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Chapter 1

Introduction

This thesis work is the result of the research activity carried out by the group set up
by my supervisor and focused on the study of Quantum Gravity (QG). The work is
motivated by the observation that the various gravity quantization models are not
directly testable given the energy scales inaccessible to current technological pos-
sibilities. The idea is therefore to use these theories to formulate principles which
are assumed to have general validity even at lower energy scales and which there-
fore lend themselves to reproducing the effects of Quantum Gravity in the infrared
regime. Such principles are known as Swampland conjectures. The effect of the
conjectures, depending on whether they are satisfied or not, is to divide the set of
low-energy theories into two disjoint classes. On the one hand there are the theo-
ries of Swampland in which they are not verified on the other hand there are the
theories of the Landscape which instead are consistent with a quantum description
of gravity in the ultraviolet. The resulting operating mode is called Swampland
approach and has as its main purpose the study of the phenomenology of the QG.
In particular, we are interested in obtaining results related to Particle Physics and
Cosmology for which it is possible to have an experimental confirmation.

In order to develop the Swampland approach the thesis will be articulated
through the following structure. Chapter 2 begins with a brief presentation of the
concept of effective theories and highlights the way in which these are reconciled
with fundamental theories such as QG ones. The importance of these theories for
the purposes of the thesis lies in the fact that the Swampland conjectures refer pre-
cisely to effective descriptions of gravity. At that point the Swampland program
is defined, explaining its philosophy and the current research context. The main
conjectures on which the applications are based will be stated here.

Chapter 3 is devoted to a quick recall of the description of Quantum Gravity pro-
vided by the String Theory. The reason for this choice lies in the fact that in
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literature the theory of Quantum Gravity used as a reference for the Swampland
program is precisely String Theory. The proposed conjectures draw their inspi-
ration from the properties of this theory in which indeed they find their validity.
The formalism of the bosonic string theory is then presented concisely and the
main results of the theory of interest for the purposes of the thesis are retraced.
Particular attention will be paid to highlighting how String Theory naturally pro-
vides a consistent description of Quantum Gravity through unusual mathematical
properties such as the presence of extra dimensions.

In order to reconcile this last aspect of the theory with the observations, Chapter 4
proposes to provide a detailed description of the compactification mechanism for
extra dimensions. The treatment in this case will take a more general approach
in which we will first discuss the usual Kaluza Klein theory and then deal with
some its extensions less known in the literature. Only at the end, the compactifi-
cation mechanism will be applied to the case of a bosonic string by investigating
the physical effects that this has on the spectrum of the system. The importance
of the compactification process is also linked to the fact that it provides the for-
mal mechanism of construction of effective theories of gravity described by String
Theory. It is therefore essential to fully understand the meaning of Swampland’s
conjectures and their possible implications.

The following chapters are devoted to an in-depth discussion of conjectures and
above all to the study of their applications. In particular, Chapter 5 focuses on
the No Global Symmetry conjecture. For it, in addition to the usual properties and
motivations known in the literature, a topological reformulation will be given in
terms of cobordism classes. The aim of this discussion is to make the link with
other secondary conjectures more evident and to arrive at a characterization of the
instabilities of the vacua associated with the effective theories. The idea is that the
imposition of this instability can be applied in the context of Particle Physics and,
specifically, to have theoretical predictions concerning neutrino masses.

Finally, Chapter 6 is entirely dedicated to the Swampland Distance conjecture. In
this case the mathematics of the language of its statement will be explained first
and the close link that this conjecture has with the compactification of the bosonic
string and the duality of the theory will be made explicit. Subsequently, it will be
seen how also in this case it is possible to formulate conjectures concerning the in-
stability of de Sitter-type vacua. In this way, application possibilities concerning
Cosmology are opened. In particular, the applications will concern inflationary
and dynamic dark energy models. The Swampland approach shows itself capable
of imposing limits on cosmological models in order to be consistent with QG by
inspecting two different evolution phases of the universe.
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As will be seen, the applications can be various and lend themselves to for-
mulating theoretical predictions on physical observables. Due to the nature of
the Swampland approach, predictions are generally expressed in terms of bounds
which, however, when combined with known theoretical results derived indepen-
dently from the QG or with experimental bounds, lend themselves to strongly
constrain the real-world physics also at low energies. It seems somewhat aston-
ishing that this approach effectively works and it is an indication that research in
the field of Quantum Gravity is worth pursuing. In fact, the conclusions will dis-
cuss possible developments in view of the experiments planned for the near future
concerning both Particle Physics and Cosmology.



Chapter 2

The Swampland approach

2.1 [Effective Field Theories

Effective theories provide descriptive models of physics valid in a fixed range
of macroscopic variables values which characterize the system to be described.
Typically, in the field of physics, they are considered energy scales fixed by an ul-
traviolet cut-off A below the which physics is correctly described by the effective
theory (Figure 2.1). Above the cut-off, a consistent description requires a substan-
tial modification of the theory by including additional degrees of freedom.

On the basis of empirical observations, in fact, it can be said that depending on
the energy scale there can be different dynamics and physical phenomena whose
description requires different mechanisms reconstructed precisely through differ-
ent effective theories. The basic idea of this approach is that, for the purposes
of describing physics at a certain energy scale, physics at significantly different
energies has negligible effects or in any case which are perturbatively treatable.
The construction of an effective theory therefore requires the isolation of the de-
grees of freedom really relevant to the scale of interest and the identification of
exact or approximate symmetries enjoyed by the system that one is interested in
describing. On the other hand, the reduction of the degrees of freedom can in
itself give rise to the formation of new symmetries that are explicitly broken by
the degrees of freedom not considered. The resulting theory can therefore be re-
garded, in a certain sense, as a perturbative approximation of more fundamental
effective theories valid at larger energy scales. The advantage of using effective
theories instead of fundamental ones lies in the fact that the effective description is
clearly simpler and therefore it typically allows a more immediate understanding
of physics as well as offering a considerable simplification in the calculations and
therefore in obtaining of theoretical predictions.

From what has been said we understand the relevance that effective theories have
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for theoretical and experimental physics. Through the identification of reference
scales, a priori, every physical theory can be considered as an effective model of
a more fundamental theory.

The mathematical implementation of an effective theory of interest for Particle
Physics and Fundamental Interactions refers to the conceptual framework of quan-
tum field theories that combine the need to give a description of microscopic
physics compatible with the principles of Special Relativity. The result of this
implementation goes by the name of Effective Field Theories (EFT) [1} 2, 3]]. An
EFT is therefore described by a Lagrangian density that can decompose into the
sum of operators of increasing mass size

Leps(x) =) CiOi(x). 2.1)

The idea is therefore to consider a series expansion of the Lagrangian density
controlled by powers of a small expansion parameter £/A, with E characteristic
energy scale of effective theory. On the other hand, from power counting analysis
it is known that a d-dimensional theory is renormalizable, and therefore predic-
tive in the ultraviolet, only if the Lagrangian has terms with operators of mass
dimension

[0;]=D <d. (2.2)
Consequently, the series expansion can thus be rewritten as
(D) (D)
¢, O
Eeff(l’) = W . (23)
i,D

In the case of a (d = 4)-dimensional theory, we have

,Ceff(:B) :£D§4+ %‘F%—F... (24)
For the purposes of the effective description, only a number of finite terms of di-
mension D > d are considered and the A coefficient that appears in the expansion
parameter will be the ultraviolet cut-off of the EFT. Higher-order operators lend
themselves to describing the new physics with respect to the renormalizable the-
ory but in the low-energy regime. The determination of the expansion coefficients
can be done either by knowing the fundamental theory or, more commonly, in

empirically way.
Ace Agep Mgew H Mgg M, M,
} } } } } } } » A (GeV)
10~ 10° 10? 101

Figure 2.1: Main energy scales and cut-off for effective models of Physics [4]]
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2.2 The Swampland conjectures

Regarding the gravitational interaction, it is classically described by General Rel-
ativity (GR). On the other hand, the field theory constructed with the Einstein-
Hilbert action is non-renormalizable. This has led to the hypothesis that General
Relativity can provide an effective description of gravity valid at low energies and
that it should therefore be replaced by a quantum description of gravity at the
Planck scale. Starting from Einstein’s theory it is possible to construct EFTs of
matter weakly coupled to gravity that are internally self-consistent. The set of
such theories is in principle very large (if not infinite) and therefore the problem
arises of identifying the theories really suitable for describing the physics of the
real world. A possible way to satisfy this need is to select the EFTs in light of the
consistency with their possible extensions above their cut-off. In this context the
Swampland approach [5, 4} 16, [7] intervenes. It aims to identify the EFTs consis-
tent with an ultraviolet completion in a quantum gravity theory. EFTs compatible
with a quantum description of gravity are said to be in the Landscape; EFTs that
are incompatible are said to be in Swampland. The idea of the Swampland ap-
proach is to identify sufficient selection criteria to implement this classification
and therefore to outline the Landscape. The proposed criteria will have more
stringent effects as energy increases and indicate how an EFT should be modified
above the cut-off in order to preserve its validity. This means that starting from
a very large Landscape at low energies, there will be gradual restrictions as the
scale increases until an ideal convergence in Quantum Gravity Theory is achieved
at the Planck scale.

Note that, a priori, the Swampland program assumes a totally general approach in
which the nature of the Quantum Gravity theory is not specified. For each theory
of Quantum Gravity there can be a different Swampland program with its own
selection criteria and with its own Landscape. However, it is expected that the
general nature of the approach means that there is an overlap, albeit partial, of
the Landscapes and therefore a certain sharing of the selective methods for the
various theories of gravity. In literature, however, the Swampland approach was
born and implemented mainly in the context of String Theory and it draws many
inspirations and motivations from it.

The selection criteria proposed by the Swampland program are formulated as con-
jectures, that is, as statements for which there are no rigorous formal proofs but
multiple evidences and heuristic proofs. In general, motivations inspired by String
Theory are distinguished from motivations deriving from qualitative arguments of
Quantum Gravity. In the first case we are dealing with proofs of the validity of the
conjectures, even formally rigorous, but relegated to particular string models. In
the second case we are dealing with qualitative justifications typically presented
in the context of black hole physics.



CHAPTER 2. THE SWAMPLAND APPROACH 10

There are many proposed conjectures but not independent of each other. In fact, it
is still a matter of discussion to understand which conjectures are actually essential
for the construction of the Swampland and which conjectures can be considered
corollaries of the main ones. Topic of debate is also the formulation of the indi-
vidual conjectures. Depending on the authors and the context in which they are
presented, in fact, in literature there are different statements of the same Swamp-
land criteria that take on different degrees of generality and therefore of formal
abstraction. In the light of what has been said, this section introduces the main
conjectures historically and physically considered most relevant [5] and binding
to the next chapters the presentation of some secondary conjectures.

The first historically proposed conjecture, and perhaps the simplest and most in-
tuitive one, is the No Global Symmetry (NGS) conjecture

Conjecture 1. A theory with a finite number of states, coupled to gravity, can
not have any exact global symmetry.

This absolutely general conjecture simply summarizes the requirement that there
should be no global symmetries in a quantum description of gravity. This request
valid at the QG level also has repercussions at the EFT level. This means that any
apparent low-energy global symmetry at a certain energy scale must be explicitly
broken or gauged.

The next conjecture is the Swampland Distance conjecture (SDC), which refers
to EFTs containing scalar fields

Conjecture 2. Consider a theory, coupled to gravity, with a moduli space M.
Starting from any point P € M there exists another point () € M such that
the geodesic distance between P and (), denoted by d(P, (), is infinite.
Furthermore, there is an infinite tower of states with an associated mass scale
M such that

M(Q) ~ M(P)e adPQ) (2.5)

where « is some positive constant.

The SDC then describes the effects of Quantum Gravity on EFT when moving
through moduli space.
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Finally, there is the Weak Gravity conjecture (WGC) which aims to set lim-
its to the characteristic quantities of an EFT. For it two statements can be given
depending on the application context.

Conjecture 3. Given an EFT with a gauge group U (1), there exists an elec-
trically charged state with mass m and charge q under the gauge theory sat-

isfying the relation
9 ., Q 00

m M Mp
where g is the gauge coupling constant, () and M are respectively the charge
and mass of an extremal black hole.

(2.6)

The name of the conjecture is due to the fact that the interpretation that can be
given to this statement is that the gravitational interaction must be weaker than
any other gauge interaction.

The conjecture thus formulated is known as electric version of the WGC to distin-
guish it from the magnetic version obtained by considering the magnetic monopole
of mass m ~ A/g?* and charge q/g for which the becomes

A< g M,. 2.7)

It can be said that the current research work under the Swampland program
is twofold. On the one hand there is the interest, as mentioned, in identifying the
necessary selection criteria and their more general and restrictive formulations.
This also includes the work done to study the links between the various criteria as
well as the strong commitment to obtaining proofs of the conjectures of general
validity. On the other hand, the main aim of Swampland approach is to extract
from the various conjectures the physics useful for delineating the Landscape. So,
ultimately, the goal is to obtain phenomenological implications that have applica-
tions, in particular, in Particle Physics and Cosmology.

In the next chapters, attention will be focused on the first two conjectures, the No
Global Symmetry conjecture and the Swampland Distance conjecture, trying to
reproduce both lines of research for them.



Chapter 3

Quantum Gravity in String Theory

In order to prepare the theoretical background necessary for the subsequent dis-
cussion and to understand the motivations behind the conjectures, this chapter
retraces the main results of the String Theory. The discussion will be limited to
the case of the bosonic string alone, first giving the most qualitative description
and then reproducing the application of the conformal formalism.

3.1 The Bosonic string

Consider a bosonic string as a 1-dimensional object of length ¢ moving freely in
spacetime. During its motion, the string describes a 2-dimensional surface, known
as worldsheet, parametrized by local coordinates (7, o). The motion of the string
is then described by functions X (7, o).

In general, a string can be open or closed depending on whether the parameter o
covers a finite interval, o € [0, ¢], or is a periodic parameter, 0 = o + ¢ (Figure
3.1).

Figure 3.1: String worldsheet for both open and closed string

12
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The simplest action of a bosonic string, obtained as a natural generalization of
the relativistic point particle one, is provided by the Nambu-Goto action

Syeg=-T / dodr \/ (X,0,X1)2 — X2(9,X)? (3.1)

where X* = 9, X", with T = (2ma’)~! string tension and o’ Regge parameter.
On the other hand, the action that most appropriately describes the motion of the
string in view of its quantization, is provided by the sigma model in which an
auxiliary metric is introduced, h,z(o, 7) with signature (—, +), which gives rise
to the so-called Polyakov action

T
Sp=—5 / AoV =h BP0, X105 X, (3.2)

The action thus written exhibits the following symmetries
* Poincaré invariance
XHM(1,0) = X"(1,0) = NX"Y(1,0) + a* (3.3)
hap(T,0) — h:w(T, 0) = hop(T, 0) (3.4)

* Diffeomorphism invariance

X1, 0) = X"(7',0") = X¥(7,0) (3.5)
do” Oo°
hap(T,0) = hop(T',0") = @th(ﬂ o) (3.6)
* Weyl invariance
X¥(r,0) = X"(r,0) = X"(r, ) 37)
hap(T,0) = hig(T,0) = Q*(1,0)hap(T, 0) (3.8)

of which the Poincaré invariance is a global symmetry of the worldsheet while the
invariance under diffeomorphisms and Weyl invariance are local symmetries.
Once the action is known, the equations of motion are determined through the
variational principle. For variations of the Polyakov action, with respect to X*
and from the stationarity request

0xSp =0 (3.9)
we have the equations of motion
Ou[V—h h*P0s X" = /=h V2X" =0. (3.10)

The boundary term is cancelled by assigning Neumann boundary conditions for
the open string or periodic boundary conditions for the closed string
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* Open string:

O, XH (1,0 =0) = 0, X*(1,0 =0) =0 (3.11)

* Closed string:
X* (1,0 =0) = X¥(1,0 =) (3.12)
hog(T,0 =0) = hop(T,0 = 1) . (3.13)

These boundary conditions are the only ones consistent with the D-dimensional
Poincaré invariance and with the equations of motion. The variation of the action
with respect to the metric defines the energy-momentum tensor

1
T°%(r,0) = —4mwv/—h = -T("X"0°X,, — §haﬁavX“87Xu> (3.14)

which, by virtue of the invariance under diffeomorphisms and the Weyl invariance,
appears to be covariant conserved and traceless

V., T =0 T =0 . (3.15)

(67

Finally, if we require the invariance of the Polyakov action with respect to varia-
tions of the auxiliary metric, we obtain the equations of motion

T.s=0. (3.16)

These are sufficient to fully describe the classical dynamics of the bosonic string.

3.2 Quantization

What has been said so far concerns the classical description of the motion of a
bosonic string. We are now interested in seeing what happens when we quan-
tize the system. There are several quantization formalisms: in this section we
will focus on light-cone quantization while in Section 3.3.1 we will discuss the
alternative and more consistent BRST quantization.

Open string

We intend to quantize the open string by fixing the light-cone gauge in order
to eliminate the redundancies due to the invariances under diffeomorphisms and
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Weyl transformations, breaking however the covariance of the theory. The light-
cone coordinates are then introduced into spacetime

L _ (@ xa)

= ., 2t i=2,.,D—-1 3.17
NG (3.17)

and the following gauge is fixed
Xt =r Oshoe =0 det(hap) = —1 (3.18)

which imposes three conditions for the three local symmetries (reparameterization
of the two coordinates of the worldsheet and Weyl scaling).
In this gauge the string Hamiltonian becomes

T 14 1. ‘ .
d '+ 7T90,X'0, X" 3.1
2p+ o (T +T0 0 ) (3.19)
where are defined the variables
1t
x (1) = z/ do X (71,0) (3.20)
0
oL

L =—pt = = —Tlhy, 3.21
p P = 50 (3.21)
with L string Lagrangian.

Starting from Hamilton equations, free-wave type equations are found as equa-
tions of motion ' '
X' =co2X" (3.22)

with velocity ¢ = T//p*. The general solutions of such equations are provided
by the following modes expansions

Xi(r,0) = &' + —7' o e~/ cos (@) (3.23)

= Z i
where the expansion coefficients o' are the string oscillators, such that o’ , =
(ai), and where center of mass variables for the string have been introduced

1

l
- / doX'(1,0) (3.24)
¢ Jo

(1) =

+

¢ ¢
(1) = / doIli(7,0) = p?/ do 0,X'(1,0) . (3.25)
0 0
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At this point the system is quantized by imposing the canonical commutation rules
which, in terms of Fourier components, provide the algebras

[z7,p"] = —i (2%, p’] = 6" (3.26)

[l al] =m§ 8, . (3.27)

In order to construct the Hilbert space associated with a bosonic string, the funda-
mental level states |0; k), with k = (kT k%), are defined as states annihilated by

the operators o’ .
The states thus defined are then eigenstates of the center of mass momentum

ol 10;k) =0 Vm <0

‘ . 3.28
#10,K) = K+ [0; ) Aok =k ok . O

The Hilbert space is then constructed by acting on |0; k) with the operators o, T,
where m > 0, and the generic string state is then expressed as

IN; k) 10; k) (3.29)

- I |
with N, occupation numbers and N = in nN;, string level. The momenta %
of the center of mass constitute degrees of freedom common to those of a point
particle while the occupation numbers /V;, are additional internal string degrees
of freedom.

