a world of motivations hidden in
the previous statement and at this level it is sufficient to know that efforts have to be step up
for a complete and a deeper understanding.
Perhaps, the conjecture that can actually and frighteningly undermine the physical landscape
is the No-Global symmetry one [BS11]. Little is currently known about it, and it is actually
expressed in a short and concise statement: exact global symmetries are not allowed in a
theory with finite number of states when coupled to gravity. It is quite impressive that it does
not put any constraints on models it applies to. Known supportive arguments for it either rely
on String Theory or black hole physics too, but due to the wideness and lack of explicit field
of application of the conjecture, we actually considered reasonable and extremely interesting
to speculate on particle physics models. In fact, as it is stated, effective theories of particle
physics can actually lead to relevant constraints or additional support to the Swampland
Program.

This in turn gives us a wide range of inspection: asymptotically safe quantum gravity
(ASG) and dynamical triangulations (DT) could provide a faithful and flourishing starting
point. Additionally, they have a lot in common: both rely on the existence of an ultraviolet
fixed point for gravity, providing renormalizability for the latter.

PURPOSES & RESULTS

Hence, these two quantum gravity theories are playing an important role in this research.
In fact, both black hole physics and fundamental physics can be equally bring into play. In
particular, the first one seems to have proven a useful and well-handled topic by ASG, shown
by the presence of a number of proposed papers on the argument [KS14]. In particular, we
are currently focusing on the analysis of Reissner-Nordstrom black holes [GK16] which can
probably reach out the Weak Gravity conjecture. However, due to subtleties of the latter,
nothing can be strictly affirmed yet. In fact, it is not completely clear the position of the
conjecture on the eventual presence of remnants and speculative efforts on it are in progress
at present.

xii
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Switching sides, the non-perturbative lattice formulation of gravity provided by dynami-
cal triangulations was considered the most appealing. In particular, initial efforts were made
on the causal formulation which goes under the name of causal dynamical triangulations
(CDT) by the fact that it has proved new compelling results through the last ten years [Lol20].
However, we then realised that vast literature on gravity-matter coupling pervades recent
results in Euclidean dynamical triangulation (EDT). Additionally, maybe the latter belongs
to the same universality class as CDT so all the previous work has poured grit into our own
mill, in some sense. Based on the work of [CLUY18], interesting new insights can actually be
used for a further analysis on the No-Global symmetry conjecture. The paper currently under
examination proposes the presence of fermions on the triangulated spacetime and the coupling
between matter and gravity is studied in the so-called “quenched approximation”. The latter
allows geometry to fluctuate without a back-reaction from the matter on it. However, this
paper really represents a full speculative true challenge for the research project: the model
predicts an exact 𝑈(1) global symmetry.

Needless to say, we can only throw the ball for future deeply investigation on the topic
through the Swampland Program-eye that we are aiming to highlight in our research. In
fact, if this model turns out to be a precise formulation and firmly predicts a global exact
symmetry, all of us should be prepared for what comes next.

OUTLINES

Future collaborations with experts of the quantum gravity theories under examination is surely
in the to-do list of our research. Additionally, the aim of our program could be extended to
other well-known quantum gravity theories such as loop quantum gravity. Moreover, beyond
reaching more concreteness in the analysis currently in progress, natural extensions of the
ongoing projects are several. First of all, one can try to understand whether or not the
landscapes of these theories are disjointed. Hence, recollecting the Swampland ideas in a
coherent framework could suggest possible new Physics. In fact for instance, if the No-Global
symmetry conjecture could actually serve as a powerful constraint for the landscapes of several
quantum gravity theories, then its arguments would reach more and more support. As a
result, we will be quite sure, in the future, that when an effective theory is coupled to gravity
its global symmetries are broken or gauged. Therefore, in this framework, the Standard Model
should not provide global symmetries when gravity is taken into account. This in turn will
lead us to further develop physics beyond Standard Model.
Furthermore, it could be interesting investigating and explaining the Swampland conjectures
as consequences of the nature of fields in the framework of quantum gravity, due to the focus
of the research on effective quantum field theories. Additionally, this could serve as a way in
understanding the geometry of the Swampland, posing a modern emphasis on theory space.
More precisely, Swampland geometry is based on the program of systematically curving out
the effective field theory space, according to the basic ideas in [Cec21].

ABOUT THIS THESIS WORK

Therefore, this thesis work is based on the above described research project which is still
ongoing and, obviously, it cannot cover all the topics that are currently boiling in the pot. I
would like to apologize for this. My colleagues, Manuel Del Piano and Pellegrino Piantadosi,
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and I will cover part of the arguments under examinations. This thesis is thus structured
as follows. There are three parts, the first furnishes the basic tools of String Theory and
introduces the Swampland Program in chapters 1 and 2, the second part represents the heart
of the Swampland Program and illustrates and motivates two Swampland conjectures: the
No-Global symmetry conjecture in chapter 3 and the Weak Gravity conjecture in chapter 4.
Finally, the third part focuses on implication for models of particle physics, in particular on
the dynamics of particles. There will be suggestions for a possible Global Symmetry conjecture
that, at the moment, will set the tone for future work and research. Hence this thesis can be
seen as a compendium for the necessary notions of the ongoing research project which I am
currently working on.

xiv



CONVENTIONS

In this thesis, if not otherwise specified, the mostly-plus signature is considered for the metric.
Moreover, when 𝑝-form gauge fields 𝐴𝜇1…𝜇𝑝

are considered, the associated field strength
𝐹𝑝+1 = d𝐴𝑝 is defined as

𝐹 2
𝑞 ≜ 1

𝑞!
𝐹𝜇1…𝜇𝑞

𝐹 𝜇1…𝜇𝑞 ⟹ ⋆𝐹 2
𝑞 = 𝐹 ∧ ⋆𝐹 (1)

with ⋆ the Hodge star [Nak03], the linear map ⋆ ∶ Ω𝑝(ℳ) → Ω𝑚−𝑝(ℳ), where 𝑚 = dimℳ,
whose action on a basis vector is defined as

⋆ (d𝑥𝜇1 ∧ d𝑥𝜇2 ∧ ⋯ ∧ d𝑥𝜇𝑝) =
√|𝑔|

(𝑚 − 𝑝)!
𝜖𝜇1𝜇2…𝜇𝑝

𝜈𝑝+1…𝜈𝑚 d𝑥𝜈𝑝+1 ∧ ⋯ ∧ d𝑥𝜈𝑚 . (2)

Let us now introduce some useful info about what is coming next. First of all, a given gauge
field 𝐴𝜇1…𝜇𝑝

has dimension 𝑝 and thus its integral over a surface Σ𝑝 is dimensionless. Moreover,
concerning the gauge coupling 𝑒2

𝑝;𝐷, its dimension is 2(𝑝 + 1) − 𝐷. Furthermore [HRR16],
considering the action of general relativity coupled to a dilaton field and a 𝑝-gauge field in 𝐷
dimensions, there will be the following conventions relating the Newton constant with the
Planck mass

1
𝑘2

𝐷
= 1

8𝜋𝐺𝐷
≜ 𝑀𝐷−2

𝑃 (3)

so that

𝑆 = 1
𝑘2

𝐷
∫ d𝐷𝑥 √−𝑔 (𝑅𝐷 − 1

2
(∇𝜙)2 − 1

2𝑒2
𝑝;𝐷

𝑒−𝛼𝑝;𝐷𝜙 𝐹 2
𝑝+1) , (4)

where the dimension of the Ricci scalar in a 𝐷-dimensional theory is 2 so that 𝑘2
𝐷 has 2 − 𝐷

dimensions.
Additionally, given the electric charge of a general 𝑝 − 1-brane

𝑄 = 1
𝑒2

𝑝;𝑑
∫

𝑆𝑑−𝑝−1

𝑒−𝛼𝑝;𝐷𝜙 ⋆ 𝐹 2
𝑝+1 (5)

the magnetic dual charge 𝑄̃ is that associated to the dual 𝐷 − 𝑝 − 3-brane, defined as

𝑄̃ = 1
2𝜋

∫
𝑆𝑝+1

𝐹 (6)
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satisfying the Dirac quantization condition 𝑄𝑄̃ ∈ ℤ. Thanks to electromagnetic duality, the
magnetic gauge dual charge and field strength are defined as

𝑔2
𝑝;𝐷 = 4𝜋2

𝑒2
𝑝;𝐷

(7)

𝐺𝐷−𝑝−1 = 2𝜋2

𝑒2
𝑝;𝐷

𝑒−𝛼𝑝;𝐷𝜙 ⋆ 𝐹𝑝+1 . (8)

In fact [Gai+15], in general for a 𝑈(1) gauge theory without matter there are two 𝑈(1)
one-form symmetries. The first is the electric symmetry whose current is 𝐽𝑒 = 2

𝑒2 ⋆ 𝐹 and is
generated by

𝑈𝐸
𝑔=𝑒𝑖𝛼(𝑅) = 𝑒𝑖 2

𝑒2 ∫
𝑅

⋆𝐹 (9)

where ∫
𝑅

⋆𝐹 is the electric flux through 𝑅. This symmetry shi�s the electric gauge field by a
flat connection. The second symmetry is the magnetic one with current being 𝐽𝑚 = 1

2𝜋 𝐹 and
generated by

𝑈𝑀
𝑔=𝑒𝑖𝜂(𝑅) = 𝑒𝑖 𝜂

2𝜋 ∫
𝑅

𝐹 , (10)

with ∫
𝑅

𝐹 the magnetic flux through 𝑅. This symmetry shi�s the magnetic foton by a flat
gauge field. In 𝐷 dimension, the electric one-form symmetry is still a one-form symmetry
while the magnetic one is a 𝐷 − 3-form symmetry. The charged objects under these two
symmetries are Wilson loops and ’t Hoo� loops, respectively.
Also, concerning chapter 4, we define

𝛾𝑝;𝐷(𝛼) ≜ (𝛼
2

+ 𝑝(𝐷 − 𝑝 − 2)
𝐷 − 2

)
−1

. (11)

xvi



Part I

Quantum Gravity & the
Swampland Program

xvii



CHAPTER 1

THE SWAMPLAND PROGRAM

CONTENTS: 1. 1 The Landscape and the Swampland. 1. 1.a The focus of the research. 1. 2 The String
Theory Game. 1. 2.a New horizons coming from String Theory – 1. 2.b Compactification of extra dimensions –
1. 2.c Two for one: Yang-Mills theory & Black Holes with 𝐷-branes.

INTRODUCTION

In your life you surely must have all taken a Band-Aid off at some point. Maybe the following
will be out of the blue but let me spill the beans for you by the way: the road to a quantum
theory of gravity is devious and in some sense unknown by the simply fact that we are living
in a world embedded at a different range of energies from that of a putative quantum theory
of gravity. Grin and bear it. Nevertheless, nowadays the physical community is somehow on
good terms with the high energy physics and still puts efforts in make speculations tick well.
However Nature works in a different way compared with our human minds. The infrared (IR)
behaviour is a consequence of the ultraviolet (UV) one. This is exactly the main difficulty in
framing a quantum theory of gravity consistently: unexpected surprises arising in the low
energy physics should not be swept under the carpet.
The Swampland Program touches wood in this attempt, impersonating Aristotle in his thinking
discussing through syllogisms: figuring out some characteristics of the big picture things and
narrowing it down through constraints imposed on the low energy theories.

1. 1 THE LANDSCAPE AND THE SWAMPLAND

The Swampland Program moves into the cradle of String Theory. The latter is considered
perhaps the most esteemed among theories of quantum gravity but in its framework there are
more than a lot effective field theories consistent with quantum gravity considerations and
principles. At this point the question naturally arises: what is the exact effective field theory
that describes low-energy physics behaviour of its completion to the high-energy theory? Or,
stated differently without jumping the gun, is it possible to select among different effective
theories those having the right characteristics and the passport to be putative quantum gravity
theories in the ultraviolet regime?
First of all, let us pull the plug about these issues for a moment and analyse the main aspects
of an effective field theory in order to focus on the nails on which to beat for the understanding
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of the Swampland Program.

The attempts of an effective field theory (EFT) are related to the representation and simpli-
fication of the dynamics of a given theory in the low-energy limit. Clearly, the immediate
consequence is the validity of this description: since the actual theory is at higher energies,
the field theoretic framework depicted by an EFT is valid up to a cutoff. EFTs have great
importance in desperate aspects of the Standard Model for example. Likely the easy way to
approach to them and learn the main characteristics and topics is the example of the chiral
symmetry description in the framework of the QCD. In layman’s term, above the scale of
validity of the EFT the theory breaks down but below the cutoff it is capable of providing a
useful description of low-energy physics.
If you smell something fishy about the purpose on an EFT you perhaps have an eye for
subtleties. In fact, the purpose of an EFT is synonymous of counting the effective degrees
of freedom at low energies. This in turn o�en implies a theoretical framework which is
non-renormalizable.

Let us go back to the problem of quantum gravity (QG). For what previously said then
someone can in principle glimpse the effective degrees of freedom of a given quantum gravity
theory and hence write down a good and appropriate EFT. This is something that in theory
seems reasonable. On the other hand if a friend of him/her has decided to walk the road in
reverse, it is likely that it may appear to him/her that a quantum EFT can be completed to
a consistent theory of quantum gravity at the drop of a hat. If this was possible, physicists
would have already found the famous pot of gold at the end of the magic quantization of
gravity rainbow, the Nobel Prize is waiting for him/her, to cite my supervisor.
The most important thing to appreciate here is the self-consistency of a theory, whether it is
depicted at high energies or described at low ones. Thinking about String Theory, there is a
huge number of EFT descriptions. Moreover, String Theory is not the theory of quantum
gravity so in principle one should admit the other descriptions at low energies coming from
other known (or who knows, future) theories. If you want, you could imagine living in a valley,
call it the Valley of EFTs of quantum gravity. Here, you could also imagine that the valley is
populated by different categories of animals: in theory every animal could live, eat and drink
there. Like every fairy-tale, there are good and bad animals.

Nevertheless, like any self-respecting valley, there is the need of a diligent shepherd who
cares and looks for the safety of the good animals, he aims to protect them and guides them
in a paddock, leaving out the bad ones. Now, the paddock is metaphorically speaking the
Landscape of the Swampland Program where the good EFTs live while all the remaining area
is the so-called Swampland. Its perimeter can be regarded as constraints acting on them
in order to critically safeguard the EFTs being in the running of a completion in the UV.
Therefore the shepherd is, in this context, the Swampland Program itself that decides and
makes a selection giving the green light to those good EFTs through his careful eyes: the
Swampland conjectures.
Additionally, if you think about how a meticulous shepherd organises and keeps the right
animals you will get on my same page concluding that he lets the animals in the paddock by
carefully observing alike behaviours, alike shape, alike characteristics shared by the good ones.
Analogously, the Swampland Program puts efforts in gather similar characteristics among
EFTs candidate to be a good quantum theory of gravity.
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The Swampland Program (SP) first (and until our efforts in the research) arena is String
Theory, so it tries to select among different vacua solutions, which means different low-energy
descriptions, those which can enter in the paddock from those which cannot by studying them
as experimental data. Here there is the need to emphasize that the Swampland theories can
come from other theories of quantum gravity.
Most importantly, the SP takes in consideration properties of the low-energy EFT itself not
caring about their UV origin. Also, what should be clear at this level, sometimes just quantum
gravity arguments suffices to distinguish between the good from the bad EFTs. For this reason
the SP leans on phenomenology and naturally can lead to new exiting results in Cosmology.
Without blinking an eye, it is easy to understand that the SP is ambitious and just only for
this it is incredibly risky and subject to traps or controversies. Undeniably, it represents a
new challenge and saying that it is still unclear is fairly to admit.
This uncertainty finds its roots in the fact that the Swampland criteria are not proven from a
microscopic point of view, thus the SP results in a binder of conjectures. Some of these are
believed to be well established while others rely on the “common sense” or if you want, on the
sixth sense of a theoretical physicist. Regarding the latter, there is a long list of clichés stating
that he/she does not even have the time to eat an apple, as a result, it seems reasonable to
me if you are wondering how a physicist can actually study or investigate peculiarities of a
given quantum theory of gravity. However, he/she is just as intelligent as he/she seems, in
fact there is no need to worry: phenomenology comes to the rescue.
Some of the conjectures are just subjective in some sense and consequently black hole (BH)
physics can be used.

1. 1.a The focus of the research

String-experimental data, quantum gravity arguments and BH physics all lay the foundations
for supportive motivations to the Swampland conjectures. At the end of the day, how does
the SP approach the task in practice? First of all, said ΛEFT the cutoff of a given EFT under
study, the SP gets its hands dirty by coupling the latter with gravity. Hence, the theory is
expected to change, which means that the cutoff itself should be different. Experience shows
that a new theory should lead to new insights if it is well defined, so one would imagine that
the new cutoff Λ𝑛𝑒𝑤 is lower than ΛEFT if it was the case. In fact, if it was higher, the previous
EFT would not be so affected by the new one, in some sense. However, the gap between the
two values should not be so marked otherwise the new EFT will be inconsistent. Moreover,
every Swampland constraint should call off performing the limit 𝑀Planck → ∞, when gravity
is decoupled.

One should not act too shocked about the previous line, it is common in physics a sim-
ilar situation. As already noted in [Bee+21], it may happen that a consistent EFT becomes
inconsistent when coupled to a gauge field, due to the appearance of anomalies that need
to cancel. Depending on the dynamics of a given theory, certain gauge symmetries develop
a topological anomaly, the so-called Witten anomaly, emerging when the classical and the
quantum lagrangian seem to be well defined but the overall theory itself no. This is exactly
the case of a flavour global symmetry theory in the fundamental representation of 𝑆𝑈(2) with
an odd number of fermions: when the symmetry is gauged by the coupling with a dynamical
gauge field the theory becomes inconsistent.
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It comes naturally then to accept that when a theory is coupled to gravity new anoma-
lies may appear culminating in a non-consistent theory of gravity. What is less intuitive, and
is the heart of the present thesis as well as the blooming interest for the SP, is that those
gravitational anomalies do not suffice to conclude that the theory is consistent.
Here we are in the new market store of the Swampland conjectures.

1. 2 THE STRING THEORY GAME

To be concrete, let us start to mention the mother-theory for this ambitious project: String
Theory (ST). It can be considered an all-encompassing theory of the Universe: it contains all
the main ingredients, it is a recipe that naturally leads to General Relativity, gauge theories
as well as further theoretical answers of unknown proven existence such as supersymmetry or
axions.
Needless to say, the beauty has always a prize, in the case of ST is the prediction of extra
dimensions for the world we live in. Whether or not ST is the correct description of a quantum
theory of gravity maybe we will never know, but it contains for sure all the characteristics
one expects for the consolidate knowledge of the physics world. For this reason, the physics
community is debating about the “String Universality” for which there is the likelihood that
other quantum gravity theories all converge to ST in the UV. At the end of the day, how did
one come up with the idea of ST?

By quantizing gravity with the tools of QFT the first issue is handing with a theory which
is non-renormalizable. Among other suggestive proposals, the one on which ST is based
on solves the problem beforehand by substituting zero-dimensional objects (points) with
one-dimensional ones, strings. As a result, the short-range interactions that were the cause of
divergent integrals are now removed by passing to a study of an extended object rather than
a well localised point [Pol07a]. All of this is extremely interesting but where are particles? If
before they were represented by points, where are they now in this new framework? Particles
emerge from vibrational modes of the string, to be more precise, they correspond to particular
and well defined oscillation modes of the string, i.e. quantum states of the string. The
whole theory is based on the description of a shoelace embedded in a flat Minkowski space
that, following the String-nomenclature, is called target space [Zwi06]. Well, but everyday
experience has shown us that objects span trajectories during their dynamical motion. This
naturally arises the next question: how does one describe the dynamics of particles? As long
as they are represented by points their trajectories are worldlines in space. Now, the study
converges to the dynamics of a string and all it takes is intuition to understand that from
worldlines one moves to worldsheet, namely the string spans a two-dimensional object during
its motion rather than a one-dimensional one. The mathematical description is thus split in
two levels of space: the target space where the string lives and the worldsheet spanned by it
during the motion.
This two-level description has interesting and important consequences, first and foremost
concerns the symmetry theme; the latter has set the tone for the investigation regarding the
oldest among the Swampland conjectures, the No-Global symmetry conjecture, as it will be
later explained.
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1. 2.a New horizons coming from String Theory

The picture provided by ST in the quantization of a one-dimensional object is highly persuasive.
What renders this theory unique is the absence of adjustable parameters. For instance, the
Standard Model (SM) theory of particle physics entails at least twenty parameters that need
to be tuned to precise value with the help of experiments. Instead, ST has only one parameter
that defines the string itself: the string length or equivalently the tension of the string.

Part of the physics community brings forward criticism of the spacetime-dependence distinctive
of the theory due to the fact that gravity is, classically, the theory of the dynamics of the
spacetime itself. Hence, one intuitively expects that a quantum theory of gravity shall share
this property. On the other hand even if the target space is needed and set to have four
dimensions, the ST naturally predicts the dimension of the spacetime itself, in other words
the spacetime dimensions emerge from computations actually. And here ST risks life and limb
because the result is 26 dimensions and the story is not even finished.
Thinking about a shoelace, one gets to grips with two possible configurations, an open string
and a closed string and furthermore, the latter can be realized by matching the two endpoints
of the former. For the open string, the two ends have to satisfy boundary conditions of the
Neumann or of the Dirichlet type. The latter represents a spacetime hypersurface on which
the string itself ends, as a result the only way to visualise the picture requires the presence of
a physical object on which the string ends: the 𝐷-brane. Additionally, Nature is such that we
distinguish between spin-integer particles, the bosons, and the spin-half particles, the fermions.
ST arises from the so-called bosonic strings which can be either open or close strings and did
not contemplate fermions. Alongside the development of the theory in the mid 1980s new
symmetry-inspired ideas were coming down the pike by which a field theory should be such
that bosonic fields are accompanied by fermionic counterparts: supersymmetry theories were
on their path.
The mathematical description upon which they are based was further revealed to be encoded
by ST. Nowadays there are at least five supersting theories, accounting for the presence
of fermions in the framework. In this picture, the spacetime dimensions emerging from
calculations is reduced to 10. The inclusion of supersymmetry opens the door to different
theories, up to now they are five. For example, if one applies this feature to both right and le�
modes of a closed string he/she will end up with equal or opposite handedness for the movers.
These in turn give rise to type IIA and type IIB theories respectively [BBS06]. Moreover,
matching the 26-dimension formalism for the le�-movers with the 10-dimensional one for the
right-movers gives the so-called heterotic strings. At first glance, one may be surprised by the
vastity of theories proposed by the framework of ST. Needless to say, ST has something up its
sleeve: 𝑇-duality.
However, even though the feature of supersymmetry renders ST a consistent theory by ac-
counting for fermions, it has not yet been discovered. This could be a double-edged sword since
on the one hand it can be a signal that there is something wrong with current speculations;
on the other, it may be a smoke signal that the scale at which supersymmetry breaking
should occur (in order to give mass to the supersymmetry partners of particles) is above the
experimentally already determined energy bounds.

Whether the presence of supersymmetry or not, the dimensions of the spacetime is higher
than that characteristic of the world we believe to live in. Does ST come up with a solution
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or a convincent explaination for these results? Things are easier said than done actually.
What is already established in Physics is the principle of conservation of energy and the fact
that gravity becomes strongly coupled at the Planck scale, which in turn naturally leads to
the awareness that with a good percentage we are not able to probe the real physics at that
scale. As a consequence, we are allowed to sleep soundly in some sense, by just assuming that
for what we actually sense conservation of energy still has to hold. Therefore, visualising in
a gedanken experiment the presence of additional macroscopic dimensions we will run into
contradiction with phenomena that imply symmetry arguments and consequently conservation
of energy, i.e. the explosion of a supernova.
Six of one, half a dozen of the other, right? Additional microscopic dimensions are more
reasonable.

1. 2.b Compactification of extra dimensions

Imagine to have a one-dimensional world populated by ants for which the latter are extremely
irrelevant within the extension of the world they live in. They are thus allowed to move
along only one dimension, name this as the 𝑥 axis. If now, in the principle of an gedanken
experiment, we imagine that for a point on the 𝑥 axis there is a circle, the ants seem to live
on a cylinder. Moreover, if this circle is extremely small compared with the extension of the 𝑥
axis, from the point of view of the ants the world is still one-dimensional. The only way to be
aware of this extra compactified dimension is encoded in a powerful experimental instrument
capable of probing its characteristic length scale.

Ultimately, ST comes with a new concept of spacetime. Even if there are no direct ex-
perimental evidence of the tools provided by it and maybe we will never know in a near future,
it seems that ST kills two birds with one stone: provides new dimensions which in turn lead
to new insights in physics and it is also capable of restricting to a four-dimensional world with
the reasonable and intelligent trick of compactification.
There is to mention how this idea emerged among the string-community. During the Roaring
Twenties, Kaluza and Klein in the attempt of unifying electromagnetism and General Rel-
ativity, spread the compactification idea. Their original thought was exactly the example
of the ants-world described above. The long dimension of the 𝑥 axis is replaced by the
four-dimentional spacetime while the other by a compact manifold of higher dimensions. On
this path, in the mid 80s other type of compactifications were proposed, such as the so-called
Calabi-Yau manifolds.

1. 2.c Two for one: Yang-Mills theory & Black Holes with 𝐷-branes

As already mentioned en passant, 𝐷-branes occupy a special role in ST. In particular, they
emerge in type I and type II superstrings. Quantum field theory is based on perturbation
theory, the probability of a given event, whether it is the creation or destruction of particles
or even scattering processes, is computed by expanding the Dyson series in the 𝑇-product
in terms of the coupling constant. Now, in ST, 𝑝-branes (with 𝑝 ≥ 2) become heavy when
the latter goes to zero. This implies that for perturbation theory they cannot be advocated
but when the coupling is large enough they become relevant. In fact, Yang-Mills theories
are described in this context: their description is in terms of massless modes of open strings
attached to 𝐷-branes.
The interest in this particular type of branes does not end here. Instead, there exist the
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so-called black p-branes through which possible black hole description can be set. This in
turn led to another discovery of ST: AdS/CFT duality. In fact, if one considers a “binder of
𝑝-branes” the spacetime geometry resembles that of a BH in the sense that a horizon appears.
Now, in the vicinity of the latter the geometry can be approximated by a product of the
maximally symmetric spacetime with negative curvature, namely the anti-de Sitter space,
with a sphere.
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CHAPTER 2

STRING THEORY IN A NUTSHELL

CONTENTS: 2. 1 The bosonic string. 2. 1.a Symmetries of the Polyakov action – 2. 1.b Gauge fixing and
mode expansions – 2. 1.c Quantization of the string. 2. 2 Non-linear sigma-models: low-energy effective
action. 2. 3 Kaluza-Klein reduction. 2. 3.a Compactification on a circle and Kaluza-Klein modes – 2.
3.b Compactification of a string on a circle.

INTRODUCTION

In this chapter the simplest mathematical description of a relativistic string is introduced:
the bosonic string. We all have to buckle our seat belt because String Theory needs a little
bit of imagination. Nevertheless, it can be visualized as a beautiful palette through which
Standard Model, Quantum Gravity, Cosmology and so many others can be painted. The task
is extremely vast and for what concerns in this thesis the main focus will be on the bosonic
closed string, which will set the tone for the born of the well-believed Swampland conjectures.
Therefore fundamental concepts are introduced, ranging from the visualization of the string to
the compactification on a circle and the tower of states of Kaluza-Klein and winding modes.

2. 1 THE BOSONIC STRING

In general, using the typical string-inspired nomenclature, a string can be visualised as a
𝑝-brane with 𝑝 = 1. Hence, it comes naturally to describe a relativistic particle as a 0-brane.
Needless to say, we consider a flat target space with 𝐷 dimensions whose metric is denoted
by 𝜂𝜇𝜈. A 𝑝-brane sweeps out a (𝑝 + 1)-dimensional world-volume. In the case of a string
the latter is two-dimensional and is called the worldsheet. The points on this worldsheet are
parameterized by the set of two coordinates 𝜉 = (𝜏, 𝜎), where the former is time-like and the
latter is space-like. To be more accurate, the parameter 𝜏 represents the worldsheet time while
𝜎 parameterizes the string itself at a given 𝜏. As already said, the worldsheet is embedded in
the target space and there is a two-level description of space.
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The embedding of the world-
sheet Σ
on flat Minkowski space is described
by the following functions 𝑋𝜇(𝜏, 𝜎):
Σ ∶ (𝜏, 𝜎) ↪ 𝑋𝜇(𝜏, 𝜎) ∈ ℝ1,𝐷−1.

The motion of a string in the spacetime can be described by using the principle of min-
imal action. This description is carried by an auxiliary metric on the worlsheet that will
be denoted with 𝛾𝑎𝑏(𝜏, 𝜎). Using this notation, the most general action for this aim is the
so-called Brink- Di Vecchia- Howe- Deser- Zumino action usually referred to as the Polyakov
action [Pol07a]:

𝑆𝑃[𝑋, 𝛾] = − 1
4𝜋𝛼′ ∫

Σ
d𝜏 d𝜎√−det𝛾𝑎𝑏 𝛾𝑎𝑏𝜕𝑎𝑋𝜇𝜕𝑏𝑋𝜇 (2.1)

where 𝛼′ is a constant called the Regge slope and has units of length squared. Moreover, in
flat Minkowski space, the functions 𝑋𝜇 can be visualised as a 𝐷-vector, as a result the (2.1)
describes a two-dimensional theory for such a 𝐷-vector in the target space where the string
propagates1.
It is interesting to note that the auxiliary metric can be eliminated from (2.1) by using its
equation of motion. Recalling the definition of the energy-momentum tensor [BBS06]

𝑇𝑎𝑏 = − 2
𝑇𝑃

1
√−det𝛾𝑎𝑏

𝛿𝑆𝑃
𝛿𝛾𝑎𝑏 (2.5)

the latter implies that (2.5) has to vanish. Additionally, by the fact that 𝛿√−det𝛾𝑎𝑏 =
−1

2√−det𝛾𝑎𝑏 𝛾𝑎𝑏𝛿𝛾𝑎𝑏, the previous requirement leads to

𝛿𝑆𝑃 = −𝑇𝑃
2

∫
Σ
d2𝜎 𝛿𝛾𝑎𝑏 (√−𝛾 𝜕𝑎𝑋𝜇𝜕𝑏𝑋𝜈 − 1

2
√−𝛾 𝛾𝑎𝑏𝛾𝑐𝑑 𝜕𝑐𝑋𝜇𝜕𝑑𝑋𝜈) 𝜂𝜇𝜈 = 0 (2.6)

⟹ 𝑇𝑎𝑏 = 𝜕𝑎𝑋𝜇𝜕𝑏𝑋𝜇 − 1
2

𝛾𝑎𝑏𝛾𝑐𝑑𝜕𝑐𝑋𝜇𝜕𝑑𝑋𝜇 , (2.7)

so, the worldsheet metric satisfies 𝛾𝑎𝑏 = 2 𝜕𝑎𝑋𝜇𝜕𝑏𝑋𝜇
𝛾𝑐𝑑𝜕𝑐𝑋𝜈𝜕𝑑𝑋𝜈

, namely that

𝛾𝑎𝑏 = const ⋅ 𝜕𝑎𝑋𝜇𝜕𝑏𝑋𝜇 . (2.8)

Two considerations are natural. Firstly, equation (2.8) manifests a symmetry encoded in the
Polyakov action. In fact, said ℎ𝑎𝑏 = 𝜕𝑎𝑋𝜇𝜕𝑏𝑋𝜇, the previous relation leads to the following

1One can appreciate the presence of the unique parameter of the theory by generalising the (2.1) to the case
of 𝑝-branes:

𝑆𝑃 = −𝑇𝑃 ∫
ℳ

d𝜇𝑃 (2.2)

with 𝑇𝑃 the 𝑝-brane tension and d𝜇𝑃 the volume element which is written in terms of the metric

𝐺𝑎𝑏 = 𝜂𝜇𝜈𝜕𝑎𝑋𝜇𝜕𝑏𝑋𝜈 where 𝑎, 𝑏 = 0, … , 𝑝. (2.3)

Therefore, since d𝜇𝑝 is the volume element it has units of (length)𝑝+1, naturally leading to the dimension of the
tension of the 𝑝-brane

[𝑇𝑃] = (length)−𝑝−1 = mass
(length)𝑝

(2.1)
−−→ 𝑇𝑃 ≡ 1

2𝜋𝛼′ . (2.4)

9



2. 1. The bosonic string CHAPTER 2
PWO

identity
ℎ𝑎𝑏√
−ℎ

=
1
2𝛾𝑎𝑏𝛾𝑐𝑑 ℎ𝑐𝑑

√−det (1
2𝛾𝑎𝑏𝛾𝑐𝑑 ℎ𝑐𝑑)

= 𝛾𝑎𝑏√−𝛾
. (2.9)

The (2.9) highlights that even though the induced metric ℎ𝑎𝑏 is fixed, by the fact that the
fields 𝑋𝜇 are given, the worldsheet metric is not. In fact, a field Ω(𝜏, 𝜎) could exist according
to which 𝛾𝑎𝑏 ↦ Ω2(𝜏, 𝜎) 𝛾𝑎𝑏 and (2.9) is still satisfied. Stated differently, the Polyakov action
is Weyl-invariant.
Secondly, the Euler-Lagrange equation for the fields 𝑋𝜇 is straightforward:

𝜕𝑎 (√−𝛾 𝛾𝑎𝑏𝜕𝑏𝑋𝜇) . (2.10)

2. 1.a Symmetries of the Polyakov action

The Weyl symmetry is indeed a gauge symmetry for the worldsheet, the function Ω depends
on the string coordinates indeed. As a result, the worldsheet metric is invariant under a local
change of scale that preserves the angles between lines. This actually means that from the
point of view of the Polyakov action, the two worldsheet metrics in figure 2.1 are equivalent.
As a result, this in turn translates in a symmetry for the Polyakov action, a special case for

Figure 2.1. Illustration of a Weyl transformation.

two dimensions since the scaling of √−𝛾 is compensated by that of the inverse metric [Ton09].
Combining the symmetries of the target space and the worldsheet it is straightforward to
state that the Polyakov action is indeed invariant under

1. 𝐷-dimensional Poincaré transformations on the target space

𝑋′𝜇(𝜏, 𝜎) = Λ𝜇
𝜈 𝑋𝜈(𝜏, 𝜎) + 𝑎𝜇 (2.11)

𝛾′
𝑎𝑏(𝜏, 𝜎) = 𝛾𝑎𝑏(𝜏, 𝜎) , (2.12)

it is easy to note that it is a global symmetry on the worldsheet by the fact that 𝜇 runs
on internal indices. Moreover, the transformation (2.11) acts on the fields at fixed 𝜏 and
𝜎.

2. Diffeomorphisms on the worldsheet

𝑋′𝜇(𝜏 ′, 𝜎′) = 𝑋𝜇(𝜏, 𝜎) (2.13)

𝛾′
𝑎𝑏(𝜏 ′, 𝜎′) = 𝜕𝜉𝑐

𝜕𝜉′𝑎
𝜕𝜉𝑑

𝜕𝜉′𝑏 𝛾𝑐𝑑(𝜏, 𝜎) (2.14)

3. Two-dimensional Weyl transformations on the worldsheet

𝑋′𝜇(𝜏, 𝜎) = 𝑋𝜇(𝜏, 𝜎) (2.15)
𝛾′

𝑎𝑏(𝜏, 𝜎) = 𝑒2𝜁(𝜏,𝜎)𝛾𝑎𝑏(𝜏, 𝜎) with 𝜁(𝜏, 𝜎) arbitrary. (2.16)
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It is thus clear that from the point of view of the string there are two gauge symmetries
and one global symmetry. The former implies a redundancy in the choice of coordinates so
treatment simplify a lot by fixing an opportune gauge.

2. 1.b Gauge fixing and mode expansions

The worldsheet metric is defined by a 2 × 2 symmetric matrix so it has three independent
parameters. To reduce redundancy we choose the so-called conformal gauge for which the
metric is locally conformally flat, namely

𝛾𝑎𝑏 = 𝑒2𝜁(𝜏,𝜎)𝜂𝑎𝑏 . (2.17)

In this way [Ton09], two of the three parameters are fixed, the last independent one can be
removed by choosing a null Weyl field, so that

𝛾𝑎𝑏 = 𝜂𝑎𝑏. (2.18)

Therefore, the metric on the worldsheet is just the Minkowski one. A primary consequence
of this gauge choice regards the simplification of the equation of motion of the worldsheet
metric. In fact, equation (2.7) in the conformal gauge becomes

𝑇01 = 𝜕𝑋𝜇

𝜕𝜏
𝜕𝑋𝜇

𝜕𝜎
= 0 (2.19)

𝑇00 = 𝑇11 = 1
2

[(𝜕𝑋
𝜕𝜏

)
2

+ (𝜕𝑋
𝜕𝜎

)
2
] = 0 (2.20)

which together with the equation of motion for the fields [Pol07a]-[BBS06]

𝜕𝑎𝜕𝑎𝑋𝜇 = 0 (2.21)

form a system of equations of motion for the string. The latter thus behaves as a free wave
(2.21) subjected to constraints (2.19) and (2.20) which are called Virasoro constraints.

In the case of our interest of a closed string, periodic conditions must be imposed, namely 𝜎
is periodic 𝜎 ≡ 𝜎 + 2𝜋. Consequently, this in turn implies that

𝑋𝜇(𝜏, 𝜎) = 𝑋𝜇(𝜏, 𝜎 + 2𝜋) . (2.22)

In order to simplify computations, we will introduce the so-called lightcone coordinates:

𝜉± = 𝜏 ± 𝜎 ⟹ d𝑠2 = −d𝜉+ d𝜉− (2.23)

so that (2.21) becomes
𝜕+𝜕−𝑋𝜇 = 0 (2.24)

while (2.19) reads as
(𝜕+𝑋)2 = (𝜕−𝑋)2 = 0 . (2.25)

Intuitively, a closed string can be visualised as two open strings attached at their ends. As a
result, we can decompose a general solution of the previous with two arbitrary functions

𝑋𝜇(𝜏, 𝜎) = 𝑋𝜇
𝐿(𝜉+) + 𝑋𝜇

𝑅(𝜉−) (2.26)

11
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called left and right movers. They do not singularly satisfy the closed string constraint but
their combination does. Said 𝑥𝜇 and 𝑝𝜇 the position and momentum of the center of mass of
the string, a general periodic solution is

𝑋𝜇
𝐿(𝜉+) = 𝑥𝜇 + 𝛼′𝑝𝜇𝜉+

2
+ 𝑖√𝛼′

2
∑
𝑛≠0

̃𝛼𝜇
𝑛

𝑛
𝑒−𝑖𝑛𝜉+ (2.27)

𝑋𝜇
𝑅(𝜉−) = 𝑥𝜇 + 𝛼′𝑝𝜇𝜉−

2
+ 𝑖√𝛼′

2
∑
𝑛≠0

𝛼𝜇
𝑛

𝑛
𝑒−𝑖𝑛𝜉− (2.28)

for which 𝛼𝜇
𝑛 = 𝛼𝜇 ∗

−𝑛 and ̃𝛼𝜇
𝑛 = ̃𝛼𝜇 ∗

−𝑛 have to hold in virtue of the reality of 𝑋𝜇. Additionally,
the metric’s constraints read as

𝜕−𝑋𝜇
𝑅 = 𝛼′𝑝𝜇

2
+ √𝛼′

2
∑
𝑛≠0

𝛼𝜇
𝑛

𝑛
𝑒−𝑖𝑛𝜉−

𝛼𝜇
0 ≜√ 𝛼′

2 𝑝𝜇

−−−−−−−→= √𝛼′

2
∑

𝑛
𝛼𝜇

𝑛𝑒−𝑖𝑛𝜉− (2.29)

⟹ (𝜕−𝑋)2 = √𝛼′

2
∑
𝑛,𝑚

𝛼𝑛 ⋅ 𝛼𝑚𝑒−𝑖(𝑛+𝑚)𝜉− 𝑛+𝑚=𝑙
−−−−→≜ 𝛼′ ∑

𝑙
𝐿𝑙 𝑒−𝑖𝑙𝜉− (2.30)

(𝜕+𝑋)2 ≜ 𝛼′ ∑
𝑙

𝐿̃𝑙 𝑒−𝑖𝑙𝜉+ (2.31)

where the sum of oscillator modes have been introduced, or rather the Fourier modes of the
constraints

𝐿𝑙 = 1
2

∑
𝑛

𝛼𝑙−𝑛 ⋅ 𝛼𝑛 and 𝐿̃𝑙 = 1
2

∑
𝑛

̃𝛼𝑙−𝑛 ⋅ ̃𝛼𝑛 . (2.32)

Performing a transformation in the lightcone coordinates actually leads to a transformation of
the metric 𝜂𝑎𝑏 → Ω2(𝜏, 𝜎)𝜂𝑎𝑏 obtained by combining a conformal transformation with a Weyl
reperameterization. In order to fix this remaining reparameterization invariance we introduce
the spacetime lightcone coordinates

𝑋± = 𝑋0 ± 𝑋𝐷−1
√

2
⟹ d𝑠2 = −2d𝑋+d𝑋− +

𝐷−2
∑

𝑖
d𝑋𝑖d𝑋𝑖 (2.33)

where an explicit splitting of the time and space direction comes as a consequence. Using the
same ansatz as before, the following choice of coordinates2

𝑋+
𝐿 = 𝑥+ + 𝛼′𝑝+𝜉+

2
and 𝑋−

𝑅 = 𝑥+ + 𝛼′𝑝+𝜉−

2
⟹ 𝑋+ = 𝑥+ + 𝛼′𝑝+𝜏 (2.34)

is called the lightcone gauge, where the 𝑋+ component of the string lightcone coordinates
(𝑋+, 𝑋−, 𝑋1, … , 𝑋𝐷−2) corresponds to the time coordinate as seen in a frame in which the
string is travelling at infinite momentum. Moreover, this choice has the advantage that, being
𝑋+ independent of 𝜎, every point of the string is at the same time. Finally, the classical
general solution is described in terms of 2𝐷 − 4 transverse modes 𝛼𝑖

𝑛 and ̃𝛼𝑖
𝑛 together with

2The residual invariance is due to the fact that a new worldsheet set of coordinates can be an arbitrary
function of the previous one: 𝜉+ ↦ ̃𝜉+(𝜉+) and 𝜉− ↦ ̃𝜉−(𝜉−) resulting the following system of transformations

for 𝜏 and 𝜎: {
̃𝜏 = 𝜉̃+(𝜏+𝜎)+𝜉̃−(𝜏−𝜎)

2

𝜎̃ = 𝜉̃+(𝜏+𝜎)−𝜉̃−(𝜏−𝜎)
2

. Once ̃𝜏 is fixed, 𝜎̃ is determined. Furthermore, ̃𝜏 can be arbitrary, just as

the free wave solution field. As a result, it can be chosen to be equal to 𝑋+. Then the residual symmetry can be
fixed setting the oscillation modes 𝛼+

𝑛 and 𝛼̃+
𝑛 to zero, leading to the gauge (2.34).

