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“The effort to understanding the
Universe is one of the very few things
that lifts human life a little above the
level of a farce and gives it some of the
grace of a tragedy”

Steven Weinberg
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Introduction

The objective of my master’s thesis is to study the Primordial Gravitational Waves background
generated through the Early Universe Cosmology. We know that the standard cosmological
model needs to be improved considering an accelerated phase to solve some consistency prob-
lems. The study of such pre-Big Bang era, called Inflation, led to a very good understanding
of the Cosmic Microwave Background thank the computation of the primordial scalar power
spectrum. This result is in very good agreement with the experimental evidence obtained in
the last years. The power spectrum from the CMB confirms that large scale structures we
see today were originated from almost scale-invariant and almost adiabatic fluctuations which

were present on the super-Hubble scale before the time of the recombination (i.e. when the

CMB was produced). It is worth noting that this spectrum is dependent on both the Hubble

parameter and the slow roll coefficient (which is model dependent). There is another observable

from the inflation paradigm, the tensor power spectrum which, at the first order of the slow
roll limit, it’s dependent only on the Hubble parameter. Such detection could be crucial in the
evaluation of the energy scale of such a primordial era. Nevertheless, if we were able to detect
waves from the inflationary epoch, we could have the first spectacular probe of, at least, the
possible existence of a quantum gravitational theory at the fundamental level. We may extract
clues about modified gravity and particle physics beyond Standard Model or spot any violation
of the various consistency conditions by testing the zoo of the inflationary models. On the
other hand, we could have also a falsification of the Inflation theory and this may be even more
exciting.

During my master’s thesis, I’m analyzing the cosmological perturbation theory and the con-
sequent quantization of the scalar field’s perturbations away from its background classical value.
From the original formulation of the inflationary paradigm by Guth and Starobinski in the 80s,
one of the most puzzling features of Inflation is its duration. The duration of such an accel-
erated phase could be essential for the study of new emergent phenomena beyond our current
understanding of fundamental laws. The inflation is supposed to last at least N ≈ 60 e-folds.
One of the simplest question that one may arise is what if that phase was longer. If so, it would
mean that primordial fluctuations could have had wavelength smaller than the Planckian length
lP . In consequence, it’s natural to think that this regime could be a massive chance to open a
window to an unexplored sector of knowledge. In my dissertation, I took into consideration the
possibility of a non-trivial vacuum choice, as pointed out by Danielsson in 2002. We know that

when one studies quantum fields in a dynamical background (such as a deSitter one) a temporal

Killing vector lacks. We have an intrinsic uncertainty in the choice vacuum. In literature, it’s
common to adopt the so-called “Bunch-Davies” vacuum which is equivalent to setting a hypo-
thetical Minkowskian infinite past initial condition. Since the duration of Inflation cannot be
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thought infinite, it is reasonable to set the initial condition at a precise time in the Universe’s
history. This lead consequently to a non-trivial choice of the vacuum status. We contemplate
a one-parameter group of states which is commonly called α vacua. In this context, we show
how the power spectrum of both tensorial and scalar perturbation can be modified depending
on a cut-off energy scale. Moreover, we stress the concept of vacuum according to the particle
physicist’s point of view giving an overview of the basics of quantum fields in curved space-time.
Nevertheless, one of the consequences of this general theory is the supplementary particles pro-
duction due to the presence of non-vanishing Bogoliubov coefficients.
The vacuum in quantum field theory has always had a central role. Recent papers suggest the
possibility to have a running vacuum in gravitational theory as well as other running quantities
of Nature. It could be reasonable to take into account a modification of Einstein theory in-
cluding a time-dependent “cosmological constant” term which can be a source of gravitational
waves.

Another interesting development of the inflation theory is the enrollment of more fields. The
simple addition of an auxiliary field could carry new ingredients in the theory. The presence of
another field could be useful to contemplate both adiabatic and isocurvature initial conditions.
Moreover, during the evolution, adiabatic and curvature modes can convert one into another
through an oscillating phenomenon. From the GWs perspective, the presence of a second field
could be of essential importance. The only field subjected by the slow roll condition is the

Inflaton, while the dynamic of other (possible) fields is completely free. We can consider the

production of primordial gravitational waves (second-order ones) if we promote as a source

term the primordial scalar perturbations of the additional fields.
One of the hardest aspects of primordial gravitational waves is their weakness. It is extremely

difficult to detect them. So, in [6] the authors took into consideration a mechanism of paramet-

ric resonance using the so-called “natural” inflation potential. By considering just an additional
field in the early universe, the presence of an oscillating term in the potential led them to find
a Mathieau equation which gives rise to resonant amplification of the gravitational waves spec-
trum detectable by future experiments.

The detection of the PGWs’s spectrum will be the centre of the scientific investigation in
the next years. From a theoretical point of view, we can examine alternatives to inflation that
are on the market or adding modifications to the physics at fundamental level. In fact, we can
have two kinds of GWs production. The first one is due to the vacuum oscillations. In that
case, we can study how quantum fluctuations of the gravitational field are stretched by the
accelerated expansion. Through this line of research, we can take into account both General

Theory of Relativity or Modified Gravity (for example various Scalar-Tensor theories) or Ef-

fective Field Theories which can lead to violations of consistency relations. One of the most
relevant extensions of the Standard Cosmological model is the modification of the dispersion
relation at Planck scales. Several modern theories beyond the SM seem to conspire toward

such modification and a consequent breaking of CPT invariance (and, of course, the Lorentz

symmetry). For example, we can have this modification by the Loop Quantum Gravity theory,

Non-Commutative Space-time or Strings. On the other hand, the GWs can be produced by
classical objects. This is the case when we consider, for example, another scalar field that
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contributes to the stress-energy tensor giving rise to second-order tensorial perturbations. In
this context, also particles produced during the inflationary stage could be a significant source
term. Moreover, other models can be constructed if we ask ourselves what happened after
the inflation ends. The main point is how the universe gets the temperature to start the Big
Bang scenario. We can imagine that this condition is immediately obtained by an instantan-
eous reheating or we can also think that the Inflaton has a very slowly decaying. That could
be another highly interesting window to a new sector of the Universe’s history still not explored.

We are at the dawn of a new era of experiments that will give us, probably, the verdict about

inflation. For example, the Laser Interferometer Space Antenna (LISA), promoted by ESA and

NASA, will be the biggest experimental apparatus ever built and will give pieces of information
about the gravitational waves with an unbelievable precision never reached so far. It consists
of three spacecraft arranged in an equilateral triangle with million-kilometer arms and will be

able to give us information about GWs with amplitude of order ΩGW . 10−14. LISA will

have the capabilities to give us constraints on both signals from cosmological sources, like the
GWs production during first-order phase transition, from cosmic defects and probe the present
expansion of the Universe. Moreover, LISA could give us essential information about the non-
Gaussian effects incorporated in the three-point correlation functions. LISA is programmed to
start, at least, in 10 years and by that date, we will have further hints or evidence of a model
instead of another. LISA will be very useful in the case we look forward to a mechanism of
resonance in the tensorial sector of primordial fluctuations. However, if we are looking for a net
detection of a PGWs background produced during inflation, we have to refer to more futuristic
experiments like BBO or DECIGO.
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Chapter 1

Physics beyond Standard Cosmological
Model

There’s no shame in not knowing. The
only shame is when you pretend that
you know everything

R.P. Feynman

1.1 The need for Inflation

Our modern description of Nature is completely based on two cornerstones: General Relativity
and the Standard Model of particle physics. Our Universe could be studied and conceived
through those models bearing in mind some simplistic assumptions. Although these models
agree with experimental evidence with an embarrassing precision, they seem to have some
inconsistencies. These issues arise from the fact that initial conditions needed for the Hot Big
Bang model seem to be unnatural.

The first conceptual problem is the Flatness problem which consist in the fact that the
primordial energy density has to be nearly 1 according to recent observations. If we take into
account the Friedmann equation:

Ω− 1 =
K

a2H2
(1.1)

it is easy to see that such situation corresponds to a almost flat primordial Universe. If this

wouldn’t be the case, the Universe may collapse immediately (Ω > 1) or cools in a too short time

(Ω < 1). The second problem which characterize the Big Bang model is the Horizon problem.

In this case, it is not clear how the CMB (Cosmic Microwave Background) have essentially

omogeneous and isotropic perturbations. It seems that, in a certain way, the Universe would
have experience a period in which the perturbations would have been in causal connection one
to another. Nevertheless, if the Hot Big Bang begins at very high temperature, there would be
produced some exotic objects that we should see today, but observations seem to rule them out.

These relics are for example: the gravitino (which is a supersymmetric version of the graviton),

magnetic monopoles (that should emerge when a symmetry of a Grand Unified Theory breaks)
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and other topological defects. At this stage we can ask ourselves what are the main aspects
which characterize a good inflation theory. The origin of the flatness problem is the growing

of the term |Ω − 1|. Is we take the time derivative of both sides of the Friedman equation,

we convince ourselves that the problem arise from the fact that the Universe is decelerating,
i.e. ä < 0. So, the condition we desire in the model building of Inflation is that the Universe
expansion has to be accelerated:

Inflation⇔ ä > 0 (1.2)

Surprisingly, the second problem we are tackling (the horizon problem) can be linked to the

same argument. In fact, from experiments we have that the ratio between the comoving horizon
sizes at the time of decoupling and today is much smaller than unity.

d(tdec)

d(t0)
∼ a0H0

adecHdec

� 1 (1.3)

Again, the problem comes from the fact that the Universe is decelerating. Then, we can define
the comoving Hubble parameter as follows: H = aH. Consequently, if the Hubble parameter
is constant, the comoving quantity as to grow up if we think the primordial stage as a deSitter

expansion (i.e. a ∼ eHt). If we define the comoving Hubble length as the distance over which

we can have causal interaction we conclude that Inflation has to be a period during which:

Inflation⇔ d

dt
H−1 < 0 (1.4)

The first consequence of those conditions is that any inflationary period has to characterize the
environment with a negative pressure. If we take the second Friedmann equation and require
the positivity of both the rhs and the lhs:

ä

a
= −4πG

3
(ρ+ 3p) (1.5)

we have:

Inflation⇔ ω < −1

3
(1.6)

where in the last step we have used the fact that the relation between the density and the
pressure is: p = ωρ. This relation is called the Equation of State and ω is the EoS parameter.
For the ordinary constituents of the Universe such parameter is constant, while the dark sector
is usually parametrized like a fluid with time-dependent EoS parameter ω. Lastly, it is worth-
mentioning that in the case we are dealing with a collection of fluids, the total EoS parameter
is always a function of time.

1.2 The Inflaton as a solution

It easy to understand that these conditions don’t describe a unique model. It is just a scenario
that may be realized in many different, but equivalent, ways. If we are able to construct such
scenario we will solve in one blow all the issue mentioned above. Inflation provides an elegant
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tool to restore consistency between theoretical analysis and experimental data. Moreover, if the
inflationary conditions are satisfied we can also get rid of the unwanted relics. In fact, if such
relics were produced before the start of Inflation, they would be diluted by the rapid expansion
of the Universe. The only point that is matter of discussion still today is the theme of the
primordial initial conditions from which the Inflaton starts. Those conditions rely on a stage
of the Universe characterized by energy scales far away from the ones of the standard quantum
field theory. We are closer to the typical energy scales of Grand Unification Theories than the
scales of Standard Model. We will deal with the model proposed by Guth and Starobinsky. We
will solve all the shortcomings the Standard Big Bang model has implementing the theory with
an additional scalar field which is commonly called Inflaton φ. Adding a single scalar massless

field driven by a potential V (φ) we can extract the energy momentum tensor:

Tµν = − 2√
−g

δS

δgµν
= ∂µφ∂νφ− gµν

[1

2
gρσ∂ρφ∂σφ+ V (φ)

]
(1.7)

from which calculate the EoS parameter ω:

ω =
pinfl
ρinfl

=
1
2
φ̇2 − V (φ)

1
2
φ̇2 + V (φ)

(1.8)

In order to achieve the desirable condition, we must impose what is called the first slow-roll condition:

1

2
φ̇2 � V (φ) (1.9)

So, the potential has to be much bigger than the kinetic term. Moreover, we want this period
lasts over an extended period. This leads us to the second slow-roll condition:

|φ̈| � |V (φ)φ| (1.10)

where we indicated with V (φ)φ the derivative of the potential with respect to the field φ.

The presence of this scalar field in the primordial stage of the Universe could figure out the
inconsistencies we were talking about with one blow. So, a natural interest to find observables
related to this new field was growing in recent years. In this sense, a future detection of a
gravitational waves spectrum induced by the Inflaton, could represent a spectacular probe of
the presence of new physics. Moreover, any test toward this purpose will be extremely useful to
discriminate between different theories in competition. From now on, we will use the Inflaton
field as a monitor of the Universe’s history. We are allowed to do that because of we are
working in an FLRW background and so, thanks to the consequent homogeneous evolution, we
can use the same universal clock at each point. Hence, if different points in space has equal
physical properties it imply that these points has synchronized clocks and, because the time
coordinate is not a physical one, we are free to choose matter fields as a relational time. We

can formulate all the objects in the theory as functions of the field φ (only if the field has

non-singular Jacobian, i.e. φ̇ does not change sign). So, we will split the Inflaton field in two

parts: φ(t,x) = φ̄(t) + δφ(t,x). The background value φ̄ is the only part which is driven by

the potential V , is dependent only on the cosmic time and plays the role of the clock. On
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the other hand, the perturbations δφ are dependent on both the time and the space and they
play the role of the seeds in the Early Universe. Moreover, this field, driving the dynamics,
magnifies tiny quantum fluctuations generated in the very early times into seeds that could
generate the large scale structures we observe today. For that reason is quite important to pay
attention on the role of the initial conditions. Facing this problem we are pushed forward to
accommodate the Inflaton φ in the most appropriate theoretical context. The answer to that
question is far away to be easily understood. The key point is that new physics may arise at
the energy scale at which the inflation takes place and hence we are not be able to know if the
laws we can handle are acceptable or not. In literature, it’s common to conduct this study from
a field theoretical perspective. Then, the natural theoretical environment is the quantum field
theory in curved space-time. However, it is important to stress that this is just an effective
approach to the problem because we don’t know how physic’s laws can change at the Planck
scale. We can just ask ourselves if we can extract some observables that are strictly related to
some modifications of the Planckian physics. Studying the evolution of the Inflaton field bring
us to the conclusion that his power spectrum has to be quasi scale invariant. So, one of the
main goal of theories which contemplate a departure from the standard analysis is to find a
spectrum which may have some dependence from the an energy scale. Such a remarkable result
may come from two different approaches. One can speculate on the ambiguity of the choice of
the vacuum state or think about a modified commutation relation assuming a deformation of

the well know CCRs (Canonical Commutation Relations) between the field and its conjugate

momentum. The former case in something lying in the context of quantum field theory in
curved space, while the latest is the typical approach of models beyond Standard Model such

as Non-commutative field theories [3] or string theories.

1.3 On the primordial quantum fluctuation’s faith

It’s important to focus on the regimes in which cosmological perturbations evolve. In fact, from

now on, we will distinguish two different regimes: Superhorizon and Subhorizon (also called in

literature Super-Hubble and Sub-Hubble regimes). It is a crucial point to make this distinction

because of we need to track the evolution of the perturbations and so we can focus our attention
on the sector by which we can extract fruitful information.

Remember that H ∼ √ρ and so, being the energy density nearly constant during inflation,

so it is the Hubble radius. Actually, the energy density decrease very little and so the Hubble

radius H−1 grows, but at lowest order we will treat it as constant. Let’s see the figure 1.3 and
study the behaviour of the cosmological perturbations. There, we are plotting the comoving

scale (aH)−1 as function of log(a). During inflation the physical perturbation’s wavelength

λ(which is proportional to the scale factor a) grows exponentially. So we can distinguish

three different regimes. The first regime is the period when the cosmological perturbations

wavelength is smaller that the Hubble radius (H−1) and this is called the Sub-Horizon regime

(recall that H = aH). We can also think about this classification in terms of the relation

between the comoving physical momentum kphys = k
a

and the Hubble parameter H. In that

sense the Sub-Horizon regime occurs when k(η) � H(τ) During this period, the wavelength

of the perturbations is so small that they don’t really care about the fact that Universe is

14



Figure 1.1: Comoving scales (aH)−1 vs log(a). The comoving horizon (aH)−1 shrinks during
inflation and after the reheating stage starts growing in the consequent FLRW period. The
comoving scales k−1 exit at early times and re-enter in the cosmological scenario during the
Hot Big Bang evolution. To study the dynamics of such perturbations we will use the gauge
invariant quantity R which will be constant during the horizon exit. Credits: Daniel Baumann
- Primordial Cosmology
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expanding. In this scenario, perturbations are localized in a very tiny region in the Universe

and basically, since k ∼ 1
λ
∼ a , they behave like they are in a Minkowsky space-time. Then we

can define the opposite situation which is called the Super Horizon regime when k(η)� H(τ)

or we may think that the correspondent wavelength is much bigger than the Hubble parameter.

In this situation, the physical wavelength is longer than the Hubble radius (H−1). Within this

regime the perturbations are seen by the Universe as constants. Here nothing really interesting
happens. The very interesting moment in the history of the cosmological perturbations is the
time when they crossed the Horizon. That means that at that time the Universe recognize the
existence of the perturbations and we can think this time as the moment when perturbations
are imprinted. In this context we will use the word horizon to refer to the Hubble length.

In summary, in the superhorizon regime we can think the variation of the metric, the energy
density and the pressure over the horizon to be very small and we can safely think that they are
constant in space in each causally connected region in the Early Universe. Remember that these
regions evolve as independent homogeneous Universe and hence we cannot have propagations
of any wave phenomenon.

Now, let’s study the case in which are involved two perturbations with different wavelengths,
say λ1 e λ2. If we take the graphic of the scales on the vertical axes and the time on the horizontal
one, we can compare the behaviour of the wavelength of those perturbations with respect to
the Hubble horizon. Suppose λ1 is bigger that λ2 . In this case, the former one will leave the
horizon earlier. Hence perturbations with larger wavelengths are produced before perturbations

with smaller wavelengths (and consequently the hierarchy is inverted for the momentum). That

means that perturbations with greater wavelengths give me information about Inflation earlier
in time.

Another fundamental tool to study inflationary cosmology is the number of e-foldsN , which
basically is an instrument to quantify the amount of Inflation.

N(t) ≡ ln
a(tend)

a(t)
(1.11)

and using the Inflaton field as the dynamical variable we can have these useful relations:

N(φ) ≡ ln
a(tend)

a(t)
=

∫ tend

t

H(t)dt =

∫ φend

φ

H

φ̇
dφ ≈ 1

M2
Pl

∫ φ

φend

V

V ′
dφ (1.12)

where in the last equality we used the slow roll approximation. We can use this object to
quantify the amount of inflation that was need to have the large scale structures we see today.

Denoting the largest observable scales we see today as k ≈ H0 = H0 (where we used a0 = 1)

we can infer, from the thermal history of our Universe a complete expression for the number of
e-folds the Inflation needed.

N(φk) = − ln
k

H0

+ 61 + ln
V

1/4
k

ρ
1/4
end

− 1

3
ln
ρ

1/4
end

ρ
1/4
reh

− ln
1016GeV

V
1/4
k

(1.13)

This formula is dependent on the potential and the energy scale of the reheating stage other
than the scales wave-number k and H0. Since the potential is linked with the slow roll condition,
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Figure 1.2: The figure illustrates the growths of the length scales of primordial fluctuations
in relation to the Hubble radius during the inflationary and Freidman phases of expansion.
Credits:Annual Review of Astronomy and Astrophysics

typically the third term is negligible while the fourth term is dependent on the model we use to

describe the exit from the inflationary period and the entering to the Hot Big Bang scenario (for

instance, in the case we think the reheating was instantaneous, the fourth term is negligible).

It is common to think that it needs around 60 e-folds after the largest scales exit the horizon.
On the other hand is not possible to give any information about the number of e-folds before
that event; it will depend on how were the conditions before the inflationary stage and this is
beyond our current understanding of the Universe’s history.

To conclude this section is important to question what is the faith of quantum perturbations
when they acquired super-Hubble scales. We will see that on super-Hubble scales, the quantum
fields associated to the primordial perturbations, became constants. So, in this limit, the
quantum ladder operators, which define a quantum field, commute. Consequently, on super-
Hubble scales the quantum field operators must be replaced by classical Gaussian random
variables, i.e.:

〈ev(k)〉 = 0 〈ev(k)e∗v(k
′)〉 = δ(3)(k− k′) (1.14)

So, replacing the quantum operators for the mode function with stochastic Gaussian field:

v̂k → vk = vk(τ)ev(k) (1.15)

we can replace also the quantum vacuum average 〈0|...|0〉 with a classical ensemble average

〈...〉.
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1.4 Quantization procedure in curved spacetime and the

“natural” ambiguity of vacuum

At this point, it is relevant to point out some exotic features that may occur when one studies
a field in a given metric background evolving in time.

The crucial point, in the following exposition, is the choice of vacuum. When studying
quantum field theory in curved space, the choice of vacuum is not unique. There is a natural
intrinsic uncertainty in the inflationary predictions, and we will see that they show to be
generically small. One of the main issue we have to face is the definition of particles. In general
we have to deal with such a definition problems when we move to quantize fields in presence of
another background field. This is because, in curved space-time, we cannot associate temporal
Killing vectors with the Hamiltonian describing the system. One could think to another recipe
toward the vacuum’s choice; one example is to take in consideration the stress-energy tensor
which is covariant. However we still inherit the same ambiguity due to the boundary conditions
and renormalization prescriptions. We will see that when one introduce a physical cut-off, it
naturally induce a non conservation of the stress-energy tensor.

We are not able anymore to follow the standard Minkowskian procedure because of we
cannot presume the existence of asymptotic states. To be more harmonious we can briefly

outline the main results of the field’s treatment in curved space (for further clarifications I

suggest [4] and [5] and reference therein).

To fix the ideas, without loss of generality, we can consider the dynamics of a free massless
scalar field evolving in a flat FLRW Universe which has the following infinitesimal line element:

ds2 = dt2 − a2δijdx
idxj (1.16)

It is immediate to see that this metric is conformally equivalent to one of a flat Minkowski type
if we define the conformal time as follows:

τ(t) =

∫ t

t0

dt

a(t)
(1.17)

and so the line element takes the form:

ds2 = a2(τ)[dτ 2 − dx2] (1.18)

The study of such scalar field will play a central role through the whole thesis because the
fluctuations of the Inflaton around its classical background value will be, canonically, thought
of as a free massless scalar field. The action is the usual one for a scalar field in Minkowski
space-time but with the minimal substitution: ηMinkowski 7→ gµνFLRW ≡ g

S = −1

2

∫
d4x
√
−g[gµν∂µφ∂νφ] (1.19)

This theory lead to the well-known Klein-Gordon equation:

(�)φ =
( 1√
−g

∂µ(
√
−ggµν∂ν)

)
φ = 0 (1.20)
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We recognize that this equation is solved by the usual plane wave solution of the form:

uk(x) = Ake
−ikx (1.21)

It is a well established fact that for a second order differential equation the Wronskian is a
conserved quantity and we can safely use it to find the shape of the unknown factor Ak which
may be a function of the momentum. In fact, we can see immediately that if we require the
validity of the canonical commutation relations, we have a constraint between uk and u̇k that

leads to: [uk, u̇k] = W = i. Solving this simple relation we receive the final form of what

we usually call the mode function. Remember that a mode function is the positive frequency
solution of the classical equation of motion normalized by the CCRs is:

uk(x) =
1√
2wk

e−ikx (1.22)

By means of those functions we usually expand a generic quantum field as a linear combination
of the common ladder operators.