If we insert the modes expansion in the expression for the Hamiltonian we find

__ Dpip'
H=p =55+ pw(Z al,al, ) (3.30)

i,n>0

with "::" normal ordering operation and a ordering constant. At this point, by
requesting the Lorentz invariance hidden by the light-cone gauge, that is, by fixing
the algebra of the Lorentz generators

[MH": MP7] = in"P MY — in"? MH7 + in#° MP" — in"? MP*, (3.31)
we obtain the critical bosonic string conditions
D =26 a=1. (3.32)

The Lorentz invariance, and therefore the consistency of the bosonic string quan-
tum theory, fixes the dimension of spacetime to be D = 26.
In light of these critical conditions, the mass-shell relation for the open string
becomes

o'm®=N—1 (3.33)

and it is therefore possible to reconstruct the entire string spectrum.
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* N = 0: There is tachyon states of negative mass
0;k)  o'm®=-1. (3.34)

They indicates an internal inconsistency of the theory which can be inter-
preted as an instability (see also Section 4.2) in the sense of QFT. For this
reason it is common opinion to regard the bosonic string theory as a minimal
model to understand its extension in the more physical superstring theory

[8].

e N = 1: We have bosonic states of zero mass
o |0:k) o/mP=0 (3.35)

in vector representation of SO(D — 2). They can then be interpreted as the
states associated with the photon.

* N = 2: We have the first two states of positive mass
al,|0:k) , o' [ 0sk) a'mP=1 (3.36)

in tensor representation of SO(D — 2). Note that the mass is of the order of
the Planck scale, therefore they are associated with practically unobservable
particles.

As the levels increase there are other states with growing positive mass and in
higher representations (Kaluza Klein tower).

Closed string

What is done for the quantization of open string in light-cone gauge can be re-
peated analogously for the closed string. The substantial difference is that in this
case the periodicity condition must be set in the o parameter. In this way we find
the equations of motion

02X =cO’X" X'(o) = X'(o +n) (3.37)

which are solved by the modes expansion

Z|: n —27rzn(a+cq-)/é+ ;627rzn(a cr)/t (338)

7

X(r,0) =1 —i—p—7'+

n

VAarT

where two independent sets of oscillators appear, o, and &/, called left- and right-
movers corresponding to oscillating waves moving in opposite directions along
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the closed string.
Quantization is achieved by means of commutation rules

[z, pT ] =—i [ p)] =idV (3.39)
[l al] =m 6, [al &) =m& 8, . (3.40)
Starting from the ground level state |0, 0; k) defined as the state such that
o’ 10,0;k) = @’ |0,0;k) =0
p10,0;k) =k'10,0: k) p'[0,0;k) = k"]0,0;k),

the entire Hilbert space of closed string states is reconstructed

i \Nin(zt \Nin
NN = [T ooy Gan)

(3.41)

The mass-shell condition in this case becomes
o'm?=2(N+ N —a—a) (3.43)

and from the Lorentz invariance and periodicity request we find the critical con-
ditions

D =26 a=a=1 (3.44)
and the level matching condition
N=N. (3.45)
Consequently it turns out
o'm? =4(N —1) =4(N — 1) (3.46)

from which it is possible to reconstruct the closed bosonic string spectrum.

* N = 0: There is again a tachyon state of negative mass

0;0;k) o'm?=—4 (3.47)
e N = 1: We have a bosonic massless state
Q7)) =o' @ 10,0 k) o'm?=0 (3.48)
in rank-2 tensor representation of SO(D — 2) decomposable as
- 1 - . 2 . 1 .. . 1 -
OV =2 [QW 4 it = = guQkk Z(QU — It _ SEQFk
2( * D—2 >+2( )+D—2

(3.49)
that is, in the sum of a symmetrical part with zero trace associated with a
spin-2 bosonic particle identified with the graviton; an antisymmetric part
associated with a 2-form B, known as Kalb-Ramond field; a scalar part
associated with a scalar particle ¢ called dilaton.
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3.3 CFT in bosonic string theory

Since the worldsheet of a string is a 2-dimensional surface its vibrational modes
can be studied by conformal field theories (CFT) in d = 2 dimensions [9, 10} [11].
In the Polyakov action appear D free bosonic fields X* whose propagator in
complex coordinates is

(X(2,2)X (w,w)) = —In|z —w|?. (3.50)
The energy-momentum tensor for such CFTs is given in the from
1
T(z) = —5 0.X 0,X : (3.51)

and then by carrying out the following OPEs

T(2)0 X ~ (Z_—lwy 0X 4 =00 X) o (B
T(ET(w) ~ 7 1_/1)4 NE _1w)Qan DX — (21_/ 2w)aw(awxawx) b

(3.53)
we find that the fields 0X* are primary fields with weights h = 1 and that the
central charge for each CFT is given by ¢ = 1. Therefore, the total central charge
of the CFT for the bosonic string, obtained from the contributions of the bosonic
fields X*, is equal to

cx=2D. (3.54)

The description of the string in terms of conformal field theory allows to de-
velop an alternative quantization procedure to the light-cone quantization pre-
sented in Section 3.2, which appears to be formally more rigorous and suitable
for studying string interaction theory.

Given the gauge symmetries of the Polyakov action, the path integral for the
bosonic string can be evaluated by the Faddev-Popov procedure [12] according
to which it can be written as

Zlg) = / DX Applg] *l9X) (3.55)

The evaluation of the Faddev-Popov determinant Arp|[g| provides an expression
of the type [12,13]

AFp[g] = /Db Dc Gisgho‘% (356)
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1
Sghost = % / d20 V |g| baﬁvacﬁ (3.57)

where the ghost fields b, s, c* appear as Grassmann fields. The path integral (3.55])
is therefore reduced to

Zlg] = / DX Db De e~ Sl9-XI=5anlo b (3.58)

where the dynamic fields are now the X fields and the ghost fields b, c. The intro-
duction of ghost variables is a direct consequence of the gauge-fixing procedure
operated by the Faddev-Popov procedure which, unlike the light-cone gauge, pre-
serves the Lorentz invariance.

If working in conformal gauge,

Jap = 62w50¢5 ) (359)

in complex coordinates the metric becomes ¢., = ¢sz = 0, 9. = ¢z, = ¢* and

if we use the notation 9 = 0,, 0 = 05, b = b,,, ¢ = 7, the ghost action takes the
simple form

1 _ _
Syn = 7 d?z(bOc + bOe) . (3.60)
e

The equations of motion associated with such action are given by
b =0b=0c=09c=0 (3.61)

from which we deduce that the fields b, ¢ are holomorphic and the fields b, ¢ are
the associated anti-holomorphic fields.

In these terms it appears that the ghost fields give rise to a bc-CFT, that is a 2-
dimensional conformal field theory in which the propagator is provided by

(e(2)b(w)) = (b(z)e(w)) = —— . (3.62)

Z—Ww

The energy-momentum tensor 7Ty, of the theory takes the form
Tyn = —2b0c — (0b)c (3.63)

and, making use of the (3.50), from the contractions with this tensor we obtain the

OPEs 5 ]
b(w) +

Tyn(2)b(w) ~ m (

m@b(w) ¥ (3.64)

Ton(2)c(w) ~ ——— ———0c(w) + ... (3.65)
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To(2) Typ(w) o — o2 ﬂh(ﬂ)Hﬁ

(z—w)t  (z—w)
from which we see that the ghost fields b and c are primary fields with weights
h = 2 and h = —1 respectively and that the central charge of the bc-CFT for the
bosonic string is equal to ¢ = —26.

ITyn(w) + ... (3.66)

Now consider the whole theory action obtained from (3.58)
S=Sp+ Sy = % / d*2 [0X0X + (bdc + boe)] (3.67)
the momentum energy tensor is in this case provided by
T(2) =Tx(2) + Tyn(z2) = —% 1 0X0X : —2b0c — (Ob)c (3.68)
and the central charge is accordingly

c=cx +cgp=D—26. (3.69)

For this purpose it should be remembered that, according to what has been said in
Section 3.1, the Weyl invariance imposes that the energy-momentum tensor has
no trace at the classical level. This result is generally valid for any classical CFT.
At the quantum level, however, the situation is different. In this case, in fact, the
expectation value (7'¢') must be considered, which turns out to be null only in flat
spaces. In [[13] starting from the conservation of the energy-momentum it is found
that at least for quasi-flat spaces the fallowing relation holds

(T2) = —1—02R (3.70)

where R is the Ricci scalar. It is therefore concluded that for curved spaces with
R # 0, in order to avoid the Weyl anomaly, a CFT theory must have zero central
charge, ¢ = 0. In the case of the bosonic string this translates into the request to
have a space with critical dimension DD = 26 in accordance with what was found
in Section 3.2.

3.3.1 The BRST quantization

The action obtained from the path integral turns out to be invariant under
BRST transformation defined by

op X" = —ir (cOX" + c0X") (3.71)
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opb=—ik T opb=—ix T (3.72)
dpc = —iKk c Oc dpC = —ik ¢ OC . (3.73)
From Noether’s theorem the conserved charge associated with such symmetry is

Q= 2%” dz :c(2) (Tx(2) + Tyn(2)) (3.74)
which, by virtue of the condition (3.63)), turns out to be nilpotent, Q* = 0.
At this point it should be observed that not all the states of the Hilbert space
associated with the theory constitute physical states. In the context of BRST
quantization, physical states |¢)) must satisfy the necessary (and not sufficient)
condition

Qpl) =0. (3.75)

States that satisfy (3.75)) are called BRST-closed states. By virtue of the nilpotence
of (g it can be deduced that the same relation is also satisfied by all states that
can be written in the form

[9) = Qs |x) (3.76)

which are called BRST-exact states. On the other hand, if |¢) is a physical state
and |¢) is a BRST-exact, we immediately see they are orthogonal to each other

(W[lo) = WlQsIx) = ((¥]Qs)[x) =0. (3.77)

This means that the BRST-exact states do not constitute physical states of the
theory since they do not contribute to the transition amplitudes. Furthermore, an
additional consequence of (3.73) is that all physical states are defined up to an
exact BRST state, i.e. |¢)) and |¢)) + @p |x) are physically equivalent. Therefore
the Hilbert space of physical states is obtained as the quotient space

thy = Hclosed/Hexact . (378)

Since the physical states are in equivalence classes, for each class it is pos-
sible to choose a ghost-free representative state for which the condition (3.73)
is equivalent to requiring that the physical states have primary states of weight
(h,h) = (1,1). In the light of the state-operator map, each physical state of string
is associated with an operator V' (z, z), called vertex operator, such as to satisfy the
aforementioned condition and such that the integral [ d*zV is a Weyl invariant.
Since the integration [ d?z has weight (—1, —1), the Weyl invariance is consis-
tent with the requirement that physical states have weight (+1,+1). The search
for physical states and the construction of the string spectrum is then led back to
the construction of vertex operators.
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In the case of the closed string, the above operators will be integrated on the
worldsheet. The simplest operator is provided by the tachyon operator

‘/;5 —- eikX(z,Z) . (379)

for which the physicality request h = h=1 provides

mi = —k*=—— (3.80)
o
that is, the state associated with it is actually a negative mass state according to
what we saw in Section 3.2.
The vertex operator for the first excited state is obtained by adding factors 0.X, 0.X

V, =&, e XOXMOXY 1 (3.81)

In this case we have h = h = 1 + o/ p?/4 and then the request for physicality
imposes the mass relation
m2=0. (3.82)

On the other hand, carrying out the OPE with the energy-momentum tensor we
find

ik oy

w1 K22
aw )(Vesz(w,w) /
(z —w)3

T(2)Vy(w,w) ~ S Vo(w, w) + ... (3.83)

(z —w)
so that, in order Vj, to be primary, we find the condition of transversal polarization
kM, = kY = 0. (3.84)

We therefore find massless states for which the decomposition (3.49)) is valid.

In the case of the open string, the integration of the vertex operators must be car-
ried out along the boundary of the worldsheet, [ dsV. The fundamental operator
ikX(2,2)

is still the tachyon operator V; =: ¢ : which also in this case is associated

with tachyon states but of mass

1
m?=—k*=—— . (3.85)

C]{/

The massless state associated with photons is obtained starting from the vertex
operator build by adding a factor X to the tachyon operator

Vi = &a : €5 0X* (3.86)
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with « index of longitudinal directions. For it the physical claim of Weyl invari-
ance provides again m}%h = 0, while the requirement that 1/, is primary gives the
condition of photon polarization

§a kK =0. (3.87)

In both cases of closed and open string, the higher excited states are obtained by
acting with vertex operators constructed by adding further factors 0X, 0X and,
as already seen, they appear to have increasing positive masses of the order of the
Planck scale.

3.4 The Effective Theory of Gravity

The motion of a bosonic string in a curved spacetime (target space) with metric
G, 1s described by the so called non-linear sigma model in which the action is
obtained as a natural generalization of the Polyakov action (3.2)

1

4o

S

/ d*o \/|g| 9P 0. X 05 X" G, . (3.88)

In the context of string theory the curvature of spacetime is produced by the gravi-
ton obtained by the symmetric part of the tensor (3.49)) associated to the massless
states of the string spectrum. In fact, if the spacetime metric tensor is decomposed
as a perturbation around the metric of a flat space

G (X) = O + Ty (X) (3.89)

we see that the action associated with quantum fluctuation is expressed by the

term
1

4o/

S / d*o \/1g] g% 0a X 05 X" hu(X) . (3.90)

In terms of CFT this operator, under the identification A, = § WeikX , corresponds

exactly to the vertex operator of the closed bosonic string associated with the
graviton state (3.49). This means that the single graviton contributes to a pertur-
bation of the metric of the target space and the generic fluctuation £, is obtained
as a superposition of contributions of multiple graviton states with different polar-
1zation.

The theory resulting from non-linear sigma model in conformal gauge has world-

sheet action 1

Ve

S

/ d*0 G (X)0a X 0" X" (3.91)
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which describes a theory of interaction that can be treated perturbatively through
an expansion in v/a/ /7. where r, is the characteristic curvature radius of the target
space [12, [13] . The interaction theory turns out to be a conformal theory at the
classical level. On the other hand, at the quantum level the perturbative study
of the S-function 5, (G) = pdG,,(X; 1) /O0p, with p scale of the theory, in the
1-loop approximation provides [12} [13]]

Bu(G) =a Ry, . (3.92)

We see then that the conformal invariance is satisfied for Ricci-flat target spaces,
i.e. solutions of Einstein’s equation in vacuum

Ry =0. (3.93)

The same result is obtained by requiring the Weyl invariance and therefore by
traceless condition for the energy-momentum tensor associated with the theory
on a curved worldsheet. In this sense we see that String Theory contains General
Relativity as a 1-loop approximation. On the other hand the computation of 2-loop
contributions provides [13]]

1
/B#V(G) = O/R#V + §a/2Ru)\poRi\pU (394)

from which we obviously obtain the lowest order correction to Einstein’s equation.
At this point, remember that the closed string spectrum at the level of massless
states, in addition to the graviton, contains the Kalb-Ramond field and the dilaton.
The theory that accounts for the presence of these additional fields is described by
the action

S = ! / d*o+/|g| [GM,,(X)aaX“GgX”gaB + iBW(X)ﬁaX“aﬁX”eo‘ﬁﬂL

4o

+a'®(X)RP)] .

(3.95)
As regards the additional terms with respect to the non-linear sigma model, it is
possible to give them physical interpretations. It is understood that the second
term constitutes the generalization of the electromagnetic interaction term in the
QED action for a particle in the case of a string. In fact, being the worldsheet a
2-dimensional space, the analogue of the potential A, for the worldline is covered
by the tensorial potential B,,. In other words, this term indicates that the bosonic
string is charged under the Kalb-Ramond field which is invariant under the gauge
transformation

B, — B, =B, +80,+3,0C,. (3.96)
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In this case the analogue of the Maxwell tensor F),,, that is the strength field such
that H = dB, is provided by the 3-form

H,,=0,B,,+0,B,, + 0,B,, (3.97)

which can be geometrically assimilated to the torsion tensor which would imply
a modification of General Relativity through the introduction of an antisymmetric
correction to the affine connection Ffw.

As far as the dilatonic term is concerned, since R is the curvature scalar of
the worldsheet, it is seen to give zero contribution for flat worldsheets. Fur-
thermore, in the approximation in which the dilaton is constant, ® ~ (®) =
®y, 1t can be seen that this term is proportional to the Euler characteristic x =
L [d*c /g R®. On the other hand, in the path-integral approach for the study
of the string interaction, it is necessary to add up on all the topologies that are
classified by y = 2 — 2h — b with h number of handles, b number of boundaries.
Consequently, each term will be weighted by a factor eX®°. It is concluded that
the dilatonic term in (3.95) plays a crucial role in the definition of the perturba-
tive expansion in which the string coupling constant is precisely g, = e®*° for the
closed string and go = /g for the open string. These constants therefore have a
dynamical nature and do not constitute arbitrary constants of the theory.

The theory described by action (3.95) must be clearly Weyl invariant. On the basis
of what has been said in Section 3.1 it is understood that the study of this invari-
ance is traced back to the study of the traceless of the energy-momentum tensor
(T%) which will receive a contribution from each term of the action identified by
the relative beta functions

1 1
(13) == 5 Bu(G)g*P 0, X 95 XY — 5o Bun(B)e*P 0, X103 XV — o
_ 15(@)3(2) (5:98)
: :

From an explicit calculation of these (see [13]) we find the following 1-loop ex-

pressions
/

Bu(G) = o/ Ry + 20/'V,,V, & — O‘ZHWHj“ (3.99)
/
Bu(B) = —%VAHAW + o/ VIO H,,, (3.100)
/ /
B(®) = —%v% + %HWAH“”A . (3.101)

Note that the S-function of one field is affected by the presence of the other fields.
In particular, the first term of (3.99) coincides with (3.92)) and is corrected by the
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presence of H,,, and ®. The condition of traceless (7)) and therefore the Weyl
invariance is obtained by requesting

Buw(G) = Bu(B) = B(®) = 0. (3.102)

The beta functions are calculated in the 1-loop approximation, consequently look-
ing for the action associated with these equations of motion we find an effective
low energy action

1 1
S=53 / A X /|G| e2% (R — g HunH" 4@@6%) (3.103)

where k is an interaction constant such that kg ~ (v o).
In order to restore the classical Einstein-Hilbert term and thus make evident the
presence of General Relativity, a conformal transformation of the metric can be

performed )
G (X) = e 102G (X) (3.104)

with @ = & — &,. The associated curvature scalar takes on the expression
—20
R-2D-1)V* | —"—+ | -

a0 (525 (2%

R= 6—4<i>/(D—2)

(3.105)

and the action (3.95)) becomes
g1 [ox G| | R — Long, o~ Lo & ond (3.106)
167G 12 o 6" '

in which Newton’s constant is identified through the relation 87G = ke?®0. The
action (3.106)) is therefore said to be expressed in the Einstein frame as opposed
to (3.95)) which is instead expressed in the string frame.