12



2. 1. The bosonic string CHAPTER 2
PWO

the position and momentum of the center of mass of the string 𝑥𝑖, 𝑝𝑖, 𝑝+ and 𝑥−. A�er some
algebra in this ansatz one ends up with the relations

𝜕+𝑋𝑖 = 𝜕𝑋𝑖

𝜕𝜏
+ 𝜕𝑋𝑖

𝜕𝜎
𝛼̃𝑖

0=√ 𝛼𝑖
2 𝑝𝑖

𝐿
=

√
2𝛼′ ∑

𝑛
̃𝛼𝑖
𝑛 𝑒−𝑖𝑛(𝜏+𝜎) (2.35)

𝜕−𝑋𝑖 = 𝜕𝑋𝑖

𝜕𝜏
− 𝜕𝑋𝑖

𝜕𝜎
𝛼𝑖

0=√ 𝛼𝑖
2 𝑝𝑖

𝑅
=

√
2𝛼′ ∑

𝑛
𝛼𝑖

𝑛 𝑒−𝑖𝑛(𝜏−𝜎) (2.36)

which, together with 𝜕𝜏𝑋+ = 𝛼′𝑝+ coming from (2.34), lead to a new expression of the
constraints in (2.25), that now read as

2𝛼′𝑝+ (𝜕𝑋−

𝜕𝜏
± 𝜕𝑋−

𝜕𝜎
) = (𝜕𝑋𝑖

𝜕𝜏
± 𝜕𝑋𝑖

𝜕𝜎
)

2

⟺ 𝜕±𝑋− =
(𝜕±𝑋𝑖)2

𝛼′𝑝+ . (2.37)

2. 1.c Quantization of the string

In this gauge one can perform the quantization of the classical string action taking in
consideration the physical degrees of freedom only. The result is the description of a theory in
a Fock space. First of all, it is important to note that (2.32) is proportional to the square
of the spacetime momentum 𝑝𝜇. However, the momentum squared has a precise meaning in
Minkowski space: it is the square of the rest mass of a particle. Moreover, constraints (2.25)
together with the lightcone gauge (2.23) lead to

2𝜕+𝑋−𝜕+𝑋+ =
𝐷−2
∑
𝑖=1

𝜕+𝑋𝑖𝜕+𝑋𝑖
(2.23)
−−−→ {

𝜕+𝑋−
𝐿 = 1

𝛼′𝑝+ ∑𝐷−2
𝑖=1 𝜕+𝑋𝑖𝜕+𝑋𝑖

𝜕−𝑋−
𝑅 = 1

𝛼′𝑝+ ∑𝐷−2
𝑖=1 𝜕−𝑋𝑖𝜕−𝑋𝑖

(2.38)

meaning that the function 𝑋−(𝜉+, 𝜉−) is completely determined. Furthermore, rewriting the
usual mode expansion for 𝑋−

𝐿/𝑅 and using the previous equations, one can end up with the
following expression for the oscillator modes 𝛼−

𝑛

𝛼−
𝑛 = √ 1

2𝛼′
1

𝑝+

+∞

∑
𝑚=−∞

𝐷−2
∑
𝑖=1

𝛼𝑖
𝑛−𝑚 𝛼𝑖

𝑚 . (2.39)

Now, recalling that 𝛼−
0 = √𝛼′/2𝑝− and ̃𝛼−

0 = √𝛼′/2𝑝−:

𝛼′𝑝−

2
= 1

2𝑝+

𝐷−2
∑
𝑖=1

(𝛼′𝑝𝑖𝑝𝑖

2
+ ∑

𝑛≠0
𝛼𝑖

𝑛𝛼𝑖
−𝑛) (2.40)

𝛼′𝑝−

2
= 1

2𝑝+

𝐷−2
∑
𝑖=1

(𝛼′𝑝𝑖𝑝𝑖

2
+ ∑

𝑛≠0
̃𝛼𝑖
𝑛 ̃𝛼𝑖

−𝑛) (2.41)

we can write 𝑝𝜇𝑝𝜇 = −𝑀2

𝑀2 = 2𝑝+𝑝− −
𝐷−2
∑
𝑖=1

𝑝𝑖𝑝𝑖 = 4
𝛼′

𝐷−2
∑
𝑖=1

∑
𝑛>0

𝛼𝑖
−𝑛𝛼𝑖

𝑛 = 4
𝛼′

𝐷−2
∑
𝑖=1

∑
𝑛>0

̃𝛼𝑖
−𝑛 ̃𝛼𝑖

𝑛 . (2.42)

Considerations are now in order. The oscillators 𝛼𝑖 and ̃𝛼𝑖 are called transverse oscillators,
therefore, the general classical solution is described in terms of these transverse oscillators
together with a number of zero modes defining the center of mass and momentum of the
string, namely 𝑥𝑖, 𝑝𝑖, 𝑝+ and 𝑥+. Additionally, condition (2.23) imposes that a shi� in 𝑥+ can
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be absorbed by a shi� of 𝜏, while 𝑝− is fixed through (2.40) and (2.41).
It has come the time to quantize the theory by imposing commutation relations:

[𝑥𝑖, 𝑝𝑗] = 𝑖𝛿𝑖𝑗 , [𝑥−, 𝑝+] = −𝑖 (2.43)

[𝛼𝑖
𝑛, 𝛼𝑗

𝑚] = [ ̃𝛼𝑖
𝑛, ̃𝛼𝑗

𝑚] = 𝑛 𝛿𝑖𝑗𝛿𝑛+𝑚,0 . (2.44)

In order to construct the Hilbert space, let |0; 𝑝⟩ denote the vacuum state, therefore the
Fock space is built by acting on the latter with the creation operators 𝛼𝑖

𝑛 and ̃𝛼𝑖
𝑛. However,

having moved to quantization, attention must be payed on normal ordering of the creation
and destruction operators. Hence, (2.42) reads as

𝑀2 = 4
𝛼′ (

𝐷−2
∑
𝑖=1

∑
𝑛>0

𝛼𝑖
−𝑛𝛼𝑖

𝑛⏟
≜𝑁

−𝑎) = 4
𝛼′

⎛⎜
⎝

𝐷−2
∑
𝑖=1

∑
𝑛>0

̃𝛼𝑖
−𝑛 ̃𝛼𝑖

𝑛⏟
≜𝑁̃

−𝑎⎞⎟
⎠

(2.45)

where 𝑁 and ̃𝑁 are the number operators of the harmonic oscillator. Therefore [Ton09]

𝑀2 = 4
𝛼′ (𝑁 − 𝑎) = 4

𝛼′ ( ̃𝑁 − 𝑎) (2.46)

and it can be demonstrated that 𝑎 = 𝐷−2
24 . Equation (2.46) can be used to study the string

spectrum. The case of our interest concerns the first exited states, namely the (𝐷 − 2)2

particles arising from ̃𝛼𝑖
−1𝛼𝑗

−1 |0; 𝑝⟩. These states have to fit into some representation of the
full Lorentz 𝑆𝑂(1, 𝐷 − 1) group. Therefore, Wigner’s classification of the Poincaré group has
to be taken into consideration. If one supposes that these particles are massive, then one
can sit at the rest frame and choose 𝑝𝜇 = (𝑚, 0, … , 0) where particles are invariant under the
little group 𝑆𝑂(𝐷 − 1). However, there is no way to account for (𝐷 − 2)2 particles in any
representation of 𝑆𝑂(𝐷 − 1). Therefore, these particles must be massless.
In this case, one can choose 𝑝𝜇 = (𝑝, 0, … , 𝑝) and the little group is now 𝑆𝑂(𝐷 − 2). Hence,
the only way to preserve the Lorentz group 𝑆𝑂(1, 𝐷 − 1) is when

𝐷 = 26 (2.47)

which is the so-called critical dimension.
In quantum field theory, massless particles give rise to long range forces so let us focus
more on these (𝐷 − 2)2 particles. The little group is 𝑆𝑂(24) so they transform under the
24 ⊗ 24 representation of 𝑆𝑂(24). Therefore, these can be decomposed into three irreducible
representations:

traceless symmetric ⊕ anti-symmetric ⊕ singlet. (2.48)

Hence, to each of these modes a massless field in spacetime can be associated, so the string
oscillation is indeed identified with a quantum of these fields, which are

𝐺𝜇𝜈(𝑋), 𝐵𝜇𝜈(𝑋), Φ(𝑋) (2.49)

respectively. First of all, 𝐵𝜇𝜈 is the so-called Kalb-Ramond field while Φ is the dilaton. The
massless, symmetric, traceless field 𝐺𝜇𝜈 represents a spin-2 particle and, following arguments
of Feynmann and Weinberg that any theory of interacting massless spin-2 particles must be
equivalent to General Relativity, we interpret it as the graviton.

14



2. 2. Non-linear sigma-models: low-energy effective action CHAPTER 2
PWO

2. 2 NON-LINEAR SIGMA-MODELS: LOW-ENERGY EFFECTIVE ACTION

The next logical step is to generalise the propagation of the string on a curved spacetime.
This improvement can be achieved by the introduction of a target space-metric dependent on
the embedding functions. The natural generalization of the (2.1) describing a string moving
in curved spacetime is

𝑆 = 1
4𝜋𝛼′ ∫ d2𝜎 √−𝛾 𝛾𝑎𝑏𝜕𝑎𝑋𝜇𝜕𝑏𝑋𝜈 Υ𝜇𝜈(𝑋) (2.50)

which is a map from the worldsheet of the string into the curved target spacetime with
metric Υ𝜇𝜈(𝑋). The field theory constructed upon (2.50) is such that the kinetic term is
field-dependent. Such a theory is known as a non-linear 𝜎-model theory [Ton09]. However,
there is a subtle particularity in (2.50): the information about gravity is encoded in the
graviton appearing as a state of the string. As a consequence, the background metric Υ𝜇𝜈(𝑋)
should be constructed from these states. In other words, we should expect gravitons hidden
in Υ𝜇𝜈(𝑋). Indeed, if one considers

Υ𝜇𝜈(𝑋) = 𝜂𝜇𝜈 + 𝜒𝜇𝜈(𝑋) (2.51)

in the path integral formulation, the partition function is thus

𝑍 = ∫ 𝒟𝑋 𝒟𝑔 exp{−𝑆𝑃 − 𝑉} ≃ ∫ 𝒟𝑋 𝒟𝑔 exp{−𝑆𝑃} (1 − 𝑉 + 1
2

𝑉 2 + … )

where 𝑉 = 1
4𝜋𝛼′ ∫ d2𝜎 √−𝛾 𝛾𝑎𝑏𝜕𝑎𝑋𝜇𝜕𝑏𝑋𝜈 𝜒𝜇𝜈(𝑋)

(2.52)

which can be demonstrated that in the conformal field theory-analysis is the vertex operator
for the graviton state of the string, (see Appendix A). Therefore, the fluctuation 𝜒𝜇𝜈(𝑋) can
be written in terms of a plane wave (with momentum 𝑝) corresponding to a graviton whose
polarization in given by a traceless tensor 𝑠𝜇𝜈:

𝜒𝜇𝜈 = 𝑠𝜇𝜈 𝑒𝑖𝑝⋅𝑋 . (2.53)

Hence, the curved spacetime is a coherent background of gravitons. Furthermore, in the
conformal gauge, (2.50) is rewritten as

𝑆 = 1
4𝜋𝛼′ ∫ d2𝜎 𝜕𝑎𝑋𝜇𝜕𝑎𝑋𝜈 Υ𝜇𝜈(𝑋) , (2.54)

meaning that the action is no longer quadratic in the embedding functions but constitutes
an interacting two-dimensional field theory. We want to better understand the interaction
term. First of all, let 𝑥𝜇

0 be a classical string solution, we introduce a massless, dimensionless,
dynamical field fluctuation 𝑊 𝜇(𝜎), such that

𝑋𝜇(𝜎) = 𝑥𝜇
0 +

√
𝛼′ 𝑊 𝜇(𝜎) . (2.55)

Then we expand the integrand of the (2.54)

Υ𝜇𝜈(𝑋)𝜕𝑎𝑊 𝜇𝜕𝑎𝑊 𝜈 =𝛼′[Υ𝜇𝜈(𝑥0) +
√

𝛼′Υ𝜇𝜈, 𝜔(𝑥0) 𝑊 𝜔+

+ 𝛼′

2
Υ𝜇𝜈, 𝜔𝜌 𝑊 𝜔 𝑊 𝜌 + … ]𝜕𝑎𝑊 𝜇𝜕𝑎𝑊 𝜈

(2.56)
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from which it is clear that the coupling constants involve derivatives of the metric at 𝑥0.
We are interested in the weakly coupling regime in order to use low-energy effective field
theory description. If 𝑟𝑐 denotes the characteristic curvature radius of the target space, then
𝜕𝑋Υ ∼ 𝑟−1

𝑐 , therefore we can define the effective dimensionless coupling as
√

𝛼′

𝑟𝑐
, (2.57)

in terms of which, if (2.57)⋘ 1, it is defined the perturbation theory of the non-linear 𝜎-model,
which is a renormalizable theory.
Nevertheless till now we are at a classical level, what about the quantum level? We want to
preserve conformal invariance and we already know that we have to conveniently regulate
divergence by introducing an UV cutoff. For this aim, the focus moves on the study of the
𝛽-functions: the quantum theory is conformally invariant if

𝛽𝜇𝜈 ∼ 𝜇
𝜕Υ𝜇𝜈(𝑋; 𝜇)

𝜕𝜇
= 0 . (2.58)

For what comes next, we will use the Riemann normal coordinates3, in terms of which the
geodesic equation leads to

0 = Γ𝜇
𝛼𝛽 (2.59)

0 = 𝜕𝜈Γ𝜇
𝛼𝛽 + 𝜕𝛼Γ𝜇

𝛽𝜈 + 𝜕𝛽Γ𝜇
𝜈𝛼 (2.60)

hence, by Taylor expanding the metric around 𝑥0

Υ𝜇𝜈 ≈ Υ𝜇𝜈 + 𝜕𝜌𝜕𝜆 Υ𝜇𝜈
𝑋𝜆𝑋𝜌

2
(2.59)(2.60)
−−−−−−→ 𝜕𝜌𝜕𝜆 Υ𝜇𝜈 = −1

3
(𝑅𝜇𝜆𝜈𝜌 + 𝑅𝜇𝜌𝜈𝜆) (2.61)

for which, evaluating at (2.55)

Υ𝜇𝜈(𝑋) = 𝜂𝜇𝜈 − 𝛼′

3
𝑅𝜇𝜆𝜈𝜌(𝑥0) 𝑊 𝜆 𝑊 𝜌 . (2.62)

Therefore, (2.50) becomes

𝑆 = 1
4𝜋𝛼′ ∫ d2𝜎 (𝜕𝑊 𝜇 ⋅ 𝜕𝑊 𝜈 𝜂𝜇𝜈) − 𝛼′

3
𝑅𝜇𝜆𝜈𝜌 𝑊 𝜆𝑊 𝜌 𝜕𝑊 𝜇 ⋅ 𝜕𝑊 𝜈 , (2.63)

where, in terms of Feynman diagrams, the quartic interaction and the divergence comes from

∼ 𝑅𝜇𝜆𝜈𝜌 and ⟺ one-loop diagram .

(2.64)
3They are used to define the coordinates of nearby points through geodesics. For example, given a point 𝑂

and a nearby point 𝑃, defining with 𝑎𝜇 the components at 𝑂 of the unit tangent vector of the geodesic joining 𝑂
to 𝑃, the coordinates in 𝑃 are 𝑥𝜇 = 𝑠 𝑎𝜇, with 𝑠 the geodesic arc length.
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Using dimensional regularization with 𝐷 = 2 + 𝜖, it can be demonstrated that the counterterm
of ∝ 𝑅𝜇𝜆𝜈𝜌 𝑊 𝜆𝑊 𝜌 𝜕𝑊 𝜇 ⋅ 𝜕𝑊 𝜈 can be expressed through a renormalization of Υ, requiring
that

Υ𝜇𝜈 → Υ𝜇𝜈 + 𝛼′

𝜖
𝑅𝜇𝜈 (2.65)

then the (2.58) leads to the condition of conformal invariance

𝛽𝜇𝜈 = 𝛼′ 𝑅𝜇𝜈 = 0 (2.66)

thus the background spacetime, the target space where the string propagates, has to obey
the vacuum Einstein equations. An important consequence follows when discussing the Weyl
invariance. In performing the latter

𝛾𝑎𝑏 ↦ 𝑒2𝜁 𝛾𝑎𝑏 ⟹ 𝑆 = 1
4𝜋𝛼′ ∫ d2𝜎 𝜕𝑋𝜇 ⋅ 𝜕𝑋𝜈 [Υ𝜇𝜈(𝑋) + 𝛼′ 𝜁 𝑅𝜇𝜈] (2.67)

a breakdown of Weyl invariance appears in the last term.
This is not the end of the story yet. Recall that the closed string has other massless states
associated to the Kalb-Ramond field, the antisymmetric tensor 𝐵𝜇𝜈 and the dilaton Φ. So,
besides graviton, in (2.50) one has to account for 𝐵𝜇𝜈 and Φ. How strings couple to them?
First of all, there is the need to highlight that 𝐵𝜇𝜈 is the analogous to the gauge potential 𝐴𝜇
in electromagnetism, as a result, the coupling with the Kalb-Ramond field is explicated by
saying that the string is charged under 𝐵𝜇𝜈. In fact, a charged particle couples to 𝐴𝜇 through
the following terms

∫ d𝜏 𝐴𝜇(𝑋) 𝑋̇𝜇 (2.68)

which actually means the pullback of the one-form 𝐴𝜇 d𝑋𝜇 in spacetime onto the worldline of
the particle. In order to translate this to the two-dimensional worldsheet one has to define the
two-form in spacetime, the antysimmetric tensor field 𝐵𝜇𝜈, whose pullback onto the worldsheet
gives

∫ d2𝜎 𝐵𝜇𝜈(𝑋) 𝜕𝑎𝑋𝜇𝜕𝑏𝑋𝜈 𝜖𝑎𝑏 . (2.69)

As well as (2.68) is gauge invariant under 𝐴𝜇 → 𝐴𝜇 − 𝜕𝜇𝜆, the same happens for (2.69)
under 𝐵𝜇𝜈 → 𝐵𝜇𝜈 + 𝜕𝜇𝐶𝜈 − 𝜕𝜈𝐶𝜇. Additionally, starting from the gauge field one defines the
two-form (the strength field tensor), in the same way we define the three-form

𝐻𝜇𝜈𝜌 = 𝜕𝜇𝐵𝜈𝜌 + 𝜕𝜈𝐵𝜌𝜇 + 𝜕𝜌𝐵𝜇𝜈 (2.70)

called the torsion. The direct consequence of (2.69) is that the total action describing the
motion of the string is thus

𝑆 = 1
4𝜋𝛼′ ∫ d2𝜎 [Υ𝜇𝜈(𝑋) 𝜕𝑎𝑋𝜇𝜕𝑏𝑋𝜈 𝛾𝑎𝑏 + 𝑖𝐵𝜇𝜈𝜕𝑎𝑋𝜇𝜕𝑏𝑋𝜈 𝜖𝑎𝑏 + 𝛼′Φ(𝑋)𝑅(2)] (2.71)

with Φ the dilaton and 𝑅(2) the Ricci scalar on the worldsheet. Anyway, we previously stressed
that the term proportional to the latter breaks the Weyl invariance. How can we impose
the Weyl invariance? Note that the breakdown comes with the Regge slope. Going to the
one-loop level there could emerge contribution coming from Υ𝜇𝜈 and 𝐵𝜇𝜈 proportional to the
latter that may resolve the problem. Indeed, there exists a subtle trick and makes use of the
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one-loop 𝛽-functions:

𝛽𝜇𝜈(Υ) = 𝛼′ 𝑅𝜇𝜈 + 2𝛼′∇𝜇∇𝜈Φ − 𝛼′

4
𝐻𝜇𝜆𝜌 𝐻 𝜆𝜌

𝜈 (2.72)

𝛽(𝐵) = −𝛼′

2
∇𝜆 𝐻𝜆𝜇𝜈 + 𝛼′ ∇𝜆 Φ 𝐻𝜆𝜇𝜈 (2.73)

𝛽(Φ) = −𝛼′

2
∇2Φ + 𝛼′ ∇𝜇Φ∇𝜇Φ − 𝛼′

24
𝐻𝜇𝜈𝜆 𝐻𝜇𝜈𝜆 (2.74)

and imposes the Weyl invariance on the worldsheet theory through 𝛽(Υ) = 𝛽(𝐵) = 𝛽(Φ) = 0.
Hence, one can rewrite (2.71) as a 𝐷-dimensional spacetime action for the equation of motion
for the (2.72), (2.73) and (2.74), namely [Ton09]-[Pal19]

𝑆 = 2𝜋𝑀𝐷−2
𝑆 ∫ d𝐷𝑋

√
−Υ 𝑒−2Φ [𝑅 − 1

12
𝐻𝜇𝜈𝜌 𝐻𝜇𝜈𝜌 + 4𝜕𝜇Φ𝜕𝜇Φ] (2.75)

which is the low-energy effective action for the bosonic string written for a general dimension
𝐷 and 𝑀𝑆 is the mass of the string.

2. 3 KALUZA-KLEIN REDUCTION

We will consider a theory with gravity in 𝒟 = 𝐷 + 𝑑 dimensions with the aim to reduce
it to a 𝑑-dimensional torus [Arg98]. So consider a 𝒟-dimensional Riemannian spacetime
ℳ𝒟 = ℝ𝐷 × 𝑇 𝑑. A point in this spacetime will be denoted by 𝑋𝑀 = (𝑥𝜇, 𝑦𝑖), where the
greek letters run on 𝜇 = (0, … , 𝐷 − 1) while the latin ones on 𝑖 = (1, … , 𝑑), so 𝑥𝜇 denotes
a coordinate on ℝ𝐷 while 𝑦𝑖 is a coordinate on 𝑇 𝑑. We would like to write the Einstein-
Hilbert action in 𝐷 dimensions including the fields that will arise during the procedure of
the reduction. The procedure is called Kaluza-Klein reduction and the main assumption is
that all the functions appearing in the following metric tensor 𝐺𝑀𝑁 are independent from the
coordinates 𝑦𝑖 on the torus:

d𝑠2 ≜ 𝐺𝑀𝑁 d𝑋𝑀 d𝑋𝑁 = 𝑔𝜇𝜈 d𝑥𝜇 d𝑥𝜈 + ℎ𝑖𝑗 (d𝑦𝑖 + 𝐴𝑖
𝜇d𝑥𝜇) (d𝑦𝑗 + 𝐴𝑗

𝜈d𝑥𝜈) (2.76)

as a result the metric tensor can be decomposed as

𝐺𝜇𝜈 = 𝑔𝜇𝜈 + ℎ𝑖𝑗𝐴𝑖
𝜇 𝐴𝑗

𝜈 , 𝐺𝜇𝑖 = ℎ𝑖𝑗𝐴
𝑗
𝜇 , 𝐺𝑖𝑗 = ℎ𝑖𝑗 (2.77)

The inverse metric 𝐺𝑀𝑁 clearly is such that 𝐺𝑀𝑃𝐺𝑃𝑁 = 𝛿𝑀
𝑁, this implies that

𝐺𝜇𝜈 = 𝑔𝜇𝜈, 𝐺𝜇𝑖 = −𝐴𝑖𝜇 = −𝑔𝜇𝜈𝐴𝑖
𝜈, 𝐺𝑖𝑗 = ℎ𝑖𝑗 + 𝐴𝑖𝜆𝐴𝑗

𝜆. (2.78)

Denoting by 𝑀𝒟
𝑃 the Planck mass and by 𝑅[𝐺] the Ricci scalar in 𝒟 dimensions, the action

for pure gravity in 𝒟 dimensions is

𝑆 =
(𝑀𝒟

𝑃 )𝒟−2

2
∫ d𝒟𝑋

√
−𝐺𝑅[𝐺] (2.79)

where, using (2.77), the determinant of the metric is
√

−𝐺 = √−𝑔
√

ℎ. (2.80)

First of all, in order to reduce (2.79) in 𝐷 dimensions, there is the need to explicit the
𝐷-dimensional Ricci tensor. So, remembering that the Christoffel symbols are

Γ𝐴
𝐵𝐶 = 𝐺𝐴𝐿

2
[𝜕𝐵𝐺𝐿𝐶 + 𝜕𝐶𝐺𝐿𝐵 − 𝜕𝐿𝐺𝐵𝐶] (2.81)
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the Ricci tensor is the contraction between the first and third indices of the Riemann tensor

𝑅𝐴𝐵 = 𝑅𝐶
𝐴𝐶𝐵 = 𝜕𝐿Γ𝐿

𝐵𝐴 − 𝜕𝐵Γ𝐿
𝐿𝐴 + Γ𝐿

𝐿𝐾Γ𝐾
𝐵𝐴 − Γ𝐿

𝐵𝐾Γ𝐾
𝐿𝐴 , (2.82)

so, using (2.77) to compute 𝐺𝐴𝐵𝑅𝐴𝐵 = 𝑅 and then recalling (2.78), one ends up with

𝑅[𝐺] = 𝑅[𝑔] − 3
4

𝜕𝜇ℎ𝑖𝑗𝜕𝜇ℎ𝑖𝑗 − 1
4

ℎ𝑖𝑗𝜕𝜇ℎ𝑖𝑗 ℎ𝑘𝑙𝜕𝜇ℎ𝑘𝑙 − ℎ𝑖𝑗�ℎ𝑖𝑗 − 1
4

ℎ𝑖𝑗 𝐹 𝑖
𝜇𝜈𝐹 𝑗 𝜇𝜈 (2.83)

where:

1. 𝑅[𝑔] and � are the 𝐷-dimensional curvature and Dalambertian respectively

2. 𝐹 𝑖
𝜇𝜈 is the field strength tensor written in terms of the gauge field 𝐴𝑖

𝜇 as 𝐹 𝑖
𝜇𝜈 =

𝜕𝜇𝐴𝑖
𝜈 − 𝜕𝜈𝐴𝑖

𝜇.

We will use a trick in order to simplify (2.83)

− ℎ𝑖𝑗�ℎ𝑖𝑗 = − 2√
ℎ
�

√
ℎ + 𝜕𝜇ℎ𝑖𝑗𝜕𝜇ℎ𝑖𝑗 + 1

2
ℎ𝑖𝑗𝜕𝜇ℎ𝑖𝑗 ℎ𝑘𝑙𝜕𝜇ℎ𝑘𝑙 (2.84)

so that substituting (2.84) in (2.83) and then in (2.79), neglecting boundary terms, the action
is just [Arg98]

𝑆 = ∫ d𝐷𝑥√−𝑔
√

ℎ [𝑅[𝑔] + 1
4

𝜕𝜇ℎ𝑖𝑗𝜕𝜇ℎ𝑖𝑗 + 1
4

ℎ𝑖𝑗𝜕𝜇ℎ𝑖𝑗 ℎ𝑘𝑙𝜕𝜇ℎ𝑘𝑙 − 1
4

ℎ𝑖𝑗 𝐹 𝑖
𝜇𝜈𝐹 𝑗 𝜇𝜈] . (2.85)

However we want to get rid of
√

ℎ. This can be achieved by performing a Weyl transformation
of 𝑔𝜇𝜈

𝑔𝜇𝜈 = 𝑒2Φ ̃𝑔𝜇𝜈 (2.86)

consequently, considering that
√

−𝐺 = √−𝑔
√

ℎ ↦ 𝑒𝐷Φ√−𝑔
√

ℎ, and 𝑔𝜇𝜈 = 𝑒−2Φ ̃𝑔𝜇𝜈 (2.87)

then

𝑆 = ∫ d𝐷𝑥√−𝑔
√

ℎ 𝑒(𝐷−2)Φ[𝑅[ ̃𝑔] + ̃𝑔𝜇𝜈 1
4

𝜕𝜇ℎ𝑖𝑗𝜕𝜈ℎ𝑖𝑗 + ̃𝑔𝜇𝜈 1
4

ℎ𝑖𝑗𝜕𝜇ℎ𝑖𝑗 ℎ𝑘𝑙𝜕𝜈ℎ𝑘𝑙+

− ̃𝑔𝜇𝜌 ̃𝑔𝜎𝜈 1
4

ℎ𝑖𝑗 𝐹 𝑖
𝜌𝜎𝐹𝑗 𝜇𝜈] .

(2.88)

Therefore, the value of Φ such that
√

ℎ disappears is then [Arg98]-[Pal19]

𝑒(𝐷−2)Φ
√

ℎ = exp{(𝐷 − 2)Φ + 1
2
logℎ} ≡ 1 ⟹ Φ = − logℎ

2(𝐷 − 2)
(2.89)

so repeating the computation by using

𝑔𝜇𝜈 ↦ 𝑒− logℎ
𝐷−2 ̃𝑔𝜇𝜈 (2.90)

we can again neglect boundary terms ad use the identity 𝜕𝜇 logℎ = ℎ𝑖𝑗𝜕𝜇ℎ𝑖𝑗. The final result
is

𝑆 = ∫ d𝐷𝑥 √−𝑔 [𝑅 + 1
4

𝜕𝜇ℎ𝑖𝑗𝜕𝜈ℎ𝑖𝑗 + 1
4(𝐷 − 2)

ℎ𝑖𝑗𝜕𝜇ℎ𝑖𝑗 ℎ𝑘𝑙𝜕𝜇ℎ𝑘𝑙 − 1
4

ℎ 1
𝐷−2 ℎ𝑖𝑗 𝐹 𝑖

𝜇𝜈𝐹 𝑗 𝜇𝜈] .

(2.91)
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2. 3.a Compactification on a circle and Kaluza-Klein modes

Now we will specialize to the case of 𝑑 = 1 thus we will compactify on a circle, whose metric
is d𝑠2

𝒞1 = 𝑒2𝜎 d𝑦 d𝑦. So

ℎ𝑖𝑖 = ℎ = 𝑒2𝜎 ⟹ ℎ𝑖𝑖 = 𝑒−2𝜎 ⟹ 𝜕𝜇ℎ𝑖𝑖 = 2(𝜕𝜇𝜎)𝑒2𝜎 and 𝜕𝜇ℎ𝑖𝑖 = −2(𝜕𝜇𝜎)𝑒2𝜎 (2.92)
1
4

𝜕𝜇ℎ𝑖𝑗𝜕𝜈ℎ𝑖𝑗 + 1
4(𝐷 − 2)

ℎ𝑖𝑗𝜕𝜇ℎ𝑖𝑗 ℎ𝑘𝑙𝜕𝜇ℎ𝑘𝑙 = −(𝜕𝜇𝜎)(𝜕𝜇𝜎) − 1
𝐷 − 2

(𝜕𝜇𝜎)(𝜕𝜇𝜎) =

= −𝐷 − 1
𝐷 − 2

(𝜕𝜇𝜎)(𝜕𝜇𝜎) (2.93)

the result can be replaced in (2.91) obtaining

𝑆 = ∫ d𝐷𝑥 √−𝑔 [𝑅 + −𝐷 − 1
𝐷 − 2

(𝜕𝜇𝜎)(𝜕𝜇𝜎) − 1
4

𝑒2 𝐷−1
𝐷−2 𝜎 𝐹𝜇𝜈𝐹 𝜇𝜈] . (2.94)

Notation can be simplified further with the introduction of a scalar field 𝜙(𝑥) such that

𝜙(𝑥) ≜ 𝑎𝜎 ⟹ 𝐷 − 1
𝐷 − 2

𝜕𝜇 (𝜙
𝑎

) 𝜕𝜇 (𝜙
𝑎

) ≡ 1
2

𝜕𝜇𝜙𝜕𝜇𝜙 ⟺ 𝑎 = √2(𝐷 − 1)
𝐷 − 2

, (2.95)

therefore 𝜙(𝑥) will play the role of a dynamical field in the theory as can be appreciated in
the final pure gravity reduced action

𝑆 = ∫ d𝐷𝑥 √−𝑔 [𝑅 − 1
2

𝜕𝜇𝜙𝜕𝜇𝜙 − 1
4

𝑒𝑎𝜙 𝐹𝜇𝜈𝐹 𝜇𝜈] . (2.96)

Using 𝜙(𝑥), the metric of the Riemannian 𝒟-dimensional manifold is

d𝑠2 = 𝑒− logℎ
𝐷−2 𝑔𝜇𝜈 d𝑥𝜇 d𝑥𝜈 + ℎ (d𝑦 + 𝐴𝜇d𝑋𝜇)2 ℎ=𝑒2 𝜙

𝑎
−−−−→
(2.95)

d𝑠2 = 𝑒−2 1
√2(𝐷−1)(𝐷−2) 𝜙𝑔𝜇𝜈 d𝑥𝜇 d𝑥𝜈 + 𝑒2√ 𝐷−2

2(𝐷−1) 𝜙 (d𝑦 + 𝐴𝜇d𝑋𝜇)2
(2.97)

that can be reduced by introducing

𝛼 = − 1
√2(𝐷 − 1)(𝐷 − 2)

and 𝛽 = √ 𝐷 − 2
2(𝐷 − 1)

. (2.98)

Furthermore, the dynamical field 𝜙 is also related to the radius of the circle 𝒞1 by definition
of length of a curve [Pal19]:

𝑒𝛽𝜙 = ∫
1

0
d𝑦 𝑒𝛽𝜙 = ∫

1

0
d𝑦

√
ℎ ≡ 2𝜋𝑅 . (2.99)

If we want to introduce a 𝒟-dimensional massless scalar field, Ψ(𝑥), it has to be periodic in
the 𝑦 coordinate due to the fact that the latter is periodic and defines the circle 𝒞1. This
implies that Ψ has to be single-valued on the circle, namely that its momentum in that
direction is expected to be quantized. We can decompose Ψ as a Block function underlining
the periodic dependence on 𝑦4:

Ψ(𝑥) =
+∞

∑
𝑛=−∞

𝜓𝑛(𝑥) 𝑖 2𝜋𝑛𝑦 (2.100)

4This decomposition emphasizes the quantization of the momentum in the 𝑦 direction, in fact −𝑖 𝜕Ψ
𝜕𝑦 = 2𝜋𝑛Ψ.
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where 𝜓𝑛(𝑥) are the so-called Kaluza-Klein (KK) modes. For the sake of simplicity we now
restrict to the case of 𝑔𝜇𝜈 = 𝜂𝜇𝜈. By the fact that Ψ is a scalar field, it has to satisfy the
Klein-Gordon equation

𝜕𝑀Ψ𝜕𝑀Ψ = ⎛⎜⎜
⎝

𝑒−2𝛼𝜙⏟
(2.98) ⟹ ( 1

2𝜋𝑅 )
2

2−𝐷

𝜕𝜇𝜕𝜇 + 𝑒−2𝛽𝜙⏟
(2.99) ⟹ 1

(2𝜋𝑅)2

∇2
𝑦
⎞⎟⎟
⎠

Ψ = 0 (2.101)

resulting in

[𝜕𝜇𝜕𝜇 − ( 1
2𝜋𝑅

)
2+ 2

𝐷−2
(2𝜋𝑛)2] 𝜓𝑛 = 0 ⟹ 𝑀2

𝐾𝐾, 𝑛 = ( 𝑛
𝑅

)
2

( 1
2𝜋𝑅

)
2

𝐷−2
(2.102)

which shows that the KK modes represents a tower of states [Pal19].

2. 3.b Compactification of a string on a circle

To be in line with the spirit of this chapter, we will consider the compactification of the
bosonic closed string on a circle, in a 25-dimensional spacetime. The Riemannian manifold is
thus ℳ25 = ℝ1,24 × 𝒞1 and a point in this spacetime is represented by 𝑋𝑀 = (𝑥𝜇, 𝑦), where
according to the previous subsection the interpretation is straightforward. The 𝑦 direction is
periodic, namely

𝑦 ∼ 𝑦 + 2𝜋𝑅 . (2.103)

Recalling the discussion made at the beginning of the chapter, for a closed bosonic string
propagating along the non-compact dimensions 𝑥𝜇 (2.21), (2.22) have to hold and the general
periodic solution is

𝑋𝜇 = 𝑋𝜇
𝐿 + 𝑋𝜇

𝑅 with
⎧{
⎨{⎩

𝑋𝜇
𝐿 = 𝑥𝜇+𝛼′𝑝𝜇

𝐿𝜉+

2 + 𝑖√𝛼′

2 ∑𝑛
𝛼̃𝜇

𝑛
𝑛 𝑒−𝑖𝑛𝜉+

𝑋𝜇
𝑅 = 𝑥𝜇+𝛼′𝑝𝜇

𝑅𝜉−

2 + 𝑖√𝛼′

2 ∑𝑛
𝛼𝜇

𝑛
𝑛 𝑒−𝑖𝑛𝜉−

with 𝑝𝜇
𝐿 = 𝑝𝜇

𝑅.