φ(x) =

∫
d3k

(2π)3
[akuk(x) + a†ku

∗
k(x)] (1.23)

In the last relation we have expressed the field φ as linear combination of the solutions u
and its hermitian conjugate and we have also promoted the Fourier components a and a∗ to

operators that satisfy the usual canonical commutation relations: [ai(k), a†j(k
′)] = δijδ

3(k - k’)

and [ai, aj] = [a†i , a
†
j] = 0. It is worth-noting that those operators are time independent and

that ensure the validity of the commutation relations at all times. Those relations induce the
respective equal time commutation relations between the field φ and its conjugate momentum

π: [φ(k), π†(k′)] = δ3(k - k’) and [φ, φ] = [φ†, φ†] = 0 and analogously for π and π†. Now it is

time to spoil the features which make unique the theory in a time dependent background. Let’s

focus on the mode functions (solutions of the classical Klein-Gordon equation) and point out

that they are not unique. In standard quantum theory, one associate the positive eigenvalues
of the Killing vector i∂t to the positive energy eigenfunctions. From a group-theoretical point
of view, if we depart from the well known special relativistic symmetry group, we have not this
useful correspondence anymore. When we study a quantum field evolving in a FLRW Universe
we need to bear in mind what is the fundamental symmetry group of General Relativity: the
reparametrization invariance. It means that we are not able anymore to have a definite choice
of time and, consequently, of positive frequencies. Looking forward to a quantum mechanical

treatment for this field, we define the rescaled field f = a(τ)φ 1 .

We will leverage on the fact that the dynamics of the field φ in a flat FLRW background is
mathematically equivalent to the one of the scalar field f in a Minkowski metric. In terms of
this auxiliary field the original theory can be expressed as:

S(τ,x) =
1

2

∫
d4x[f ′2 − (∇f)2 +

a′′

a
f 2] (1.24)

1A word of caution about the notation needs here. We are calling φ the field under the quantization procedure,
but it is important to stress that the we will quantize just the perturbations δφ around the classical background
φ̄. Here we use just the symbol φ for notation’s sake.
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which lead to the following equation of motion:

f ′′ −∇2f − a′′

a
f = 0 (1.25)

that is the same equation of a free scalar field in a Minkowskian space with an effective mass
term:

m2
eff = −a

′′

a
(1.26)

In this term is incorporated all the information about the Universe expansion. Note that here
we are dealing with a simple massless scalar field. If it would have been massive, the effective
mass would get an extra term:

m2
eff = m2a2 − a′′

a
(1.27)

It is worth-noting that this action is time dependent and it implies a non conservation of
the energy. We will come back later on this point. In order to quantize the theory we start
calculating the conjugate momentum which is:

π =
∂L

∂f ′
= f ′ −Hf (1.28)

It will be useful to switch to the Fourier space, defining:

f(τ,x) =

∫
d3k

(2π)3/2
fk(τ)eikx (1.29)

So, when performing the Legendre transformation we have the following:

H =
1

2

∫
d3k
[
π(k)π∗(k) + k2f(k)v∗(k) +

a′

a

(
f(k)π∗(k) + π(k)v∗(k)

)]
(1.30)

Recall that, due to the reality of the scalar field, we can also say that: f(k) = f ∗(-k) and

respectively holds for f †(k). It’s important to stress that in the classical phase space, a classical

field configuration is completely specified by just an half of the whole Fourier space, but this

doesn’t hold anymore in quantum field theory (in general), but here we will not deal with such a

complication. The theory we are dealing with is the usual one for an harmonic oscillator and so
we can develop the usual treatment for such integrable system. The most natural environment
to develop a quantum field theory is the Heisenberg picture, so we move to introduce the ladder
operators which will be functions of time in this context. By means of those operators, we can
recast our characters as follows:

f̂k =
âk + â†−k√

2k
π̂k = −i

√
k

2
(âk − â†−k) (1.31)

One can easily reverse these two definitions and obtain the explicit form for the ladder operators:

âk =
1√
2

(√
kf̂k + i

1√
k
π̂k

)
(1.32)
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We can treat the field f̂ in the standard way we do in ordinary quantum field theory and impose
the standard equal time commutation relations:

[f̂(τ,x), π̂(τ,y)] = iδ(3)(x-y) (1.33)

[f̂(τ,x), f̂(τ,y)] = 0 [π̂(τ,x), π̂(τ,y)] = 0 (1.34)

and, in Fourier space, using the reality of the field in our theory we have also the following:

[f̂(τ,k), π̂(τ,k’)] = iδ(3)(k-k’) (1.35)

These relations induce the fundamental relation between the creation and annichilation oper-
ators which is:

[â(τ,k), â†(τ,k’)] = iδ(3)(k-k’) (1.36)

In this formalism, the Hamiltonian takes the following simple form:

H =
1

2

∫
d3k
[
k(aka

†
k + a†kak) + iH(a†ka

†
-k − aka-k)

]
(1.37)

At this stage, we can use the Heisenberg equations for the operators a and a† and arrive at the
following system of operatorial equations of motion:(

a′k
a′†k

)
=

(
−ik H
H ik

)(
ak
a†−k

)
(1.38)

Whose solutions could be cast as linear combinations of the operators evaluated at a given
primordial time τ0.

âk(τ) = ukâk(τ0) + vkâ
†
−k(τ0) (1.39)

â†−k(τ) = u∗kâ
†
−k(τ0) + v∗kâk(τ0) (1.40)

Where also these new quantity indicated by uk and vk are functions of time. These rela-
tions constitute what it’s common to call in literature the “Bogoliubov transformation” which
describe the mixing of the creation and annichilation operators due to the effect of time.

We can easily get another constraint between these Bogoliubov coefficients if we require the

validity of the normalisation condition: i(f ∗kf
′
k − f ′∗k fk) = 1 which is substantially equivalent

to the conservation of the Wronskian for the differential relative differential problem. (Note

that the scalar product by with we defined the normalisation condition is the product that is
defined in curved space-time taking into account a spatial Cauchy hypersurface Σ in a globally

hyperbolic space-time). Nevertheless, we can think of the previous condition as the request

of validity of the commutation relations between the ladder operators even after the time
evolution. In formulas:

|uk(τ)|2 − |vk(τ)|2 = 1 (1.41)

So, the quantized scaled fields and their conjugate momentum are:

f̂k(τ) = fk(τ)âk(τ0) + f ∗k (τ)â†−k(τ0) (1.42)
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π̂k(τ) = −i
(
gk(τ)âk(τ0)− g∗k(τ)â†−k(τ0)

)
(1.43)

where we defined the following two combinations of mode functions:

fk(τ) =
1√
2k

(uk(τ) + v∗k(τ)) (1.44)

gk(τ) =

√
k

2
(uk(τ)− v∗k(τ)) (1.45)

Thank to the switch to the rescaled field f by the scale factor a we are in the position of writing
the dynamical equation of the quantized scalar field in a Bessel-type form:

f ′′k +
(
k2 − a′′

a

)
fk = 0 (1.46)

Moreover, we will settle down our description in a de Sitter space, which is the natural environ-

ment of Inflation. This means that the expansion parameter has the following form: a = − 1
Hτ

.

By a direct use of algebra we find the following identity:

a′′

a
=

2

τ 2
(1.47)

The solution of such a Bessel equation is well known to be a linear combination of the Hankel
function of first and second kind:

fk(τ) =
√
−τ [C1(k)H

(1)
3
2

(−kτ) + C2(k)H
(2)
3
2

(−kτ)] (1.48)

For later convenience it’s useful to recall the asymptotic behaviour of the Hankel functions
because they will be essential toward the evaluation of the power spectrum in the regimes of
interest. The first important formula is the aspect of the Hankel function for the index ν we

are concerning about: ν = 3
2
.

H
(1)
3
2

(z) = i

√
2

πz

eiz

z
(1− iz) (1.49)

and the famous property: (H
(1)
ν (z))∗ = H

(2)
ν (z) At this stage we can easily compute, doing

some straightforward simplifications, the general form of the mode functions of the quantized
field f :

fk = Ak
e−ikτ√

2k
(1− i

kτ
) +Bk

eikτ√
2k

(1 +
i

kτ
) (1.50)

and its conjugate momentum gk:

gk(τ) =

√
k

2

[
Ake

−ikτ −Bke
ikτ
]

(1.51)

We can now exhibit the general form for the mode functions.
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uk =
1

2

(
Ake

−ikτ
(

2− i

kτ

)
+Bke

ikτ i

kτ

)
(1.52)

v∗k =
1

2

(
Bke

ikτ
(

2 +
i

kτ

)
− Ake−ikτ

i

kτ

)
(1.53)

These quantities are subjected to the constraint (1.16) which can be put differently as:

|Ak|2 − |Bk|2 = 1 (1.54)

It is clear that we have a complete one-parameter family of solutions all equivalent in
principle. Now, we will show, at first, the common choice and, after, the general treatment for
the initial conditions through which the observables get some modifications.

1.4.1 The Minkowskian assumption

Here we are in the position to set the initial conditions for the field we are interested in. The
first, simplistic, choice we can made is the Euclidean vacuum, commonly known as the “Bunch-
Davies vacuum”. It corresponds to the assumption of thinking that in the infinite past the
Universe was a Minkowsky type. This assumption lead to the following hypothesis:

lim
τ→−∞

fk(τ) =
1√
2k
e−ikτ (1.55)

with the previous limit we can infer the form of the elements we introduced before to be Ak = 1
and Bk = 0 and so:

fk(τ) =
e−ikτ√

2k
(1− i

kτ
) (1.56)

In other words, the Minkowskian choice is the usual one occurring when one quantize fields
in a flat background requiring the minimization of the energy density. Recall that the expression
for the Hamiltonian operator for the quantum harmonic oscillator can be cast into te following
form:

Ĥ =
1

4

∫
d3k
[
aka−kF

∗
k + a†ka

†
−kFk + (2a†kak + δD(0))Ek

]
(1.57)

where we have defined :

Ek(τ) = |ḟk|2 + ω2
k|fk|2 (1.58)

Fk(τ) = ḟ 2
k + ω2

kf
2
k (1.59)

Requiring the flat space-time conditions on the mode functions fk and minimizing the energy
Ek bring us to the definition of the Bunch Davies vacuum.

Note that the only behaviour needed is for an infinite past time τ but no restrictions were
made on k because the initial vacuum state ought to be imposed for all modes.

It is essential to stress again the crucial point of this procedure; that is the fact that
we are only imposing an instantaneous vacuum. In fact, due to the time dependence of the
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Hamiltonian, we cannot find any time-independent eigenvectors that can be used as a vacuum.
The Euclidean vacuum we have just defined is somewhat emerging from the recipe we have
outlined. Moreover, it is important to stress also that this minimization procedure holds only

if ω2
k(τ0) > 0. Otherwise, the energy function has no minimum and we are not able to spot an

instantaneous lowest-energy vacuum.2 At this stage, we can compute the power spectrum of
the field we are studying that is defined by the following:

Pf =
k3

2π2
|fk(τ)|2 (1.62)

which represents the power spectrum and is the power per logarithmic interval k. We can point
out that, by this definition, the power spectrum is a dimensionless quantity. It is easy to see
that we arrive at a simple formula that is scale invariant in the super horizon regime. Now,
recall that the field f is not the former one we were interested in, but it is what we called the
rescaled field. Coming back to the original character we find finally the power spectrum for the
scalar field φ evolving in a de Sitter space-time:

Pφ(k, τ) =
Pf
a2(τ)

=
(H

2π

)2[
1 + (kτ)2

]
(1.63)

which, in super-horizon limit, namely kτ → 0 approaches to a constant value (with respect to

the scale k): (H
2π

)2

(1.64)

This is an impressive result. Since H is slowly varying we can have the expression for the
power spectrum of quantum scalar perturbations by just evaluating this expression at the
horizon crossing k = aH.

1.4.2 The general treatment - alpha vacua

Using the same arguments that may be found in Danielsson [1], we can reasonably consider a

vacuum state that is originated not in the infinite past, but in a specific finite moment τi.

ak(τi)|0, τi〉 = uk(τi)âk(τi)|0, τi〉︸ ︷︷ ︸
=0

+ vk(τi)â
†
−k(τi)|0, τi〉︸ ︷︷ ︸
6=0

(1.65)

2For completeness, it worth-mentioning that in literature are present other prescription to select the vacuum
state along the ones we will talk about in this thesis. We can cite the local or instantaneous vacuum which is a
generalization of the Bunch-Davies one. It transform the original problem into a Cauchy one at a finite initial
time with initial conditions:

uk(τi) =
1√
2k

u′k(τi) = ±ikuk(τi) (1.60)

This approach is equivalent to the infinite past assumption, this is the reason why sometimes in literature they
are thought as a unique object even if they come out from two different ideas. Another prescription also used
is the minimal-energy vacuum, so called because it minimizes the energy density:

uk(τi) =
1√
2k0

u′k(τi) = ±ik0uk(τi) (1.61)
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According to the standard definition of the distruction operator ak we have to impose the
annichilation of the second term, which lead to the zero-setting of the mode function v at
the time we set as the beginning of the Inflation. Such request leads to the following relation
between the two coefficients Ak and Bk.

Bk =
ie−2ikτi

2kτi + i
Ak (1.66)

and bearing in mind the condition 1.54 we can make explicit the dependence of the Bogoliubov
coefficient to the initial time τ0 and so justify the definition of one parameter family.

|Ak|2 = 1 + |Bk|2 = 1 +
ie−2ikτ0

2kτ0 + i

−ie−2ikτ0

2kτ0 − i
|Ak|2 = 1 +

1

4k2τ 2
0 + 1

|Ak|2 (1.67)

So, we have:

|Ak|2 =
1

1− 1
4k2τ2

0 +1

≡ 1

1− |αk|2
(1.68)

where we have defined in the last step: αk = i
2kτ0+i

. Through these simple steps we have

highlighted the nature of the α-vacua as a one parameter family of states. According to this
easy relation we can perform the computation of the power spectrum which will carry completely
new terms due to the crucial assumption we just made. By a straightforward algebra we find
the following:

Pφ =
k3

2π2a2
〈0|f †kfk′ |0〉 =

k3

2π2a2

∣∣∣Ak e−ikτ√
2k

(1− i

kτ
) +Bk

eikτ√
2k

(1 +
i

kτ
)
∣∣∣2 =(H

2π

)2[
1 + |Bk|2

(
2 +

2kτi + i

i
e2ikτi +

2kτi − i
−i

e−2ikτi
)]

= P̄φ + δPφ (1.69)

So, it is self evident that we will receive an additional contribute to the power spectrum from
the degeneracy of the initial quantum state. We will perform in detail this computation later.

1.5 Primordial quantum perturbations in slow-roll infla-

tion regime

So far we have just highlighted basic properties peculiar of quantum field theory in curved
space-time. Let’s come back to the physics. Subhorizon scales are microscopic and therefore
quantum effects are non negligible. Now, it’s time to move on and tackle the original problem of
studying the quantum fluctuations of the Inflaton field driven by a slow roll potential. This is the
most important result of the inflation paradigm. We will derive in the slow roll approximation
the power spectrum of the scalar perturbations in terms of the conserved gauge invariant
quantity R. It is important to stress again the crucial role the Hubble parameter H has for the
faith of the perturbations. Remember that the value of the Hubble parameter give us crucial
information about the instant of the history when fluctuations enter and exit the horizon. When
we introduced the Inflaton field to fulfil the necessity to have an expansion era of the primordial
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Universe, we convinced ourselves to use a slow roll potential to drive the scalar field φ. Soon
after, it was natural to impose some conditions on the potential to guarantee the long-standing
duration of the accelerated period. To keep track of those conditions it is common to use the
so called “slow-roll parameters”. It is necessary to introduce this objects which will play a very
important role in the analysis. In the following we will follow the conventions used by Maggiore

in [8] .

ε ≡ −d lnH

d ln a
= − Ḣ

H2
η ≡ d ln ε

d ln a
=

ε̇

Hε
δ =

φ′′

Hφ′
(1.70)

Using the slow roll conditions it is immediate to convince ourselves that the inflation can take
place if and only if:

Inflation⇔ ε� 1 (1.71)

Moreover, making use of the dynamical equation of that field we can write these parameters as
functions of the potential:

ε ≡ 1

2M2
Pl

φ̇2

H2
≈ εV =

M2
Pl

2

(Vφ
V

)2

ηV = M2
Pl

Vφφ
V

(1.72)

These ones are related by the following:

η ≈ 4εV − 2ηV δ = εV − ηV (1.73)

Finally, we are ready to tackle the problem of finding the power spectrum produced by
scalar perturbation during inflation. If we take in consideration the scalar sector of the Einstein

equation, it’s easy to spot that we don’t have any anisotropic contribution (at least, at first

order of the perturbations). So, we have only to deal with two independent variable: one

Bardeen potential Ψ and the quantum perturbation of the Inflaton field δφ(τ,x). To solve the

dynamics is useful to take into account two simple equation involving these two variables. The

natural choice in this case is to take the (00) and the (oi) component of the perturbed Einstein

equation, which are the following:

∇2Ψ− 3H(Ψ′ +HΨ) = −4πG
[
(φ′0)2Ψ− φ′0δφ′ − a2dV (φ0)

dφ0

δφ
]

(1.74)

Ψ′ +HΨ = 4πGφ′0δφ (1.75)

At this stage is useful to introduce the famous variable u (sometimes is indicated with the letter

Q in literature):

u ≡ −zR (1.76)

where R is the gauge invariant curvature perturbation on comoving curvature hyper-surface.

R = −Ψ− Hδφ
φ′0

(1.77)

and we also defined z as:

z =
aφ′0
H

(1.78)
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The latter quantity has the role to encode the dependence of the model we are playing with. In
fact it is easy to see that it depends only on the background evolution because the classical part
of the Inflaton field φ0 satisfies classical equation of motion which are the only ones influenced
by the driven potential V subjected to the slow-roll conditions. The variable u is called in
literature the Mukhanov-Sasaki variable. It is gauge invariant by construction and is related
to the inflation perturbation δφ on a generic slicing and to a curvature perturbation Ψ in that

gauge. It represents the inflation potential on spatially flat slices3:

u = δφ|Ψ=0 (1.80)

Performing the passage in the Fourier space we finally get the well known Mukhanov-Sasaki
equation:

u′′k +
(
k2 − z′′

z

)
uk = 0 (1.81)

The dependence of the potential is encoded in the effective mass term in the brackets. Through
the expression of z we can dive into the analysis of the primordial scalar power spectrum. In

the previous chapter we already solved this kind of equation where the ratio z′′

z
was replaced

by a′′

a
. The previous analysis can be thought as the “zero-order” level of comprehension of the

problem.
If we take into account the first slow roll parameter ε we can get immediately a modification

of the Hubble parameter H (or its version through the conformal time H). We know that the

Hubble parameter is nearly constant during inflation. If we integrate the relation between ε

and H we can obtain the following relation (in conformal time):

H′ = −H2(εH − 1) (1.82)

and so, at first order of the slow-roll perturbation theory we arrive at the following expression
for the effective mass term in the Mukhanov-Sasaki equation

z′′

z
∼ H2[2 + 2ε+ 3δ] = H2[2 + 5ε+ 3η] (1.83)

and integrating we get a modification of the definition of conformal time given by the presence
of the slow roll parameter:

τ = − 1

(1− ε)H
(1.84)

The effective mass term in the Mukhanov-Sasaki equation becomes:

z′′

z
=
ν2 − 1/4

τ 2
(1.85)

3Just for completeness, remember that the curvature perturbation on comoving hyper-surfaces R and the
other gauge-invariant curvature perturbation on uniform energy density hyper-surfaces ζ are connected by the
relation:

− ζ = R+
2ρ

9(ρ+ P )

( k

aH

)2
Ψ (1.79)

and so, is evident that on large scales we have : R ≈ −ζ
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where ν2 = 9
4

+ 9ε − 3η and consequently ν ≈ 3
2

+ 3ε − η We have obtained, in some sense, a

correction of the power spectrum of a scalar field evolving in a de Sitter Universe. This correc-

tion arise from the slow roll parameters (which are model dependent because their definition

through the potential that drives the accelerated period).

1.5.1 Bunch-Davies initial condition

At this stage we have to face, again, the problem of the choice of the initial condition. Again,
we can set the Bunch-Davies state as the vacuum and compute the power spectrum.Remember
the general behaviour of the Hankel function for small argument:

Hν(x << 1) ∼
√

2

π
e−i

π
2 2ν−

3
2

Γ(ν)

Γ(3
2
)
x−ν (1.86)

In the case of our interest, x = −kτ . Within this assumption, the power spectrum of the field
u is:

Pu =
k2

8π
(−kτ)|H(1)

ν (−kτ)|2 (1.87)

Here, we can switch to the curvature perturbation (which is a convenient choice in order to have

a conserved quantity when the modes exit the horizon). The power spectrum of the curvature

perturbation is obtained from the previous one by simply multiplying the factor 1
z2 and we

obtain:

PR =
1

z2

k2

8π
(−kτ)|H(1)

ν (−kτ)|2 (1.88)

Restoring the dependence of the slow roll parameter and introducing a time τk which coincide
with the instant when the modes crossed the horizon, we can finally get the general formula
for the scalar power spectrum at first slow roll order:

PR = (1− 2ε)
1

8π

(H2

φ̇0

)2

k
(−kτ)3+6ε−2η|H(1)

3
2

+3ε−η(−kτ)|2 (1.89)

where the subscript k indicate that this quantity is evaluated at horizon exit. Nevertheless, from

this formula and from the asymptotic behaviour for (−kτ) → 0, the dependence of conformal

time cancels and we get the constant super-horizon scales power spectrum (which we already

predicted). This fact set us free to choice the preferable time in which evaluate this expression.

A very convenient time is the time when the modes crossed the horizon. That happens when:

k

a(tk)
= H(tk) or k = H(tk) (1.90)

and this lead to:

τ(tk) = − 1

(1− ε(tk))
≈ −1

k
(1.91)

The last expression stress the concept of the dependence of the slow roll parameter from the
scale k.
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Due to this k-dependence, we can infer another useful relation between the Hubble para-
meter evaluated at the time of the horizon crossing of a given mode k and the time at which
the last scale kl leaves the horizon. It’s easy to demonstrate that:

H(tk) = H(tl)
( k
kl

)−ε
(1.92)

This equation says explicitly that fluctuations with smaller wavelengths leave the horizon later

(as we already pointed out in the introduction of the Inflationary stage in chapter 1). In a

similar way, we can also fin the k-dependence of the slow roll parameters.