3.5 Dp-branes and Open Strings

The Nambu-Goto action (3.1)) can be immediately generalized and adapted to the
description of the dynamics of p-dimensional objects, called p-brane, by means of
the so-called Dirac action

S =-T, / dys, (3.107)
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where dpu, = \/—det(G,p) dP*'o is the infinitesimal (p+ 1)-dimensional volume
element, with G5 induced metric on the wordvolume, and 7, that can be inter-
preted as the tension of the brane. If the auxiliary metric A, is introduced, then
the analogue of the Polyakov action (3.2) becomes

Sp = % / "o \/|h| [hP0, X 05X, — (p—1)] . (3.108)
It is understood that the case p = 0 coincides with the action of a relativistic
point-like particle; the case p = 1 coincides with that of a bosonic string; the
case p = 2 fits to describe a 2-dimensional membrane. The importance of such
objects lies in the fact that they appear naturally in the context of String Theory.
In fact, it is now well established that string theory is not only a theory of strings.
The presence of 1-dimensional objects as the fundamental elements gives rise
to objects of different dimensions (particles and multidimensional membranes).
To understand how the presence of p-branes manifests itself in the context of
bosonic string theory, consider again the open string discussed in Section 3.1.
It has been said that the differentiation with respect to closed strings occurs due
to the boundary conditions. It has also been pointed out that the only boundary
conditions compatible with the Poincaré invariance are the Neumann boundary
conditions. Actually this is true by restricting the study to strings only. If we
admit the possibility of having (p > 1)-dimensional objects then the situation
changes. In general, one can think of having a mix of Neumann and Dirichlet
conditions. Consider the following situation of Neumann conditions for first p+ 1
coordinates and Dirichlet ones for remaining D — p — 1 coordinates

0, X (o =0)=0,X% oc=m)=0 a=0,..p (3.109)

X(c=0)=¢ and X% o=m)=ct

™

a=p+1,..D. (3.110)

The Dirichlet conditions ensure that the extreme points of the open string are
fixed along « directions and are therefore free to move on a (p + 1)-dimensional
hypersurface. For the spatial part of such hypersurface we speak of Dirichlet
brane or synthetically of Dp-brane. A D-brane is therefore definable as the p-
dimensional object on which open strings can end. In situation (3.109] [3.T10)) the
Lorentz group then undergoes the following breaking

SO(1,D—1) — SO(1,p) X SOD—p—1). (3.111)

Note that the limiting case considered in Section 3.1 corresponds to when the
ends of the open string are free to move in all directions or, in other words, to the
case in which the whole D-dimensional space is a D-brane. The particular case in
which the Dirichlet condition is imposed for the coordinate X corresponds to the
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localization in time, that is to the formation of an instanton (D(—1)-brane) [[13]].
In order for the Poincaré invariance to be preserved, however, the D-branes must
be dynamical objects described by the Dirac action (3.107), that is, they must be
an integrant part of the theory. Note that the formation of such branes is associated
with the imposition of conditions at the Dirichlet boundary. On the other hand,
these conditions, and the consequent D-brane formation, come out naturally in the
context of string compactification which will be discussed in Section 4.2.
Consider the case where we have N Dp-brane. Each end point of an open string
can then lie on one of these A branes. If these are labelled by i = 1,.. N it is
possible to associate additional open string degrees of freedom (¢, j) known as
Chan-Paton factors or charges. The generic string state will then be represented
by

N
Nk A) = > Ay IN, ki) (3.112)
ij=1
where )\;; are Hermitian A/ X N matrices called Chan-Paton matrices. The useful-
ness of these factors lies in the fact that they allow the construction of non-Abelian
gauge groups. If the Chan-Paton factors introduce A degrees of freedom then the
oriented open strings describe a gauge group U(N): the ends o = 0 are associated
with fundamental representation N, the ends ¢ = 7 will be associated with anti-
fundamental representation N. In fact, the resulting string spectrum of the lower
levels than that found in Section 3.2, 3.3.1 will now be characterized by tachyon
state and massless states with the following components

D)5 69 (A (3.113)

In particular, the field A, lends itself to describe the connection of a gauge group
U(N). In the following chapter, this aspect will be addressed in more detail. The
charges associated with the gauge fields are located on the D-branes which there-
fore act as their source.

In the case of non-oriented strings, there is symmetry by reversal orientation
and the two ends are indistinguishable, therefore they are associated with the
same fundamental real representation. The group described by non-oriented open
strings can then be orthogonal or symplectic [[14]].
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The Compactification mechanism

The possibility of having extra dimensions with respect to the four observed di-
mensions of spacetime is not a novelty introduced by String Theory. This situation
was previously studied by Kaluza [15] and Klein [16] and the theory developed
by them is the basis of the compactification process which, in String Theory, al-
lows to theoretically solve the problem of treating and interpreting the additional
dimensions.

4.1 The Kaluza-Klein theory

The original idea pursued by Kaluza was that of tracing the fundamental inter-
actions as a consequence of the geometry of spacetime. To this end he stud-
ied the possibility of having a (D = 5)-dimensional spacetime in the context
of General Relativity. Consider therefore a 5-dimensional Riemann spacetime
(M) grrn) on which coordinate systems of the type (z) = (z#, x*) are fixed,
with M/ N = 0,..4, p = 0,1,2,3. On this space it is possible to introduce
an affine connection I'S; and, similarly to a 4-dimensional Riemann space, the
curvature tensor is defined as

REoe =058, — 0cTpa +THTE, — T2 TE (4.1)

from which the 5-dimensional Ricci scalar R(®) is obtained by contraction.
The action that describes the Kaluza theory is therefore provided by the Einstein-
Hilbert action in the absence of matter but defined on M®) i.e. by

M(5)3
S=- /d5x\/—det(gMN) R®) 4.2)

P
2

where MY = (87G®)~1/3 with G©) gravitational constant associated to the 5-
dimensional space.

30
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Starting from the action (4.2)), through the variational principle, the field equations
are obtained
Rip =0 (4.3)

which correspond to the usual Einstein’s field equations in vacuum for a 5S-dimensional
geometry.

The metric tensor gy is a symmetric tensor with D(D + 1)/2 = 15 independent
components and then can be decomposed into the following block matrix

(G — PALA, DA
gMN—(” ¢AVM _;) (4.4)

where g, is the 4 X 4 symmetrical part with 10 independent components, A,
is the vector part with 4 components, and ¢ is the scalar part with 1 component.
These elements can be interpreted respectively as the metric content of the 4-
dimensional geometry, a gauge vector field and an additional dilatonic scalar field.
In fact, under transformation of coordinates of the type

oM = (2" 2Y) = ™M= (2" 2+ f(2)), 4.5)
we see that the components of g,y are transformed according to the laws
G (@) = G () ¢'(z') = ¢(x) (4.6)

AL(&:/) =A,(z)+ 0.f(2) 4.7)

that is with A, actually behaving as an Abelian gauge field.

In order to study physics from the point of view of 4-dimensional spacetime it
is assumed that there is no dependence on the additional dimension z*, i.e. the
Kaluza’s cylindrical conditions are imposed

Oaguw(z) =0 04Au(x) =0 Osp(x) =0 (4.8)
with 9, = 9/0x*.

If we indicate with R the linear size of the extra dimension, the action of the
theory can be rewritten in form

da?

2
= M /d4 \/ —det(gu,) 0'* [R+ ~¢ F, F"™ + 28“¢;¢ (4.10)

where R is the 4-dimensional curvature scalar and where the strength field is in-
troduced

d*z\/—det(g,,) ¢*/*R® = (4.9)

Fo, = 0,A, —0,A, . (4.11)
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Furthermore, to bring the gravity term back to the usual Einstein-Hilbert action,
the following identification is made for the Planck scale
2 L (5)3

Mp SWG_RMP (4.12)
which indicates that a priori the 5-dimensional Planck scale may differ from the
4-dimensional one depending on the geometry of the extra dimension. Note that
for the scale to remain the same it must be R ~ M.
From the obtained expression, it is concluded that starting from a pure 5-dimensional
curved geometry it is possible to obtain a 4-dimensional physics with a gauge field
A, and a scalar field ¢.
In fact, if we derive the equations of motion by means of the variational principle,
we find

1 &G 1
R, — 3 guwR = 5 @* Tlf,’/” - g_zﬁ V. (0,0) — 9u0a0%9) (4.13)
L
VMF;W = _3%}7“1/ (4.14)
8
00, = WT(b Fl, F™ . (4.15)
If the scalar field is assumed to be constant and fixed at ¢ = 1, they become

1
R, — 3 R =8rG T (4.16)
VH#F,, =0 4.17)

where the first is the usual Einstein field equation with an electromagnetic energy-
momentum tensor

em 1 (0% (6%
T = 7 9w FogF™ = FiiFy (4.18)

and the second is Maxwell equation in curved geometry.

Conformal scaling

If we perform a conformal transformation on the metric (4.4)

IMN = gun = o) gun (4.19)

the determinant of the metric becomes /—det (g}, ) = Q°/?(¢)\/—det(g,,) and

the 5-dimensional curvature scalar can be explained in the form

RO(g) = QRO (g) — 4V, VM InQ — 3(Vy n Q) (VM InQ)] . (4.20)
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The action of the theory in this case becomes

(5)3
S — _M% /dx4/d4x = ¢1/2QS/2 [R(5)(g) — 4VMVM InO—

—3(VunQ)(VMIn Q)]

4.21)

and if the conformal scaling factor is chosen as (¢) = ¢~'/3 then it boils down
to

S =

M(5)3 1
123 / dz / d*z/—g {R(E’)(g)—kg(@u Ing)(dng)| . (4.22)

At this point, repeating the procedure followed previously and introducing the
radionic field

1
d=——1In 4.23
73 ¢ (4.23)
the 4-dimensional action is concluded
M? V32 1
S = _TP / d'zv/=g | R+ T Fw " = 50,2 0" (4.24)

in which, in addition to the Einstein-Hilbert and the Maxwell terms, a massless
scalar field term appears in minimal coupling due to the presence of the radion ®.
It is also noted that due to this field the gauge term is instead not minimal coupled.
This situation can be avoided if, as before, ¢ = const = 1 is chosen. Additionally
the introduction of a scale factor €2 in the metric allows us to report the gravi-
tational term that appears at the 4-dimensional level in its canonical expression
without necessarily requiring ¢ = 1.

4.1.1 Dimensional reduction

To reconcile Kaluza’s theory with observations, that is, to give a theoretical jus-
tification to the cylindrical conditions (4.8)), Klein introduced the compactifica-
tion process as a mechanism of dimensional reduction. The idea is that the non-
observation of the extra-dimensions is due to the fact that they have such a geom-
etry as to be strongly curved and therefore extremely small in size compared to
the usual macroscopic dimensions. It is said precisely that the extra dimensions
are "compactified”. In particular, toroidal compactifications are usually consid-
ered in which the D-dimensional space is supposed to be realized according to the

decomposition
MP = MP=D x (4.25)
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where the d-dimensional subspace X% has the topology of a torus. In the simple
case of Kaluza’s 5-dimensional model, Klein assumed that the fifth dimension has
the topology of a circle of radius R, i.e. that MP = MP=9 x ST,

In this case for the characterizing fields of the 5d metric it is possible to make ex-
plicit the periodic dependence on the z# coordinate and then write them according
to the Fourier series

G (T Z g (a)em= /R (4.26)
Z A () et (4.27)
Z o (x1) ez /R (4.28)

Each of the fields is then determined by assigning its Fourier modes which, by
virtue of the periodic dependence, have quantized momenta along x*.

It can be seen then that in the compactification limit R — 0 only the mode n = 0
independent of the coordinate z* contributes in accordance with the cylindrical
condition (#.8) assumed by Kaluza. It is then concluded that the dimensional re-
duction operated by the compactification mechanism allows a theoretical explana-
tion for why the extra dimensions are not directly observable. The 5-dimensional
theory with dimensional reduction provided by the compactification on the circle
takes the name of Kaluza-Klein theory.

We intend to study in detail the compactification process for the fields g,,.,, A, ¢.

Scalar field compactification

Consider a massless scalar field ¢ in 5d spacetime with extra dimension com-
pacted on the circle. From the periodicity condition for the ¢ coordinate follows
the Fourier expansion

=" bular)enin (4.29)

and the momentum along the x* coordinate is quantized according to the eigen-

values

Pa = (4.30)

=S
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The action describing the dynamics of the scalar field in 5-dimensional space can
therefore be made explicit using the (4.29) [17, 18, [19]

5= % / Broyo(e*, at) OM (", ot) =

1 Y .
o 2/ [Z aﬂgb )a,u¢ ¢ )925 ] (431)
n omoL(n n2 n n
= /d4x [58‘@(0) "0 +; (a“qg( )T ore) — %(ﬁ( )T )>] '

From the expression of the action it is therefore deduced that, at the level of
4-dimensional physics, the modes ¢(™ provide an infinite set of d-dimensional
fields, known as the Kaluza-Klein tower, with a mass-shell condition

2
2 n

m” = —p,p!' = IZh (4.32)

At energies E << R~! there are only z?-independent fields and the physics is
therefore d-dimensional. In order to observe the effects of compactification, and
then to observe the K-K tower, one should reach energy of order £ ~ R™!,

Gauge field compactification

In the case of a vector field Ay (z™) in the same 5-dimensional space with x?

coordinate compactified on a circle, we have the Fourier expansion

ZA (z")e inzt/R (4.33)

Analogously to what has been done for the scalar field, the study of 4-dimensional
physics can be made explicit by introducing this expansion in the action for A,;.
Introducing the strength field Fi;n = Oy Ay — v Aps we then have [[17, 18], [19]

1
S = —Z/dSI'FMNFMN =

- / &z EFWFW + % (9, A5 — O5A,,) (9" A — amﬂ)} -
(4.34)
Z =) g n)lw_|_

/d4xz 1L

+3 (auAg‘”) i AT (oA @'%AM—@)] .
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If it is performed the gauge transformation

R
AW A T, A AD 0 Y40 (435)

n ©

the action becomes

1
(__F(O)F(O)W + éaﬂAéo)auA(Oﬁ) +

1 —n n 14 1 n2 —n n
+2) (—ZF/EV ) s +§@AL )A(V)>] .

From this expression we deduce that in 4-dimensions the zero-modes of the field
Ay provide a 4-dimensional gauge field A, and a real scalar field, while the non-
zero modes give rise to massive vector fields.

(4.36)

4.1.2 Non-Abelian gauge field

The original Kaluza-Klein theory allows to derive a gauge field A, and a scalar
field ¢ in 4-dimensional geometry starting from a 5-dimensional space without
sources. This allows a geometric origin to be given to the electromagnetic in-
teraction. To study what happens for the strong and electroweak interactions, it
is necessary to investigate the possibility of deriving non-Abelian gauge fields in
analogy to what has been done for the Abelian ones. For this purpose we are
interested in a generalization of the theory capable of contemplating this possi-
bility [20]. Consider a space with n compact dimensions, (M“*+™ gy/n), on
which it is possible to identify charts with coordinates (z™) = (z*,2™), where
M,N=0,1,.44n—-1,u=0,1,2,3, m = 4,..4 +n — 1. Suppose that the
(44 n)-dimensional space can be decomposed into M@+ = M* x K™ and that
the subspace of extra-dimensions admits a group of isometries G whose genera-
tors are provided by the Killing vectors (K%) with a = 1,..N group index. The
G group in general has a non-Abelian structure for which, defined K¢ = K¢ 0™,
it results

(K% K] = f&* K° (4.37)

with f2 group structure constants.

In this case the decomposition of the metric g, which has D(D+1)/2 indepen-
dent degrees of freedom, can be achieved by introducing a tensor ¢,,,,, and vector
fields A7, associated with each Killing vector of M"

_ gw/ - ¢mnAZKZLn ASKZ? (bmpAngL
gMN = ( ¢npAng _¢mn . (438)
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For the components of the metric, according to compactification limit, the follow-
ing dependence on space coordinates is assumed

9 () = Gy (2") P (T) = Gn (™) (4.39)
Al(x) = Al (") K™(z)=KI(z™). (4.40)

In order to study the transformation laws of the various fields, we consider an
infinitesimal coordinates transformation of the type

oM = M =M M M =(0,e*(x) K™ (4.41)

The mixed components of the metric under this transformation have the following
variation [21]]
6gum = _gmnaugn - gumamfn - gnangum (442)

for which it is located
§(AL Kam) = Kam0u€" — AL Ko (0 K}')e” — K (0p Ko ) AS, =
= Kam (0" — fre®A) — A%’ (K[ 0 Kim + KanOn Kj') = (4.43)
= Kam (9uc® = frc® A)

where the algebra of the Killing vectors and their properties are used. Conse-
quently we find the following variation for the vector fields at K, fixed

GAL(7) = 0,€ () — Z?ceb(x)A; (4.44)

which coincides with the transformation law of non-Abelian gauge fields.
On the other hand, if the procedure of the previous section is repeated, i.e. the
D-dimensional action is rewritten by inserting the decomposition of the metric
(.38), it is found an effective 4-dimensional action with Yang-Mills term

M

5=

1
/ d*z\/—g [R -3 FSVF;‘”} (4.45)
with F!, = 0, A% — 9, A% + fi. Ab A
In this case we have introduced the volume of the extra-dimension subspace "

YV, = /d”x\/det(qﬁmn) (4.46)

and the following identification was made for the Plank scale

M

MI(DD)D72 Y )

(4.47)
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It is concluded that the Kaluza-Klein theory admits in principle the possibility of
deriving from a pure geometry with extra-dimensions all the matter fields of the
Standard Model (SM) as long as we consider a space with a suitable isometries
group G.

In terms of orders of magnitude, if R is the linear dimension of the compact space,
(4.47) gives

M3

D—4
R M}(DD)D—Q '

(4.48)
Also in this case the Planck scale in multidimensional space can a priori be differ-
ent from Mp. The empirical observations fix at least the upper limit R < 10~%m.
The possibility of having a scale M }()D) at lower energies, such as for example of
the order of T'eV" and thus making the effects of Quantum Gravity observable,
therefore requires a sufficient number 7 of extra dimensions. For M I(DD) ~ TeV
must be n > 2. On the other hand, from some Standard Model test, experiments
([22,23]) would seem to further lower the upper limit for R thus requiring a much
greater number of extra dimensions.

In light of this, the complications that occur in D > 5 should be mentioned at this
point. If one is looking for D-dimensional spaces of the type Mp = My X M,
with M, Minkowski spacetime, the absence of sources in M p requires that

Ry (¢) =0 (4.49)

where notation m,n = 4, ...D — 4 is used.

However, this condition is incompatible with the presence of a non-Abelian isom-
etry group. In fact, it is found f% = 0, that is we have N Abelian fields. In these
cases, the presence of non-Abelian gauge fields and therefore of Yang-Mills the-
ories in 4-dimensional space would seem to require the abandonment of Kaluza’s
idea of producing matter starting from a purely geometric theory.

4.1.3 Spontaneous compactification

If we admit the possibility of having material sources also in D-dimensions, an
interesting mechanism known as spontaneous compactification occurs. To under-
stand how this mechanism works, consider the action of a D-dimensional theory
of gravity with a minimally coupled matter term.

S = % / dz\/=g R(g) + S . (4.50)

The matter action is generally defined in terms of an antisymmetric tensor of rank
r, FMl..MTa as

Sy X / dPx\/=g Py, g, FMMr (4.51)
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which is associated with the energy-momentum tensor

2 0v/—gLn M. M, 1 Mji..M,
T = F Mz M F My M,
MN V=g 0gMN OC?“( MM;. M, E' N IMN L' nMy.M,

(4.52)

2r
From the variation of the action (4.50) and from the stationarity request we find
the equations of motion

1
Ryn + §gMNR =Tun (4.53)
O (v/—g FMN2-Ney — (4.54)

In particular, we are interested in geometries factorizable as the product of maxi-
mally symmetrical spaces with metrics

gMN = <9W(()x#) gmn(()ifm)) (4.55)
that is, described by equations
R+ guwlhs =0 Rpn + Grn\y =0 R, =0. (4.56)
In this case the energy-momentum tensor must then be able to decompose itself
into form
Ty = (gﬂBTx ngT) (4.57)

which is compatible with (4.52)) provided that the tensor F;
lowing relations

satisfies the fol-

1.0

FMMQ..MTF,j\JQ"MT x ai Ty +b,T, (4.58)
FmMQ..MTF,iV[Q"MT o< axTy + b1, . (4.59)

The curvature scalar is given by
R(9) = ¢ Run = 9" Ry + 9" Ry = =40, + (4 = D)A,  (4.60)

therefore, explicating the field equation (4.56) we find the following equations
that relate A, A, to T3, T},

D—4 D—6
A, + — Ay =T, 2A, + — Ay =T,. 4.61)
In particular, if we set the relatimﬂ T, + T, =0, it results
D -5
A, = —5 Ay (4.62)

'Tt can be motivated by argoument from supersymmetry (see [24])
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that is, to have a compact space M,, with A, > 0, the macroscopic spacetime
must be of anti-de Sitter type (A, < 0). The mechanism that allows the formation
of such space with compact dimensions through the source term .S, constitutes
the spontaneous compactification process.