(2.104)
The innovation here is the possibility that the string can wind along the compactified direction
as can be appreciated in figure 2.2. Hence, this condition is achieved by imposing periodicity

ℝ1,𝐷−1

winding modes

Figure 2.2. Visual illustration of winding strings.

on the worldsheet coordinate 𝜎 in the string coordinate 𝑌 (𝜏, 𝜎) along 𝒞1:

𝑌 (𝜏, 𝜎) ↦ 𝑌 (𝜏, 𝜎 + 𝜋) = 𝑌 (𝜏, 𝜎) + 2𝜋𝑅 𝑤 with 𝑤 ∈ ℤ . (2.105)
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Therefore, along the 𝑦 direction, the embedding string function can be written as

⎧{
⎨{⎩

𝑌𝐿 = 𝑦+𝛼′𝑝𝑦
𝐿𝜉+

2 + 𝑖√𝛼′

2 ∑𝑛
𝛼̃𝑦

𝑛
𝑛 𝑒−𝑖𝑛𝜉+

𝑌𝑅 = 𝑦+𝛼′𝑝𝑦
𝑅𝜉−

2 + 𝑖√𝛼′

2 ∑𝑛
𝛼𝑦

𝑛
𝑛 𝑒−𝑖𝑛𝜉−

𝜉±≜𝜏±𝜎
−−−−−−−−−−−−−−−−−−−−−−−−→
𝑝𝑦= 𝑝𝑦

𝐿+𝑝𝑦
𝑅

2 and 2𝑅 𝑤= 𝛼′ 2(𝑝𝑦
𝐿−𝑝𝑦

𝑅)
2

(2.106)

𝑌 = 𝑦 + 𝛼′𝑝𝑦 𝜏 + 2𝑅 𝑤𝜎 + 𝑖√𝛼′

2
∑

𝑛

̃𝛼𝑦
𝑛

𝑛
𝑒−𝑖𝑛(𝜏+𝜎) + 𝑖√𝛼′

2
∑

𝑛

𝛼𝑦
𝑛

𝑛
𝑒−𝑖𝑛(𝜏−𝜎) . (2.107)

Clearly, as already noted for the scalar field Ψ, the quantum-mechanical wave function of the
center of mass of the string will be composed by an oscillating factor ∝ exp{𝑖𝑝𝑦 𝑦}, hence,
increasing the periodic coordinate 𝑦, this means that 𝑝𝑦 has to be quantized

𝑝𝑦 = 𝑘
𝑅

with 𝑘 ∈ ℤ . (2.108)

Using the (2.106), one can relate the winding number 𝑤 to the le� and right momenta

𝑝𝑦
𝐿 = 𝑝𝑦 + 𝑅 𝑤

𝛼′
(2.108)

= 𝑘
𝑅

+ 𝑅 𝑤
𝛼′ (2.109)

𝑝𝑦
𝑅 = 𝑝𝑦 − 𝑅 𝑤

𝛼′
(2.108)

= 𝑘
𝑅

− 𝑅 𝑤
𝛼′ (2.110)

and then use (2.109) and (2.110) to define the zero modes for the compact dimension, in the
same way as done for the non-compact case

𝛼𝑦
0 ≜ √𝛼′

2
( 𝑘

𝑅
+ 𝑅 𝑤

𝛼′ ) ⟹ 𝐿0 = 1
2

[𝛼0 ⋅ 𝛼0 +
+∞

∑
𝑛=1

𝛼−𝑛 ⋅ 𝛼𝑛] (2.111)

̃𝛼𝑦
0 ≜ √𝛼′

2
( 𝑘

𝑅
− 𝑅 𝑤

𝛼′ ) ⟹ 𝐿̃0 = 1
2

[ ̃𝛼0 ⋅ ̃𝛼0 +
+∞

∑
𝑛=1

̃𝛼−𝑛 ⋅ ̃𝛼𝑛] (2.112)

from which, using the fact that 𝑀2 = − ∑𝐷−1
𝜇=0 𝑝𝜇 𝑝𝜇, solving the equations 𝐿0 = 1 = 𝐿̃0 one

gets

𝛼′

4
( 𝑘

𝑅
− 𝑅 𝑤

𝛼′ )
2

+ 𝑁𝑅 − 𝛼′ 𝑀2

4
= 1 (2.113)

𝛼′

4
( 𝑘

𝑅
+ 𝑅 𝑤

𝛼′ )
2

+ 𝑁𝐿 − 𝛼′ 𝑀2

4
= 1 . (2.114)

Hence, taking in consideration the states for which 𝑁𝑅 = 𝑁𝐿 = 1, the final result is

𝑀2
𝐾𝐾, 𝑤 = ( 𝑘

𝑅
)

2
+ (𝑅 𝑤

𝛼′ )
2

. (2.115)

However, this result is valid in the frame where we are not performing a Weyl transformation
on the tensor metric, namely we are not considering the dilaton yet. In order to re-write
(2.115) in this frame, one should multiply the latter by exp{2𝛼𝜙} as it is done in equation
(2.102). Nevertheless, in (2.115) in the winding term there is the contribution of (𝛼′)−2. The
latter is related to the length of the string and thus to the mass of the string that can be
written as

𝑀𝑆 = 1
2𝜋

√
𝛼′

. (2.116)

In some sense, renormalization of 𝛼′ has to be taken in consideration, therefore the last term
in (2.115) needs additional multiplicative terms. Recalling (2.57), its inverse can be seen as a
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dimensionless length of the theory, in this case written in terms of the compactification radius
𝑅:

𝑙dimensionless = 𝑅√
𝛼′

(2.116)
= 2𝜋𝑅𝑀𝑆 . (2.117)

Now, let us introduce the dilatonic scalar field in 𝐷 dimensions, Φ𝐷. It is easy to find the
relation between Φ𝐷 and the dilaton in 𝒟 dimensions:

√−𝑔 𝑒−2Φ𝐷 ≡
√

−𝐺 𝑒−2Φ = √−det𝐺𝐷𝐷 𝑙2dimensionless 𝑒−2Φ = √−𝑔 𝑅√
𝛼′

𝑒−2Φ (2.118)

hence
Φ𝐷 ≡ Φ − 1

2
log (2𝜋𝑅𝑀𝑆) . (2.119)

Therefore, observing that Φ𝐷 is independent from the compactified dimension, it must not
depend on 𝑅. So, imposing this constraint, one ends up with a relation between the dilaton
in 𝒟 dimensions and the compactification radius

𝜕𝑙dimensionless
Φ𝐷 ≡ 0 ⟹ 𝜕𝑙dimensionless

Φ = 1
𝑙dimensionless

⟺ 𝑒−2Φ ∼ 1
2𝜋𝑅𝑀𝑆

. (2.120)

Hence, comparing (2.75) in 𝒟 dimensions with (2.79) in 𝐷 dimensions, it is straightforward
that

(𝑀𝐷
𝑃 )𝐷−2

2
≡ 2𝜋𝑀𝒟−2

𝑆 𝑒−2Φ (2.121)

which, imposing 𝑀𝐷
𝑃 = 1 in the frame of our interest, reads as

𝑀𝑆 ∼ (2𝜋𝑅)
1

𝐷−2 . (2.122)

Multiplying (2.122) with the last term in (2.115) and denoting with 𝛼′
0 the renormalized value

of 𝛼, one has

(2.115) ⋅ 1
𝛼′2

𝑒−2𝛼𝜙(=(2.102))⋅(2.122)
−−−−−−−−−−−−−→ (2𝜋𝑅)

2
2−𝐷 (2𝜋𝑅)

2
𝐷−2

1
𝛼′2 ≜ (2𝜋𝑅)

2
𝐷−2

1
𝛼′2

0
(2.123)

and as a consequence, equation (2.115) becomes

𝑀2
𝐾𝐾, 𝑤 = ( 1

2𝜋𝑅
)

2
𝐷−2

( 𝑘
𝑅

)
2

+ (2𝜋𝑅)
2

𝐷−2 (𝑅 𝑤
𝛼′

0
)

2

. (2.124)

Moreover, one can wonder about the relation between the Planck mass in the non-compactified
and compactified cases. Are there any consequences on the number of states in the KK and
winding modes tower of states? Indeed, we can immediately compare the Planck mass in the
spatial dimensions with that in the total non-compactified regime, without the necessity to
introduce the 𝐷-dimensional dilaton, namely by just considering the metric as

d𝑠2 = 𝑔𝜇𝜈 d𝑋𝜇d𝑋𝜈 + (2𝜋𝑅)2 (d𝑋𝐷)2 (2.125)

so that
(𝑀𝐷

𝑃 )𝐷−2 = (𝑀𝒟
𝑃 )𝒟−2 2𝜋𝑅 . (2.126)

Therefore, once we have compactified the 𝐷-th dimension we are actually living in a 𝐷-
dimensional world. This means that, in our conventions, 𝑀𝐷

𝑃 ≡ 1, then as a result 𝑀𝒟
𝑃 ∼ 𝑅 1

2−𝒟 .
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Finally, how many KK modes we can have in the effective theory before reaching the UV
scale, 𝑀𝒟

𝑃 ? Let 𝑁𝑠 be the number of these states, then

𝑁𝑠 ∼ 𝑀𝒟
𝑃

𝑀𝐾𝐾

(2.126)
−−−−→ 𝑅 𝐷−2

𝒟−2 ⟹ 𝑅 = 𝑁
𝒟−2
𝐷−2𝑠

substituting in
−−−−−−−−→

(2.126)
𝑀𝒟

𝑃 ∼ 1

𝑁
1

𝐷−2𝑠

. (2.127)

Immediate considerations are now in order. Firstly, (2.126) highlights how the true scale at
which gravity becomes strongly coupled is lower than one would have been expected. Moreover,
this leads us to define a reference scale Λ𝑠 at which gravity is strongly coupled

Λ𝑠 ≜ 𝑀𝐷
𝑃

𝑁
1

𝐷−2𝑠

(2.128)

for a 𝐷-dimensional theory. Precisely, (2.128) is the heart of the so-called Species conjecture.
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CHAPTER 3

NO-GLOBAL SYMMETRY CONJECTURE

CONTENTS: 3. 1 The conjectures: loose arguments. 3. 2 Global symmetry in Quantum Field Theory.
3. 3 Gauge symmetry. 3. 3.a Lattice gauge theory. 3. 4 Proof of the conjectures in Holography. 3.
4.a The No-Global symmetry conjecture – 3. 4.b The Completeness conjecture.

INTRODUCTION

All the Swampland conjectures are currently under deep speculations. Before diving head
in the conjectures, it is important to bear in mind that some of them can be argued in a
more convincing way while others are still on a speculative path. Since the starting point is
either ST or BH physics, in some way they are all connected. This chapter aims to provide
a detailed and complete definition of global symmetries and also to highlight how quantum
gravity actually limits symmetries in nature.

3. 1 THE CONJECTURES: LOOSE ARGUMENTS

It is well established nowadays [Pol07b] that in models of quantum gravity there are no global
symmetries and that all continuous gauge symmetries are compact. Regarding the former,
a straightforward demonstration comes from String Theory. In fact, if we have a global
symmetry on the worldsheet, there is a conserved global worldsheet charge that, following the
discussion in Appendix A, is

𝑄 = 1
2𝜋𝑖

∮ [𝐽𝑧d𝑧 − 𝐽 ̄𝑧d ̄𝑧] . (3.1)

However, the previous charge has also to be a symmetry of the physical spectrum and moreover
has to be conformally invariant. As a result, when (3.1) is applied to physical states of the
string spectrum, by virtue of the state-operator correspondence, this operation leads to an
expression of the integrand of the (3.1) in terms, for example, of the following conformal fields

𝐽𝑧
̄𝜕𝑋𝜇𝑒𝑖𝑘⋅𝑋 and 𝜕𝑋𝜇𝐽 ̄𝑧𝑒𝑖𝑘⋅𝑋 . (3.2)

Therefore, as exposed in definition A. 3.4, (3.2) create massless vectors that couple with the
le� and right-moving part of the charge 𝑄. Hence, due to the description of string interactions,
it comes naturally that a global symmetry on the worldsheet is gauged in the spacetime. In
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conclusion, String Theory shows that there are no continuous global symmetries in the target
space where they are gauged even coming from a global symmetry on the worldsheet.
In this section the statements of the conjectures will be presented along with loose arguments
coming from black hole physics. Attention will be focused on two such conjectures:

CONJECTURE 1.1: NO-GLOBAL SYMMETRY CONJECTURE

An effective field theory with finite number of states cannot provide exact global symme-
tries when coupled to gravity.

CONJECTURE 1.2: COMPLETENESS CONJECTURE

If a quantum gravity theory provides a gauge theory with compact gauge group 𝐺 at
low energies, there must exist physical states that transform in all finite dimensional
irreducible representations of 𝐺.

Despite of the simplicity of their statements, these conjectures are non-trivial: there exist
examples of effective field theory of matter coupled to gravity that actually exhibit global
symmetries. In order to appreciate their reasonable validity, let us consider a semi-classical
argument of BH physics. Let us assume the existence of a continuous global symmetry with
symmetry group being 𝐺. Now, if 𝑟 labels the irreducible representation of 𝐺 according to
which light particles with mass 𝑚 transform, in theory we could arrange a number of these
particles to form a multi-particle state. As a result [BS11], the latter will carry a non-trivial
representation of 𝐺, R ⊂ r ⊗ r ⊗ … r. In particular, this multi-particle state can be represented
by a black hole which in turn can evaporate according to Hawking discussion [Haw76]. The
work of Hawking underlines how the evaporation process is actually thermal: it only depends
on geometry and on the temperature. Therefore, the complexity of the black hole in terms of
the representation 𝑅 carried by it will not decrease during this process.
Roughly speaking, this means that during the evaporation process an observer can achieve
information only on the mass, the angular momentum and the electric charge of the BH. In
literature this result is encoded in the so-called No-hair theorem. Hence, the global information
of the BH remains hidden in the BH in some sense. Moreover, there is the possibility according
to which the BH evaporates till reaching the Planckian size, becoming a remnant (the process
is illustrated in figure 3.1). At this point two are the possibilities, whether or not the remnant
has a mass 𝑚:

1. 𝑚 ≠ 0: the remnant is stable due to the fact that it carries a large representation of the
global group 𝐺 which is actually heavier than the remnant itself.

2. 𝑚 = 0: the only way to emit global information through particles with finite energy is
via bremsstrahlung processes. Nevertheless, neither the remnant nor the decay products
can carry global charge by the fact that the only gauge field involved in the process is
the gravitational one and gravitons are neutral under global charge.

Someone could be interested in understanding the role of these remnants within the global
symmetry scenario. In the subsequent chapter the so-called remnant problem will be introduced
as well as a conjecture concerning entropy: the covariant entropy bound (CEB). For what
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Hawking radiation

N copies of 1
charged particles

N+1 copies of 1
charged particles

+

Remnant of
charge N

Remnant of
charge N+1

infinite number of remnants

𝑀𝑃𝑙𝑎𝑛𝑐𝑘

Figure 3.1. Illustration of Hawking radiation for a charged black hole and creation of charged
remnants.

concerns now, it suffices to know that dimensionality constraints can be put on the global
symmetry group 𝐺 by using the CEB. In fact, let Σ represent the sum of the dimensionalities
of the irreducible unitary representations of 𝐺. Each of these irreducible representations could
be a possible state for the remnant and a straightforward proportionality between Σ and the
partition function of the system can be written down as follows [BS11]

Σ ∝ 𝑍 ∝ 𝑒−𝛽𝐹 < 𝑒𝑆 ⟹ Σ < 𝑒𝑆 CEB
−−−−−→
𝑆< 𝜋𝑋2

Σ < 𝑒𝜋𝑋2 (3.3)

where 𝐹 represents the free energy, 𝑆 the entropy and 𝑋 the length-size of the remnant.
Equation (3.3) is thus a so� bound on the maximal size of a finite global symmetry group 𝐺.
Note the term finite in the statement of conjecture 1.1. A clear explanation is given in [GnH21],
where the difference between abelian and non-abelian symmetry groups is emphasized. For
example, if the symmetry group is 𝑆𝑈(2), which is non-abelian, all the states of the theory
are classified in irreducible representations of the group each of which is labelled with 𝑗,
hence, its dimension is 2𝑗 + 1. Therefore, a multi-particle state created by combining an
appropriate number of particles charged under non-trivial representations of 𝑆𝑈(2) would
have an arbitrary large 𝑗. Due to the fact that there is no preferred charge carried by the
particles emitted through Hawking radiation, the black hole will loose the mass but not its
charge. Hence, the finite behaviour is just encoded in the finite dimensions of the irreducible
representation of the group.
On the contrary, if the symmetry group is abelian, for example 𝑈(1), the global charge 𝑄
of the black hole could be assembled in an infinite way. Therefore, in principle, for every
black hole having charge 𝑄 there would be a remnant. As a result, in order to preserve the
physics and to not invalidate the theory, it is necessary to conjecture that at the final stage of
the Hawking radiation there would be a finite number of remnants, labelled with different
values of 𝑞. In conclusion, the term finite in the statement of conjecture 1.1 accounts for the
possibility of abelian groups as symmetry groups.
Additionally, a loose argument based on this discussion can also be used in order to justify
conjecture 1.2. In fact, given an arbitrary compact gauge group, any finite-dimensional faithful
representation of the group is such that every finite-dimensional reppresentation appears in
the tensor power of the latter and its conjugate.
However, these BH arguments do not tell why conjectures 1.1 and 1.2 are correct.
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As a result, in order to justify them, the subsequent sections aim to organize the knowledge
about quantum gravity theories through group language. In particular, the Noether theorem
itself will be discussed. Additionally, in the definition of global symmetry approximate global
symmetries and spontaneously broken ones will be included. In fact, in quantum field theory
both of them are linked to a conservation of information: the former appear in a low-energy
effective action until new terms appear in the lagrangian which can lead to a possible explicit
break of the symmetry while the latter are simply transformed in (pseudo-)Goldstone bosons.
A famous example can help to clarify the above identification. In the Standard Model it
happens that the difference between the barion and lepton number is indeed a global symmetry,
as a result it is actually interesting investigating whether there exist some lower bounds on
the coefficients of the operators entering the lagrangian which violate it.

3. 2 GLOBAL SYMMETRY IN QUANTUM FIELD THEORY

In quantum mechanics the definition of global symmetry includes a Hilbert space ℋ, the
hamiltonian of the theory 𝐻 and clearly the symmetry group 𝐺. Therefore, the action of 𝐺
on ℋ is mediated through a faithful homomorphism 𝑈 from 𝐺 to a set of unitary operators
on ℋ for which the operator 𝑈(𝑔) commutes with the hamiltonian 𝐻, with 𝑔 an element of
the group 𝐺. Moreover, 𝑈(𝑔) has to satisfy a composition law explaining how the symmetry
is actually projected on the Hilbert space:

𝑈(𝑔) ∗ 𝑈(𝑔′) = 𝑒𝑖 𝛼(𝑔,𝑔′) 𝑈(𝑔 ∗ 𝑔′) . (3.4)

Nevertheless, this definition needs the presence of a hamiltonian formulation of a given theory.
Therefore it could be helpful to be more generic and give a definition based on a group-theoretic
approach.

Definition 3. 2.1
Consider a d-dimensional Lorentz-invariant quantum field theory. The latter has a global
symmetry under group 𝐺 if the followings are true [HO21]:

(i) For every time slice Σ𝑡 of a given flat spacetime manifold ℝ𝑑 there exists a homo-
morphism 𝑈(𝑔, Σ𝑡) from the group 𝐺 to the set of unitary operators on ℋ.
Continuity of 𝑈(𝑔, Σ𝑡) is not required in order to include symmetry that could be
spontaneously broken1.

(ii) Said 𝒜[𝑅] the algebra of operators with domain 𝐷[𝑅] on a subregion 𝑅 of Σ𝑡, then
for any 𝑔 ∈ 𝐺 and 𝑅 ⊂ Σ𝑡

𝑈†(𝑔, Σ𝑡)𝒜[𝑅]𝑈(𝑔, Σ𝑡) = 𝒜[𝑅] (3.5)

namely that the group 𝐺 provides a linear action on the set of local operators at each
point through 𝑈(𝑔, Σ𝑡).

(iii) 𝑈(𝑔, Σ𝑡) are topological operators in the sense that for any 𝑔 ∈ 𝐺 their action remains
unchanged by arbitrary deformation of Σ, namely

𝑈†(𝑔, Σ𝑡)𝑇𝜇𝜈(𝑥)𝑈(𝑔, Σ𝑡) = 𝑇𝜇𝜈(𝑥) (3.6)

with 𝑇𝜇𝜈(𝑥) being the stress tensor of the theory.
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(iv) Said 𝒪 a local operator of the theory, then for any element 𝑔 ∈ 𝐺

𝑈†(𝑔, Σ𝑡)𝒪(𝑥)𝑈(𝑔, Σ𝑡) ≠ 𝒪(𝑥) , (3.7)

so a global symmetry maps a local operator into a local operator, not necessarily
implying the existence of gauge invariant charged local operators.

Definition 3. 2.1 also includes global symmetries with ’t Hoo� anomaly, a famous example is
related to the chiral phase rotation of a massless Dirac fermion in 1 + 3 dimensions:

𝜓 ↦ 𝜓 = 𝑒𝑖𝛾5𝜃𝜓 with action 𝑆 = 𝑖 ∫ d4𝑥 ̄𝜓 /𝜕 𝜓 . (3.8)

However, 3. 2.1 is valid with a flat manifold. How can it be generalised to whatever manifold?
So, consider a more general spatial geometry Σ, then [HO21]

Definition 3. 2.2
A quantum field theory is said to preserve a global symmetry on Σ if after quantization there
still exists a homomorphism 𝑈(𝑔, Σ) from 𝐺 to the set of unitary operators whose action
by conjugation preserves the local algebras as in (3.5). Moreover, the energy-momentum
tensor is still preserved.

Having established these details, the next step regards a formulation of the Noether theorem
in a non-lagrangian form. The Noether theorem states that any quantum field theory having
a continuous global symmetry has a conserved current whose integral infinitesimally generates
that symmetry [HO21], in particular the mathematical expression that a conserved current
has to satisfy is ∇𝜇𝐽𝜇

𝑎 = 0. Now, observe that if 𝐺 is a compact connected Lie group, an
element 𝑔 ∈ 𝐺 can be expressed through the exponential map in terms of the generators of
the algebra. Therefore, one can consider the following expression for 𝑈(𝑔, Σ)

𝑈(𝑒𝑖𝜖𝑎𝑇𝑎 , 𝑅) = 𝑒𝑖𝜖𝑎 ∫
𝑅

√𝛾 d𝑑−1𝑥 𝑛𝜇𝐽𝜇
𝑎 = 𝑒𝑖𝜖𝑎 ∫

𝑅
⋆𝐽𝑎 (3.9)

which in turn can help us in defining the Noether theorem in a non-lagrangian formalism. In
fact, equation (3.9) satisfies the following definition:

Definition 3. 2.3
A quantum field theory satisfying definition 3. 2.2 is said to be splittable if ∀𝑅 ⊂ Σ and

∀𝑔 ∈ 𝐺 ∃ a unitary operator 𝑈(𝑔, 𝑅) such that

𝑈†(𝑔, 𝑅)𝒪𝑈(𝑔, 𝑅) = {
𝑈†(𝑔, 𝑅)𝒪𝑈(𝑔, 𝑅) ∀𝒪 ∈ 𝒜[𝑅]
𝒪 ∀𝒪 ∈ 𝒜[Int(Σ − 𝑅)]

(3.10)

if 𝑅𝑖 are a finite disjoint set of open sub-regions of Σ whose boundaries do not intersect,
then

Π𝑖𝑈(𝑔, 𝑅𝑖) = 𝑈(𝑔, ∪𝑖𝑅𝑖) . (3.11)

1An example can be the scalar theory invariant under ℤ2 symmetry which is not continuous, whose action is
𝑆 = 1

2 ∫ d3𝑥 (𝜕𝜇𝜙𝜕𝜇𝜙 + 𝑚2𝜙2 + 𝜆
6 𝜙4).
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Hence, taking in consideration the definition 3. 2.3 and the expression (3.9), if a compact,
connected Lie group provides a global symmetry with Noether current preserved on Σ and
the symmetry is always splittable on the latter then if all global symmetries were splittable
we would achieve an abstract definition of the Noether’s theorem.
Using (3.9), one can properly focus the attention on definition (3.7). In fact a simple example
[Bee+21] can be provided in order to better appreciate what the last sentence really means.
Imagine having a scalar field 𝜙 and that the global symmetry under examination is the
invariance under translations, namely that

𝜙 → 𝜙 + 𝑐 , (3.12)

whose associated Noether current is 𝐽 = dΦ. Therefore the homomorphism from the group 𝐺
to the set of unitary operators can be expressed as

𝑈(𝑔, Σ) = 𝑒𝑖𝛼 ∫ ⋆𝐽 . (3.13)

Now, if 𝑄 denotes the associated charge to the current 𝐽, a local operator can be considered
to be of the form

𝒪(𝑥) = 𝑒𝑖𝑄𝜙 . (3.14)

According to conjecture 1.1 this symmetry is not allowed in quantum gravity, hence, or it
is explicitly broken or it is gauged. Following the latter approach, if 𝐴 = 𝐴𝜇d𝑥𝜇 labels the
gauge field, the term which takes into consideration the gauging of the current 𝐽 is

∫ 𝐴 ∧ ⋆𝐽 ⟺ 𝐿 ∝ (d𝜙 − 𝐴)2 (3.15)

which is still invariant under 𝜙 → 𝜙 + 𝑐 and 𝐴 → 𝐴 − d𝑐. However, the local operator (3.14)
it self is no longer gauge invariant. This condition in fact does not agree with definition (3.7).
The previous example throws the ball for another one that highlights the connection between
splittability and existence of global symmetries. Take in consideration a pure gauge theory
whose gauge group is ℝ × ℝ with action

𝑆 = 1
4

∫ d𝑑𝑥 √−𝑔 𝐹𝑎 𝜇𝜈𝐹 𝜇𝜈
𝑏 𝛿𝑎𝑏 = 1

2
∫ 𝐹𝑎 ∧ ⋆𝐹𝑏 𝛿𝑎𝑏 (3.16)

whose global symmetry is provided by the 𝑈(1) group which rotates the two gauge fields into
each other. The Noether current is thus

⋆ 𝐽 = 𝜖𝑎𝑏 𝐴𝑎 ∧ ⋆𝐹𝑏 (3.17)

and if one performs a gauge transformation

𝐴𝑎 → 𝐴𝑎 + d𝜆𝑎 ⟹ ⋆𝐽 → ⋆𝐽 + 𝜖𝑎𝑏 d𝜆𝑎 ∧ ⋆𝐹𝑏
d⋆𝐹𝑎=0
−−−−→ ⋆𝐽 + d (𝜖𝑎𝑏 𝜆𝑎 ⋆ 𝐹𝑏) . (3.18)

The Noether current is no gauge invariant! What is the reason? Equation (3.18) in terms of
local charge is expressed as

𝑄(𝑅) = ∫
𝑅

⋆𝐽
(3.18)
−−−→ 𝑄(𝑅) → 𝑄(𝑅) + 𝜖𝑎𝑏 ∫

𝜕𝑅
𝜆𝑎 ⋆ 𝐹𝑏 (3.19)

therefore the gauge non-invariance is encoded in an operator supported only on 𝜕𝑅. As a
result, one can modify the charge operator in order to cancel out the latter contribution. This
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is a subtlety: what should be modified, equation (3.17) or the last term in equation (3.18)?
Following the former procedure, in principle we should improve the current by adding to the
expression a local gauge non-invariant total derivative in order to cancel out the non-invariance
of ⋆𝐽 under gauge transformations. However, such a transformation should involve a term
with 𝜆𝑎 without any derivatives and it cannot be written down. Is there any deep reason for
which one cannot improve the current itself?
Actually, the symmetry under examination is not splittable. In particular, remember that
associated with gauge fields there are the so-called Wilson lines which are line operators.
Roughly speaking, there exists an exact one-form symmetry under which these lines are
charged. Therefore, these Wilson lines are addressed to be unbreakable and are responsible
for the gauge non-invariance of the current. As emphasized in equation (3.18), the gauge
non-invariance is hidden in the border of 𝑅, and a way to address the problem is in re-routing
Wilson lines around the boundary. This re-arrangement is only possible if 𝜕𝑅 is connected.
Furthermore, this represents a nice geometrical interpretation to what can actually be done
in order to provide the gauge invariance. In fact, let 𝑥0 be a reference point on the connected
𝜕𝑅 and consider a whatever curve 𝛾 connecting 𝑥0 to another point 𝑥 on 𝜕𝑅 and define the
operator

𝐼𝑎(𝑥) ≜ ∫
𝛾𝑥,𝑥0

𝐴𝑎 (3.20)

whose gauge transformation is 𝐼𝑎 → 𝐼𝑎 + 𝜆𝑎(𝑥) − 𝜆𝑎(𝑥0). Hence, defining

𝐶[𝜕𝑅] ≜ 𝜖𝑎𝑏 ∫
𝜕𝑅

𝐼𝑎 ⋆ 𝐹𝑏 → 𝐶[𝜕𝑅] + 𝜖𝑎𝑏 ∫
𝜕𝑅

𝜆𝑎 ⋆ 𝐹𝑏 (3.21)

equation (3.19) can be improved subtracting (3.21) and

𝑄̃(𝑅) ≜ 𝑄(𝑅) − 𝐶[𝜕𝑅] (3.22)

is therefore gauge invariant and 𝑈(𝛼, 𝑅) ≜ 𝑒𝑖𝛼𝑄̃(𝑅) is a set of local symmetry generators which
split the symmetry.

Having established what it is meant by a global symmetry in quantum field theory, we
now turn the gaze on gauge symmetry: conjecture 1.1 will be proven by using the previous
definitions and the notion of long-range gauge symmetry.

3. 3 GAUGE SYMMETRY

Gauge symmetry is omnipresent in physics and sometimes it is usually referred to be a merely
redundancy of degrees of freedom. Additionally, for a given QFT there exist equivalent
formulations in terms of gauge groups. For this reason, the question ”what is the gauge group
of a given QFT?” does not provide a unique answer, unlike the case of a global symmetry where
definition 3. 2.1 is unambiguous. Nevertheless, there exist physical phenomena associated
with gauge symmetry, for example the existence of gauge bosons or loop operators. In [HO21]
these are said to be characteristic of a so-called free-charge phase, a notion first introduced
in the context of lattice gauge theory because of some advantages provided by the latter2.
The notion of long-range gauge symmetry will be formalised in the next subsection a�er
introducing some basics of lattice gauge theory.

2Lattice gauge theory may be defined for any compact Lie group 𝐺, whether continuous or discrete.
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3. 3.a Lattice gauge theory

First of all, by lattice it is meant a regular set of points in ℝ𝑛 and in lattice gauge symmetry
the notion also includes a graph connecting all these points. In this graph, the vertices are
said sites while the edges connecting them are the links [HO21]. These can be identified by a
pair ( ⃗𝑥, ⃗𝛿), where ⃗𝑥 labels the starting point of the link while ⃗𝛿 is the displacement vector to
its endpoint. Hamiltonian lattice gauge theory considers each edge as a gauge field and each
site comes with a gauge transformation where any matter field is living. In particular the
Hilbert space is defined as

ℋ = ⨂
𝑒∈𝐸

ℋ𝑒 ⨂
𝑥⃗∈𝑋

ℋ𝑥⃗ (3.23)

where ℋ𝑥⃗ is the Hilbert space of the matter fields at ⃗𝑥 while ℋ𝑒 resembles the Hilbert space
ℋ𝐺 of a quantum-mechanical particle moving on the group manifold 𝐺. Labelling with |𝑔⟩
the set of states of ℋ𝐺, three family of operators can be introduced

𝑊𝛼, 𝑖𝑗 |𝑔⟩ = 𝐷𝛼, 𝑖𝑗(𝑔) |𝑔⟩ (3.24)
𝐿ℎ |𝑔⟩ = |ℎ𝑔⟩ (3.25)
𝑅ℎ |𝑔⟩ = |𝑔ℎ⟩ (3.26)

where a list of notation is now in order3:

• 𝛼 denotes an irreducible representation of the group 𝐺 whose representation matrices
are 𝐷𝛼, 𝑖𝑗(𝑔).

• 𝑊𝛼, 𝑖𝑗 is the Wilson link in representation 𝛼 and the indices 𝑖, 𝑗 run over the dimension-
ality of the latter.

• 𝐿ℎ and 𝑅ℎ are the le� and right multiplication operators which are the analogous to
the momentum operators in single-particle quantum mechanics.

Therefore, if 𝑉𝑔( ⃗𝑥) labels an additional unitary operator implementing the gauge transformation
on any charged matter fields at site ⃗𝑥, the action of a gauge transformation by a group element
𝑔 at site ⃗𝑥 on Hilbert space (3.23) is implemented via

𝑈𝑔( ⃗𝑥) ≜ Π ⃗𝛿 𝑅†
𝑔( ⃗𝑥, ⃗𝛿)𝑉𝑔( ⃗𝑥) . (3.28)

Under the action of (3.28) there are classes of gauge-invariant operators (see figure 3.2):

1. Wilson loops: defined as 𝑊𝛼(𝐶) ≜ Tr{𝑊𝛼(𝑙𝑁) … 𝑊𝛼(𝑙1)} where 𝐶 is a closed curve
consisting of the links 𝑙𝑁 … 𝑙1.

2. Wilson lines: defined by 𝑊𝛼(𝐶) ≜ 𝑊𝛼(𝑙𝑁) … 𝑊𝛼(𝑙1).

3. Wilson lines ending on charges: only one end pierces boundary while the other ends on
a matter operator charged under representation 𝛼 or 𝛼∗.

3The hermiticity properties of these operators are

⎧{
⎨{⎩

𝑊 †
𝛼, 𝑖𝑗 = 𝑊𝛼∗, 𝑗𝑖

𝐿†
ℎ = 𝐿ℎ−1

𝑅†
ℎ = 𝑅ℎ−1

whose algebra is
−−−−−−−−→

⎧{{{
⎨{{{
⎩

𝐿ℎ𝐿ℎ′ = 𝐿ℎℎ′

𝑅ℎ𝑅ℎ′ = 𝑅ℎ′ℎ

𝐿ℎ𝑅ℎ′ = 𝑅ℎ′𝐿ℎ

𝑅†
ℎ𝛼𝑅ℎ = 𝑊𝛼𝐷𝛼(ℎ)

𝐿†
ℎ𝛼𝐿ℎ = 𝐷𝛼(ℎ)𝑊𝛼

invariant
−−−−→

under
{

𝐿ℎ ↔ 𝑅ℎ−1

𝑊𝛼 ↔ 𝑊 †
𝛼

. (3.27)
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4. Localised asymptotic symmetries: defined as 𝑈(𝑔, 𝑅) ≜ Π𝑙∈𝑅𝐿𝑔(𝑙).

𝑅

Figure 3.2. Illustration of gauge invariant operators explained in the text.

With all these preliminaries, we can introduce the definition of long-range gauge symmetry.
Consider a QFT defined on an infinite-volume spatial manifold Σ having asymptotic boundary
𝜕Σ such that in any state the energy density vanishes approaching the latter, then
Definition 3. 3.1

The theory is said to have a long-range gauge symmetry with symmetry compact group G
if

(i) For each spatial closed curve 𝐶 in the interior of Σ there exist Wilson loops and
Wilson lines.

(ii) For every sub-region 𝑅 of 𝜕Σ and every 𝑔 ∈ 𝐺 ∃ 𝑈(𝑔, 𝑅) unitary operator defined on
the Hilbert space, which commutes with all operators supported only in the interior
of Σ. Said 𝑊𝛼 any Wilson line starting at point 𝑥 ∈ 𝜕Σ and ending at 𝑦 ∈ 𝜕Σ then
[HO19]

𝑈†(𝑔, 𝑅)𝑊𝛼𝑈(𝑔, 𝑅) =

⎧{{{
⎨{{{⎩

𝐷𝛼(𝑔)𝑊𝛼𝐷𝛼(𝑔−1) 𝑥, 𝑦 ∈ 𝑅
𝑊𝛼𝐷𝛼(𝑔−1) 𝑥 ∈ 𝑅, 𝑦 ∉ 𝑅
𝐷𝛼(𝑔)𝑊𝛼 𝑥 ∉ 𝑅, 𝑦 ∈ 𝑅
𝑊𝛼 𝑥, 𝑦 ∉ 𝑅

(3.29)

for arbitrary 𝑅 the 𝑈(𝑔, 𝑅) are called the localised asymptotic symmetry operators
while if 𝑅 is connected are said asymptotic symmetry operators.

(iii) Despite global symmetry definition 3. 2.1, the ground state is invariant under 𝑈(𝑔, 𝜕Σ)
and there are finite-energy charged states which transform under 𝑈(𝑔, 𝜕Σ).

An immediate consideration follows. While global symmetries have well-defined local conse-
quences because local operators transform non-trivially (3.7) and the stress tensor is invariant
(3.6), it never happens that global symmetries are not present on the simplest background ℝ𝑑

while are present on others. By contrast, long-range gauge symmetries are properties of the
phase of the theory. In the sense of definition 3. 3.1, the operators introduced in 3 are such
that their endpoints are charged operators in the representation 𝛼: they actually stand for
the so-called dynamical charges in representation 𝛼.
We should now move to quantum gravity. In this scenario, definition 3. 2.1, which is valid
in quantum field theory, has to be modified taking in consideration the fact that there is
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diffeomorphism invariance in General Relativity, it is actually a long-range spacetime gauge
symmetry. Therefore the next task concerns the definition of global symmetries in gravitational
theories, effective field theories coupled to gravity both perturbatively and non-perturbatively.

3. 4 PROOF OF THE CONJECTURES IN HOLOGRAPHY

The previous two sections will be considered in the context of holography. Precisely, conjecture
1.1 will be demonstrated by using the principle of AdS/CFT correspondence. The basic
claim of the latter is that any theory of quantum gravity in asymptotically-𝐴𝑑𝑆𝑑+1 spacetime,
namely a theory which approaches the 𝐴𝑑𝑆𝑑+1 metric

d𝑠2 = − (1 + 𝑟2)d𝑡2 + d𝑟
(1 + 𝑟2)

+ 𝑟2 dΩ2
𝑑−1 (3.30)

as 𝑟 → ∞, is non-perturbatively equivalent to a conformal field theory living on a boundary
cylinder ℝ × 𝕊𝑑−1 at 𝑟 = ∞ (see Appendix B). Moreover, for any bulk field 𝜙 there is a CFT
primary operator 𝒪 having scaling dimension Δ such that [Har18]

𝒪(𝑡, Ω) = lim
𝑟→∞

𝑟Δ 𝜙(𝑟, 𝑡, Ω) . (3.31)

An important result is the following
Theorem 3. 4.1

A global symmetry with group symmetry 𝐺 of a holographic asympotically-AdS quantum
gravity theory is also a global symmetry with the same group symmetry 𝐺 of the dual CFT.

Moreover, the set of diffeomorphisms preserving (3.31) is formed by those transformations
belonging to the so-called asymptotic conformal symmetry. Hence, the group 𝑆𝑂(𝑑, 2) is
the spacetime version of a long-range gauge symmetry. As a consequence, we now need to
introduce the gravitational analogue of the Wilson lines which extend from the boundary to an
interior point that carry gauge charge. These operators in a bulk EFT coupled perturbatively
to gravity are constructed as gravitationally-dressed versions of ordinary local operators. In
the case of a bulk EFT coupled non-perturbatively to gravity one introduces the so-called
quasilocal bulk operators [HO19]. Therefore, the analogue in quantum gravity of definition 3.
2.1 has as basic idea the definition of a global symmetry with symmetry group 𝐺 in terms
of a homomorphism from 𝐺 to a set of unitary operators on Hilbert space. These operators
faithfully act by conjugation on the set of gravitationally-dressed local operators. Moreover,
the symmetry operators commute with the boundary stress tensor, so they commute with the
asymptotic conformal symmetry 4.

3. 4.a The No-Global symmetry conjecture

In this context, a straightforward definition of global symmetry is the following one:
Definition 3. 4.1

A quantum gravity theory in asymptotically-AdS space has a global symmetry with symmetry
group 𝐺 if [HO19]

(i) if 𝜕Σ denotes any boundary time-slice of the full-invariant diffeomorphisms Hilbert
space, then there exists a homomorphism 𝑈(𝑔, 𝜕Σ) from 𝐺 to the set of unitary
operators defined in that Hilbert space.

4Additionally, in order to take also in consideration condition (3.5), global symmetries act locally on the
so-called gravitationally-dressed surface operators.
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(ii) 𝑈(𝑔, 𝜕Σ) acts locally: if 𝜙 is a gravitational-dressed operator then both it and
𝑈†(𝑔, 𝜕Σ)𝜙𝑈(𝑔, 𝜕Σ) are dressed by the same gravitational Wilson line.

(iii) Said 𝑅 ⊂ 𝜕Σ, 𝑈(𝑔, 𝜕Σ) acting by conjugation on 𝒜[𝑅] gives another element of the
algebra 𝒜[𝑅].

(iv) 𝑈(𝑔, 𝜕Σ) commutes with the boundary stress tensor.

(v) 𝑈(𝑔, 𝜕Σ) acts faithfully on the set of those gravitationally-dressed operators in
the bulk, the so-called gauge singlets [HO19], which transform non-trivially under
𝑈(𝑔, 𝜕Σ).

(vi) For every invariant subgroup 𝐻 ⊂ 𝐺 there exist two gauge singlets transforming
under the same representation of the asymptotic conformal symmetry but different
representations of 𝐻.