ε(tk) = ε(tl)
( k
kl

)2ε+2η

(1.93)

η(tk) = η(tl)
( k
kl

)ε−2η

(1.94)

If we assume that the last scale leaves the horizon almost at the end of the inflation, then εl
is something near to unity. After some manipulations we can write the power spectrum in the
slow roll approximation:

P =
1

2M2
Plε

(Hk

2π

)
(1.95)

This is the formula we were looking for. In our general treatment of the power spectrum of
the real scalar field we arrived at a scale independent formula. Now, we would like to quantify
the dependence by the scale of the power spectrum introducing a convenient parametrization
approximating the power spectrum with a power law of the scales.

Pφ(k) = Aφ

( k
k∗

)ns−1

(1.96)

where we introduced the quantity ns − 1 which is called the “spectral tilt” and is a fun-
damental object to parametrize the deviation from a flat spectrum. A power spectrum with a
positive tilt is defined as a “blue spectrum”, otherwise is called “blu spectrum”. The limit case
when ns = 1 is the case of the Harrison-Zeldovich spectrum. We also introduced a pivot scale
k∗ which is something fixed by the energy scale of the experiment we project. It is worth-noting
that both the amplitude Aφ and the spectral tilt are quantities that in general depend upon

the model we are building. In order to compare the theoretical predictions with observational
data one can introduce another parametrization which generalize the previous one.

Pφ(k) = Aφ

( k
k∗

)ns−1+ 1
2
dns
d ln k

ln(k/k∗)+...

(1.97)

Here we have introduce the “running of the spectral index” dns
d ln k

. Our analysis was made up

for a generic scalar field running in a curved background. From all these relations we earned,
we can make the last step consisting in the computation of the tilt:

ns(k)− 1 =
d logPR(k)

d log k
(1.98)
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explicitly we find the dependence on the two slow roll parameters:

ns − 1 = −6ε+ 2η (1.99)

1.5.2 α vacua

Now, let’s go back to the time when we choose the initial condition for the mode functions.
Let’s stress again that the inflation is just a limited period of the history of the Universe and
so it is not reasonable to postulate and infinite past Minkowskian condition. Moreover, if the
inflationary period lasts more than 60 e-folds the physical wavelengths of the primordial modes
will be smaller than the Planck scale and so it is natural to think how introduce new effects
in this scenario. A consistent quantum gravitational theory still lacks but we can introduce

trans-Planckian (ultraviolet) new physics through the choice of the vacuum. Again, we will

follow the Danielsson’s prescription for that non trivial choice. Let’s ho back to the eqn. 1.69
an recast the square of the modulus in the following way:

Pφ =
k2

4πa2

[
|Ak|2

(
1+

1

k2τ 2

)
+AkB

∗
ke
−2ikτ

(
1− i

kτ

)2

+BkA
∗
ke
−2ikτ

(
1+

i

kτ

)2

+ |Bk|2
(

1+
1

k2τ 2

)]
(1.100)

From this expression we can extract the behaviour of the power spectrum in the two regimes

we are mainly interested in. For first, if we take the limit: |kτ | � 1 (i.e. modes well inside the

horizon), the oscillating terms average to zero and we can also neglect the terms 1
k2τ2 . So we

have:

Pφ '
k2

4π2a2
[|Ak|2 + |Bk|2] =

k2H2τ 2

4π
[1 + 2|Bk|2] (1.101)

where in the last step we made use of the deSitter scale factor a = − 1
Hτ

and the condition

between the Bogoliubov coefficient. Then, the other important case is when kτ → 0, i.e. super-
horizon modes. In this case, all the relevant terms are those which are coupled to the inverse
of kτ :

Pφ '
k2

4π2a2

[ |Ak|2
k2τ 2

+
|Bk|2

k2τ 2
+ AkB

∗
k

(
− 1

k2τ 2

)
+ A∗kBk

(
− 1

k2τ 2

)]
=
H2

4π2
(|Ak|2 + |Bk|2 − AkB∗k − A∗kBk) =

H2

4π2
|Ak −Bk|2

(1.102)

At this point we can recall the explicit expression we have found for Ak and Bk, so that:

Pφ =
(H

2π

)2( 1

1− |αk|2
+

1

4k2τ 2
0 + 1

1

1− |αk|2
− ie−2ikτ0

2kτ0 + i

1

1− |αk|2
+
ie2ikτ0

2kτ0

1

1− |αk|2
)2

=
(H

2π

)2

(1 + |αk|2 − αke−2ikτ0 − α∗ke2ikτ0)
1

1− |αk|2
(1.103)

Danielsson codified the inaccessibility of a remote Minkowskian vacuum through the use
of a physical cut-off Λ. Remember that he assumed the physical modes began their evolution
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only after a certain time ti (the initial time when the inflation starts). If we assume a de Sitter

inflationary period (that means a = − 1
τH

) we can express the physical scale of a generic mode

in the following way

kcom = apphys = −pphys
τH

. (1.104)

Imposing the cut-off at a certain pphys = Λ at a precise value τi we have:

τ(tin) = − Λ

kcomH
(1.105)

The most important thing to note is that the value of the conformal time of the beginning
is dependent by the value of the value of k. Basically, the main physical concept behind this
discussion is that for modes that have largher wavelenghts today, we have to go further in time
to impose initial condition.

Pφ =
(H

2π

)2(
1 +

1

1 + 4 Λ2

H2

− i

i− 2 Λ
H

e2i Λ
H − i

i+ 2 Λ
H

e−2i Λ
H

) 1

1− 1

1+4 Λ2

H2

=
(H

2π

)2[2 + 4 Λ2

H2 + 2i Λ
H

(e2i Λ
H − e−2i Λ

H )− (e2i Λ
H − e−2i Λ

H )

4 Λ2

H2

] (1.106)

Taking the limit Λ
H
� 1 we have:

Pφ =
(H

2π

)2(
1− H

Λ
sin
(2Λ

H

))
(1.107)

Doing some simple and straightforward calculations we arrive at the following expression for
the scalar power spectrum including the slow roll approximation:

Ps =
1

8π2

H2

ε

[
1 +

H

Λ
sin
(2Λ

H

)
+ ...

]
(1.108)

In that way also the scalar spectral index get a modification:

ns − 1 ≈ 2ηV − 6εV + 2εV cos
(2Λ

H

)
(1.109)
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1.6 Gravitational waves background of Early Universe

One of the most robust and model-independent prediction of the Inflation is the production of
gravitational waves. The evolution of such tensor perturbation is regulated by the transverse-

traceless (TT) spatial part of the Einstein equations. We demonstrated that the power spectrum

of the curvature perturbations were dependent of both the Hubble parameter during inflation
and to the slow roll parameter ε which is characterized by the particular model we are dealing
with for the Inflationary scenario. Now, the case of gravitational wave production is more subtle
because it doesn’t carry any information about the potential driving the accelerated primordial
stage of the Universe, but its power spectrum will be only a function of the Hubble parameter
during inflation.

By the analysis of the Inflaton, we know that modes in our Universe at first were well
inside the Hubble radius; then, they crossed it and, lastly, they re-entered. So, an hypothetical
gravitational wave spectrum could carry useful information about the conditions of both the
beginning and the end of the Inflation period.

Let’s start considering the tensor sector of the metric perturbations. From a mathematical
point of view, the treatment of tensor perturbation is easier with respect to the scalar sector
because here we have not to deal with gauge ambiguities. From the well known cosmological
perturbation theory we can cast the infinitesimal line element in the following manner through

the well known Newtonian gauge: ds2 = a2[−dτ 2 + (δij + hij)dx
idxj] where we have used the

conformal time τ and xi as the comoving spatial coordinates. Through the SVT (sclar-vector-

tensor) decomposition of the metric and the consequent study of gauge invariant quantities, we

noted that hij is yet a gauge invariant quantity (unlike the other kind of perturbations). We

recall that hij it’s symmetric, traceless and transverse:

hij = hji hii = 0 ∂ihij = 0 (1.110)

These proprieties of the tensor perturbations make easier the computation of the Einstein
tensor. The reason is that when we try to compute the Ricci scalar by the Ricci tensor R =
gµνRµν , the former one will contain only terms of second order in the perturbations or terms

like the ones in the previous equations. Nevertheless, these conditions tell us that the tensor
perturbations hij has only two degree of freedoms.

From these considerations we can infer that the general form of the solutions is the following:

hij(x, t) =
∑

λ=(+,x)

h(λ)(t)ε
(λ)
ij (x) (1.111)

where the two tensor ε
(+,x)
ij (x) represent the polarization states which, obviusly, obey similar

conditions hij do. For future convenience it is convenient to switch to the Fourier representation:

hij =
∑
λ

∫
d3k

(2π)3/2MPl

ελij(k)hλk(τ)eikx (1.112)

Being k the direction of the propagation, we can write the polarization tensors in the
following way:

εij ≡
1√
2

[εi(k)εj(k)− ε̄i(k)ε̄j(k)] (1.113)
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εij ≡
1√
2

[εi(k)ε̄j(k)− ε̄i(k)εj(k)] (1.114)

To arrive at the equation of motion for the tensorial sector we could act as in the case of the
scalar sector. One can start from the Einstein equations and perturb them to find the relations
between the metric dependent l.h.s. and the matter perturbations induced by the Inflaton in the
r.h.s.. Adopting this approach, it is immediate to see that the equation of motion is completely
independent form the perturbations of the Inflaton because of we treat it as a perfect fluid and
is well known that we do not have any anisotropic term. It also instructive to arrive at the
dynamical equations by a parallel way. We can start considering the total action of the theory
and varying it. We will see that the term coming from the matter action cancels automatically
with one term of the variation of the metric one. From a quantum field theoretical point of
view, hij can be thought as a couple of two scalar massless fields evolving in a dynamical FLRW

background. Let’s considerer the complete action as a combination of the two parts:

S =
M2

Pl

2

∫
d4x
√
gR +

∫
d4x
√
−g
[
− 1

2
∂µφ∂

µφ− V (φ)
]

= SEH + Sinflaton (1.115)

where the Ricci tensor is the one calculated with respect to the FLRW metric. The complete
computation is a little bit long, but we here outline the main aspects of the proof. We can use
the fact that the FLRW metric is conformally equivalent to the Minkowskian one. In the case

two metrics are related by: g̃ab = Ω2gab one can demonstrate that the new Ricci scalar could
be calculated from the former one by the use of the following formula:

R̃ = Ω−2(R− 6∇2 ln Ω− 6∇a ln Ω∇a ln Ω) (1.116)

Along with this remarkably result, we have to calculate the metric perturbation up to the
second order. For this purpose it will be useful to remember the following relation:

det(X + εA) = detX det(I + εB) = det
(

1 + ε trB +
ε2

2

[
(trB)2 − tr(B2)

])
+O(ε3) (1.117)

where we denoted: B ≡ X−1A Using this formula we can calculate the determinant of the
metric that will take part in the computation of the action’s variation:

(0)g = −a8 (1.118)

(1)g =(0) g tr(a−2ηµνa2hνρ) = 0 (1.119)

(2)g =
a8

2
hµνh

µν (1.120)

Using these formulas we can calculate the Ricci scalar up to the second order and then use the
conformal relations to find the Ricci scalar for a FLRW Universe. In summary, we have the
perturbed Ricci scalar in Minkowki:

R̄ = −hijḧij −
1

4
∂̄ihjk∂̄

ihjk − 3

4
ḣijḣ

ij (1.121)
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and then:

(0)R =
6

a2
(H′ +H) (1.122)

(1)R = 0 (1.123)

(2)R = −a−2
(
hijḧij +

1

4
∂̄ihjk∂̄

jk +
3

4
ḣijḣ

ij
)
− 3a−2Hhijḣij (1.124)

At this stage we have all the components to calculate the metric action up to the second
order. That means that we will use only the following quantities:

(2)(
√
−gR) =(0)

√
−g(2)

R +(2)
√
−g(0)

R (1.125)

Using the previous results we can write down the full Einstein-Hilbert action up to the second
order:

(2)SEH =
1

8

∫
d4xa2ḣijḣ

ij − 1

8

∫
d4xa2∂̄ihjk∂̄

ihjk − 1

4

∫
d4xa2(H2 + 2Ḣ)hijh

ij (1.126)

(we have set M2
Pl = 1 for practical purpose, but we will restore it at the end of the computation).

Now we can move on and evaluate the perturbed matter action of the scalar field in its tensorial
sector up to the second order. We have:

(2)(
√
−gLφ) =(2)

√
−g(0)Lφ +(0)

√
−g(2)Lφ (1.127)

Doing some simplification we arrive at the following expression for the action:

(2)Sφ =
1

4

∫
d4xa2(H2 + 2Ḣ)hijh

ij (1.128)

From this analysis we have shown that the contribution of the Inflaton in the tensorial sector
cancels exactly with the third element we calculated of the Einstein-Hilbert term. Consequently,
the tensor sector is characterized by just the second order metric perturbations.

(2)S =
M2

Pl

8

∫
d4xa2(ḣijḣ

ij − ∂̄ihjk∂̄ihjk) (1.129)

In the Fourier space we can easily convert this action such that:

(2)S =
M2

Pl

16

∑
λ=±2

∫
dτd3ka2

[
(h′λ)2 + k2(hλ)2

]
(1.130)

From this expression it is easy to show that the Euler-Lagrange equations are the following:

h
′′

ij + 2
a′(τ)

a(τ)
h′ij −∇2hij = 0 (1.131)

The previous equation is a well known wave equation and consequently its solutions are grav-
itational waves. In general on the r.h.s. we could have another term which provides a source
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for the gravitational waves Πij (anisotropic stress tensor). In that case the equation of motion

could get a modification:

h
′′

ij + 2
a′(τ)

a(τ)
h′ij −∇2hij = 16πGa2(τ)Πij(τ,x) (1.132)

Anyway, a tensorial power spectrum could raise even if this tensor is absent. In general, the
source of the anisotropic component could be of different nature; for example, relativist particles

(e.g. neutrinos) moving on geodesic of the metric that included the tensor perturbations,

generate an isotropic stress that could affect the previous equation. Nevertheless, if we go
further in perturbations, anistropic sources could arise from the first order perturbations as
well. We will see that first order perturbations in the scalar sector could give rise to relevant
second order gravitational waves background. For the moment we will stick with the discussion
of gravitational waves emerging from a perturbed FLRW Universe. For the moment, let’s
consider a free theory which the anisotropic stress tensor vanish. We will come back to this
point later to include sources for the tensorial sector. The previous homogeneous equation is a
Bessel equation which is a common equation when one approach to cosmological perturbations.
As usual, it is convenient to introduce an auxiliary field to cast the ordinary Bessel equation into
a well understood shape: an oscillating harmonic oscillator with a time dependent frequency
term. This is a very useful step toward the quantization project. So, we can define:

vij =
aMPl√

2
hij (1.133)

By the use of this auxiliary field we can interpret the original theory such as a theory of two
scalar massless fields in a FLRW background. In term of the new field we can write the Fourier
expansion:

vij =
∑
λ

∫
d3k

(2π)3
ελij(k)vλk(τ)eikx (1.134)

So, we can conclude that the equations of motion, in the Fourier space, take the following form:

h′′k + 2
a′(τ)

a(τ)
h′k + k2hk = 0 (1.135)

In term of the rescaled field:

v′′λk +
(
k2 − a′′

a

)
vλk = 0 (1.136)

If we consider a generic cosmological epoch, i.e. a′′

a
∼ 1

τ2 we can infer the behaviour of the

perturbations. Inside the horizon (kτ >> 1) we have the usual harmonic oscillator behaviour

for all the well known epochs of the Universe (RD, MD, ΛD). Looking for the generic solution

of that equation we have:

vk(τ) =
√
−τ [C1(k)H

(1)
3
2

(−kτ) + C2(k)H
(2)
3
2

(−kτ)] (1.137)
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Those are the mode functions we are going to use to quantize the tensorial field. Coming
back to our original object of interest, we can finally write down the canonical commutation
relations which encode the quantum nature we are conferring to this tensorial field. So, defining

the conjugate field πk for each polarization mode (r = 1, 2)

πrk(τ) = a2(τ)h′rk (τ) (1.138)

We impose the following equal time commutation relations:[
ĥrk(τ), π̂sk’(τ)

]
= iδrsδ(3)(k - k’) (1.139)

[
ĥrk(τ), ĥsk’(τ)

]
=
[
π̂rk(τ), π̂sk’(τ)

]
= 0 (1.140)

Finally, we express the tensor field as a linear combination of the mode function (obtained

inverting the relation with the rescaled field v) and the usual creation and annichilation oper-
ators.

ĥrk(τ) = hk(τ)ârk + h∗k(τ)âr†-k (1.141)

By virtue of the CCRs we just imposed on the field, the ladder operators satisfy the following:[
ârk, â

s
k’

]
= δrsδ(3)(k - k’) (1.142)

and all the others are null. Nevertheless, it’s important to remember that if we require the
consistency of the two sets of commutation relations we need to impose the following relation
that may be thought as a Wronskian conservation.

hk(τ)h′∗k (τ)− h∗k(τ)h′k(τ) =
i

a2(τ)
(1.143)

1.6.1 Bunch-Davies vacuum

Now it’s time to make our choice of the initial conditions and compute the observables. Making
use of the same formulas we used for the scalar field yet, we can compute the power spectrum
of the tensor field, which, at first order of slow roll parameters and on super-horizon scales is
given by the following:

Pt =
8

M2
Pl

(H
2π

)( k

aH

)−2ε

(1.144)

It is clear that evaluating it at the horizon crossing it will depends only on the value of Hk. Now
we have found the expression for the tensor power spectrum, we can do the same parametrization
we made for the scalar sector.

Pt = At

( k
k∗

)nt+ 1
2
dnt
d ln k

ln k(k/k∗)+...

(1.145)
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Here we finally introduce another very useful quantity which characterize the study of the
various inflationary models: the tensor-to-scalar ratio r which is defined to be the ratio between
the amplitude of the tensor and the scalar power spectrum

r ≡ At
As

(1.146)

In that case it is easy to see that:

r = 16ε (1.147)

Now, let’s calculate the tensor spectral index:

nt =
d lnPt
d ln a

d ln a

d ln k
= −2ε(1− ε)−1 ≈ −2ε (1.148)

Therefore, we can conclude showing what is commonly called in literature the consistency relation

r ≈ −8nt (1.149)

Any study of different models will provide modifications or extension of such relation.

1.6.2 α vacuum in deSitter space-time

In the same fashion we computed this corrected power spectrum of a massless scalar field in a

de Sitter background (as can be thought the scalar perturbation of the Inflaton), we can also

obtain the respective formula for the tensor power spectrum modified by the initial condition
involving the cut-off scale Λ. As long as the two polarization states of the gravitational waves

can be thought as a couple of massless scalar field rescaled by the scale factor a (as we will

see later in this dissertation) we can safely use the same result we just obtained to write the

following:

Pt = 2
H2

π2

[
1 +

H

Λ
sin
(2Λ

H

)
+ ...

]
(1.150)

Here we have all the information we may need to compute the two indexes that characterize
the analysis. It is straightforward to see that if we introduce such modifications in the initial
status at the beginning of the Inflation we will get consequently also modifications of the scalar
and tensor index. Recalling the expression we found for the modified scalar spectral index:

ns − 1 =
[
2η − 4ε+ ε cos

(2Λ

H

)]
(1 + ε) ≈ 2ηV − 6εV + 2εV cos

(2Λ

H

)
(1.151)

and making explicit the dependence of the number of e-folds, we obtain:

ns − 1 = 2ηV − 6εV + 2εV cos
( 2Λ

Hinfl

exp(εVNe)
)

(1.152)

In the same way we can also write down the modification that arise in the tensor sector:

nt = −2
[
ε+ ε cos

(2Λ

H

)]
= −2

[
εV + εV cos

( 2Λ

Hinfl

exp(εVNe)
)]

(1.153)
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We demonstrated that just taking the simple assumption of the presence of a physical cu-off
we automatically introduced an important modification in both the scalar and tensor sector
though the presence of an oscillatory term. The most important thing that arise from this
analysis is the consequent violation of the inflationary consistency relation. In fact, computing
the tensor-scalar ratio we find a consistent modification:

r = 8nt

[
− 1 + cos

( 2Λ

Hinfl

exp(εVNe)
)]−1

(1.154)

Thus, we can safely say that an accurate measure of the tensor-scalar ratio could provide a
proof of the Inflation’s duration. Such experimental evidence could be essential in order to
understand if the Inflation has or not a predecessor era. Inflation is thought to be the first
era when we can use the toolkit we built over the last century using Quantum Field Theory
and General Relativity; if there would be another physical period before the start of such
inflationary phase, the initial conditions of Inflation may be footprints of such unknown phase.

1.6.3 The energy density

In this section we want to face the problem of finding the energy of gravitational waves in

the most general settings of a dynamical background. For references see [31], [7] and references

therein. It is immediate to spot the difference between General Relativity and Electrodynamics.
The latter one is described by linear dynamical equations, while the former one is described
by the Einstein equations which are non linear and so any form of energy contributes to space-
time curvature and vice-versa! The consequence is that the presence of gravitational waves
constitutes a source of energy and momentum. Moreover, if we want to investigate about

this topic, we are forced to go beyond the linearised (or Minkowskian) assumption for the

background. In fact, assuming such strong condition, we automatically wash out from the
beginning the possibility of generating any form of curvature in the background. To sum
up, it is mandatory to take into account a general curved background. When we study the
production of gravitational waves in a curved background is customary to split the metric in
two contributions:

gµν = ḡµν + hµν |hµν | � 1 (1.155)

In the case we are interested in, i.e. the GWs background generate in a FLRW Universe, both
the background and the metric are functions of time. Here we have to face a new problem

that didn’t arise when one studies the GWs background in the weak-field limit (i.e. when the

background part ḡµν = ηµν is constant). It is not so obvious which one can be considered as

the background and which one the “perturbation”. If every component of such splitting is
dynamic, we need a new recipe to study the background and the perturbations separately. In
general, there could be two possibility to make such distinction. The first one is to identify

the background as the one which has a clear symmetry (e.g. the ones which characterize the

FLRW Universe), but the simplest way is to make a distinction by mean of the scales and

frequencies. In fact, we can discriminate the two components simply taking into account the
different typical wavelengths. We will call LB the typical scale of the background metric and
λ the characteristic one of the tensor perturbations. So we can spot the two contributions in a
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clear way if we notice that the relation between these two has to be:

λ� LB (1.156)

or, alternatively, we can think such relation as a condition on the frequencies:

νB � ν (1.157)

So, the ”ripples” of a generic metric will be identified by an high frequency and, on the contrary,
the background will be studied by the low energy ones. To study their evolution let’s consider
the trace-reversed form of the Einstein equation:

Rµν = 8πG
(
Tµν −

1

2
gµνT

)
(1.158)

Then, we can expand the Ricci tensor, with respect to the perturbations hµν , up to the second

order in the following way:

Rµν = R̄µν +R(1)
µν +R(2)

µν + ... (1.159)

where just the first term in the expansion contains only the background metric, from the second
term on there will be the presence of perturbations with powers specified by the upper label.
Thank to this expansion we can split the dynamics in two parts: the high and the low frequency

sectors. In fact, it it easy to see that the R̄µν term contains only the low frequency modes,

while R
(1)
µν , being linear in hµν , contains only the high frequency modes and, finally, the R

(2)
µν

contains both of them.