An alternative mechanism that provides a flat spacetime, free from fine tuning
problems, i.e. with A, = 0, is obtained by introducing a scalar field ¢ (a dilaton)
in non-minimal coupling, with interaction potential V' (¢). The D-dimensional
action is in this case given by

S =— / dPz\/—g {% (R(g) + O 0V ) + V(9)| + S (4.63)

where the matter term is the same of (4.51). The equations of motion, obtained
from variations with respect to the metric, the gauge field and the scalar field, turn
out to be

1 1
RMN——QMNR+VM(8N¢)+§QMN5’A¢8A¢—9MNVA(3A¢) = e (Tyun+gunV(9))

2 (4.64)
R(g) + V(0™ @) — Opp M = 2e20,V (4.65)
O (v/—g FMN2-Ney — (4.66)

If we make the simplifying hypothesis of constant scalar field, ¢ = ¢y = const,
the field equations for the factored geometry and the equation for the dilaton be-
come

R
Rl § = e (@ 4 Vo) .67)
R
% + A, = —e®(T, + V() (4.68)
R(g) = 2e70,V |4, - (4.69)
At this point, considering again the condition 7}, + 7T}, = 0, we find
Az + Ay + R(g) = =2V () (4.70)
Ultimately, since M, is required to be a Minkowski spacetime, from (4.69) we
conclude that R(g)
)
A, = A= ———= 4.71
0 y D4 (4.71)
if and only if the following constraint on the dilatonic potential is verified
0,V D —4
A = - — 4.72
(%), - 7= @72

which is satisfied for example by an exponential potential of the type V ~ e~ ¢(P—4/(D=5),
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4.2 The String compactification

Now we can specify the compactification mechanism in the case of String The-
ory to solve the extra dimension problem. As we will see, this mechanism has
interesting repercussions on the interpretation of the string dynamics and on its
spectrum.

Closed String

Consider a closed bosonic string in a (D = 26)-dimensional spacetime with a
compacted dimension on a circle S* of radius R with periodic condition

X®(o+m,7) = X*(0,7) + 27Rw weZ. (4.73)

w is called winding number and indicates the number of windings of the string
around the compacted dimension with a positive or negative sign depending on the
winding direction (Figure 4.1). Consider then the mode expansion of the closed
string coordinates with winding number w. The expansion of the X* coordinates,
with ¢ = 0,..24, it will remain unchanged while the expansion of X?> must be
modified by adding a linear term in o necessary to satisfy the periodic boundary
condition

X®(0,7) = 2% + 2a/p*1 + 2Rwo + .. . (4.74)

Also in this case, the compactification on the circle causes the p?> component of
the momentum to be quantized

[ KeZ 4.75)

with xk Kaluza-Klein excitation number. By decomposing the compactified coor-
dinate into left- and right-movers contributions we have the following expansions

X®(o,7)=XP(r+0)+ XF(r—0) (4.76)
XB(r+0)= 1(2025 + 3% + (a/i + wR) (T+0)+ 4.77)
7 5 = . :
1 ~ /
XP(r—0)= 5(9525 — %) + (oz % — wR) (r—0)+... (4.78)

At this point, going to write the on-shell relation in terms of w and x we find

o2l (5)'+ ()

+ 2N +2Np -4 4.79)
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with level matching condition
NR_NL:WH;. (480)

It can be noted that both the on-shell and level matching conditions are invariants
by exchanging the winding and the Kaluza-Klein numbers. But such operation is
equivalent to carrying out the inversion of the compactification radius

/
T: w o k= RH?@E%. 4.81)
This symmetry of the bosonic string is known as 7-duality and indicates that com-
pactification on a circle of radius R is physically equivalent to compactification
on a circle of radius . In terms of oscillators, the T-duality transformation cor-
responds to making the substitutions a2® — —a?2®, a2> — a2° and therefore to
inverting the sign of the right component of the compacted string position leaving

unchanged the left one

T: X%(o,7) = XP(r,0) +Xp(r—0) —

- 4.82
— X®(o,7)=XB(1+0) - X?(1 —0) (4.52)

where X2 is the dual coordinate with expansion
X®B(g,1) = 7% + 20/%0 + 2WRT + .. (4.83)

which is associated to a momentum component 5% = Rw/o/ = w/R.

Figure 4.1: Closed string windings along compact dimension [14]]

Open String

The compactification of an open string provides the mechanism that makes the
appearance of the D-branes discussed in Section 3.5 natural.
Consider the case of an open string with only Neumann boundary conditions for
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which the modes expansion (3.23)) holds; its decomposition into right and left-
movers components giveﬂ

ot -zt 1 ) ot
XU r — o) = Zpt(r — Z Zn p=in(r—0) 4.84
Wr—o) =S54 o)+ 2 Y e (4349
n#0
ot +x* 1 7 at
“w . . - v “n —in(r—o)
Xt —o)= 5 + 2p“(7'+0) + 5 Eﬂ) - e . (4.85)

If as before we compact the coordinate X2 on a circle of radius R, the T-duality
transformation gives

T: Xp — —-Xp XP - XP. (4.86)

Consequently the dual coordinate X 2° becomes
~ 25 .
XP(r,0) = XP - XP =3 10+ e sin(no) . (4.87)
n
n#0

Since this coordinate has no linear terms in 7 it is concluded that the dual open
string has no momentum in 22° direction along which it can therefore only oscil-
late. Furthermore we see that satisfies Dirichlet boundary conditions as the
ends points in 0 = 0, 7 are now fixed

)2'25(7, 0) = 725 )}*25@-’ ) = i+ 27kR . (4.88)

In this way the numbers x are associated with invariant winding numbers which
otherwise would not be stable since an open string can be topologically contracted
in a point.

T-duality thus allows to pass from an open bosonic string with Neumann boundary
conditions on a circle of radius R to a dual open bosonic string with Dirichlet
boundary conditions on a circle of radius R = o//R. On the other hand, in
Section 3.5 it is discussed how the presence of such boundary conditions requires
the existence of D-branes as dynamical physical objects of the theory. In this
specific case of compactification along the x?® direction there is the presence of
a D24-brane. In general for a compactification on an n-dimensional torus 7" we
will have a D(25 — n)-brane.

In Section 3.5 we also discussed how multiple D-branes allow us to construct
gauge groups. In the context of compactification on a circle, a potential A, if
suitably diagonalized so that

1
2TR

2For this context the string length is expressed in units such that o € [0, 7).

A= —

diag(0y, 0, .., 0x) (4.89)
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makes it possible to have non-trivial holonomies associated with Wilson’s lines
U=l dra (4.90)

In the presence of a potential (#.89), the canonical conjugate moment for an open

string | N, k, 7) is given by IT;; = p + 92;% so that the quantization I1% = /R,

with k € Z, gives the kinetic momentum

25_I€ (9]—9,

R—FW keZ. (4.91)

The mode expansion of the dual coordinate X i2j5 then becomes
25 _ ~25 > > 0, — 0
X7 =3y +0R+2Ro | k+ —— ) + ... (4.92)
2

It can be seen that the two ends points of the open string in 0 = 0, 7 are located
respectively in 23° + 6;R, 23> + 6;R. By virtue of the T-duality, in fact, the
parameters 6; identify the positions of the D24-branes along the dual circle (Figure
4.2).

The mass spectrum for an open bosonic string with Chan-Paton factors is thus
modified

2 _ Loy gy (A 00 2 (4.93)

m;. = —(N — — . .
Yo R 27R

It is interesting to investigate the ground state and first massless states with k£ = 0,

i.e. the string states that do not wrap along the circle.

e N =0, N = 1: The ground state is again a tachyon state with negative
mass )
m?=——. (4.94)
o
In this case its presence indicates an instability of the D-brane which tends
to decay into closed string radiation [[13} [14].

N =1, N = 1: In the case of only one D-brane we have i = j and then we
can have the following massless states

o’ |0, k) o 0k)  p=0,.,24 (4.95)

of which the first describes oscillation in the compact direction and corre-
sponds to a scalar field Ao, the second describes oscillations tangential to
the D24-brane and correspond to a gauge vector field A, with symmetry

group U(1).
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e N =1, N > 1: In the case of A/ branes the mass-shell condition takes the
general form

m2—+i(N—1)+ b, =0\’ ij=1,..N (4.96)
=t o , =1, ., /N . .

If the D-branes are all coincident, that is, if 0; = 0; V 1, j, there are addi-
tional massless states with respect to the previous case and the states (4.95)
are now associated with scalar fields (A;);; and vector fields (A,,);; giv-
ing rise to a non-Abelian symmetry group U(N'). If one or more D-branes
change position, the aforementioned group is broken. For example, if a D-
brane changes position on the dual circle, we see the following symmetry
breaking

UN) — UN-1) x UQ1). (4.97)

In general, for NV, coincident branes we have a non-Abelian gauge group
U(Np) and many abelian gauge groups U(1) for each remaining D-brane.
If0; #6; Vi, j then there are N” Abelian gauge groups

UN) — ULV, (4.98)
This is the peculiar way of describing gauge groups in the context of String Theory

and it constitutes the method with which to investigate the matter theories such as
the Standard Model and its extensions outlining the Landscape of the theory.

CloT

0 OR OR OR 0:R

Y

Figure 4.2: Open strings ending on D-branes [14]



Chapter 5

The No Global Symmetry conjecture

The first conjecture introduced in the context of the Swampland program was
the No Global symmetry conjecture (NGS). It is in fact a formally very simple
and general conjecture but which, precisely because of these characteristics, pro-
vides important restrictions on real world physics. The conjecture, without mak-
ing particular limiting hypotheses, requires that a consistent QG theory be devoid
of global symmetries

No Global Symmetry conjecture. A theory with a finite number of states,
coupled to gravity, can not have any exact global symmetry.

The conjecture thus exposed also applies to EFTs so that it can be concluded
that the apparent global symmetries observed in low energy regimes must actu-
ally be broken or gauged at a certain energy scale. In the first case the symmetry
observed in the IR is an approximate symmetry and it must then happen that at
higher orders of approximation of the EFT there must be an operator who ex-
plicitly breaks the symmetry. It should be noted, in fact, that the existence of a
mechanism capable of reproducing a spontaneous symmetry breaking is not suffi-
cient to satisfy the conjecture. With a spontaneous break there is no elimination of
symmetry but rather a different manifestation of it. In the second case, however,
evidently, high-energy physics must have additional degrees of freedom with re-
spect to EFT such as to reproduce the gauge theory associated with the symmetry.
In addition to enjoying the evidence of validity in the context of String Theory pre-
sented in Chapter 2, No Global Symmetry has evidence from black hole physics.
From the study of black holes in the context of QFT, it is known that a black hole
actually emits via Hawking radiation. Since Hawking radiation has a purely ther-
mal spectrum, this means that a black hole charged under a global symmetry, once
it reaches the dimensions of the Planck scale, will cease its emission reducing it-
self to a stable charged remnant. The result is therefore the obtaining of an infinite

46
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number of remnants (one for each charged black hole) below a finite energy scale
with consequent entropy problems.

These problems can also be addressed in the light of the No-Hair theorem accord-
ing to which a stable black hole is completely described by its mass, its angular
momentum and its gauge charge. Any global charges would in no way be observ-
able, giving rise to infinite uncertainty and therefore again to entropy problems.

In String Theory the idea of not being able to have global symmetries derives
from the connection between the worldsheet of the string and the target space.
In general, already at the bosonic string level it can be seen that a continuous
global symmetry in the worldsheet always corresponds to a gauge symmetry of
the target space. In fact, in perturbative string theory, to each global symmetry of
the worldsheet it is possible to associate some Noether currents j., j; to which a
conserved charge is associated

1 ) _.
Q= o 7{ (dzj, — dzjz) . (5.1)

Conformal invariance ensures that the currents j,, j; are transformed respectively
as tensors of type (1,0), (0, 1). Starting from the two currents it is then possible to
construct two vertex operators, j.0X*e*X and 9 X*jze’*X which create massless
gauge vectors in the target space associated with the two components of the charge
. This means that the global symmetry of the worldsheet becomes a gauge
symmetry from the point view of the target space. It is concluded that in String
Theory there is no way to construct global symmetries in accordance with the
NGS conjecture.

5.1 Cobordism Classes

The NGS conjecture in its simplest formulation, although general, has the draw-
back that it is not very predictive in quantitative terms. In fact, if a global sym-
metry is actually an approximate symmetry, the conjecture, while foreseeing its
explicit break, does not give any information about the energy scale at which this
break must take place. In other words, it is not possible to establish a priori the
degree of approximation of the symmetry. The resulting problem is that it is then
difficult to draw phenomenological implications in a low-energy regime.

In order to remedy this limitation, it is useful to investigate possible reformula-
tions of the conjecture in terms of topological quantities and, in particular, through
a classification based on the concept of cobordism classes.

Cobordism is defined as an equivalence relationship between compact manifolds
of the same dimension. To study the nature of this equivalence, let us consider
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for simplicity oriented manifolds M such that M is the manifold with opposite
orientation. The following definition will then be given

Definition 1. Two smooth, closed and oriented k-dimensional manifolds M and
N are said to belong to the same cobordism class if the disjoint union of M and
N, constitutes the boundary of a closed oriented (k + 1)-dimensional manifold
W, ie. if

MUN =0W . (5.2)

The manifolds belonging to the same cobordism class are said to be "cobor-
dant" and the manifold IV is called the cobordism of M and N (Figure 5.1). Note
that connectivity is not required for /. It is therefore easy to verify that the cobor-
dism thus constructed effectively defines an equivalence class.

Domain
wWall

Figure 5.1: Cobordism between two manifolds [25]

The idea behind the notion of cobordism is to generalize the concept of diffeo-
morphism by defining a sort of equivalence of manifolds at the topological level.
A manifold can be obtained from a manifold of the same cobordism class adjoin-
ing it by means of an appropriateE] topological deformation process.

Given a set of cobordism classes of closed and compact k-dimensional manifolds,
denoted with {24, it can be seen that {2, acquires an Abelian group structure. For
this purpose, the disjoint union operation is considered as a group operation. If

'For the purposes of physics, only topological deformations compatible with the dynamics of
the theory can be considered.
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[M] is the cobordism class of the manifold M, then it is defined
[Mi] + [Ma] = [My U Ms] . (5.3)
The above operation satisfies all group properties, since V [M], [M;] € Q :
e closure : [M;] 4 [Ms] €
e associativity : ([M;] + [Ms]) + [Ms] = [My] + ([Ma] + [M3))
* neutral element: 3 [@] =0 : [M]+ 0= [M]
« inverse element : V[M] 3[M] : [M]+[M] =0

where, in particular, the neutral element indicates a cobordism class with an empty
manifold or simply the set of k-dimensional manifolds [@] which are boundary of
a (k + 1)-dimensional manifold W, [@] = [0W]. The inverse element [M/] can be
interpreted as a class of suitable manifolds of opposite orientation to those of [M].
In fact, their disjoint union by definition of cobordism gives rise to a boundary and
is therefore an element of the trivial class. For the group (2, the commutativity
property is also valid since the disjoint union operation is trivially invariant due to
the exchange of the two manifolds since there is no notion of ordering.

 commutivity : [M;] + [My] = [My] + [M;] .

It is concluded that the group (2 it actually constitutes an Abelian group. Fur-
thermore it is possible to give a ring structure to {2 under the Cartesian product
operation. Indeed, if M; is cobordant with M5 and /V; is cobordant with N5, then
M; x Nj is cobordant with My X Ns.

For instance, the low-dimensional cobordism groups for compact oriented mani-
folds are

c Q=2
.« Q=0
« Q=0
« Q=0
- =2,

In the case £ = 0, the only oriented manifolds are oriented points e, e_, and
their disjoint unions. Note that e LI _ is the the 0-dimensional circle S° which
is the boundary of 1-dimensional disk D!. Therefore the neutral element will be
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the class of all disjoint unions of points or sets of points with opposite orienta-
tions. For each non-coupled point we will have different cobordism classes so
that QQ =Z.

In the case £ = 1 the simplest closed 1-dimensional manifold is the oriented
circle S! but itself is an element of [2] since it is the boundary of the disk D?.
Consequently, every disjoint union of circles will be an element of [@] and then
the cobordism group (2is trivial. The same argument applies to £k = 2 since in
this case the oriented closed manifolds are spheres S?, tori T2 and generic handle
surfaces which in turn are respectively boundary of the balls D3, solid tori and
generic handlebodies.

The case k£ = 4 differs from the lower dimensional cases because the Poincaré du-
ality theorem holds, according to which for each 4n-dimensional manifold M it
is possible to associate a symmetrical quadratic form induced by the cup-product
[26]. Consequently, the manifold signature (M ) can be defined as the sum of the
number of positive eigenvalues minus the sum of the number of negative eigen-
values. The signature is therefore an integer that classifies the 4k-dimensional
topologies. In the context of cobordism classes it appears that this signature has
the following properties [27]]

e o(My U M) = o(M:) + o(My)
© [Mi] = [M;)] = o(M) =o(M)
. (OW) =0 ¥ OW = M, U M,
o o(My # My) = o(My) + (M)

where "#" denotes the connected sum. Consequently, given that the complex
projective plane CP? has o(CP?) = 1 [26]], from disjoint union of CP*s we obtain
non-trivial cobordism classes such that ), = Z.

5.2 Cobordism in Quantum Gravity

The mathematical formalism of the cobordism classes can be used and specialized
for the study of Quantum Gravity. For this purpose, consider a D-dimensional
theory with k£ compacted dimensions. An EFT can be associated with each k-
dimensional manifold. In this context, two manifolds will be said to be cobordant
if obtainable from each other through topological processes consistent with the
QG theory. EFTs associated with two cobordant manifolds are connected by a
domain wall. With this prescription, then consider the cobordism group obtained
as the set of compactification manifolds classes QgG. To understand the meaning
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of group structure, let take the disjoint union of two compactification manifolds.
If this union is cobordant with a third compactification manifold N, then it results

[Mi] + [Ms] = [My U Ms] = [N]. (5.4)

This means that the group structure allows a topological description of the dy-
namic process that links the union of two EFTs to a third EFT through a domain
wall (Figure 5.2).

/

Figure 5.2: Cobordism with the disjoint union of two manifold [25]]

The neutral element [©] = 0 will correspond to the class of manifold that are
boundaries. EFTs compactified on such manifolds have domain walls that act as
ends of their vacua (Figure 5.3).

f/”
t'/‘i

Figure 5.3: Neutral element of cobordism group [25]
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Given this definition, it is therefore interesting to rewrite the No Global sym-
metry conjecture in terms of cobordism classes. The link between the physics
of QG and the topology of such classes is given by the fact that the cobordism
classes of k-dimensional manifolds give rise to the formation of a global topo-
logical charge. It is therefore reasonable to rewrite No Global Symmetry in the
following form.

Triviality of the Coborsism Classes. Consider some D-dimensional QG
theory compactified on a k-dimensional internal manifold. All cobordism
classes must vanish

%S — 0. (5.5)

In fact, the non-triviality of the cobordism classes QSG # 0 implies that
there would exist non-cobordant k-dimensional manifolds. In the interpretation
in which an EFT is associated with a k-dimensional manifold, this would mean
that non-triviality should be interpreted as the absence of a domain wall between
the two EFTs. On the other hand, the lack of interpolation of two EFTs would give
rise to a global topological charge [M] € QdQG associated with a global (D—k—1)-
form symmetry (see Appendix A) in contradiction with the No Global Symmetry
conjecture.

