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Introduction

In the last decade the properties of superconducting quantum bits have improved
enormously, allowing the realization of the first quantum processors [1]. It now be-
comes of central importance to make a step further by focusing on two crucial points:
the scalability of quantum processors and the implementation of an active quantum
control framework that allows a dynamic readout of the qubits ensamble during the
computational process [2]. In order to achieve both these goals, it is essential to de-
sign new quantum devices able to perform such tasks without inflating the number
of operations required.
This thesis work fits in this context by introducing an innovative superconducting
quantum circuit, called Josephson Digital Phase Detector (JDPD), that introduces
a new way to perform Quantum Non Demolition (QND) qubit readout. This new
technique, with respect to current procedures, has the potential to improve signif-
icantly the scalability. The proposed circuit, in principle, is capable of digitalize
the measurement of the qubit state in the same cold environment that contains the
qubits ensamble. This feature allows to partially remove the components needed
for the dynamic communication between the qubits and the measurement setup at
room temperature, which is a key step for the implementation of more compact and
efficient control architecture based on superconducting Rapid Single Flux Quantum
(RSFQ) electronics [3–6]. This type of solution is essential towards the construction
of a fault-tolerant quantum computer [7], given the unavoidable fragility of the quan-
tum states describing the qubits due to decoherence and environment noise effects.
In this context, the JDPD device represents a strong example of how the physics of
superconducting circuits and of Josephson junctions is the key to address specific
tasks in a quantum architecture.
This thesis work represents the first step towards the implementation of the JDPD
as a read-out device in a quantum computer architecture. In particular, in this thesis
work I have focused on the dynamics of the JDPD with the specific aim of validating
the JDPD capability of performing QND read-out of superconducting qubits. The
validation has been performed by studying two different JDPD by performing differ-
ent simulations through different tools (Python scripts, Software simulators). Such
simulations prove the feasibility of the QND read-out protocol allowed by the JDPD
and create a bridge between the analytical model that describes the circuits dynamics
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and the experimental data acquired during the measurements. By comparing the data
with the simulations I have experimentally validated the analytical model on which
the read-out protocol is based on, thus achieving the prefixed goal of proving the
capability of the JDPD to perform superconducting qubit read-out.
The thesis is organized as follows: in the first chapter I will give a brief general
description of superconducting quantum circuits and I will define the dynamics of
some fundamental superconducting quantum circuits, such as the LC oscillator, the
DC SQUID and the superconducting qubit, which allow to better understand the
world of quantum circuits. In the second chapter I will deal with superconducting
qubit read-out. In particular I will describe how QND read-out can be performed
by coupling a microwave cavity to the qubit under test. Moreover, some common
read-out techniques that exploit this method will be discussed. Among the various
techniques I will introduce also the JDPD and the corresponding read-out protocol.
In the third chapter I will illustrate the experimental protocol to study the JDPD dy-
namics, which is based on performing transmittivity/reflectivity measurements of a
circuit that I will call "spectroscopy circuit". The second part of the chapter will fo-
cus on the description of the cryogenic and electronic experimental setup to perform
the different required operations. In the fourth chapter I will describe all the simu-
lations that I have performed for an accurate design of the JDPD device. The first
part of the chapter will focus on the preliminary simulations to prove the possibility
of performing QND read-out with the JDPD. The second part deals with the simu-
lations to characterize the spectroscopy circuit component in order to design devices
that can be analysed with the available experimental setup. The third part will briefly
describe the final designs of the chips. The last part will illustrate further simulations
that I have performed to predict the behaviour of the spectroscopy circuit, as a term
of reference between the spectroscopy measurements and the JDPD dynamics. In the
fifth and final chapter I will outline the various steps and I will show the experimen-
tal measurements that allow to validate the capability of the JDPD to perform QND
read-out of superconducting qubits.
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Chapter 1

Introduction to superconducting
quantum circuits

In this Chapter I will introduce the fundamental features of superconducting quantum
circuits. The first paragraph provides the mathematical formalism employed to study
the behaviour of superconducting circuits both in classical and quantum regime. In
the second paragraph the main properties of superconducting devices are highlighted,
with a special focus on phase-sensitive experiments. In the third and forth paragraphs
an overview of the main superconducting quantum circuits and their use as quantum
bits (qubits) will be presented.

1.1 Quantum circuits

Quantum mechanics is commonly used for the description of microscopic particles
such as electrons, atoms or photons. More recently, thanks to the impressive develop-
ments in the fields of superconductivity, material science and nano-fabrication, quan-
tum mechanics has gained additional significance even in the description of macro-
scopic entities and in the design of innovative devices and circuits [8] [9]. All this
paves the way to a multitude of new inspiring applications, in which quantum circuits
are commonly employed as the core element of quantum processors, as quantum bits
(qubits) [1] [10] [11], as devices to detect the quantum state (read-out devices) [12]
[13] [14] or as quantum amplifiers for signal coming from a quantum system [15].
To describe how quantum circuits behave it is useful to start from the classical ones.
An electromagnetic circuit is made of multiple branches mutually interconnected and
containing different circuital elements. The elements of each branch b at a time t are
characterized by two variables: the voltage Vb(t) across the element and the current
Ib(t) flowing through it. The voltage and the current are defined from the underlying
electromagnetic fields by the following expressions:
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Vb(t) =
∫ bend

bstart

~E(~r, t) · ~dl (1.1)

Ib(t) =
1
µ0

∮
baround

~B(~r, t) · ~dl (1.2)

Considering integral paths such that one field is approximately zero on the integration
path related to the other field, the voltages and the currents can be assumed indepen-
dent [16]. In this approximation it is possible to solve the circuits through the well
known classical electromagnetic laws. For a quantum treatment it is useful to in-
troduce the Hamiltonian description of a circuit [16]. An Hamiltonian description of
electrical circuits requires the introduction of branch fluxes and branch charges which
are defined by branch voltages and branch currents through the equations [16]:

Φb(t) =
∫ t

0
V (t ′)dt ′ (1.3)

Qb(t) =
∫ t

0
I(t ′)dt ′ (1.4)

where at t = 0 the circuit voltages and currents are supposed to be zero. This variables
are correlated through the Kirchoff’s laws:

∑
bl around l

Φb = Φl (1.5)

∑
bl to l

Qb = Ql (1.6)

where l represents the node in the circuit and bl the branches around l in Eq. 1.5 and
the branches to the node l in Eq. 1.6. This formalism allows to give a general analyt-
ical description of capacitive and inductive elements through the canonical variables.
A capacitive element will be a dispersive element for which the voltage V (t) is a
function only of the charge Q(t) and not directly of the time t or of any other vari-
ables: V (t) = f (Q(t)). The capacitance is thus defined in the following way:

C(Q) =

[
d f
dQ

]−1

(1.7)

Similarly, an inductive element is a dispersive element for which the current I(t)

is a function only of the flux Φ(t) and not directly of the time t or any other vari-
ables, I(t) = g(Φ(t)). The inductance will depend only on the flux Φ(t) through the
following expression:

L(Φ) =

[
dg
dΦ

]−1

(1.8)
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In the case of linear components where capacitance and inductance can be considered
constant (C(Q) =C, L(Φ) = L), the relative electromagnetic energy is well defined
by the following expressions:

Linear Capacity (Q−Qo f f set)
2

2C

Linear Inductance (Φ−Φo f f set)
2

2L

From the relations between branch quantities and node quantities it is possible to find
some superfluous variables and thus to reduce the number of the effective degrees of
freedom of the system. Two standard methods in circuit theory are commonly used
to this aim: the method of nodes and the method of loops. In this discussion I will
use the former in order to solve most practical problems. The capacitive sub-network
is approximated to contain only linear elements [16]. This is a reasonable assump-
tion for the circuits discussed in this work, given their simplicity. This assumption
allows to express the energy associated to a capacitance in terms of voltage, i.e. the
derivative of flux. As a consequence, the energy of a capacitive branch can be writ-
ten as EC = CΦ̇2/2. The symmetry between charge and flux is thus broken, and it
is possible to obtain one from the other [16]. In this case it is possible to introduce
a semi-classical model where EC can be seen as the kinetic energy of the system and
thus the flux becomes a position-like degree of freedom that defines the dynamics of
the system. Within this framework it can be introduced a Lagrangian description of
the circuits, where the Lagrangian is a function of the fluxes Φn across the branches
and of their derivatives: L ({Φn},{Φ̇n}). From the Lagrangian description it is
possible to pass to an Hamiltonian description, where the momenta conjugate of the
fluxes is defined by the branch charge:

qn =
δL

δ Φ̇n

It can be seen that in this context the momentum conjugate is linked to the charge
in the branch n [16]. The Hamiltonian of a circuit can thus be expressed as the
sum of the kinetic energy, which has to be expressed in terms of the charge and the
equivalent capacity, plus the potential energy expressed in terms of the flux Φn on
the branches and the equivalent inductance, where the index n represents the branch
n in the circuit. In this model the dynamics of the circuit follows the Hamilton-Jacobi
equations:

Φ̇n =
δH
δqn

(1.9)

q̇n = −
δH
δ Φn

(1.10)
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The passage from the classical to the quantum description of electrical circuit is
achieved by replacing the classical variables with the corresponding operators, lead-
ing to an Hamiltonian that is defined by a function of operators:

Φ→ Φ̂

Q→ Q̂

H→ Ĥ

The state of the circuit is likewise represented by the density operator, which lives
in the Hilbert space related to the system through a well defined Hamiltonian. In
the quantum mechanical description, the dynamical variables {Φn} and {Qn}, that
describe the state of the system, are characterized by the following commutation
relations:

[Φ̂n, Q̂m] = ih̄δnm (1.11)

[Φ̂n, Φ̂m] = 0 (1.12)

[Q̂n, Q̂m] = 0 (1.13)

These relations lead to fluctuations of charge and flux in quantum circuits that depend
on the temperature of the system.
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1.2 Superconductivity, Josephson junctions and phase-
sensitive effects

In the context of quantum circuits, the superconductivity turns out to be a fundamen-
tal ingredient. This particular state, which occurs below a critical temperature Tc,
characteristic of each material [17], is the manifestation of quantum mechanics at a
macroscopic level. In the more standard case of low critical temperature supercon-
ductors, such as niobium employed in this work, a general theoretical description of
superconductivity is based on Bardeen-Cooper-Schrieffer (BCS) microscopic theory
[17]. In a few words, the superconducting phase can be described as a state where
the electrons in the system tend to couple in the form of spin-singlet pairs due to
the phonon interaction that prevails on the electron-electron interaction. This can
be phenomenologically understood by considering an electron moving in a lattice.
As it is negatively charged, its movement exerts a force on the positively charged
ions, which then slightly move towards the electron. The other electron follows the
movement of the ions towards the first electron. Thus, an effectively attractive in-
teraction is created which leads to the formation of electron pairs, called "Cooper
pairs" [18] . Cooper pairs form a condensate, that can be described by a macro-
scopic wavefunction ψ = |ψ|eiϕ , where |ψ|2 represents the density of Cooper pairs
and ϕ the phase of the condensate [9]. The two features of the superconducting state
are: zero resistance and perfect diamagnetism, also called Meissner effect. All other
properties derive from these two and are well explained by BCS theory. Among the
others, magnetic flux quantization [19] is a remarkable example of quantization of
macroscopic quantities. Consider a ring-shaped superconductor inside a magnetic
field that cross the loop. By cooling down the ring below the critical temperature
of the superconductor, a condensate of Cooper pairs travel without resistance along
the ring, developing a supercurrent that force the magnetic field out of the material,
due to the Meissner effect. The generated current will permanently trap some of the
magnetic field, even when the external field is removed. This trapped magnetic flux
is quantized, and in particular it will always be a multiple of Φ0 = h/2e, called the
magnetic flux quantum:

ΦB = n
h
2e

= nΦ0 n ∈N (1.14)

Other intriguing phenomena arise when two superconductors are weakly coupled
through a sufficiently thin non superconducting barrier, of the order of 1 or a few nm,
forming a junction. After the system has been cooled down to temperature below the
critical temperature of the superconductor that compose the junction, Cooper pairs
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can coherently tunnel through it, keeping memory of the phase difference of the two
condensates composing the junction. This phenomenon was discovered by Brian
Josephson in 1962 (Josephson effect) [20] [21] and, as we will see in the rest of my
work, is the core of modern superconducting and quantum technologies. This junc-
tion, that exhibits this peculiar phenomenon is called a Josephson junction, depicted
schematically in Fig. 1.1. The Josephson fundamental relations are [20]:

FIGURE 1.1: Typical sketch of a tunnel Josephson junction with an
insulating barrier. ψL = |ψL|eiϕL and ψR = |ψR|eiϕR are the left and

right macroscopic wave functions, respectively

IS(ϕ) = ICsin(ϕ) (1.15)

V =
h̄
2e

dϕ

dt
=

Φ0

2π

dϕ

dt
(1.16)

where ϕ = ϕL−ϕR is the phase difference between the phases of the two macro-
scopic wavefunctions and V is the voltage drop across the junction. In Eq. 1.15, 1.16
it is shown that below a threshold value known as critical current IC, the junction
manifest a current IS(ϕ), called "supercurrent", without any voltage drop across the
junction. The supercurrent is related to the phase difference ϕ between the phases
of the two macroscopic wave functions according to Eq. 1.15. This means that the
phase difference across the Josephson junction becomes a new observable quantity.
Josephson junctions thus represent unique devices to build phase-detection exper-
iments, which are of great impact and utility in superconducting quantum circuits
[22] [21]. Considering Eq. 1.16 and the Faraday’s law, in a branch that contains a
Josephson junction, the phase difference ϕ across the junction and the flux Φ across
the branch are linked through the following relation:

Φ =
Φ0

2π
ϕ (1.17)

Therefore, given the role of the flux in the mechanical analog introduced in the pre-
vious section, the Josephson junctions allow to use the phase difference as a new
positional degree of freedom, instead of the branches flux. Thus the dynamics of
superconducting quantum circuits containing Josephson junctions is defined by the
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evolution of the phase difference, which in turn is linked to the canonical electric
variable by the two Josephson equations 1.15 1.16.
An effective way to represent the evolution of the system in this context is to intro-
duce the concept of the "phase particle". According to the resistively and capaci-
tively shunted junction (RCSJ) model [20], a current biased Josephson junction can
de described by the analog circuit reported in Fig. 1.2(a) where the total current I

is given by the sum of: the tunneling supercurrent IS = ICsin(ϕ), the quasi-particle
current In =V /Rn that develops in the resistive regime and the displacement current
ID =CdV /dt due to the capacitance associated to the junction.

I = IS + IN + ID (1.18)

By applying Eq. 1.15 - 1.17, the Eq. 1.19 that describes the dynamic of the phase
difference ϕ across the junction is obtained [20]:

Φ0

2π
C

d2ϕ

dt2 +
Φ0

2π

1
R

dϕ

dt
+ ICsin(ϕ)− I = 0 (1.19)

The latter equation points out that the phase dynamics of a current biased Josephson
junction is analog to the dynamics of a dumped pendulum inside a potential defined
as follows:

U(ϕ , I) = −Φ0

2π
(ICcos(ϕ)+ Iϕ) = −EJ(cos(ϕ)+ Iϕ) (1.20)

where EJ is the Josephson energy [21]. The potential U(ϕ , I) in Eq. 1.20 is called
"wash-board potential" due to its peculiar form shown in Fig. 1.2. The phase dif-
ference across the Josephson junction can thus be represented by a virtual particle,
called phase particle, that slides along the wash-board potential. This concept can
be extended to any superconducting quantum circuit containing Josephson junctions,
where the phase difference across the branches of the system can be represented by
the position of the phase particle in the manifold that represents the potential energy
of the circuit [20]. In the context of superconducting quantum circuits, the poten-
tial energy is linked to their inductance framework, as previously mentioned. The
Josephson junction inside the quantum circuit adds a non linear contribute to the
equivalent inductance of the system. Josephson junctions, in fact, represent circuital
elements with a non linear inductance, due to the current-phase relation reported in
Eq. 1.15, which brings to the following expression of the Josephson inductance:

L(ϕ) =
Φ0

2πICcos(ϕ)
(1.21)
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FIGURE 1.2: (a) Equivalent circuit of a current biased Josephson
junction according to the RCSJ model. (b) Washboard potential for
different values of the bias current. (c) and (d) two dimensional pro-
jections for two different values of the bias current (0.6Ic and 1.1Ic).

[20]

Such a non linear behaviour of the Josephson junction introduces a non linear effec-
tive potential in superconducting circuits, as partly illustrated in Fig. 1.2. Through an
adequate architecture it is possible to fabricate circuits with very particular potentials
and thus capable of behaving in many different ways. In addition the Josephson in-
ductance can be also tuned by an external magnetic field. This peculiarity is a direct
consequence of the superconducting regime where the critical current is sensitive
to external magnetic fields [18]. A magnetic field parallel to the insulating barrier
surface causes a spatial modulation of the supercurrent density along the direction
perpendicular to the magnetic field and parallel to insulating barrier surface, which
ultimately leads to a modulation of the junction critical current IC with respect to the
applied magnetic field [20]. Thus the critical current can be tuned by means of an
external magnetic field, leading to a tunable junction inductance thanks to its depen-
dence from IC, as highlighted by Eq. 1.21. In conclusion the Josephson junctions
allow to design circuital systems with very peculiar and tunable dynamic, being the
fundamental cell of superconducting electronics and of superconducting quantum
circuits.
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1.3 Basic superconducting quantum circuits

In order to better understand the dynamics of superconducting quantum circuits, it is
useful to introduce some specific devices fundamental for this work, which are: LC
oscillator and DC Superconducting Quantum Interference Devices (SQUID).