R̄µν = −[R(2)
µν ]low + 8πG

(
Tµν −

1

2
gµνT

)low
(1.160)

R(1)
µν = −[R(2)

µν ]high + 8πG
(
Tµν −

1

2
gµνT

)high
(1.161)

The first equation will tell us the dynamics of the background, while the second one will tell
us the evolution of the perturbations hµν as waves propagating on a curved background. Now,

we want to define the energy-momentum tensor for these gravitational waves. In order to do
that, let’s consider the average of both the previous equations on a spatial length l such as:

λ� l� LB (1.162)

In this way the typical size of the background will be recognized as constant over this spatial
region, while the perturbations will be understand as oscillation over such region. Doing this
average, it is clear that the equation for the high frequency modes is trivially null because of

the average wash out the short wavelength (high frequency) contribution.

R̄µν︸︷︷︸
O
(

1
LB

)2

= −〈R(2)
µν 〉+ 8πG〈Tµν −

1

2
gµνT 〉 ≡ − 〈R(2)

µν 〉︸ ︷︷ ︸
O
(
h
λ

)2

+8πG
(
T̄µν −

1

2
ḡµνT̄

)
(1.163)
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where in the last step we defined the the average of the second term on the right hand side as

the respective quantity calculated with respect to the background metric (also T̄ it’s the trace

calculate by mean of ḡ). From this equation it is explicit that not only the matter content of

the Universe affect the background, but also the contribute from 〈R(2)
µν 〉 plays an active role on

the curvature of the background. Moreover, we can infer an important relation between the
magnitude of the perturbations h and the wavelength of the signal. In fact, if the matter term
would not appear we would have approximately an equivalence of scales:( 1

LB

)2

'
(h
λ

)2

(1.164)

In the case the matter contribute was present, to balance the three contributes we obtain the
following relations which clarifies the condition of validity of perturbation theory:

h

λ
.

1

LB
→ h .

λ

LB
(1.165)

At this stage we define the following object in the TT gauge:

tµν ≡ −
1

8πG
〈R(2)

µν −
1

2
ḡµνR

(2)〉 (1.166)

and, taking the trace of this tensor, it is immediate to write this definition in the following way:

− 〈R(2)
µν 〉 = 8πG

(
tµν −

1

2
ḡµνt

)
(1.167)

and consequently the equation 1.163 becomes:

R̄µν = 8πG
(
tµν −

1

2
ḡµνt

)
+ 8πG

(
T̄µν −

1

2
ḡµνT̄

)
(1.168)

This equation can be recast in a more useful way:

R̄µν −
1

2
ḡµνR̄ = 8πG(T̄µν + tµν) (1.169)

This relation is particularly interesting because of it shows that the gravitational waves act
on the background geometry as well as a matter field described by tµν . By a straightforward

computation we have:

〈R(2)
µν 〉 = −1

4
〈∂µhαβ∂νhαβ〉 〈R(2)〉 = 0 (1.170)

and so:

tµν =
1

32πG
〈∂µhαβ∂νhαβ〉 (1.171)

Finally we can calculate the energy density:

t00 =
1

32πG
〈ḣTTij ḣTTij〉 (1.172)
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So, explicitly:

ρGW = −T 0
0 =

1

64πG

(h′ij)
2 + (∇hij)2

a2
(1.173)

and computing the vacuum expectation value:

〈0|ρ̂GW |0〉 =

∫ ∞
0

k3

2π2

|h′k|2 + k2|hk|2

a2

dk

k
(1.174)

From now on, will be very useful to introduce the notion of energy density for the gravitational
waves spectrum.

ΩGW ≡
1

ρcrit(τ)

d〈0|ρ̂GW |0〉
dlnk

(1.175)

where we defined the critical density:

ρGW (τ) =
3H2(τ)

8πG
(1.176)

and consequently the energy density has the following expression:

ΩGW (k, τ) =
8πG

3H2(τ)

k3

2π2

|h′k|2 + k2|hk|2

a2
(1.177)

Note again that, from our definition, the energy density is dimensionless.
After the analysis of the energy density, it is instructive to compute carefully the contribute

which comes from the first order term. If we insert the linear term in the Einstein equation, we
obtain the equation 1.161. In this case, the first term on the right hand side is clearly negligible
with respect to the left hand side. It represent the non linear interaction of the perturbations
with itself.

R(1)
µν︸︷︷︸

O
(

h
λ2

) = −[R(2)
µν ]high︸ ︷︷ ︸

O
(
h
λ

)2

+8πG
(
Tµν −

1

2
gµνT

)high
(1.178)

So, this relation simplifies:

R(1)
µν
∼= +8πG

(
Tµν −

1

2
gµνT

)high
(1.179)

In this case we are left with two possibilities. If matter contributes only to the background
curvature, its contribute to the perturbations dynamics vanish and consequently:

[T µν ]high = 0→ R(1)
µν = 0 (1.180)

The last expression reduces to the following equation for the perturbations:

∇̄σ∇̄σ + 2R̄µανρh
αρ − R̄αµh

αν − R̄ανh
αµ ≈ ∇̄σ∇̄σ + 2R̄µανρh

αρ = 0 (1.181)
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Where we neglected the last two terms. Now, in the case the background is flat we obtain again
the well known wave equation in the case of weak field:

�hµν = 0 (1.182)

On the contrary, if the background is curved, the 1.181 tell us about the effects due to the wave
propagation such as the redshift or the gravitational lensing. What if the matter contribute is
not negligible? In that situation we will have a high frequency matter contribute which leads
us to the following:

R(1)
µν −

1

2
(ḡµνR

(1) + hµνR̄) ≈ 8πG[Tµν ]
high (1.183)

If we evaluate these objects using the FLRW metric we will obtain, again, the following equation:

ḧij(x, t) + 3Hḣij(x, t)−
∇2

a2
hij(x, t) = 16πGΠij(x, t) (1.184)

In conclusion, this analysis concerning just the splitting of the dynamical equations by means
of the energy contributions, leads us, once again, to the wave equation of the tensor modes in
curved space-time.

1.6.4 Energy density of PGWs

It is instructive to compute the explicit form of the energy density of the perturbations we
have calculated in the last section. For first, let us recall the explicit form of the quantum field
induced by the quantum fluctuation of the Inflaton.

φ̂(τ,x) =

∫
d3k

(2π)3
[uk(τ)âk(τ0)eik·x + u∗k(τ)â†k(τ0)e−ik·x] (1.185)

where the mode functions are:

uk(τ) =
Ak

a
√

2k

(
1− i

kτ

)
e−ikτ +

Bk

a
√

2k

(
1 +

i

kτ

)
eikτ

≡ Akγ(τ) +Bkγ
∗(τ)

(1.186)

The stress-energy tensor:

T µν = gµλ(∂λφ∂νφ
† − 1

2
gλνg

ρσ∂ρφ∂σφ
†) (1.187)

so, the 0− 0 component is:

T 0
0 =

1

2a2
[φ̇φ̇† + k2φφ†] (1.188)

Now, we can take the expectation value with respect to the quantum vacuum:

〈ρ〉 = 〈0|T 0
0 |0〉 =

1

2a2

∫
d3k

(2π)3
〈0|(u′kâ+ u′∗k â

†)(u′∗k â
† + u′kâ) + k2(ukâ+ u∗kâ

†)(u∗kâ
† + ukâ)|0〉

(1.189)
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and taking advantage of the normalization condition 〈0|0〉 = 1, this expression reduces to:

〈ρ〉 =
1

2a2

∫
d3k

(2π)3
[u′ku

′∗
k + k2uku

∗
k] (1.190)

So, we have just obtained the general form of the expectation value for the energy density
for a scalar field in a FLRW space-time. This result, of course, depend only on the general
form of the mode functions and, hence, on the parameters which are functions of the initial
conditions. It is worth noting that this expression will be in general divergent, so we will need
to give a precise prescription to regularize it. One of the most common way to regularize such
integral is to subtract the value of the “zero-point energy” which, in this case, is equivalent
to subtract the value of this expression calculated with respect to the Bunch-Davies vacuum.
Let’s start compute this simple expression. The fundamental state is described by the simplistic
assumption: Bk = 0. In this case:

〈ρ〉vac =
1

2a2

∫
d3k

(2π)3
|Ak|2(γ′(τ)γ′∗(τ) + k2γ(τ)γ(τ)∗) (1.191)

where:

γ′(τ) = − e
−ikτ

a
√

2k
(ik) ≈dS Hτe

−ikτ

a
√

2k
(ik) (1.192)

Putting all together in the 1.191 we obtain:

〈ρ〉vac =
1

2a2

∫
d3k

(2π)3
|Ak|2

[(Hτ)2

2k
k2 + k2 (Hτ)2

2k

(
1 +

1

(kτ)2

)]
=

1

2a4

∫
d3k

(2π)3
|Ak|2k

[
1 +

1

2(kτ)2

] (1.193)

Now, we can compute the complete version of the energy density in presence of a non
vanishing Bk. In this more general case we have:

u′(τ) =
Hτ√

2k
[Ake

−ikτ −Bke
ikτ ](ik) (1.194)

The energy density:

〈ρ〉 =
1

2a2

∫
d3k

(2π)3
[u′ku

′∗
k + k2uku

∗
k]

=
1

2a4

∫
d3k

(2π)3

{k2

2k

[
|Bk|2 −BkA

∗
ke

2ikτ −B∗kAke−2ikτ + |Ak|2
]

+
k2

2k

[
|Ak|2

(
1 +

1

(kτ)2

)
+ |Bk|2

(
1 +

1

(kτ)2

)
+BkA

∗
ke

2ikτ
(

1 +
i

kτ

)2

+B∗kAke
−2ikτ

(
1− i

kτ

)2]}
(1.195)

At this stage, we can take another simplification and take also a time average on the previous
expression. In that way we can get rid of all the oscillating terms.

〈ρ〉 =
1

4a4

∫
d3k

(2π)3
k
{

(|Ak|2 + |Bk|2)
[
1 +

(
1 +

1

(kτ)2

)]}
(1.196)
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Here, the normalized energy density is:

〈ρ〉ren = 〈ρ〉 − 〈ρ〉vac =
1

2a4

∫
d3k

(2π)3
k
{
|Bk|2

[(
1 +

1

2(kτ)2

)]}
(1.197)

1.7 The smoking gun

There are several good reasons to invest time to the study of the primordial gravitational
waves background. The first crucial point is that GW could give the first glimpse of a quantum
gravitational theory. The main reason why we are concerning about the detection of inflationary
gravitational waves is that we are looking for a robust evidence of the Inflationary theory. In
fact, several models which provide the same accelerated expansion without introducing the
Inflaton field are on the market.

Gravitational waves from inflationary stage of the Universe could carry many useful inform-
ation about the history of the Universe between the end of the inflation and the start of the
electroweak phase transition. Two are the things that characterize a good model for the infla-
tionary era; the first one is, obviously, the potential which drives the Inflaton and the second is
the way in which the inflation ends and the Standard Big Bang model starts. Different models
have different forecasts about the tensor to scalar ratio r which is the discriminant we may use
to select the model which has the best fit with the experimental evidence.

It is important to stress that gravitational waves from the very early Universe cosmology
offer unsullied proves of its primordial status. Gravitons are thermally decoupled, so the im-
printing of the gravitational waves are not washed out by the thermal history of the universe.
That is both the power and the weakness of the gravitational waves. They carry direct inform-
ation of the very early universe by their weak coupling with other constituents of the universe,
but they are extremely difficult to detect because their tiny amplitude.

Nevertheless, the presence of the gravitational waves background could be crucial because
it could be a clear evidence of a quantum nature of the metric perturbations. In fact, our
discussion of the metric perturbations was based on the assumption that we can think them

as a couple of quantum fields (one for each polarization state) when we described it as a

combination of ladders quantum operators.
From the observation of the CMB we was able to get information about the power spectrum

of the scalar perturbations generated in the Early Universe. Recall that, according to the
previous computations, we demonstrated that:

Pζ =
H2

8π2M2
Plε

(1.198)

or, introducing the k-dependence, the scalar power spectrum is given by:

Pζ =
H2
∗

8π2M2
Plε

( k

aH∗

)ns−1

(1.199)

This result is in very good agreement with the observational data obtained by PLANCK mission.
However, this formula is dependent on both the Hubble parameter and the slow roll term, so
we have only an information which mix the two characters of this game. If we want to have
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some clearer information about the history of our Universe we must look at the tensor power
spectrum which is dependent only by the Hubble parameter and consequently can give us the
information we may need for a clear evidence of the energy scale of the inflation. A measure

of r (and consequently the tensor tilt) will be essential toward the study of the energy scale of

inflation. In fact, making use of the Friedmann equation in slow roll regime H2 = V
3M2

Pl
we can

link the potential which drives the inflation with the tensor-to-scalar ratio r in the following

manner: V = (3π2AS/2)M4
Plr where we used the amplitude AS of scalar perturbations. Using

the value estimated by Planck Collaboration we arrive at the following relation between the
energy scale of Inflation and r:

V = (1.88× 1016GeV )4 r

0.10
(1.200)

It is clear that this is much closer to the typical scale of a GUT than the scale of human-made
particle colliders. Up to date, the only information we could get from the Standard Model about
the physics at those energy scales is the fact that at this energy we may expect an unification
of all the gauge couplings.

Another fundamental forecast of the tensor-to-scalar ratio could be the excursion of the
Inflaton field. We can easily relate them in the following way:

∆φ

MPl

≥
√
r∗
8
N∗ ≈

N∗
60

√
r∗

0.002
(1.201)

where we indicated with the subscript * the quantities evaluated at a pivot scale commonly

taken k∗ = 0.05Mpc−1 and so r∗ ≈ 0.01 This formula is useful to discriminate also various
models of Inflation proposed in literature. Depending on the ratio between the field excursion
and the reduced Planck mass we can have large or small field model of Inflation.

1.7.1 Cosmological parameters for PGWs from various models

As we have stressed, the energy scale of the inflation is directly linked with the tensor-to-
scalar ratio r which, basically, depend upon the model which drives the inflationary stage.
So, it is interesting at this stage to point out the main aspects which characterize the world
of inflationary models. Generally those models are discriminated by the values of the fields

compared with the Planck mass MPl = }c
G

(or the reduced one mPl which is defined such that:

m2
Pl =

M2
Pl

8π
). To make this distinction between different models it’s fundamental to take into

consideration the number of the e-folds N . We used this concept to have some hints about the
lasting of the inflationary stage. In the introduction we linked the number N with the physical
parameters which comes from the observations. Here, we would like to link this quantity with
the typical cosmological parameter of the inflation. We will define the number of e-folds in the
following manner:

N =

∫ t2

t1

dtH(t) =

∫ φ2

φ1

H(φ)

φ̇
= −8πG

∫ φ2

φ1

V

Vφ
dφ = 8πG

∫ φ1

φ2

V

Vφ
dφ (1.202)
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So, once the potential is given ,the number of e-folds required and fixed and the value of the
field at the end of inflation setted to φe we will compute easily the value of the inflation at the
beginning of the process φi.

∆N = 8πG

∫ φi

φe

V

Vφ
dφ (1.203)

We will discriminate two kinds of models:

� Large field inflation: φ & mPl or, in terms of the potential, Vφ > 0 and φi > φe. A typical

example of this kind of models is given by the power-law coupling, such as: V (φ) = 1
2
m2φ2

or, more generally, V (φ) = gnφ
n. In this case the slow roll coefficients will be proportional

to ∼ m2
Pl

φ2 and so the field φ has to have a very large field excursion to preserve the validity

of the slow-roll conditions. Then, if we put this class of potential in the 1.203 and require

to have an inflationary stage that leasts around 60 e-folds, we will find that φi & 15mPl.

One of the consequence of such consistency conditions is to have a potential (evaluated

at the beginning of the inflation) such that: V (φi) � m4
Pl. However, this condition

is not sufficient to guarantee the consistency of the dynamics involving super-Planckian

field values. In fact, even if we known that the potential V (φ) is responsible just on

the dynamics of the classical part of the inflaton field, at fundamental level the theory is

driven by the effective potential Veff (φ) which takes into account the contributes from the

quantum loop corrections. So, in order to construct a consistent field-theoretical model of
inflation one must be careful in the consideration of the potential which drives this stage.
The only way to forbid the generation of the quantum corrections in the effective potential
is to invoke a precise symmetry which will help us to get rid of such complications. One
of the most famous example is the so called “natural inflation” which basically is a theory
which benefits of an exact shift symmetry. The potential of such case is given by:

V (φ) = Λ4
[
1 + cos

(φ
f

)]
(1.204)

where Λ and f are mass scales.

� Small field inflation: φ � mPl or, in terms of the potential, Vφ < 0 and φi < φe. So, in

this case, the models are characterized by sub-Panckian excursions of the field. One of the

most famous example (and the ordinary one we think about when studying the inflation)

is the so called hil-top potential where is assumed that near the origin the potential has

the form: V (φ) = V0 − λ
4
φ4 and so the slow roll potential are satisfied if and only if the

the values of the field is sufficiently small.

Whatever is the theoretical model which drives the Inflaton field, or the theory which supply
the inflation, the production of Gravitational Waves in the Early Universe leave in the cosmic
history a clear signature of new physics. So, we can think of detecting it through the new

space-based interferometer. It is customary to relate the energy fraction ΩGW (f) (that is the

experimental quantity we are interested in) with the primordial power spectrum PT,in in the
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Figure 1.3: Tensor-to-scalar ratio vs the primordial tilt ns for a sample of inflationary models.
From [Planck Collaboration], Ade et al. (2016bc)

following way:

ΩGW (f) =
π2

3H0

f 2|TGW (f)|2PT,in(f) (1.205)

We have parametrized the primordial tensor power spectrum through a power law of k: PT,in =

AT (k∗)
(
k
k∗

)nT
where the tensor amplitude AT (k∗) is proportional to the amplitude of the

curvature perturbations R on comoving surfaces through the tensor to scalar ratio evaluated at

a fiducial pivot scale4 AT (k∗) = r(k∗)AR(k∗). Then, remembering that f = k
2π

we can express

the energy fraction in the following way:

ΩGW =
π2

3H2
0

f 2|TGW (f)|2r(k∗)AR(k∗)
( f
f∗

)nT
(1.206)

Therefore, is clear that the information about the model we are playing with is encoded
into the tensor-to-scalar ratio. Different models will give different predictions of r and hence
of AR. A very powerful way to visualize the behaviour of these different models is to plot
each predictions of the tensor-to-scalar ratio with respect to the scalar tilt ns. The figure 1.3

shows the marginalized 68% and 95% c.l. regions for ns and r0.002 from the Planck2015 data for
different predictions which came from different models. From this plot is clear that the concave

potentials (i.e. V ∼ φn with n < 1) are compatible with data, while convex ones with n > 2

are excluded. The current best bound on r gives r < 0.07 at 98% c.l. for k∗ = 0.05Mpc−1

which leads to a present time spectral energy-density ΩGW (f) ' 10−15 for f ' 10−17 Hz. Before

ending this subsection, it is necessary to introduce the only quantity not yet specified in the
1.206. The quantity TGW is called the transfer function and plays a fundamental role toward the

4for example, for k∗ = 0.002Mpc−1 we have a correspondent frequency f∗ ∼ 3.09 × 10−18Hz, or for k∗ =
0.05Mpc−1, we get f∗ = 7.73× 10−17Hz
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goal of measure the power spectrum of perturbations produced in the Early Universe today. In

fact, its definition can be obtained as follows. The primordial tensor power spectrum Ph(k, τi)
(where τi is a conformal time soon after the end of Inflation) can be related to the tensor power

spectrum at a time τ by a multiplicative transfer function:

Ph(k, τ) = Th(k, τ)Ph(k, τi) (1.207)

where this function can be obtained by the ratio between the mode functions evaluated at
different times:

Th(k, τ) =
∣∣∣ hk(τ)

hk(τi)

∣∣∣2 (1.208)

1.7.2 The smooth transition into classicality

The last point that makes so interesting the tests we can made about the primordial Universe,
and the signals we can get from it, is about the faith of the quantum primordial perturbations.
Through the study of the primordial fluctuations in the early universe, we assumed to treat
them as a quantum objects. So, one of the most natural question that can arise in this kind
of context is about the faith of the quantum behaviour. In other words, the wide studied
phenomenon of the quantum decoherence. Along the Copenaghen interpretation, we know that,
when a quantum system interacts with the environment, the system experience a spontaneous
transition between a quantum superposition to a statistical mixture. Due to this transition,
the original coherent state vanish by a time dependent of the number n of components of the
quantum state. Our goal is to contextualize this concept toward a cosmological environment.
The problems of decoherence is a problem that arise very frequently when studying Quantum
Cosmology at different stages of comprehension and different theoretical settings.

In order to better understand the faith of the quantum perturbations we need to go back to
the general theory of fields evolving in an expanding Universe. Formerly, all the modes induced
by the quantum fluctuations of the inflaton are quantum mechanical excitation of the vacuum
state. The process of creation of these modes in purely quantum mechanical and, in fact, all the
observable effects we can extract from this theory go to zero from the moment that we neglect
the Planck constant h. The Hamiltonian 1.37 is the one of a collection of harmonic oscillators
with a coupling term that is due to the Universe’s expansion. This term will be responsible of
the squeezing of the states. In fact, by virtue of the 1.41 the two mode functions fk and gk can

be parametrized in term of a squeezing parameter rk(τ) and a squeezing angle φk(τ):

fk = e−iθk(τ) cosh(rk)

gk = eiθk(τ)+2φk sinh(rk)
(1.209)

where we introduced a global phase θ. The squeezing parameter rk(τ) grows with time and,

at the horizon crossing τ∗ is such that: |rk(τ∗)| � 1. Then when the modes cross the horizon

we have all squeezed states. The squeezed states are the ones which exhibit explicitly the
significance of the Heisenberg uncertainty principle. If a variable gets its minimum uncertain, his
counterpart gets maximum uncertain. It is worth-noting that the squeezed states are ”classical
states” with respect to the WKB point of view; so, basically, thinking the classical mechanics
as a limit of quantum mechanics. The main point is our observation of structures we guess
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to have quantum nature. We are dealing with the perturbations δφ (i.e. the fluctuations

of the Inflaton) and we are playing with them as a quantum perturbations. However, the

key point is that we record them in a classical way. So, if the nature of those perturbations
is quantum, a phenomenon of decoherence had to be happened. The interactions we play
with when studying cosmology between quantum fluctuations and the Universe are classical.
Nevertheless, a classical transition had to happen because of the squeezing of the quantum
states independently from the horizon crossing. At some point there should be something that
enshrine the division between the quantum era and the classical one. This entity replace the
role of the laboratory measurement apparatus in the usual quantum mechanical setting of the
problem. It is natural to think that this role can be played by the horizon. This is still a matter
of discussion at the present stage of Quantum Cosmology. In conclusion, whatever was the faith
of the cosmological perturbations, after their journey through the cosmic history, when they
come back inside the horizon they will constitute a stochastic background. The only way to
track their quantum origin are the initial conditions from which they are drawn. Any new hints
of new fundamental physics can be extracted by the indirect observation of such primordial
nature of those perturbations.
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1.8 A particle physicist’s perspective

1.8.1 The Trans-Planckian backreaction and the relation between
two vacuum state

Another interesting point of view of the same problem is the particle physicist’s perspective.
We claimed that, for a dynamical background, we cannot associate a unique formulation of the
vacuum state. We use to define the vacuum as a state without the presence of particles. So,
accepting this definition, the next step is defining the concept of particle. The typical response
at the question: “What is a particle?” is the following “A particle is what a particle detector

detects”. 5 The key point is the motion of a detector that can influence its capacity of register
particles. The Bogoliubov coefficient thought us that starting from a a definite set of mode
functions we can always make a transformation that bring us to the different one. In that way
we can switch from a definition of the generic field we are quantizing:

χ(τ,x) =

∫
d3k

(2π)3/2
[vkâke

ikx + v∗kâ
†
ke
−ikx] (1.210)

We can always define a new mode function in that way:

uk = αkvk(τ) + βkv
∗
k(τ) (1.211)

And write the field χ in an equivalent way

χ(τ,x) =

∫
d3k

(2π)3/2
[ukb̂ke

ikx + u∗kb̂
†
ke
−ikx] (1.212)

where we defined a new set of ladder operators (b̂k, b̂
†
k). If we require the consistence of these

two definitions for the quantum field χ we find the following relation:

vkâk + v∗kâ
†
−k = ukb̂k + u∗kb̂

†
−k (1.213)

And substituting 1.211 in this equation we can find the following rules of transformation of the
ladder operators:

âk = α∗kb̂k + βkb̂
†
−k (1.214)

â†k = αkb̂
†
k + β∗k b̂−k (1.215)

which can be easily inverted.

b̂k = αkâk − βkâ†−k (1.216)

b̂†k = α∗kâ
†
k − β

∗
k â−k (1.217)

5For completeness it’s important to cite another very good answer to the previous question. A particle, from
a group theoretical point of view, can be defined as an irriducible representation of the Poincarè group.
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At this stage we can ask ourselves how to build the Fock space. We can use both the two sets
of annichilation and creation operators. However, these two sets are physically inequivalent. In
fact, we can define vacuum states in two different ways at the same time.