Cobordism groups form an homology Hj(pt) which can be used to make a clas-
sification of topological spaces for every dimensions. Given a single homology
group, its class elements are associated with topological invariants given by gen-
eralized winding numbers. In the light of explicit group expressions as cyclic
groups, we see that such winding numbers assume only integer numbers and then
define topological charges as quantum numbers.

To better understand the mechanism of production of a global charge, consider a
flat D-dimensional theory and a compactification manifold M*. Make the con-
nected sum R* x M* obtained by cutting a k-dimensional sphere from M* and
R* and gluing together the boundaries thus formed. The resulting space is almost
flat except for a small region. This procedure gives rise to the formation of a
gravitational soliton [25] 28] (see next subsection) which acts as a (D — k — 1)-
dimensional defect. Therefore, each set of closed and compact k-dimensional
manifolds can be mapped to a set of (D — k — 1)-dimensional defects. If the
cobordism group is not trivial, Q®“ £ 0, since for example [M] # 0, then in the
presence of the gravitational soliton there is a topological invariant that defines a
generalized global charge in contradiction with the No Global Symmetry conjec-
ture. In fact, the same arguments made in the case of an ordinary global symmetry
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apply to it if the topological defect falls into a black brane.

The charge obtained has a topological nature. On the other hand, in many cases
a topological invariance can be interpreted as a physical global symmetry of the
system. This is the case, for example of Particle Physics where the baryon number
is reproduced as winding number in the skyrmion model [29].

The topological formulation of the conjecture, in addition to the higher level
of formality, appears to be in some ways more general but above all it allows to
draw important topological conclusions about the physics of the QG. If we study
the EFTs of Swampland in terms of cobordism classes, the non-triviality of QSG
in the low energy regime competent for EFTs, in order to have a compatibility
with the QG in the ultraviolet, it must be interpreted as ignorance of the degrees
of freedom necessary to obtain triviality. In accordance with what has already
been said, for the NGS conjecture to be valid, a global symmetry approximated at
low energies must be explicitly broken or gauged. In the first case, the presence
of topological defects is required (Figure 5.4) while in the second the presence of
gauge fields.

In this sense, the No Global symmetry conjecture, expressed as the triviality of
the cobordism classes, allows us to predict the existence of new objects otherwise
deducible only from direct observation at high energies.

|' " \ — Defect

\J_

Figure 5.4: Triviality of the cobordism through a topological defect
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5.2.1 Gravitational instantons

To make more clear the scope of the cobordism conjecture and the related ar-
guments, consider gravitational instantons [30]. Note in fact that a topological
instanton can be regarded as a topological soliton in higher dimensions. In partic-
ular, consider the case of compact theories on 4-dimensional manifolds (k = 4).
It has been seen that in this case the cobordism group for oriented manifolds is
Q4 = Z. On the other hand we know that, wanting to apply the cobordism to
gravity, only the compactification manifolds consistent with the gravitational dy-
namics must be considered. The idea is to introduce the analog of Yang-Mills
instanton in the case of the theory of gravity. A gravitational instanton is then
defined as a classical solution of Einstein’s equations with finite energy. The ge-
ometries that can be interpreted as gravitational instantons are then classified as
hyperkahler 4-dimensional manifolds, i.e. Ricci-flat Riemann manifolds (solu-
tions of Einstein’s equation in vacuum) with holonomy group contained in Sp (1).
Such solutions are automatically dual or antidual, that is, for them it results

R, =0 R = €unoRY = +R,, . (5.6)

Each 4-dimensional compact hyperkahler manifold can be regarded as a K3 sur-
face [31]] or a compact torus 7. In the case of Riemannian manifolds M the
signature introduced in Section 5.1 can be analytically expressed as [32]

/ d*z+/|g] € R Rypap - (5.7)

It is a topological term that constitutes the gravitational analogue of the f-term of
the QCD. It indeed contributes to the CP violation [33]]. The signatures for
hyperkahler manifolds are respectively given by o(K3) = —16 and o(T*) = 0
(32, 25]].

Given a gravitational instanton with K3 geometry, it can be interpreted as a fluc-
tuation of spacetime at the quantum level if the connected sum operation is carried
out between a flat D-dimensional spacetime and the gravitational instanton (Fig-
ure 5.5).
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K3

.

v

Figure 5.5: Gravitational instanton obtained through the connected sum of K3
with the flat space [33]]

The resulting geometry will no longer be a solution of Einstein’s equations [34,
33] but, by virtue of the signature properties, this procedure leaves the geometry
invariant under cobordism. In fact it turns out

o(K3#R") =0(K3)= —16. (5.8)

It is then explicitly seen how the non-triviality of the cobordism group for k = 4
is expressed in the context of QG. In accordance with the reformulation of the
NGS, there must be a topological defect associated with this group such as to
ensure QSG = 0. To this end, it should be noted that the physical properties of
compactification require that the manifolds have a spin structure. The definition
of hyperkahler 4-manifold ensures the presence of this structure by virtue of the
holonomy group [31]], therefore the formally most suitable context in which to
study the compactification processes is that of the Superstring Theory. In this
case, in fact, we have D = 10 and it is known that there are 5-dimensional branes
called N S5-branes which can therefore be regarded as the topological (D —k—1)-
dimensional objects associated with the cobordism group Q?G.
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5.3 The Completeness Hypothesis

The No Global Symmetry conjecture expresses the incompatibility of QG with
global symmetries. The discourse is clearly different for the gauge symmetries
which, however, are affected by the impact of the conjecture described above.
In fact, global and local symmetries are not completely disconnected from each
other. Qualitatively a global symmetry can be regarded as the limit of a gauge
symmetry with coupling constant g — 0.

To clarify this link, consider for example the particular case of an EFT with
gauge symmetry U (1) weakly coupled to gravity through the introduction of the
Einstein-Hilbert action

1
/d4x\/ [ e EFQ} : (5.9)
Locally the action of the gauge symmetry is equivalently expressed by the follow-
ing transformations of the vector field A, (z)

Ay — Ay + 0 Ay — Ay 4oy (5.10)

with A(x) scalar parameter and ¢ field such that J;,0,) = 0.

From the global point of view the situation is crucially different [5]. The condition
0),0,) = 0 for the ¢ field it is in fact incompatible with the gauging of the transfor-
mation and gives rise to a generalized global symmetry in contradiction with the
NGS conjecture. The problem of the presence of generalized global symmetries
within the EFTs can however be solved by introducing charged gauge fields. A
gauge theory is in fact invariant under transformations A, — A, + d,\ but not
under generalized global transformations A, — A, + o,,.

What said in the case of a U(1) gauge symmetry can then be repeated also for a
generic discrete symmetry. In this case, the elimination of global symmetries will
require the presence of all charged states predicted by the Dirac quantization of
the charge.

This observation then leads to express a further swampland criterion that EFTs
must satisfy in order to be consistent with UV completion in a QG theory known
as completeness conjecture

Completeness Conjecture. A theory with a gauge symmetry, coupled to
gravity, must have states of all possible charges under the gauge symmetry.

Note that, even in this case, although the conjecture has a general character,
it does not make any quantitative reference about the mass of the charged states.
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This means that there is no a priori information regarding the energy scale to
which the conjecture can give observable effects.

The completeness of the spectrum can also be revisited in the light of the
notion of cobordism. In particular, it can be seen that it is a consequence of the
triviality of the cobordism group. To this end, consider the more general case of
a theory coupled to a p-form gauge field A, associated with a p-form symmetry
group U(1) (see Appendix A). Introduced the field strength F),.; = dA,, the
resulting theory has an action of the form

1

Serr = Sgm — 5/d‘{m/—g F AxF (5.11)

which is invariant under gauge symmetry transformations
Ay = Ay + A (5.12)

with A, a closed p-form. In this case the cobordism group is given by the set of
classes formed by closed and compact manifolds with p-form gauge field A,
The topological invariant is indeed associated with the charge

(D—p-1)
Q(MP—P=D A)) = / *F, i (5.13)
M

which is conserved by virtue of the equation of motion
dxFpi1 =0. (5.14)

This situation indicates the presence of an internal flow that gives rise to a non-
trivial cobordism group
Q¥ =Z. (5.15)

p+l
In this case, the demand for triviality of the cobordism group can be satisfied by

introducing charged objects under the gauge group that act as a source for the
flow. In doing so, in fact it results

dxFpp =J (5.16)

and therefore we have the explicit breaking of global symmetry [35] 136, 37]. In
particular, in order for the breakdown of the group to be completed, i.e. it concerns
all the topological invariants of Q¢ it is necessary that the spectrum of the gauge
field is complete, that is it must contain all source charges compatible with Dirac’s
quantization. What said for the field A, can be repeated for the dual field Ap_,_.
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In fact, the theory with p-form symmetry U(1) also enjoys a (D — p — 2)-form
global symmetry associated with the gauge transformation

AD—p—Q — AD—p—Q + 5\D—p—2 (5.17)

with A p—p—2 aclosed (D — p — 2)-form. The equation of motion for this field is
given by

dF,1 =0. (5.18)
Then, in this case the associated defects charges are
QIMPHY Ay = / Fy . (5.19)
M (p+1)

To have Q9¢ = 0 it is therefore necessary to introduce (D — p — 3)-dimensional
charged objects that act as magnetic monopoles for the A, field.

If what has been said were specialized to the case D = 4, one concludes that the
redefined NGS conjecture has as a consequence the completeness of the electric
and magnetic spectrum of the coupled gauge theory [38,139].

5.4 Relation with Weak Gravity conjecture

The NGS conjecture has an interesting link with the weak gravity conjecture stated
in Chapter 2. To clarify their connection, it should be noted that the evidence and
the reasons that typically come forward for the WGC, such as those reported in
[S, 4]], are analogous to the arguments proposed for the justification of the valid-
ity of the NGS conjecture. The reasons supporting the conjecture in fact again
refer to the black holes physics but in the presence of a gauge symmetry rather
than a global one. It has been said that a priori in a QG theory there is clearly no
obstruction to the presence of gauge symmetries. On the other hand, as already
observed, a global symmetry can be regarded as the limiting case of a gauge sym-
metry with coupling constant ¢ — 0. This would seem to suggest the possibility
of forming a global symmetry by such procedure. This possibility, however, is
prevented precisely by the WGC. In fact, remember that the magnetic version of
the conjecture requires that for an EFT with a cut-off A and coupled to a gauge
theory with coupling constant g, we must have

This means that if we tried to form a global symmetry in the limit ¢ — 0 the
cut-off of the theory would go to zero. In other words, the effective description of
the theory would lose its validity and would therefore require the introduction of
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additional degrees of freedom.

From a macroscopic point of view, we see that in the presence of a gauge symme-
try U(1) the number of black holes Npy that can form below the energy scale A
is finite with a trend A

Npp P (5.21)
It is clearly seen that the attempt to form a global symmetry would meet the en-
tropy problems already discussed in the previous section being Ngy — <.
The connection between NGS conjecture and the WGC, in addition to provide
a support for the correctness of the two conjectures, highlights a certain internal
consistency of the Swampland program which confirms its validity.

5.5 The Instability of AdS vacua

The triviality of the cobordism group has further consequences. The fact that k-
dimensional compactification manifolds constitute the edges of (k-+1)-dimensional
manifolds, M, = OW, implies that such manifolds can approach to have zero
size. This means that in QG the formation of so-called bubbles of nothing is topo-
logically allowed. Here "bubble of nothing"” means a non-perturbative instability
obtained when the extra dimensions collapse [40]. This process can take place
already in the case of a 5-dimensional space with a compacted dimension as it
happens for the Kaluza-Klein model in which the compactification manifold is S*
with compactification radius R. If we schematize the bubble of nothing as a 3d
ball B? of radius R, such that the space is given by (R* — B?) x S, the space-time
metric is then described by

2 R\ 2, .2 2 R 2

ds"=|1-— dre+r2dQs + R 1—— | do”. (5.22)
r r

This is a solution a priori allowed by the equations of motion. The effective com-

pacting radius is expressed by

R2
Repp(r) =R /1 — 2 (5.23)
which, in accordance with what has been said, tends to collapse into the limit
r — R. This configuration can also be found in the case of compactifications in
several dimensions.
The instability caused by the presence of a bubble of nothing occurs when the
conditions are created for this bubble to expand and cause the annihilation of
space. The satisfaction of these conditions will clearly depend on the dynamics
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of the system in which the bubble is formed. At this point we are interested in
establishing the conditions for the topological defects allowed by the cobordism
conjecture to produce or not instability of the space. To this end, it is useful
to study the case of instability supported by the presence of flows. In [41] it is
studied a particular process known as fragmentation of the anti-de Sitter (AdS)
space. Consider two EFTs associated with vacua stabilized by the presence of
internal flows, f and f + @, generated by a (p — 1)-form with field strength F),

/Q@:f. (5.24)
2p

The two vacua are interpolated by a domain wall provided by a (D — p — 1)-brane
of charge () under the p-form. Consider then the metric of the AdS space

ds®* = R? (Cosh2 p dr* + dp* + sinh? p dQZ?Q) (5.25)
with Q4 o = % volume of (d — 2)-dimensional unit sphere. Suppose that

the brane has spherical symmetry and is therefore described by action

2
S =R"™Q4 / dr | T'sinh®2 p\/cosh2 p+ (%) — M2Qsinh® ' p

(5.26)
where 7' is the brane tension. In the brane-test approximation, i.e. for negligible
brane charge with respect to the flow, the solutions of the equation of motion
associated with the action (5.26) provide the expression for the radius p of the

brane
T

MpQ
We then see that (5.26) describes the nucleation of a bubble which tends to expand
as long as its tension is smaller with respect to its charge. This occurs because the
contraction produced by the tension 7' fails to contrast the repulsion of the charged
regions of the brane. The result is the decay of the AdS vacuum into a vacuum with
lower flow and a charged p-brane. The limiting case tanh p = 1 corresponds to a
supersymmetric AdS vacuum [41]] which prevents the bubble from expanding and
thus maintains its stability. On the other hand the WGC, opportunely reformulated
to the case of a p-brane, requires the condition

tanh p = (5.27)

T < QM3 (5.28)

so that at least limited to the case of vacua supported by flows, an intrinsic insta-
bility of the non-supersymmetric AdS spaces is achieved. For generalization, the
following conjecture is formulated
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Non-SUSY Anti-de Sitter Instability conjecture. Any non-
supersymmetric anti-de Sitter vacuum is unstable or at best metastable.

The usefulness of this conjecture is that, by placing dynamic conditions on the
vacua of the EFT, it lends itself to setting limits on the parameters of the theory so
that the instability of the AdS space is ensured.

5.6 Neutrino masses

We now intend to study an application of the AdS instability conjecture in the
case of the Standard Model. In 4d the nature of an AdS space is quite exotic
as it is known that the vacuum associated with the SM coupled to gravity via an
Einstein-Hilbert term is unique and is not expected to be of AdS type. However,
the situation changes when SM compactifications are studied [42, 43} 44]. In this
case, we find a Landscape of vacua which also includes AdS ones. In particu-
lar, if we consider the SM coupled to gravity (SM + GR) as a 4d theory and we
compact only one dimension on a circle, it is legitimate the formation of a vac-
uum AdS3 X S!. The justification for considering this type of geometry derives
from the fact that they are used to describe exotic scenarios such as, in particular,
Reissner-Nordstrom black holes. For a discussion of the interpolation of such ge-
ometries with ordinary spacetime see [42]. Furthermore, it is expected that what
happens in the compactification limit can then also be reflected in more physical
decompactification scenarios.

If 'R is the radion and r is an arbitrary distance scale, in accordance with what was
said in the Chapter 4, the metric of the compact theory for large R can take the

form
2

2
ds* = ds?y + R (d@ ~ ]\‘[ Aﬂx“) (5.29)

R2 pr

where A, is the graviphoton field. The effective action associated with the theory

is given by
Lpep (R Y e (ORY <T>2A
277 4\ r o "\ R RS
(5.30)
in which it is taken into account a contribution from a non-zero cosmological

constant A. . which provides a potential term for the radionic field. On the other
hand, the small observed value of A. . means that the contributions associated with

Sz/d% gl ()
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1-loop quantum corrections are decisive. In this case the quantum corrections are
identified with the contributions to the Casimir energy C (see Appendix B). If ¢
denotes a state index for the spectrum of SM + G R, we find the following correct
expression for the radionic potential

3
V(R) = % + 3 @rR)(—1)*nCi(R) (5.31)

7

where n; are the degrees of freedom of the various states of the spectrum, s; =
0,1 respectively for fermions and bosons, and C; precisely denote the Casimir
potential for i-th state provided by the general formula (B.14)

(R Z 2m Ko(2mjRm;) (5.32)

J=1 (2m)? (2mjRm;)?
with Cy Bessel function.

Given a particle of mass m in the spectrum of the SM, the Casimir energy associ-
ated with this particle has an exponential trend of the type

Coxe ™R for R>1/m. (5.33)
o Ay
Z
<%}
3
S
N
A+g+n

R (GeV™h)

Figure 5.6: Radionic potential trend due to the contributions from cosmological
constant, graviton and photon [44]
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It is therefore concluded that the relevant contributions will come from the
light components of the SM + GR spectrum and specifically from states with
mass less than 1/R. The massless states of the spectrum are those associated with
photon and graviton, for which the Casimir potential is reduced in both cases to

Cop=Cpp= — . (5.34)

The potential is negative since we are dealing with bosons and the equal number
of degrees of freedom (n = 2) has been taken into account. It is then seen that the
contribution of the massless states is dominant with respect to the cosmological
constant term for small values of the radionic field for which the overall potential
V(R) = Vi + C, + C,, is therefore negative, returning the trend shown in Figure
5.6.

The maximum point is found for radion value

1 1/4
Romaz = (120—21\) ~ 7.55-10"°GeV ! (5.35)
’ c.c

where we used the cosmological constant value [45] A.. = (2.4 - 10_36V)4 in
natural units (A.. = pa,..). We see that the mass scale associated with this max-
imum point is of the order of 10~3¢V/, that is, of the order of magnitude of the
mass expected for light neutrinos [23]. It is therefore important for R < R4z
to take into account the contributions associated with neutrinos as particles as-
sociated with the lighter massive states of the SM. The Casimir potential due to
neutrinos is expressed by the general formula (B.14) which can be expanded for
small values of mR as
2 1 1
e e

(27R)4 (m, R

4L (mR) + O(m,,R)G] . 536)

Ultimately we therefore find the following expression for the radionic potential
corrected by the Casmir energy due to gravitons, photons and neutrinos

2mr®Ac, r 72 s 1 1 , 1 A
VR)~ ==~ <7207r7z6>+(27r)3ﬁ Zn {% ~ RS+ g mR) } '
(5.37)
It can be seen that the presence of neutrinos, as fermions, brings positive contri-
butions that can compensate for the bosonic ones and give rise to the formation of
stable minima even for negative values of the potential depending on the numeri-
cal values of the masses m,, (Figure 5.7). At this point it is clear in what sense the
no-SUSY instability conjecture can be applied. In order to ensure the instability
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of the AdS vacua, it is possible to set upper limits to the neutrino masses.

IH

3.10°70 9.10-69

15- 107!}'53‘
21077
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5.10°7

0 \/
5.1010 1-101 1.5 10" 1-10%2.10%3.1014 . 1095 . 10*% - 10°
R (GeV—!) R (GeV~!)