1.3.1 LC oscillator

FIGURE 1.3: LC oscillator circuit

LC circuits are defined by the following Hamiltonian:

Ĥ =
Q̂2

2C
+

Φ̂2

2L
(1.22)

This Hamiltonian resembles the form of the quantum harmonic oscillator with the
differences that the canonical operators of position and momentum are replaced by
the flux Φ̂ and the charge Q̂, respectively, while the capacitance C and the inductance
L play the role of inertial mass and elastic constant, respectively. It is possible to
solve this system in the same way as for the canonic quantum harmonic oscillator by
introducing the ladder operators ĉ, ĉ† defined by the following relations [16]:

Φ̂ =

√
h̄Z0

2
(ĉ+ ĉ†) (1.23)

Q̂ =
1
i

√
h̄

2Z0
(ĉ− ĉ†) (1.24)
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where Z0 =
√

L
C is the impedence of the circuit. Moreover, it is possible to demon-

strate that the ladder operators satisfy the following commutation rule:

[ĉ, ĉ†] = 1 (1.25)

By using Eq 1.23, 1.24 the Hamiltonian in Eq. 1.22 can be rewritten in terms of the
ladder operators:

Ĥ =
h̄√
LC

(
ĉ†ĉ+

1
2

)
= h̄ω

(
ĉ†ĉ+

1
2

)
(1.26)

where ω =
√

1
LC is the resonant frequency of the circuit. The quantum behaviour of

this circuit shows up in the context of quantum fluctuations of charge and flux. For
T = 0 in fact the two degrees of freedom of the system will be characterised by the
following expressions:

〈Φ̂2〉0 = 〈0|h̄Z0(ĉĉ†)|0〉= h̄Z0 (1.27)

〈Q̂2〉0 = 〈0|
h̄
Z0

(ĉĉ†)|0〉= h̄
Z0

(1.28)

while in the case T 6= 0 the fluctuations will depend on the temperature of the system
according to the following relations:

〈Φ̂2〉0 =
h̄Z0

2
coth

(
h̄ω0

2kBT

)
(1.29)

〈Q̂2〉0 =
h̄

Z02
coth

(
h̄ω0

2kBT

)
(1.30)

In the context of superconducting circuits it is important to beware of spurious LC
oscillators that can arise from unexpected couplings between the inductances and
capacitances inside the circuit layout. These undesired LC oscillators add spurious
resonances to the reflectance/transmittivity trend of the superconducting circuit un-
der test at frequencies equal to the resonance frequency ω0 of the LC oscillators. The
latter feature can significantly perturb the spectroscopy of the superconducting cir-
cuit under test depending on the resonances width, that is directly linked to undesired
photons losses. These spurious LC oscillators are also potential noise sources in the
dynamics of the superconducting quantum circuit under test. The quantum fluctua-
tions reported in Eq. 1.29, 1.30 can in fact bring decoherence effects that inevitably
lead to a relaxation of the quantum behaviour of the whole circuit. At the same time,
in the context of superconducting circuit design the quantum fluctuations of the LC
oscillator are not just a negative effect but can be also employed in a controlled way
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to couple electronic devices, such as qubits and electromagnetic cavities [13].

1.3.2 DC SQUID

FIGURE 1.4: SQUID circuit. The crossed squares on the sides repre-
sent two Josephson junctions of Josephson energy EJ1 and EJ2. The
circuit can be probed by a current source that provides a bias current I
to the SQUID and also manipulated through an external magnetic flux

Φ across the central loop.

The DC SQUID consists of two Josephson tunnel junctions in parallel forming
a loop threaded by a flux Φext . In order to write the Hamiltonian of this circuit it
is first necessary to evaluate the energy of Josephson junctions. The junctions store
magnetic energy that can be evaluated on the basis of the characteristic relations in
Eq. 1.15, 1.16 as in the underlying expression:

EJ(ϕ) =
∫

IV dt = −Φ0IC
2π

cos(ϕ) = −EJcos(ϕ) (1.31)

Therefore the Hamiltonian of the DC SQUID in the approximation of negligible loop
inductance is given by:

HSQUID = −EJ1cos(ϕ1)−EJ2cos(ϕ2) (1.32)

EJ1 and EJ2 are the Josephson energies of the two junctions, respectively, and ϕ1 and
ϕ2 are the phases across them. The flux quantization brings the following relation
between the phases across the branches that made up the loop:

ϕ1 +ϕ2 =
Φext

Φ0
(1.33)
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The dynamics of the system can thus be described by a single variable ϕ1,2 and also
tuned by an external magnetic flux Φext . Moreover it is possible to demonstrate that
the Hamiltonian of the DC SQUID can be rewritten in the following form [16]:

HSQUID =−EJ+cos(
Φext

2Φ0
)

√
1+(

EJ−
EJ+

)2tan2(
Φext

2Φ0
)cos(ϕ) =−EJSQUID(Φext ,EJ+,EJ−)cos(ϕ)

(1.34)
where EJ± = EJ1±EJ2 are the sum and difference between the Josephson energies
of the junctions involved in the DC SQUID loop. The latter expression shows that a
DC SQUID can be seen as a Josephson junction with a Josephson energy that can be
tuned through an external magnetic flux inside its loop [16].

1.4 Superconducting qubits

Superconducting qubits are the basic elements of superconducting quantum proces-
sors [23]. A qubit is the quantum counterpart of the bits in classical computer and
constitutes the fundamental logic unit of the modern quantum computer architecture.
Qubits are quantum two level systems, like the two spin states of a spin 1/2 particle,
like the ground and the first excited state of an atom, or like the vertical and horizon-
tal polarization of a single photon. The generic notation for a qubit state denotes the
ground state as |g〉 and the excited state as |e〉. The essential feature that distinguishes
a qubit from a bit is that, according to the laws of quantum mechanics, the permitted
states of a single qubit fills up a two-dimensional complex vector space. The general
state is the superposition of the basis states and is written as a |g〉+ b |e〉, where a

and b are complex numbers, and a normalization convention |a|2 + |b|2 = 1 is nor-
mally adopted. In order to build a qubit system able to perform quantum computation
processes, the latter system has to satisfy the DiVincenzo’s criteria [24]:

1. A scalable physical system with well characterized qubits

2. The ability to initialize the state of the qubits to a simple fiducial state

3. Long relevant decoherence times, much longer than the gate operation time

4. A “universal” set of quantum gates

5. A qubit-specific measurement capability

The decoherence time, mentioned in point 3), is one of the indicator of a qubit qual-
ity and efficiency in a quantum computer architecture. In a qubit ensamble, in fact,
multiple sources of decoherence could be present, such as the environment noise
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FIGURE 1.5: Trend of superconducting qubit performance during
time in terms of qubit lifetime and number of computation operations
able to perform before incurring into an error. The different points on
the left trend indicate the characteristic time T1 (circle) and T2 (square)
for each kind of superconducting qubit [2]. The right figures show the
relaxation and dephasing phenomena linked to T1 and T2, respectively,

on the Bloch sphere used to represent the qubit state. [26]

coming from the spurious LC fluctuations mentioned in Sec. 1.3.1 or external elec-
tromagnetic fields. These decoherence sources lead to a loss of the qubit quantum
behaviour and thus to the impossibility of its use in computation processes after a
certain period of time. Two experimental quantities linked to the qubit decoherence
are: the relaxation time T1 and the dephasing time T2. The former is related to the
time that the qubit state takes to spontaneously decay from the excited state to the
ground state, while the latter, i.e. the dephasing time, depends on the time that passes
before the qubit looses coherence and thus its quantum behaviour due to phase ran-
domization, as shown in Fig. 1.5. Relaxation is caused by the unavoidable coupling
of qubits with the environment, with whom they can exchange energy, inducing the
collapse of the qubit in the ground state; dephasing is related to undesired coupling
of the qubit with other quantum systems, such as: spurious LC oscillators, nuclear
spins and photons due to quantum fluctuations [25]. In addition to the decoherence
time, there are also other features that make a qubit type more or less suitable for im-
plementation in quantum computer architecture, such as: capacity of coupling with
multiple qubits and external devices, structural properties and production costs. As
reported in Fig. 1.5, superconducting qubits constitute a promising platform, whose
efficiency constantly develops in time. The continuous enhancement of supercon-
ducting qubits properties allows to perform computation processes much faster than
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with other platforms [23]. Additionally, the fabrication technology behind super-
conducting qubits can take advantage of existing methods and processes (such as
printable circuits) that have already been used and improved over time. As a result it
is much easier to envisage a scalable superconducting quantum computer than with
other existing methods [27] [28].
To introduce the qubits it is useful to start from the simplest quantum system: the
quantum harmonic oscillator, defined by the LC oscillator introduced in Sec. 1.3.1.
Its energy spectrum, obtained by the correspondent eigenvalues equations, has an
harmonic trend where the different energy levels are characterized by the same en-
ergy separation of ∆E = h̄ω , as shown in Fig. 1.6(a) [20]. This property represents
a strong limitation for the realization of a qubit because it is impossible to separate a
two-level system from all the other excited states. Therefore, in order to realize a su-
perconducting qubit, a non linear component is necessary to provide anharmonicity
to the energy spectrum. A non dissipative component that matches this requirement
is the Josephson junction, which can be viewed as a non linear inductance, as shown
in Sec. 1.2. The replacement of a Josephson junction in place of the linear induc-
tance inside the superconducting LC circuit introduces anharmonicity between the
different energy levels of the system, as shown in Fig 1.6(b). The first realized su-

FIGURE 1.6: (a) Harmonic spectrum of the superconducting LC oscil-
lator. (b) Anharmonic spectrum of the superconducting LC oscillator

with a Josephson junction as a non linear inductance.

perconducting qubit was the charge qubit [2], also known as "Cooper pair box". The
charge qubit is composed by a Josephson junction connected to a voltage source Vg

through a capacitance Cg, as shown in Fig. 1.7(a). This last part of the circuit deter-
mines a background charge ng =CgVg/(2e) induced on the superconducting island.
The Hamiltonian of this circuit is [20]:

Ĥ = 4EC(n̂−ng)
2−EJcos(1− ϕ̂) (1.35)

where n̂ = Q̂/2e represents the number of Cooper pairs on the island, while ϕ̂ de-
scribes the phase difference seen by the Josephson junction. These two operators
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are the conjugate variables of the system and satisfy the following commutation re-
lations:

[ϕ̂ , n̂] = i (1.36)

Thus, it is possible to demonstrate that the Hamiltonian of the circuit can be rewritten
using the n̂ basis [20]:

Ĥ = ∑
n

4EC(n̂−ng)
2 |n〉〈n|− 1

2
EJ(|n〉〈n+ 1|+ |n+ 1〉〈n|) (1.37)

The dynamics of the charge qubit is described by a tight binding system where

FIGURE 1.7: (a) Circuital representation of a Cooper pair box. The
circuit is composed of a Josephson junction of Josephson energy EJ

and capacity CJ . A voltage generator is coupled to the Josephson junc-
tion through the capacitor Cg that defines the background charge ng

through the generator Vg. (b) Potential energy landscape related to the
charge qubit. The red dots indicate the two lowest energy levels of the

system [20].

the on site energy depends on EC and ng while the hopping term depends on EJ . The
tunability of ng through the potential source Vg allows to have a control on the system
energy. If the Josephson junction is replaced by a DC SQUID it is even possible to
tune the Josephson energy EJ and thus the hopping term. The energy levels of the
system can be calculated through the following differential equation obtained by the
application of the correspondence h̄

2eQ̂→−ih̄ δ

δϕ
into the eigenvalues equation of the

system with the Hamiltonian expressed by Eq. 1.35 [29]:

−4EC
δ 2ψn

δϕ2 +EJ(1− cos(ϕ))ψn = Enψn (1.38)

The values of En can be modified through a variation of the background charge
ng, as shown in Fig. 1.7(b). This property provides an easy way to change the
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energy of the system, but unavoidably introduces charge noise, since the energy
spectrum is very sensitive to ng. Although charge qubits have large anharmonic-
ity α = ω12/2π −ω01/2π > 10 GHz, relaxation and dephasing time are strongly
limited by the charge noise, due to the presence of free charges in the system that are
able to fill the unbonded orbitals of the atoms on the Josephson junction border sur-
face, inducing unpredictable fluctuations of ng [23]. The charge noise problem can
be partially solved by choosing adequate values of ng such that charge fluctuations
induce negligible effects. By solving the Eq. 1.38 for EJ/EC = 1 it is possible to
see from Fig. 1.8(a) that the values ng = m+ 1/2 with m ∈Z are the best choices,
because they correspond to the flat region of the energy bands.
To remove the effect of charge noise on the dynamics of the system it is possible to
act on the energy parameters EC and EJ of the system. As shown in Fig. 1.8(a-d), by
increasing the ratio of EJ/EC the energy bands become progressively flat, therefore
insensitive to the value of ng. The transmon qubit is based upon this principle [30].
From Fig. 1.8 it can be seen that the transmon qubit consists of a charge qubit shunted
by a strong capacitor CB, while the Josephson junction is replaced by a DC SQUID.
The shunt capacitor has the role of decreasing the charge energy EC = Q2/2C to
make the system operate in the charge noise insensitive regime (EJ/EC ' 50). The
mere addition of the additional capacitor CB leads to enhanced relaxation and de-
phasing times in the range of 50 µs to 100 µs, as shown in Fig. 1.5.
With the aim of preserving the quantum state of the qubit, it becomes essential to
have an efficient and a non destructive read out system for the qubits that allows to
measure the state of the qubit and to verify the related quantum computational oper-
ation. In this thesis work, an innovative device has been studied, designed and char-
acterized, in order to perform a quantum non destructive read-out by using the phase
detection of the qubit state which, in principle, can overcome some long standing
problems that characterize the modern read-out methods described in the following
chapter.



Chapter 1. Introduction to superconducting quantum circuits 19

FIGURE 1.8: (a-d) Bands related to the charge qubit energy spectrum
for different values of the ratio EJ/EC [31]. (e) Schematic represen-
tation of the Transmon qubit circuit. The transmon is made up of a
DC SQUID (dark blue) with two Josephson junction with Josephson
energy EJ , a capacitor CB (orange) that boosts the equivalent capacity
of the circuit, and a voltage source Vg capacitively coupled with a ca-
pacitor Cg to the rest of the circuit (green), that plays the same role of

the voltage source in the Cooper pair box.
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Chapter 2

Non destructive read-out of
superconducting qubit

In the previous chapter the fundamental properties of superconducting qubits have
been introduced.
This thesis work aims at the design and characterization of alternative devices in or-
der to perform Quantum Non Demolition (QND) read-out of superconducting qubits
through a protocol that may overcome some limitations offered by the main currently
employed QND read-out methods. A read-out method is said to be QND when the
measure of the qubit state does not lead to the collapse of its wave function.
The second Chapter is divided as follows. In the first paragraph I will describe how
QND read-out of superconducting qubit can be achieved through the principles of
Cavity Quantum ElectroDynamics (CavityQED). To further enhance the understand-
ing of this topic I will illustrate one of the main QND read-out protocol currently
employed in most laboratories and a second innovative technique which has been
recently validated [14]. In the second paragraph I will introduce the read-out cir-
cuit studied in this thesis work, the Josephson Digital Phase Detector, and the main
features which allow to perform QND read-out of superconducting qubits.
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2.1 Circuit quantum electrodynamics and quantum non
demolition read-out

The fragility of qubit quantum state and the recent developments of quantum error
correction protocol for fault-tolerant quantum computing [32] have made the qubit
read-out an essential process towards the design of the first functioning quantum
computer [2]. The measurement of quantum systems, such as qubits, can be a very
delicate process due to the qubit sensitivity to external actions, that can ultimately
lead to the collapse of the wave function that describes the sample under test. The
collapse leads to a loss of the quantum properties, which in a quantum computer
framework are needed to carry out the logical operations between qubits. Moreover,
the QND technique can be used only when the desired dynamical variable is related
to another physical feature with whom it does not hold an indetermination relation
[33].
On the basis of this general rule several ways to perform QND read-out of supercon-
ducting qubit have been validated [13]. Most of these techniques exploit the peculiar
functioning of each superconducting qubit and thus are specific of the particular kind
of superconducting qubit under test. In addition, there is a general way of perform-
ing QND read-out of any kind of superconducting qubit, which is based on Cavity
Quantum ElectroDynamics (CavityQED) [31]. CavityQED studies the interaction
between light confined in a reflective cavity and atoms in order to control the latters.
The capability of quantum circuits of recreating systems comparable with the ones
of CavityQED leads to the development of the field of Circuit Quantum ElectroDy-
namics (CQED), from which the following QND read-out technique is extracted.
The idea is to replace a typical CavityQED configuration with the superconducting
quantum circuit embedded in a cavity. Following the representation in Fig. 2.1, the
atoms can be replaced by superconducting qubits, such as the Cooper pair box and the
transmon, that can be seen as "artifical atoms" [13] given their dynamics described in
Chapter 1; the optical cavity can be replaced by resonators for microwave photons,
which operate in the same frequency range of actual modern superconducting qubits
[23]. These resonators can be represented by LC oscillators or microwave wave-
guides that respectively work as single mode and multiple mode resonators with
fixed adequate border conditions [34] [13]. By coupling a superconducting qubit to
a resonator, the whole system will be described by the following Hamiltonian:

Ĥ = Ĥresonator + Ĥqubit + Ĥinteraction (2.1)
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FIGURE 2.1: Analogy between cavity quantum electrodynamics and
circuit quantum electrodynamics. (a) Typical CavityQED system with
a quantum system, like an atom, inside an optical cavity of resonance
frequency ωr. The atomic levels separated by ωq couple with the
electromagnetic signals entering the resonator. The coupling inten-
sity is represented by the coefficient g and depending on the detuning
ωq−ωr the atom will interact with the electromagnetic radiations in
different ways through photons exchange. Photons of frequency ωq

and ωr arise in the cavity from the atom emissions and the external
radiations trapped in the cavity, respectively. (b) CQED analog of the
previous setup. The cavity is replaced by a waveguide that carries
microwave radiations. The atom is replaced by the superconducting
qubit capacitively coupled to the wave guide through a capacitor Cc.
The microwave photons and the qubit develop the same kinds of in-

teractions of the previous system.
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The third term shows that the overall system is different from the direct sum of the
two due to the interaction between the qubit and the resonator. Both systems will
interact through an exchange of photons in the microwave spectrum region (4−
20 GHz) [13]. This exchange develops thanks to the continuous excitations and
de-excitations of the two systems and also because of the quantum fluctuations of
the electromagnetic field in LC oscillators shown in Eq. 1.29, 1.30 that provide an
interaction even in the absence of real photons [13]. Under the following conditions:

• Qubit is a perfect two level system, namely, the probability of incurring in
transitions other than the one from the ground state to the excited state and
viceversa is negligible.

• Rotating Wave Approximation (RWA): The interactions that don’t preserve the
number of photons, and thus the energy of the system, are negligible.