Now, all the definitions introduced are going to be discussed in the structure of AdS/CFT.
It will be shown that any global symmetry in the bulk would lead to a contradiction on the
boundary and the arguments used are based on the so-called entanglement wedge reconstruction
[HO19]. The latter is a property of the AdS/CFT correspondence and simply states that there
exists a sub-duality between any spatial sub-region 𝑅 of the boundary CFT and a sub-region
in the bulk, the entanglement wedge of 𝑅. The duality is shown in figure 3.3.

Figure 3.3. Sub-duality in AdS/CFT correspondence with the visual illustration of the entanglement
wedge.

Therefore, any bulk operator with support in the entanglement wedge of 𝑅, 𝑊[𝑅], can be
represented by an operator with support only in 𝑅 in the CFT. This actually means that if
we are observers sitting at the boundary we will have access to complete information on what
is going on in the bulk only in 𝑊[𝑅].
It is condition (vi) which is inconsistent with the entanglement wedge reconstruction, providing
a proof for conjecture 1.1. In fact, consider the symmetry operators 𝑈(𝑔, 𝜕Σ). By virtue of
theorem 3. 4.1, there exists a boundary symmetry operator in the CFT. Moreover, in QFT,
definition of global symmetry 3. 2.1 and splittability 3.11 one has

𝑈(𝑔, 𝜕Σ) = 𝑈(𝑔, 𝑅1) … 𝑈(𝑔, 𝑅𝑛) 𝑈edge (3.32)

where 𝑈edge just fixes arbitrary choices in defining 𝑈(𝑔, 𝑅𝑖). By entanglement wedge reconstruc-
tion, in the bulk 𝑈(𝑔, 𝑅𝑖) just implements the global symmetry only on those operators having
support in 𝑊[𝑅𝑖]. Following condition (vi), in the bulk there are two gravitationally-dressed
operators charged under 𝐺 and transforming under the same representation of the asymptotic
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conformal symmetry (vi). However, equation (3.32) highlights that the charge is expressed
in terms of CFT operators whose spatial supports is such that their entanglement wedges
can lead access only to those operators living there. Now, according to (v), the two dressed
local operators can be arranged such that their only support in the entanglement wedge is
their gravitational Wilson lines. Therefore, the charge has support in those regions whose
entanglement wedges have only access to the gravitational Wilson lines of the two operators.
As a result, by the fact that the two operators transform under the same asymptotic conformal
symmetry, they clearly have identical gravitational Wilson lines. Nevertheless, there is no
way for condition (vi) to be satisfied: there is no way for the two dressed local operators to
transform according to two different representations of the global symmetry group, there is
no global information in the entanglement wedge.

Figure 3.4. Illustration of a bulk timeslice: the dressed local operator does not live in the grey
regions, namely the entanglement wedges of regions 𝑅𝑖. The only way to make a correspondence
between bulk and boundary is through a gravitational Wilson line.

A�er all this pingponting from global symmetry definitions to long-range gauge symmetry
one, the entanglement wedge reconstruction simply implies that we can choose the regions
𝑅𝑖 small enough that the associated surfaces 𝛾𝑅 do not reach the center of the bulk where
an operator charged under the symmetry lives, so that there is no chance for 𝑈(𝑔, 𝑅𝑖) to
commute with it, see figure 3.4. At the end of the day, the final result is that there can be no
localized operators charged under the global symmetry, which is clearly a contradiction for
the initial hypothesis of the existence of a global symmetry in the bulk.
On the contrary, this contradiction is avoided for the case of a long-range gauge symmetry
in the bulk by the fact that any operator charged needs to be attached to the asymptotic
boundary by a Wilson line which in turn intersects in the 𝑊[𝑅𝑖] region and so 𝑈(𝑔, 𝑅𝑖) is
able to detect it.
Having established that a global symmetry on the boundary cannot be dual to a global
symmetry on the bulk, a question naturally arises: a global symmetry on the boundary to
what is dual in the bulk?

3. 4.b The Completeness conjecture

In this subsection [Pal19]-[HO19] will be argued that a splittable global symmetry on the
boundary CFT is indeed dual to a long-range gauge symmetry in the bulk and this will be
sufficient to prove conjecture 1.2. For what already said, this seems reasonable by the fact
that on operator which creates a charged object in the bulk must have a Wilson line attaching
it to the boundary which, in turn, intersects the entanglement wedge of at least one of the
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boundary regions 𝑅𝑖. Moreover, by the fact that the asymptotic symmetry operators 𝑈(𝑔, 𝑅)
are supported only at the boundary, one can assume that the bulk long-range gauge symmetry
𝑈(𝑔, 𝜕Σ) acts only on the algebra 𝒜[𝑅], for any boundary region 𝑅.
In order to better settle the duality between a global symmetry on the boundary and a
long-range gauge symmetry on the bulk, one should ensure that definitions 3. 2.1 and 3.
3.1 are indeed both satisfied and related. The first guess is that a bulk long-range gauge
symmetry implies a splittable global symmetry on the boundary with the same symmetry
group and, additionally, the 𝑈(𝑔, 𝑅) of the bulk is exactly the 𝑈(𝑔, 𝑅) of the boundary global
symmetry. Therefore, for the previous assumption, condition 3.5 of definition 3. 2.1 is satisfied.
Furthermore, condition 3. 2.1.3.6 is naturally satisfied due to AdS/CFT correspondence: the
boundary stress tensor is the limit of the bulk metric (see Appendix B) which in turn is
invariant under any (internal) long-range gauge symmetry transformations. The last step is
the non-trivial one: condition 3. 3.1.(iii). In fact, this condition is necessary by the fact that a
CFT operator transforming non-trivially under the global symmetry would be dual to a state
of finite energy. The latter, in turn, is charged under the long-range gauge symmetry. So it
seems that charged states transforming under all irreducible representations of the symmetry
group are allowed. However, this does not mean that they actually exist. It is exactly this the
argument of conjecture 1.2.
Hence, the next step is proving that in the boundary CFT there are states in the Hilbert
space living on a spatial 𝕊𝑑−1 that transform according to all finite-dimensional irreducible
representations of the symmetry group, which in turn is dual to the long-range symmetry.
For what comes next, it is necessary the introduction of some useful notions and theorems
concerning compact Lie groups (definition 3. 3.1 was given supposing the symmetry group
being compact). So,
Theorem 3. 4.2

If 𝐺 is a compact Lie group and 𝑈 is a finite dimensional representation of 𝐺 ⟹ 𝑈 is
unitary.

Theorem 3. 4.3
If 𝐺 is a compact Lie group and 𝑈 is a unitary representation of 𝐺 ⟹ 𝑈 is the direct
sum of a set of finite-dimensional irreducible representations.

Moreover, in order to prove the Completeness conjecture, it is necessary including the
faithfulness of the representation. Therefore, the following theorems are necessary:
Theorem 3. 4.4

If 𝐺 is a compact Lie group and 𝑈 is a faithful unitary representation of 𝐺 ⟹ ∃ a
finite invariant subspace of the Hilbert space on which 𝑈 acts faithfully, so
If 𝐺 is a compact Lie group and 𝑈 is a faithful unitary representation of 𝐺 ⟹ 𝑈 has a
finite-dimensional faithful sub-representation.

Theorem 3. 4.5
If 𝐺 is a compact Lie group and 𝑈 is a finite-dimensional faithful unitary representation
of 𝐺 and 𝑈∗ is its conjugate representation ⟹ ∀ finite-dimensional irreducible
representation 𝛼 of 𝐺 ∃ 𝑛, 𝑚 > 0 / 𝛼 appears in the direct sum decomposition of the tensor
product 𝑈⊗𝑛 ⊗ 𝑈 ∗⊗𝑚.

Therefore, the idea is to apply these theorems to the action of a representation of 𝐺 on the
set of local operators. In fact, condition 3.7 of definition 3. 2.1 together with theorem 3. 4.4
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leads to the conclusion that a finite-dimensional subset of local operators transforming under
a faithful representation of 𝐺 exists. Hence, by virtue of theorem 3. 4.5, if one acts with
these operators and their conjugates on the vacuum then one can prepare states transforming
in any irreducible representation of 𝐺. As a result, if one is able to demonstrate that the
long-range gauge symmetry acts faithfully on the Hilbert space of the CFT on the boundary,
conjecture 1.2 can be proven via AdS/CFT principle and state-operator correspondence. So,
let us consider the case of a theory where a long-range gauge symmetry is such that Wilson
line operators extend from one connected component of the spatial boundary to the opposite
spatial boundary. For example, to have a visualization, imagine that this Wilson line starts
on the le� of the manifold Σ𝐿 and ends on the right Σ𝑅. The action on the right component
of the spatial boundary Σ𝑅 is given by condition 3. 3.1.(ii)

𝑈†(𝑔, Σ𝑅)𝑊𝛼𝑈(𝑔, Σ𝑅) = 𝐷𝛼(𝑔)𝑊𝛼 (3.33)

valid for any particular irreducible representation 𝛼. Recalling the algebra of the Wilson line
operator, then

𝑈†(𝑔, Σ𝑅)𝑊𝛼𝑈(𝑔, Σ𝑅)𝑊 †
𝛼 = 𝐷𝛼(𝑔) . (3.34)

Now, one has to prove that 𝑈(𝑔, Σ𝑅) acts non-trivially for every 𝑔 ∈ 𝐺 in order to prove that
it acts faithfully. However this is immediate: 𝑈(𝑔, Σ𝑅) is necessarily non-trivial, otherwise
the Wilson line operators on the le� side of (3.34) cancel each other and as a result 𝐷𝛼(𝑔)
would be the identity matrix, invalidating condition 3.7 of definition 3. 2.1.
All this chapter relies on the important hypothesis of the compactiness of the Lie symmetry
group 𝐺. Therefore this chapter ends with another important conjecture connected with
conjectures 1.1 and 1.2, namely

CONJECTURE 4.1: THE COMPACTNESS CONJECTURE

If a quantum gravity theory at low energies includes a gauge theory with gauge group 𝐺,
then the latter must be compact.
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CHAPTER 4

WEAK GRAVITY CONJECTURE

CONTENTS: 4. 1 Loose arguments and first encounter with the WGC. 4. 2 Arguments from BH
physics. 4. 2.a A proposal for the remnants problem – 4. 2.b Discarge of a Black Hole. 4. 3 WGC and
scalar fields. 4. 3.a A convex charge conjecture. 4. 4 Multi-field WGC and naturalness problem. 4.
4.a Loopholes arguments: a Higgsing scenario. 4. 5 WGC and axions.

INTRODUCTION

The Weak Gravity Conjecture (WGC) is perhaps the most debated but also well believed
among the conjectures of the SP. This because it should be the haunt for all the quantum
gravity theories: it is a matter of fact that at low energies the gravitational interaction is the
weakest among the others. Nevertheless, there is a world behind the motivations and support
for this conjecture which finds its roots both in ST and BH physics, it is not just the previous
reduction to low levels. However, it makes the idea. If on the one hand the WGC, like all
other conjectures, arises from ST, it is clearly not satisfying staying in its shadows and it is
for this reason that efforts are made for BHs’ arguments. Needless to say, if on the one hand
this is indisputable, on the other it does not put emphasis on the fact that the WGC has
gathered evidence through the years by itself. In this chapter a zooming out-point of view of
the origin of the conjecture is presented.

4. 1 LOOSE ARGUMENTS AND FIRST ENCOUNTER WITH THE WGC

First of all, the discussion emerges from the consideration of a 𝑈(1) gauge field theory coupled
to gravity in a four-dimensional world.
To be precise, the conjecture naturally emerges from String Theory arguments. In fact,
recalling equation (2.96) or equivalently (2.97), the reduced action in 𝐷 dimensions is

∫ d𝒟𝑋
√

−𝐺 𝑅𝒟 ≡ ∫ d𝐷𝑋 √−𝑔 ⎡⎢
⎣

𝑅𝐷 − 1
2

𝜕𝜇𝜙𝜕𝜇𝜙 − 1
4

𝑒−2(𝐷−1)𝛼𝜙⏟⏟⏟⏟⏟
≡𝑔−2

(𝐴)

𝐹𝜇𝜈𝐹 𝜇𝜈⎤⎥
⎦

(4.1)

where the associated metric is

d𝑠2 = 𝑒2𝛼𝜙 𝑔𝜇𝜈d𝑋𝜇 d𝑋𝜈 + 𝑒2𝛽𝜙 (d𝑋𝐷 + 𝐴𝜇 d𝑋𝜇)2 (4.2)
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with 𝐷 + 1-metric tensor being

𝐺𝑀𝑁 = (𝑒2𝛼𝜙 𝑔𝜇𝜈 + 𝑒2𝛽𝜙 𝐴𝜇𝐴𝜈 𝑒2𝛽𝜙 𝐴𝜇
𝑒2𝛽𝜙 𝐴𝜇 𝑒2𝛽𝜙 ) = 𝑒2𝛽𝜙 (𝑒2(𝛼−𝛽)𝜙 𝑔𝜇𝜈 + 𝑒2𝛽𝜙 𝐴𝜇𝐴𝜈 𝐴𝜇

𝐴𝜇 1
) .

(4.3)
Therefore, the lower-dimensional theory has a propagating 𝑈(1) gauge field whose gauge
coupling, written in terms of the compactification radius 𝑅, is

𝑔(𝐴) = 𝑒(𝐷−1)𝛼𝜙
(2.98)+(2.101)∶𝑒𝛼𝜙=( 1

2𝜋𝑅 )
1

𝐷−2

−−−−−−−−−−−−−−−−−−→ 1
2𝜋𝑅

( 1
2𝜋𝑅

)
1

𝐷−2
. (4.4)

What is the gauge symmetry related to this propagating 𝑈(1) gauge field? If 𝜆(𝑋𝜈) is the
local gauge parameter, the gauge symmetry is actually a circle isometry:

𝐴𝜇 → 𝐴𝜇 − 𝜕𝜇𝜆(𝑋𝜈) with 𝑋𝐷 → 𝑋𝐷 + 𝜆(𝑋𝜈) (4.5)

hence, the charge of the Kaluza-Klein modes is periodic and quantized

𝑞(𝐴)
𝑛 = 2𝜋𝑛 . (4.6)

Comparing (2.124) with (4.6), the mass of the Kaluza-Klein modes tower can be written in
terms of the charge and the gauge coupling related to the gauge field 𝐴𝜇

𝑔(𝐴) 𝑞(𝐴)
𝑛 = 𝑀𝑛,0 . (4.7)

This is not the end of the game yet. Additionally, also the anti-symmetric Kalb-Ramond
field gives rise to a gauge symmetry by a generalization of the Kaluza-Klein mechanism. In
fact, following the discussion in chapter 2, let us separate 𝐵𝑀𝑁 in 𝐵𝜇𝜈 and 𝑉𝜇 ≜ 𝐵𝜇𝐷. So,
considering (2.75), in particular the term proportional to the Kalb-Ramond field, one has a
first contribution coming from the square of the minus of the determinant of the metric when
compactifying the theory on a circle. In particular, starting from

∝ ∫ d𝒟𝑋
√

−𝐺 𝐻𝑀𝑁𝐿 𝐻𝑀𝑁𝐿
we want something
−−−−−−−−−−→

proportional to
∫ d𝐷𝑋 √−𝑔 ? 𝐹𝜇𝜈 (𝑉 ) 𝐹 𝜇𝜈

(𝑉 ) (4.8)

computing
√

−𝐺 with (4.3), one has

𝐺 = 𝑒2𝛽𝜙⋅(𝐷+1) [𝑒2(𝛼−𝛽)𝜙⋅𝐷 𝑔 + 𝑔𝐴2𝐷 − 𝑔𝐴2𝐷]
= 𝑔 exp{2𝛽𝜙𝐷 + 2𝛽𝜙 + 2𝛼𝜙𝐷 − 2𝛽𝜙𝐷}
(2.98)∶𝛽=−(𝐷−2)𝛼
−−−−−−−−−−−→ 𝑔 exp{−2𝐷𝛼𝜙 + 4𝛼𝜙 + 2𝛼𝜙𝐷}
= 𝑔 𝑒4𝛼𝜙 .

(4.9)

Moreover, a second contribution comes from the reduced Kalb-Ramond field on the compacti-
fied dimension, namely

𝐻𝑀𝑁𝐿 𝐻𝑀𝑁𝐿 = 𝐻𝜇𝜈𝐷 𝐻𝜌𝜎𝐷 𝐺𝜇𝜌 𝐺𝜈𝜎 𝐺𝐷𝐷 with 𝐻𝜇𝜈𝐷 = 𝜕[𝜇 𝐵𝜈𝐷] = 𝜕𝜇𝑉𝜈−𝜕𝜈𝑉𝜇 (4.10)

so that

𝐺𝜇𝜈 = 𝑒2𝛼𝜙 𝑔𝜇𝜈 (1 + 𝐴𝜇𝐴𝜇 𝑒2𝛼(1−𝐷)𝜙)
leading to
−−−−−→ (𝐺𝜇𝜈)2 ∝ (𝑔𝜇𝜈)2 𝑒−4𝛼𝜙 . (4.11)
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Hence, the ? term in (4.8) comes from the reduction of
√

−𝐺𝐻𝑀𝑁𝐿 𝐻𝑀𝑁𝐿 and is
√

−𝐺 (𝐺𝜇𝜈)2 𝐺𝐷𝐷 ∝ 𝑒2𝛼𝜙 𝑒−4𝛼𝜙 𝑒−2𝛽𝜙 = 𝑒−2(𝛼+𝛽)𝜙 . (4.12)

Therefore, the reduced Kalb-Ramond field is actually a new gauge field whose coupling is thus

𝑔(𝑉 ) = 𝑒(𝛼+𝛽)𝜙 = 2𝜋𝑅 ( 1
2𝜋𝑅

)
1

𝐷−2
(4.13)

and the next natural step is finding out what are the states charged under 𝑉𝜇. Nevertheless,
recalling (2.69), one has

∫ d𝜏 d𝜎 𝐵𝜇𝜈 𝜕𝑎𝑋𝜇𝜕𝑏𝑋𝜈 𝜖𝑎𝑏 𝜈=𝐷∝ ∫ d𝜏 d𝜎 𝑉𝜇𝜕𝜏𝑋𝜇𝜕𝜎𝑋𝐷 , (4.14)

and as a particular choice of 𝜏 and 𝜎 one can have 𝜏 = 𝑋0 and 𝜎 = 2𝜋
𝑤 𝑋𝐷, where the latter

is equivalent in imagining the string wrapping 𝑤 times around the compactified dimension, as
can be seen in figure 4.1.

𝑋𝐷

string

Figure 4.1. Illustration of a string wrapping around the compactified dimension 𝑤 times.

Hence, (4.14) leads to the following term in the effective Polyakov action

𝑆𝑃
(2.75)−(4.14)
−−−−−−−→= −𝑇

2
∫ d𝜏 d𝜎 [2𝑖 𝑉𝜇𝜕𝜏𝑋𝜇𝜕𝜎 (𝑤𝜎

2𝜋
)] = −𝑖 𝑤

2𝜋𝛼′ ∫ d𝜏 (𝜕𝜏𝑋𝜇) 𝑉𝜇 (4.15)

which is exactly of the same form as the (2.68). What is missing here is the correct dimen-
sionality of the charge. In fact, the term in front the integral in the (4.15) has the dimension
of the inverse of a length squared and, in order to be properly defined, has to be renormalised
with a multiplication with a squared mass. Furthermore, (2.122) gives a measure of the string
mass, as a result the charge of a particle coupled to the gauge field 𝑉𝜇 is

𝑞(𝑉 )
𝑤 = 𝑤

2𝜋𝛼′ (2𝜋𝑅)
2

𝐷−2 . (4.16)

It is thus clear that, comparing with (2.124), one has

𝑔(𝑉 ) 𝑞(𝑉 )
𝑤 = 𝑀0,𝑤 . (4.17)

Therefore, String Theory naturally provides two gauge fields in 𝐷 dimensions, 𝐴𝜇 coming from
the reduction of the metric tensor and 𝑉𝜇 coming from the reduction of the Kalb-Ramond field
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instead. Under these two gauge fields there are charged states, the Kaluza-Klein modes for the
former and the winding modes for the latter. For both of them, their mass is written as the
product between the respective gauge coupling and gauge charge, 𝑚 = 𝑔𝑞. Additionally, from
(2.124), one does not have just one Kaluza-Klein mode or just one winding mode: there is a
tower of states instead, each of which depending on the periodicity number 𝑛 and the winding
number 𝑤. For this reason, at some given energy there will be some charged states, lowering
or increasing the energy there will be less or more states respectively. As a consequence, one
can also make a rough estimate of an energy cutoff Λ of the theory when considering the 𝑛-th
Kaluza-Klein charged state or the 𝑤-th winding mode charged state, equivalently, given by

Λ ∼ 𝑔𝑀𝑃 (4.18)

in four dimensions.
Now, with this premise, everyone would agree that the effective theory that will arise is valid
up to a cutoff below the Planck mass, by a landslide. This because gravity becomes strongly
coupled at that scale, clearly. Are there any constraints on the value of the gauge coupling 𝑔?
In principle nothing could prevent us from choosing a lower value for 𝑔.
What was argued for the first time in [AH+07] is that in doing this, a new lower EFT cutoff
will appear. A theoretical physicist interested in this phenomenon could never be able to
detect it.
Let us now, finally, introduce the general statement of the Weak Gravity conjecture.

CONJECTURE 1.1: WEAK GRAVITY

Consider a four-dimensional spacetime, a theory coupled to gravity with a 𝑈(1) gauge
symmetry with gauge coupling 𝑔 described by the action

𝑆 = ∫
ℳ

d4𝑋
√

−𝐺 [𝑀2
𝑃

2
𝑅 − 1

4𝑔2 𝐹 2] (4.19)

then [AH+07]

1. There exists a state in the theory with mass 𝑚 and charge 𝑞 such that

𝑚 ≤
√

2 𝑔𝑞 𝑀𝑃 ELECTRIC WGC (4.20)

2. The cutoff of the EFT is lowered and has to satisfy an upper bound defined by the
gauge coupling

Λ ≲ 𝑔𝑀𝑃 MAGNETIC WGC. (4.21)

First of all, the (4.20) does not say anything about the spin of the state. Moreover, it makes
clear the origin of the name of the conjecture [Urb18]: the Coulomb-like repulsion which is
proportional to 𝑔2𝑞2 overcomes the gravitational attraction, proportional to 𝑚2/𝑀2

𝑃, hence,
gravity is the weakest force. In addition, there are currently speculations on extension of the
1.1 to a whole tower of heavy charged states [HRR17]-[And+18]. This stronger version of the
WGC is connected to the Distance Conjecture1 and the Completeness one. From a heuristic
point of view, what are the basis of this conjecture 1.1?

1A very detailed study of the Distance conjecture is made by my colleague P. Piantadosi in his master thesis.
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First of all, as stated by the No-Global symmetry conjecture 1.1, global symmetries are not
allowed in QG. If 𝑔 is the coupling constant of a gauge theory, one can in principle send it to
zero in order to recover the global symmetry. However, and here lies the link between the two
conjectures, this is prohibited by the spirit of the 1.1: if 𝑔 → 0 then also Λ → 0, invalidating
the EFT.
In some sense, (4.20) is named according to the spirit of the equation itself, the existence of a
charged particle in the theory. So the question naturally arises: (4.21) sets constraint on the
EFT cutoff, but why is it called “magnetic” WGC? The name refers to supportive arguments
coming from the existence of a magnetic charge. The starting point is the conjecture presented
in [BS11] according to which “all continuous gauge groups are compact”. An immediate
consequence is that in constructing a 𝑈(1) gauge theory, one can write down magnetically
charged BH solutions too. Clearly, the magnetic charge has to be coherent within Dirac
quantization, namely 𝑄𝑀 = 2𝜋𝑛

𝑔 , where 𝑛 ∈ ℤ. Moreover, if there exist such solutions, the
next speculative step concerns magnetic monopole solutions. What are the leading arguments
for such a prediction? The work [FSS15] lays qualitative backgrounds in this direction. It
is argued that a magnetically charged BH has zero temperature and an entropy inversely
proportional to the gauge coupling 𝑆 ∼ 1/𝑔2, so the result is a system corresponding to a
large number of degenerate quantum states. Furthermore, the latter is quite unreasonable
due to the fact that it is unusual that magnetic charge can only appear in these entropic
configurations. In some sense it would be more natural if they originate in a low-energy
non-gravitational scenario as fundamental states.
Moreover, heuristic supportive arguments for 1.1 come from BH physics. In fact, the WGC
offers a solution to the so-called remnants problem underlined by Susskind in [Sus95]. In fact,
all the difficulties arose by the problem are overcome if there exist macroscopic BHs that are
able to completely evaporate all their charge. This results in gravitational unstable objects.
As a consequence, following [Kra19], one could simply expect that if a BH is able to decay all
by itself then there are no grounds for such remnants to appear. Also, this argument builds a
bridge between the No-Global symmetry and Weak Gravity conjectures. However, if such BHs
do not exist, the focus moves on the forces at stake. The main argument is indeed the need
for the existence of a particle upon which the gravitational force is the weakest. Nevertheless,
in order to settle in the motivation’s arguments, it is important to plunging further in BH
phenomenology.

4. 2 ARGUMENTS FROM BH PHYSICS

First of all, the following motivations do not have to be considered as stated arguments, they
are rather phenomenological “landmarks” for testing IR physics.
A BH solution for (4.19) is the Reissner-Nordstrom (RN) one2:

𝑓(𝑟) = 1 − 2𝑀
𝑟

+ 2𝑔2𝑄2

𝑟2 (4.22)

where 𝑀 and 𝑄 have the straightforward meaning of mass and quantized charge of the BH.
RN’s BHs are characterised by two horizons due to the quadratic behaviour of the (4.22),
located at 𝑟± = 𝑀 ± √𝑀2 − 𝑄2. Moreover, additional characteristics are the area of the
event horizon being 𝐴𝑅𝑁 = 4𝜋𝑟2

+, the Bekenstein-Hawking entropy 𝑆𝑅𝑁 = 𝜋𝑟2
+ and then the

2The details of computations can be found in literature, for example in [Car19], and it is well recovered in the
master thesis work of my colleague M. Del Piano.
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BH temperature
𝑇𝑅𝑁 =

𝑟+ − 𝑟−
4𝜋𝑟2

+
. (4.23)

Indeed, their values are well suited in the first thermodynamics law

d𝑀 = 𝑇 d𝑆 + 𝜉 d𝑄, where 𝑇 = (𝜕𝑀
𝜕𝑆

)
𝑄

and 𝜉 = (𝜕𝑀
𝜕𝑄

)
𝑆

= 𝑄
𝑟+

(4.24)

therefore 𝜉 is the electric potential and clearly plays the role of a chemical potential. In
particular, the latter can be expressed in terms of the gauge field 𝐴𝜇d𝑥𝜇 = 𝐴(𝑟)d𝑡

𝐴(𝑟) = 𝑄 (−1
𝑟

+ 1
𝑟+

) (4.25)

when 𝑟 → ∞.
Those BHs for which the outer horizon shrinks to the inner are called extremal black holes.
As a consequence, the latter naturally satisfies the 1.1

𝑀 ≥
√

2 𝑔𝑄 𝑀𝑃. (4.26)

However, what does this actually mean? In a 𝑈(1) gauge theory we can imagine [AH+07]
that the coupling is extremely low, for example 𝑔 ≃ 10−100. As a result, the charge of the
BH can range from 0 up to ≃ 1/𝑔 in order to still satisfy the 1.1. If the mass of the BH is
≃ 10𝑀𝑃, there will be a number of BH states that satisfies the bound (4.26). Precisely, If we
label with Λ the upper mass allowed by (4.26) then the number of possible states 𝑁𝐵𝐻 is

𝑁𝐵𝐻 ∝ Λ
𝑔 𝑀𝑃

. (4.27)

This precisely marks the link between the No-Global symmetry conjecture and the WGC:
𝑁𝐵𝐻 can indeed be considered as the number of remnants that can be possibly formed from
a BH with mass 𝑀. In fact, if 𝑔 → 0, from (4.27) the number of remnants goes to infinity
and as a result, an external observer cannot ”quantify” the information that lies inside the
BH. Additionally, if 𝑔 → 0 then 𝑄 → ∞ and still today it is not clear how to measure the BH
charge [BJS06] or how to handle with the magnetic WGC [Sar17]. An important question
naturally follows: are remnants to be expected? What does the WGC state about remnants?

4. 2.a A proposal for the remnants problem

The remnants problem arises because any thermodynamic system would find extremely
favorable to turn all the energy into zero temperature remnants, even the Sun for example.
So, how to deal with the remnants? The first idea came as a proposal to prove that a
sufficient large number of remnants would invalidate the Covariant Entropy Bound (CEB), an
entropy bound conjectured in 1999 valid in all spacetime admitted by Einstein’s equation. The
statement of the conjecture can be easily qualitatively expressed by saying that the entropy 𝑆
of a system restricted to a sphere of radius 𝑅, area 𝐴(𝑅), has to satisfy the bound

𝑆 ≤ 𝐴(𝑅)
4

. (4.28)

By definition, the entropy of a Schwarzschild BH precisely saturates the bound. Now, we can
imagine to fill the sphere with a number 𝑁𝑠 of species of particles3. The minute that it is

3In the original paper [Bou02] the sphere was filled by a gas composed by massless particles but here the
argument is enlarged in order to emphasise the link between remnants and the WGC. Here we assume remnants
to be small objects of about the Planck size.
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done, another thermodynamic bound has to be taken in consideration: the Bekenstein bound
[Bek73] according to which

𝑆matter ≤ 2𝜋𝐸𝑅 (4.29)

where 𝐸 is the total energy of the matter system. Now, we want the 𝑁𝑠 particles to be
gravitational stable, thus we require (4.28)≤(4.29):

2𝜋𝐸𝑅 ≤ 𝐴
4

= 4𝜋𝑅2

4
⟹ 2𝐸 ≤ 𝑅. (4.30)

If we consider the particles weakly interacting with temperature 𝑇 we can immediately relate
the energy with the temperature as follows

𝐸 ∼ 𝑁𝑠 𝑅3 𝑇 4 (4.31)
𝑆 ∼ 𝑁𝑠 𝑅3 𝑇 3 , (4.32)

then, applying (4.30) to (4.31), one has

2𝑁𝑠 𝑅2 𝑇 4 ≤ 1 ⟹ 𝑇 ∼ ( 1
2𝑁𝑠 𝑅2 )

1
4 (4.32)
−−−→ 𝑆 ∼ 𝑁

1
4𝑠 𝑅 3

2 . (4.33)

As a result, using (4.33) for 𝑆 and putting it in the constraint (4.30), gravitational stability
can be expressed in terms of

𝑁𝑠 ≲ 𝑅2 ⟺ 𝑁𝑠 ≲ 𝐴. (4.34)

On the one hand, the (4.34) seems to resolve the species problem but on the other it does not
assure that the number of species has to be exactly it.
Nevertheless, it can be shown [Bou02] that the time for a Hawking evaporation of a BH is
proportional to 𝐴 3

4 and if 𝑁𝑠 is large then it is modified to

𝑡 ∝ 𝐴 3
2

𝑁𝑠

if𝑁𝑠≳𝐴
−−−−→ 𝑡 ≲ 𝐴 1

2 (4.35)

but the time needed to form a BH with area 𝐴 is at least 𝐴 1
2 .

Note also that, in support of the previous WGC argument there is the Species Conjecture, for
which in 𝐷 = 4 dimensions

Λ𝑠 = 𝑀𝑃

𝑁
1
2𝑠

(4.34)
−−−→ Λ ∼ 1

𝑅
(4.36)

which is exactly the Hubble scale of the sphere. In conclusion, the WGC does not propose a
rigid answer “remnants yes” or “remnants no” but it assures that in order to have a consistent
EFT, the number of remnants has to be low and finite, obeying (4.34). Otherwise the cutoff of
the theory would be too lowered compromising both the EFT’s validity and the CEB, whose
validity is at a thermodynamical level.

4. 2.b Discarge of a Black Hole

In general, a BH immersed in vacuum [Gib75] may possess a charge and may lose it, under
particular circumstances, in the form of spontaneous production of particles of opposite charges
[Sch51]. The chemical potential introduced in (4.24), favours the production of oppositely
charged particles, thus we can distinguish between two mechanisms of pair production. One
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due to the thermal Hawking radiation and the other by a Schwinger production due to the
presence of 𝜉. One prevails on the other whether the BH is hot or is cold. However, in both
cases the BH is able to discarge if there exists a charged particle in the theory that it can
emit. This statement follows immediately by conservation of energy and charge, in fact, if we
name with 𝑚𝑖 and 𝑞𝑖 the masses of the set of particles the BH can decay into, then

𝑀 ≥ ∑
𝑖

𝑚𝑖 and 𝑄 = ∑
𝑖

𝑞𝑖 (4.37)

must hold and hence
𝑀
𝑄

≥
∑𝑖 𝑚𝑖

𝑄
= 1

𝑄
∑

𝑖

𝑚𝑖
𝑞𝑖

𝑞𝑖 ≥ (𝑚𝑖
𝑞𝑖

) ∣
min

∑𝑖 𝑞𝑖

𝑄
⟹ 𝑀

𝑄
≥ (𝑚𝑖

𝑞𝑖
) ∣

min
. (4.38)

Equivalently, another formulation of the (4.20) is

CONJECTURE 2.1: MINIMAL ELECTRIC WEAK GRAVITY

In a theory defined by the action (4.32) there exists an electrically charged state with
mass 𝑚 and charge 𝑞 satisfying

𝒪(1) ∼ 𝑄
𝑀

≤ 𝑞
𝑚

(4.39)

where 𝑄 and 𝑀 are the charge and the mass of an extremal BH.

Thus 2.1 is an equivalent formulation of the WGC: it simply gives a necessary condition for
extremal BH to be able to decay into fundamental charged particles.
When one talks about the decay of a BH, he/she actually refers to the absence of a BH stable
gravitational state. Hence, the study of a decay of a BH can be carried by focusing on the
main consequences that such an absence could lead to. First of all, in our Einstein-Maxwell
theory, in line with 2.1, consider the particle which has the largest charge to mass ratio among
the others and call it 𝑃1. Imagine to have two copies of 𝑃1. We want to study the forces
between them. By the fact that these particles are massive, for sure there is the attractive
gravitational force acting. Moreover, they are charged. All in all, the two main forces are the
gravitational force and the electromagnetic one, in formulas

𝐹gravity = 𝑚2

8𝜋𝑀2
𝑃 𝑟2 (4.40)

𝐹electro = 𝑔2 𝑞2

4𝜋𝑟2 , (4.41)

that immediately bring an equivalent statement of the 1.1:

𝐹gravity ≤ 𝐹electro . (4.42)

Equation (4.42) states that the attractive force is weaker that the repulsive one. What could
happen if the WGC is not valid? Via reductio ad absurdum, if 𝐹gravity ≥ 𝐹electro the immediate
consequence would be the formation of a bound state since the two particles prefer to be
attracted rather than repealing each other. By charge conservation, the charge of the final
state is 2𝑞 for sure. Clearly, by energy conservation the mass of the final state is less than 2𝑚.
As a result, the bound state will have a charge to mass ratio greater than that of the particle
𝑃1. This is a contradiction for the initial hypothesis. In addition, this bound state cannot
discarge by emitting particles by those conservation theorems meaning that it is gravitational
stable. In summary:
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CONJECTURE 2.2: WEAK GRAVITY PARTICLE

In a four-dimensional 𝑈(1) gauge theory coupled to gravity there exists a particle with
the greater charge to mass ratio among the others in the spectrum. This immediately
leads to state that

𝐹gravity ≤ 𝐹electro (4.43)

the gravitational (attractive) force is weaker than the electromagnetic (repulsive) one.
As a consequence, the theory does not admit the formation of bound states.

An important observation has to be stressed now. The bound state in this particle treatment
of the WGC resembles a remnant for the BH arguments. For this reason it is still unclear
whether or not it is problematic the presence of bound states in the theory.

4. 3 WGC AND SCALAR FIELDS

Conjecture 2.2 has an elegant physical explanation when scalar fields are taken in consideration.
In order to highlight the latter, the first thing to do is to generalize the formulation 2.1 when
such fields are included. All the discussion is carried in the 𝒩 = 2 supergravity context, see
Appendix F. So let us start with the lagrangian (F.24)

𝐿 = 𝑅
2

+ 1
4

ℑ(𝒩𝐼𝐽) 𝐹 𝐼
𝜇𝜈 𝐹 𝐽 𝜇𝜈 − 1

8
ℜ(𝒩𝐼𝐽)𝜖𝜇𝜈𝜌𝜎

√−𝑔
𝐹 𝐼

𝜇𝜈 𝐹 𝐽
𝜌𝜎 − 𝑔𝑖 ̄𝑗𝜕𝜇𝜏 𝑖𝜕𝜇 ̄𝜏 ̄𝑗 (4.44)

using the notation in Appendix F, in literature [Dal13] is shown that the ADM mass of a
𝒩 = 2 supersymmetric extremal BH is given by the central charge with fields evaluated at
infinity, namely

𝑀ADM = |𝑍|∞ . (4.45)

Therefore, identity (F.28) has a straightforward generalization to this case, leading to the
following

𝒬2 = 𝑀2
ADM + 𝑔𝑖𝑗𝐷𝑖𝑍𝐷̄𝑗

̄𝑍 (4.46)

which can be equally be written as [Pal17]

𝒬2 = 𝑀2
ADM + 4𝑔𝑖𝑗𝜕𝑖𝑀ADM

̄𝜕𝑗𝑀ADM . (4.47)

We would like to rephrase the WGC for a BH to decay in terms of a massive particle. Hence,
if 𝑚 labels the mass of the particle, the generalization is straightforward. In fact, despite of
the RN black hole condition (4.22) (expressing the extremal condition), in (4.45) and (4.47)
it is implied the fact that these BHs are actually super-extremal. Moreover, the last term on
the right-hand side (RHS) of (4.47) is positive definite and non-vanishing and as a result, the
particle we are looking for should also be a BPS state, namely its mass is equal to the central
charge. In conclusion, we are free to declare that the following should be satisfied for a BH to
decay

𝒬2 ≥ 𝑚2 + 4𝑔𝑖𝑗𝜕𝑖𝑚 ̄𝜕𝑗𝑚 . (4.48)

The inequality (4.48) implicitly states that between two WGC states, the 𝑈(1) gauge force
should be at least equal to the sum of their gravitational and scalar forces. Additionally, by
the fact that the last term on the RHS of (4.48) is definite positive, the scalar force between
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equal charged particles is attractive. Therefore, the inequality then states that these two
states should be self-repulsive rather than self-attractive [Pal19]: the gauge field repulsion
must overcome both gravitational and scalar field attractions [Pal17], see figure 4.2.
Interestingly, from a particle physics point of view, the last term on the RHS of (4.48) comes
from a cubic-interaction in the lagrangian. If we denote by ℎ the WGC particle, then this
term arises from the following contribution

𝑉 = 𝑚2
0|ℎ|2 + 2𝑚0𝜇 𝑡 (4.49)

with 𝑡 the real part of a scalar field 𝑧 and 𝜇 is the non-relativistic coupling of the WGC state
to 𝑡.

𝐴𝜇
𝑔𝜇𝜈 𝑡

𝜇 ∼ 2𝜕𝑡𝑚

≥

ℎ

+

Figure 4.2. The 𝑈(1) gauge repulsion between two WGC states ℎ with mass 𝑚 must be at least
equal to the sum of the attractive gravitational and scalar forces.

Hence, condition (4.48) is generalised as

CONJECTURE 3.1: WEAK GRAVITY FOR SCALARS

A theory defined by the lagrangian (4.44) should admit a particle with mass 𝑚(𝑡)
satisfying the bound

𝒬2 ≥ 𝑚2 + 𝑔𝑖𝑗𝜇𝑖𝜇𝑗 ⟺ 𝜇𝑖 = 𝜕𝑡𝑖𝑚 (4.50)

where 𝒬 is defined as in (F.26).

4. 3.a A convex charge conjecture

The WGC as stated by 2.2 and 3.1 has an elegant and straightforward formulation when
applied to conformal field theories (see also Appendix D). Precisely, it is possible to conjecture
a precise property that local operators in unitary CFT with continuous global symmetries
have to satisfy. The pioneering work [AP21] proposes such formulation. Firstly, the WGC
can be formulated in terms of the so-called binding energy. In fact, according to 2.2, in the
spectrum of the theory a self-repulsive particle must exist such that it cannot form a stable
bound state with 𝑛 copies of itself. A self-binding energy is thus defined as the difference of
energies between the lowest two-particle state and twice the energy of the one-particle state
(see figure 4.3). As shown in [AP21], the following generalizations for the WGC have been
tested only for WC gravitational theories (see Appendix B) where explicit computations can
be made with perturbation theory or semi-classical methods.
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2x one-particle state

bound state
(two-particle state)

one-particle state

binding energy

violated by the WGC

⟹ − =

Figure 4.3. Illustration of the definition of binding energy coming from the creation of a bound state
and twice the sum of the initial one-particle state.