Figure 5.7: Radionic potential trend for different values of neutrino mass for both
NH and IH [44]

In order to study these limits, reference is made to the experimental results
obtained from the study of the oscillation processes for atmospheric and solar
neutrinos that fix respectively the differences in mass

Am?, ~ (7.5340.18) - 10 °eV? (5.38)
Am2 ~ (2.44 £0.06) - 107%eV>. (5.39)

From these data, if m; with « = 1,2, 3 denote the eigenstates masses, we have
Am3, = AmZ, Am3; = Am?,,, for normal hierarchy (NH) and Am{, = Amg,

Am3, = Am2,, for inverted hierarchy (IH). At this point, from the study of
the radionic potential, fixed the values (5.38] [5.39), we find the conditions on the
mass m; for NH and on mj3 for IH required for the formation of AdS, dS vacua
and for the absence of minima. In the case of Majorana neutrinos the number of
degrees of freedom useful for the compensation of the bosonic contributions is
insufficient to give rise to the formation of minima with positive potential. It is
therefore concluded that this analysis tends to exclude the possibility of having
Majorana type neutrinos at least in the case of the particle content of the SM.

In the case of Dirac neutrinos, on the other hand, the greater number of fermionic
degrees of freedom (twice) allows, in addition to the realization of minimum AdS,
also the realization of the conditions for having dS vacua or even the absence of
stationary points for the radionic potential. The results found from the study of
the exact expression for potential are summarized in Figure 5.8.
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NH

65

IH

No vacuum

dS; vacuum

AdS3 vacuum

My, < 6.7 meV
6.7 meV < m,, < 7.7 meV
my, > 7.7 meV

my, < 2.1 meV
2.1 meV < m,, < 2.56 meV

My, > 2.56 meV

Figure 5.8: Neutrino mass bounds for have dS3, AdS3 or for have no vacuum in
both NH and IH [44]]

In particular, it is concluded that the absence of stable AdS vacua is ensured
for lightest neutrino mass thus constrained

m, < 7.7-1073 eV? (NH) (5.40)

m, <2.6-1073 eV? (IH) . (5.41)

These results are obviously crucially linked to the value of the cosmological con-
stant (see Figure 5.9 and 5.10, 5.11) for which the experimental value was as-
sumed ([45]). If, on the other hand, A, . is left as a parameter and minimizes the
potential (5.37), the positive minimum condition in approximation mR ~ 1 is
translated by

(300, (55, m2)? + (4= 3n,) Sy md)

Aee 2 5.42
o (—3072 + 2304n, )72 (5.42)
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Figure 5.9: Radionic potential trend for different neutrino mass/cosmological con-
stant relations [42]]
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We see then that in terms of orders of magnitude there is the following inter-
esting relationship between the cosmological constant and the mass of the lightest
neutrino

m, < AV (5.43)

Y

This is a limit that according to the data of Plank 2018 appears to be experimen-
tally verified. It constitutes an interesting link between a cosmological parameter
and a parameter of Particle Physics that indicates how QG is able to relate two
different areas of physics. The phenomenon of neutrino oscillation, in this sense,
confirms the idea of a non-zero value of the cosmological constant regardless of
the presence of dark energy.

Note that the analysis stopped to consider the contribution of neutrinos while ne-
glecting the other states of the SM spectrum. This approximation is motivated
by the fact that the lightest mass state after that of neutrinos is the state asso-

ciated with electrons for which the Casimir potential is suppressed by a factor
e—27rme’R ~ e—me/mv.

Cosmological Constant + Majorana Neutrinos (NH) Cosmological Constant + Majorana Neutrinos (IH)
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Figure 5.10: Allowed and non allowed regions for Majorana neutrino masses de-
pending on cosmological constant value for both NH and IH [44]]
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Cosmological Constant + Dirac Neutrinos (NH) Cosmological Constant + Dirac Neutrinos (IH)
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Figure 5.11: Allowed and non allowed regions for Dirac neutrino masses depend-
ing on cosmological constant value for both NH and IH [44]]



Chapter 6

The Swampland Distance conjecture

Let’s take into consideration the Swampland Distance conjecture (SDC) which,
more then No Global symmetry conjecture, as seen in detail in Chapter 3, draws
its major motivation in String Theory. The purpose of this chapter is to study
in detail the mathematical formalism on which the statement of the conjecture is
based in order to make the appropriate generalizations with respect to what has
already been said for the compactification of the bosonic string and above all in
order to investigate the possible phenomenological consequences. In the context
of String Theory, in fact, we saw the motivation that gave impetus to the formula-
tion of the conjecture but in reference to the theory of QG for which the validity
of the conjecture is somewhat expected and does not constitute an element of nov-
elty. Instead, the goal is to study the effects of the conjecture at the EFT level.

To this end, let’s start by recalling the statement of the conjecture already given in
Chapter 2 in its simplest version.

Distance conjecture. Consider a theory, coupled to gravity, with a moduli
space M. Starting from any point P € M there exists another point () €
M such that the geodesic distance between P and (), denoted by d(P, @),
is infinite.
Furthermore, there is an infinite tower of states with an associated mass
scale M such that

M(Q) ~ M(P)e odPQ) (6.1)

where « 1s some positive constant.

J

The first step to extrapolate physics from the SDC is to clarify the mathematics
on which the formulation of the statement is based and therefore, in particular, to
provide the definition of moduli space and of the concept of geodesic distance on
this space.

68
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6.1 The Moduli space

In general, in differential geometry, the moduli space is defined as the space of
generic geometric classes and can intuitively be thought of as the space of the
characteristic parameters of a given geometry. In physics the concept of moduli
space is used in Quantum Field Theory to indicate the space of the possible vac-
uum states of the theory. On the other hand, typically, the possible vacua of a
QFT are labeled by the expectation values of some scalar fields. If a scalar field
has continuous degeneration of minimum points then there can be a manifold M
called precisely vacuum or moduli space. In the context of Quantum Gravity, and
in particular in string theory, the notion of moduli space in addition to character-
izing the string background serves to control the trend of the physical parameters
of interest of the theory. In this sense, in the view of Swampland approach, it is
useful to investigate the behaviour of the theory by moving along the moduli space
and, in particular, to study its behaviour when approaching asymptotic limits. The
knowledge of QG behaviour as the parameters of the theory change can in fact
prove useful to test the limits of validity of the EFTs and deduce the necessary
changes in order to preserve compatibility with the QG. This is what we intend to
do with the Distance conjecture. Given a k-dimensional moduli space M it can
in general be parametrized by the expectation values of real scalar field ¢°, with
t = 0, ..k, which defines a coordinate system on the moduli manifold. The same
field is also used for the definition of the metric of the manifold starting from its
kinetic term. If we consider an EFT weakly coupled to gravity and with the ¢
scalar field, it will be described by the action

S = / d'zy/—g [? — hij(¢")09'0¢ + ...| . (6.2)

The kinetic term that appears for the field ¢ implicitly defines the metric h;; of
the moduli space M which characterizes the degree of complexity of the space.
(M, h;;) will then be a Riemann manifold on which it is possible to define a
notion of distance and, in particular, of geodesic distance. For this purpose, given
two points of the manifold, P and Q, and given a geodetic curve v connecting the
two points, the geodetic distance is defined

d(P,Q) = / ds <h ¢ W) . (6.3)

. Y 0s 0Os

Note at this point that the conjecture imposes limits on the possible space of the
modules compatible with the QG. It is in fact required that for every point P there
exists a point Q at an infinite geodetic distance. This request is not satisfied by
all the spaces parametrized by scalar fields as in the case of fields with periodic
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expectation values ¢ ~ ¢ + 2. In this case, for example, the compatibility of
such a field with the QG is allowed only if the moduli space associated to it can
be framed in a larger moduli space compatible with the conjecture. It should also
be noted that the evidence given in Chapter 3 about the compactification process
of a bosonic string shows the validity of the conjecture in the simplest case in
which the moduli space is the real semi-axis, M = R, and the parameter that
acts as modulus is the radion r. It is therefore a somewhat restrictive example that
does not account for the vast applicability of the conjecture to spaces of the more
complicated moduli.
Consider, in the light of the formalism introduced, the relationship between the
mass scales of the infinite tower of states evaluated at two different points of the
manifold

M(Q) ~ M(P)e—edrQ) (6.4)

It is clear that in the asymptotic limit of infinite geodesic distance there is a mass-
less tower of states and that the approach to this limit is of a decreasing exponential
type. On the other hand, the conjecture does not refer to the quantitative value of
the positive constant « that regulates the decay rate. However, it can be said that,
on the basis of the reasons presented in the context of String Theory, a rate of the
order of unity is expected.

In any case, the presence of an infinite tower of zero mass states expresses the
breakdown of the effective description which can be better formalized in terms of
cut-off through the analogous relation

A~ Mpe™ @89 (6.5)

in which the trend of the validity of an EFT is evident as the geodetic distance on
the moduli space increases, i.e. as the parameters of the theory change. In par-
ticular, it is concluded that the EFTs are correctly defined only for finite geodetic
distances and, by inverting the above relation, for the scalar field we find

A¢ ~ 1 In Mp (6.6)
a A

which expresses the variability of the field that can be described by EFT with a
cut-off A.
The presence of an infinite tower of states that frustrates the effective theory gives
rise to the cut-off (6.5). This consequence of the SDC is consistent with a more
general idea according to which the formation of a large number N, of weakly
coupled states makes gravity strongly coupled and therefore identifies a cut-off
scale called species bound cut-off. This result is contained in the following con-
jecture [3]
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Species Bound cut-off. Given a D-dimensional effective field theory cou-
pled to gravity with N, species states below a cut-off scale A, there is a
species bound cut-off
M
i, = ——
ND=3

>A. (6.7)

The consequence of this statement, according to the SDC, is that the effects of
Quantum Gravity can be observed even before the Planck scale. On the other
hand, it is an expected and desirable result on which the entire study of the
Swampland approach is based.

6.1.1 Relation with others conjectures

The relationship of the SDC with the Weak Gravity conjecture is twofold. A first
way to relate the two conjectures is through the species bound cut-off presented in
the previous section. If we consider a tower of states with a mass variation Am,
the number of species N, can be written as

A
Ny =—. 6.8
A (6.8)
By virtue of the species bound it is therefore
D-2
Ay = MPAm/P1 (6.9)

On the other hand, the electric version of the WGC expressed in terms of mass
gap gives Am ~ g which replaced in provides

D=2
Ay~ gt PP (6.10)

It is then concluded that according to the SDC when the gauge coupling constant
g goes to zero we have A, — 0 and therefore the breaking of the effective descrip-
tion.

For the magnetic version, the link appears to be in some ways more direct. Indeed,
as the SDC does, this version of the conjecture imposes a restriction on the cut-off
of the theory but in terms of the coupling constant g.

D—2
A< gM,? . (6.11)

In [5} 4] the scale imposed by the WGC is associated with the formation scale
of an infinite tower of states. This tower is then identified with the state tower
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foreseen by the SDC. This identification provides that there is the following corre-
spondence between the gauge coupling constant g and the scalar field ¢ associated
with the moduli space of the EFT

g—e?. (6.12)

Also note that this relationship with the electric and magnetic version of the WGC
highlights an interesting link that the SDC has with the No Global Symmetry con-
jecture. The fact that for g — 0 there is the formation of an infinite tower of states
and that at the scale @ the EFT breaks, means that, according to what has
been said in section 5.4, the SDC as well as the WGC provide an obstruction to
the formation of a global symmetry justifying in a certain sense what is required
by the NGS conjecture.

The different way of relating the SDC to the WGC is to refer to an alternative
formulation of the second. Depending on the context, the WGC has in fact mul-
tiple formulations. In particular, in the case of the presence of a scalar field, such
as that of the SDC, the following scalar version is proposed

Scalar Weak Gravity conjecture. Given a D-dimensional EFT weakly
coupled to gravity with some massless scalar fields, there must exist a state
with mass m satisfying the following condition

The idea of such version of the WGC is to specify the condition for the grav-
itational interaction to be weaker than any scalar interaction. It can be seen then
that in the case of a single scalar field ¢ it is reduced to imposing the following
condition on the course of the mass of the field

1
|0pm| > —m (6.14)

V2

It is then noted that the scalar WGC is certainly satisfied for masses that decrease
exponentially as the distance in the moduli space increases, i.e. for m ~ =%, in
accordance with the SDC (6.1).

6.1.2 The Distance conjecture in String Theory

Consider the effective D-dimensional theory associated with the compactification
of a bosonic string on a circle. If R is the compactification radius, the scalar field
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¢ associated with the radion of the theory is introduced

b-1 nR. (6.15)

=\ D

The action will then be obtained as the sum of the Einstein-Hilbert action with the
kinetic term of the field ¢
D—2 D R 1 2
Sepf = Mp d“x\/—g 2 3 (09)*| . (6.16)
The radionic scalar field defines a moduli space consisting of the real axis, M =
R. In this space, two asymptotic regions associated with compactification and
decompactification limits are observed

e R - 0 = ¢ — —x
e R — 400 = ¢ — +00.

In the first case there is the formation of an infinite tower of states due to the string
winding modes around the compact size. The mass of these modes, in terms of
the scalar field, has the exponential trend

My ~ e V529 6.17)

Similarly, in the decompactification limit it has been seen that in this case the
tower of states is provided by Kaluza Klein states. The mass mx i of these states
maintains the same exponential trend in the opposite limit (Figure 6.1).

Figure 6.1: Mass scale exponential decadence for both winding and Kaluza-Klein
modes respectively in compactification and decompactification limits [4]]
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It is concluded that in the simple compactification model of a bosonic string
the Swampland Distance Conjecture is verified if we take the radion as scalar
potential, ¢(R), and the real axis R as the moduli space. Furthermore, the direct
observation of the conjecture in this specific model allows to explicitly determine

the decrease rate
D -1
a=\=—— 6.18
) (6.18)
which is therefore consistent with the expectation o ~ O(1).
Also note that the realization of the conjecture is associated with the presence of

T-duality within the theory

- 1
T: w & kv = R RN%. (6.19)

The relationship is associated with the fact that the two asymptotic bounds in the
module space provide two dual descriptions of compactification as already dis-
cussed in the Section 4.2.

This feature, at least in the context of String Theory, highlights a relationship be-
tween distance conjecture and duality which is supposed to have general validity.
The SDC therefore is supposed to formally summarize the observation that the
theory of Quantum Gravity provided by String Theory has dualities. On the other
hand, it is no coincidence that it is now well established that duality transforma-
tions play a crucial role in String Theory as they provide a unified picture of the
various possible string theories.

6.2 The de Sitter vacuum

The expression provided for the SDC refers to a moduli space that can be parametrized
through a scalar field ¢ which is supposed to be potential-free. This restriction
was dictated by the desire to give an essential version of the conjecture sufficient

to contain what is needed to account for the evidence that one has in String Theory
and to carry out natural generalizations. However, if we want to deeper address
the application of the conjecture in order to quantitatively test the EFTs, it is nec-
essary to extend the conjecture to the case of fields with scalar potential V' (¢) and
therefore to the case of fields not suitable for parametrizing moduli spaces. A re-
fined Swampland Distance conjecture is therefore proposed
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Refined Distance conjecture. Consider a theory, coupled to gravity, in
which there is a scalar field ¢ with a potential V'(¢). Given two points in
the field space,P, () € M, there exists an infinite tower of states with an
associated mass scale M such that

M(Q) ~ M(P)e” (6.20)

So we will no longer talk about moduli spaces but, more generally, about field
or pseudo-moduli space. It should be noted that the proposed reformulation, in
addition to operating the desired generalization, resolves the already highlighted
ambiguity of quantitatively estimating the decadence rate o contextually to the
variation of the geodetic distance under consideration, d(P, ()). The exponential
behavior of the mass scale is now supposed to be manifest for distances d(P, )) >
Mp. In other words, we deduce that in the refined SDC we explicitly include the
requirement that the decadence rate should be o ~ O(1) at least within the limits
of asymptotic distances.

The goal of generalizing the SDC lies in the fact that it is now possible to adapt the
statement of the conjecture to a large class of EFTs with a generic scalar potential
V' (¢) and use it as a selection criterion to narrow the set of EFTs compatible with
an embedding in QG. To see how this procedure works, it is necessary to extract
the physics contained in the SDC.
The fact that at asymptotic geodetic distances in M there is the formation of an
infinite tower of massless states can be formalized directly in terms of the number
of states IV (¢) within the EFT, i.e. the number of states at energy below the cut-off
A, as

N(¢) = n(p)e™ (6.21)

where [ is a positive constant, generally different from «, depending on the con-
stituent objects of the tower and n(¢) refers to the number of towers.

At this point, consider a space with a curvature radius R and study the trend of
entropy as a consequence of the formation of the towers of states. It will be found
that the aforesaid entropy S;,u.- Will depend on the number of states N and on
the geometric properties of the space, S = S(N, R), with R curvature radius of
the space. In particular, it can be assumed that S(/N, R) has a polynomial trend in
the two variables N, R of the type

Stower = NTR . (6.22)

Moreover, according to what Bousso found [46], it can be said that for a generic
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quasi-de Sitter space the upper bound to the entropy set by the Gibbons-Hawking
entropy [47] must holdE]

StoweT<Na R) < SGH = R2 . (623)

In the case of a quasi-de Sitter space, from effective cosmology models, we find
(see Appendix D)
V(p)~R2. (6.24)

Then, assuming that the tower of states provides a preponderant contribution so
that the Bousso bound can be thought to be saturated, we conclude

2y

V(g) ~ N 75 (6.25)

The result thus obtained can be used to relate the scalar potential with its gradient,
obtaining what goes under the name of Asymptotic de Sitter conjecture

Asymptotic de Sitter conjecture. A scalar potential V' (¢;) of an EFT
weakly coupled to gravity presents a runaway behavior when approaching
an infinite field distance point

VV] _ ¢

— 2

— 6.26
V Mp (6.26)

with ¢ parameter such that ¢ ~ O(1).

In the light of the derivation presented starting from the SDC, the parameter ¢
that appears in the conjecture can be explained in terms of the parameters of the
power laws of entropy .S and of the growth rate of the number of states /V as

_ 2B

= . 2
C=5_3 (6.27)

The name of the conjecture is due to the fact that the relation obtained between
potential and its gradient excludes the possibility of having de Sitter vacua at least
in the asymptotic limit of large geodetic distances in the scalar field space. In
other words, de Sitter vacua would be incompatible with QG in accordance with
the multiple evidences provided by String Theory.

'Actually, the inequality used constitutes a less restrictive version of the Bousso bound
Smatter < Sar = RgR., in which R, and R, are respectively the gravitational and cosmo-
logical radius.
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Actually, the result obtained starting from the refined version of the SDC con-
stitutes a particular and widely accepted case of a secondary conjecture proposed
within the Swampland program. This conjecture, known as de Sitter conjecture,
attempts to generalize what was found by assuming that the exclusion of de Sitter
vacua is valid in all regimes of the pseudo-moduli space.

de Sitter conjecture. The scalar potential V' (¢) of a theory coupled to
gravity must satisfy either

Vvl _ ¢

%4 Mp ( )
' ( ) /
min CZ V jL C
< — 6. 29
V - sz ( )

with ¢, ¢ > 0 order one constants.

J

Typically, in the literature the condition (6.28) is known as the ordinary de

Sitter conjecture while the addition of the condition (6.29) gives rise to its refined
version [48] 149, 50].
This is clearly a very stringent request for which, however, there is not enough
evidence to attest its goodness. The restriction imposed on the second derivatives
of the potential is made necessary by the fact that the first condition alone would
give rise to counter-examples and incompatibility with consolidated predictions
of the Standard Model (see Section 6.4).

6.3 Applications in Cosmology

Based on what has been said in the previous section, it is interesting to go to study
the applications that the Swampland approach has for the purposes of cosmology.
In particular, the implications of the SDC and its redefined version will be studied
in detail. As already mentioned, the de Sitter conjecture, both in its asymptotic
and in its generalized formulation, expresses an obstruction to the possibility of
having de Sitter vacuum in certain regions of the moduli space. In fact, based on
current observations, it would seem that our universe is in a phase of expansion for
which there is a potential V' (¢) > 0. The de Sitter conjecture therefore requires
that the potential cannot be in a minimum point and must rather to roll contin-
uously. On the other hand, the derivation of the asymptotic de Sitter conjecture
from the redefined SDC was carried out thinking of quasi-de Sitter cosmological
models. The resulting theoretical framework is that of a consistent program that
lends itself to formulating conclusions regarding the physics of the evolution of
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the expanding universe. The applications concern both inflationary and dynamic
dark energy models [48, 49, 51]. The interest lies in the possibility of formulating
constraints on the characterizing parameters of these models to be compared with
cosmological observations.