• The resonator is a single mode resonator, which means that even if it allows
other modes, only the fundamental one is relevant in the system dynamics.

the Hamiltonian of the coupled system can be rewritten as the Jaynes-Cummings
Hamiltonian [12], which in CQED describes the dynamics of an oscillator linked to
a two level system:

Ĥ = h̄ωr

(
â†â+

1
2

)
+

h̄ωq

2
σ̂z + h̄g(σ̂+â+ σ̂−â†) (2.2)

g is the coupling coefficient between the qubit and the resonator, ωr and ωq are the
resonance frequency of the cavity and the qubit, respectively, â and â† are the annihi-
lation and creation operators that represent the excitations in the cavity, respectively,
while σ+ = |e〉〈g| and σ− = |g〉〈e| have the same role but for the qubit ground state
|g〉 and excited state |e〉. The representation of the cavity through ladder operators
is possible thanks to the analogy between an LC circuit and a quantum harmonic
oscillator, as described in Sec. 1.3.1. Creation and annihilation operators are defined
by the following expressions [35]:

â† =
(LrCr)1/4
√

2h̄

(
φ̂√
Lr

+ i
q̂√
Cr

)
(2.3)

â =
(LrCr)1/4
√

2h̄

(
φ̂√
Lr
− i

q̂√
Cr

)
(2.4)

The third term in the Jaynes-Cummings Hamiltonian describes the electrical-dipole
coupling between a qubit and a resonator field, where the qubit can be excited by
absorbing a photon, or return to the ground state by emitting a photon. Thus, the



Chapter 2. Non destructive read-out of superconducting qubit 24

coupling only connects the states |g〉 |n+ 1〉 and |e〉 |n〉, where |n〉 (n = 0,1, ...) are
the Fock states of the resonator field. The Hamiltonian in Eq. 2.2 can thus be diago-
nalized in the subspace {|0,n+ 1〉 , |1,n〉} with the eigenvalues [13]

E±n = ωr

(
n+

1
2

)
± 1

2

√
∆2 +Ω2

n (2.5)

and the corresponding eigenstates are:

|+,n〉= cos
(

θn

2

)
|e〉 |n〉+ sin

(
θn

2

)
|g〉 |n+ 1〉 (2.6)

|−,n〉= −sin
(

θn

2

)
|e〉 |n〉+ cos

(
θn

2

)
|g〉 |n+ 1〉

where Ωn = Ω0
√

n+ 1 is the n-photon Rabi frequency with Ω0 = 2g that corre-
sponds to the vacuum Rabi frequency and the angle θn is defined by tanθn = Ωn/∆
with ∆ = ωr−ωq that represents the detuning between the qubit and the resonator.
The eigenstates in Eq. 2.6 are called "dressed states" and are fundamental for the
explanation of many experimental results in CQED [36] [37]. Their importance is
mainly linked to their employment in quantum information processing in the domain
of superconducting quantum circuits [38]. In Fig. 2.2, detailed energy-level diagrams
for the bare and dressed states of the Jaynes-Cummings Hamiltonian are shown. The
Jaynes-Cummings model is based on the RWA approximation, that is valid when
(ωq +ωr) > {g, |ωq−ωr|}, namely when the qubit and the resonator are not too far
from resonance and the coupling is below the sum of the two characteristic frequen-
cies. Under this condition, there are different coupling regimes between the qubit
and the cavity, that lead to different interactions, as highlighted in Fig. 2.2(b).
The first regime is the resonant one (ωr = ωq), where a quantum of energy bounces
back and forth between the qubit and the resonator at a rate given by the Rabi fre-
quency Ωn. From the definition of the Rabi frequency it can be noted that the more
photons there are in the cavity, the faster is the single-photon exchange between the
qubit and the resonator. If the quantized resonator field is replaced by a classical
field, then Rabi oscillations can be observed. By adequately tuning the energy and
the time length of the classical field it is possible to exploit the Rabi oscillations to
manipulate the state of the qubit coupled to the resonator. This makes the resonant
regime essential for quantum information processing and quantum communication
in a quantum computer framework [36] [39].
When the ratio g/∆ << 1 the system enters in a second regime called "dispersive
regime" [13]. In this case, there is no resonant photon absorption or emission and
thus no direct communication between the qubit and the resonator, but there are other
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FIGURE 2.2: Energy-level diagrams for the bare and dressed states
in the Jaynes–Cummings model. (a) Bare and dressed states. To
the left, the bare states are represented in two ladders for |g〉 and
|e〉. The states |g〉 |n+ 1〉 and |e〉 |n〉 are close in energy, separated by
∆ = ωq−ωr, but without any coupling there are no possible transitions
between these states. To the right, the coupling g is switched on and
the nearby states hybridize, forming a new ladder with level spacings

Ωn =
√

∆2 +(n+ 1)Ω2
0. (b) Energy levels as a function of detuning.

The characteristic
√

n non linearity of the Jaynes–Cummings ladder
occurs at the resonance ∆ = 0 (orange). In the dispersive regime
|∆| >> 2g, the dressed states in the asymptotic limit correspond to
the unperturbed states with shifted energies (blue). The effective res-
onator frequency (green) is ωr± χ , where χ = g2/∆, depending on
the qubit state. The qubit (red) experiences a shift χs = 2nχ , called
"Stark shift", due to the photons in the resonator and another shift
χl = χ , called "Lamb shift", due to the vacuum fluctuations in the res-

onator [13].
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extremely intriguing useful phenomena. The read-out protocol studied in this thesis
work, in fact, takes advantage of the dispersive regime. For g/∆ small enough, the
Hamiltonian in Eq. 2.2 can be expanded to the 2nd order in g, obtaining the following
expressions [13]:

Ĥ ≈ h̄(ωr + χσz)(â†â+
1
2
)+

h̄ωq

2
σ̂z (2.7)

Ĥ ≈ h̄ωr(â†â+
1
2
)+

1
2
(ωq + χ + 2χ â†â)σz (2.8)

where χ depends on the coupling g, the detuning ∆ and also on the anharmonicity
α = ω12−ω10 of the qubit spectrum, where ω12 and ω10 are the frequencies related
to the transitions between the first and second excited state and between the first
excited state and the ground state of the qubit, respectively.

χ =
g2

∆
1

1−∆/α
(2.9)

The coupling term from Eq. 2.2 becomes a shift on the resonance frequency of the
resonator and the qubit, as shown in Eq. 2.7 and 2.8, respectively. Specifically,
the shift on the resonator χr = χσz, represented by the green arrow in Fig. 2.2,
depends on the state of the qubit, while the shift on the qubit is made up of two
terms: χs = 2χ â†â, called "Stark shift", represented by the blue arrow in Fig. 2.2, that
depends on the photons number in the cavity; χl = χ , called "Lamb shift", that takes
place even in the absence of cavity excitation. The fact that χr depends on the state
of the quibt opens to the possibility of performing QND read-out of the qubit state
by evaluating the resonance frequency of the cavity coupled to it, that will be ωr + χ

(ωr − χ) in the excited state (ground state) of the qubit, as shown in Fig. 2.3(a).
The conclusion is thus that to perform QND read-out of superconducting qubits it is
possible to engineer the coupling between the qubit under test and the resonator in
order to enter the dispersive regime, where the qubit state can be obtained through
spectroscopy measurements of the resonator. To better understand the functioning of
this technique, it is possible to make a further optical analogy with the measurement
of the refractive index through the Mach–Zehnder interferometer, where the states of
the qubit are refered to two different value of the refractive index, as shown in Fig.
2.3.
This technique is employed in the "Heterodyne detection", which is one of the main
method employed for QND read-out of superconducting qubits [13] [35]. Another
innovative and efficient method based on the dispersive regime, exploits a Josephson
Photomultiplier (JPM) [40] to obtain the qubit state in a QND way [14].
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FIGURE 2.3: (a-b) Variation caused by the dispersive coupling be-
tween the resonator and the qubit. (a) Change of the transmission
trend of the cavity depending on the state of the qubit. (b) Variation of
the phase of the signal depending on its frequency and the state of the
qubit. (c) Analogy between QND read-out of superconducting qubit
through dispersive coupling with a microwave cavity and refractive
index read-out of a sample through a Mach–Zehnder interferometer.
In this analogy the two qubit states correspond to two different refrac-

tive index.
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2.1.1 Heterodyne detection

Heterodyne detection is based on sending in input to the resonator coupled to the
qubit under test a signal sin(t) with a certain amplitude ain(t) and frequency ωs and
evaluating the change in amplitude and phase of the output signal sout(t) that depends
on the qubit state [13]. Neglecting the unavoidable attenuation, both signals can be
described by the following definitions [35]:

sin(t) = ain(t)cos(ωst) (2.10)

sout(t) = a′out(t)cos(ωst +θ
′) (2.11)

To illustrate how the read-out is performed, it is firstly important to analyse how
the input signal can be generated. The main issue in this step is that generally a
superconducting qubit is characterized by a resonance frequency of [4− 20] GHz,
which is a range of frequency hard to reach with standard modern signal generators.
To overcome this problem the "IQ mixing" is generally employed. As discussed in
the Appendix, the IQ mixing allows to accomplish the necessary up-conversion and
a down-conversion of an input signal in a much more affordable way rather than
using expensive and inefficient signal generators. Thanks to this tool it is possible to
perform the heterodyne detection with the experimental set-up depicted in Fig. 2.5 in
the following way [35]: an input signal of intermediate frequency ωIF and envelope
a(t) is produced through a high frequency digital to analog converter (DAC). This
signal is then fed to an IQ mixer that performs an up-modulation to the frequency
ωq, which corresponds to a frequency near the resonance frequency of the isolated
cavity, coupled in a dispersive regime to the qubit under test. The signal is then sent
to the cavity, whose phase and amplitude will be modified depending on the state of
the qubit according to the trends in Fig. 2.3(a,b). Therefore, from an input signal
defined by Eq. 2.10, an output signal defined by Eq. 2.11 is obtained. The output is
then down-converted, obtaining:

sout(t) =
a′(t)

2
cos(ωIFt +θ

′) (2.12)

The down-conversion is performed in order to bring the signal to a readable range
for the analog to digital converter (ADC). Before entering the ADC, the signal is
multiplied by a complex signal eiωIF t and rectified by a low frequency filter, thus
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obtaining to the following complex signal:

dout(t) =
a′(t)

2
cos(ωIFt+θ

′)eiωIF t =
a′(t)

4
[ei(2ωIF t+θ ′)+e−iθ ′ ]→ a′(t)

4
[cos(θ ′)−isin(θ ′)]

(2.13)
The output signal dout(t) is then averaged over a certain period of time [t0, t1] to
obtain a single shot measurement that neglects any possible transients. Finally, a
software extracts the real and imaginary part of the output signal defined by the
underlying expressions:

I =
∫ t1

t0
a′(t)cos(θ ′) (2.14)

Q =
∫ t1

t0
a′(t)sin(θ ′) (2.15)

These two components represent a point on the complex plane (I,Q) that depending
on the qubit state will go inside one of two coloured areas in Fig. 2.4 [35]. This
means that by the position of the point on the complex plane it is possible to extract
the state of the qubit. To decrease the electrical and thermal noise, other circuital
components are added between the latter link, as shown in Fig. 2.5. By repeating the
measurement described above a certain amount of times, it is possible to obtain the
quantum state of the qubit by the distribution of points on the complex plane.