CONJECTURE 3.2: WEAK GRAVITY AS POSITIVE BINDING

For a gravitational theory with a 𝑈(1) gauge field, there should exist at least one particle
in the spectrum, having charge of order one, that has a non-negative self-binding energy.

Now, due to the AdS/CFT correspondence (see Appendix B), the energy of a given state in a
global AdS space is mapped to the conformal dimension of its dual local operator in the CFT.
Hence, conjecture 3.2 can be formulated in terms of CFTs operators’ properties. In particular,
these operators are dual to the fields appearing in the action of a given theory:

CONJECTURE 3.3: WEAK GRAVITY AS ABELIAN CONVEX CHARGE

Let Δ(𝑞) be the conformal dimension of the lowest dimension operator, with charge 𝑞, in
any CFT having 𝑈(1) global symmetry, then

Δ(𝑛1𝑞0 + 𝑛2𝑞0) ≥ Δ(𝑛1𝑞0) + Δ(𝑛2𝑞0) . (4.51)

Therefore, if 𝒪 = Φ labels a charged primary operator under a global symmetry, then the
dimension of the first lowest dimension primary operator, Φ𝑛, must satisfy 3.3, namely

Δ(Φ𝑛1+𝑛2) − [Δ(Φ𝑛1) + Δ(Φ𝑛2)] ≜ 𝛾𝑛1,𝑛2

3.3
≥ 0 . (4.52)

A straightforward example, which serves as preliminary test for conjecture 3.3, can be made
with theories in 𝑑 = 𝑑0 − 𝜖 dimensions in the presence of Wilson-Fisher fixed points. Following
the discussion in Appendix B, let us consider the 𝑈(1) global invariant lagrangian

𝐿 = 𝜕𝜇Φ̄𝜕𝜇Φ + 𝜆0
4

(Φ̄Φ)2 (4.53)

in 4 − 𝜖 dimensions, there is a WF fixed point occurring at 𝜆∗ given in (B.18). Computing
the anomalous dimension 𝛾Φ𝑛 by mapping ℝ𝑑 ↦ ℝ × 𝕊𝑑−1, the contribution to the 0-loop is
given by [Bad+19]-[Ant+21b]:

Δ−1
𝜆∗𝑛

= 1
4

( 3 2
3 𝑥 1

3

3 1
3 + 𝑥 2

3
+

3 1
3 (3 1

3 + 𝑥 2
3 )

𝑥 1
3

) where 𝑥 = 9
(4𝜋)2 𝜆∗𝑛 + √−3 + 81 𝜆∗𝑛

(4𝜋)2 (4.54)
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which, summed with the contribution at 1-loop [Bad+19]-[Ant+21b] in accordance to (B.27),
furnishes the scaling dimension ΔΦ𝑛

ΔΦ𝑛 = 𝑛 (𝑑
2

− 1) + 𝜖
10

𝑛(𝑛 − 1) − 𝜖2

50
𝑛(𝑛2 − 4𝑛) + … (4.55)

meaning that, using (B.19), the anomalous dimension is

𝛾Φ𝑛 = 𝜖
10

𝑛(𝑛 − 1) − 𝜖2

50
𝑛(𝑛2 − 4𝑛) + … . (4.56)

Therefore, computing (4.52), the final result reads as

𝛾𝑛1,𝑛2
= 𝜖

5
𝑛1𝑛2 − 𝜖2

50
𝑛1𝑛2(3𝑛1 + 3𝑛2 − 8) + 𝒪(𝜖2) (4.57)

which satisfies (4.52) at leading order in 𝜖.

4. 4 MULTI-FIELD WGC AND NATURALNESS PROBLEM

In quantum field theory renormalization is daily bread. So, viewing 1.1 and 2.1 through
the eye of QFT there is the subtly issue regarding what type of masses are involved in the
statement of the conjectures. Are they the physical ones? Are they the renormalized ones?
In [AH+07] it is stressed that the appropriate scale to evaluate the charge to mass ratio
is the physical mass of the particle. In this section naturalness principle will be taken in
consideration. Hence, we will undergo speculations on particle-field theory and its connection
to the WGC. First of all, imagine to have numerous 𝑈(1) fields, each of which labelled with
the 𝑖 index. Thus, we will denote with 𝑚𝑖 and 𝑞𝑖 the mass and the charge relative to the 𝑖-th
field. For what comes next, we define the dimensionless charge to mass ratios for each particle
as

𝑧𝑖 = 𝑞𝑖 𝑀𝑃
𝑚𝑖

, (4.58)

in terms of which 1.1 is stated through 𝑧𝑖 > 1. Untill now, the WGC was introduced at a
tree level, we will now investigate radiative contributions. Therefore, consider the classical 𝜙4

theory
𝐿 = (𝐷𝜇𝜙)(𝐷𝜇𝜙)∗ − 𝑚2𝜙𝜙∗ − 𝜆

4
(𝜙𝜙∗)2 − 1

4
𝐹𝜇𝜈𝐹 𝜇𝜈 (4.59)

where 𝜙 is a fundamental scalar. The renormalization algorithm assures the modification of
its mass as

𝑚2 → 𝑚2 + 𝛿𝑚2 where 𝛿𝑚2 = Λ2

16𝜋2 (𝑎𝑞2 + 𝑏𝜆) . (4.60)

How large has to be 𝑚 in comparison with 𝛿𝑚? This question has answer in the context of
the naturalness principle. The latter assures that those operators not protected by symmetry
are unstable to quantum fluctuations induced at the cutoff of the EFT [CR14]. Therefore,
in a natural theory the physical mass of the fundamental scalar cannot be smaller than the
radiative corrections. For this reason, we now consider 𝑚2 ∼ 𝛿𝑚2. As a result, computing
(4.58) and imposing the validity of the WGC, the results are

𝑧 = 4𝜋𝑀𝑃
Λ

1

√𝑎 + 𝑏 𝜆
𝑞2

𝑧>1
−−→

⎧{
⎨{⎩

Λ < 4𝜋𝑀𝑃√
𝑎 when 𝑞2 ≫ 𝜆

Λ < 4𝜋𝑀𝑃√ 𝑞2

𝑏𝜆 when 𝑞2 ≪ 𝜆
. (4.61)
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In the case (4.61) 𝑏 has to be well tuned if 𝑞2/𝜆 → 0 in order to preserve the WGC. Therefore
it seems machinery this tuning of coefficients and as a consequence scalar QED in this limit is
inconsistent with WGC. According to the SP, it is thus inconsistent with a quantum theory of
gravity. Therefore, how these issues can be solved? How can the WGC and naturalness be
reconciled? One can eliminate the root hierarchy problem by assuming a new Physics below
the Planck scale with the presence of new light states. There are two main possibilities:

1. these in turn can eliminate the divergences of 𝜙 by coupling to it regulating its quadratic
divergences. Hence, in line with the WGC, they effectively low the cutoff of the EFT

2. they do not couple to 𝜙. If one of these new states satisfies (4.20) then 𝜙 becomes
irrelevant and as a consequence, WGC and naturalness are reconciled.

The WGC is stated for a 𝑈(1) gauge theory until now. What happens if one has a product
gauge symmetries? So consider a theory whose symmetry gauge group is Π𝑁

𝐴=1 𝑈(1)𝐴. The
theory is such that for each gauge group there is a number of charged particles. Hence, if
𝑖 labels the 𝑖-th set of particles belonging to the 𝐴-th 𝑈(1) gauge group, then 𝑞𝑖 𝐴 and 𝑚𝑖
represent the charge and mass of the particles belonging to that set, respectively. It is a
second-quantization notation. We will gather all of the sets having the same mass under a
unique vector, namely we will consider a charge-vector whose components are the charges
of the particles running over the sets, each of it transforms under 𝑈(1)𝐴. In this notation,
each component of such a vector contains charged particles that can be transformed into each
other under transformations of 𝑆𝑂(𝑁). So:

∀𝑖-th set ∈ 𝑈(1)𝐴with mass 𝑚𝑖, 𝑞𝑖 𝐴 ↦ q𝑖 ≜ (𝑔1𝑞1, 𝑔2𝑞2, … , 𝑔𝑁𝑞𝑁), z𝑖 ≜ q𝑖 𝑀𝑃
𝑚𝑖

.

(4.62)
It is naive thinking that for each 𝑈(1) there exists a particle satisfying the (4.20) as well as
requiring that there exists at least one set of species such that 𝑧𝑖 > 1. We have to repeat
the conditions for an allowed decay of a BH. If Q and 𝑀 are the charge and mass of the
BH and 𝑛𝑖 denotes the number of total sets of particles into which the BH can decay, then
conservation theorems imply

Q = ∑
𝑖

𝑛𝑖q𝑖 and 𝑀 > ∑
𝑖

𝑛𝑖𝑚𝑖; 𝜎𝑖 ≜ 𝑛𝑖𝑚𝑖
𝑀

⟹ Z = ∑
𝑖

𝜎𝑖z𝑖 . (4.63)

The latter expression in equation (4.63) is a weighted average. To be precise, it is a sub-unitary
weighted average since ∑ 𝜎𝑖 < 1. From a geometrical point of view, in the charge-space the
sub-unitary weighted average defines a convex hull. As a result, the decay is allowed only if
the latter contains the unitary ball whose boundary represents extremal BHs. In order to get
a visual representation of the argument above, let us consider the case of only two 𝑈(1) gauge
groups with only two sets of particles. Constraints for WGC validity impose the following

(z2
1 − 1)(z2

2 − 1) > (1 + |z1 ⋅ z2|)2 , (4.64)

which is more stringent than the case of a singular gauge group symmetry. In fact, if you
consider the case where z1 ⟂ z2 and |z1| = |z2| = 𝑧, equation (4.64) imposes 𝑧 >

√
2. In figure

4.4 the latter situation is depicted.
The le� panel represents a theory consistent with the WGC while the right panel a theory
inconsistent with the WGC. In the latter, the regions of the unit disc not within the convex
hull represent stable black hole remnants. As a consequence, generalising to the case of 𝑁
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Figure 4.4. Representation in the charge-space of the charge to mass ratios for a 𝑈(1) × 𝑈(1) gauge
theory. WGC is satisfied when the unit disc is contained in the convex hull defined by the values of z1
and z2.

𝑈(1) symmetry gauge groups, equation (4.64) imposes 𝑧 >
√

𝑁. Therefore, the more the
number of the gauge groups the more stringent becomes the constraint. The generalization to
multi-field WGC can be summarised as

CONJECTURE 4.1: MULTI-FIELD WEAK GRAVITY

A four-dimensional theory coupled to gravity and invariant under multiple 𝑈(1)s gauge
symmetries must have a spectrum of particles with charge to mass ratio as defined in the
(4.63), such that, in the charge-space the convex hull must include the unit ball.

Starting from 4.1, let us generalise the lagrangian for 𝑁 fields in order to study the consistency
between the WGC and the naturalness principle. So starting from

𝐿 = ∑
𝑖

[(𝐷𝜇𝜙𝑖)(𝐷𝜇𝜙𝑖)
∗ − 𝑚2

𝑖 𝜙𝜙
∗
𝑖 − 𝜆𝑖

4
(𝜙𝑖𝜙∗

𝑖 )2] − 1
4

∑
𝐴

𝐹𝜇𝜈 𝐴𝐹 𝜇𝜈 𝐴 (4.65)

and repeating the same steps as before for the radiative corrections, the charge to mass ratio
vector for the 𝑖-th field 𝜙𝑖 is

z𝑖 = 4𝜋𝑀𝑃
Λ

q𝑖
|q𝑖|

1

√𝑎𝑖 + 𝑏𝑖
𝜆𝑖
q2

𝑖

(4.66)

so that the upper limit for the cutoff of the EFT is lowered by a factor of
√

𝑁.

From what has been said until now, it is a matter of fact that there are numerous for-
mulations of this conjecture. In line with [Sar17], part of them can be easily summarised in
table 4.1.

4. 4.a Loopholes arguments: a Higgsing scenario

We now consider a scenario where a theory satisfies the WGC but the presence of a particle
with the smallest mass can lead to an EFT which violetes it. This violation is carried by the
higgsing of the theory. Recalling the conjecture 4.1, we consider a theory with two 𝑈(1) gauge
fields, 𝐴 and 𝐵. For the sake of simplicity, let us consider the situation in which their gauge
coupling is the same, call it 𝑔. Now we introduce two particles in the theory, each of which
with charge under 𝑈(1)𝐴 and 𝑈(1)𝐵, let us call them 𝑃𝐴 and 𝑃𝐵. Thus, 𝑃𝐴 and 𝑃𝐵 have
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Conjecture Statement Motivation
form
Electric In the theory there exists some The decay of a BH
WGC particle with 𝑞

𝑚 > 1
Magnetic The 𝑈(1) gauge theory’s cutoff Requirement the existence
WGC is bounded Λ ≲ 𝑔𝑀𝑃 of a monopole which is not a BH
Strong electric The WGC particle is the only String theory arguments
WGC having the smallest mass
Multi-field The spectrum must have particles The decay of a BH
WGC whose charge to mass ratio and geometrical

defines a complex hull containing interpretation
the unit ball in the charge space

Table 4.1. Summary of the WGC forms in terms of their statements and motivations.

charges (1, 0) and (0, 1) under the two symmetries respectively. The mass of these particles is
such that conjecture (4.1) is satisfied, hence surely less than the cutoff Λ of the theory. Let
us now introduce a new scalar field in the theory, 𝐻, such that it has charges (𝑍, 1) under
the two symmetries, where 𝑍 ≫ 1. At some point, we imagine that there will be a phase in
the theory where 𝐻 will acquire a vev 𝑣 through Higgs mechanism. As a consequence, some
combination of fields will acquire a mass. In particular, the following combination of fields 𝐴
and 𝐵

𝑉𝐻 ≜ 𝐴 + 𝐵
𝑍

(4.67)

will acquire a mass 𝑚2
𝑉 = (𝑍𝑔)2𝑣2. On the other hand, the other possible combination of

fields
𝑉𝐿 ≜ 𝐵 − 𝐴

𝑍
(4.68)

will remain exactly massless. What are the consequences of such a Higgsing scenario? Firstly,
there is now only one gauge field, 𝑉𝐿, and as a consequence the gauge coupling is slightly
different. In fact, combination (4.68) is invariant under the maximal subgroup 𝑈(1)𝑉𝐿

which
in turn implies a new gauge coupling for 𝑉𝐿

𝑔eff = 𝑔
𝑍

, (4.69)

the immediate consequence of it is a lowering of the cutoff of the theory. In fact if 𝑍 is
sufficiently large then Λapparent ∼ 𝑔𝑀𝑃/𝑍. Now, particle 𝑃𝐴 couples to this minimal charge
while particle 𝑃𝐵 becomes heavy. Actually, and here lies the loophole, the latter particle can
live at energies above Λapparent under the following circumstances (figure 4.5). It can happen
that the value of the vev is approximately equal to Λ and one can adjust the theory such that
𝑔𝑍 ∼ 1. As a result, the cutoff of the low-energy 𝑈(1) theory can be

𝑚𝑉 ≈ Λ ≈ 𝑔𝑀𝑃Λ ≲ √𝑔eff 𝑀𝑃 . (4.70)

Moreover, conjecture 1.1 is still satisfied by particle 𝑃𝐵, by the fact that 𝑞𝐵 ≈ 𝑔. In fact,
it still has charge 𝑔 under 𝑉𝐿 in this Higgs phase. However, 𝑃𝐵 could be so heavy that it
actually desappears from the new EFT with cutoff Λapparent.
Nevertheless, other forms of the WGC can be violated in this EFT. This toy model is a
blueprint for an important speculative question: the Swampland conjectures satisfied by an
EFT of a given quantum gravity theory have to be satisfied by other EFTs emerging from
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true WGC cutoff

(Z,1) Higgs field
𝑉𝐻

𝑉𝐿

apparent WGC cutoff

𝑃𝐵 ∶ (0, 1); 𝑞 = 𝑍𝑔eff

𝑃𝐴 ∶ (1, 0); 𝑞 = 𝑔eff

Λ ∼ 𝑔𝑀𝑃

𝑣 < Λ

𝑚𝑉 ∼ 𝑍𝑔𝑣 < Λ

Λapparent ∼ 𝑔eff𝑀𝑃

𝑚𝑉𝐿
= 0

Figure 4.5. Spectrum of the toy model presented: charged particles are represented with blue straight
lines while the gauge fields with the orange wavy ones. In the un-Higgs phase the theory satisfies the
WGC ((4.21) upper sky-blue line). In the Higgs phase the cutoff is lowered, expressed by the sky-blue
dotted line.

the latter as well? It is legit posing this question. The toy model presented is in some sense
paradoxical: in the un-Higgs phase the WGC is satisfied in all its statements but in the Higgs
phase no. However, conjecture 4.1 can come to rescue. In fact, the generalization of the
previous case to a theory with 𝑁 𝑈(1)s all with the same coupling 𝑔 and 𝑁 − 1 Higgs fields
with charges (𝑍, 1, … , 0), (0, 𝑍, 1, … , 0), (0, 0, 𝑍, 1, … , 0) and so far so on, leads to an upper
bound which is always satisfied. To be precise, in accordance with (4.69), the remaining
massless 𝑈(1) symmetry has a new coupling constant of the form

𝑔eff = 𝑔
𝑍𝑁−1 . (4.71)

In line with the previous arguments, choosing 𝑔𝑍 ∼ 1, the effective coupling is such that
𝑔eff ∼ 𝑔𝑁. However, the multi-field WGC assures that the cutoff of the EFT is lowered by a
factor ∝

√
𝑁. Hence, the number of gauge groups can be chosen in order to maximize Λ:

(4.69)
𝑁 𝑈(1)𝑠
−−−−−→ Λ ≲ 𝑔

1
𝑁
eff 𝑀𝑃 4.1 ⟹ Λ ≲

𝑔
1
𝑁
eff√
𝑁

𝑀𝑃
𝜕𝑁Λ=0
−−−−→ Λ ≲ (log 1

𝑔eff
)

− 1
2

𝑀𝑃 . (4.72)

Therefore, by the fact that 0 < 𝑔eff < 1 and that
√

𝑥 < [log(1/𝑥)]− 1
2 is satisfied for 0 < 𝑥 < 1,

a theory satisfying the WGC in the UV assures that the Higgsing procedure cannot develop
an EFT with gauge coupling violating the (4.72) [Sar17].
This result can be analogously presented by a bottom-up argument: BH physics. Imagine to
be able to treat BHs with different (gauge) symmetries as separate thermodynamic ensambles.
This can actually be achieved if all of them are such that their mass is of the same order
of their radius and exceeds the BH temperature. The total entropy of the system acquires
a logarithmical correction which accounts for the number of BHs satisfying the previous
requirements. In formulas

𝑆tot = 𝑆𝐵𝐻 + log( 𝑅
𝑔eff

) , (4.73)

so that if 𝑔eff is extremely small, the logarithmic term in (4.73) becomes dominant to such an
extent that we can approximate

𝑆𝐵𝐻 ∼ 𝑅2 ≲ log( 𝑅
𝑔eff

) ≈ log( 1
𝑔eff

) . (4.74)
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Recalling the CEB arguments exhibited previously, in order to preserve the validity of the
entropy bound, it is necessary the introduction of a new physics. Actually, the introduction of
a new cutoff (4.72).

4. 5 WGC AND AXIONS

In order to extend the conjecture to axions, it is necessary the introduction of the conjecture
for general branes. Subsequently, it will suffice to consider the general expression valued for a
0-form. So in this section we will consider general 𝑝-forms, number of dimensions 𝑑 and a
dilaton coupling 𝛼𝑝,𝑑. Following the discussion in chapter 2, consider the action for General
Relativity coupled to a dilaton field and a 𝑝-form gauge field in 𝑑 dimensions to be

𝑆 = 1
2𝑘2

𝑑
∫ d𝑑𝑥 √−𝑔 (𝑅𝑑 − 1

2
(∇𝜙)2 − 1

2𝑒2
𝑝;𝑑

𝑒−𝛼𝑝;𝑑𝜙 𝐹 2
𝑝+1) (4.75)

and, following what already introduced in the Conventions, we will consider the electromagnetic
duality given by

− 1
2𝑒2

𝑝;𝑑
∫ d𝑑𝑥 √−𝑔 𝑒−𝛼𝑝;𝑑𝜙 𝐹 2

𝑝+1 → − 1
2𝑔2

𝑝;𝑑
∫ d𝑑𝑥 √−𝑔 𝑒𝛼𝑝;𝑑𝜙 𝐺2

𝑑−𝑝−1 . (4.76)

The aim is to find a magnetically charged black brane solution for action (4.75), then using
duality (4.76), finding the dual electric solution. Therefore, following [Lu93], by computing
the magnetic charge and the ADM tension, one can formulate the extremality bound and as a
result, the general formulation of the Weak Gravity conjecture for 𝑝-branes. Specifically, we
will search for charged static black hole solutions with translational and rotational invariance
in the 𝑛 = 𝑑 − 𝑝 − 3 spatial world-volume coordinates 𝑦𝑖 so that one can dimensionally reduce
to an 𝑚 = 𝑑 − 𝑛 = 𝑝 + 3-dimensional theory with metric ansatz being

d𝑠2 = 𝑒 𝑛
𝑚−2 𝜆 d ̂𝑠2 + 𝑒−𝜆d𝑦𝑖 d𝑦𝑖 . (4.77)

Hence, following the discussion of chapter 2, the dimensionally reduced action is
1
𝑘2 ∫ d𝑚𝑥 √− ̂𝑔 (𝑅̂ − 1

2
𝜕𝜇𝜙𝜕𝜇𝜙 − 𝑛(𝑑 − 2)

4(𝑚 − 2)
𝜕𝜇𝜆𝜕𝜇𝜆 − 1

2𝑒2
𝑝

𝑒−𝛼𝜙− 𝑛(𝑚−3)
𝑚−2 𝜆 𝐹 2

𝑝+1) (4.78)

from which one can considerably simplify computation by introducing two additional fields, 𝜎
and 𝜌, such that the seeking solutions become spherical symmetric-𝑆𝑂(𝑝 + 2) solutions to the
equations of motion of

∫ d𝑚𝑥 √−𝑔 (𝑅̂ − 1
2

(∇𝜌)2 − 1
2

(∇𝜎)2 − 1
2

𝑒𝐵𝜌 ̂𝐹 2
𝑝+1) with 𝐵 = −√2(𝑝 + 2)

𝑝 + 1
. (4.79)

Said 𝑟+ and 𝑟− the outer and inner horizons, the solution is

d𝑠2 = − (1 − 𝑟𝑝
+

𝑟𝑝 ) (1 − 𝑟𝑝
−

𝑟𝑝 )
2𝑝

𝑑−2 𝛾−1
d𝑡2 + (1 − 𝑟𝑝

−
𝑟𝑝 )

2𝑝
𝑑−2 𝛾

d𝑦𝑖 d𝑦𝑖

(1 − 𝑟𝑝
−

𝑟𝑝 )
𝛼2
𝑝 𝛾−1

(1 − 𝑟𝑝
+

𝑟𝑝 )
d𝑟2 + 𝑟2 (1 − 𝑟𝑝

−
𝑟𝑝 )

𝛼2
𝑝 𝛾

dΩ2
𝑝+1

𝑒−𝛼𝜙 = (1 − 𝑟𝑝
−

𝑟𝑝 )
𝛼2𝛾

𝑄 = 𝑝(𝑟+𝑟−) 𝑝
2
√𝛾 ⟹ 𝐹𝑝+1 =

𝑒𝑝;𝑑

𝑘𝑑
𝑄𝜔𝑝+1

(4.80)
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from which, according to [Lu93], one can compute the magnetic charge 𝑄̃ and the ADM
tension and then impose the extremality bound 𝑟+ > 𝑟−

𝑄̃ =
𝑉𝑝+1

𝑔𝑝;𝑑𝑘𝑑
𝑄, 𝑇 =

𝑉𝑝+1

2𝑘2
𝑑

[(𝑝 + 1)(𝑟𝑝
+ − 𝑟𝑝

−) + 2𝑝𝛾𝑟𝑝
−] ⟹ 𝛾𝑔2

𝑝;𝑑𝑄̃2 < 𝑘2𝑇 2 . (4.81)

Using electromagnetic duality, the dilaton and flux become

𝑒𝛼𝜙 = (1 − (𝑟−
𝑟

)
𝑑−𝑝−2

)
𝛼2𝛾

, 𝐹𝑝+1 =
𝑒𝑝;𝑑

𝑘𝑑
(𝑑 −𝑝−2)

√𝛾(𝑟+𝑟−) 𝑑−𝑝−2
2

𝑟𝑑−𝑝−1 d𝑡∧d𝑦1 ∧⋯∧d𝑦𝑝−1 ∧d𝑟

(4.82)
so that the extremality bound is

𝛾𝑒2
𝑝;𝑑𝑄2 < 𝑘2𝑇 2 (4.83)

which for 𝑑 = 4, 𝑝 = 1, 𝛼 = 0 leads one to recover the result for a Reissner-Nordstrom BH
(4.26). Now, 2.1 gives a condition for a BH to decay and in order to allow a black brane to
decay too, there should exist a charged object of tension 𝑇𝑝 and quantized charge 𝑞 such that
(4.83) is violated, namely

CONJECTURE 5.1: GENERAL WEAK GRAVITY CONJECTURE

In a 𝑑-dimensional theory characterised by a 𝑝-form gauge field symmetry, described by
action (4.75), there should exist a charged object of tension 𝑇𝑝 and quantized charge 𝑞
such that

[𝛼2

2
+ 𝑝(𝑑 − 𝑝 − 2)

𝑑 − 2
] 𝑇 2

𝑝 ≤ 𝑒2
𝑝;𝑑𝑞2𝑀𝑑−2

𝑑 , (4.84)

allowing a black brane to decay.

Therefore, for 𝑑 = 4, 𝑝 = 0, the 0-form is an axion and thus the tension of the object charged
under it is just the action of an instanton coupled to the axion (see Appendix E, subsection
E. 2.b in particular), whose gauge coupling is inversely proportional to its decay constant.
Therefore, 5.1 becomes

CONJECTURE 5.2: WEAK GRAVITY CONJECTURE FOR AXIONS

In a four-dimensional theory, an axion with decay constant 𝑓𝑎 must couple to instantons
described by action 𝑆inst such that

𝑆inst ≤ 𝑀𝑃
𝑓𝑎

ELECTRIC FORMULATION. (4.85)

Moreover, a magnetic Weak Gravity conjecture formulation can be addressed to axions too.
In fact, from Appendix E. 2.b it is emphasised that the axion is a compact field and as a
consequence, it admits a Hodge dual massless two-form gauge field 𝐵 = 1

2𝐵𝜇𝜈d𝑥𝜇 ∧ d𝑥𝜈. Its
field strength 𝐻 = d𝐵 is given by

𝐻
𝑓

= 𝑓𝑎 ⋆ d𝜃
so that
−−−−→ 𝐿𝐵 = 1

2𝑓2 𝐻𝛼𝛽𝛾𝐻𝛼𝛽𝛾 (4.86)

with 𝑓 = 2𝜋𝑓𝑎, accounting for Dirac quantization. According to 5.1 there exists a low-tension
string charged under 𝐵 such that 𝑇 ≲ 𝑓𝑀𝑃. Now, imagine having a black hole with axionic
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charge 𝑏 = ∫
Σ

𝐵, with Σ a two-sphere homotopic to the BH horizon.
The BH can evaporate through Hawking radiation, but, in line with previous chapters, it is
necessary the presence of charged strings (in the sense of gauge symmetry) to avoid the remnant
problem. In general, this kind of argument should apply also for the axions. Nevertheless, in
literature one distinguishes between fundamental axions and ordinary Goldstone bosons. The
latter provide semi-classical string solutions where the potential (spontaneously breaking the
𝑈(1)𝑃𝑄 symmetry) has a tension proportional to 𝑓2. It happens that the vev at issue goes to
zero at the core of these semi-classical strings while for the case of fundamental axions the
core is singular due to the absence of a symmetry-restoring point at finite distance in field
space (see figure 4.6).
In this sense

√
𝑇 is interpreted as an ultraviolet cutoff on local quantum field theory. Therefore,

CONJECTURE 5.3: WEAK GRAVITY CONJECTURE FOR AXIONS

In a four-dimensional theory, the local quantum field theory is characterised by an UV
cutoff

Λ𝑈𝑉 ≲ √𝑓𝑀𝑃 MAGNETIC FORMULATION (4.87)

when an axion with decay constant 𝑓𝑎 = 2𝜋𝑓 is present.

Hence, combining together (4.85) and (4.87), the Weak Gravity conjecture for axions can
indeed be summarised by saying that

𝑆inst ≲ 𝑀2
𝑃

Λ2 . (4.88)

?

winding axion

radial Higgs mode

𝑎(𝑥)

𝑎(𝑥)

infinite field space distance to singular string core

𝜎(𝑥) 𝜎(𝑥)

Figure 4.6. Illustration of the difference between a Goldstone boson-type axion (on the le�) and a
fundamental axion (on the right).
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CHAPTER 5

APPROXIMATE GLOBAL SYMMETRIES
WITH THE WEAK GRAVITY

CONJECTURE

CONTENTS: 5. 1 Approximate global symmetries?. 5. 1.a Four-dimensional example.

INTRODUCTION

It has been stressed throughout this thesis how exact global symmetries are inconsistent
with quantum gravity. Nevertheless, when Particle Physics comes to play, it is the Weak
Gravity conjecture itself that can provide approximate global symmetries in some cases. In
this chapter, definition of approximate global symmetries will be explained and an example
will be provided for the sake of clarification.

5. 1 APPROXIMATE GLOBAL SYMMETRIES?

So far, conjecture 1.1 rules the landscape of questioning the presence of exact global symmetries
in quantum field theories coupled to gravity. If on the one hand literature, and I hope also this
thesis, is pretty clear in providing supporting arguments towards the validity of the No-Global
symmetry conjecture, on the other, quantum field theories present beautiful mechanisms
that actually may deeply shake the already established certainty about the validity of the
conjecture. To be precise, a global symmetry can arise a�er a non-linearly realization of a
gauge symmetry that becomes a global symmetry for those original charged particles surviving
at the low-energy theory. It is important at this level to clarify what is meant by non-linearly
realised gauge symmetries. In general, in field theory symmetries are just a realization of
field transformations under which the theory has to be invariant. These field transformations
lead to conservation laws of energy-momentum, of total angular momentum, of charge, of
isotopic spin and so far so on. Additionally, all fields and state vectors have to be classified
according to representations of the corresponding groups. In terms of allowed processes, they
give restrictions on the 𝑆-matrix elements between states with fixed number of particles.
However, there are also field transformations realised non-homogeneously and non-linearly
but they do not give new conservation laws and do not even give a further classification of
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particle states. Instead, they can determine the dynamics of these particles.
At this point, however, what is the role of global symmetries? To be precise, when and how
do these arise in this scenario? First of all, these global symmetries can only emerge as
approximate ones, namely in the sense of the following definition.
Definition 5. 1.1

An effective field theory has an approximate global symmetry1if among all processes allowed
by the theory, starting from a set of initial multi-particle states {𝑖} and ending to that of
final multi-particle states {𝑗}, there exists a subset of these having rates parametrically
smaller.

Now, one can divide an EFT action describing a theory with approximate global symmetries
into classes [Dau+20]. Among other possibilities, the main subdivision is between

1. accidental approximate global symmetry: there are global symmetries preserved in
an EFT lagrangian because it is not possible to write down those operators explicitly
breaking the symmetry. A famous example is the Standard Model 𝐵−𝐿-symmetry, there
are no relevant or marginal operators, consistent with spacetime and gauge symmetries
and Lorentz invariance, that can actually forbid this symmetry

2. gauge-derived approximate global symmetry: these follows with non-linearly realization
of gauge symmetries. For example, consider a theory 𝑈(1) gauge-invariant. One can
Higgs the gauge field with an axion, ending up with both fields becoming massive.
Nevertheless, if there are other fields in the theory that remain light, then they will be
invariant under the 𝑈(1) global symmetry.

At the end of the day, we are now questioning ourselves to what extent global symmetries are
prohibited, namely: is there any cutoff telling us how far a symmetry-violating operator is
suppressed in the lagrangian? Are we able to suggest conditions for an approximate global
symmetry to arise?
However, what is actually meant by condition 2? So, consider a theory with a generic 𝑝-form
and gauge the theory with a 𝑝 + 1-form, equivalently this is the Higgsing of the 𝑝 + 1-form by
the 𝑝-form, namely

𝐿 = 1
𝑔2

𝑝
∣d𝐴𝑝∣

2
+ 1

𝑔2
𝑝+1

∣d𝐴𝑝+1∣
2

→ 𝐿 = 1
𝑔2

𝑝
∣d𝐴𝑝 + 𝐴𝑝+1∣

2
+ 1

𝑔2
𝑝+1

∣d𝐴𝑝+1∣
2

(5.1)

so that
∫

𝐵𝑝+1

𝐴𝑝+1 + ∫
𝜕𝐵𝑝+1

𝐴𝑝 ⊂ 𝑆 (5.2)

is the action, gauge-invariant only if 𝛿𝐴𝑝+1 = d𝜒𝑝 and 𝛿𝐴𝑝 = −𝜒𝑝. For the particular case of
the Higgsing of a 1-form by a 0-form (an axion), the last term on the le�-hand side (LHS) is
indeed an instanton:

∫
𝐵1(𝑥∗)

𝐴1 + 𝜙(𝑥∗) ⊂ 𝑆 . (5.3)

Hence, instanton is located at a point 𝑥∗ on a worldline 𝐵1, see figure 5.1. Note also that the
first term on the LHS represents a charged particle, labelled with Φ for example, moving along
the worldline. Recalling Appendix E, in the EFT lagrangian a potential defining the coupling
with an axion and instantons will appear. This operator is proportional to the exponentiation

1Let me stress that by global symmetry it is meant the definition given in chapter 3.
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𝑥1

𝑥2

𝑡

instanton

worldline 𝐵1

𝑥∗

Figure 5.1. Illustration of a worldline of a charged particle ending on an instanton.

of the action describing the instanton. However, by the fact that the charged 𝑝 − 1-branes
of the 𝑝-form gauge theory are gauge-invariant no more within the Higgsing scenario, this
operator has a non-trivial changing in order to preserve gauge invariance, namely if 𝛿Φ = Φ𝑒𝑖𝜒:

𝑒−𝑆inst+𝑖𝜙 → Φ 𝑒−𝑆inst+𝑖𝜙 . (5.4)

Being gauge invariant, we are free to choose a gauge for 𝜙, for example let 𝜙 = 0. Nevertheless,
a�er the gauge fixing, the RHS of (5.4) is a global 𝑈(1)-violating operator. Furthermore,
using (4.88) of the WGC for axions, a constraint on the suppression of the operator coupling
the axion with the instanton in the EFT lagragian will emerge. Hence, the WGC actually
constrains the strength of the 𝑈(1)-violation in terms of the cutoff of the four-dimensional
theory. In this case the suppression is exponential and it involved just one instanton; if there
were 𝑘 instantons, the suppression term would have been exp{−𝑘𝑀2

𝑃/Λ2}.

5. 1.a Four-dimensional example

We want to consider an axion gauged with a theory including fermions. Hence, consider a
𝑈(1) gauge theory with fermions (just as the case of QED), whose action is

𝑆1 = ∫ d4𝑥 (𝑖 ̄𝜓 /𝐷𝜓 − 1
𝑒2 𝐹 2) (5.5)

and also a 𝑆𝑈(2) gauge theory, whose gauge fields are coupled with an axion, with action
given by

𝑆2 = ∫ d4𝑥 (−𝑓2
𝑎(𝜕𝑎)2 − 1

𝑔2 Tr{𝐺2} +
𝑎Tr{𝐺 ̃𝐺}

8𝜋2 ) . (5.6)

Now, gauging the axion with the gauge fields 𝐺𝑎 is not possible in a trivial manner due to
the gauge non-invariance of the last term in (5.6) under 𝛿𝑎 = 𝜒. Instead, we should write
(5.5) in terms of the le�-handed and right-handed fermions, translating 𝑈(1) → 𝑆𝑈(2) gauge
theory. So, gauging the axion, the overall action is

𝑆 = ∫ d4𝑥 (− 1
𝑒2 𝐹 2 − 1

𝑔2 Tr{𝐺2} − 𝑓2
𝑎(𝐷𝑎)2 + 𝑖 ̄𝜓𝐿 /𝐷𝜓𝐿 + 𝑖 ̄𝜓𝑅 /𝐷𝜓𝑅 +

𝑎Tr{𝐺 ̃𝐺}
8𝜋2 ) ,

(5.7)
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where the extended lagrangian is

𝐿 = − 1
𝑒2 𝐹 2 − 1

𝑔2 Tr{𝐺2} − 𝑓2
𝑎[(𝜕𝜇 − 𝑖𝐴𝜇)𝑎]

2
+ 𝑖 ̄𝜓𝐿𝛾𝜇(𝜕𝜇 − 𝑖𝑞𝐿𝐴𝜇 − 𝑖𝐺𝜇)𝜓𝐿+

+ 𝑖 ̄𝜓𝑅𝛾𝜇(𝜕𝜇 − 𝑖𝑞𝑅𝐴𝜇 − 𝑖𝐺𝜇)𝜓𝑅 +
𝑎Tr{𝐺 ̃𝐺}

8𝜋2 .
(5.8)

The fermionic term in equation (5.8) could likely arise an 𝑈(1)𝑆𝑈(𝑁)2-anomaly. The situation
is avoided by fixing the coupling of the axion when considering the Feynman diagram associated
to the last term of (5.8), see figure 5.2.

∼ 8𝜋
𝑎

𝐺

̃𝐺
𝑈(1)

𝑆𝑈(𝑁)

𝑆𝑈(𝑁)

𝜓𝐿(−𝜓𝑅)

𝑎 𝑇 𝑟{𝐺 ̃𝐺}
8𝜋

𝜓𝛾𝜇𝐷𝜇𝜓

Figure 5.2. Illustration of the Feynman diagram corresponding to two terms in the lagrangian (5.8).
The action (5.7) is anomaly-free and 𝑈(1) × 𝑆𝑈(2)-gauge invariant if 𝑞𝐿 − 𝑞𝑅 = Tr{𝑇 𝑎𝑇 𝑏}𝛿𝑎𝑏.

At the energy scale of 𝑓𝑎, from the term 𝑓2
𝑎(𝐷𝑎)2 the photon field will acquire a mass through

the Higgs mechanism, and the axion will become its longitudinal degree of freedom. Therefore,
under this energy scale, the effective degrees of freedom will be only those associated to the
fermions and the gauge fields 𝐺𝑎, see figure 5.3.

𝐸

𝑓𝑎

effective degrees
of freedom 𝐿𝑒𝑓𝑓 = − 𝑇𝑟{𝐺𝐺̃}

𝑔2 + 𝜓𝐿𝛾𝜇[𝜕𝜇 − 𝑖𝐺𝜇]𝜓𝐿 + 𝜓𝑅𝛾𝜇[𝜕𝜇 − 𝑖𝐺𝜇]𝜓𝑅 + …

the photon acquires a mass

Figure 5.3. Effective action describing the degrees of freedom under the energy scale at which the
photon acquires a mass.