To study this type of implications, first of all introduce the Hubble constant H
which is required to be less than the cut-off of the effective theory to be stud-
ied. The speech made in the previous section immediately fits into the study of
Cosmology if the following correspondence is made

R' — H<A. (6.30)

It is a necessary condition for a consistent cosmological effective theory.
In the Appendix D it is shown that the inflationary models in slow-roll approxi-
mation are fixed by the following two parameters

M3 (ov®
= (_v ) (6.31)
0*V
_ 2
n= M= (6.32)

In a perturbative treatment, given a generic perturbation ¢ it is studied its spectral
distribution in terms of powers

9 k? 9
Ay (k) = o7 || (6.33)

with £ mode index. To parametrize the dependence on the modes, the spectral
index is introduced

dIn A?(k)

dlnk

Furthermore, since the scalar perturbations are flanked by the tensor perturba-
tions, assuming that both originate from the inflationary phase, it makes sense
to quantify the relative intensity of the two perturbation amplitudes (A and A,
respectively) by introducing the so-called tensor-to-scalar ratio

n,=1+ (6.34)

AL (k)
= . 6.35
"= A e
For a quasi-de Sitter space we find the following expressions [52]
1 H?
A= 6.36
o 8nm? e (6.36)
2 H*
A? = : (6.37)

2 M2
m Mg
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The two quantities n and r then allow to characterize a generic inflationary model
and therefore also the particular case of a slow-roll approximation model. The
parameters € and 7 are thus related to the spectral index and the scalar-tensor ratio

ns =1 —6e+2n r = 16€ . (6.38)

At this point, note that the variation of the scalar field dictated by the SDC (6.6)
can be re-expressed in terms of these quantities as

1 2 A2
Ap< o {m( : ) —Hnr] (6.39)

where where we used the result (6.36). On the other hand, in the context of in-
flationary cosmology there is a further constraint. In the hypothesis of short in-

flationary durations such that r ~ const, by virtue of (6.38) and (D.22] [D.24), it
holds the so-called Lyth bound for A¢ [53] 54]

This means that it is possible to use the combination of the two constraints
[6.40) offered by Cosmology and Swampland conjectures to impose restrictions on
possible inflationary models compatible with the quantum description of gravity
(figure 6.2).
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Figure 6.2: Allowed scalar field excursion as function of the tensor-to-scalar ratio
obtained by the combination of SDC and Lyth bounds with Planck 2018 result.
Same inflationary models are excluded like, for example, chaotic inflation types

[4]
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As far as the application of the de Sitter conjecture is concerned, the situation
is more subtle. If it is true that the absence of de Sitter vacua is qualitatively in
agreement with inflationary scenarios, the same cannot be said from a quantita-
tive point of view. The constant ¢ in (6.28) is in fact directly linked to the inflation
parameter €. The slow-roll conditions would appear to conflict with the
condition required by the conjecture. There is therefore potentially a ten-
sion with inflation that is more or less stringent depending on how precise the
expectation ¢ ~ O(1) is.

On the basis of recent observations, the upper limit for the tensor-scalar ratio has
been established [45]]
r < 0.0063 (6.41)

so that, by virtue of the second of relations (6.38), we find the following experi-

mental result
YV _ 0.02

V.~ Mp
This limit is rather in conflict with the condition (6.28) unless we leave greater
margins of variability to the unity constant c. A different way of solving the ten-
sion is to refer to the refined version of the de Sitter conjecture. The application
of conditions to slow-roll inflation then reduces to the following al-
ternatives

(6.42)

2
e > 5 o 7 < . (6.43)

The idea therefore is that during inflation for a certain number of e-folds condi-
tion ([6.28) is met and for the remaining number of e-folds the inflation potential
becomes sufficiently concave to satisty condition (6.29).

The tensions of de Sitter conjecture with observations are reduced when ap-
plied to dark energy models [55)]. The idea of a monotonic rolling potential fits
into so-called dynamic dark energy scenarios. In these models the accelerated ex-
pansion of the current universe is attributed to a time-varying scalar field () rather
than to the cosmological constant. A fluid model also applies to it but the state
equation p = wp is now characterized by a parameter

o Q%/2 — Vo(Q)
Q)2+ Vo(Q)

Among the most accredited models of dynamic dark energy there is the quintessen-
tial one in which the potential takes the exponential form

(6.44)

Vo(Q) = V{@e mr 9 (6.45)
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In this case the deviation from the parameter w = —1 predicted by the standard
cosmological model is expressed by
2(0V)?

1+w= S (6.46)
(0QV)? + BH LV

In order for observation to be satisfied [45] we find that a consistent quintessential
model must have
0.5 < cg < 09. (6.47)

On the other hand, if the de Sitter conjecture is applied, the lower bound is found

2c?
1 > 6.48
+ w 61 ( )
which, according to observations, is satisfied if we have at least
c ~ 06. (6.49)

Such estimate is in good agreement with the expectation ¢ ~ (1), consequently
it can be said that the Swampland approach is consistent with dark energy models.
Otherwise, given that Swampland conjectures should in principle have general
validity regardless of the application context, one could think of using the result
obtained from the study of inflation. In this case the limit would
become
2(0.02)?

6 + (0.02)2

This means that the de Sitter conjecture would still make predictions for dynamic
dark energy scenarios but these would not be observable given the current mea-
surement sensitivity.

l+w > =13 .107*. (6.50)

6.3.1 Modified Gravity models

To study in more detail the implications that Swampland approach may have on
Cosmology, consider the case of a modified gravity model of type f(R) [56] cou-
pled to matter

S = /d4x\/—_g [f(R)+ L,)] . (6.51)

To fit the f(R) description to an effective string theory, consider the effective
graviton-dilaton string action

S = / dPz\/—gP)e R+ 4V 0 V ¢ + A] . (6.52)
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Note that this action, expressed for Friedmann-Roberston-Walker metrics ,
enjoys the invariance for scale factor duality, a — o™ and ¢ — b =¢— (D —
1) In a, indirectly connected to T-duality [57].

Let us perform a conformal transformation of the type

—2k¢

I — Gu =¢€ v - (6.53)

The two theories can be related by means of the following correspondence [58]]

V=g e P[R+4V,0 V'¢ + Al = /=3 f(R) (6.54)
where .
f(R) = 2Ae* . (6.55)
In the Einstein frame the (6.52]) becomes [59, [60]
/ d'z\/—g + g,wa ¢ 0" =V(¢) + L (6.56)
where the scalar field is given by
1
¢ = 5 n(Orf) (6.57)
while the potential associated with it has form
f—ROrf ]
V=—-xc|l—7/>—] . (6.58)
2 [ (Orf)?

We now have an explicit expression of the scalar potential for which the conjec-
tures can be implemented. Depending on the functional expression of f(R) we
will have a different model of modified gravity. Then we can at this point think of
applying the Swampland conjectures to select the f(R) models compatible with
the quantum description of gravity provided by the string theory.

In particular, for the scalar field ¢, the Distance conjecture is applied to narrow
the range of variation consistent with the effective treatment it provides (in Planck

units)

1 1 MP
_ LA ~ ==l 6.59
A0= ot ain ) (6.59)

Furthermore, for the scalar potential one can use the de Sitter conjecture from
which, in the case of f(R) invertible function, it is found

VoV| 4k ) (R@Rf _f)
Vv _‘(f—Ré?Rf 2

(6.60)
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In [59] it is discussed what happens for a generic power law f(RR) model of
the type
f(R)x R"™ =R+ A RInR+ O()\?) (6.61)

with A < 1. Note that this parametrization has the usefulness of highlighting the
perturbative deviations with respect to General Relativity which corresponds to
the limit case A = (0. The scalar potential (6.58) for such theories assumes the

explicit form
\ o2k
V(o) = : 6.62
() 2(1+ )2 (1+A> (6.62)

The analysis of such potential shows that models which are meaningful to slow-
roll inflation generally tend to fit well with the SDC. In particular it turns out that
the conjecture is satisfied for

039 < A < 15. (6.63)

Otherwise, as already discussed above, greater tensions can be deduced with the
de Sitter conjecture. In this case the class of compatible theories is restricted to
models with power law such that

0 < X <0.62 or A > 2 (6.64)

of which, however, only the former are relevant for inflation. The combination
of the two limits turns out to be particularly stringent and, in particular, admits
the Liouville modified gravity theory f(R) ~ R3/? [61]]. This is consistent with
the fact that such theory exhibits the string duality, especially in light of SDC’s
relationship with T-duality presented in Section 6.1.2. Note that the analysis is
conducted assuming a unit order of magnitude for the constant c. Therefore, the
general considerations made at the beginning of the section apply to the interpre-
tation of these results.

6.4 Connection with Particle Physics

In order to study the tensions of the dS conjecture (6.28]) with Particle Physics it is
necessary to consider the scalar fields of the SM [62, |63]. In particular, consider
the Higgs field h for which the potential is perturbably expressed by

Vi(h) = Mh2 — v2)? (6.65)

it is clear that the potential has a minimum for »# = v and a maximum for A = 0
where it results
Vi(h =0) = \v*. (6.66)
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In order to apply the conjecture, consider the combination with the quintessence
potential (6.49), i.e. consider the EFT with scalar potential

V(Q,h) = Vo(Q) + Va(h) . (6.67)

In this case, from what has been said in Section 6.3 and from the estimate (6.47),
we find the following relationship between the potential and its gradient (in
Planck units)
VV] |Vl N 107120
VT V,(0)  10-%
It is clearly seen that this estimate is strongly in conflict with the expectation
highlighted by the de Sitter conjecture. A possible solution to the problem can be
constructed by assuming a different expression for the Higgs potential suggested
by the quintessence

~ 107 . (6.68)

V(Q,h) =Vo(Q) + Vi(h,Q) = e %(Vi(h) + V) . (6.69)

In this way the potential has no maximum points and the de Sitter conjecture is
restored.

A second point of conflict arises from the extension of SM obtained by intro-
duction of the axion scalar fied a. In such a model we have an additional scalar
field

Va(a) = Agen {1 — cos (fﬁ)} (6.70)

which similarly presents a maximum for ¢ = 7 f, in which
V;L(CL = 7Tfa) = 2AQCD . (671)

The evaluation of the relationship between the potential V(Q, a) = Vo (Q)+Va(a)
and its gradient gives in this case the following estimate (in Planck units)

VV| Ag 107120

\% AQC D 1076

~ 107% (6.72)

which again contradicts the constraint posed by the de Sitter conjecture. Also in
this case the problem would be solved by ad hoc modifications of the axion poten-
tial. On the other hand, given the scarce evidence for the de Sitter conjecture, it is
preferred to modify the result of the Swampland program and adapt it to Particle
Physics. This can be done by referring to the refined version of the conjecture
proposed in Section 6.2 by adding the condition (6.29) which is in fact certainly

satisfied by the potentials [6.70).



Chapter 7

Conclusions

In this thesis the Swampland approach was presented as a possible method of
investigation to test the effects that Quantum Gravity can have on observable low-
energy physics. To do this, it is made use of Swampland conjectures, i.e. princi-
ples that impose severe restrictions on effective descriptions of matter coupled to
gravity.

In order to understand the origin of the conjectures it was necessary to recall the
main results of String Theory in which EFTs are constructed by compactification.
The compactification process was then discussed in detail by presenting the usual
theory of Kaluza Klein to describe the mechanism by which it is possible to de-
rive matter starting from a pure geometry with extra dimensions. Furthermore, a
lesser known extension in the literature concerning the extension of the theory to
the case of non-Abelian gauge fields has been dealt with. We have seen how in
this situation there are difficulties in the realization of Kaluza’s idea. On the other
hand, the advantage of considering terms of matter also in extra-dimensional ge-
ometry is that of obtaining a spontaneous compactification. The application of the
compactification mechanism in the specific context of String Theory explicitly re-
alizes the T-duality of the theory, i.e. the equivalence of the compactification and
decompactification limits, as an exotic property of geometry at the Planck scale.
Furthermore, the compactification of the bosonic string naturally takes into ac-
count the possibility of having Dirichlet boundary conditions for the open bosonic
string consistently with the Lorentz invariance. However, this possibility requires
the existence of D-branes within the theory as dynamic objects which play an im-
portant role for the description of gauge symmetries.

Having clarified the theoretical background, we then moved on to an in-depth
analysis of Swampland conjectures and their applications.

The approach used differs from the treatments commonly found in the literature.
In fact, a minimal line of research was used aimed at reducing to a minimum the
number of conjectures actually essential to extrapolate physics from the Swamp-
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land. In particular, only three conjectures were presented as fundamental selection
criteria and, also for these, the various links were highlighted in the course of the
thesis in order to formulate an internally consistent program. From these it has
been shown how it is possible to derive secondary conjectures such as conse-
quences or natural generalizations of them. To do this it was necessary to pay
attention to the formulation of the single conjectures by making simple refine-
ments or non-trivial mathematical abstractions. The latter was the case of the No
Global Symmetry conjecture for which a topological version was proposed and
justified in a very detailed way in order to make clear the physical meaning of
the mathematics behind the cobordism classes. Cobordism has been shown to be
a powerful tool for characterizing the physics of Quantum Gravity. It has in fact
allowed, through the support of the WGC, to account for the instability of the
AdS vacua which, as we have seen, is the main result that lends itself to direct
application to Particle Physics. It has been studied in detail how the instability
of the AdS vacua of the compacted Standard Model allows to derive constraints
on the neutrino masses. This was done by considering the 1-loop corrections to
the radionic potential and then carrying out the explicit calculation for the vari-
ous contributions of the SM + G R spectrum. It has been seen, in particular, that
in addition to the massless states (graviton and photon), the contribution of the
Casimir energy of neutrinos as particles with a smaller non-zero mass was also
significant. We found an upper bound to the mass of neutrinos and an interesting
relationship (in order of magnitude) of this with the cosmological constant con-
sistent with experimental observations. The discussion concerned the simple case
of SM coupled to gravity minimally extended to account for the non-zero mass
of neutrinos in accordance with the oscillation phenomenon. The result, in this
case, is that for a simple count of fermionic degrees of freedom the possibility of
having Majorana neutrinos would seem to be excluded.

On the other hand, the discussion made would naturally fit into dealing with the-
ories beyond SM. In fact, in these cases the addition of fermionic and/or bosonic
degrees of freedom would change the stabilization of the radionic potential, allow-
ing for the possibility of also having Majorana neutrinos. A possible development
of the thesis work would therefore be to study the variability of the mass bound ac-
cording to the specific extension of the model. In light of the results that would be
obtained, the experiments on neutrino physics planned for the future would there-
fore prove to be decisive for fixing the BSM physics consistent with the quantum
description of gravity in the ultraviolet. The same could be said by considering a
greater number of compact dimensions. This possibility, even if already admitted
in the literature, lacks a more general treatment that systematically takes into ac-
count all the main and accredited BSM models.

The Distance conjecture was instead used to implement applications in the field
of Cosmology. For this purpose, the instability of the de Sitter vacua has been
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derived from it at least in asymptotic regions of the moduli space to which the
conjecture refers. Also in this case, the approach followed is axiomatic and the
derivation of the instability has been explicitly reported through the study of the
potential behaviour associated with the EFT moduli. At that point, the idea was
to generalize the result using the de Sitter conjecture, that is, the idea that all de
Sitter-type vacua should be at most metastable. The combined action of the two
conjectures (SDC and dS conjecture) provided selection criteria applicable to both
inflationary and dynamic dark energy models. For the inflationary models we have
seen how the SDC directly provides a limit on the excursion of the inflatonic field
as a function of the tensor-to-scalar ratio which, combined with the Lyth bound
and the results of the Planck 2018 collaboration, provides a region of variabil-
ity that allows to constrain slow-roll inflation parameters. The situation is more
delicate in the case of the application of the de Sitter conjecture. For it, in fact,
a direct application to inflationary models appears to be quantitatively in tension
with the experimental observations. In order to make the application of the two
Swampland criteria more explicit, models of modified gravity of the type f(R)
have been considered with an appropriate parametrization. The results obtained
are that, as expected, the SDC fits well to the main slow-roll inflationary models
while the de Sitter conjecture tends to be particularly stringent.

The tensions, on the other hand, are resolved if we consider the refined version of
the conjecture motivated on the other hand by the application in the field of Par-
ticle Physics. In this case the tension is underlined through quantitative estimates
referring to the scalar potentials of both the Higgs boson and the axion fields.



Appendix A

The p-form symmetries

Consider a theory in D-dimensional space and a generic group of global symme-
try transformations. If the symmetry group is continuous, each generator can be
associated with a Noether current 5 which give us a conserved charge

Q= J- (A.1)

]\/[(D—l)

This charge is defined as the (D — 1)-dimensional submanifold M (P~ changes.
The symmetry transformations form a group GG and can be studied, at the quantum
level, in terms of the action of operators associated with the submanifolds, U, (M),
which, in the case of continuous transformations, are expressed by

Uy (MP=V) = ¢ Jyo-1) 3 Vged. (A2)

Given two elements of the group ¢, ¢’ such that g¢ = ¢” € G, the operators
associated with them must satisfy the group composition law

U,(MP=NU,(MP=DY = Uyu(MPD) (A.3)

The operators U (M (P~1)) are topological in the sense that they are invariant under
diffeomorphic modifications of the manifold M/ (°~1). In the case of a global sym-
metry group of the type G = U(1), there is a phase acquisition if the deformation
involves a charged local operator V'(z) with charge ¢. In this case we have

Upy(MP=NYV (2) = eV () Vg =e“cU(1). (A4)
In general, if R(g) is a representation of the group G, the same relation becomes

Uy (MP=NVi(z) = RIVj(x) . (A.5)
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Having established this formalism, we intend to introduce a new notion of
global symmetry suitable for a topological treatment [64, 65, 38]]. Given a D-
dimensional theory, a p-form global symmetry is defined as the symmetry group
obtained from topological operators associated with (D — p — 1)-dimensional
manifold, U (M (P~P~1), which satisfy the composition law of group

Uy(MPP= Ny (MP=P=D) = U (MPP) (A.6)

with ¢” = gg’. These operators act on charged operators associated with p-
dimensional manifolds C'?). If R (V) is a representation of g, then the action
of the group operators on the charged operators is provided by the law

U,(MP=P=Ny(c®) = R,(V)V(C?P)) . (A7)

A conserved (p + 1)-form current j can be associated with a continuous p-form
symmetry. The conserved charge is given by

Q= J- (A.8)
M(D-p=1)
Note that the case p = 0 corresponds to an ordinary global symmetry.
Consider, as a simple example, the case of a theory with Abelian gauge symmetry
U(1). In this case the electric and magnetic current provide conserved 2-form and
(D — 2)-form currents, respectively

e 2 m 1
where g now is the coupling constant and for which, by virtue of the equations of
motion, it results
d(*F)=dF =0. (A.10)

The two currents are associated respectively with 1-form and (D-3) -form global
symmetries with charge operators

U (MP-D) = 2 Juo-2*F g (@) = sy F (A.11)

In the case D = 4 there are therefore two 1-form global symmetries. The presence
of charged particles breaks 1-form global symmetries conservations gauging an
ordinary symmetry with current .J.



Appendix B

The Casimir Energy

This appendix shows the derivation of the Casimir energy expression in the case of
a space with periodic boundary conditions. The discussion follows the approach
reported in [42].