FIGURE 2.4: Qubit state separation on the I-Q plane. A quantum
amplifier [15] is able to increase the separation between the two states

and thus increase the precision of the measurement [35]
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FIGURE 2.5: Example wiring diagram for heterodyne detection. A
readout pulse is generated in a DAC and mixed up to the readout
frequency. The heavily attenuated signal passes through a feedline
coupled to the readout resonator. The output signal passes through a
sequence of components, such as: circulators [13] and amplifier [41]
[42] that improve the measurement. At room temperature the signal
gets down-converted and an high-speed digitizer acquires the down-

converted signal and process its IQ data in software. [35]

2.1.2 Josephson Photomultiplier method

A recently validated [14] second method performs QND read-out of superconducting
qubits by exploiting a Josephson PhotoMultiplier (JPM). The set-up employed to
perform the read-out protocol is shown in Fig. 2.6 where a JPM is probed at the
output of a microwave resonator of frequency ωr, coupled in a dispersive way to
the qubit under test that brings a shift χ to the resonance frequency of the cavity.
The JPM [40] is made up of a phase qubit [10] with a current bias that allows to tilt
its potential energy trend. The photons generation is triggered in a narrow range of
energies around a certain value, that I will call "switching energy". The potential
energy of the JPM is described by the following expression [40]:

U(ϕ̂) = −Φ0IC
2π

cos(ϕ̂)− Φ0IB

2π
ϕ̂ (2.16)

where IC is the critical current of the junction with a current bias IB and ϕ is the super-
conducting phase difference across the junction, which is the variable that describes
the dynamics of the JPM in the phase particle virtual representation. The circuital
parameters of the JPM are dimensioned in order to manipulate the potential energy so
that its trend is similar to the one shown in Fig. 2.6, where the metastable minimum
is characterized by two levels separated by the switching energy h̄ωd = h̄ωr + χ and
the highest state has an escape probability near 100%. Before the read-out protocol is
initiated, the phase particle is positioned in the lowest energy state of the metastable
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minimum through an appropriate current bias, as shown in the panels of Fig. 2.7(a,b).
At this point a microwave signal of frequency equal to the switching frequency ωd

is sent into the read-out circuit. The circuit will behave in one of the two underlying
ways depending on the state of the qubit:

Excited state |e〉: The signal is in resonance with the cavity that transmits the signal to the JPM.
The signal has an energy equal to the switching energy and it is thus able to ex-
cite the JPM and leads to the escape of the phase particle from the metastable
state to the states in the adjacent minimum. After the tunneling event the phase
particle is going to fall to the state with the minimum energy through a se-
quence of spontaneous emissions. Because of this photons emission the state
of the cavity related to the excited state of the qubit is called the "Bright State"

Ground state |g〉: The signal is reflected by the cavity because the latter is characterized by a
frequency of ωr =ωq−χ 6=ωd . The phase particle of the JPM will thus remain
in the metastable minimum and no absorption or spontaneous emissions take
place. In contrast with the previous case, the state of the cavity correspondent
to the ground state of the qubit is called the "Dark State"

Thanks to the characteristic relation in Eq. 1.16, 1.17, the different values of the
phase difference ϕ between the bright and dark state leads to different magnetic flux
across the JPM loop containing the Josephson junction. By measuring the flux is
thus possible to read the state of the qubit under test. The just described method is a
working and tested read-out method [14] and it also offers a natural digitalization of
the measurement, as shown in Fig. 2.6, where depending on the qubit state the flux
across the JPM loop will have a different direction. The fidelity brought by this first
raw method, though, is just of 65% [35].
In the field of quantum metrology, the fidelity is a fundamental parameter used to
measure the distance between two quantum states belonging to the Hilbert space of
the quantum system under test. In particular, the fidelity measures how close one is to
achieving the required quantum states that are utilized at a given stage in a quantum
process [43], namely, the probability that one state will pass a test to identify as the
other. Considering two states ρ and σ , their fidelity is defined [26]:

F(ρ ,σ) = Tr
√

ρ1/2σρ1/2 (2.17)

Assuming that σ is a pure state σ = |ψ〉, like the ground state |g〉 and the excited
state |e〉 of a qubit, the fidelity can be rewritten through the following explicit formula
[26]:

F(ρ ,σ) =
√
〈ψ|ρ|ψ〉 (2.18)
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FIGURE 2.6: (A) Schematic representation of a JPM readout circuit
and the bright/dark state of the cavity. The JPM is schematically repre-
sented by the green circuit in (B) and (C). The capacity is the intrinsic
capacitance of the Josephson junction due to the oxide layer between
the two superconducting electrodes of the junction; the inductance
represents the inductive coupling with an external inductance that pro-
vides current bias to the circuit. (B) Schematic representation of what
happens in the case the qubit is in its excited state. (C) Schematic rep-
resentation of what happens in the case the qubit is in its ground state

[14].

Namely, the fidelity is equal to the square root of the overlap between |ψ〉 and ρ . In
the context of qubit read-out, the fidelity is linked to the probability that the obtained
result is correct and it can be evaluated by preparing a qubit in a well known state
and applying multiple times the read-out method in order to obtain a statistic which
corresponds to the fidelity of the read-out method [26]. The main cause of fidelity
loss is due to the photons reflecting off the JPM and consequently travelling back
to the qubit cavity causing back-action [35] [14]. To mitigate this phenomenon an
auxiliary resonator capacitively coupled to the JPM is added to the circuit. This
cavity, whose resonance frequency can be tuned through an external magnetic field
applied to the JPM, allows to connect and disconnect the JPM circuit from the qubit.
With this addition it is possible to perform the QND read-out by following the steps
shown in Fig. 2.7. Compared to the previous protocol, in this case rather than directly
detect photons in the qubit resonator, the JPM cavity is tuned on resonance with
the readout resonator in order to transfer some of the photons, as shown in Fig.
2.7(c). After some time, the JPM cavity is detuned from the qubit resonator. In
this way the photons are ’captured’, preventing possible back travelling towards the
qubit resonator. At this point, the JPM is tuned on resonance with the cavity and the
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detection is performed, as depicted in the panels (d-f) of Fig. 2.7. Because of its role,
the cavity coupled with the JPM is named "capture cavity". This improved protocol
allows to achieve a fidelity of 92% [14], where the little fidelity loss are due to the
qubit relaxation during the measurement followed by dark counts due to imperfect
pointer state preparation [14].

FIGURE 2.7: (a) JPM is reset into a single deep well, maximally de-
tuned from the rest of the system. (b) The JPM potential energy is
adequately tilted in order to trap the phase particle in the metastable
minima. Simultaneously the JPM is tuned on resonance with the cap-
ture cavity to deplete any photons left over from last detection. (c)
Capture cavity is tuned on resonance with the readout resonator, as
the pointer-states are prepared. (d) JPM is tuned on resonance with
the capture cavity and the readout resonator. If the qubit is in the ex-
cited state, the photons entering the cavity induce excitations to higher
states in the initial well. (e) JPM is then tuned to a shallow bias point,
so that higher energy states tunnel into the adjacent well. (f) Finally,
the JPM is brought to a point where the two wells are maximally sepa-
rated, allowing for microwave reflections to distinguish the two states

[14].
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2.2 Josephson Digital Phase Detector

In this section I will introduce an innovative method to perform QND read-out of
superconducting qubits that exploits the physics of the superconducting quantum
circuit shown in Fig. 2.8. The circuit has been called Josephson Digital Phase De-
tector (JDPD), and it is extremely similar to the Quantum flux parametron [44], a
superconducting circuit designed for potential implementation in ultra-fast classical
computing framework. The aim of this thesis work is to study the dynamics of the
JDPD with the specific goal of demonstrating that it is capable of performing the
protocol to carry out QND read-out of superconducting qubits.
The JDPD circuit shown in Fig. 2.8 is composed of two loops containing two Joseph-
son junctions linked through a central inductor. On the sides of the loops there are
two lines, called "DC line" that are inductively coupled to the circuit, as well as a
line below the loops, called "Fast flux line". By connecting these lines to a current
source, they can be exploited to provide the fluxes Φ1 and Φ2 across the loops, which
allow to tune the dynamics of the system. The protocol is based on two fundamen-

FIGURE 2.8: Circuit representation of the JDPD. The crosses repre-
sent the Josephson junctions with Josephson energy EJ1 and EJ2. The
critical currents are chosen such that J1 = J2. The inductors on the
sides correspond to the flux lines inductively coupled to the circuit,
which provide the fluxes Φ1 and Φ2 inside the loops. The fast flux
line that goes below the circuit is coupled equally to both loops and
thus provide the same amount of Φ1 and Φ2. Iin is the current of the
input signal while Iout is the output current that depends on the phase