âk|0〉a = 0 b̂k|0〉b = 0 (1.218)

It is immediate to convince ourselves that the two definitions are not equivalent if the coefficient

βk are non vanishing. In fact, if we compute the expectation value of the number operator N (a)

(defined by the first set of ladder operators) with respect to the vacuum states defined by the

second one, we have:

b〈0|N̂ (a)
k |0〉b = b〈0|a†kak|0〉b = b〈0|(αb̂†+β∗b̂−k)(α∗b̂+βb̂†−k)|0〉b = b〈0|β∗b̂−kβb̂†−k|0〉b = |β|2δ(3)(0)

(1.219)

So, |βk|2 is the number density in the phase space. This means that a certain vacuum state

for, e.g., the first set (â, â†) corresponds to a multiparticle state from the point of view of the

second one (b̂, b̂†) and vice-versa. In some sense, bacause of this ambiguity is originated from the

impossibility of finding mode functions with a definite energy’s sign, we can think evocatively
that these particles are coming from the geometry. This remarkably result may be obtained
also in a different way. One can calculate the vacuum expectation with respect to a given state
of the general stress energy tensor for the quantum scalar field we are playing with:

〈0b|(−T 0
0 )|0b〉 =

H2τ 2

2

∫
d3k

(2π)2

[
(αku

′
k +βku

′∗
k )(α∗ku

′∗
k +β∗ku

′
k) +k2(αkuk−βku∗k)(α∗ku

∗
k−β∗kuk)

]
(1.220)

Of course, this expectation value depends from the Bogoliubov coefficients and, moreover,
it will be divergent for any choice of them. After regularizing it by simply subtracting the
expectation value of the stress-energy tensor with respect to the Bunch-Davies vacuum, we
arrive at the same result of the 1.219. It is clear that this is critical point of this theory. One of
the consequence of this fact is that, if we want to take into account a non trivial initial state,
we will have to deal with a time dependent particle density. If one want to work out forecasts
in this context, he will need to build some mechanism that will get rid of such back-reactions or
to study the faith of these collateral products. Now, one may ask what is the relation between

these two vacuum states. For definition, if we apply the 1.216 to the b-vacuum state |0〉b the

result is zero. So, if we think the b-vacuum state to be in some functional relation with the

other vacuum |0〉a we have the following relation:

(αkâk − βkâ†−k)f̂ |0〉a = 0 (1.221)

Because of the function f̂ is a combination of just creation operators we have the following
differential equation:

αk
∂f̂

∂â†k
− βkâ†−kf̂ = 0 (1.222)

which admit the general solution:

f̂(â†k, â
†
−k) = C(â†−k)e

βk
αk
â†kâ
†
−k (1.223)
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Normalizing the vacuum states we finally arrive at the following relation between the two
definition of vacuum:

|0〉b =
∏
k

1

α1/2
exp

( βk
2αk

â†kâ
†
−k

)
|0〉a (1.224)

A state of this form is called in literature a squeezed state and so we will say that the b-vacuum
is a squeezed state with respect to the a-vacuum and vice-versa. To conclude, it is important to

stress that the convergence of this quantity is assured by the fact that |βk|2 goes to zero faster

than k−3 for large k. This condition is essential to get also the finiteness of the total number
density.

1.8.2 adiabatic vacuum

Before moving to the adiabatic prescription for the vacuum, it is important to stress the concept
of particle in standard quantum field theory. Recall that in QFT in Minkowsky space-time we
associate to a ”particle” a wave packet picked in a central value k which is the wave number
that characterize the particle we are talking about. This wave packet has a width ∆k and we

usually assume that ∆k << k and this is equivalent to say that λ >> 1
k

This procedure is not

valid anymore if the background structure is not trivial (i.e. flat). Indeed, if the geometry is

a function of time in a region of the same size of the wavelength λ, we cannot have the usual
plan wave solution necessary for the wave packet. So, we are forced to move on and go after
this issue using another path to define the same concept.

In order to define the adiabatic vacuum, is important to introduce the standard notion of
particle number operator which has to satisfy some conditions postulated by Parker that a
scalar field must satisfy in a FLRW Universe. These conditions are the following:

1. Nk has to be Hermitian

2. When we think the expansion frozen at one time, the operator nk ha to become the usual
one for the Minkowski space-time

Nk(τ1) = a
(τ1)
k a

†(τ1)
k (1.225)

3. The ”minimization postulate”: If the expansion rate ȧ
a

of the Universe become slow, so

there will be the number operator. This condition force the number of particles to be
constant as long as possible.

The adiabatic vacuum prescription relies on the WKB method for the solution of the harmonic
oscillator.

v′′k + ω2
k(τ)vk = 0 (1.226)

with

ωk(τ) =

√
k2 +m2a2 − a′′

a
=
√
k2 +m2

eff (1.227)

We will look for an asymptotic solution. The first step toward this project is to make a simple

ansatz on the solution’s shape (this method is just a simple example of a more comprehensive
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theory called the phase integral method):

vk(τ) =
1√
Wk(τ)

exp
[
i

∫ τ

τ0

Wk(τ
′)dτ ′

]
(1.228)

Inserting this expression into 1.226 we obtain the following relation:

W 2
k = ω2 − 1

2

[W ′′
k

Wk

− 3

2

(W ′
k

Wk

)2]
(1.229)

If the frequency is a slowly varying function of time we can use the previous relation as a
recurrence formula which allow us to find an asymptotic solution as a power series of the

parameter (ωT )−1. So, at leading order we have:

(0)Wk = ωk (1.230)

and at second order:

(2)Wk = ωk

(
1− 1

4

ω′′k
ω3
k

− 3

8

ω′2k
ω4
k

)
(1.231)

This iterative prescription leads us to find step by step a new solution until a best value N after
which the accuracy get worse. So, this best value N can be found if we set the exact solution
at a given time τi to be:

vk(τi) = v
(N)
k (τi), v′k(τi) = v

′(N)
k (τi) (1.232)

In the case the frequency is time dependent the vacuum definition is not so clear anymore.
Here the vacuum fluctuations are deformed by external field giving rise to the effect of the
vacuum polarization. However, it is worth-mentioning that the forecasts on physical observables
are not affected by these additional ambiguities.

It is therefore clear that we cannot have a unique definition for the vacuum because once
again a dependence by the initial time appeared. Moreover there emerge another uncertainty
around the choice of the order at which stop the series. To make contact to the previous analysis,
we can make explicit the relation between the zero-th order of the adiabatic prescription and
the Bunch-Davies vacuum. In the zeroth order approximation, the equation we have to solve
is the following:

v′′k + (k2 − a′′

a
)vk = 0 (1.233)

is of the following form :

vk =
1√
ω
e±iωτ (1.234)

The necessary condition of validity has to be: d
dτ

ln a′′

a
� ω. Then, this is equivalent (in the

deSitter case) to:

kτ � 1 (1.235)

53



which is exactly the super-Hubble condition. So we infer that this is the only regime where
this approximation is acceptable. By this analysis it is also straightforward to see that the
conjugate momentum is:

πk = ikvk (1.236)

and we get back the exact condition we have taken in the case of the Bunch-Davies vacuum.
At this point we can make a little stint and generalize the condition we have just found. If we
define the following:

QWKB =
3

4

(W ′
k

Wk

)2

− 1

2

W ′′
k

Wk

(1.237)

the WKB approximation is valid only if the ratio between the WKB charge is negligible if
compared with the square of the frequency :∣∣∣QWKB

ω2

∣∣∣ << 1 (1.238)
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Chapter 2

Extension to two fields Inflation

The road to hell is paved with good
intentions

British dictum

After this close look at one field inflation, one can think about some extensions of this set-
ting and look forward to a cosmological model involving more fields. We convinced ourselves
the Inflaton plays the role of a clock for the universe’s primordial stage. The presence of a
single scalar field in the dynamics was able to figure out the main issues that the standard cos-
mological paradigm have. Through this theory, we extracted some predictions and constraints
on observables which, unfortunately, led to a challenging, but hard, experimental situation.

A natural extension of the Inflation paradigm is to allow the presence of, at least, another
scalar field in the early universe. It is of growing theoretical interest include more fields in
the inflationary paradigm in light of modern theories beyond Standard Model such as super-
symmetric and supergravitational ones. The scenario with more fields is quite thrilling due
to several additional features that characterize it with respect to the single-field slow roll in-
flation. Multi-field inflation gives us the possibility to split the labour which was covered by
the Inflaton φ which was responsible for both the expansion of the universe and the generation
of the cosmological perturbations. More fields carry additional ingredients to the theory. In
this more general environment, one can contemplate features experimentally desirable: an ex-
tension of the consistency relation, a modification of the spectral index and the possibility to
generate non-Gaussianities. Nevertheless, the presence of different fields could give rise to the
production of the so-called classical production of gravitational waves because of perturbations
of one field can be viewed as a source term by the other and vice-versa. In this section we will

follow the formalism presented in [41] and [36] and reference therein.

2.1 A new basis: (σ, s)

Up to now we didn’t focus our attention on the nature of the primordial perturbations. The
reason is that we just studied the one field model for the inflationary stage of the Uni-
verse. There was natural to consider only the adiabatic perturbations. Here we will define
the two kind of perturbations we may have. They are distinguished by their orientation
with respect to the trajectory in the phase space of the evolution of the background solu-
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tion. We define the Adiabatic or curvature perturbations the perturbations which are along
the same trajectory in phase-space of the background solution. On the other hand, we define

Isocurvature perturbations (or entropic perturbations) the ones which perturb the solutions or-

thogonally to the backgorund solution.
Physically, the isocurvature perturbations arise as baryon modes or cold dark matter modes

or neutrino ones. It is important to do a little stint and being more consistent in our definitions.

S =

∫
d4x
√
−g
[
m2
Pl

2
R− 1

2
Gabg

µν∂µφ
a∂νφ

b −W (φ)

]
(2.1)

Let’s call these two fields ϕ1 and ϕ2 and cast them in a vector field of two components,

say ~ϕ = (ϕ1, ϕ2) ≡ (φ, χ). In the field space, the direction of the background is given by the

direction of the velocity vector field given by the derivative of the two fields: ~̇ϕ = (ϕ̇1, ϕ̇2) and

consequently, the angle of that direction is given by:

tan θ ≡ ϕ̇2

ϕ̇2

(2.2)

From now on we will switch to a new coordinate system which is defined locally at each point
of the trajectory of the fields in the field configuration space.

(ϕ1, ϕ2)⇒ (σ, s) (2.3)

The coordinate σ will be called the adiabitc field coordinate while the second one s is called the

entropy field coordinate (we will call it also the isocurvature coordinate for reasons that will be

clearer soon). These two new coordinates are defined as the integrated path length along the

trajectory and the ortogonal distance from it respectively. So, by that definition follows:

s = ṡ = s̈ = 0 (2.4)

To switch from the former one to the new coordinate system we will take advantage of a new
parameter θ which will be the angle defined by the 2.2. We can do this passage thank to a
rotation in the field space encoded in the following relation:(

σ̇
ṡ

)
=

(
cos θ sin θ
− sin θ cos θ

)(
ϕ̇1

ϕ̇2

)
= ST

(
ϕ̇1

ϕ̇2

)
(2.5)

where we defined S =

(
cos θ − sin θ
sin θ cos θ

)
the rotation matrix which belongs to the group SU(2)

(see Fig).

Consequently the inverse rotation may be expressed as follows:(
ϕ̇1

ϕ̇2

)
= S

(
σ̇
ṡ

)
(2.6)

Moreover, we can also rotate the components of the potential’s gradient ∇V = ( ∂V
∂ϕ1

, ∂V
∂ϕ2

) ≡
(V1, V2) in the new basis we have just defined. That is possible by the same rotation matrix:
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Figure 2.1: The decomposition of fields in the field space with respect to the background
trajectory into adiabatic and entropic components. Credits: Gordon, Wands, Bassett and
Maartens 41

(
Vσ
Vs

)
=

(
cos θ sin θ
− sin θ cos θ

)(
V1

V2

)
= ST

(
V1

V2

)
(2.7)

Lastly, we can do the same work for the second derivatives which can be obtained by two
rotations. So we arrive at the following:

Vσσ ≡ cos2 θV11 + 2 cos θ sin θV12 + sin2 θV22 (2.8)

Vss ≡ sin2 θV11 − 2 cos θ sin θV12 + cos2 θV22 (2.9)

Vσs ≡ − sin θ cos θV11 + (cos2 θ − sin2 θ)V12 + cos θ sin θV22 (2.10)

To conclude this section on the study of the background quantities. The Klein-Gordon
equations for the two fields are the usual ones:

ϕ̈1 + 3Hϕ̇1 + V1 = 0 (2.11)

ϕ̈2 + 3Hϕ̇2 + V2 = 0 (2.12)

And, making use of the 2.2, 2.5, 2.4 we can find the dynamical equations in the new coordinate
system.

σ̈ + 3Hσ̇ + Vσ = 0 (2.13)

θ̈ − 3Hθ̇ + Vσs − 2
Vσ
σ̇
θ̇ = 0 (2.14)
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2.2 Adiabatic and Isocurvature perturbations

If we want to tackle the problem of finding the power spectra of the scalar and tensor perturba-
tions up to the first order in the perturbation theory, it will be necessary to do a little stint and
generalize the previous definitions of the slow-roll parameters when more fields are involved in
the theory.

εIJ =
M2

Pl

2

VIVJ
V 2

ηIJ = M2
Pl

VIJ
V

(2.15)

We also define the followings:

ε =
M2

Pl

2

(∇V )2

V 2
=
M2

Pl

2

V 2
σ

V 2
(2.16)

and:

ησσ = M2
Pl

Vσσ
V

ησs = M2
Pl

Vσs
V

ηss = M2
Pl

Vss
V

(2.17)

We can also obtain the three slow-roll parameter we have just defined as combinations of the
original ones by using the same rotation matrix argument we used from the beginning. Now,
it’s time to move on and study the dynamics of the perturbations. We will use the main results
of the cosmological perturbation theory. In the spatially flat gauge, the dynamical equations

for the Sasaki varibale Q = δϕI +
ϕ̄′I
H ψ (where ψ is a Bardeen potentials) is given by:

Q̈I + 3HQ̇I −
1

a2
∇2QI +

∑
J

[
VIJ −

8πG

a3

d

dt

(a3

H
ϕ̇Iϕ̇J

)]
= 0 (2.18)

The last term in the square brackets in general can be ignored because it can be demonstrated
that bring a negligible contribute with respect to the others. Using this formula, we can write
down the two equation of motion for the two perturbations we are studying.

δ̈σ + 3H ˙δσ +
[
− 1

a2
∇2 + Vσσ − θ̇2 − 8πG

a3

d

dt

(a3

H
σ̇2
)]
δσ = 2

d

dt
(θ̇δs)− 2

(Vσ
σ̇

+
Ḣ

H

)
θ̇δs (2.19)

δ̈s+ 3Hδ̇s+
(
− 1

a2
∇2 + Vss + 3θ̇2

)
δs = − θ̇

σ̇

1

2πGa2
∇2Φ (2.20)

The main goal of this section is to compute the power spectrum of the curvature perturbation
that, for a system of two fields, is defined in this way:

R = −H ϕ̇1δϕ1 + ϕ̇2δϕ2

ϕ̇2
1 + ϕ̇2

2

= −Hδσ

σ̇
(2.21)

From this formula it is immediate to see that σ in this scenario plays the role of the Inflaton field
because of its perturbations are the source of the curvature perturbation R. In this formula
there is no presence of s. In that sense, the entropic perturbations don’t affect the curvature
perturbations and this is the reason why we usually call them isocurvature perturbations. Now
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we can also get the dynamical equation for the gauge invariant curvature perturbation which
is the following:

Ṙ =
H

Ḣ

1

a2
∇2Φ− 2H

θ̇

σ̇
δs (2.22)

From that equation we can make an immediate conclusion: if θ̇ = 0 the two modes of perturb-
ations are decoupled and δs is just another field which evolve independently from the adiabatic
one. In this case, metric perturbations are influenced just by the field σ. On the other hand,

if θ̇ 6= 0, adiabatic and isocurvature (entropic) modes mix and the curvature perturbation R
is no more constant on super-Hubble scales. Along with the curvature perturbation is also
important to define the entropy perturbation analogously:

S ≡ H
δs

σ̇
(2.23)

Here we are mainly interested in the computation of the scalar power spectrum of such perturb-
ations. It is important to stress that δσ and δs are coupled by the equations 2.19 2.20 and so

their evolution is not independent. Moreover, in 2001 Bartolo et al. [??] demonstrated that a

phenomenon of oscillation between the two fields occurs in the same fashion of the phenomenon
of neutrino oscillations. If we define the

uI = aQI (2.24)

the dynamical equation transforms into:

u′′I +
(
k2 − 2

τ 2

)
uI =

3

τ 2
MIJuJ (2.25)

where MIJ is a matrix describing the mixing between the two perturbations. However, we
can always make a rotation in the field space diagonalizing the matrix MIJ with an ortogonal

transformation (U : UTU = 1) and write down the equations for independent fields: vI . So,

defining:

~u =

(
aδϕ1

aδϕ2

)
=

(
aQ1

aQ2

)
(2.26)

we can use another rotation matrix U which will be characterized by a new angle that for
simplicity we will call Θ and by which we will diagonalize the mixing matrix M .

U =

(
cos Θ − sin Θ
sin Θ cos Θ

)
(2.27)

In that way:

UTMU = diag(λ1, λ2) (2.28)

So, though this rotation we are able to go from the original field perturbations into a couple
of independent two scalar fields v1 and v2 but we are looking for studying the evolution of the
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adiabatic and entropic perturbations. Hence, we can use the first rotation matrix we introduced
to rotate this independent perturbations into the ones we are interested in.(

aδσ
aδs

)
= STU

(
v1

v2

)
=

(
cos(Θ− θ) − sin(Θ− θ)
sin(Θ− θ) cos(Θ− θ)

)(
v1

v2

)
(2.29)

These relations give us the possibility to reduce the computation of the correlation functions

of the two new variables (δσ and δs) using the well known formulas for a real scalar field vi.

Skipping a lot of algebra we can find the power spectrum of the adiabatic and the isocurvature
perturbations and, then, link them with the variables R and S. Finally we can get the form of
these spectra evaluating them at the horizon crossing k∗

PR∗(k) =
(H∗
σ̇∗

)2 k3

2π2
〈|σ~k|

2〉 =
( H2∗

2πσ̇∗

)2

[1 + (−2 + 6C)ε− 2Cησσ] (2.30)

CRS∗(k) = −
(H∗
σ̇∗

)2 k3

2π2
〈|δσ~kδs

∗
~k
|2〉 = 2Cησs

( H2∗
2πσ̇∗

)2

(2.31)

PS∗(k) =
(H∗
σ̇∗

)2 k3

2π2
〈|δs~k|

2〉 =
( H2∗

2πσ̇∗

)2

[1− 2(1− C)ε− 2Cηss] (2.32)

where we defined C ≡ 2− ln 2−γ ≈ 0.729637. We can see that we have not just the two power
spectra but also a new function CRS that encode the correlation between the two perturbations.
Moreover, it is easy to point out that, unlike the case of one field Inflation, the curvature
perturbation here is not constant outside the horizon anymore. Now, if we move on the Fourier
space we can write the two perturbations evaluated in a time t > t∗ as a linear combination of

their initial values through the use of transition functions T (t, t∗).(
R~k(t)
S~k(t)

)
= Tk(t, t∗)

(
R~k∗
S~k∗

)
(2.33)

An immediate simplification can be made if we notice that in the case of pure abiabatic modes
the curvature perturbations are constants and then TRR = 1. Moreover, adiabatic perturbations

cannot generate any isocurvature perturbations (the contrary is not true) and hence TSR = 0.(
R~k(t)
R~k(t)

)
=

(
1 TRS(t, t∗)
0 TSS(t, t∗)

)(
R~k∗
R~k∗

)
(2.34)

These transfer functions play a fundamental role in the evaluation of the power spectra
too. The power spectra will be linear combinations of their value at the horizon crossing with
products of these transfer functions as coefficients. To calculate the spectral indices to the first
order of the slow-roll parameters we just need to consider the zeroth order of the spectra. If
our goal is to evaluate the spectral tilt of all these quantities, we will compute the logaritmic
derivative of the power spectra at a generic time after t∗. Hence, we have to calculate the
logaritmic derivative of the following quantities:

P(0)
∗ ≡ PR∗ ≡ PS∗ ≡

( H2∗
2πσ̇∗

)2

(2.35)
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and

CRS∗ = 0 (2.36)

So, using the transfer functions:

PR(k) = P(0)
∗ + T 2

RSP(0)
∗ (2.37)

CRS(k) = TRSTSSP(0)
∗ (2.38)

PS(k) = T 2
SSP(0)

∗ (2.39)

At this stage it is important to define another fundamental parameter which characterize the
correlation between the two kind of perturbations. In literature is common to adopt a para-
metrization that is consequence of the fact that the quantityTRS has a limited range; it varies
between 0 and 1 and so it is natural to adopt the following:

cos ∆ ≡ TRS√
1 + T 2

RS
(2.40)

Doing some careful computations we finally arrive at the following physical quantities.

nR = −(6− 4 cos2 ∆)ε+ 2ησσ sin2 ∆− 4ησs cos ∆ sin ∆ + 2ηss cos2 ∆ (2.41)

nS = −2ε+ 2ηss (2.42)

nC = −2ε− 2ησs tan ∆ + 2ηss (2.43)

Here, in order to compute the tensor-to-scalar ratio, it is useful to recall the form of the
tensor power spectrum which is not affected by this new formalism and has the same shape as
in the case of the single field Inflation.