Consider a massless scalar field ¢ with dynamics described by the Lagrangian

1 1
L= —5(@@ o) — §m2¢2 . (B.1)
The energy-momentum tensor is defined by
oL
T =L —2— . (B.2)
2 L 59}“/

In the 1-loop approximation, the expectation value of 7}, can be expressed in
terms of the propagator of the theory G(x — 2’) = (¢(x)p(2')) as

1 1
(T) = lim 5((9”8; +0,0,) — §gw(amua; +m?)| Gz —2). (B.3)

Suppose that a spacetime dimension is compactified on a circle, i.e. that the usual
periodic boundary conditions are imposed for its coordinate. If the scalar field ¢
is charged (¢ € C), the following boundary conditions occur

d(z,y+27R) = e“¢(,y) . (B.4)

The expectation value of the energy-momentum tensor can consequently be ex-
panded by highlighting the contribution of the Casimir energy

(T = % lim (9,0, + 0,0) 3 Guol — ' + 270 R) =

z—z’

/ - (B.5)
=— Z 0,0,G (2T RY) =

= (pc(R)Nuw + Rpe(R)0,(y)0,(y))
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where the Casimir energy density appears

o ((2mnRY)?)
=2 Z a R (B.6)

This result obtained for a charged scalar field is actually valid for a generic bosonic
and fermionic field unless a minus sign for the latter.
In order to preserve the Null Energy Condition

Tnn” = =2n.Rpp(R) > 0 Vot o ont=0, (B.7)
it is clear that negative Casimir energy densities are required
pe(R) < 0. (B.8)

The condition is then satisfied for fermionic fields but not for bosonic ones.

The determination of the Casimir energy can be traced back to the calculation of
the Green function. In the general case, outside the cone of light it is analytically
expressed in the form

d?k etk md—2 /Cd/g,l(mx)
Gool) = / (2m)d k2 +m?2  (27)%2 (max)?/21 (B.9)

where /C;(z) are Bessel functions defined by

1 [ ; z
Ki(z) = 5/ dg gi-le3(8+5) | (B.10)
0
For them, in particular, the following properties hold
9, (’CJ—(Z)) _ _Kinle) (B.11)
zJ 27
j 1 z 4
ik, J— _
2K (2) — 277 T(y) ll G =1 + O(z%) (B.12)
PK(2) — T i1z (B.13)

2—00 2

From we have the following exact expression for the Casimir energy den-
sity
oo

Z 2md  Kqs2(2rnmR)
(2m)4/2 (2rnmR)4/?

cos(nb) (B.14)

n=1
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while in the limit (B.12)) we find the approximate expression for small values of
mR

92 eik@ 27'('2 Z (eikG/k,d72)
—____“ R _ k
Pe(R) = ~orryin, ke — d—2

(mR)? + O(mR)"

(B.15)
Finally, from the limit (B.13)) we obtain instead the trend of the Casimir energy
density associated to fields with mass m — oo for which there is an exponential
decay until mR > 1

(mR)V2
pc(R) = —W(z cosf . (B16)
Note that in the particular case of a massless field, for d = 4, Green’s function
reduces to

1
Geo(2mnRY) = ———— B.17
(2mnRy) A7 (2mnR)? ®.17)
so that the Casimir energy density assumes the simple expression
4 1 2 1
R)= -7 —_— = B.18
re(R) =~ oroRa En: nt 90 (21R) (B.18)

In the context of the study of the SM compactification, we are interested in the
contribution made to the radionic potential for which we consider the Casimir

potential
1

appropriately rescaled.



Appendix C

Neutrino Physics

C.1 Neutrino oscillations

In the context of the Standard model as gauge theory SU(3) x SU(2) x U(1),
neutrinos are singlets of SU(3), neutral under Ugys(1), and if associated with
charged leptons give rise to SU(2) doublets. They are assumed to be massless
and described as left-handed Weyl spinors. There are three neutrino flavours as-
sociated with the three lepton families

(), (). () @

Each neutrino is associated with an antineutrino of opposite chirality ,, with
a = e, 4, T, and interacts weakly with leptons /,, through the following lagrangian

weak __ g - g _
‘C’SM = —E Z Va,L'Vuéa,LWM — 2COSHW Z Va,L’Y'uVa,LZM‘Fh-C-

a=e,u,v a=e,u,T

(C.2)
The relevant interaction vertices are indicated in Figure C.1. The fact that neutri-
nos have zero mass has as a consequence that the SM preserves the lepton flavour.

€ v
v 14

Figure C.1: Neutrinos interaction vertices
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The description provided by the SM is however rather unsatisfactory. The need
to go further in SM is highlighted by the experimental observation of neutrino
oscillation. To describe this process, assume that neutrinos have a certain mass
me. In this case we distinguish then the flavor or interaction eigenstates |v,),
with a = e, i, v, from the mass eigenstates |m;), with ¢ = 1,2, 3, for which there
will be a neutrino mixing process described by the superposition

3
Ve) = > Uai|mi) . (C.3)
=1

U, is the unitary 3 X 3 mixing matrix called the PMNS matrix (Pontecorvo, Maki,
Nakagawa, Sakata). It can be parametrized by 3 angles and 3 phases as

—1id

C12€13 512C13 S13€
_ i6 6
Uai = | —S512C23 — C12523513€ C12C23 — 512523513€ 523C13
i5 i5
S12C23 — C12C23513€" —C12823 — S12C23513€" C23C13
. 0 0 (C4)
0 eia21/2 0

0 0 e/

where ¢;; = cos6;j, s;; = sinb;;, with 6;; € [0,7/2] and 4,5 = 1,2,3, § and «;

are respectively the Dirac CP violation phase and Majorana CP violation phases.
The mass states |m;) are orthonormal eigenstates of the free Hamiltonian, (m;| |m;) =
d;; and correspond to eigenvalues E; = \/p? + m?. The neutrinos produced by
weak interaction are found in an initial flavour state (C.3). In the approximation

in which it can be regarded as plane wave state, its temporal evolution is then
provided by

71Ht ’Va

(C.5)

’Va7t> =

At this point it is then possible to calculate the probability of oscillation P,z de-
fined as the probability of obtaining a flavour state |v3) at the time ¢ starting from
the flavour state |v,,)

Pas(®) = 0 v )P = | 305U ™58 = 3 Uiy 55

(C.6)
In all situations of experimental interest, neutrinos behave like ultra-relativistic
particles and, if the detection is made at distance L from point production and at
the time 7', the following approximations are valid
2 2
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in which it is assumed that all neutrinos have approximately the same momentum
p >> m,;. The oscillation probability therefore becomes

‘Am?.L

Pos(L) % Y UsiUsiUaiUgze™ 20 (C.8)
ij

where Am7; = m? — m;. It is clearly seen that the possibility of observing the
phenomenon of oscillation requires that the neutrinos are not degenerate in mass
(existence of non-zero masses) and that there is a lepton mixing (U # 1). Also
note that the oscillation is a consequence of the quantum mechanical nature of the
neutrino states and in fact reflects the uncertainty that occurs in the measurement
of the energy-momentum.

In the particular case of only two generations, the mixing matrix (C.4) is parame-
terized by a single angle ¢

—sinf cosf

U ( cosf sin9) ' (C.9)

The oscillation probability will depend on the difference Am?, = m2 — m? and
takes the explicit form

Am?2L
Pus = sin? 26 sin? ( m ) : (C.10)
4p
The expression (C.10) has the following simple properties for o # 3
P.s = Ps, Poo = Psg=1—Pup (C.11)

where P, defines the so-called survival probability. Note that in the dependence
on the ratio Am?jL /p the parameters p and L are variable according to the ex-
perimental context. In particular, for .,z to be sensitive to small values Amfj
it is necessary to have large L/p ratios. In the case of atmospheric neutrinos
Patm ~ 1GeV, Loy ~ 10*km and then there are appreciable mass differences
Am?, =~ ~ 107°eV?; for solar neutrinos p, ~ 1MeV, Lo ~ 10%km and it is
therefore possible to probe Am2 ~ 107''eV2 From experimental observation
of the oscillation for these two classes of neutrinos, the following estimates are

found [23]]

Am?,  ~ (7.5340.18) - 10 %eV? (C.12)
AmZ ~ (2.44 £0.06) - 10%eV?>. (C.13)

Although this results account for non-zero masses, they do not establish the abso-
lute mass of neutrinos and leave open the possibility of having two different orders
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for neutrinos mass eigenvalues: normal hierarchy (NH) or inverted hierarchy (IH)
depending on whether it is respectively ms > mj, mg or mg < my, mo (Figure
C.2) [66].

U m— ()’ (m,)” e— —
2 (Amz)sol
(m,)” — e —
H v,
(B
- (B,
m v,
= s (m,)’
(Bm)
—em— ()’ (my)’s —
normal hierarchy inverted hierarchy

Figure C.2: Normal and inverted hierarchies for neutrino masses

C.2 The Standard Model extension

The oscillation phenomenon is indirect proof that neutrinos have non-zero masses.
At this point it then becomes necessary to theoretically explain the origin of those
masses into a consistent framework beyond the Standard Model. For this purpose,
however, it is useful to discuss the fermionic nature of neutrinos.

C.2.1 The Dirac and Majorana neutrinos

A priori, fermions can have two different natures depending on how the terms of
mass are constructed. On the one hand there are the Dirac fermions, that is the
fermions normally considered in the contex of the Standard Model, whose mass
is obtained by means of two independent 4-spinors of opposite chirality ¢;, Vg,
through a Lorentz invariant bilinear

LPrae — _maprabr + h.e. = —mab (C.19)

which acts as a mass term called Dirac mass term. Mass eigenstates are obtained
from the combination

V=19 +vYr (C.15)
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which goes on to describe Dirac fermions as particles associated with a respective
antiparticle obtained by charge conjugation ¢ = Cy%* = in%*.

On the other hand, there are the Majorana fermions whose mass is instead built
using only one 4-spinor, for example v/;,, combined with its charge-conjugated 1§
in the Lorentz invariant

LMajorana: — _pahrah + h.e. = —mx x (C.16)
called Majorana mass term. The eigenstates in this case are provided by

X =V + Vg (C.17)

which turn out to be self-conjugated, x“ = Y, so they describe Majorana fermions
as particles that coincide with their own antiparticles. However, their dynamics
are still described by the Dirac equation.

In general it is possible to construct the more general mass Lagrangian by consid-
ering a combination of Dirac and Majorana mass terms for both chiral components

Yr, YR ~ _ _
Ly = DYy + AL + BYgr + h.c =

1
= §D(>Zw + wx) + Axx + Bow =

o )

with w = 9 + 9%. The mass matrix can be diagonalized in order to obtain two
Majorana eigenstates

(C.18)

w1 =cosf y —sinf w

C.19
o = sinf x + cosf w ( )
with tan 20 = D /(A — B), which correspond to the two eigenvalues
1
mio =5 [(A +B)+/(A-ByP+ D2] . (C.20)

We conclude that the Lagrangian (C.18)) actually describes two distinct Majorana
particles. A single Dirac particle is found in the limiting case A = B = 0 [67]
and can be regarded as composed of two Majorana fermion with the same mass.
Note that the Majorana mass terms violate the conservation of quantum numbers
carried by 1. Given the exact conservation of the electric charge, neutrinos are
the only fermions of the SM particle content that can be described as Majorana
fermions. Therefore, in order to extend the SM to take into account the oscillation
there is an ambiguity in the construction of the neutrino mass terms because a
priori they can be described both as Dirac and Majorana fermions.



APPENDIX C. NEUTRINO PHYSICS 98

C.2.2 The Seesaw mechanism

Having discussed the ambiguity in neutrino fermionic nature, it is now possible
to tackle the problem of generating their mass consistently. The proposed mech-
anisms are many and can generally be distinguished on the basis of the type of
extension used in the particle content of the SM. Neutrino mass terms can in fact
be generated either by extending the lepton sector by adding fermions, or by ex-
tending the Higgs sector by adding scalar fields. Only the first type of models will
be considered in this appendix.

The simplest way of massing neutrinos is to introduce right-handed neutrinos, Ng,
so that Dirac masses can be built. In order to preserve the SM gauge symmetry
these neutrinos must be gauge singlets and are then known as sterile neutrinos.
They can couple to the lepton doublet L by the Yukawa term

Ly =Y} Lr;HNg; + h.c (C21)

where H = iooH*, with H Higgs field doublet. The Higgs mechanism will then
provide the neutrino Dirac masses

ghiree — g N b, (C.22)

On the other hand, it is possible to consider non-renormalizable extensions of the
SM by introducing the 5-dimensional operator

A~
Ls=-——(LH")(H'L) (C.23)
Asm
known as Weinberg operator. The interest of this operator for the purposes of
neutrino physics lies in the fact that by means of the Higgs mechanism it produces
a Majorana neutrino mass term

En]\fajorana —_ _ DLVE + h.c.. (C24)

In fact the operator (C.23) produces a break in the conservation of the lepton
number. The introduction of the Weinberg operator means that, in accordance
with what was said in Chapter 2, the SM should be appropriately considered as an
effective description of a more fundamental model that accounts for the mass of
neutrinos in a renormalizable context, i.e. that reproduce the Weinberg operator
in the low energy limit. A simple model that satisfies this perspective is provided
by the seesaw mechanism.

Consider at least two sterile neutrinos as singlets of the SM gauge group, Ng;
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with 7 > 2 to account for the observations (C.12} |C.13). The Lagrangian of the
model is then given by

- 1
Locesaw = Lsar — Y LaYa; HNp; + 3 > NECTMG Npy + he. (C.25)

jo jk
with A/(N) Majorana mass matrix. The Higgs mechanism provides a mass La-
grangian of the type

m

1 _
LY = —mDﬂLNR — §mMN]%NR -+ h.c. (C26)

in which there is the combination of Dirac and Majorana mass terms. Based on
what has been said in Section C.2.1, such mass term can take the form

£y = (vp, Ng) <WSD 211;) < K,; ) (C.27)

where mp = y”v/+/2 are Dirac masses and m,; Majorana ones. From the result
(C.20) we see then that in the limit mp << my;, we obtain eigenstates corre-
sponding to heavy neutrinos of masses my =~ mj; and to light neutrinos with
masses
L
m, < mp—mp . (C.28)
my

This expression shows how as mj; increases there is a decrease of m,, hence
the name seesaw. The smallness of m, and the approximate expression of the
corresponding eigenstate (see (refMassEigenstste))

on = v + 2P Ne (C.29)
ma

allow such states to be identified with observed ordinary neutrinos. In contexts
of extensions of the SM using theories of grand unification it is natural to asso-
ciate the masses mp and m, to the two different symmetry breaking scales. For
example, for SU(5) — SU(3) x SU(2) x U(1) — SU(3) x U(1) we have
mp ~ 102GeV, my; ~ 10**GeV and then m, ~ 0.1eV. In this way we can
reproduce the experimental observations and give a justification for why sterile
neutrinos are not observed. Furthermore, the hierarchy problem of explaining
why the neutrinos masses would be so much smaller than the other SM masses is
thus solved.
Actually there are different versions of the seesaw mechanism: the one presented
here is the so-called seesaw type I model based on the exchange of right-handed
neutrinos. Alternatively, the mechanisms of seesaw type II and III have also been
proposed, based respectively on the exchange of scalar and fermion triplets [68]].



Appendix D

The Slow-roll Inflation

The slow-roll inflationary models constitute a particular class of inflationary mod-
els in which the accelerated expansion phase is limited in time and leads continu-
ously to the standard cosmological evolution phase. Inflation is determined by the
presence of a scalar field ¢ called inflaton with interaction potential V' (¢). The
classical theory of inflaton interaction with gravity is described by action

M

5=

/ d'zy/~g R+ / d'rv/ =g [%gﬂ”amauqs ~V(9)| . ©.1

By means of the variational principle, for variations with respect to the metric, we
find Einstein’s field equation

1

1
R,uy - §Rg;w = MIQD (g;wakgb a)\¢ - guuv(¢)) (DZ)

while for variations with respect to the scalar field we have the equation of motion
V.Vt +0,V =0. (D.3)

In order to study the evolution of the universe, we consider a Friedmann-Robertson-
Walker metric of the type

ds* = dt* — a*(t)|dx|* . (D.4)

If we then assume that the scalar field is spatially homogeneous, ¢ = ¢(t), we
find that the energy-momentum tensor associated with the inflaton is given by

1. . (1.
Ty =50"+V T =-0 (§¢2 - V) : (D.5)
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We therefore deduce that the inflatonic field behaves like a perfect fluid with en-
ergy density p and pressure p such that the state equation p = wp has

v

. . D.6
v (D6)

w =

Note that in the particular case of a constant scalar field, (/5 = 0, we find the state
equation of the perfect fluid associated with the cosmological constant A.. > 0

with w = —1 that is the case of an eternal de Sitter inflation.
The Friedmann equations governing cosmological evolution take the form
32 — ¢ + V() (D.7)
M3\ 2 '
Qff — — ¢ (D.8)
M2 '

while the equation of motion for the scalar field is reduced to
$+3Ho+ 09,V =0. (D.9)

At this point we apply explicitly the slow-roll approximation for which we
consider a slow evolution formalized by the following conditions

|H| << H?> |§| << |Hp| ¢* << |V]. (D.10)

By virtue of these approximations the equations of motion are simplified to

1

H? = — D.11
3 V) V ( )
3Hp = -0,V . (D.12)

If we derive the former with respect to ¢ and divide both by 3H?, they become
OsH 18,V ¢ 2 [0V

Rl A =M= . D.13

H 2V H PV (D-13)

To control the inflationary expansion, the slow-roll parameter is introduced

H
such that ¢ ~ 0, and by double integration we find the following trend of the scale
factor
a(t) ~ Ve (D.15)
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from which we can qualitatively see the reproduction of the inflationary phase.
By virtue of the equations of motion, the parameter e takes on the explicit expres-
sion in terms of the inflatonic field. Slow-roll inflation can then be fully specified
by parameters

M2 (8,V\?
e=F <¢7> (D.16)
» (Y
n=Mp (7) (D.17)
for which it is requested
en < 1. (D.18)

Inflationary models in slow-roll approximation constitute a wide class of mod-
els that differ for the expression of the scalar potential associated with the infla-
tonic field. Typically we consider simple power models of the type (Figure D.1)

V(g) ~ o™ n>0 (D.19)
for which it results
iV n BV n(n—1)
-V = a v o ) (D.20)

We see then that in these cases the approximation is satisfied for scalar field
»* > M3.

- ¢

Figure D.1: Typical trend of the inflationary potential
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In the cosmological context, the duration of the inflationary phase is often
measured through the e-folding parameter N. If a; and ay denote respectively the
scale factor at at initial and final instant of inflation, N is defined by

CLf ty
N=h-L :/ dt H(t) . (D.21)
t

a;

i

In order for the inflationary phase to have a sufficient duration to adapt to the
current observed standard phase, e-folding parameters are required such that

N >60. (D.22)

In slow-roll regime the (D.21)) can be expressed in terms of field variation by
means of the following approximation

H 3H 1 do
Hdt = —dp~ ———Hdp ~ ——— D.23
Tdo~ =g His~ S 1n (D.23)
for which it is located .
fdp 1
N = — D.24
bs Mp \/2¢ ( )
In the case of inflationary models with power scalar potential, it is found [52]
= (- &) (D.25)
2r M3 Y '

which, being ¢? > M2, for small n can be compatible with the condition (D.22)).
Moreover, if the potential V' (¢) has a minimum point, inflation parameters tend
to grow near this point until they break the slow-roll requirement. In this way, the
phase of slow inflation continuously adapts to the standard expansion phase. We
conclude that slow-roll inflation models, however simplified, allow us to solve the
evolution problems of the universe and reproduce a type of phenomenology that
agrees with current observations.
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