ϕ across the linear inductor L.
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tal features of the superconducting quantum circuits: the phase detection allowed by
the Josephson junctions and the tunability of their inductance through an external
magnetic field. Given the fact that the potential energy of superconducting quantum
circuits is a function of the fluxes across its branches and depends parametrically on
the inductance of the system, the latter features allow to tune the potential energy
of superconducting quantum circuits containing Josephson junctions, and thus their
dynamic, through an external magnetic flux. This specific tunability is exploited in
the read-out protocol, where the potential energy trend of the circuit is adequately
changed through the fluxes Φ1 and Φ2 across the two loops provided by the flux
lines on the sides. To understand how the manipulation of the JDPD potential energy
trend can lead to the QND read-out of superconducting qubits, it is first necessary to
obtain the analytical expression of the JDPD potential energy. Neglecting the kinetic
inductance of the connection between the different circuital components, the JDPD
potential energy is defined by the underlying expression:

U(ϕ) =
ELϕ2

2
−EJ+cos (Φ+)cos (ϕ−Φ−)−EJ−sin (Φ+) sin (ϕ−Φ−) (2.19)

where EL is the energy of the central linear inductor, EJ±= (EJ1±EJ2)/2 and Φ±=
π (Φ1±Φ2)/Φ0 represent the sum and difference between the Josephson energies
of the two Josephson junctions and the fluxes across the two loops, respectively, and
ϕ is the phase difference across the central linear inductor as well as the chosen
dynamical variable of the JDPD. More details on the derivation of Eq. 2.19 can be
found in the Appendix. In the case where there are no differences in the critical
currents (J− = 0), the JDPD potential energy is represented by the underlying more
compact expression:

U(ϕ) =
ELϕ2

2
−EJcos(Φ+)cos(ϕ−Φ−) =

EL

2
[ϕ2−βcos(Φ+)cos(ϕ−Φ−)]

(2.20)
where β = 2EJ/EL is a characteristic parameter of a symmetric JDPD related to the
circuital components that compose it. Both Eq. 2.19, 2.20 show that in general the
potential energy of the circuit in Fig. 2.8 depends on the sum and difference between
the critical currents of the Josephson junctions, J+ J−, and between the fluxes across
the two loops, Φ+ Φ−.
Assuming that the circuit is symmetric (J− = 0) and that the ratio β = 2EJ

EL
> 1,

the potential energy of the JDPD will show the behaviours depicted in Fig. 2.9 for
different values of the flux Φ+. These different trends can be exploited to perform
QND read-out of superconducting qubit with the set up shown in Fig. 2.10 in the
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FIGURE 2.9: JDPD potential energy trends for different values of Φ+

in the case there are no asymmetries (J− = 0,Φ− = 0) and β > 1. (a)
JDPD potential energy in its unperturbed state with the phase particle
that oscillates at the plasma frequency of the circuit. (b) To initiate
the readout protocol the flux lines bring the potential energy in the
harmonic state. (c) The readout signal enters the circuit and depending
on the qubit state the phase particle will have a different phase offset.
(d) In order to read the state of the qubit the potential energy is forced
in its bistable state where the phase particle will fall in one of the two

minima depending on the offset given by the readout signal.

following way: the read-out circuit is linked to the qubit coupled to a resonator; the
coupling between the qubit and the resonator is engineered in order to enter the dis-
persive regime introduced in the previous section. To prepare the system to perform
the read-out protocol, a flux of Φ = π/4 will be applied in both loops of the circuit,
bringing its potential energy in the harmonic state, as shown in Fig. 2.9(b). In this
condition the phase particle that represents the phase state across the linear induc-
tance will just oscillate with a frequency equal to the plasma frequency of the system.
The read-out is then initialized by sending a microwave signal to the resonator dis-
persively coupled to the qubit. The frequency of the microwave signal is chosen to
be as near as possible to the resonance frequency of the isolated cavity. This choice
maximizes the difference in the dephasing acquired by the output microwave signal
depending on the state of the qubit, as shown in Fig. 2.3(b). The output signal will
then enter the JDPD and force its phase particle to oscillate with a phase offset that
depends on the qubit state due to the acquired dephasing, as shown in Fig. 2.9(c). To
read the qubit state encoded in the oscillation another flux of Φ = π/4 is applied in
both loops of the circuit to drive its potential energy in the bistable state. The phase
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particle will fall in one of the two wells depending on the acquired phase offset and
thus on the state of the qubit, see Fig. 2.9(d). The central inductance will show a
different current direction output depending on the well in which the phase particle
fall, allowing the read-out through a simple current measurement. The method just

FIGURE 2.10: Schematic representation of the read-out experimental
set up with the JDPD. The readout pulse generator generates the mi-
crowave signal of frequency ω and sends it to the cavity represented
by the cylindrical form in the schematic. Due to the coupling with the
qubit, the resonator will add a different dephasing to the output mi-
crowave signal, that is thus characterized by two possible states, rep-
resented by the blue and orange signals in the resonator. The output
signal will then enter the JDPD that gives in output a different current
direction across the central inductance, depending on the qubit state.
The signal can then be digitalized in the form of flux quanta through
a SQUID inductively coupled to the linear inductance of the JDPD.

presented shows that the JDPD is in principle able to digitalize the qubit state and
also to perform the measurement in the same cryogenic environment that contains the
qubit. Additionally, the JDPD read-out protocol can be performed in a really simple
way just through a sequence of quarter of flux quanta across the loops of the circuit,
under the condition that the backaction is negligible. The read-out protocol that can
be performed through the latter circuit allows to remove two crucial obstacles relative
to the Heterodyne detection and the JPM method previously described:

• The connections to room temperature setup needed in the Heterodyne detec-
tion, that strongly decrease the scalability and are also potential noise sources.

• The complex timing of the JPM protocol needed to have the control on the
read-out, as well as the complex resetting that requires the phase particle to be
in the metastable minima.
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The advantage of the JDPD read-out protocol made this circuit of great interest for
application in the context of quantum computer, such as quantum buses [45] [46].
Quantum buses are circuital cavities which can be used to store or transfer infor-
mation between independent qubits in a quantum computer. Through these devices
it is possible to create a parallel configuration with different qubits inserted in the
circuit Fig. 2.10 and attached to a common feed-line through cavities with different
resonance frequencies. In this way the cavities act as quantum buses that allow to
detach each qubit from others and to communicate with a specific circuit by sending
an electromagnetic signals in the feed-line in resonance with the corresponding cav-
ity. It is thus possible to measure the state of each qubit attached to the feed-line just
by sending signals of adequate frequencies that initiate the read-out protocol allowed
by the circuit in Fig. 2.10, as shown in Fig. 2.11. The ultimate scope of this thesis
work is to validate experimentally the dynamics of the JDPD in order to assure that
it is able to reproduce the read-out protocol.

FIGURE 2.11: Schematic representation of the read-out circuit in Fig.
2.10 employed in a parallel configurations inside a quantum computer.
The cavity coupled to the JDPD in each read-out circuit must be reso-
nant to the relative quantum bus in order to initiate the QND read-out

of the qubit as shown in Fig. 2.10.
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Chapter 3

Experimental protocol and setup

In this chapter I will illustrate the experimental methods and the instrumentation.
The first section gives a description of the measurement technique to validate the
Josephson Digital Phase Detector (JDPD) feasibility for a QND read-out protocol.
The second section gives a brief description of the architecture and the functioning
of the cryostat used to cool down the system to the range of temperatures required for
quantum measurements with superconducting devices. The third part focuses more
on the electronic set-up employed to perform the measurements. The final section
describes how the experimental set-up can be used to supply Φ+ and Φ− to the JDPD
in different configurations.

3.1 Experimental planning

The experimental validation of the JDPD capability of performing QND read-out
requires a precise measurement plan. The need to bring the circuit into its super-
conducting state down to sufficiently low temperatures of the order of 10− 20 mK,
the quantum behaviour of the circuit and the consequent sensitivity to external noise
are all features that must be accounted in the planning of the various experimental
steps. Given the mentioned experimental hurdles, the chosen way to analyse the
JDPD dynamics is based on the study of the transmittivity and the reflectivity of
electromagnetic signals sent in input to a circuit that contains the JDPD.
To understand how these spectroscopy measurements are linked to the JDPD dynam-
ics, the first feature to notice is that, in a good approximation, the JDPD is made up
of only inductive components. Neglecting the capacitance of the Josephson junc-
tions, the JDPD can be represented as a single inductor of inductance LJDPD equal
to the equivalent inductance of the whole device. Following this approximation, let’s
consider the circuit portrayed in Fig. 3.1, where the JDPD is connected to an elec-
tromagnetic signal generator through a transmission line capacitively coupled to the
latter. In this configuration the transmission line acts as a λ /4 resonator thanks to
the chosen border conditions. The coupling capacity Cc leads to a maximum of the
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electric field (node of the current), while the JDPD brings a node for the electric field
(maximum of the current) due to its inductor-like behaviour [34]. Assuming that the

FIGURE 3.1: Schematic representation of the spectroscopy circuit
used to simulate the dynamic of the JDPD during the read-out pro-
tocol. The capacity Cc couples the electromagnetic signal generator
with the resonator of resonance frequency ω0. The JDPD together
with the capacity set specific border condition at the ends of the trans-

mission line, that leads the latter to be a λ /4 resonator.

transmission line is made of superconducting material, the whole system acts as an
LC oscillator for temperature near the critical current of the employed superconduc-
tors. The system is thus characterised by a resonance, whose spread and position
depend on its capacitance and inductance according to the following definition:

ωres =
1√

(Cc +Cr)(Lr +LJDPD)
=

1√
LC

(3.1)