Pt =
k3

2π2
〈hµν(~k)h∗µν(~k)〉 =

k3

2π2
〈2|h+(~k)|2 + 2|hx(~k)|2〉 =

8

M2
Pl

(H
2π

)
k=aH

(2.44)

or:

Pt =
2

3π2M4
Pl

V (2.45)

Again, through a straightforward calculation we have the spectral index for the tensorial sector
to be:

nt = −2ε (2.46)

Finally, we can compute the new tensor-to-scalar ratio that will be dependent on both the slow-
roll parameter and also on the new parameter ∆ which parametrize the correlation between
adiabatic and isocurvature perturbations.

r = 16ε sin2 ∆ (2.47)
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In this section we convinced ourselves that from a general environment in which more fields
are taken into account, we have two main departures form the original forecasts we made in
single-field slow-roll inflation. Whenever we add just another one field in the Early Universe we
will deal with perturbations no longer purely adiabatic. Nevertheless we don’t have anymore
a scalar power spectrum which is scale invariant and that leads us to a modification of the
consistency relation.

2.3 Classical production of gravitational waves in two

field Inflation

2.3.1 Parametric resonance in two field Inflation

A case of interest about a two field scenario was investigated by Zhou et al. in [13]. They

considered a model in which two fields are involved in the driving of the primordial stage of
the Universe. As we just pointed out, the presence of a second field give us the possibility to
include entropic modes. Moreover, a very impressive property is that the entropy perturbations
can be converted into curvature ones. Therefore, we will have a resonant peak in the curvature
perturbation power spectrum. Nevertheless, this contribute from the second order perturbations
will dominate the GWs background and so the resulting power spectrum will be in the range
detectable by future planned experiments like LISA. In this paper the authors propose a driven
mechanism for the inflation divided in two phases. The first phase is dominated by a first field φ
and then by χ. When the first period stops, the perturbations of the first field start oscillating
and then the perturbations of χ get a remarkable enhancement. In order to amplify this kind of
phenomena we will take into account a typical potential used in the axion monodromy inflation
such as:

V (φ, χ) = gΛ3
0φ+ Λ4(φ) cos

( φ
fa

)
+ ξΛ3

0χ+ V0 (2.48)

which basically is given by a sum of a power-law potential and a ”natural” part (which has a

shift symmetry). In detail, the mass scale Λ is given by:

Λ(φ) = Λ0

(
1 + α

φ

MPl

)
(2.49)

The characteristic energy scale Λ0 sets the typical energy scale of the process under investigation
and the scale fa sets the period of the oscillating phenomenon. In order to achieve the desirable
behaviour, we need to specialize the analysis with some conditions on the parameters and the
fields excursions.

� The evolution of φ has to dominate in the first phase, then: |g| � |ξ|

� Defining b∗(φ) = Λ4(φ)

|g|Λ3
0
fa, in order to have a flat potential in the early stage we need to

have: b∗(φ� φ0)� 1

� in order to stop the rolling of the φ field is to require that: b∗(φe) & 1
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� To have a domination of the classical contribute with respect to the quantum one: φ̇
H
> H

2π

� The effective mass for δφ on flat slicing is dominated by V ′′(φ) when the parametric

resonance happens: V0 � 2|g|Λ3
0fa

where in the last steps we have defined the start and the end of the period of φ domination
with φ0 and φe respectively. So, the complete theory looks like:

L = −1

2
(∂µφ)2 − 1

2
(∂µχ)2 − V (φ, χ) (2.50)

Then, we can move on and look forward to the dynamical equations in the standard fashion.
We will arrive at the usual Klein-Gordon equations for a scalar field on a curved background
guided by a potential V

φ̈+ 3Hφ̇+ V,φ = 0

χ̈+ 3Hχ̇+ V,χ = 0
(2.51)

Then, as usual, it is convenient to introduce suitable slow roll coefficients in the standard
fashion:

εφφ =
φ̇2

2H2M2
Pl

εχχ =
χ̇2

2H2M2
Pl

ηφφ =
ε̇φφ
Hε

ηχχ =
ε̇χχ
Hε

(2.52)

where in the last step we defined with ε the sum of the two first slow-roll parameters ε =

εφφ + εχχ = − Ḣ
H2 . So, by leveraging on this assumption, we can safely compute the expression

of φ̈, φ̇, χ̇ in the following way:

φ̈ = 3Hb∗(φ)φ̇ sin
( φ
fa

)
φ̇ = φ̇0 − 3Hfab∗(φ) cos

( φ
fa

)
χ̇ = χ̇0 ≡ −

ξΛ3
0

3H

φ̇0 = −gΛ3
0

3H

(2.53)

At this stage, we can perform the analysis we made in the general case of multi-field inflation
and write down the dynamical equations for each components using the mass matrix. We are
looking at the dynamical equations for the perturbations of the two fields. Then, we arrive at
the following set of equations:

δ̈χk + 3H ˙δχ+
k2

a2
δχ+2

χχ +m2
χφδφk = 0 (2.54)
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δ̈φk + 3H ˙δφ+
k2

a2
δφ+m2

φφ +m2
χφδχk = 0 (2.55)

m2
χχ =

∂2V

∂χ2
− 1

M2
Pl

(
3χ̇2 +

2χ̇χ̈

H
− Ḣχ̇2

H2

)
(2.56)

m2
φφ =

∂2V

∂φ2
− 1

M2
Pl

(
3φ̇2 +

2φ̇φ̈

H
− Ḣφ̇2

H2

)
(2.57)

m2
χφ =

∂2V

∂χ∂φ
− 1

M2
Pl

(
3φ̇χ̇+

χ̇φ̈+ φ̇χ̈

H
− Ḣφ̇χ̇

H2

)
(2.58)

If we take advantage of the conditions under which the model is constrained, we can spot a

hierarchy in the mass matrix: m2
φφ � m2

χφ � m2
χχ. Consequently, the two equations for the

perturbations look like:

δ̈χk + 3H ˙δχk +
k2

a2
δχk '

χ̇φ̈

M2
PlH

δφk (2.59)

δ̈φk + 3H ˙δφk +
(k2

a2
− Λ4(φ)

f 2
a

cos
( φ
fa

))
δφk = 0 (2.60)

Defining the rescaled field δΦk = a3/2(t)δφk we can get an equation o an harmonic oscillator

with time dependent frequency:

δ̈Φk + ω2
k(t)δΦk = 0 (2.61)

where we condensed in the frequency term the following sum:

ω2
k =

k2

a2
− Λ4(φ)

f 2
a

cos
( φ
fa

)
− 9

4
H2 − 3

2
Ḣ (2.62)

We have found what is commonly called in literature as a Mathieu equation. This kind of
equation is famous for having two behaviour depending on the sign of the exponential which
follows the two solutions. As a result, due to the growing exponential behaviour, we get a
resonant amplification of the modes such that:

|δφk| ∝ eλkHt (2.63)

where λk are the eigenvalues of the differential problem and they are expressed in terms of the
so-called Floquet number µk in the following way:

λk = µk
|g|Λ3

0

6H2fa
− 3

2
(2.64)

As we may see, the perturbation δφk acts as a source term for the perturbation δχ in 2.59.
Then, a resonance of the first field induces automatically a remarkable enhancement in the
second field involved in this model. Then, in the case the coefficient on the right hand side of
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Figure 2.2: Induced resonance of k∗ mode with the following set of parameters: g = −0.05,
ξ = −0.1g, α = 0.55, Λ0 = 4× 10−4MP , fa = 5× 10−3MP , V0 = 3× 10−11M4

P , k∗ = 1012Mpc−1

the 2.59 does not vanish with respect to the coefficient of δχ (alias k2

a2 ), the perturbations δχ

assumes the same behaviour of δφ. So:

|δχ| ∝ eλkHt (2.65)

Hδtφk∗ ≈ ln
(√4(1 +Q)

9P0

)
(2.66)

where we defined:

P0 =
(2faH

φ̇0

)2

Q = 2
Λ4

φ̇0

(2.67)

In this case, for sake of simplicity, we take the initial conditions of the field’s perturbations in
the Bunch-Davies vacuum:

lim
τ→−∞

aδφk = lim
τ→−∞

aδχk =
e−ikτ√

2k
(2.68)

In Fig. A it is clear the behaviour of the perturbation versus k/aH for a given set of parameters.

Then, if we use the formulas introduced in Appendix B, we can solve the non-homogeneous
differential equation in the case there is a presence of a source term like this:

Sλk (τ) =
2

M2
Pl

=

∫
d3p

(2π)3
ελ(k, p)δφp(τ)δφk−p(τ) + (φ↔ χ) (2.69)
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Then, using the deSitter approximation we can compute the Green function for the problem
which is the one calculated in 34:

Gk(τ, τ
′) =

1

k3τ ′
[−k(τ − τ ′) cos k(τ − τ ′) + (1 + k2ττ ′) sin k(τ − τ ′)]Θ(τ − τ ′) (2.70)

So, the power spectrum for tensor modes looks like:

Ph(k, τend) =
4

π4M4
Pl

k3

∫ ∞
0

dpp6

∫ 1

−1

d cos θ sin4 θ ×
∣∣∣ ∫ τend

τ0

dτ1Gk(τend, τ1)(δφp(τ1)δφ|k−p|(τ1)+

δχp(τ1)δχ|k−p|(τ1))
∣∣∣2

(2.71)

where we just defined τend ≈ 0 the time when the inflation stops.
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Chapter 3

Dynamical vacuum: footprints in
Primordial Gravitational Waves

3.1 The Cosmological Constant problem

“I would rather have questions that
can’t be answered than answers that
can’t be questioned”

Richard P. Feynman

One of the most thrilling puzzle of the century is the Cosmological Constant problem. Here
we will briefly recall the main aspects of this issue and, after that, we will examine a mechanism
by which the quantum vacuum energy could give imprints in the Universe. Before starting,
it’s important to stress that a satisfactory solution of this shortcoming still lacks. Probably,

the cosmological constant problem (CC from now on) is the key toward the project of having

a unified theory of quantum fields and gravity. Firstly, the presence of this term in Einstein
equations was proposed by Albert Einstein himself but the same Einstein was persuaded and
this idea was left. He was looking for a modification of his equations in order to describe a
finite, static and closed Universe. Recall the Einstein equation with such new term:

Rµν −
1

2
Rgµν − Λgµν = 8πGTµν (3.1)

The addition of that simple additional CC term perfectly fit with the principle of General
Covariance, i.e. the covariant derivative of both sides ha to be equal to zero. Assuming the
Newton gravitational coupling G as a constant and requiring the usual conservation of the
common stress energy tensor for the ordinary constituents of our Universe, we can safely fulfil
the Bianchi identity even in the presence of that term. Requiring such condition, inasmuch as

the Bianchi identity is fulfilled by the Einstein tensor ∇µGµν = ∇µ(Rµν − 1
2
Rgµν) = 0 , it’s

immediate to conclude that the Λ term has to be constant.

∇µΛ = ∂µΛ = 0⇔ Λ = 0 (3.2)

Several years later, when the cosmological observation became more and more sophisticated,
this concept received a complete restoration and still today plays a central role in modern
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theories. The role of the CC is to address the unnatural accelerated behaviour of our Universe
driven by a kind of energy which seems to have strange physical properties. For that reason, it

was historically called Dark Energy (DE).

In the last decades it is undeniable that the quantum vacuum got a growing interest from
the scientific community, especially after triumph of the Higgs-Englert-Brout-Guralnik-Hagen-
Kibble theory. This was one of the most spectacular probe of a tangible effect of the quantum
vacuum in modern fundamental physics. So, one of the main attempt to introduce a quantum
vacuum contribution in the Einstein theory of General Relativity was to propose the Higgs
vacuum as a source. The quantum nature of the CC term could be the keystone to spot any
quantum contributions in geometry. In that way, the CC Λ was associated to the energy of
quantum vacuum, but this association it easy to see that bring us to a profound problem of
fine tuning. Let’s start considering the tree-level Higgs potential:

V (φ) =
1

2
m2φ2 +

1

4!
λφ4 (3.3)

We will conduct a simple calculation using the methods of quantum field theory in curved
space-time; so we will treat as quantum fields just the matter ones and the gravitational field
as an external one. The complete theory looks like:

S = SEH + S[φ] =
1

16πG

∫
d4x
√
|g|R +

∫
d4x
√
|g|
[1

2
gµν∂µφ∂νφ− ρvac − V (φ)

]
(3.4)

where we denoted:

ρvac =
Λ

8πG
(3.5)

the vacuum energy density. Note that here we have absorbed the vacuum energy term in the
matter field action. Such theory, is responsible, through a spontaneous symmetry breaking
mechanism of the acquisition of mass by the particles of the Standard Model. Then, a natural
question is to ask ourselves what is the impact of the Higgs particle itself to the vacuum energy
balance. In some sense, we can think the cosmological constant as the sum of the various
quantum contributes to the vacuum energy density. The global net effect is to produce a
”classical” cosmological constant. To the first approximation, the electroweak theory gives a
contribute to the total energy density as follows:

ρ(0)
vac ≈

(Λ0

κ2
+ V0

)
− m2

hv
2

8
(3.6)

where κ is the curvature of the space-time and v is the value of the Higgs vacuum (which

is approximately v2 ≈ 6.06 × 104GeV 2) and the Higgs mass mh ≈ 125GeV . So, putting all

together, we arrive at the following result:

|ρ(0)
vac| ' 1.2× 108GeV 4 ' 10−68m4

Pl (3.7)

which is such a dramatic result! If we compare that value with the one which comes from
the observation we have a significant discrepancy of about 56 order of magnitude! From the
observations, the hypothetical energy contribution should be:

ρΛ ' 10−48GeV 4 ' 10−124m4
Pl (3.8)
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So, a cosmological constant term is not easily associated with a a vacuum from a particle field
theory perspective. Then, we should move toward other directions. Quantum field theory
teaches us that constants are not really constants. So, inspired by the concept of dynamical
vacuum we may think to replace the ordinary cosmological constant to a time-dependent cos-

mological “constant”: Λ→ Λ(t). This term could constitute a fifth contribution to the energy

density of the Universe along the others made by baryons, neutrinos, radiation and dark mat-
ter. So, this is the reason why such new ingredient has been called quintessence. The presence
of such term, along the Inflaton field, would supply the energy balance the Universe needs to
describe its actual dynamics.

Along the quintessential term, that in principle could modify the evolution of the Hubble
parameter, we could ask ourselves if there exist another method to obtain the same final result of
an accelerating period. It is therefore tempting to associate the inflaton field to the quintessence
one. Unfortunately this is not so easy because of the fine tuning of the features which have
to characterize the dynamics of them. Recently, was proposed another suggestive mechanism

which could supply the role of the Quintessence in [30]. In this paper the author point out how

a ultra-fast quantum fluctuation in the primordial Universe can be the cause of the late time
accelerated expansion of our Universe. In this sense the time evolution of the scale factor a can
be described in perfect analogy of a Kapitza pendulum which basically consist in a pendulum
anchored to a fast oscillating point. This quantum inverted pendulum is a beautiful and simple
tool to recover the dynamics of our Universe. The Kapitza prescription consist in decomposing
the scale factor in the following way:

a(t) = as(t) + af (t) = as(t) + af (t) sin(ωt) (3.9)

but nothing prevents us to consider a dependence of the space coordinate x in a quantum
chaotic primordial scenario. By the uncertain principle, we can say that the amplitude of such
fluctuations has to depend on as. Consequently, we may expect to find some modification of
the dynamical equations for tensor modes through the damping term.

h′′k + 2H̃h′k + k2hk = 0 (3.10)

or, in term of the cosmic time:

ḧk + +3H̃ḣk +
k2

a2
hk = 0 (3.11)

Here, we could considerer the Hubble parameter as a sum of two contributes:

H̃ = Hs +Hf (3.12)

Being the Hubble parameter the inverse of a typical time scale H ∼ 1
t
, we can infer an immediate

conditions between the typical period of oscillations which characterize the fast-oscillating term
Hf and the time scale τ which characterize the period we are looking at. Then, the condition

which guarantees the dominance of the new term over the ordinary one is when the time scale
we are exploring is bigger than the period of such oscillations. Explicitly:

Hf > Hs ⇐⇒ t > T (3.13)
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where we indicated T the period of such oscillations at a certain fundamental scale T = 2π
ω

.

Then, in order to compute the new form of the equation 3.11, we move on evaluating the new
Hubble term.

H = Hs +Hf = Hs +
a′f
as

sin(ωt) +
af
as
ω cos(ωt) (3.14)

where we defined Hs = ȧs
as

. We may wonder whether or not the third term on the r.h.s. could

be neglected taking advantage of the condition that the amplitudes of the fast oscillating term

has to be negligible compared to the ordinary one, i.e.
af
as
� 1. The presence of the ultra-fast

frequency ω could overcompensate this condition and give rise to an additional term. Anyway,
if we insert this expression in the wave equation, we obtain:

ḧk + 3(Hs +
a′f
as

sin(ωt) +
af
as
ω cos(ωt))ḣk +

k2

a2
s

hk = 0 (3.15)

We are left with a non linear second order differential equation with an oscillating viscous

term. At this stage, thinking the ”slow” part as the usual exponential law as = eHt, the only
ingredient still missing is the functional form of the fast amplitude af . This term will probably

be a function of its slow counterpart: af = af (aS). A complete analysis of such term would

led us to find a sort of power law for af modified by a fundamental scale which enter the game

due to the minimal uncertain length. To conclude this section it is worth mentioning that
such a contribute could match other theories beyond the Standard Cosmological Model such
as theories which contemplate some modified dispersion relations.
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Chapter 4

Gravitational waves from a quantum
stochastic background

“What we observe is not Nature in
itself, but Nature exposed to our
method of questioning”

Werner Karl Heisenberg

As every theoretical physicist know, the nature of a quantum vacuum is not actually an
empty space. In Quantum Field Theory, all the space-time is filled by superposition of fields. We
could model what happens in the whole space-time as ultra-fast oscillations at every point point.
Consequently, we can assume that an anisotropic stress tensor emerges from such stochastic
behaviour. In this way, the wave-equation acquire a source term as follows:

h′′k + 2Hh′k + k2hk = 16πGa2Π̃k(τ,k) (4.1)

where we are thinking Π̃ as a stochastic function, so that:

〈Π̃k(τ,k)〉 = 0

〈Π̃∗k1
(τ1)Π̃k2(τ2)〉 = Nδ3(k1 − k2)δ(τ1 − τ2)

(4.2)

We have indicated with 〈...〉 the expectation value over the vacuum states and over the typical

time of the anisotropic source. In order to fulfil the dimensional coherence, we may conclude

that the constant N has to have the following behaviour: [N ] ≈
(
k
τ

)3

. Now, we want to use a

stochastic approach to extract shadows of such stochastic background in the power spectrum
of the primordial tensor perturbations induced by the Inflation. We will treat this computation
a la Langevin. The general solution of the inhomogeneous problem will be the superposition of
the following two functions:

hk(τ,k) = hhomogeneousk (τ,k) + hparticulark (τ,k) (4.3)

We have just found the solution to the homogeneous problem that, in its general form, looks
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like:

hk =
Ak
a

e−ikτ√
2k

(1− i

kτ
) +

Bk

a

eikτ√
2k

(1 +
i

kτ
)

≡ Akγ
(1)
k +Bkγ

(2)
k

(4.4)

Note that, according to the assumption we just made on the nature of the source term,
if we take the ensamble average of the complete solution we will get easily back the ordinary
homogeneous solution. The effect of that source will be reflected in the computation of the
two-point function, i.e. the power spectrum. Now, we can look forward finding the solutions
of the complete equation. We will make use of the common Lagrange variation of constants
method. Let’ assume the particular solution could be thought as a combination of the two
independent solution of the homogeneous one weighted by two functions of conformal time.