Following the discussion in Appendix E, in particular equation (E.9), in the effective action
the last term in (5.7) will give rise to a coupling between the instanton action and ̄𝜓𝐿𝜓𝑅 of
the form

⋯ = 𝑒−𝑆inst ̄𝜓𝐿𝜓𝑅 + ℎ.𝑐.
(5.4)
−−→ 𝑒−𝑆inst ̄𝜓𝐿𝜓𝑅 𝑒𝑖𝜙 + ℎ.𝑐. (5.9)

which according to the meaning of (5.4) is gauge invariant. Fixing the gauge 𝜙 = 0, (5.9)
explicitly violates the global 𝑈(1).
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CHAPTER 6

CONCLUSIONS AND OUTLOOKS

By homely gifts and hindered words
The human heart is told

Of nothing -
”Nothing” is the force

That renovates the World
— Emily Dickinson

6. 1 DISCUSSION

Nowadays, quantum gravity represents a compelling question among physicists. Partly because
of our lack of knowledge about high-energy physics and partly because of the richness in
mathematical models proposed. So far, the overall framework is thus a little bit chaotic and
messy. String Theory is perhaps considered the leading theory in this scenario and it actually
represents the birthplace for the so-called Swampland Program. Instead of approaching the
study of quantum gravity at the energy of Planck scale, one can try to analyze the low-energy
behaviour through the quantum field theory-eye. Therefore, the quantum gravity problem is
grabbed by its infrared behaviour and dissected by questioning about correct behaviour that
such an infrared theory has to satisfy in order to be a good quantum gravity theory in the
ultraviolet.
In this thesis it was first introduced String Theory in an entry-level way by providing the basic
knowledge in order to understand how the Swampland conjectures arose. So that, chapters 1
and 2 served as an introduction to the String Theory world and to the main characteristics
that define the originality and the roots of the Swampland Program. Hence, the starting
point is the closed bosonic string, the study of its dynamics and spectrum and then the
discussion of a low-energy treatment. Furthermore, the very starting point is represented
by the Kaluza-Klein reduction field theory, where it happens that, in the particular case of
the compactification over a circle, a tower of states emerges, the Kaluza-Klein modes and
the winding modes. String Theory not only provides the presence of particles as vibrational
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modes of the string itself but also clarifies how energy is actually spent for a string to be
wrapped around the compactified dimension, for example. However, it is the radius of the
compactified dimension which is part of the fabric of this town. At the end of the day, this
tower of states depends on it in the sense that the smaller it is the light are the Kaluza-Klein
modes and the massive are the winding modes, on the contrary, the higher it is and the lighter
are the winding modes while the Kaluza-Klein ones are more massive. Moreover, when the
spacetime dimensions are reduced, the behaviour of the fields actually change. To be precise,
the fields themselves adapt to the reduced world by becoming dimensional-reduced fields.
Hence, the reduction of the metric tensor leads to the presence of a 𝑈(1) gauge field as well
as the reduced Kalb-Ramond field. The fields charged under these two gauge symmetries are
the Kaluza-Klein and the winding modes, respectively.
Nevertheless, this tower of states is based on the periodicity number 𝑛 of the quantized charge
of the 𝑈(1) gauge symmetry coming from the reduction of the metric tensor and 𝑤, the
winding number telling how many times the string wraps around the compactified dimension.
Therefore, at a given couple of values of 𝑛 and 𝑤, we are frozen to a given energy. The
duality between the Kaluza-Klein modes and winding modes, together with the existence of
an energy cutoff, led to the first formulation of the Weak Gravity conjecture. Throughout all
the discussion, a remarkable role is played by conformal field theory. Actually, as emphasised
in chapter 3 and Appendix A, its formalism is the key for the emerging of the necessity
of a natural absence of global symmetries in nature, leading to the first formulation of the
No-Global symmetry conjecture.
Moreover, through the mathematical framework behind the AdS/CFT correspondence, proofs
of the latter can be given in a independent way from String Theory. Precisely, a global
symmetry on the boundary is not dual to a global symmetry in the bulk but to a long-range
gauge symmetry one. Additionally, the problem of the forbidden global symmetries can
be addressed in a completely different manner by using group field theory. The important
hypothesis at the basis of all the discussion is the requirement of the compactness of the Lie
manifold of the theory. The notion of global symmetry in quantum field theory then is strictly
connected to that of splittability. Precisely, the Noether theorem crowning conservation
principle, is actually reformulated via splittability. If one is able to demonstrate that Noether
currents lead to a splittable theory then global symmetries are always present. However, it
happens to not be the case.
Furthermore, what does “no global symmetries are allowed” really means in the context of an
effective field theory? The Standard Model actually provides a very useful example for this
through the approximate global symmetry given by the difference between the barion and
lepton numbers. Precisely, approximate global symmetries can also be viewed as symmetry
suppressed or at least controlled by some parameters. Interesting studies show that the Weak
Gravity conjecture, as formulated for the axions, can really lead to a condition for a global
symmetry of this kind, an example of which was presented in chapter 5.
Nevertheless, if on the one hand, String Theory itself seems to predict the behaviours dictated
by the Weak Gravity and the No-Global symmetry conjectures, the very natural question
concerns to what extend these seem reasonable. On the other hand, in fact, if in theory there
is such a prediction, in some way it must be detectable in practise. For this exactly reason,
the gaze is on black hole physics. Moreover, arguments coming from the latter are in fact
not considered as very predictions but as signposts instead. However, both the Weak Gravity
conjecture and the No-Global symmetry one are supported by black hole arguments. The
first by conditions for a black hole to decay while the latter with the impossibility for a black
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hole to shed its global information stored.
What is really noteworthy is how quantum gravity is actually intertwined with particle
dynamics and how quantum gravity arguments have another reading key in conformal field
theory. To be precise, as emphasised in chapter 4, the statement of the Weak Gravity conjecture
which prohibits bound states has an elegant counterpart in terms of CFTs. The binding energy
is defined as that energy spent by two one-particle states to become a bound state and by
definition it is negative. Therefore, in accordance to the Weak Gravity conjecture, the binding
energy must be positive. Nevertheless, the AdS/CFT actually furnishes a straightforward map
between energy of states in the bulk theory with the scaling dimension of their dual operators
on the boundary. It really appears that for unitary CFTs the Weak Gravity conjecture is
expressed via conditions on anomalous dimensions.

6. 2 OUTLOOKS

A good start is half of the job, would you not agree with me? So far, the long-road taken
is slowly branching out leading to new frontiers. Starting from quantum gravity we could
investigate new Physics independent from it. Actually, in the to-do list there is, at the present,
a clarification of the Weak Gravity conjecture expressed as a convexity statement also for non
abelian groups such as 𝑂(𝑛). Therefore, the first task is a deeper understanding and extension
of tests for this conjecture. Is this a consequence, or if you want the influence, of gravity on
CFT gauge theories? Or is it only a matter of change characterising these theories?
Moreover, my colleagues of our research group are at the moment working on other possible
tests for the conjecture for every limit already studied by them. In fact, they are actually
among the world-leaders of conformal field theories together with large-charge physics. These
powerful instruments can actually lead us to new immediate questions: are we able to utter a
word on black hole physics by talking the CFT language? Are there black hole’s microstates
mapped into CFT ones? What about holography?
All in all, is almost like we waited these months for the carousel of new possible Physics and
now we are near to go on rides. We are full of excitement and ready to scream out loud. At
the end of the day, we have already bought the ticket, don’t you think?
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APPENDIX A

CONFORMAL FIELD THEORY

CONTENTS: A. 1 The conformal group in 𝐷 dimensions. A. 2 The conformal group in two dimensions.
A. 3 Conformal fields and string interaction formalism. A. 3.a Operator Product Expansion (OPE) – A.
3.b State-operator correspondence and vertex operators.

INTRODUCTION

This appendix aims to give an overview of conformal field theory (CFT) in order to appreciate
and learn the basis for the study of string interactions. In fact, the language of CFT provides a
quantum field theory of strings where operators create and destroy entire strings. The appendix
will review the algebra of the conformal group and will introduce the vertex operators.

A. 1 THE CONFORMAL GROUP IN 𝐷 DIMENSIONS

Let us consider a 𝐷-dimensional manifold ℳ which can be either Riemannian or pseudo-
Riemannian. In the first case we will consider the lorentzian metric 𝜂𝜇𝜈 while in the second
the euclidean one, namely the Kronecker delta 𝛿𝜇𝜈.

Definition A. 1.1
A 𝐷-dimensional manifold is called conformally flat if the invariant line element can be
written as

d𝑠2 = 𝑒𝑤(𝑥)⏟
≜ Ω(𝑥)

d𝑥𝜇 d𝑥𝜈 {
𝜂𝜇𝜈 lorentzian signature
𝛿𝜇𝜈 euclidean signature

(A.1)

𝑤(𝑥) is called the conformal factor, allowed to be x-dependent.

A metric satisfying definition A. 1.1 is called conformally flat. As a result
Definition A. 1.2

The conformal group is a subgroup of the group of general coordinate transformations, in
general diffeomorphisms, preserving the conformal flatness of the metric.

The conformal transformations have the property of preserving angles between vectors while
distorcing the lengths. Therefore, under a change of coordinates 𝑥𝜇 ↦ 𝑥′𝜇 ≡ 𝑦𝜇 = 𝑥𝜇 + 𝜖𝜇,
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said 𝑔𝜇𝜈 the metric tensor of a given 𝐷-dimensional manifold, then

𝑔′
𝜇𝜈(𝑥′) = Ω(𝑥) 𝑔𝜇𝜈(𝑥) ⟺ 𝑔𝜇𝜈(𝑥𝜇 + 𝜖𝜇) 𝜕𝑦𝜇

𝜕𝑥𝛼
𝜕𝑦𝜈

𝜕𝑥𝛽 = Ω(𝑥) 𝑔𝛼𝛽(𝑥) . (A.2)

We are interested in finding the generators of the infinitesimal conformal transformations 𝜖𝜇.
Hence, let us start with

(𝑔𝜇𝜈(𝑥) + 𝜖𝜌𝜕𝜌𝑔𝜇𝜈(𝑥)) (𝛿𝜇
𝛼 + 𝜕𝛼𝜖𝜇) (𝛿𝜈

𝛽 + 𝜕𝛽𝜖𝜈) = Ω(𝑥) 𝑔𝛼𝛽(𝑥) (A.3)
𝒪(𝜖2)
−−−→ 𝜖𝜌𝜕𝜌𝑔𝛼𝛽(𝑥) + 𝑔𝛼𝜈(𝑥)𝜕𝛽𝜖𝜈 + 𝑔𝜇𝛽(𝑥)𝜕𝛼𝜖𝜇

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
ℒ𝜖𝜌𝜕𝜌 𝑔𝛼𝛽(𝑥) Lie derivative of 𝑔𝛼𝛽(𝑥)

= (Ω(𝑥) − 1) 𝑔𝛼𝛽(𝑥) (A.4)

then, recalling the definition of affine connection ∇ and said Γ𝛼
𝛽𝛾 its coefficients, we have

∇ ∶ 𝔛(ℳ) × 𝔛(ℳ) → 𝔛(ℳ) ⟹ (∇𝜇𝜖)
𝜆

= 𝜕𝜇𝜖𝜆 − Γ𝜎
𝜇𝜆𝜖𝜎 , (A.5)

so equation (A.4) becomes

∇𝛼𝜖𝛽 + ∇𝛽𝜖𝛼 = (Ω(𝑥) − 1) 𝑔𝛼𝛽(𝑥) . (A.6)

Now, considering a constant metric ∇ ≡ 𝜕, by contracting (A.6) with 𝑔𝛼𝛽 one ends up with

𝜕𝛼𝜖𝛽 + 𝜕𝛽𝜖𝛼 = 2
𝐷

∇ ⋅ 𝜖 𝑔𝛼𝛽 ⟹ (𝑔𝜎𝛽 � + (𝐷 − 2)𝜕𝜎𝜕𝛽) ∇ ⋅ 𝜖 = 0 . (A.7)

Therefore, depending on the dimensionality of ℳ the cases are two. Let us now consider the
case 𝐷 > 2. From equation (A.7) 𝜖𝜇 can be at most quadratic in 𝑥1. Hence, the conformal
group contains the following transformations:

1. translations

𝜖𝜇 = 𝑎𝜇 ≜ 𝑃 𝜇 whose infinitesimal generators are 𝑎𝜇𝜕𝜇

in number 𝐷
(A.8)

2. Lorentz transformations

𝜖𝜇 = 𝜔𝜇
𝜈 𝑥𝜈 ≜ 𝐽𝜇

𝜈 whose infinitesimal generators are 𝜔𝜇
𝜈 𝑥𝜈𝜕𝜇

in number 𝐷(𝐷 − 1)
2

(A.9)

3. dilatations

𝜖𝜇 = 𝜆𝑥𝜇 ≜ 𝐷 whose infinitesimal generators are 𝜆𝑥𝜇𝜕𝜇

in number 1
(A.10)

4. special conformal transormations:
they are a sequence of transformations, inversion→translation→inversion, therefore

𝜖𝜇 = 𝑏𝜇𝑥2 − 2𝑥𝜇𝑏 ⋅ 𝑥 ≜ 𝐾𝜇 whose infinitesimal generators are (𝑏𝜇𝑥2 − 2𝑥𝜇𝑏 ⋅ 𝑥) 𝜕𝜇

in number 𝐷 .
(A.11)

1Actually, from (A.7) it does not immediately follow that 𝜖 has to be at most quadratic in 𝑥. However, for
𝐷 > 2 one can show the stronger relation 𝜕𝜇𝜕𝜈𝜕𝜌𝜖𝜆 = 0 for any indices 𝜇, 𝜈, 𝜆, 𝜌, which then indeed implies
that 𝜖 is at most bilinear in 𝑥 and which leads to classification explained in the text.
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To summarize, the following infinitesimal transformations are conformal

𝛿𝑥𝜇 = 𝑎𝜇 + 𝜔𝜇
𝜈𝑥𝜈 + 𝜆𝑥𝜇 + 𝑏𝜇𝑥2 − 2𝑥𝜇𝑏 ⋅ 𝑥 (A.12)

and the total number of generators is (𝐷+2)(𝐷+1)
2 , which satisfy the following 𝑆𝑂(2, 𝐷) algebra

[𝐽𝜇𝜈, 𝐽𝜌𝜎] = 𝑖𝜂𝜇𝜌𝐽𝜈𝜎 + permutation (A.13)
[𝐽𝜇𝜈, 𝑃𝜌] = 𝑖(𝜂𝜇𝜌𝑃𝜈 − 𝜂𝜈𝜌𝑃𝜇) (A.14)

[𝐽𝜇𝜈, 𝐾𝜌] = 𝑖(𝜂𝜇𝜌𝐾𝜈 − 𝜂𝜈𝜌𝐾𝜇) (A.15)
[𝐽𝜇𝜈, 𝐷] = 0 (A.16)

[𝐷, 𝑃𝜇] = 𝑖𝑃𝜇 (A.17)
[𝐷, 𝐾𝜇] = −𝑖𝐾𝜇 (A.18)

[𝐾𝜇, 𝑃𝜈] = −2𝑖𝐽𝜇𝜈 − 2𝑖𝜂𝜇𝜈𝐷 , (A.19)

which in turn gives us the following conventions: those fields annihilated by the lowering
operator 𝐾𝜇 are called primary fields while those obtained by successive application of 𝑃𝜇 are
said descendants.

A. 2 THE CONFORMAL GROUP IN TWO DIMENSIONS

In this case, equation (A.7) becomes the Cauchy-Riemann equation

𝜕1𝜖1 = 𝜕2𝜖2 (A.20)
𝜕1𝜖2 = −𝜕2𝜖1 (A.21)

therefore, writing 𝜖(𝑧) = 𝜖1 + 𝑖𝜖2 and ̄𝜖( ̄𝑧) = 𝜖1 − 𝑖𝜖2 in terms of the complex coordinates
𝑧, ̄𝑧 = 𝑥1 ±𝑖𝑥2, it is clear that conformal transformations coincide with the analytic coordinate
transformations

𝑧 → 𝑓(𝑧) ̄𝑧 → ̄𝑓( ̄𝑧) (A.22)

whose local algebra is infinite dimensional. In fact, labelling with ℂ = (ℝ, 𝛿) it is easy to
recover the algebra of 𝐶𝑜𝑛𝑓(ℂ). Let 𝛾 ∈ 𝐶𝑜𝑛𝑓(ℂ), 𝑔 ∈ ℱ(ℂ) and 𝜌(𝛾) the representation of
𝛾 on ℱ(ℂ). Therefore

𝜌(𝛾)𝑔(𝑧) ≜ 𝑔(𝛾−1(𝑧)) writing 𝛾(𝑧) = 𝑒−𝑖𝜖(𝑧) 𝑧 ⟹ 𝛾−1(𝑧) ≃ (1 + 𝑖𝜖(𝑧))𝑧 (A.23)

𝜌(𝛾)𝑔(𝑧) ≃ 𝑔((1 + 𝑖𝜖(𝑧))𝑧) ≃ 𝑔(𝑧) + 𝑖𝜖𝑧 d𝑔(𝑧)
d𝑧

(A.24)

but 𝜖(𝑧) can be expandend in its Laurent series being a holomorphic function, hence

𝜖(𝑧) = ∑
𝑛∈ℤ

𝜖𝑛𝑧𝑛 ⟹ 𝜌(𝛾)𝑔(𝑧) ≃ 𝑔(𝑧) + 𝑖 ∑
𝑛∈ℤ

𝜖𝑛𝑧𝑛+1 d𝑔(𝑧)
d𝑧

(A.25)

⟹ 𝜌(𝛾)𝑔(𝑧) ≃ 𝑔(𝑧) + 𝑖 ∑
𝑛∈ℤ

𝜖𝑛𝑙𝑛𝑔(𝑧) with 𝑙𝑛 ≜ 𝑧𝑛+1 d
d𝑧

the generators of 𝐶𝑜𝑛𝑓(ℂ) .

(A.26)
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Introducing the notation 𝜕𝑧 = 𝜕/𝜕𝑧 and ̄𝜕 = 𝜕/𝜕 ̄𝑧, then the algebra satisfied by 𝑙𝑛 and ̄𝑙𝑛 is
the classical Virasoro algebra2

{
𝑙𝑛 = 𝑧𝑛+1𝜕
̄𝑙𝑛 = ̄𝑧𝑛+1 ̄𝜕

⟺ Virasoro algebras [𝑙𝑚, 𝑙𝑛] = (𝑚 − 𝑛)𝑙𝑚+𝑛, [ ̄𝑙𝑚, ̄𝑙𝑛] = (𝑚 − 𝑛) ̄𝑙𝑚+𝑛

and [𝑙𝑚, ̄𝑙𝑛] = 0 .
(A.27)

In the quantum case the Virasoro algebra is affected by a conformal anomaly because of
the presence of quantum mechanical breaking of the classical conformal symmetry. However,
𝐶𝑜𝑛𝑓(ℂ) contains a finite-dimensional subgroup, called restricted conformal group, formed by

𝑙−1 ∶ 𝑧 → 𝑧 + 𝜖 translations (A.28)
𝑙0 ∶ 𝑧 → 𝑧 + 𝜖𝑧 𝑙0 + ̄𝑙0 scalings, 𝑖(𝑙0 − ̄𝑙0) rotations (A.29)
𝑙1 ∶ 𝑧 → 𝑧 + 𝜖𝑧2 special conformal transformations. (A.30)

In chapter 2 it was shown that constraints (2.25) were a consequence of the Weyl invariance,
moreover, by the fact that the worldsheet is invariant under translations, the energy-momentum
tensor satisfies 𝜕𝑎𝑇𝑎𝑏 = 0. It is useful to perform a Wick rotation 𝜏 ↦ −𝑖𝜏 in order to work
with euclidean signature on the worldsheet instead of lorentzian one. Therefore, introducing

𝑧 = 𝑒𝜏−𝑖𝜎 and ̄𝑧 = 𝑒𝜏+𝑖𝜎 , (A.31)

the worldsheet becomes the complex plane where the Euclidean time becomes the radial
distance from the origin of the plane (representing the infinite past) to a circle. Furthermore, in
chapter 2 it was also shown the residual symmetries of the conformal gauge 𝜏 ± 𝜎 → 𝑓±(𝜏 ± 𝜎),
that now become 𝑧 → 𝑓(𝑧) and ̄𝑧 → ̄𝑓( ̄𝑧). Henceforth, we will consider conformally invariant
two-dimensional field theory in String Theory, having performed a conformal mapping of an
infinitesimally long cylinder (the complex plane minus the origin) onto a plane, see figure A.1.
In this language, the non-null components of the energy-momentum tensor are 𝑇𝑧𝑧 = 𝑇 (𝑧)

Figure A.1. Illustration of the conformal mapping explained in the text.

and 𝑇 ̄𝑧 ̄𝑧 = ̃𝑇 ( ̄𝑧) and the conservation conditions become

̄𝜕 ̃𝑇 ( ̄𝑧) = 0 and 𝜕𝑇 (𝑧) = 0 . (A.32)
2Actually, it is called the Witt algebra whose central extension is indeed the Virasoro algebra, as explained

later.
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For what said, the Virasoro generators can be interpreted as the modes of the energy-
momentum tensor, hence, the latter is indeed the generator of two-dimensional conformal
transformations. As a result, expressions (2.27), (2.28), and (2.29) with (2.30) become

𝑋𝜇
𝑅(𝜏, 𝜎) → 𝑋𝜇

𝑅(𝑧) = 1
2

𝑥𝜇 − 𝑖
4

𝑝𝜇 log 𝑧 + 𝑖√𝛼′

2
∑
𝑛≠0

𝛼𝜇
𝑛

𝑛
𝑧−𝑛 (A.33)

⟹ 𝜕𝑋𝜇(𝑧, ̄𝑧) = −𝑖√𝛼′

2
∑
𝑛≠0

𝛼𝜇
𝑛 𝑧−𝑛−1 (A.34)

𝑋𝜇
𝐿(𝜏, 𝜎) → 𝑋𝜇

𝐿( ̄𝑧) = 1
2

𝑥𝜇 − 𝑖
4

𝑝𝜇 log ̄𝑧 + 𝑖√𝛼′

2
∑
𝑛≠0

̃𝛼𝜇
𝑛

𝑛
̄𝑧−𝑛 (A.35)

⟹ 𝜕𝑋𝜇(𝑧, ̄𝑧) = −𝑖√𝛼′

2
∑
𝑛≠0

̃𝛼𝜇
𝑛 ̄𝑧−𝑛−1 . (A.36)

Hence, using (2.25) it easy to compute the holomorphic component of the energy-momentum
tensor

𝑇 (𝑧) =
∞

∑
𝑛=−∞

𝐿𝑛
𝑧𝑛+2 (A.37)

̃𝑇 ( ̄𝑧) =
∞

∑
𝑛=−∞

𝐿̃𝑛
̄𝑧𝑛+2 . (A.38)

A. 3 CONFORMAL FIELDS AND STRING INTERACTION FORMALISM

In field theory, if ℳ is a spacetime manifold considered limited along the time direction from
two spatial hypersurfaces 𝜎1 and 𝜎2, the Schwinger postulate ensures that

𝛿𝑆 = 𝐹[𝜎2] − 𝐹 [𝜎1] , (A.39)

where 𝑆 is the action of a given theory while 𝐹 is the generator of a canonical transformation.
It can be proven that

𝐹[𝜎] ≜ ∫
𝜎

𝐽𝜇 d𝜎𝜇 (A.40)

with 𝐽𝜇 being the current associated to the transformation performed on the system. Hence, a
canonical transformation is said to be a symmetry if (A.39) is null, namely if 𝐹 is conserved. It
is named the conserved charge associated to the current 𝐽𝜇. If Ω[𝜎] is an observable associated
to the system then its variation under a canonical transformation is expressed through

𝛿Ω[𝜎] = {Ω[𝜎], 𝐹 [𝜎]} . (A.41)

Therefore, switching to quantum formulation, for infinitesimal conformal transformation one
has:

{
𝛿𝑧 = 𝜖(𝑧)
𝛿 ̄𝑧 = ̃𝜖( ̄𝑧)

⟹ 𝑄 = 1
2𝜋𝑖

∮ ⎡⎢
⎣

𝑇 (𝑧)𝜖(𝑧)⏟
≜𝐽(𝑧)

d𝑧 + ̃𝑇 ( ̄𝑧) ̃𝜖( ̄𝑧)d ̄𝑧⎤⎥
⎦

⟹ {
𝛿𝜖Φ(𝑧, ̄𝑧) = [𝑄𝜖, Φ(𝑧, ̄𝑧)]
𝛿 ̃𝜖Φ(𝑧, ̄𝑧) = [𝑄 ̃𝜖, Φ(𝑧, ̄𝑧)] .

(A.42)
We are almost near to approach the formalism through which string interactions are studied.
There is the need to introduce the definition of conformal field.
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Definition A. 3.1
A conformal field is a field which under finite conformal transformations 𝑧 → 𝑓(𝑧)
transforms as

Φ(𝑧, ̄𝑧) → (𝜕𝑓
𝜕𝑧

)
ℎ

(𝜕 ̄𝑓
𝜕 ̄𝑧

)
ℎ̃

Φ(𝑓, ̄𝑓) (A.43)

where (ℎ, ℎ̃) are called the weights of Φ(𝑧, ̃𝑧) and specify how the latter transforms under
scale transformations.

Hence, equation (A.42) leads to

𝛿𝜖Φ(𝑓, ̄𝑓) = ∮ 𝜖(𝑧) [𝑇 (𝑧)Φ(𝑓, ̄𝑓) − Φ(𝑓, ̄𝑓)𝑇 (𝑧)]d𝑧 (A.44)

which has to be evaluated in a radial ordering. The final result is the integral along the contour
shown in figure A.2, which is actually computed by using the operator product expansion
(OPE).

Figure A.2. Illustration of the contour along which the integral (A.44) is performed.

A. 3.a Operator Product Expansion (OPE)

In CFT language, a field is a local operator 𝒪 and it represents any local expression that can
be written down. In most of the cases, one can be interested in studying the behaviour of
near local operators. Usually, one locally approximates local operators inserted at nearby
points by a string of operators at these points. This approximation is the so-called operator
product expansion (OPE), namely

𝒪𝑖(𝑧, ̄𝑧) 𝒪𝑗(𝑤, 𝑤̄) = ∑
𝑘

𝐶 𝑘
𝑖𝑗 (𝑧 − 𝑤, ̄𝑧 − 𝑤̄) 𝒪𝑘(𝑤, 𝑤̄) , (A.45)

which has singular behaviour as 𝑧 → 𝑤. The OPE is usually used in operator insertions inside
time-ordered correlation functions [Ton09]:

⟨𝒪𝑖(𝑧, ̄𝑧) 𝒪𝑗(𝑤, 𝑤̄) … ⟩ = ∑
𝑘

𝐶 𝑘
𝑖𝑗 (𝑧 − 𝑤, ̄𝑧 − 𝑤̄) ⟨𝒪𝑘(𝑤, 𝑤̄) … ⟩ . (A.46)

The OPE furnishes powerful tools in conformal theory and gives straightforward conditions
regarding the existence of a symmetry in a theory. In order to understand it, it is necessary
to introduce some basic notions about Ward identities.
If 𝜙s label the fields defined in a given theory, a transformation 𝜙 ↦ 𝜙 + 𝜖(𝑧)𝛿𝜙 is said to be a
quantum symmetry if it leaves invariant both the action and the measure of the path integral,
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namely3

𝑍 = ∫ 𝒟𝜙 𝑒−𝑆[𝜙] ↦ ∫ 𝒟𝜙′ 𝑒−𝑆[𝜙′] = ∫ 𝒟𝜙 𝑒−𝑆[𝜙] (1 − 1
2𝜋

∫ 𝐽𝑎𝜕𝑎𝜖)

𝑍 must be invariant
−−−−−−−−−−−−→
one has a symmetry if

∫ 𝒟𝜙 𝑒−𝑆[𝜙] ( 1
2𝜋

∫ 𝐽𝑎𝜕𝑎𝜖) = 0
(A.47)

which gives the quantum version of the Noether theorem: ⟨𝜕𝑎𝐽𝑎⟩ = 0; if this is not satisfied
one says that there is an anomaly. However, one can extrapolate an analogue condition when
having insertions in the path integral. For example, let us consider

⟨𝒪𝑖(𝑥1) … 𝒪𝑛(𝑥𝑛)⟩ = 1
𝑍

∫ 𝒟𝜙 𝑒−𝑆[𝜙] 𝒪𝑖(𝑥1) … 𝒪𝑛(𝑥𝑛) (A.48)

where, under the same transformation as before, each operator changes as 𝒪𝑖 ↦ 𝒪𝑖 + 𝜖(𝑧)𝛿𝒪𝑖.
Now two are the main possibilities:

1. 𝜖( ⃗𝑥) has support away from the operator insertions: in this case the condition for a
symmetry is the same

2. 𝜖( ⃗𝑥) has support in some region near, for example, 𝑥1: in this case one has

∫ 𝒟𝜙 𝑒−𝑆[𝜙] (1 − 1
2𝜋

∫ 𝐽𝑎𝜕𝑎𝜖) (𝒪1 + 𝜖𝛿𝒪1) 𝒪2 … 𝒪𝑛 (A.49)

which, up to 𝒪(𝜖2) gives the so-called Ward identity

− 1
2𝜋

∫
𝜖

𝜕𝑎⟨𝐽𝑎( ⃗𝑥) 𝒪1(𝑥1) … ⟩ = ⟨𝛿𝒪1(𝑥1) … ⟩ . (A.50)

Condition (A.50) is valid for every type of transformation but for conformal ones things
simplify a lot. In fact, moving to complex coordinates and using Stokes’ theorem, (A.50)
reads as

1
2𝜋

∮
𝜕𝜖

d𝑧 ⟨𝐽𝑧(𝑧, ̄𝑧) 𝒪1(𝑥1) … ⟩ − 1
2𝜋

∮
𝜕𝜖

d ̄𝑧 ⟨𝐽 ̄𝑧(𝑧, ̄𝑧) 𝒪1(𝑥1) … ⟩ = ⟨𝛿𝒪1(𝑥1) … ⟩ . (A.51)

and by the fact that 𝐽𝑧 and 𝐽 ̄𝑧 are holomorphic and anti-holomorphic functions, one can use
the residues’ theorem, so that (A.51) becomes

1
2𝜋

∮
𝜕𝜖

d𝑧 𝐽𝑧(𝑧, ̄𝑧) 𝒪1(𝑥1) = −Res[𝐽𝑧𝒪1]
(A.42)

= −Res[𝜖(𝑧)𝑇 (𝑧)𝒪1] = 𝛿𝒪1

⟹ 𝐽𝑧(𝑧)𝒪1(𝑤, 𝑤̄) ≈ Res[𝐽𝑧𝒪1(𝑤, 𝑤̄)]
𝑧 − 𝑤

(A.52)

where 𝑧 and ̄𝑧 have been considered as independent variables. A straightforward example can
be made with translations (A.28):

𝒪(𝑧 − 𝜖) = 𝒪(𝑧) − 𝜖𝜕𝒪(𝑧) + 𝒪(𝜖2) ⟹ 𝑇 (𝑧)𝒪(𝑤, 𝑤̄) ≈ 𝜕𝒪(𝑤, 𝑤̄)
𝑧 − 𝑤

. (A.53)

In CFT, one considers good operators those having good behaviour under dilatations. In fact,
differently from translations, not all operators have good transformations under rotations

3The factor 1
2𝜋 has been considered for later convenience.
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and scalings (A.29). Nevertheless, one can choose a basis of local operators with these
characteristics. Generalising definition A. 3.1, we will say that under a transformation 𝛿𝑧 = 𝜖𝑧
and 𝛿 ̄𝑧 = ̄𝜖 ̄𝑧, an operator has weights (ℎ, ℎ̃) if it transforms as

𝛿𝒪 = −𝜖(ℎ𝒪 + 𝑧𝜕𝒪) − ̄𝜖(ℎ̃𝒪 + ̄𝑧 ̄𝜕𝒪) , (A.54)

where the weights are real positive numbers and ℎ𝒪 and ℎ̃𝒪 are for those operators being
eigenstates of dilatations and rotations. Therefore, identity (A.51) reads as

𝑇 (𝑧)𝒪(𝑤, 𝑤̄) ≈ ℎ 𝒪(𝑤, 𝑤̄)
(𝑧 − 𝑤)2 + 𝜕𝒪(𝑤, 𝑤̄)

𝑧 − 𝑤
. (A.55)

This leads us to the following definition
Definition A. 3.2

A local operator having an OPE truncating at order (𝑧 − 𝑤)−2 and ( ̄𝑧 − 𝑤̄)−2 is called a
primary operator and its OPE does not have higher singularities.

Moreover
Definition A. 3.3

The scaling dimension Δ of an operator is

Δ = ℎ + ℎ̃ . (A.56)

Additionally, Ward identities constrain the Green function. Furthermore, if 𝒪𝑖 is a primary
operator with fixed scaling dimension Δ𝑖, then the set of (𝒪𝑖, Δ𝑖) gives the spectrum of the
CFT and the two-point function is

⟨𝒪𝑖(𝑥1)𝒪𝑗(𝑥2)⟩ =
𝐴𝛿𝑖𝑗

|𝑥1 − 𝑥2|2Δ𝑖
. (A.57)

In CFTs one is usually interested in computing the spectrum of the weights by the fact that
it is equivalent to compute the mass spectrum for a common QFT, due to the isomorphism
between states and dual operators. In a slightly different notation, the weights of primary
operators are the critical exponents in statistical mechanics. In fact, in a more general theory
with gauge fields, fermions and scalars, all dimensionless couplings run with the energy scale
𝜇 [Zaf00]. If 𝑔 labels the coupling of the theory, then the classical dimension 𝑑 of a field will
be corrected by the anomalous dimension 𝛾, given by

Δ = 𝑑 + 𝛾(𝑔) where 𝛾(𝑔) = 1
2

𝜇d log𝑍
d𝜇

. (A.58)

In most of the cases, QFTs have a conformally invariant behaviour in the correspondence of
a fixed point, where the 𝛽-function of the theory is null and as a consequence the energy-
momentum tensor is traceless. In this case, the renormalization group equation to solve is
exactly the Ward identity for dilatations.
In order to introduce the so-called vertex operators, let us now consider

𝑆 = 1
4𝜋𝛼′ ∫ d2𝜎 𝜕𝑎𝑋𝜕𝑎𝑋 (A.59)

for the case of a free scalar field. Within the path integral formalism, solving the following

0 = ∫ 𝒟𝑋
𝛿(𝑒−𝑆 𝑋(𝜎′))

𝛿𝑋(𝜎)
= ∫ 𝒟𝑋𝑒−𝑆 [ 1

2𝜋𝛼′ 𝜕2𝑋(𝜎)𝑋(𝜎′) + 𝛿(𝜎 − 𝜎′)] (A.60)
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with the help of the identity 𝜕2 log(𝜎 − 𝜎′)2 = 4𝜋𝛿(𝜎 − 𝜎′), we end up with

⟨𝜕2𝑋(𝜎)𝑋(𝜎′)⟩ = −2𝜋𝛼′𝛿(𝜎 − 𝜎′) ⟹ ⟨𝑋(𝜎)𝑋(𝜎′)⟩ = −𝛼′

2
log(𝜎 − 𝜎′)2 , (A.61)

that in complex coordinates reads as

⟨𝑋(𝑧)𝑋(𝑤)⟩ = −𝛼′

2
log(𝑧 − 𝑤)2 ⟹ 𝜕𝑋(𝑧)𝜕𝑋(𝑤) = −𝛼′

2
1

(𝑧 − 𝑤)2 + non singular.

(A.62)
Additionally, (A.62) helps us to further compute a current 𝐽(𝑧) by focusing on the energy-
momentum tensor 𝑇. Nevertheless, in QFT one has to pay attention to normal ordering, so,
by virtue of the Wick’s theorem, we can relate the temporal ordering to the normal one by
computing all possible contractions. So that, computing 𝑇 from (A.59)

𝑇 = − 1
𝛼′ 𝜕𝑋𝜕𝑋 ⟹ 𝑇 (𝑧)𝜕𝑋(𝑤) ≈ 𝜕𝑋(𝑤)

(𝑧 − 𝑤)2 + 𝜕2𝑋(𝑤)
𝑧 − 𝑤

⟺ 𝜕𝑋(𝑧)𝜕𝑋(𝑤) = −𝛼′

2
1

(𝑧 − 𝑤)2

(A.63)
we understand that 𝜕𝑋 is indeed a primary operator with weights (1, 0). Moreover, it can be
demonstrated that exp{𝑖𝑘𝑋} is a primary operator with weights (𝛼′𝑘2/4, 𝛼′𝑘2/4). However,
𝑇 itself is not a primary operator but instead has weights (2, 0)

𝑇 (𝑧)𝑇 (𝑤) ≈ 𝑐/2
(𝑧 − 𝑤)4 + 2𝑇 (𝑧)

(𝑧 − 𝑤)2 + 𝜕𝑇 (𝑤)
𝑧 − 𝑤

(A.64)

where 𝑐 is the so-called central charge which is related to the CFT degrees of freedom via the
c-theorem.

A. 3.b State-operator correspondence and vertex operators

Recalling the (A.31), also called the radial quantization, we can map states living on the
spatial slides of the cylinder whose temporal evolution is governed by the hamiltonian to those
living in the complex plane, with 𝐷 determining their temporal evolution. Additionally, while
on the cylinder we can decompose the energy-momentum tensor in Fourier modes, on the
complex plane we can decompose it through a Laurent expansion, namely

𝑇 (𝑧) =
∞

∑
𝑛=−∞

𝐿𝑛
𝑧𝑛+2 ⟹ 𝐿𝑛 = 1

2𝜋𝑖
∮ d𝑧 𝑧𝑛+1𝑇 (𝑧) (A.65)

which enables us to understand that 𝐽(𝑧) = 𝑧𝑛+1𝑇 (𝑧) for conformal transformations 𝛿𝑧 = 𝑧𝑛+1,
hence, 𝐿𝑛 is the associated conserved charge. Moving to QFT, conserved charges become
generators [Ton09], in this case they are the Virasoro generators satisfying

[𝐿𝑚, 𝐿𝑛] = (𝑚 − 𝑛)𝐿𝑚+𝑛 + 𝑐
12

𝑚(𝑚2 − 1)𝛿𝑚+𝑛,0 . (A.66)

Now, if Φ(𝑧) denotes a conformal field of weight ℎ, then it is possible to associate to it a state
|Φ⟩, called highest-weight state, such that

𝐿0 |Φ⟩ = ℎ |Φ⟩ and 𝐿𝑛 |Φ⟩ = 0, 𝑛 > 0 . (A.67)

More precisely, one talks about the so-called state-operator correspondence by the fact that
starting from the worldsheet, so starting from taking in consideration the oscillation states
of the string, one ends up in studying the complex plane and using the two-dimensional
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conformal language these states are indeed associated with operators. To be even more precise,
recalling figure A.1, the path integral on the disk in the complex plane with an operator at
the origin maps to the path integral on the cylinder with a specified initial state. The formal
definition of the state-operator correspondence is given by

|Φ⟩ = lim
𝑧→0

Φ(𝑧) |0⟩ (A.68)

where |0⟩ is the conformal vacuum. Therefore, the distant past in the cylinder is mapped to a
single point 𝑧 = 0 in the complex plane: a state in the cylinder in the far past is equivalent to
specify a local disturbance at the origin [Ton09]. These states are in one-to-one correspondence
with local operators. The state-operator map relates primary fields to primary operators.
(A.68) leads us to an important definition:
Definition A. 3.4

A vertex operator 𝑉𝜙 is a worldsheet operator representing the emission or absorption of a
given physical on-shell string mode |Φ⟩, on a specific point on the string worldsheet. There
is indeed a one-to-one correspondence between string on-shell states and vertex operators.

In literature, it is shown that the 𝑁 = 0 string level leads to a tachionic particle state, label it
with |0; 𝑘⟩. Therefore, the easiest vertex operator that can be written is that associated with
a tachion. In fact, observing that, in order to have the state |0; 𝑘⟩, the action of the creation
operators 𝛼† 𝜇

𝑛 = 𝛼𝜇
−𝑛 has to be null, by the fact that 𝑋𝜇(𝑧, ̄𝑧) = 𝑋𝜇

𝑅(𝑧) + 𝑋𝜇
𝐿( ̄𝑧), kinematic

information of a particle state is encoded in the conformal operator

1 + 𝑖𝑘 ⋅ 𝑋 ≈ 𝑒𝑖𝑘⋅𝑋 . (A.69)

As a result, by the fact that a physical Fock state is written as

|Φ⟩ = Π𝑖𝛼
𝜇𝑖−𝑚𝑖 Π𝑗 ̃𝛼𝜈𝑗

−𝑛𝑗 |0; 𝑘⟩ (A.70)

by using the identities

𝛼𝜇
−𝑚 = √ 2

𝛼′ ∮ d𝑧
2𝜋

𝑧−𝑚𝜕𝑋𝜇(𝑧) ⟹ √ 2
𝛼′

𝑖
(𝑚 − 1)!

𝜕𝑚 𝑋𝜇(0) (A.71)

̃𝛼𝜇
−𝑚 = √ 2

𝛼′ ∮ d𝑧
2𝜋

̄𝑧−𝑚 ̄𝜕𝑋𝜇( ̄𝑧) ⟹ √ 2
𝛼′

𝑖
(𝑚 − 1)!