γpk(τ,k) = C1(τ)γ
(1)
k + C2(τ)γ

(2)
k (4.5)

So, our next task is to compute the form of these two unknown functions. To be consistent
with our previous analysis, we will get a vanishing contribute at linear order. We will spot
the imprints of such presence when compute the two point function. In order to find those
unknown Lagrange functions we need to solve the following differential system:

C ′1(τ)γ
(1)
k + C ′2γ

(2)
k = 0

C ′1(τ)γ
′(1)
k + C ′2γ

′(2)
k = 16πGa2(τ)Π̃k(τ)

(4.6)

To solution can be easily obtained by the determinant method in terms of the original mode
functions associated to the homogeneous problem. So, we have:

C ′1(τ) = −16πG
γ

(2)
k Π̃k(τ)

γ
′(2)
k γ

(1)
k − γ

′(1)
k γ

(2)
k

C ′2(τ) = 16πG
γ

(1)
k Π̃k(τ)

γ
′(2)
k γ

(1)
k − γ

′(1)
k γ

(2)
k

(4.7)

This expressions integrated will help us toward the goal of expressing the global solutions. Of
course, such functions have ensamble average equal to zero. Having the complete solution we
can move on to the computation of the power spectrum. We will have

〈γ∗k(τ1)γk(τ2)〉 = 〈[γ∗homk (τ) + γ∗pk (τ)][γhomk (τ) + γpk(τ)]〉

= γ∗homk (τ1)γhomk (τ2) + 〈γ∗pk (τ1)γpk(τ2)〉
(4.8)

Where we have neglected all the mixed terms because of they are washed out by the average
due to the first one of the 4.2. We just calculated the first term in the previous expression,
so our next task is to elaborate the two point function of the particular solutions. This result
will contribute to the total power spectrum of the primordial gravitational waves background
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which brings information of the very early Universe. Here the detailed passages:

〈γ∗p(τ1)γp(τ2)〉 =

= (16πG)2
〈 [ −ieikτ1

a(τ1)
√

2k

(
1 +

i

kτ1

)∫ τ1

dτ ′
e−ikτ

′

√
2k

(
1− i

kτ ′

)
a3(τ ′)Π∗k(τ

′)︸ ︷︷ ︸
1

+

+
ie−ikτ1

a(τ1)
√

2k

(
1− i

kτ1

)∫ τ1

dτ ′
eikτ

′

√
2k

(
1 +

i

kτ ′

)
a3(τ ′)Π∗k(τ

′)
]

︸ ︷︷ ︸
2

×

×
[ ie−ikτ2

a(τ2)
√

2k

(
1− i

kτ2

)∫ τ2

dτ ′′
eikτ

′′

√
2k

(
1 +

i

kτ ′′

)
a3(τ ′′)Πk(τ

′′)︸ ︷︷ ︸
3

+

− ieikτ2

a(τ2)
√

2k

(
1 +

i

kτ2

)∫ τ2

dτ ′′
e−ikτ

′′

√
2k

(
1− i

kτ ′′

)
a3(τ ′′)Πk(τ

′′)
]

︸ ︷︷ ︸
4

〉

(4.9)

Now, let’s evaluate carefully all these terms. We have to compute four products. The first
multiplied the third gives:

eik(τ1−τ2)

a(τ1)a(τ2)(2k)2

(
1 +

i

kτ1

)(
1− i

kτ2

)∫ τ1

dτ ′
∫ τ2

dτ ′′e−ikτ
′
eikτ

′′
(

1− i

kτ ′

)(
1 +

i

kτ ′′

)
×

× a3(τ ′)a3(τ ′′) 〈Π̃∗k(τ ′)Π̃k(τ
′′)〉︸ ︷︷ ︸

Nδ(τ ′−τ ′′)

=

=
eik(τ1−τ2)

a(τ1)a(τ2)(2k)2

(
1 +

i

kτ1

)(
1− i

kτ2

)∫ τ1

dτ ′
(

1 +
1

(kτ ′)2

)( 1

Hτ ′

)6

N

= − eik(τ1−τ2)

a(τ1)a(τ2)(2k)2

(
1 +

i

kτ1

)(
1− i

kτ2

) N
H6

[ 1

5τ ′5
+

1

7k2τ ′7

]τ1
τ0

(4.10)

Now the first and fourth:

−eik(τ1+τ2)

a(τ1)a(τ2)(2k)2

(
1 +

i

kτ1

)(
1 +

i

kτ2

)∫ τ1

dτ ′
∫ τ2

dτ ′′e−ikτ
′
e−ikτ

′′
(

1− i

kτ ′

)(
1− i

kτ ′′

)
×

× a3(τ ′)a3(τ ′′) 〈Π̃∗k(τ ′)Π̃k(τ
′′)〉︸ ︷︷ ︸

Nδ(τ ′−τ ′′)

=

= − eik(τ1+τ2)

a(τ1)a(τ2)(2k)2

(
1 +

i

kτ1

)(
1 +

i

kτ2

)∫ τ1

dτ ′Ne−2ikτ ′
(

1− i

kτ ′

)2( 1

Hτ ′

)6

= − eik(τ1+τ2)

a(τ1)a(τ2)(2k)2

(
1 +

i

kτ1

)(
1 +

i

kτ2

) N
H6

∫ τ1

dτ ′
[e−2ikτ ′

τ ′6
− e−2ikτ ′

k2τ ′8
− 2i

e−2ikτ ′

kτ ′7

]
(4.11)
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The second with the fourth:

−e−ik(τ1+τ2)

a(τ1)a(τ2)(2k)2

(
1− i

kτ1

)(
1− i

kτ2

)∫ τ1

dτ ′
∫ τ2

dτ ′′eikτ
′
eikτ

′′
(

1 +
i

kτ ′

)(
1 +

i

kτ ′′

)
×

× a3(τ ′)a3(τ ′′) 〈Π̃∗k(τ ′)Π̃k(τ
′′)〉︸ ︷︷ ︸

Nδ(τ ′−τ ′′)

=

=
−e−ik(τ1+τ2)

a(τ1)a(τ2)(2k)2

(
1− i

kτ1

)(
1− i

kτ2

)∫ τ1

dτ ′e21kτ ′
(

1 +
i

(kτ ′)

)2( 1

Hτ ′

)6

N

= − e−ik(τ1+τ2)

a(τ1)a(τ2)(2k)2

(
1− i

kτ1

)(
1− i

kτ2

) N
H6

∫ τ1

dτ ′e2ikτ ′
[ 1

τ ′6
− 1

k2τ ′8
+

2i

kτ ′7

]
(4.12)

And, finally, the second with the fourth gives:

e−ik(τ1−τ2)

a(τ1)a(τ2)(2k)2

(
1− i

kτ1

)(
1 +

i

kτ2

)∫ τ1

dτ ′
∫ τ2

dτ ′′eikτ
′
e−ikτ

′′
(

1 +
i

kτ ′

)(
1− i

kτ ′′

)
×

× a3(τ ′)a3(τ ′′) 〈Π̃∗k(τ ′)Π̃k(τ
′′)〉︸ ︷︷ ︸

Nδ(τ ′−τ ′′)

=

=
e−ik(τ1−τ2)

a(τ1)a(τ2)(2k)2

(
1− i

kτ1

)(
1 +

i

kτ2

)∫ τ1

dτ ′
N

H6

(
1 +

i

(kτ ′)2

) 1

τ ′6

= − e−ik(τ1−τ2)

a(τ1)a(τ2)(2k)2

(
1− i

kτ1

)(
1 +

i

kτ2

) N
H6

[ 1

5τ ′5
+

1

7k2τ ′7

]τ1
τ0

(4.13)

From this analysis, we are left with four new contributes. Two of them scales as power-law

in time, while the other two contributes are expressed by various Exponential Integrals Ei(z).

It is reasonable to think that those rapidly oscillatory terms provide a vanishing contribute
to the total budget, but here we will perform the computation without discarding any term.
Then, we can take τ1 = τ2 and sum up all these contributes. The initial time τ0 can be set
the time at which the inflationary stage starts. So, according to the previous argument, we
can take this expression from 1.105. Then, one more time, the value of such energy scale Λ
will enter the game. Moreover, for sake of simplicity we will make use of the easy relation

a = − 1
Hτ

thinking the Hubble parameter as constant. Finally, after extracting the real part of

such complex expression we find the additional contribute to the total power spectrum to be:
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δP̃ =
1

140H4k4Λ7kτ 2τ 5
N
[
Λ7
(

8k7(kτ 2 − 1)τ 7 cosh(τi2k)Im
(
Ei
(2iΛ

H

)
− Ei(−2ikτ)

)
+

+ 4kτ sinh(τi2k)
(

(2k6τ 6 − k4τ 4 + 3k2τ 2 − 5) sin(2kτ) + 4k7τ 7Re
(
Ei
(2iΛ

H

)
− Ei(−2ikτ)

))
+

+ kτ(2k4τ 4 − 3k2τ 2 − 20)((kτ 2 − 1) sin(2kτ) cosh(τi2k)− 2kτ cos(2kτ) sinh(τi2k))
)
−

− 2Hk7τ 7 cos
(2Λ

H

)
[(kτ 2 − 1)(−3H4Λ3 +H2Λ4 + 5H6− 2Λ6) cosh(2ikτ)+

+HΛkτ(3H2Λ2 + 20H4 − 2Λ4) sinh(2ikτ)]+

+Hk7τ 7 sin
(2Λ

H

)
[HΛ(kτ 2 − 1)(−3H2Λ2 − 20H4 + 2Λ4) cosh(2ikτ)+

+ 4kτ(−3H4Λ2 +H2Λ4 + 5H6 − 2Λ6) sinh(2ikτ)]−

− 2(kτ 2 + 1)[H5k7τ 7(5H2 + 7Λ2) + 7k2Λ7τ 2 + 5Λ7])+

+ 2Λ7(kτ 2 − 1)(2k6τ 6 − k4τ 4 + 3k2τ 2 − 5) cos(2kτ) cosh(τi2k)
]

(4.14)

Again, is clear that in a very next future, the observational data will be essential toward a
complete characterization of such primordial era. In this computation we encoded inside the
constant N and in the energy scale Λ fruitful informations about the energy scales sensible to
a modification of the laws of physics we know up to now.

75



76



Chapter 5

Conclusions and Outlook

“Culture is that which remains with an
individual when he has forgotten all he
learned”

Edouard Herriot

In summary, in this thesis we have studied the very early universe extending the well estab-
lished quantum field theory for a generic dynamical background. Such description of Nature
at fundamental scale can be thought as a rough model, because a graceful and comprehensive
quantum gravitational theory still lacks. When using such extensions some problems come up
such as the natural ambiguity of the vacuum state. In this context the power spectrum of
the primordial gravitational waves acquires a non trivial modification that can be responsible
of violations of the consistency relations and, most importantly, can give us a new window
to the typical energy scale of such new phenomena. In that sense, primordial gravitational
waves represent an uncorrupted messenger of the very early Universe. An hypothetical signal
registered in the newt decades would be a powerful way to see a tangible effect of the trans-
Planckian transition and have a look on the primordial stage of the Cosmos long before the
start of the reheating period and the consequent decoupling of the species from the primordial
plasma. Nevertheless, any other fundamental phenomenon in such primitive scenario can leave
a characteristic mark in the primordial power spectrum. In fact, if we think the onset of the
Inflation as a chaotic scenario, it is reasonable to have many ways to produce anisotropies.
Such presence is guaranteed by the non linearity of the Einstein equations themselves and, con-
sequently, a deviation of the homogeneity of the scale factor is expected. Moreover, a quantum
noise background can affect the final computation of the power spectrum. The presence of
an anisotropic stochastic stress energy source can induce a new correction and can also carry
more informations about the sensibility of the Inflation’s period start to the initial and the
environmental conditions.
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Appendix A

Cosmological perturbation theory

Throughout this thesis we made use of the so called cosmological perturbation theory. We
assumed that the main character in the primordial stage of the Universe was the Inflaton field.
So, any perturbations of this scalar field will automatically generate a perturbed stress-energy
tensor δTµν . Then, through the Einstein equation, this perturbation δTµν generate immediately

a perturbation of the metric δgµν . On the other hand, if we start from a perturbation of the

metric, we will easily convince ourselves that, through the Klein-Gordon equation for a scalar
quantum field evolving on a generic background, we get back a perturbation of the scalar
field δφ. So, it is clear that metric perturbations and field perturbations are tightly coupled.
Consequently, it seems to be evident the interest in developing a perturbation theory setted in
a dynamical background. Now, when one wants to study the perturbation theory in General
Relativity, it is customary to split the metric in two contributions: the background and the
perturbations.

gµν = ḡµν(t) + δgµν(t,x) (A.1)

In that way, any perturbed space-time can be thought as a sum of a given background plus
a ”little” perturbation. Here we will concern about the first order cosmological perturbation
theory and that means that in the calculations we will discard all the terms which will be of
the second order in the perturbations and also in their derivatives. Our interests are mainly
focused on a particular cosmological background which is the one compatible with the Cos-
mological Principle, i.e. the FLRW. In particular, we will make use of the simplest form of
such background: the flat FLRW universe. As well known, in this case the time slices have
a Minkowskian geometry and, consequently, we will be free to use the usual Fourier analysis.
For generalizations to more general settings and the complete theory of harmonic analysis

see [29]. Moreover, as yet pointed out, this condition guarantees us the possibility to switch,

thanks to the definition of the conformal time, to a metric which is conformally equivalent to
the Minkowskian one. Let’s start describing how the theory works. The first step toward a
cosmological perturbation theory is to considerer the issue of mapping. In order to examine

the real world (which will be called the “perturbed Universe”) we usually start considering the

unperturbed one (the background). When one wants to map a point P̄ from the background

space-time to a respective point P̂ living in the perturbed Universe has just to take into account
a coordinate system x̂. Now, the key point is that we have several ways to associate a point
in the real Universe from the one of the background. For example, we can consider another
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Figure A.1: A gauge transformation between the background slicing of the space-time and the
perturbed one

coordinate system x̃ which associates another point P̃ in the perturbed space-time. The only
constraint between these different description in the ”real manifold” is the following:

x̃α(P̃ ) = x̂α(P̂ ) ≡ xα(P̄ ) (A.2)

Specifying the particular choice of the map used is called a “gauge choice”.
Then, we can investigate about the relation between the two coordinate systems in the

perturbed space-time. It is important to stress again that we will deal with only the infinitesimal
transformation. Then, we can link them through the use of a vector field ξ:

x̃α = x̂α + ξα (A.3)

Whenever computing the perturbations of some object of interest we are facing the problem of

making the difference between the quantity which lives in the real space-time (perturbed) and

the background one. These elements live in two different manifolds and, so, it’s not immediate
to compare them. Our goal is to translate the perturbations as functions of the background
space-time, as they would live there.

Any “real” physical quantity lives in the perturbed Universe and so it may be expressed by:

Q = Q̄+ δQ (A.4)

According to what we have just discussed, we are not able to define a unique point in the
perturbed space-time in which this quantity lives and this is due to the ambiguity we previously
pointed out A.2. Different points in the real universe correspond to the same point in the
background. So, the perturbations δQ cannot be defined unequivocally, but they are clearly

gauge dependent. We can think of them at least in two different ways (depending on the choice

of the coordinates):

ˆδQ(xα) = Q(P̂ )− Q̄(P̄ )

˜δQ(xα) = Q(P̃ )− Q̄(P̄ ) (A.5)
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From the well known differential geometry, these two quantities can be related by the Lie
derivative along the line of the vector field ξα.

˜δQ = ˆδQ+ LξQ (A.6)

This change of the perturbations depending by the vector field which links two different coordin-
ate choice is called gauge transformation. A gauge choice is a precise correspondence between
the background and the perturbed space-time. Note that all the objects in the previous relation
are function of the coordinate xα of the background space-time. Here we are mainly interested

in the gauge transformation of the following quantities: scalar s, vector field wµ = (w0, wi) a

(1,1) tensor field Aµν and finally a (0,2) tensor field Bµν . For sake of brevity, we will recall here

the rules of transformation of those quantities under a gauge redefinition.

δ̃s = δs− s̄′ξ0

δ̃w
0

= δw0 + ξ0,0 w̄
0 − w̄0,0 ξ

0

δ̃w
i

= δwi + ξi,0 w̄
0

δ̃A
0

0 = δA0
0 − Ā0

0,0ξ
0

δ̃A
0

i = δA0
i +

1

3
ξ0,i Ā

k
k − ξ0,i Ā

0
0

δ̃A
i

0 = δAi0 + ξi,0 Ā
0
0 −

1

3
ξi,0 Ā

k
k

δ̃A
i

j = δAij −
1

3
δijĀ

k
k,0ξ

0

˜δBµν = δBµν − ξρ,µB̄ρν − ξσ,νB̄µσ − B̄µν,αξ
α

(A.7)

Then, it is easy to see that if we consider the trace of the tensor A, taking i = j = k, we have:

Ãkk = δAkk − Akk,0ξ0 (A.8)

an thus, we can note a very important property of the perturbations which is the following:

δ̃A
i

j = δAij −
1

3
δij δ̃A

k

k = δAij −
1

3
δAkk (A.9)

We have found the useful peculiarity of the traceless part of the tensor perturbations of being
gauge invariant. Note that in all of these relations, a central role was played by the temporal
component of the Killing vector field ξ.

After this quick introduction to the concept of gauge transformation, we can specialize the
previous arguments for the case of the metric.

A.1 Helicity decomposition

Here we will discuss the separation of a generic tensor in its spin components. To start with,
we can recall a general result from differential geometry which states that a generic field of

81



p-forms on a Riemannian space Σ can be decomposed according to the following rule:

p∧
(Σ) = d

p−1∧
(Σ)

⊕
kerδ (A.10)

where we have called with kerδ the kernel of the co-differential of those forms. This is a
consequence of the Hodge decomposition theorem. In the same way, a generic tensor field on
Σ can be split out in two orthogonal sectors:

χ(Σ) = χS
⊕

χV (A.11)

The first one consists of the gradient of scalar fields while the second one is made up by vector
fields with vanishing divergence. Analogously, we can decompose a symmetric tensor t in three
sectors:

tij = tSij + tVij + tTij (A.12)

where:

tSij = Tr(t)γij + (∇i∇j −
1

3
γij∆)f

tVij = ∇iυj +∇jυi

tTij : Tr(tT ) = 0;∇ · tT = 0

(A.13)

where we introduced a scalar function f and a vector field υi with vanishing divergence 1.
We may apply this theory to the metric perturbations. In fact, we can safely spit the

metric perturbations according to its spin decomposition. Consequently, we will have spin

0 modes (scalars), spin 1 modes (vectors) and finally spin 2 modes (tensor perturbations or

gravitational waves). We know that the metric tensor in a generic spacetime of dimension

D = n + 1 has 1
2
n(n + 1) real degrees of freedom. Let’s do a simple calculation in the case of

our interest, i.e. when D = 4 and so n = 3. In that case, we expect the degrees of freedom to
be 6. In this 6 degrees are encoded the three sectors: scalar, vectors and tensors. Thanks to the
Helmholtz’s theorem any vector field Ui can be decomposed in the following way: Ui = ∂iυ+υi,

where υ is a scalar (the potential flow) curl free υ[i,j] = 0 and υi is a vector (vorticity) which

is characterized of having vanishing divergence: ∇ · υ = 0. The last condition reduces the
number of degrees of freedom of the vector sector from 3 to 2. Then, according to the third
equation of A.13 we can see that the degrees of freedoms of the tensorial sector reduces to 2.
So, at this stage, is immediate to see that also the scalar sector gets 2 degrees of freedom. The
key point of this splitting is that, at linear order in perturbation theory, this three sectors are
completely decoupled. That means that the dynamical equations which govern the evolutions
of such perturbations are independent and we can treat them as independent fields. This will
not hold anymore when we go further in perturbations. We will recall at the end of this section
a modern picture to treat such complications.

1There is also another important decomposition through spherical harmonics but we will not give all the
details here

82



Now, let’s move on to the central object of our treatment: the metric tensor. We can adopt
a simple parametrization for the perturbed metric:

ds2 = a2(η){−(1 + 2Φ)dη2 − 2∂iBdηdxi + [(1− 2Ψ)δij + 2Dij]dx
idxj} (A.14)

Then the complete metric looks like:

gµν = a2

(
−(1 + 2Φ) ∂iB

∂iB (1− 2Ψ)δij +DijE

)
(A.15)

where: Dij = (∂i∂j − 1
3
δij∇2) These quantities under a gauge transformation will change. It is

always possible to perform such change of reference such that perturbations we may register in
one coordinate system disappear in another one and vice-versa. This is clearly a very important
issue and matter of concerning for a good development of the theory. According to the previous
rules we have found in the last section, if we consider a vector field ξ through which perform

the transformation of the perturbations, such that: ξµ = (ξ0, ξi = ∂iβ + vi) (where ∂iv
i = 0).

We can see that the transformation rules for those perturbations are the following:

Φ̃ = Φ− ξ′0 −Hξ0

B̃ = B + ξ0 + β′

Ψ̃ = Ψ− 1

3
∇2β +Hξ0

Ẽ = E + 2β

(A.16)

So, once again, it is clear that the components depend upon the gauge transformation and
this makes clear that when one wants to deal with cosmological perturbations has to pay great
attention. In fact, in some coordinate systems one can see some perturbations which can be
set to zero by simply imposing another gauge choice. In this case those phantom perturbations
are called pure gauge and are not physical.

At this stage we can move on our analysis and calculate the other fundamental objects
in order to develop the complete cosmological perturbation theory based on the perturbed
Einstein equations. The first quantities we want to show in terms of the perturbations are the
Christoffel symbols, which are given by:

Γαβγ =
1

2
gαρ(gργ,β + gρβ,γ − gβγ,ρ) (A.17)

Because we are developing the theory at linear order in the perturbations we can split the
computation in the following easier way:

δΓαβγ =
1

2
δgαρ(gργ,β + gρβ,γ − gβγ,ρ) +

1

2
gαρ(δgργ,β + δgρβ,γ − δgβγ,ρ) (A.18)

Then, the components are the following:
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δΓ0
00 = Φ′

δΓ0
0i = ∂iΦ +H∂iB

δΓi00 = H∂iB + ∂iB′ + ∂iΦ

δΓ0
ij = −2HΦδij − ∂i∂jB − 2HΨδij −Ψ′δij −HDijE +

1

2
DijE

′

δΓi0j = −Ψ′δij +
1

2
DijE

′

δΓijk = ∂jΨδ
i
k − ∂kΨδij + ∂iΨδjk −H∂iBδjk +

1

2
∂jD

i
kE +

1

2
∂kD

i
jE −

1

2
∂iDjkE

(A.19)

Then, the consequent quantity we are interested in is the Ricci tensor, which, again, has to be
calculated bearing in mind to take into account just the linear terms. Then it can be expressed
as follows:

δRµν = ∂αδΓ
α
µν − ∂µδΓανα + δΓασαΓσµν + ΓασαδΓ

σ
µν − δΓασνΓσµα − ΓασνδΓ

σ
µα (A.20)

And, making explicit the components:

δR00 = H∂i∂iB + ∂i∂
iB′ + ∂i∂

iΦ + 3Ψ′′ + 3HΨ′ + 3HΦ′

δR0i =
a′′

a
∂iB +H2∂iB + 2∂iΨ

′ + 2H∂iΦ +
1

2
∂kD

k
iE
′

δRij =
(
−HΦ′ − 5HΨ′ − 2

a′′

a
Φ− 2H2Φ− 2

a′′

a
Ψ− 2H2Ψ−Ψ′′ + ∂k∂

kΨ−H∂k∂kB
)
δij

− ∂i∂jB′ +HDijE
′ +

a′′

a
DijE +H2DijE +

1

2
DijE

′′ + ∂i∂jΨ− ∂i∂jΦ− 2H∂i∂jB

+
1

2
∂k∂iD

k
jE +

1

2
∂k∂jD

k
iE −

1

2
∂k∂

kDijE

(A.21)

Finally, the last object we need for the writing of the Einstein equations is the Ricci scalar
which can be obtained by the Ricci tensor:

R = gµαRαµ (A.22)

So:

δR = δgµαRαµ + gµαδRαµ (A.23)

δR =
1

a2

(
− 6H∂i∂iB − 2∂i∂

iB′ − 2∂i∂
iΦ− 6Ψ′′

− 6HΦ′ − 18HΨ′ − 12
a′′

a
Φ + 4∂i∂

iΨ + ∂k∂
iDk

iE
) (A.24)
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Now, we have all the ingredients we need to compute the Eisntein tensor Gµν . From now

on we will use the notation with indices mixed, i.e. Gµ
ν . The reason of that choice is due to

the convenience in calculations. We will take advantage of gauge choice to get rid of some

components of the metric tensor we are working with, but if we would like to raise (or lower)

indexes of some tensors, we have to bear in mind that this kind of operations can be performed
through the complete metric gµν which encode other perturbation variables. In this way new

variables will proliferate. The only way to avoid this kind of troubles is to perform all the
calculation using the mixed notation. Then, here we will give the components of the mixed
Einstein tensor:

δGµ
ν = δ(gµαGαν) = δgµαGαν + +gµαδGαν (A.25)

So:

δG0
0 = R0

0 −
1

2
R =

1

a2

[
6H2Φ + 6HΨ′ + 2H∂i∂iB − ∂i∂iΨ−

1

2
∂k∂

iDk
iE
]

δG0
i = R0

i =
1

a2
[−2H∂iΦ− 2∂iΨ

′ − 1

2
∂kD

k
iE
′]

δGi
j =

1

a2
[(2HΦ′ + 4

a′′

a
Φ− 2H2Φ + ∂i∂

iΦ +HΨ′ + 2Ψ′′ − ∂i∂iΨ + 2H∂i∂iB + ∂i∂
iB′ +

1

2
∂k∂

mDk
mE)δij

− ∂i∂jΦ + ∂i∂jΨ− 2H∂i∂jB − ∂i∂jB′ +HDi
jE
′ +

1

2
Di
jE
′′ +

1

2
∂k∂

iDk
jE +

1

2
∂k∂jD

ikE − 1

2
∂k∂

kDi
jE]

(A.26)

Now we have shown how the lhs of the Einstein equation look like. Then, the other character
which plays a fundamental role in the theory is the stress-energy tensor T µν . The helicity

decomposition is the same we made for the metric tensor. Explicitly:

T 0
0 = −ρ

T i0 = Si + ∂iS

T ij = pδij + (∂i∂j −
1

3
δij∇2)σ︸ ︷︷ ︸

Σscalarij

+
1

2
(∂iσj + ∂jσi)︸ ︷︷ ︸

Σvectij

+ σTTij︸︷︷︸
Σtensorij︸ ︷︷ ︸

Σij

(A.27)

It is worth-mentioning the important propriety of a perfect fluid of non producing any aniso-

tropic stress-energy contribute. So that, for a perfect fluid, the Σtensor
ij always vanish. The

FLRW, which is the background of our perturbed Universe, can be thought as a perfect fluid.
So, the first order perturbations of the stress-energy tensor can be obtained simply replacing
the energy density ρ and the pressure p in the A.27 with ρ→ ρ̄+ δρ and p→ p̄+ δp.

Let’s specialize the computation of the perturbations of a stress-energy tensor for the case
of a scalar field φ. Such scalar field, like the Inflaton, can thought as a perfect fluid in an
expanding background. Then, the stress-energy tensor for a scalar field, is:

Tµν = ∂µφ∂νφ− gµν
(1

2
gαβ∂αφ∂βφ+ V (φ)

)
(A.28)
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then, computing carefully the single components, we arrive at:

δT 0
0 = Φφ′2 − δφ′φ′ − δφ∂V

∂φ
a2

δT i0 = ∂iBφ′2 + ∂iδφφ′

δT 0
i = −∂iδφφ′

δT ij =
(
− Φφ′2 + δφ′φ′ − δφ∂V

∂φ
a2
)
δij

(A.29)

From this expression is once again explicit the tight relation between the matter fields and the
metric perturbations.

Gauge choice and gauge invariant quantities

In order to develop a consistent gauge invariant theory, we need to find new variables to describe
the physics of the problems we will face which are gauge invariant. We can define different gauge
invariant quantities; here, we will analyse some of them. The first step toward the definition
of gauge invariant variables is the setting of the slicing. Let’s stress again the concept of the
gauge choice. We have said that doing a gauge choice means to fix the correspondence between
two coordinate system. So, fixing a gauge means to define a precise ”threading” of the entire

space-time (for fixed spatial coordinates) and a “slicing” into hypersurfaces (at fixed time). So,

firstly, we need for first to set a certain slicing. After that we will make a transformation which
will bring us from a generic slice of the space-time to the one we choice. The first fundamental
variable we have used in this thesis is the Comoving curvature perturbation: R. This variable
is defined such that the perturbations of the inflaton in such slicing are null. δφcom = 0. Now,
if we recall that a generic gauge transformation for δφ is performed by:

δ̃φ = δφ− φ′ξ0 (A.30)

Then, in this case, the vector field through which we can switch to the new slice has to have:

ξ0 =
δφ

φ′
(A.31)

Now, recalling that the intrinsic curvature for an hypersurface is given by the laplacian of the

curvature perturbation Ψ, (3)R = 4
a2∇2Ψ, and that the curvature perturbation transforms in

the following:

Ψ′ = Ψ +Hξ0 (A.32)

it is straightforward to define the following:

R ≡ Ψ +Hδφ
φ′

(A.33)
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which is clearly gauge invariant for construction. In this case, R 2 represents the gravitational
potential on the comovent slices. The second variables of interest in the one we can define
starting from the uniform energy density slicing. In this case, we will characterize the vector ξ

requiring: δρ = 0. Bearing in mind that the density perturbation transforms like δ̃ρ = δρ−ρ′ξ0,

then if we switch from a generic slicing to the one in which holds δ̃ρcom = 0, we have:

ξ0 =
δρ

ρ′
(A.34)

So, recalling again the A.32, we can define the uniform density curvature perturbationζ:

ζ ≡ Ψ +Hδρ
ρ′

(A.35)

We may wonder what is the relation between these two variables. It can be shown that, during
the inflationary stage and for super Hubble scales, they coincide. The most simple proof of

this statement is based on noticing that during inflation: ρ + P = φ̇2 and, thanks to the

energy-conservation equation: ρ′ + 3H(ρ+ P ) = 0→ ρ′ + 3Hφ̇2, then:

ζ = Ψ +H
δφ

φ̇
≡ R (A.36)

where, in the last equality we made use of the fact that the perturbations of the energy density

during inflation are apprximated in the following manner: δρ ' −3Hφ̇δφ. The last property
that is important to stress is that the comoving curvature perturbation R is conserved for
large scales and for just adiabatic modes. Lastly, the fundamental object we used in the
computations in this thesis is the Mukhanov-Sasaki variable which basically is defined on a

spatially flat slicing such that Ψflat = 0. In this case we have: ξ0 = −Ψ
H and the fluctuations

of the inflaton field is δ̃φ = δφ+ φ′

HΨ. Then the Mukhanov-Sasaki variable is:

Q = δφ+
φ̇

H
Ψ ≡ φ̇

H
R (A.37)

After having defined these gauge invariant quantities, one can face the problem of solving the
dynamical equations in cosmological perturbation theory. Thanks to these variables, we are able

to find the explicit expression for the gauge invariant (so, that have a non ambiguous physical

meaning) variables. The price we pay taking this way is the intricacy of the calculations. A

gauge invariant computation is affected by the proliferation of a multitude of terms but the
results will be given in terms of just the gauge invariant quantities. On the other hand, making
an explicit gauge fixing by hand from the start will simplify the computations.

2The comoving curvature perturbation is also the main character of a very famous theorem by Steven
Weinberg. The so called adiabatic theorem states that there always exist two adiabatic scalar modes in which
the comoving curvature perturbation is conserved on super-horizon scales. In the special case the perturbations
are generated by a single source, then the both of the two allowed solutions are adiabatic and conserved on
super-horizon scales.
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Appendix B

Induced gravitational waves from
scalar perturbations

It is instructive at this stage to introduce the formalism we can use through the study of
the gravitational wave background. It is well understood from the SVT decomposition in

the Fourier space of the metric perturbations that the three sectors (scalar-vector-tensor) are

uncoupled at the first order in the perturbations. That means that the dynamical equation in
those three sectors don’t mix with each other. This is not the case when we go further in the
perturbation theory and consider higher orders. There we can see a mixing between modes of
different nature. This conduct us to a new phenomenon that may be observable. Fortunately,
at second order, we don’t have mixing between second order quantity of the same nature. To
be specific, we won’t see any equations which involve second order objects on the right and left
side of Einstein equations, but only a dynamical relation between a second order object on the
l.h.s. and a quadratic first order element at the r.h.s. . So, according to that, we can see the
first order dynamical perturbations as a new sources for the second order modes. Let’s stress
one more time the deep difference between this production of the gravitational waves and the
production we examined in the first chapter. During inflation or during the reheating stage a
production of a gravitational waves background may occur. The one we looked at in the first
chapter was based on the vacuum fluctuations. We have setted our treatment of cosmological
perturbations in the General Relativity and we dealt with vacuum oscillations for our main
purpose. In this perspective, we can look at other metric theories beyond the Einstein’s theory
for the treatment of vacuum oscillations and spot new physics from the vacuum. On the other
hand, we can treat a classical mechanism where the source of the tensorial modes are produced
by the first order perturbations. The topic of second order Gravitational Waves spectrum
induced by the first order scalar perturbations.

Π̂lm
ij G

(2)
lm = k2Π̂lm

ij T
(2)
lm (B.1)

where we have used the projection operator Π̂lm
ij = Πi

lΠ
j
m − 1

2
ΠijΠ

lm where Πij = δij − ∂i∂j/∆

h′′ij + 2Hh′ij −∇2hij = −4Π̂lm
ij Slm (B.2)
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where the source term has the following expression

Slm = 2Ψ∂l∂mΨ− 2Φ∂l∂mΨ + 4Φ∂l∂mΦ + 4Ψ∂l∂mΨ + ∂lΨ∂mΨ− ∂lΨ∂mΦ− ∂lΦ∂mΨ + 3∂lΦ∂mΦ

− 4

3(1 + ω)H2
∂l(Φ

′ + 3HΨ)∂m(Φ′ + 3HΨ)− 2c2
s

3ωH2
[3H(HΨ− Φ′) +∇2Φ]∂l∂m(Ψ− Φ)

(B.3)

and the projection operator in the TT gauge is the combination of the projections operators in
the Fourier space looks like:

Πlm
ij (k̂) = P l

i (k̂)Pm
j (k̂)− 1

2
P lm(k̂)Pij(k̂) (B.4)

where Pij = δij − k̂ik̂j. Through the Fourier transformation:

Πlm
ij (x) =

∑
λ=+×

∫
d3k

(2π)3/2
eik xελij(k)ελ,lm(k) (B.5)

Then, the wave equation in the Fourier space take the form:

[ d2

dτ 2
+ 2H d

dτ
+ k2

]
hλk(τ) = Sλk (τ) (B.6)

and the solution can be recast expressed by the use of the Green function in the following way:

hλk(τ) =

∫ +∞

−∞
dτ1gk(τ, τ1)Sλk (τ1) (B.7)

where gk(τ, τ
′) is the solution of the differential equation where on the rhs there is just a Dirac

delta function of the form: δ(τ − τ ′). Then, one can compute the usual power spectrum which

will be the sum of the single power spectrum corresponding to the two polarizations.
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Appendix C

Statistics

In this this appendix I would like to stress some concept that are the back bone of every
cosmological analysis. The mathematical structures we used to characterize the spectrum of
the primordial gravitational waves inherited peculiarities from the Cosmological model we are
dealing with.

First of all, let us describe what means the word perturbations. Even if we consider our
Universe as isotropic and homogeneous, if we look closer some portion of it, it seems clearly
inhomogeneous. The galaxy structures we observe today are simply the evolution of some
seeds originated in the Early Universe. We explained that those seed came from the quantum
fluctuations of the inflaton field. Here, we can look closer the concept of perturbations. Every
inhomogeneity can be thought as a sum of a homogeneous term plus a ”little” additional
contribute which are non-homogeneous that we will call perturbations. So, we can take as a
classical example the energy density ρ, which is in general a function of the comoving coordinates
x and time.

ρ(t,x) = ρ̄(t) + δρ(t,x) (C.1)

In literature is common to define the variable ”relative density of perturbation” as the following
object:

δ(t,x) ≡ δρ(t,x)

ρ̄(t)
(C.2)

How about the background value ρ̄ ? It can be thought as the average over volumes of the

real (or perturbed) quantity ρ(t,x), such that: ρ̄(t) ≡ 〈ρ(t,x)〉vol.average. We can imagine ρ̄ is a

solution for an homogeneous and isotropic Universe, as like the perturbations don’t exist.
Those variables are random generated by some process we may don’t know. However, our

goal is to point out the statistical proprieties of physical quantities which are functions of those
stochastic variables. In order to accomplish this goal, we need to define ways to compute the
expectation values of such physical quantities. We will define two kinds of average.

The first concept, more physical, is the concept of ”volume average” and it is nothing else
than the integral media over a volume V :

f̄ ≡ 1

V

∫
V

f(x)d3x (C.3)

The second concept we can introduce is the “ensamble average”. This is somewhat more familiar
with mathematicians and is based on the concept of the random variables. Every observables in
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the Universe can be cast as a function of such random variables that we called “inhomogeneity”

δ(t,x) and we will represent them this way: f = f(δ). We can think this ensamble average

as the average over many equivalent realizations of the system under investigation. These
equivalent realizations can be extract by many samples of the random variables. So, the best
would be having the exact espression of the probability distribution of δ. In that way, we can

consequently define the ensamble average as the expectation value of a given function f(δ) over

the infinite number of equivalent configurations of samples:

〈f〉 ≡
∫
dδProb(δ)f(δ) (C.4)

From a theoretical point of view, this expression can tell us the distribution probability of
some proprirties of one of the possible Universe emergent by the various samples of stochastic
variables. Even though this concept could seems fair enough for a mathematician, it seems
unphysical due to the fact that we live in single Universe and we cannot perform any measure-
ment over an ensable of equivalent Universes. At this stage, we can save the theory by adding
the “ergodic” assumption. We will think the plethora of distant section of our Universe as if
they were different realizations of different Universes. We will define the “ergodic fields” the
ones which satisfy the following proprierty:

f̄ ≡ 〈f〉 (C.5)

Of course, this equality must hold when considering the entire Universe, not just limited por-
tions. In the case we are just limiting the analysis to a finite volume V , the discrepancy between

these two averages is called the Cosmic Variance = f̄V −〈f〉. This is a very common and useful

tool in cosmology because it provides a good test to compare the theoretical prediction (by

〈f〉) and the observations f̄V . At this stage, we would like to see how our assumptions about

the Universe could reflect on the statistical properties of the physical observables. The FLRW
Universe is the one which match the requirements of homogeneity and isotropy. These work
assumptions are well justified by the current cosmological observations and the Inflation theory
is the strongest candidate to make our Universe so homogeneous and isotropic. Consequently,
every physical quantity we can use to describe the Cosmos will inherited such properties. In
particular, the homogeneity of the space means that the expectation value of a certain function

is completely independent by the position in the real space x, so: 〈f(x)〉 = 〈f〉; while the

isotropy means that the statistical properties don’t depend on the direction. That means that

any vectorial quantity, say ~v, we can define in our Universe, it will have : 〈~v〉 = 0

The perturbation density we introduced at the beginning cannot be used to measure the
homogeneous content of the Universe. So, it is natural to look forward to some other quantities.

The natural further step is the square of the perturbations δ2 and its expectation value, the
variance:

〈δ2〉 = 〈δρ
2

ρ̄2
〉 =
〈δρ2〉
ρ̄2

(C.6)

This is a measure of the inhomogeneity’s amplitude, but it doesn’t tell nothing about the shape
of the inhomogeneity. We need to go further and define other elements. Let’s introduce the
correlation function ξ:

ξ(x1, x2) ≡ 〈δ(x1)δ(x2)〉 (C.7)
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Due to the statistical homogeneity, the correlation function is just a function of the separation
between the two points x1 and x2 and due to the isotropy, the only thing that really matters is

the modulo |~r| = r, so:

ξ = ξ(|~r|) = ξ(|~x1 − ~x2|) = 〈δ(x1)δ(x1 + r)〉 (C.8)

Through the concept of the correlation function we have information about how much the
perturbations in different point of space-time are correlated. Of course, ξ is much bigger when
the displacement is smaller and vice-versa. In the limit when r reaches the zero we obtain

again the variance: ξ(0) = 〈δ(x)δ(x)〉 While, for r →∞ , ξ starts oscillating around zero. The

next step is to switch to the Fourier space. As we just have pointed out, switching the analysis
in the Fourier space is a powerful way to make clear the physics at different scales. Thank to
the Fourier analysis, any function in the real space can be decomposed in its Fourier modes
through the Fourier transform:

f(x) =
1

(2π)3

∫
f(k)eik·xd3k (C.9)

and vice-versa:

f(k) =

∫
f(x)e−ik·xd3x (C.10)

Analogously to the correlation function, we can define the respective quantity in the Fourier
space.

〈δ(x1)δ(x2)〉 −→ 〈δ∗k1
δk2〉 (C.11)

This dual quantity is called the Power Spectrum, but we will define it better soon. The presence
of the complex conjugate is justified by the fact that the variance has to be defined positive.
In fact, in the case k1 = k2 = k, one has:

〈δ∗kδk〉 = 〈|δk|2〉 ≥ 0 (C.12)

To make the definition clearer, we will write down explicitly the two-point function in the
Fourier space:

〈δ∗kδk′〉 =
1

V 2

∫
d3xeik·x

∫
d3x′e−ik

′·x′〈δ(x)δ(x′)〉

=
1

V 2

∫
d3xeik·x

∫
d3re−ik

′·(x+r)〈δ(x)δ(x+ r)〉

=
1

V 2

∫
d3re−ik

′·rξ(r)

∫
d3xei(k

′−k)·x

=
1

V 2

∫
d3re−ik

′·rξ(r)δk′k · V −→V−→∞ (2π)3δ3
D(k′ − k)P (k)

(C.13)

where we have defined the Power Spectrum P , as it is called in literature:

P (k) ≡
∫
d3re−ik

′·rξ(r) (C.14)
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It is worth-noting that, unlikely the correlation function, the power spectrum is always positive
defined. The power spectrum is a very useful tool to describe the perturbations over large
scales, while the correlation function suits better in the analysis on smaller scales. From the
previous formula, it may seems that the power spectrum could be dependent on the direction
of the momentum k but, due to the statistical isotropy, it is dependent just by the modulus:

P (k) = P (k). Thanks to all these assumptions we can make this relation explicit by performing

the integral in polar coordinates.

P (k) =

∫
d3re−ik

′·rξ(r) =

∫ ∞
0

r2dr

∫ π

0

sin θdθ

∫ 2π

0

dφe−ikr cos θξ(r)

= 2π

∫ ∞
0

r2ξ(r)dr
1

ikr

[
e−ikr cos θ

]π
0

= 4π

∫ ∞
0

r2ξ(r)
sin(kr)

kr
dr

(C.15)

Vice-versa:

ξ(r) =
1

(2π)3

∫
d3keikxP (k) =

4π

(2π)3

∫ ∞
0

P (k)
sin(kr)

kr
k2dk (C.16)

According to this formula, it is immediate to evaluate the variance ξ(0):

ξ(0) ∼=
1

2π2

∫ ∞
−∞

P (k)
kr

kr
k2k

dk

k
=

1

2π2

∫ ∞
−∞

P (k)k3d ln k ≡
∫ ∞
−∞
P(k)d ln k (C.17)

where in the last step we have defined:

P(k) ≡ k3

2π2
P (k) (C.18)

It is common, in literature, to call also P(k) the Power Spectrum. It has the privilege of being

adimensional and it gives the contribute on logaritmic scales to the variance.

Power Spectrum of the SGWB

At this stage we would like to apply the previous definitions to the gravitational waves world.
In this section we will recall the main properties of the SGWB induced by classical sources. At
the end we will take a little stint to clarify the meaning of the expectation value when studying
primordial gravitational waves. The first property which characterize the power spectrum is
the homogeneity and the isotropy of the space-time. Making this simple request means to have
a two point functions between tensor modes of the following form:

〈hij(x, η1)hlm(y, η2)〉 = Fijlm(|x− u|, η1, η2) (C.19)

where 〈...〉 is the ensamble average. The other fundamental assumption we usually made for the

cosmological gravitational waves background is that it is unpolarized and this is a consequence
of an apparent absence of a source of parity violation in the Universe. In terms of the polarized
states, that means that:

〈h+(k, η)h×(k, η)〉 = 〈h+2(k, η)h+2(k, η)− h−2(k, η)h−2(k, η)〉 = 0 (C.20)
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From the previous considerations, we can finally define the power spectrum as follows:

〈hr(k, η)h∗p(q, η)〉 =
8π5

k3
δ(3)(k− q)δrph

2
c(k, η) (C.21)

Here the Dirac delta function remark the principle of statistical homogeneity and isotropy
and the Kronecker delta reflects the unpolarized property. For any gaussian field the two point
function is the only essential which will give the entire statistical information about the system.

The strange factor 8π5 in the previous definition has been chosen so that:

〈hij(x, η)hij(x, η)〉 = 2

∫ ∞
0

dk

k
h2
c(k, η) (C.22)
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[52] K. Turzyński and M. Wieczorek, “Floquet analysis of self-resonance in single-field models

of inflation,” Phys. Lett. B 790 (2019), 294-302 [arXiv:1808.00835 [astro-ph.CO]].

[53] Y. F. Cai, C. Lin, B. Wang and S. F. Yan, “Sound speed resonance of the stochastic grav-

itational wave background,” Phys. Rev. Lett. 126 (2021) no.7, 071303 [arXiv:2009.09833

[gr-qc]].

[54] J. M. Maldacena, “Non-Gaussian features of primordial fluctuations in single field infla-

tionary models,” JHEP 05 (2003), 013 [arXiv:astro-ph/0210603 [astro-ph]].

[55] S. Weinberg, “Gravitation and Cosmology: Principles and Applications of the General

Theory of Relativity,”

[56] M. Nakahara, “Geometry, topology and physics,”

[57] L. Hollenstein, M. Jaccard, M. Maggiore and E. Mitsou, “Zero-point quantum fluctuations

in cosmology,” Phys. Rev. D 85 (2012), 124031 [arXiv:1111.5575 [astro-ph.CO]].

[58] Q. Wang, Z. Zhu and W. G. Unruh, “How the huge energy of quantum vacuum gravitates

to drive the slow accelerating expansion of the Universe,” Phys. Rev. D 95 (2017) no.10,

103504 [arXiv:1703.00543 [gr-qc]].

[59] S. S. Cree, T. M. Davis, T. C. Ralph, Q. Wang, Z. Zhu and W. G. Unruh, “Can the

fluctuations of the quantum vacuum solve the cosmological constant problem?,” Phys. Rev.

D 98 (2018) no.6, 063506 [arXiv:1805.12293 [gr-qc]].

100



[60] J. Martin and R. H. Brandenberger, “The TransPlanckian problem of inflationary cosmo-

logy,” Phys. Rev. D 63 (2001), 123501 [arXiv:hep-th/0005209 [hep-th]].

[61] C. P. Burgess, J. M. Cline, F. Lemieux and R. Holman, “Are inflationary predictions

sensitive to very high-energy physics?,” JHEP 02 (2003), 048 [arXiv:hep-th/0210233 [hep-

th]].

[62] U. H. Danielsson, “Inflation as a probe of new physics,” JCAP 03 (2006), 014 [arXiv:hep-

th/0511273 [hep-th]].

[63] J. Lesgourgues, D. Polarski and A. A. Starobinsky, “Quantum to classical transition of

cosmological perturbations for nonvacuum initial states,” Nucl. Phys. B 497 (1997), 479-

510 [arXiv:gr-qc/9611019 [gr-qc]].

[64] C. Kiefer, “Quantum Gravity,”

[65] E. Poisson, “A Relativist’s Toolkit: The Mathematics of Black-Hole Mechanics,”

[66] M. D. Schwartz, “Quantum Field Theory and the Standard Model,”

[67] M. E. Peskin and D. V. Schroeder, “An Introduction to quantum field theory,”

101


	Physics beyond Standard Cosmological Model
	The need for Inflation
	The Inflaton as a solution
	On the primordial quantum fluctuation's faith
	Quantization procedure in curved spacetime and the ``natural" ambiguity of vacuum
	The Minkowskian assumption
	The general treatment - alpha vacua

	Primordial quantum perturbations in slow-roll inflation regime
	Bunch-Davies initial condition
	 vacua

	Gravitational waves background of Early Universe
	Bunch-Davies vacuum 
	 vacuum in deSitter space-time
	The energy density
	Energy density of PGWs

	The smoking gun
	Cosmological parameters for PGWs from various models
	The smooth transition into classicality

	A particle physicist's perspective 
	The Trans-Planckian backreaction and the relation between two vacuum state
	adiabatic vacuum


	Extension to two fields Inflation
	A new basis: (, s)
	Adiabatic and Isocurvature perturbations
	Classical production of gravitational waves in two field Inflation
	Parametric resonance in two field Inflation


	Dynamical vacuum: footprints in Primordial Gravitational Waves
	The Cosmological Constant problem

	Gravitational waves from a quantum stochastic background
	Conclusions and Outlook
	Cosmological perturbation theory
	Helicity decomposition

	Induced gravitational waves from scalar perturbations
	Statistics