̄𝜕𝑚 𝑋𝜇(0) (A.72)

a general close-string vertex operator is of the form

𝑉Φ(𝑧, ̄𝑧) = ∶ Π𝑖𝜕𝑚𝑖𝑋𝜇𝑖(𝑧) Π𝑗
̄𝜕𝑛𝑗𝑋𝜈𝑗( ̄𝑧) 𝑒𝑖𝑘⋅𝑋(𝑧, ̄𝑧) ∶ . (A.73)
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APPENDIX B

𝐴𝑑𝑆5/𝐶𝐹𝑇4 CORRESPONDENCE AND
SEMI-CLASSICAL METHODS

CONTENTS: B. 1 Charting the 5D anti-de Sitter space. B. 2 The correspondence. B. 2.a An example.
B. 3 Fundamental Interactions.

INTRODUCTION

This appendix aims to present the basic notions about the AdS/CFT correspondence, mainly
based on the work [Zaf00]. It is supposed known the properties of an anti-de Sitter space, oth-
erwise I recommend [Car19] for a full overview. Additionally, the semi-classical approximation
of Large Charge is introduced.

B. 1 CHARTING THE 5D ANTI-DE SITTER SPACE

First of all, the 5𝐷 anti-de Sitter space can be described as the embedding of an hyperboloid
in a flat ℝ2,4, by imposing constraints via the Ricci scalar and the cosmological constant

𝑥2
0 + 𝑥2

5 − 𝑥2
1 − 𝑥2

2 − 𝑥2
3 − 𝑥2

4 = 𝑅2 and 1
𝑅2 = Λ(< 0)

12
, (B.1)

whose line element is d𝑠2 = −d𝑥2
0 + d𝑥2

5 − d𝑥2
1 − d𝑥2

2 − d𝑥2
3 − d𝑥2

4. Hence, it immediately
appears the fact that 𝐴𝑑𝑆5 has isometry group 𝑂(2, 4) identical to the conformal group in four
dimensions (see Appendix A). Now, there is a number of possible suitable set of coordinates
satisfying (B.1), most notably of which are

1. global coordinates:

𝑥0 = 𝑅 cosh 𝜌 cos 𝜏
𝑥1 = 𝑅 cosh 𝜌 sin 𝜏

𝑥𝑖 = 𝑅 sinh 𝜌 ̂𝑥𝑖 with
4

∑
𝑖=1

̂𝑥2
𝑖 = 1

⟹ d𝑠2 = 𝑅2 (− cosh2 𝜌 d𝜏2 + d𝜌2 + sinh2 𝜌dΩ3)

(B.2)

where the time is periodic and hence there are close time-like curves.
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2. Poincaré coordinates: by introducing a four-Lorentz vector 𝑥𝜇 and a fi�h coordinate
𝑢 > 0

𝑥0 = 1
2𝑢

(1 + 𝑢2(𝑅2 + ⃗𝑥2 − 𝑡2))

𝑥5 = 𝑅𝑢𝑡
𝑥1,2,3 = 𝑅𝑢𝑥1,2,3

𝑥4 = 1
2𝑢

(1 − 𝑢2(𝑅2 − ⃗𝑥2 + 𝑡2))

⟹ d𝑠2 = 𝑅2 (d𝑢2

𝑢2 + 𝑢2d𝑥𝜇d𝑥𝜇) (B.3)

where the metric has slices isomorphic to four-dimensional Minkowski spacetime. A
useful redefinition of the metric is made by

𝑢 = 1
𝑧

⟹ 𝑅2 (
d𝑧2 + d𝑥𝜇d𝑥𝜇

𝑧2 ) . (B.4)

From Appendix A and the properties of 𝐴𝑑𝑆5, we have seen that both apparently realize
theories with 𝑂(2, 4) symmetries. Therefore the two discussions should be related, there should
exist a correspondence between them. In fact, it happens that the dynamics in 𝐴𝑑𝑆5 can
actually be reformulated as a boundary effect described by a four-dimensional local conformal
field theory. Hence, a correspondence between CFT in four dimensions and gravitational
theories in 𝐴𝑑𝑆5 exists.

B. 2 THE CORRESPONDENCE

Let us first introduce some conventions. The fields in five dimensions are called bulk fields
while the CFT’s are named as boundary fields. In CFT, the spectrum is specified by a basis
of primary operators. Therefore, the correspondence between 𝐴𝑑𝑆5 and CFT is carried
by a correspondence between a AdS-field Φ and an operator in the CFT having the same
quantum numbers. They know each other via boundary couplings. So that, if 𝐿CFT labels the
four-dimensional CFT lagrangian, every operator 𝒪 can be associated to Φ through

𝐿CFT + ∫ d4𝑥 Φ𝒪 . (B.5)

In (B.5), Φ(𝑥) is a four-dimensional field and hence it can be considered as the boundary
value of a five-dimensional bulk field Φ(𝑥, 𝑥5). Clearly, as a result, there is an additional
condition that must be imposed. Therefore, if 𝑆AdS is the AdS-action describing the interaction
between bulk fields, we can demand that Φ(𝑥, 𝑥5) solve the five-dimensional equations of
motion arising from 𝑆AdS. This leads us to state that for every source configuration Φ(𝑥)
there is a five-dimensional field configuration Φ(𝑥) → Φ̂(𝑥, 𝑥5) such that1

𝑒𝑊(Φ)⏟
arbitrary 4-dim. off-shell configuration Φ(𝑥)

= ⟨𝑒∫ Φ𝒪⟩
QFT

= 𝑒𝑆AdS(Φ̂) , (B.6)

where 𝑊(Φ) is the functional generator for connected correlation functions of the operator 𝒪,
namely

⟨𝒪 … 𝒪⟩connected = 𝛿𝑛𝑊
𝛿Φ𝑛 ∣

Φ=0
. (B.7)

1The right condition on the boundary to impose should be of the form Φ̂(𝑥, 𝑥5) ∼ 𝑓(𝑥5)Φ(𝑥).
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CFT

boundary

𝐴𝑑𝑆5

Φ(𝑥, 𝑥5)

Φ(𝑥)

However, how CFT operators are actually mapped to the fields in the bulk? By the fact that
they have the same 𝑂(2, 4) quantum numbers, Φ can be found through symmetries. In fact,
in the case of conserved currents, one can introduce a background gauge field, ending up with
the following action

𝐿CFT + ∫ d4𝑥 √−𝑔 (𝑔𝜇𝜈𝑇 𝜇𝜈 + 𝐴𝜇𝐽𝜇 + 𝜙𝐹𝜇𝜈𝐹 𝜇𝜈) , (B.8)

which in turn suggests that the energy-momentum tensor is the operator associated with the
graviton while a current is the operator associated to a gauge field in AdS. The latter supports
chapter 3 arguments: global symmetries in the CFT correspond to gauge symmetries in AdS.

B. 2.a An example

Let us introduce an example in order to better understand the usefulness of this correspondence.
Let us choose the Poincaré coordinates in the form (B.4) (𝑅 = 1 for simplicity) and let us
observe that a dilatation in the spacetime coordinates in the CFT corresponds to a 𝑆𝑂(2, 4)
isometry in AdS. So, let us consider the case of a massive scalar field whose 𝐴𝑑𝑆5-action is

𝑆 ∼ ∫ d5𝑥 √−𝑔 (𝑔𝑀𝑁𝜕𝑀Φ𝜕𝑁Φ + 𝑚2Φ2)
(B.4)
= ∫ d𝑧d𝑥 1

5
(𝑧2(𝜕𝑧Φ)2 + 𝑧2(𝜕𝜇Φ)2 + 𝑚2Φ2)

(B.9)
whose equation of motion is

𝜕𝑧 (𝜕𝑧Φ
𝑧3 ) + 𝜕𝜇 (

𝜕𝜇Φ
𝑧3 ) = 𝑚2Φ2

𝑧5 . (B.10)

When considering only the 𝑧 behaviour in (B.10), there are two solutions

𝜙 ∼ 𝑧Δ± , Δ± are the square roots of 𝑚2 = Δ(Δ − 4) ⟺ Φ ∼ Φ0𝑧Δ− + Φ1𝑧Δ+ , (B.11)

where it is clear from the power-law behaviour that Δ is actually the scaling dimension for
the field. Including now the 𝑥𝜇 dependence, the general solution reads as

Φ(𝑧, 𝑥𝜇) ∼ (Φ0(𝑥)𝑧Δ− + 𝒪(𝑧))(Φ1(𝑥)𝑧Δ+ + 𝒪(𝑧))
boundary conditions 𝑧=0
−−−−−−−−−−−−−−→

𝑚2 positive definite
𝑧Δ−Φ0(𝑥) ≡ Φ̂(𝑥) .

(B.12)
Additionally, another way to find a solution of (B.10) is via the Green function, namely that
function connecting the boundary-valued field Φ̂ with the bulk solution Φ(𝑧, 𝑥𝜇) with the
following properties

Φ(𝑧, 𝑥𝜇) = ∫ d𝑥′
𝜇𝐺(𝑧, 𝑥′

𝜇 − 𝑥𝜇) Φ̂(𝑥′
𝜇)

(� − 𝑚2)𝐺 = 0

𝐺
𝑧→0
−−→𝑧Δ−𝛿(𝑥′

𝜇 − 𝑥𝜇)

⟺ 𝐺(𝑧, 𝑥𝜇) = 𝑐 𝑧Δ+

(𝑧2 + 𝑥2
𝜇)Δ+

(B.13)
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so that

CFT

boundary

𝐴𝑑𝑆5

Φ(𝑧, 𝑥) = ∫d𝑥′ 𝐺(𝑧, 𝑥 − 𝑥′) Φ̂(𝑥)

Φ(𝑥)

propagator

Figure B.1. Sketch of the boundary-bulk propagator.

Φ(𝑧, 𝑥𝜇) ∼ Φ0(𝑥)(𝑧Δ− + 𝒪(𝑧)) + 𝑐 ∫ d𝑥′ Φ0(𝑥′)
|𝑥′ − 𝑥|2Δ+

(𝑧Δ+ + 𝒪(𝑧)) . (B.14)

By substituting (B.14) into (B.9), one ends up with

𝑆 ∼ ∫
boundary

√−𝑔Φ𝜕𝑛Φ+ ∫ √−𝑔Φ(� − 𝑚2)Φ
⏟⏟⏟⏟⏟⏟⏟⏟⏟

=0

∼ 1
𝑧3 Φ𝜕𝑧Φ∣

boundary

finite
−−−−−−→
contrib.∼𝑧3

∫ d𝑥d𝑥′ Φ̂(𝑥)Φ̂(𝑥′)
|𝑥′ − 𝑥|2Δ+

(B.15)
from which the two-point function is given by (B.6)-(B.7)

⟨𝒪(𝑥)𝒪(𝑥′)⟩ = 𝛿2𝑆
𝛿Φ̂(𝑥)Φ̂(𝑥′)2

∣
Φ̂=0

= 1
(𝑥 − 𝑥′)2Δ+

, (B.16)

so Δ+ is actually the conformal dimension of the dual operator of Φ. Generalising to fields
with arbitrary spin we have:

scalar Φ (𝑗1, 𝑗2) = (0, 0) 𝑚2 = 𝑅2Δ(Δ − 4)

vector 𝐴𝜇 (𝑗1, 𝑗2) = (1
2

, 1
2

) 𝑚2 = 𝑅2(Δ − 1)(Δ − 3)

symm.tensor 𝑔𝜇𝜈 (𝑗1, 𝑗2) = (1, 1) 𝑚2 = 𝑅2Δ(Δ − 4)
anti-symm.tensor 𝐵𝜇𝜈 (𝑗1, 𝑗2) = (1, 0) + (0, 1) 𝑚2 = 𝑅2(Δ − 2)2

spin1
2

𝜓 (𝑗1, 𝑗2) = (1
2

, 0) + (0, 1
2

) 𝑚 = 𝑅(Δ − 2)

spin3
2

𝜓 (𝑗1, 𝑗2) = (1
2

, 1) + (1, 1
2

) 𝑚 = 𝑅(Δ − 2)

B. 3 FUNDAMENTAL INTERACTIONS

Conformal field theory crowns fundamental interactions. That is because, at a classical level,
the only two operators that violate scale invariance in the Standard Model lagrangian are the
Higgs mass and the cosmological constant. For this reason, SM is studied around its conformal
limit [Ant+20]. In particular, one aims to study conformal theories with continuous global
symmetries via a semi-classical approach, in order to get access to non-perturbative insights
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of the theory. Furthermore, given a theory displaying conformal invariance, one studies the
scaling dimension of particular operators [Ant+21b]. Moreover, there are different ways to
proceed, depending on the properties of the path integral formulation. Basically, one divides
it into two categories of theories [Bad+19]:

1. Weakly Coupled (WC): the contribution to a physical observable 𝒪 is the sum of a
classical one 𝒪𝑐 with one determined by a quantum fluctuation around the classical
trajectory, 𝒪𝑞 (i.e. the harmonic oscillator)

2. Strongly Coupled (SC): all observables are quantum mechanical.

So, recalling Appendix A, the simplest object to study is the scaling dimension of the operator
Φ𝑛 in WC-𝑈(1) theories, at the fixed point where there is conformal invariance. Hence,
starting from the lagrangian in the euclidean spacetime

𝐿 = 𝜕Φ̄𝜕Φ + 𝜆0
4

(Φ̄Φ)2 (B.17)

it can be demonstrated that when a small parameter, 𝜖, is introduced to modify the number
of spacetime dimensions, the theory admits a Wilson-Fisher (WF) fixed point in 𝑑 = 4 − 𝜖
dimensions, occurring at2

𝛽(𝜆) = 0 ⟺ 𝜆 = 𝜆∗ ⟹ 𝜆∗
(4𝜋)2 = 𝜖

5
+ 3

25
𝜖2 + 𝒪(𝜖3) , (B.18)

for 𝜖 ≪ 1 the theory is WC. One wants to compute the anomalous dimension of Φ𝑛, 𝛾Φ𝑛 , and
then its scaling dimension

ΔΦ𝑛 = 𝑛 (𝑑
2

− 1) + 𝛾Φ𝑛 (B.19)

when 𝑛 is large, so in the limit of large charge or large number of legs in the Feynman diagrams.
If 𝑙 labels the number of loops occurring in a given Feynman diagram, when computing the
renormalization function, one has to account for the so-called daisy diagrams that scale with
𝜆𝑙𝑛2𝑙 and the connected diagrams, which scale as 𝜆𝑙𝑛𝑙+1, see figure B.2.

∼ 𝜆2𝑛3 ∼ 𝜆3𝑛4

∼ 𝜆2𝑛4 ∼ 𝜆3𝑛6∼ 𝜆𝑛2

daisy diagrams

connected diagrams

Figure B.2. Example of daisy diagrams and connected diagrams.

If one performs all the computations, one will be aware of that the leading contribution at
order 𝑘 is made by the connected diagrams. This leads us to write the anomalous dimension
as [Bad+19]

𝛾Φ𝑛 = 𝑛 ∑
𝑙=1

𝜆𝑙 𝑃𝑙(𝑛) ⟺ 𝛾Φ𝑛 = 𝑛 ∑
𝑘=0

𝜆𝑘 𝐹𝑘(𝜆𝑛) . (B.20)

2Here 𝜆 is the renormalized value of 𝜆0.
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Instead of tedious and limited perturbative approach, (B.20) is formally proved via semi-
classical approximations. In fact, rescaling the fields Φ ↦ Φ/𝜆0, the two-point function is
written as

⟨Φ̄𝑛(𝑥𝑓)Φ(𝑥𝑖)⟩ ≜ 𝑍2
Φ𝑛 ↦ 𝑍2

Φ𝑛𝜆2
0 =

∫ 𝒟Φ𝒟Φ̄ 𝑒
− 1

𝜆0
[∫ 𝜕Φ̄𝜕Φ+ 1

4 (Φ̄Φ)2−𝜆0𝑛( log Φ̄(𝑥𝑓)+logΦ(𝑥𝑖))]

∫ 𝒟Φ𝒟Φ̄ 𝑒
− 1

𝜆0
[∫ 𝜕Φ̄𝜕Φ+ 1

4 (Φ̄Φ)2]

(B.21)
and it can be solved by using a saddle point expansion, where 𝜆0 is small and 𝜆0𝑛 is fixed.
Things simplify a lot when a WF fixed point is present. In fact, one can get advantage of
conformal invariance and map the theory from the plane to the cylinder

ℝ𝑑 ↦ ℝ × 𝕊𝑑−1 ⟹ (𝑟, Ω𝑑−1)
ℝ𝑑

↦ (𝜏, Ω𝑑−1)
ℝ×𝕊𝑑−1

∣
𝑟=𝑅𝑒

𝜏
𝑅

⟹ d𝑠2
cyl = d𝜏2 + 𝑅2dΩ2

𝑑−1 ,
(B.22)

so mapping dilatations to time-translations. Therefore, in this new world the action becomes

𝑆cyl = ∫ d𝑑𝑥 √−𝑔 [𝑔𝜇𝜈𝜕𝜇Φ̄𝜕𝜈Φ + 𝑚2Φ̄Φ + 𝜆0
4

(Φ̄Φ)2] (B.23)

and the two-point function of a primary operator 𝒪 with its conjugate is

⟨𝒪†(𝑥𝑓)𝒪(𝑥𝑖)⟩cyl = ∣𝑥𝑓∣Δ𝒪 |𝑥𝑖|
Δ𝒪⟨𝒪†(𝑥𝑓)𝒪(𝑥𝑖)⟩ℝ𝑑 =

∣𝑥𝑓∣Δ𝒪 |𝑥𝑖|
Δ𝒪

∣𝑥𝑓 − 𝑥𝑖∣
2Δ𝒪

(B.24)

so that, the limit 𝑥𝑖 → 0 on the plane equals 𝜏𝑖 → −∞ on the cylinder (see also Appendix A),
hence

⟨𝒪†(𝑥𝑓)𝒪(𝑥𝑖)⟩cyl
𝜏𝑖→−∞

= 𝑒−𝐸𝒪(𝜏𝑓−𝜏𝑖) where 𝐸𝒪 = Δ𝒪
𝑅

. (B.25)

Therefore, on the plane the eigenvalues of the dilatation operator 𝐷 that compound the
spectrum of operator dimension, are now mapped to the energy eigenvalues on the cylinder.
Hence, if one is interested in computing the lowest scaling dimension of a primary operator on
ℝ𝑑, this is equivalent to compute the ground energy on the cylinder. For the case of 𝒪 = Φ𝑛,
defining 𝜏𝑓 − 𝜏𝑖 ≜ ±𝑇 /2 one has

⟨Φ̄𝑛(𝑥𝑓)Φ𝑛(𝑥𝑖)⟩cyl
𝑇 →∞= 𝑒−𝐸Φ𝑛𝑇 (B.26)

which in turn leads to [Bad+19]

ΔΦ𝑛 = 1
𝜆∗

Δ−1(𝜆∗𝑛)⏟⏟⏟⏟⏟
0-loop

+ Δ0(𝜆∗𝑛)⏟
1-loop

+𝜆∗ Δ1(𝜆∗𝑛)⏟
2-loops

+ … (B.27)

that can equivalently be seen as the sum of the semi-classical contribution Δ−1 with the
quantum corrections.
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APPENDIX C

’T HOO� ANOMALY AND GLOBAL
SYMMETRIES

CONTENTS: C. 1 Background gauge fields and Principal Bundles. C. 2 ’t Hoo� anomaly and
examples. C. 2.a Chiral anomaly in 1 + 1-dimensional Minkowski space. C. 3 Anomalies and splittability.
C. 3.a Chiral anomaly in 1 + 3-dimensional Minkowski space.

INTRODUCTION

This appendix aims to provide a large landscape of theories whose global symmetry is not
splittable. In particular it will be emphasized how ’t Hoo� anomalies can be responsible for
not providing the existence of Noether currents nor the property of splittability. Therefore, in
the following sections the definition of ’t Hoo� anomaly together with a couple of example
theories will be introduced.

C. 1 BACKGROUND GAUGE FIELDS AND PRINCIPAL BUNDLES

First of all, when talking about global symmetries, the first further step is to consider to
turn on a background gauge field for that global symmetry. The fundamental requirement
is the property of splittability due to the need of the presence of a Noether current for the
continuous global symmetry under examination. One way to introduce a background gauge
field for a continuous global symmetry group 𝐺 with a set of Noether currents being 𝐽𝜇

𝑎 is
made by adding to the action the following term

𝛿𝑆 = ∫
ℳ

d4𝑥 √−𝑔 𝐴𝑎
𝜇(𝑥)(𝐽𝜇

𝑎 (𝑥) + … ) = ∫
ℳ

𝐴𝑎 ∧ ( ⋆ 𝐽𝑎 + … ) (C.1)

namely, with the introduction of a coupling term between the Noether currents and an
arbitrary one-form 𝐴𝑎. Let us recall the meaning of this one-form in differential geometry.
Therefore [Nak03],
Definition C. 1.1

A differential fibre bundle (𝐸, 𝜋, 𝑀, 𝐹 , 𝐺) consists of

1. A differential manifold 𝐸, called the total space.
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2. A differential manifold 𝑀, called the base space.

3. A differential manifold 𝐹, called the fibre.

4. A surjective map 𝜋 ∶ 𝐸 → 𝑀 called projection map whose inverse valued at a point
𝑝 of 𝑀 is the fibre at point 𝑝, 𝜋−1(𝑝) = 𝐹𝑝.

5. A Lie group 𝐺 which acts on the left on the fibre 𝐹 and it is called the structure
group.

6. If {𝑈𝑖} labels a set of open covering of 𝑀 and 𝜙𝑖 is a diffeomorphism defined as
𝜙𝑖 ∶ 𝑈𝑖 × 𝐹 → 𝜋−1(𝑈𝑖) / 𝜋 ∘ 𝜙𝑖(𝑝, 𝑓) ≜ 𝜙𝑖,𝑝(𝑓) = 𝑝 ∈ 𝑈𝑖, then 𝜙𝑖 is called the local
trivialization. This because a point in an open set of 𝑀 is written as direct product
of the open set itself and the fibre in that point.

7. There can be exist different local trivialization through the so-called transition
functions. If 𝑈𝑖 ∩ 𝑈𝑗 ≠ ∅ then 𝑡𝑖𝑗(𝑝) ≜ 𝜙−1

𝑖,𝑝 ∘ 𝜙𝑗,𝑝 ∶ 𝐹 → 𝐹 ∈ 𝐺, so 𝑡𝑖𝑗 ∶
𝑈𝑖 ∩ 𝑈𝑗 → 𝐺, the transition function enable to move from a set of coordinate of a
fibre at point 𝑝 ∈ 𝑈𝑖 ∩ 𝑈𝑗 to another set. Moreover, one can require the following
consistency conditions

𝑡𝑖𝑖(𝑝) = identity map, 𝑝 ∈ 𝑈𝑖 (C.2)
𝑡𝑖𝑗(𝑝) = 𝑡−1

𝑗𝑖 (𝑝), 𝑝 ∈ 𝑈𝑖 ∩ 𝑈𝑗 (C.3)
𝑡𝑖𝑗(𝑝) ⋅ 𝑡𝑗𝑘(𝑝) = 𝑡𝑖𝑘(𝑝) 𝑝 ∈ 𝑈𝑖 ∩ 𝑈𝑗 ∩ 𝑈𝑘 . (C.4)

If these conditions are all satisfied then one can glue together local pieces of a fibre
bundle and the latter is called a trivial bundle and can be written as 𝑀 × 𝐹.

fibre bundle

base manifold

fibre

𝑈𝑗𝑈𝑖

ℳ𝑝

𝐹
𝐹

𝑓𝑝
𝑖 𝑓𝑝

𝑗

𝜙−1
𝑗,𝑝

𝜙𝑗,𝑝𝜙𝑖,𝑝

𝜙−1
𝑖,𝑝

𝑡𝑖𝑗(𝑝)

𝜋

𝑢
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Additionally, one defines a section to be a smooth map 𝜎 ∶ 𝑀 → 𝐸 such that 𝜋 ∘ 𝜎 = 𝑖𝑑|𝑀.
When 𝐹 ≡ 𝐺 one talks about a 𝐺-bundle over 𝑀 or, equivalently, it is called a principal
bundle 𝑃(𝑀, 𝐺). The transition functions are still defined through the le�-action of the
structure group on the fibre but now one can also define a right-action on the fibre 𝑃 × 𝐺 → 𝑃
which is both transitive and free:

𝜙𝑖 ∶ 𝑈𝑖×𝐺 → 𝜋−1(𝑈𝑖) / 𝜙−1
𝑖 (𝑢 ∈ 𝜋−1(𝑈𝑖)) = (𝑝, 𝑔𝑖) ⟹ 𝑢𝑎 = 𝜙𝑖(𝑝, 𝑔𝑖𝑎), 𝑎 ∈ 𝐺, 𝑢 ∈ 𝜋−1(𝑝)

(C.5)
which enable us to find a relation between two sections 𝜎𝑖(𝑝) and 𝜎𝑗(𝑝) with 𝑝 ∈ 𝑈𝑖 ∩ 𝑈𝑗 as
𝜎𝑖(𝑝) = 𝜎𝑗(𝑝)𝑡𝑗𝑖(𝑝), see figure C.1.

𝑈𝑖𝑈𝑗

𝑝

𝑢

𝐺𝑝

𝐺𝑝

𝜎𝑗(𝑝)
𝜎𝑖(𝑝)

𝜙𝑖(𝑝, 𝑒) ≡ 𝜎𝑖(𝑝)

𝜙𝑗 (𝑝, 𝑔𝑝
𝑗 )

𝑔𝑝
𝑗𝑖

𝑔𝑝
𝑗

𝑒

𝜋

ℳ

Figure C.1. A sketch of a principle bundle.

Now, a connection on a fibre bundle is defined as a 𝔤-valued one-form1 that satisfies certain
axioms and has a precise geometrical definition. In fact, it is defined from the unique separation
of the tangent space 𝑇𝑢𝑃 into the vertical subspace 𝑉𝑢𝑃 and the horizontal one 𝐻𝑢𝑃. This
separation is performed in a systematic way by the introduction of a Lie algebra-valued
one-form 𝜔 ∈ 𝔤 ⊗ 𝑇 ∗𝑃, called the Ehresmann connection. Finally, if {𝑈𝑖} is an open set of 𝑀
and 𝜎𝑖 is a local section on each of these, it is possible to introduce a local Lie algebra-valued
one-form 𝐴𝑖 on 𝑈𝑖 as the pullback of the Ehresmann connection by 𝜎𝑖, 𝐴𝑖 ≜ 𝜎∗

𝑖 𝜔 ∈ 𝔤⊗Ω1(𝑈𝑖).
Additionally, in order to let the Ehresmann connection be uniquely defined on 𝑃, the local
connections 𝐴𝑖 and 𝐴𝑗 are related by the gauge transformations 𝐴𝑗 = 𝑡−1

𝑖𝑗 𝐴𝑖𝑡𝑖𝑗 + 𝑡−1
𝑖𝑗 d𝑡𝑖𝑗.

Having introduced (C.1) in the action, Noether currents are naturally extended as follows
[HO19]

̃𝐽𝜇
𝑎 (𝑥) ≜

𝛿(𝛿𝑆)
𝛿𝐴𝑎

𝜇(𝑥)
= 𝐽𝜇

𝑎 (𝑥) + … (C.6)

while in a non-lagragian framework, in QFT one simply defines a new set of unnormalised
expectation values in the presence of 𝐴𝑎

𝜇, namely

⟨𝑇 𝒪1 … 𝒪𝑛⟩𝐴 ≜ ⟨𝑇 𝒪1 … 𝒪𝑛𝑒𝑖𝛿𝑆⟩ with 𝑇 the time-ordering operator. (C.7)

Moreover, one can define the partition function in the presence of a background gauge field 𝐴
as

𝑍[𝐴] ≜ ⟨1⟩𝐴 = ⟨𝑇 𝑒𝑖 ∫
ℳ

d𝑑𝑥 √−𝑔 𝐴𝑎
𝜇(𝑥)(𝐽𝜇

𝑎 (𝑥)+…)⟩ . (C.8)
1𝔤 is the Lie algebra of the Lie group 𝐺.
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C. 2 ’T HOOFT ANOMALY AND EXAMPLES

A quantum field theory is said to have an ’t Hoo� anomaly [CDI19]-[HO19] if there is no way
in providing the gauge invariance of (C.8) for all global symmetries. Clearly, the presence
of an ’t Hoo� anomaly is not an inconsistency of a given QFT but they have important
implications:

1. it is not possible to make all the background gauge fields dynamical

2. a global symmetry can be broken even though the Noether currents for the background
gauge fields are neutral under the symmetry.

C. 2.a Chiral anomaly in 1 + 1-dimensional Minkowski space

In particular, implication 2 can be understood with a straightforward example: chiral anomaly
of a free complex Dirac fermion in 1 + 1-dimensional Minkowski space. The action of the
theory is

𝑆 = 𝑖 ∫ d2𝑥 ̄𝜓/𝜕 𝜓 (C.9)

which is invariant under two 𝑈(1) global symmetries with currents

𝜓 ↦ 𝑒𝑖𝜃𝜓 𝐽𝜇
𝑣 = ̄𝜓𝛾𝜇 𝜓 (C.10)

𝜓 ↦ 𝑒𝑖𝜃𝛾3𝜓 𝐽𝜇
𝑝 = ̄𝜓𝛾𝜇𝛾3 𝜓 (C.11)

hence, (C.1) becomes
𝛿𝑆 = 𝑖 ∫ d2𝑥 ̄𝜓𝛾𝜇 (𝐴𝑣

𝜇 + 𝐴𝑝
𝜇𝛾3) 𝜓 (C.12)

according to which,

𝜕𝜇𝐽𝜇
𝑣 = 𝜕 ̃𝐽𝜇

𝑣 = 0 (C.13)

𝜕𝜇𝐽𝜇
𝑝 = 𝜕𝜇

̃𝐽𝜇
𝑝 = −𝜖𝜇𝜈

2𝜋
𝐹 𝑣

𝜇𝜈 . (C.14)

As a result, the two currents are not both conserved. Nevertheless one can try to add other
terms, proportional to 𝐴𝑣

𝜇𝐴𝑝
𝜇, such as

𝛿𝑆 = ∫ d2𝑥 𝜖𝜇𝜈

𝜋
𝐴𝑣

𝜇𝐴𝑝
𝜈 (C.15)

so that

𝜕𝜇
̃𝐽𝜇
𝑣 = 𝜕𝜇 (𝐽𝜇

𝑣 − 𝜖𝜇𝜈

𝜋
𝐴𝑝

𝜇) = −𝜖𝜇𝜈

2𝜋
𝐹 𝑝

𝜇𝜈 (C.16)

𝜕𝜇
̃𝐽𝜇
𝑝 = 𝜕𝜇 (𝐽𝜇

𝑝 + 𝜖𝜇𝜈

𝜋
𝐴𝑣

𝜇) = 0 (C.17)

but now is 𝐽𝜇
𝑝 conserved. Therefore, the theory has an ’t Hoo� anomaly. Additionally, (C.17)

leads to the charge
𝑄̃𝑝 = ∫

Σ
(⋆𝐽𝑝 − 1

𝜋
𝐴𝑣) (C.18)

which appears to be conserved. Nevertheless, recalling that the requirement of gauge fields
going to zero at infinity at ℝ2 leads to consider the spacetime to be topologically 𝕊2, the gauge
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fields configurations are non-trivial anymore. In fact, one can consider a principal bundle 𝑃
with fibre 𝑈(1) = 𝕊1 with base space 𝕊2 [Nak03]. Hence, 𝑃 represents the topological setting
of the magnetic monopole. The northern and southern hemispheres can be two open covering
of the base space {𝑈𝑁, 𝑈𝑆} whose intersection is just a strip: the equator. Furthermore, if
𝜙𝑁 and 𝜙𝑆 label the local trivializations of 𝑃, one can choose 𝑔𝑁/𝑆 = exp{𝑖𝛼𝑁/𝑆} as fibre
coordinates, so that

𝜙−1
𝑁 = (𝑝, 𝑒𝑖𝛼𝑁) (C.19)

𝜙−1
𝑆 = (𝑝, 𝑒𝑖𝛼𝑆) (C.20)

while the transition functions 𝑡𝑁𝑆 ∶ 𝕊1 → 𝑈(1) can be chosen as

𝑡𝑁𝑆 = 𝑒𝑖𝑛𝜙 , 𝑛 ∈ ℤ number of magnetic flux unit through the base space. (C.21)

On this principal bundle, a family of connection is given by the Wu-Yang monopoles

𝐴𝑁 = 𝑛
2

(1 − cos 𝜃) d𝜙 0 ≤ 𝜃 ≤ 𝜋
2

(C.22)

𝐴𝑆 = −𝑛
2

(1 + cos 𝜃) d𝜙 𝜋
2

≤ 𝜃 ≤ 𝜋 , (C.23)

that can be the background gauge field for 𝐴𝑣 and as a consequence, the charge (C.18) has
to be defined separately on the northern and southern hemisphere. Additionally, condition
(C.21) leads to non-conservation

𝑄̃𝑝 𝑁 = 𝑄̃𝑝 𝑆 − 2𝑛 ⟹ 𝑈(𝑒𝑖𝜃, 𝕊2) ≜ 𝑒𝑖𝜃𝑄̃𝑝 as symmetry operator (C.24)

but 𝑈 violates condition 3. 2.1.3.6, therefore the pseudo-vector 𝑈(1) symmetry is explicitly
broken by the background gauge field for the vector 𝑈(1) symmetry.

C. 3 ANOMALIES AND SPLITTABILITY

In this section the connection between anomalies and splittability will be emphasised. The
first example will be the chiral anomaly in 1 + 3-dimensional Minkowski space which in turn
is also an example for implication 1.

C. 3.a Chiral anomaly in 1 + 3-dimensional Minkowski space

Let us start with a 𝑈(𝑁)-invariant lagrangian of massless le�-handed Weyl fermions

𝐿 = 𝑖
𝑁

∑
𝑖=𝑖

̄𝜓𝑖 /𝜕 (1 + 𝛾5

2
) 𝜓𝑖 (C.25)

whose currents are
𝐽𝜇

𝑎 = ∑
𝑖𝑗

̄𝜓𝑖 [𝛾𝜇 (1 + 𝛾5

2
) ⊗ (𝑇)

𝑖𝑗
] 𝜓𝑗 (C.26)

where (𝑇)
𝑖𝑗

are the Lie algebra matrices of 𝑈(𝑁). Hence, introducing the background gauge
fields 𝐴𝑎

𝜇, the current conservation equation is [HO19]

𝐷𝜇𝐽𝜇
𝑎 = 𝐷𝑎𝑏𝑐

24𝜋2 𝜖𝜇𝜌𝜈𝜎 𝜕𝜇𝐴𝑏
𝜌𝜕𝜈𝐴𝑐

𝜎 where 𝐷𝑎𝑏𝑐 ≜ 1
2
Tr{{𝑇𝑎, 𝑇𝑏} 𝑇𝑐} (C.27)
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where the latter can be arranged such that, for every triple of distinct currents, only one of
them has an anomalous contribution to its conservation equation from background gauge
fields of the other two. Without background gauge fields, the two currents of the theory are

𝐽𝜇
𝑣 = ̄𝜓𝛾𝜇 𝜓 (C.28)

𝐽𝜇
𝑝 = ̄𝜓𝛾𝜇𝛾5 𝜓 (C.29)

which in these hypothesis are clearly conserved. Turning to background gauge fields, in order
to make these dynamical, we should preserve the vectorial current at the expanse of the
pseudo-vectorial one (’t Hoo� anomaly). This leads to the famous ABJ anomaly

𝜕𝜇𝐽𝜇
𝑝 = 𝜖𝜇𝜈𝜌𝜎

16𝜋2 𝐹 𝑣
𝜇𝜈 𝐹 𝑣

𝜌𝜎 ⟺ d ⋆ 𝐽𝑝 = 1
4𝜋2 𝐹 𝑣 ∧ 𝐹 𝑣 , (C.30)

which in turn leads to the improved charge

𝑄̃𝑝 = ∫
ℝ3

(⋆𝐽𝑝 − 1
4𝜋2 𝐴𝑣 ∧ 𝐹 𝑣) . (C.31)

The main difference with the case in subsection C. 2.a lays in the fact that on 𝕊4, unlike the
case of 𝕊2, there are no non-trivial configurations for background gauge fields. Therefore, even
in the presence of an ’t Hoo� anomaly, chiral anomaly is still preserved at this stage. However,
once 𝐴𝑣 is made dynamical, things change. In fact, if one builds symmetry operators from
(C.31), all conditions of definition 3. 2.1 of a global symmetry are preserved, except condition
3.5. This is because, in addition to Wilson lines built from 𝐴𝑣 and the field strength 𝐹 𝑣, there
are the so-called ’t Hoo� loops that must be preserved. If 𝐶 = 𝜕𝐷 represents a contractible
curve, an ’t Hoopf loop is represented as [HRR15]-[HO19]-[HRR17]

𝑇𝑛(𝐶) ≜ 𝑒
𝑖 2𝜋𝑛

𝑞2 ∫
𝐷

⋆𝐹 (C.32)

which is nothing else than a narrow tube around the closed curve 𝐶. So, how to study the
action of the charge (C.31) on ’t Hoo� lines? Following [HO21] and [Gai+15], symmetries
can equivalently be defined as path integral insertions instead of operators on a given Hilbert
space. This insertion can be assembled by using the operators 𝑈(𝑔, Σ) to surround whatever
the surface encloses, in this case the (C.32). So, we are in 𝕊4 and we want to assemble this
kind of insertion which has to be realised without the tube surrounding the ’t Hoo� line. This
means that we have to remove the tube 𝐵3 × 𝕊1, obtaining spaces with topology 𝕊2 × 𝐵2 that
can be glued together along their boundary 𝕊2 × 𝕊1. However, from 𝕊4 we have arrived to
𝕊2, somehow, which allows non-trivial 𝑈(1) bundles. Therefore, 𝕊2 × 𝐵2 has to be divided
in northern and southern regions with topology 𝐵2 × 𝐵2 and the connections are that of
the Wu-Yang monopoles, which differ by 𝐴𝑣

𝑁 = 𝐴𝑣
𝑆 + 𝑛d𝜙, with 𝜙 the angular coordinate on

𝕊1. Hence, the difference in charge from above to below has a non local factor and thus the
symmetry transformed operator includes it

𝑒𝑖
𝑛𝑁𝑓 𝜃

4𝜋2 ∫
𝕊1×𝐵2

d𝜙 ∧ 𝐹 𝑣 , (C.33)

so the chiral symmetry is preserved only by the ℤ𝑁𝑓
subgroup because if 𝑛𝑁𝑓 𝜃

2𝜋 is an integer,
(C.33) becomes a Wilson loop on 𝐶. Nevertheless, this subgroup is not splittable, precisely
the symmetry is not splittable on 𝕊2 × 𝕊1 by the fact that (C.31) is not gauge invariant but
the following is

𝑄̃𝑝(𝑅) ↦ 𝑄̃𝑝(𝑅) −
𝑁𝑓

4𝜋2 ∫
𝜕𝑅

𝜆𝑣 𝐹 𝑣 . (C.34)
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Therefore, (3.19) is exactly as (C.34) with ⋆𝐹 replaced by 𝐹 and the situation is exactly as
for the ℝ × ℝ theory but the problem is that now the unbreakable lines are not Wilson lines
but ’t Hoo� lines instead.
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APPENDIX D

CONVEX CHARGE CONJECTURES

CONTENTS: D. 1 Mathematical preliminaries. D. 1.a The conjectures.

INTRODUCTION

This appendix aims to provide the reader a deeper knowledge about the recent formulation of
the Weak Gravity conjecture given in [AP21]. A mathematical description is thus introduced
following the recent work [Ant+21a].

D. 1 MATHEMATICAL PRELIMINARIES

Conjecture as stated in chapter 4 in the charge convexity-formulation has a precise mathemat-
ical prescription. Hence, for a full understanding of the latter, let us introduce some notation
and then several formulations of the same conjecture.
First of all, let us assume that our conformal field theory is invariant under a continuous
internal global symmetry group 𝐺. Now, let us denote with 𝑉 the real vector space representing
the charge space of 𝐺, namely it is spanned by all possible fundamental weights 𝑤 of the
symmetry group. This thus means that 𝑉 is composed by any possible weight associated to
an irreducible representation of 𝐺.
It can be demonstrated that it is always possible to associate to any weight 𝑤 a multiplet of
operators transforming under an irreducible representation of 𝐺, such that the latter contains
the weight 𝑤 as well as the lowest possible scaling dimensions among all multiplets of this
kind. Let us denote this representation with 𝑟𝐿[𝑤]. On the contrary, let us label with 𝑟𝐻[𝑤]
the irreducible representation having some highest weight 𝑤. Moreover, given an irreducible
representation 𝑟, 𝑤ℎ[𝑟] labels its highest weight.
In general, one can visualise 𝑉 as a lattice whose points are indeed the fundamental weights.
Definition D. 1.1

The rational direction is defined as that ray in the charge space V connecting the origin
with another lattice point.

Therefore, if 𝑑0 represents the distance from the origin to the first fundamental weight found
on the direction of a given rational direction, any other weight along the latter can be said to
sit at a distance 𝑑 from the origin such that 𝑑 = 𝑛𝑑0; 𝑛 is called its distance index.
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Furthermore, taking in consideration a reducible representation 𝑟𝑅 of 𝐺 such that 𝑟𝑅 = ⊕𝑖 𝑚𝑖𝑟𝑖,
namely such that it can be decomposed into a direct sum of irreducible representations 𝑟𝑖 of
G, let us introduce

Δ̄(𝑟𝑅; 𝑤) ≜ min{Δ(𝑟𝑖)/𝑤 belongs to 𝑟𝑖} . (D.1)

In order to understand the word convexity in the statement of the conjecture, it is important
to stress some mathematical definitions.
Definition D. 1.2

A function 𝑓 ∶ ℝ → ℝ is called superadditive if for 𝑥, 𝑦 ∈ ℝ

𝑓(𝑥 + 𝑦) ≥ 𝑓(𝑥) + 𝑓(𝑦) (D.2)

is satisfied.

Additionally,
Definition D. 1.3

A continuous function 𝑓 is said to be convex if for all 𝑥, 𝑦 belonging to a convex subset in
ℝ

𝑓(𝜆𝑥 + (1 − 𝜆)𝑦) ≤ 𝜆𝑓(𝑥) + (1 − 𝜆)𝑓(𝑦) (D.3)

is valid, with 𝜆 ∈ [0, 1].

Definitions D. 1.2 and D. 1.3 are related through the Petrovic theorem. Moreover, the latter
definition implies the former, while the contrary is not always true.

D. 1.a The conjectures

We are ready to properly enunciate the convex charge conjecture in different formulations. So,
the conjecture as stated in the text in chapter 4 is properly formulated as follows.

CONJECTURE 1.1: CONVEX CHARGE CONJECTURE

When considering any CFT with a continuous internal global symmetry group 𝐺, chosen
any rational direction, there exists a weight 𝑤0 on the latter such that

Δ̃(𝑄1 + 𝑄2) ≥ Δ̃(𝑄1) + Δ̃(𝑄2) , (D.4)

where Δ̃ ≜ Δ(𝑟𝐻[𝑄𝑤ℎ[𝑟𝐿[𝑤0]]]) ∈ ℝ and 𝑄1, 𝑄2 are integers such that 𝑄1, 𝑄2 ≥ 0.

This can be formulated in terms of OPE properties (see Appendix A) as follows.

CONJECTURE 1.2: CONVEX CHARGE CONJECTURE (OPE)

When considering any CFT with a continuous internal global symmetry group 𝐺, chosen
any rational direction, there exists a weight 𝑤0 on the latter such that

Δ̄(𝑄1 + 𝑄2) ≥ Δ̄(𝑄1) + Δ̄(𝑄2) , (D.5)
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where Δ̄ ≜ Δ̄(Sym𝑄(𝑟𝐿[𝑤0]; 𝑄𝑤0) ∈ ℝ and 𝑄1, 𝑄2 are integers such that 𝑄1, 𝑄2 ≥ 0.

Additionally, when formulated in terms of weights, the statement of the conjecture is the
following.

CONJECTURE 1.3: CONVEX CHARGE CONJECTURE (WEIGHT)

When considering any CFT with a continuous internal global symmetry group 𝐺, chosen
any rational direction, there exists a weight 𝑤0 on the latter such that

Δ̂(𝑄1 + 𝑄2) ≥ Δ̂(𝑄1) + Δ̂(𝑄2) , (D.6)

where Δ̂ ≜ Δ(𝑟𝐿[𝑄𝑤0]) ∈ ℝ and 𝑄1, 𝑄2 are integers such that 𝑄1, 𝑄2 ≥ 0.

Connection between these three formulations can be appreciated in figure D.1

OPE version

weight version

𝑟𝐻[𝑄𝑤ℎ[𝑟𝐿[𝑤0]]]

Figure D.1. Visual sketch of the statements 1.1, 1.2 and 1.3. When the symmetry group 𝐺 is abelian,
the three regions coincide.
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APPENDIX E

U(1) PROBLEM, Θ-ANGLE AND THE
AXION

CONTENTS: E. 1 Symmetries of QCD lagrangian. E. 2 True vacuum of QCD. E. 2.a The θ-angle – E.
2.b Peccei-Quinn symmetry and the axion. E. 3 Axion in inflationary models. E. 3.a Axion from extra
dimensions.

INTRODUCTION

This appendix aims to inform the reader about the 𝜃-angle and all the story developed (which
actually is still developing) around it. Therefore, the main insights will be provided and
summarised here and the axion will be introduced at the end.

E. 1 SYMMETRIES OF QCD LAGRANGIAN

First of all let us recap the main properties of the QCD lagrangian. Starting from the work
of Gell-Mann and Ne’eman in 1961, it was clear that hadronic particles group together in
octects and decuplets according to 𝑆𝑈(3) representations, with same value of spin-parity
[GM61]. Nevertheless, it soon appeared that the isospin symmetry 𝑆𝑈(2) and the latter 𝑆𝑈(3)
symmetry were not exact. However it was also suggestive that the model was not completely
wrong. This led Gell-Mann and Zweig in 1964 to propose the existence of elementary particles,
fermions having spin 1/2, characterised by a 𝑆𝑈(3) global symmetry by the fact that they
were supposed to show up in three different flavours: up, down and strange. Therefore, by
direct sum of irreducible representation of 𝑆𝑈(3) it was possible to explain the hadronic
spectrum, both mesonic and barionic [DGH14]. If on the one hand this was enlightening, on
the other it soon ran into paradoxes regarding charge conservation, spin-statistics and also
puzzling about the kind of hadrons that in nature we actually are led to observe. It was first
Greenberg and then Han and Nambu that came up with a straightforward solution [PS95]:
an additional degree of freedom, the colour. Hence, this set the tone for the development of
the Yang-Mills theories: strong interactions are described by non-abelian 𝑆𝑈(3) gauge theory
of colour with the additional global 𝑆𝑈(3) flavour symmetry.
Needless to say, the overall theory is relativistic-invariant and as a result, in order to describe
a fermion belonging to the whole Lorentz group, one has to consider the Dirac representation,
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given by the direct sum of of the two Weyl representations, the le�-handed (1
2 , 0) and the

right-handed one (0, 1
2). By the fact that the two Weyl fermions, 𝜓𝐿 and 𝜓𝑅, belong to

two different representations they will independently transform under two different global
transformations, 𝑈(1)𝐿 and 𝑈(1)𝑅. However, if 𝛼𝐿 and 𝛼𝑅 are the two parameters of the
transformation, it is possible to write 𝑈(1)𝐿 × 𝑈(1)𝑅 = 𝑈(1)𝑉 × 𝑈(1)𝐴 due to the 𝛾5 matrix

𝛾5 = 𝑖𝛾0𝛾1𝛾2𝛾3 = (1 0
0 1

) ⟹ 𝛼𝑉 /𝐴 ≜ 𝛼𝐿 ± 𝛼𝑅
2

⟹
⎧{
⎨{⎩

𝜓𝐷
𝑈(1)𝑉
−−−→ 𝑒𝑖𝛼𝑉𝜓𝐷

𝜓
𝑈(1)𝐴
−−−→ 𝑒𝑖𝛼𝐴𝛾5𝜓

. (E.1)

The two currents related to (E.1) are 𝑉 𝜇 = ̄𝜓𝛾𝜇𝜓 and 𝐴𝜇 = ̄𝜓𝛾𝜇𝛾5𝜓, called the vector and
axial currents, and are classically preserved, namely the QDC massless lagrangian is invariant
under the group

𝑈𝐿(𝑁𝑓) × 𝑈𝑅(𝑁𝑓) ≈ 𝑆𝑈(𝑁𝑓)𝐿 × 𝑆𝑈(𝑁𝑓)𝑅 × 𝑈(1)𝑉 × 𝑈(1)𝐴 . (E.2)

Nevertheless, when performing the path integral, namely when going to the quantum level, a
classical-preserved symmetry could not be preserved anymore and it is said that an anomaly
appears. This is actually what happens for the axial symmetry 𝑈(1)𝐴. To be more precise, it
was studied the process 𝜋0 → 𝛾𝛾

𝜋0

𝛾

𝛾

according to which new quantum contributes emerge and the Noether equation reads as

𝜕𝜇𝐴𝜇 = 2𝑁𝑓𝑄 + 2
𝑁𝑓

∑
𝑖=1

𝑚𝑖
̄𝜓𝑖𝛾5𝜓𝑖 with 𝑄 = 𝑔2

64𝜋2 𝐹 𝑎
𝜇𝜈 𝜖𝜇𝜈𝜌𝜎 𝐹 𝑎

𝜌𝜎 . (E.3)

Therefore, by the fact that the axial symmetry is broken, according to the Goldstone theorem
there should be a massless particle, the Goldstone boson of the 𝑈(1)𝐴 symmetry. Where and
what is this particle? The question was addressed as the U(1) problem by ’t Hoo� [Hoo86].

E. 2 TRUE VACUUM OF QCD

If one performs a chiral transformation, 𝜓 ↦ exp{𝑖𝛼𝛾5}𝜓, it seems that there are no apparent
problems, in fact in the path integral formulation

𝛿𝑆 = 𝛼 ∫ d4𝑥 𝜕𝜇𝐴𝜇 = 𝛼
𝑔2 𝑁𝑓

32𝜋2 ∫ d4𝑥 𝐹 𝜇𝜈
𝑎 ̃𝐹𝑎 𝜇𝜈 = 𝛼

𝑔2 𝑁𝑓

32𝜋2 ∫ d4𝑥 𝜕𝜇𝐾𝜇 (E.4)

the chiral anomaly can be written in terms of boundary terms. For this reason it did not
arouse interest. Nevertheless, ’t Hoo� soon realised that the QCD vacuum state has a more
complicated structure responsible for the fact that the 𝑈(1)𝐴 is not a symmetry on a quantum
level.
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It is important to stress that every gauge field is said to carry a topological charge, the so-called
winding number 𝑛 (or, equivalently, the QCD instanton number) [DGH14]:

𝑛 ≜ 𝑖 𝑔2

32𝜋2
4
3

∫ d3𝑥 Tr{𝜖𝑖𝑗𝑘 𝐴𝑖
𝑛𝐴𝑗

𝑛𝐴𝑘
𝑛} ⟹

𝑔2 𝑁𝑓

32𝜋2 ∫ d4𝑥 𝜕𝜇𝐾𝜇 =

𝑔2 𝑁𝑓

32𝜋2 ∫ d3𝑥 𝐾𝜇∣
𝑡=+∞

𝑡=−∞
= 𝑛+ − 𝑛− .

(E.5)

Therefore, the vacuum state can be visualised as a collection of gluon fields grouped together
in equivalence classes labelled by winding numbers. If and only if the difference between
asymptotic configurations of winding numbers is such that (E.5) is null, 𝑈(1)𝐴 is a symmetry:
’t Hoo� showed that this is not possible.

E. 2.a The θ-angle

Recalling transformation properties of gauge fields, see Appendix C, for the vacuum state to
be gauge invariant it is necessary that it can be written as a coherent superposition of all
topological classes, namely as a Block function. Hence, the true vacuum state of QCD is said
𝜃-vacuum and it is invariant up to a global phase

|𝜃⟩ = ∑
𝑛

𝑒−𝑖𝑛𝜃 |𝑛⟩ ⟹ 𝑈 |𝜃⟩ = 𝑒𝑖𝜃 |𝑛⟩ with U generator of a gauge transformation.

(E.6)
If 𝑋 is an arbitrary operator, its expectation value on |𝜃⟩ is

⟨0|𝑋|0⟩ = ∫ [𝒟𝐴𝜇] [𝒟𝜓] [𝒟 ̄𝜓] 𝑋𝑒𝑖𝑆QCD = ∑
𝑛+,𝑛−

⟨𝑛+|𝑋|𝑛−⟩ ⟹

⟨𝜃|𝑋|𝜃⟩ = ∑
𝑛+,𝑛−

𝑒𝑖(𝑛+−𝑛)𝜃 ⟨𝑛+|𝑋|𝑛−⟩

⟹ ∫ [𝒟𝐴𝜇] [𝒟𝜓] [𝒟 ̄𝜓] 𝑋𝑒𝑖𝑆QCD+𝑖 𝑔2
32𝜋2 ∫ d4𝑥 𝐹 𝜇𝜈

𝑎 ̃𝐹𝑎 𝜇𝜈

(E.7)

so that the QCD lagrangian is modified including a new term, the so-called 𝜃-term

𝐿QCD = 𝐿𝜃=0
QCD + 𝜃 𝑔2

32𝜋2 ∫ d4𝑥 𝐹 𝜇𝜈
𝑎 ̃𝐹𝑎 𝜇𝜈 . (E.8)

Additionally, in the original paper [Hoo86] by ’t Hoo�, it was also stressed out a relation
between the last term of (E.8) with the corresponding EFT formulation. In fact, introducing
the complex meson field matrices with the quantum numbers of the quark-anti-quark composite
operator ̄𝑞𝑅𝑗𝑞𝐿𝑖 = 𝜙𝑗𝑖, he claimed that

ℑ(𝑒𝑖𝜃 det𝜙) ≈ 𝐹 𝜇𝜈
𝑎 ̃𝐹𝑎 𝜇𝜈 ⟺ 𝑖128𝜋2

𝑁𝑓 𝑔2 ℑ(𝑆det𝜙) = 𝐹 ̃𝐹 (E.9)

where 𝑆 is the so-called schizon field. The identification (E.9) leads to anomalous Ward
identities (see figure E.1) by postulating that [𝑄5,sym, 𝑆] = −2𝑁𝑓𝑆, with 𝑄5,sym ≜ ∫ ̃𝐴0 d3𝑥,
with ̃𝐴𝜇 ≜ 𝐴𝜇 − 2𝑁𝑓𝐾𝜇, 𝜕𝜇

̃𝐴𝜇 = 0.

It was demonstrated by Jackiw and Rebbi that a chiral rotation changes the 𝜃-vacuum.
In fact, let Ω𝑛 be the gauge matrices associated to the gauge transformation operator 𝑈. They
can be obtained by compounding, namely Ω𝑛 = [Ω1]𝑛, so that on the vacuum state one has

Ω1 |𝑛⟩ = |𝑛 + 1⟩ . (E.10)

95



E. 2. True vacuum of QCD APPENDIX E
PWO

instanton

∫ 𝐾0 ≠ 0

∫ 𝐾0 = 0

R

R

R
L

L

L

Figure E.1. Illustration of effective instanton action and its charge symmetry properties.

Hence, considering the time independent chiral charge 𝑄𝐴 associated to (E.3), under a gauge
transformation changing the 𝑛-vacua it shi�s as

Ω1𝑄𝐴Ω−1
1 = 𝑄𝐴 + 𝑁𝑓 (E.11)

so that
Ω1𝑒𝑖 𝛼

𝑁𝑓
𝑄𝐴 |𝜃⟩ = Ω1𝑒𝑖 𝛼

𝑁𝑓
𝑄𝐴 Ω−1

1 Ω1 |𝜃⟩ = 𝑒𝑖(𝛼+𝜃) 𝑒𝑖 𝛼
𝑁𝑓

𝑄𝐴 |𝜃⟩ (E.12)

giving
𝑒𝑖 𝛼

𝑁𝑓
𝑄𝐴 |𝜃⟩ = |𝜃 + 𝛼⟩ . (E.13)

However, the last term on the right hand side of (E.8) violets the CP symmetry. Therefore,
including in the lagrangian also the Yukawa sector, there is a two level of CP violation: a
weak violation coming from the Yukawa interactions and a strong violation coming from (E.8).
Nevertheless, the overall framework needs to give an explanation to the 𝑈(1) problem and in
the 𝑆𝑈(3) theory, it is the 𝜂0 meson the chosen particle to be the pseudo-Goldstone boson.
Hence, in addition to the previous violations, it should be included also the vev of the 𝜂0

meson when 𝑈(1)𝐴 is broken.
The very next question is: how do we see the degrees of freedom associated to these CP
violation in the QCD lagrangian? This can be seen through a redefinition of fields in the
lagrangian. Firstly, one introduces the pseudo-Goldstone fields associated to the chiral
symmetry and axial symmetry breaking [KRB08], namely

𝜃0 = 𝜂0(𝑥𝜇)
𝑓0

and ⃗𝜃𝜋 = ⃗𝜋(𝑥𝜇)
𝑓𝜋

with 𝑓0 and 𝑓𝜋 energy scales related to ΛQCD. (E.14)

Now, redefining the quarks

𝑞𝑅 = 𝑒𝑖 (𝜃0+ ⃗𝜃𝜋⋅𝜎)
2 ̃𝑞𝑅 and 𝑞𝐿 = 𝑒−𝑖 (𝜃0+ ⃗𝜃𝜋⋅𝜎)

2 ̃𝑞𝐿 namely 𝑞 = 𝑒𝑖𝛾5
(𝜃0+ ⃗𝜃𝜋⋅𝜎)

2 ̃𝑞 (E.15)

the quark mass contribution to the lagrangian becomes

̄𝑞𝐿𝑚𝑞𝑞𝑟 + ℎ.𝑐. ↦ −𝑚𝑢𝑣3 cos (𝜃0 + 𝜃3) − 𝑚𝑑𝑣3 cos (𝜃0 − 𝜃3) (E.16)

where the factor −𝑣3 originates from the formation of quark condensates ⟨𝑢̄𝑢⟩ = ⟨ ̄𝑑𝑑⟩.
Including the effect of the vev of the 𝜂0 meson, the previous contribution reads as

𝑉 ∼ −𝑚𝑢𝑣3 cos (𝜃0 + 𝜃3) − 𝑚𝑑𝑣3 cos (𝜃0 − 𝜃3) − Λ4 cos (2𝜃0 − 𝜃) , (E.17)

with Λ an energy scale related to the 𝜂0 mass. The cosine form is chosen in order to preserve
the periodicity in 2𝜃0 − 𝜃.
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E. 2.b Peccei-Quinn symmetry and the axion

Let us go back to the 𝑈(1) problem. A solution was given by Peccei and Quinn [PQ77b]-[PQ77a]
by adding to the Standard Model a global chiral symmetry 𝑈(1)𝑃𝑄 which is spontaneously
broken giving rise to a pseudo-Goldstone boson, a pseudo-scalar particle, a dynamical field
that responds to the QCD potential adjusting its vev to cancel 𝜃. This dynamical field is the
so-called axion, 𝑎(𝑥). Under the 𝑈(1)𝑃𝑄 the axion transforms as 𝑎(𝑥) ↦ 𝑎(𝑥) + 𝛼𝑓𝑎 while
the anomaly current associated to the symmetry is

𝜕𝜇𝐴𝜇
𝑃𝑄 = 𝜉 𝑔2

32𝜋2 𝐹 𝜇𝜈
𝑎 ̃𝐹 𝑎

𝜇𝜈 (E.18)

so that one can include in the lagrangian an effective potential for the axion (actually it is the
coupling of the axion with the QCD instantons) together with a kinetic term

𝐿 = 𝐿SM + 𝜃 𝑔2

32𝜋2 𝐹 𝜇𝜈
𝑎 ̃𝐹 𝑎

𝜇𝜈 − 1
2

𝜕𝜇𝑎𝜕𝜇𝑎 + 𝜉 𝑎
𝑓𝑎

𝑔2

32𝜋2 𝐹 𝜇𝜈
𝑎 ̃𝐹 𝑎

𝜇𝜈 + 𝐿int [𝜕𝜇𝑎
𝑓𝑎

; 𝜓] . (E.19)

The Peccei-Quinn solution for the axion is easily found by minimazing the effective potential
with respect to ⟨𝑎⟩, ending up with [KRB08]

⟨𝑎⟩ = −𝑓𝑎
𝜉

𝜃 (E.20)

which in turn lead us to express the effective vacuum angle in a periodic potential for the
axion field

𝑉eff ∼ cos(𝜃 + 𝜉⟨𝑎⟩
𝑓𝑎

) (E.21)

or equivalently, following the notation in the previous subsection, defining 𝜃𝑎(𝑥) = 𝑎(𝑥)/𝑓𝑎,
at low energies the axion appears in the instanton contribution to the potential

𝑉 ∼ −𝑚𝑢𝑣3 cos (𝜃0 + 𝜃3) − 𝑚𝑑𝑣3 cos (𝜃0 − 𝜃3) − Λ4 cos (2𝜃0 + 𝜃𝑎 − 𝜃) , (E.22)

so that the minimum of the potential is given by 𝜕𝜃0
𝑉 = 𝜕𝜃3

𝑉 = 𝜕𝜃𝑎
𝑉 = 0, namely:

𝜃0 + 𝜃3 = 0 (E.23)
𝜃0 − 𝜃3 = 0 (E.24)

2𝜃0 + 𝜃𝑎 − 𝜃 = 0 (E.25)

so for example, 𝜃0 = 𝜃3 = 0 and 𝜃𝑎 = 𝜃. In conclusion, the axion vev is adjusted by the QCD
potential to cancel any possible value of 𝜃, so any effect of CP violation [Redpt].
Besides QCD axions, in String Theory [SW06] there exist other type of axions that violate
the 𝑈(1)𝑃𝑄 symmetry. This kind of axion still couples to instantons with a mass scale 𝑀 and
the instanton will generate a potential whose general form is

𝑉 (𝑎) ∼ −𝑀4 𝑒−𝑆inst 𝑒𝑖(𝑎+𝛼) ≈ −2𝑀4 𝑒−𝑆inst cos (𝑎 + 𝛼) (E.26)

where 𝑆inst is the action describing the instanton while 𝛼 is a phase.
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E. 3 AXION IN INFLATIONARY MODELS

The axion ensured interest in Cosmology, in particular in the theoretically attractive idea of
inflation. So firstly, let us briefly introduce the basic concept of inflation [Vauto]. The latter
is a period of accelerated expansion of the universe and it was first introduced in order to
solve some general problems related to the Big Bang hypothesis, such as the understanding of
why the universe is homogeneous and isotropic nowadays. For the sake of simplicity, we now
shi� to natural units 8𝜋𝐺 = 𝑀−2

𝑃 = 1 = ℏ = 𝑐. We consider the Einstein-Hilbert action in
the presence of a scalar field 𝜙

𝑆 = d4𝑥 √−𝑔 (1
2

𝑅 + 1
2

̇𝜙2 − 𝑉 (𝜙)) (E.27)

from which, according to variational principle, varying with respect to the metric one finds
the equation of motion

𝑅𝜇𝜈 − 1
2

𝑔𝜇𝜈𝑅 = 𝑇𝜇𝜈(𝜙) . (E.28)

We now consider the cosmological model according to which the universe is spatially ho-
mogeneous and isotropic, namely the metric is the Friedmann-Robertson-Walker (FRW)
one

d𝑠2 = d𝑡2 − 𝑎2(𝑡) [ d𝑟2

1 − 𝑘𝑟2 + 𝑟2 (d𝜃2 + sin2 𝜃 d𝜙2)] (E.29)

where 𝑎(𝑡) is the scale function and 𝑘 determines the curvature of the universe: positive means
a closed universe, negative an open one while a null value means that the universe is spatially
flat. We will consider the latter case. In literature the FRW equations are known [Car19],
putting 𝐻 ≜ 𝑎̇

𝑎 the Hubble parameter, in our case they read as

𝐻2 = 1
3

(1
2

̇𝜙2 + 𝑉 (𝜙)) − 𝑘
𝑎2 (E.30)

𝐻̇ = −1
2

̇𝜙2 + 𝑘
𝑎2 (E.31)

while the equation of motion (with the inclusion of a friction term) for the scalar field is

̈𝜙 + 3𝐻 ̇𝜙 + 𝜕𝜙𝑉 = 0 . (E.32)

The equation describing the acceleration and expansion of the universe is the following

̈𝑎
𝑎

= 𝐻̇ + 𝐻2 = 𝐻2 ⎛⎜⎜⎜
⎝

1 + 𝐻̇
𝐻2⏟

≜−𝜖𝐻

⎞⎟⎟⎟
⎠

= 𝐻2(1 − 𝜖𝐻) acceleration ⟺ ̈𝑎
𝑎

> 0 ⟺ 0 < 𝜖𝐻 < 1.

(E.33)
However, what is the role of the scalar field in the inflation scenario? We will consider a
particular approximation: the case of flat potential 𝑉 (𝜙). This means that we can neglect the
acceleration ̈𝜙 so that (E.32) and thus (E.30) become

̇𝜙 = − 1
3𝐻

𝜕𝜙𝑉 ≈ 0 (E.34)

𝐻2 = 𝑉
3

≈ constant ⟹ 𝜖𝐻 ≈ 0 , (E.35)
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it is useful the introduction of the slow-roll parameter 𝜂𝐻, in terms of which the flat potential
condition reads as 𝜂𝐻 ≪ 1

𝜂𝐻 ≜ −
̈𝜙

𝐻 ̇𝜙
(E.36)

and also the definition of the slow-roll parameters in terms of the potential 𝑉

𝜖𝑉 ≜ 1
2

(
𝜕𝜙𝑉
𝑉

)
2

and 𝜂𝑉 ≜
𝜕2

𝜙𝑉
𝑉

. (E.37)

Now, there are a number of models of inflation. We will consider the so-called natural inflation.
The latter assumes that the scalar field, the inflaton, is the axion 𝑎(𝑥), based on the following
lagrangian1

𝐿 = 𝑓2
𝑎
2

(𝜕𝑎)2 − 𝑉0(1 − cos 𝑎) (E.38)

Turning back to SI units, (E.37) becomes

𝜖 = 𝑀2
𝑃

2
(𝜕𝑎𝑉

𝑉
)

2
∼ 𝑀2

𝑃
𝑓2

𝑎
and 𝜂 = 𝑀2

𝑃
𝜕2

𝑎𝑉
𝑉

∼ 𝑀2
𝑃

𝑓2
𝑎

(E.39)

and so, the condition for acceleration 𝜖 ≪ 1 and 𝜂 ≪ 1, gives 𝑀𝑃 ≪ 𝑓𝑎. This means
that the spontaneous breaking scale is above 𝑀𝑃, thus the effective field theory description
is invalidated. However this problem can be overcome through a 5𝐷 model whose extra
dimension is compactified on a circle of radius 𝑅 [AH+03].

E. 3.a Axion from extra dimensions

Consider the case of a one-form gauge symmetry [HRR16]; it is possible to define an axion-like
field as the Wilson line operator associated to the compact component of the field, namely as

𝑎(𝑥) = ∮
𝑅

0
d5𝑥 𝐴5(𝑥, 𝑥5) . (E.40)

The gauge transformations of the field are indeed discrete shi� symmetries which imply that
the axion is compact 𝑎 ↦ 𝑎 + 2𝜋𝑛 with 𝑛 ∈ ℤ. Therefore, starting form a 5𝐷 action

∫ d5𝑥 [1
2

𝑀3
5 𝑅 − 1

4𝑔2
5

𝐹 2
𝜇𝜈] ⟹ 𝑀2

4 ≡ 2𝜋𝑅𝑀3
5 and 1

𝑔2
4

≡ 2𝜋𝑅
𝑔2

5
(E.41)

so that 𝑓2
𝑎
2 2𝜋𝑅 ≡ 1

4𝑔2
5
, at low energies one has

𝐿axion = 𝑓2
𝑎
2

𝜕𝜇𝑎𝜕𝜇𝑎 − 𝑉 (𝑎) + … with 𝑓2
𝑎 = 1

2𝜋𝑅𝑔2
5

= ( 1
2𝜋𝑅𝑔4

)
2

, (E.42)

where the potential is at one-loop [HIL98], [ABQ01], [GIQ02]

𝑉 (𝑎) = − 1
𝑅4 ∑

𝐼
(−1)𝐹𝐼

3
64𝜋6

∞
∑
𝑛=1

cos (𝑛𝑄𝑎)
𝑛5 . (E.43)

with 𝑄 the charge of the massless fields coupled with 𝐴5. Therefore, the slow-roll condition
can be easily satisfied for sufficiently small values of 𝑔4 by the fact that now it reads as
2𝜋𝑔4𝑀4𝑅 ≪ 1.

1To be precise, the inflaton is the pseudo-Goldstone boson described by the lagrangian in the text where 𝑓𝑎 is
the scale of spontaneous breaking of axial symmetry but it is also present a potential which breaks explicitly the
symmetry.
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APPENDIX F

𝒩 = 2 SUPERSYMMETRY AND
SUPERGRAVITY

CONTENTS: F. 1 Hermitian and Kahler manifolds. F. 2 Supersymmetry algebra. F. 2.a Lagrangian.

INTRODUCTION

This appendix provides an introduction to the basic concepts of supersymmetry and super-
gravity. Hence, only those aspects needed to understand the WGC formulation for scalar
fields will be exposed. The overall appendix is mainly based on [Erb15].

F. 1 HERMITIAN AND KAHLER MANIFOLDS

For what comes next, it is useful the introduction of some definitions. This because in this
theory, the vector scalars live on a special Kahler manifold and the following definitions help
to define an introductory, but complete, framework for the understanding of the WGC for
scalars.
So, consider a manifold (ℳ, 𝑔) with complex dimension 𝑚 with metric

d𝑠2 = 𝑔𝑎𝑏d𝑥𝑎d𝑥𝑏 (F.1)

with a torsionless connection. Firstly
Definition F. 1.1

The manifold ℳ is almost complex if it admits an almost complex structure 𝐽 𝑏
𝑎 (𝑥) such

that
𝐽 𝑐

𝑎 𝐽 𝑏
𝑐 = −𝛿 𝑏

𝑎 (F.2)

so that the eigenvalues of 𝐽 are ±𝑖. If 𝐽 is globally defined, (ℳ, 𝐽) is called a complex
manifold.

Definition F. 1.2
If 𝐽 is compatible with the metric then (ℳ, 𝐽) is a hermitian manifold, namely if

𝐽 𝑐
𝑎 𝑔𝑐𝑑 𝐽 𝑑

𝑏 = 𝑔𝑎𝑏 ⟺ 𝐽𝑔𝐽𝑇 = 𝑔 , (F.3)
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as a result 𝐽𝑎𝑏 = −𝐽𝑏𝑎.

Starting from 𝐽 one can define the so-called fundamental two-form of ℳ, Ω, which is real and
symplectic, as

Ω = −𝐽𝑎𝑏 d𝑥𝑎 ∧ d𝑥𝑏 . (F.4)
Definition F. 1.3

Given a hermitian manifold, the latter is said a Kahler manifold if the fundamental
two-form is closed

dΩ = 0 , (F.5)

equivalently, if 𝐽 is covariantly constant.

Additionally, if one locally expresses the 𝑥𝑎 in complex coordinates 𝑥𝑎 = (𝜏 𝑖, ̄𝜏 ̄𝑖), the metric
becomes

d𝑠2 = 2𝑔𝑖 ̄𝑗 d𝜏 𝑖d ̄𝜏 ̄𝑗 , (F.6)

moreover, in these coordinates if 𝐽 is diagonal for a hermitian manifold, then the metric tensor
can be expressed as

𝐽 𝑏
𝑎 = 𝑖 (

𝛿 𝑗
𝑖 0
0 −𝛿 ̄𝑗

̄𝑖
) ⟹ 𝑔𝑎𝑏 = ( 0 𝑔𝑖 ̄𝑗

𝑔𝑗 ̄𝑖 0
) ⟹ Ω = 2𝑖 𝑔𝑖 ̄𝑗d𝜏 𝑖 ∧ d ̄𝜏 ̄𝑗 (F.7)

and it happens that the fundamental two-form is closed if and only if there exists a real
function called the Kahler potential 𝐾(𝜏, ̄𝜏) such that 𝑔𝑖 ̄𝑗 = 𝜕𝑖𝜕 ̄𝑗 𝐾.

F. 2 SUPERSYMMETRY ALGEBRA

Firstly, supersymmetry was born in order to answer the following question: is it possible to
unify internal gauge symmetries with spacetime symmetries? The ones answering the first
were Coleman and Mandula [CM67], proposing that the symmetry group should necessarily
be a direct product between conformal group and internal group. Nevertheless, it came
out to be not sufficient and for this reason Haag and others [HLS75] proposed the so-called
superconformal group, namely they added anticommuting operators. The supergroup then
contains an automorphism sub-group, the ℛ-symmetry group which acts both on the fermionic
generators and as an internal symmetry [Erb15]. Now, supersymmetry is generated by some
fermionic generators 𝑄 that combine together bosons with fermions, namely

𝑄 |fermion⟩ = |boson⟩ and 𝑄 |boson⟩ = |fermion⟩ , (F.8)

and, in general, such a theory is defined by the number 𝒩 of fermionic generators. The
consequence is that there are constraints on the theory itself. Let us consider the case of 𝒩 = 2.
Precisely, considering the Poincaré algebra with 𝑃𝜇 and 𝐽𝜇𝜈 the generators of translation
and Lorentz transformations, denoting by 𝑄𝛼 the fermionic generator of supersymmetry and
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labelling with ℛ𝐴 the generator of the 𝑈(2)ℛ ℛ-symmetry, they satisfy the following algebra

[𝐽𝜇𝜈, 𝑃𝜎] = 𝜂𝜇𝜎𝑃𝜈 − 𝜂𝜈𝜎𝑃𝜇 (F.9)
[𝐽𝜇𝜈, 𝐽𝜌𝜎] = 𝜂𝜇𝜌𝐽𝜈𝜎 − 𝜂𝜇𝜎𝐽𝜈𝜌 − (𝜇 ↔ 𝜈) (F.10)

{𝑄𝛼, 𝑄̄𝛽} = −𝑖1
2

𝛿 𝛽
𝛼 𝑃𝐿𝛾𝜇 𝑃 𝜇, {𝑄𝛼, 𝑄̄𝛽} = −𝑖1

2
𝛿𝛼

𝛽 𝑃𝑅𝛾𝜇 𝑃 𝜇 (F.11)

[𝑃𝜇, 𝑄𝛼] = 0, [𝑃𝜇, 𝑄𝛼] = 0 (F.12)

[𝐽𝜇𝜈, 𝑄𝛼] = −𝑖1
2

𝛾𝜇𝜈 𝑄𝛼, [𝐽𝜇𝜈, 𝑄𝛼] = −𝑖1
2

𝛾𝜇𝜈 𝑄𝛼 (F.13)

{𝑄𝛼, 𝑄𝛽} = −1
2

𝜖𝛼𝛽𝑃𝐿 𝑍, {𝑄𝛼, 𝑄𝛽} = −1
2

𝜖𝛼𝛽𝑃𝑅 𝑍 (F.14)

[ℛ𝐴, 𝑄𝛼] = (𝑈𝐴) 𝛽
𝛼

𝑄𝛽, [ℛ𝐴, 𝑄𝛼] = (𝑈𝐴)𝛼
𝛽

𝑄𝛽 (F.15)

[𝑇 𝑎, 𝑇 𝑏] = 𝑓𝑎𝑏
𝑐 𝑇 𝑐 (F.16)

where 𝑈𝐴 are the matrices of the ℛ-symmetry and the 𝑇 𝑎s the generators of the internal
symmetry, while 𝑍 is the central charge. Here an interesting consideration comes: local
supersymmetry includes General Relativity. That is because the anticommutators of the
fermionic generators (which actually are Weyl spinors) close on the momentum and, as a
result, it is not possible to make supersymmetry local without making local the Poincaré
group. One talks about supergravity. The latter theory is composed by three multiplets:

1. gravity multiplet, which contains the metric and the vector field, the graviphoton

{𝑔𝜇𝜈, 𝜓𝛼 𝜇, 𝜓𝛼
𝜇 , 𝐴0

𝜇} where 𝛼 = 1, 2 (F.17)

2. 𝑛𝑣 vector multiplets, containing a vector field and a complex scalar field

{𝐴𝑖
𝜇, 𝜆𝛼 𝑖, 𝜆 ̄𝑖

𝛼, 𝜏 𝑖} with 𝜏 𝑖 ∈ ℂ and 𝑖 = 1, … , 𝑛𝑣 (F.18)

3. 𝑛ℎ hypermultiplets, containing four real scalar fields

{𝜁𝒜, 𝜁𝒜, 𝑞𝑢} with 𝑞𝑢 ∈ ℝ and 𝑢 = 1, … , 4𝑛ℎ; 𝒜 = 1, … , 2𝑛ℎ (F.19)

where 𝜓𝛼 𝜇 are the gravitini, 𝜆𝛼 𝑖 are the gaugini while 𝜁𝒜 the hyperini.

F. 2.a Lagrangian

We now gather the gauge fields as follows

𝐴𝐼 = (𝐴0, 𝐴𝑖) with 𝐼 = 0, … , 𝑛𝑣 (F.20)

and we want to write down a bosonic lagrangian. As already anticipated, the latter live on
a special Kahler manifold, so that, using the previous section and the definition in [Erb15]-
[Nak03], it suffices to know that for such a manifold a given section is actually a section of the
tensor bundle ℒ ⊗ 𝒮𝒱, where ℒ → ℳ is the line bundle while 𝒮𝒱 → ℳ is the vector bundle.
The component of such a section can be denoted by

𝑣 = (𝑋𝐼

𝐹𝐼
) (F.21)
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where 𝑋𝐼 are the so-called homogeneous coordinates and are such that 𝜏 𝑖 = 𝑋𝑖/𝑋0, so they
provide a projective parametrization of the manifold.
We now define a general symplectic vector in these coordinates

𝑉 = (𝑉 𝐼

𝑉𝐼
) ⟺ Ω = ( 0 1

−1 0
) (F.22)

with the latter defining the scalar product

⟨𝑉 , 𝑊⟩ ≜ 𝑉 𝑡Ω𝑊 = 𝑉 𝐼𝑊𝐼 − 𝑊 𝐼𝑉𝐼 = 𝑉 𝑀Ω𝑀𝑁𝑊 𝑁, 𝑀, 𝑁 = 1, … , 2(𝑛𝑣 + 1) . (F.23)

The first issue concerns how to couple the gauge fields with the vector scalars. This is achieved
through the period matrix, a simplectic matrix, such that 𝐹𝐼 = 𝑁𝐼𝐽 𝑋𝐽, where 𝐹 𝐼 = d𝐴𝐼. It
is called ”the period” matrix because the geometric structure of the field-space is determined
by the periods {𝑋𝐼, 𝐹𝐼}, holomorphic functions of the scalar fields. So that

𝐿 = 𝑅
2

+ 1
4

ℑ(𝒩𝐼𝐽) 𝐹 𝐼
𝜇𝜈 𝐹 𝐽 𝜇𝜈 − 1

8
ℜ(𝒩𝐼𝐽)𝜖𝜇𝜈𝜌𝜎

√−𝑔
𝐹 𝐼

𝜇𝜈 𝐹 𝐽
𝜌𝜎 − 𝑔𝑖 ̄𝑗𝜕𝜇𝜏 𝑖𝜕𝜇 ̄𝜏 ̄𝑗 (F.24)

where the imaginary and real part of the period matrix correspond to the gauge couplings
and the 𝜃-term, respectively. Additionally, ℜ and ℑ define the real, symplectic matrix 𝑀 of
dimension 2(𝑛𝑣 + 1) as

𝑀 = (1 −ℜ
0 1

) (ℑ 0
0 ℑ−1) ( 1 0

−ℜ 1
) ⟺ 𝑀𝑇Ω𝑀 = Ω . (F.25)

Furthermore, if 𝑞𝐼 and 𝑝𝐼 label arbitrary constants, let us also define

𝒬 ≜ (𝑝𝐼

𝑞𝐼
) and 𝒬2 ≜ −1

2
𝒬𝑇𝑀𝒬 (F.26)

where the latter is closely related to the central charge. In fact, in this setting, the Kahler
potential is 𝐾 = − log [𝑖 (𝑋̄𝐼𝐹𝐼 − 𝑋𝐼 ̄𝐹𝐼)] and the central charge [CDF96] is

𝑍 = 𝑒 𝐾
2 (𝑞𝐼𝑋𝐼 − 𝑝𝐼𝐹𝐼) (F.27)

so that the following identity is valid [CDF96]

𝒬2 = |𝑍|2 + 𝑔𝑖𝑗𝐷𝑖𝑍𝐷̄𝑗
̄𝑍 , (F.28)

where the covariant derivative is defined as in [Erb15] and [Pal17].
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