The capacitance C depends on the coupling capacity Cc and on the transmission line
capacitance Cr, while the inductance L depends on the JDPD equivalent inductance
LJDPD and on the transmission line inductance Lr. The connection between the reso-
nance frequency ωres and the JDPD inductance LJDPD, highlighted in Eq. 3.1, can be
exploited to experimentally analyse the dynamics of the JDPD for different applied
fluxes Φ+, Φ−. To see how, let’s consider first a generic superconducting LC os-
cillator. Following the mechanical treatment of electromagnetic circuits in Sec. 1.1,
it is possible to associate to the LC oscillator a potential energy that depends on its
inductance framework. By applying the phase-flux relation of Eq. 1.17 to the LC
oscillator Hamiltonian, defined in Eq. 1.22, the following potential energy can be
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extracted:

U(ϕ) =

(
Φ0

2π

)2
ϕ2

2L
(3.2)

where ϕ represents the phase difference between the ends of the linear inductor in
the LC oscillator. Let’s assume that the phase ϕ plays the role of the dynamical vari-
able of the quantum circuit, whose dynamic can be represented through the virtual
representation of the phase particle. In this hypothesis, Eq. 3.2 allows to obtain the
inverse relation that links the inductance to the position of the phase particle along
the potential energy trend:

1
L
=

(
2π

Φ0

)2
[

d2U
dϕ2

]
ϕ=ϕPhase particle

(3.3)

The latter relation states that the equivalent inductance of a quantum circuit can be
obtained from the potential energy of its mechanical analog. Applying this notion to
the circuit in Fig. 3.1, its equivalent inductance L can be extracted from its poten-
tial energy. The potential energy of the circuit depends on its inductive components,
namely the JDPD and the passive inductance of the resonator. Assuming that the lat-
ter acts as a linear inductor, the potential energy of the circuit is defined by the JDPD
potential energy in Eq. 2.19 plus the energy of a linear inductor. The equivalent
inductance of the circuit, according to Eq. 3.3, is thus defined by the concavity of the
JDPD potential energy trend in correspondence of the phase particle plus a constant
related to the transmission line inductance. Given Eq. 3.1 that defines the relation
between the equivalent inductance L of the circuit and its resonance frequency ωres,
this latter result creates a bridge between the ωres and the JDPD dynamics. In con-
clusion, the JDPD phase particle position can be traced on the potential energy curve
by studying the spectroscopy of the circuit in Fig. 3.1. Consequently, from the latter
measurements it is possible to evaluate the effects of external fluxes Φ1, Φ2 on the
JDPD potential energy trend and validate the QND read-out protocol in Sec. 2.2. To
ease the illustration of my thesis work I will call the circuit in Fig. 3.1 "spectroscopy
circuit" from now on.
In the following sections I will introduce and describe the main instrumentation em-
ployed to perform the proposed experimental plan.
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3.2 Cryogenic system

An essential step in the analysis of superconducting quantum circuits, such as the
JDPD, is the thermalization of the system to values well below its critical tempera-
ture, that for standard superconductors is of the order of a few Kelvins or 10 K [17].
The reaching of temperatures as low as 10 mK is a fundamental requirement, not only
to enter the superconducting regime, but also to minimise the effects of thermal noise
during the measurements. For high enough temperature, in fact, thermal energy can
lead to undesired transitions between energy levels separated by an energy below
kBT , where kB is the Boltzmann constant and T is the circuit temperature. At the
working temperature of 10 mK the thermal energy in terms of frequency is equal to
νT = kBT = 0.208 GHz that prevents most of the transitions in the superconducting
devices. The creation of an environment with ultra-low temperatures that overcome
the mentioned obstacles is allowed by designated devices called dilution cryostats.
The dilution fridge is a device capable of reaching temperature near the absolute
zero through cold temperature technology based on the thermodynamic properties of
a mixture of 3He-4He that keeps that keeps a sufficiently high vapor pressure also in
this low range of temperatures. The feature that differentiate cryostats from one to
another is the way they reach their minimum temperature. From this point of view the
cryostats can be divided into two main categories: wet cryostats and dry cryostats.
These two types differ from each other for the pre-cooling part, namely the way they
get to an intermediate temperature before reaching the lowest temperature allowed
by the instruments. The wet type exploits an 4He bath to reach pre-cool tempertures
of the order of 4.2 K. The dry cryostats, instead, make use of a compressor, called
"pulse tube refrigerator", which cools down the mixture through a sequence of com-
pressions that brings the system to a temperature of 10 K. Later on the mixture is
passed through a sequence of pressure impedance that exploits the Joule-Thompson
effect to lower the temperature of the mixture to values of the order of 1 K. The
cryostat employed in this thesis work is the Triton XL of the Oxford Instruments,
which belongs to the latter type of cryostat, ideal to perform the long measurements
required to study the dynamics of the JDPD. The Triton has a cylindrical form where
on the head there are several connectors that allow to link the instrumentation at
room temperature to the devices inside the Triton at cryogenic temperature. Below
the cryostat head there are a sequence of gold-plated copper plates that present dif-
ferent holes which can be exploited to mount several components depending on the
particular measurement that needs to be performed. As indicated in Fig. 3.2, each
plate has a different temperature, that is constantly monitored through semiconduct-
ing resistors thermometers positioned on each plate. Between the first two plates
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FIGURE 3.2: The core of the Triton dry dilution refrigerator. The
labels indicate the different plates with the minimum temperature that
they can reach, the orange and red rectangles indicate the pre-cool unit
and the diluition unit, respectively, which are the fundamental units of
the Triton cooling procedure. At the bottom, anchored to the mixing
chamber there is a copper extension and the tin plated copper shield

containing the device under test.
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FIGURE 3.3: Phase diagram of 3He/4He in terms of temperature and
3He concentration of the mixture. The region exploited by dry cryostat
is the forbidden region where a phase separation occurs between the

diluted and concentrated phases of 3He.

called PT1 and PT2 there is the pre-cool unit which works as previously explained.
PT1 is at 60 K while PT2 works at 4 K. After that the system temperature is further
lowered to the temperature of 0.7 K on the Still plate by exploiting the series of pres-
sure impedance previously mentioned. From there the system is able to reach the
temperature of 10 mK on the last plate, called mixing chamber. The mixture thanks
to a pumping system can reach the mixing chamber by passing through a sequence
of heat exchangers that decrease the temperature of the mixture below 0.7 K. The
mixture is characterised by the phase diagram in Fig. 3.3 that highlights the ten-
dency of the mixture to separate in a concentrated phase of 3He and a diluted phase
of 3He for temperature below 1 K . The diluted phase, heavier than the concentrated
phase, remains at the bottom of the mixing chamber while the remaining gas of 3He
is pumped to the still plate where the procedure is repeated. The continuous reduction
of 3He gas in the mixing chamber, lowers the temperature of the mixture according
to the diagram in Fig. 3.3, which allows to reach the temperature of 10 mK. At the
same time, the cyclic path that the 3He traverse, allows to never heat up the mixing
chamber plate thanks to the work of the heat exchangers along the path, and also to
avoid losses of the 3He gas, which is an extremely rare isotope. The stage containing
the sample is thermally anchored to the mixing chamber through a copper extension,
as shown in Fig. 3.4. The whole stage is then enclosed in a copper-coated box which
screens from the environmental magnetic fields and is thermally anchored to the mix-
ing chamber. Inside this box, the chip is placed on the chip-holder shown in Fig. 3.4,
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FIGURE 3.4: (Left) Copper extension anchored to the Triton mixing
chamber containing the chip and the connections to the head of the
cryostat. (Right) Chip holder provided by SeeQC. The orange area in
the figure indicate the chip-slot where the chip under test is positioned;
the pads on the sides allow to create connections between the chip and

the room temperature set-up.

where the border pads allow to connect the pads on the chip to the room tempera-
ture set-up attached to the head of the cryostat. The upper plates are also screened
from the environment through copper-coated cryoperm shields and a second metallic
cover, both mounted before initiating the cool down procedure.

3.3 Electronic set-up

The electronic set-up employed to measure and analyse the dynamics of the JDPD
is made up of a large variety of instruments at room temperature that play different
roles.
The Vector Network Analyzer (VNA), which has been employed to perform spec-
troscopy measurements. The VNA is a multi-port instrument able to measure the
amplitude and phase of an electromagnetic signal sent and received through any of
its ports thanks to the inherent signal generators and receivers. This makes the VNA
capable of measuring the network parameters of the electronic system under test over
the range of frequencies allowed by its generators and receivers. The network param-
eters, also called S-parameters, are the elements of the scattering matrix, which is a
square matrix of dimension equal to the VNA number of ports, that defines the rela-
tion between the voltage amplitude V−i and V+

j of the reflected and incident waves



Chapter 3. Experimental protocol and setup 46

on the different ports respectively:

V−1
V−2
V−3

...
V−n


=
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n


(3.4)

The elements of the scattering matrix are the S parameters, which are defined by the
following expression:

Si j =

[
V−i
V+

j

]
V+

k =0 f or k 6= j

(3.5)

In words, Eq. 3.5 says that Si j is found by driving port j with an incident wave
of voltage V+

j and measuring the reflected wave amplitude V−i coming from port
i. The incident waves on all ports except the jth port are set to zero, which means
that all ports should be terminated in matched loads to avoid reflections. Thus, Sii is
the reflection coefficient seen looking into port i when all other ports are terminated
in matched loads, and Si j is the transmission coefficient from port j to port i when
all other ports are terminated in matched loads [34]. Through the acquisition of the
reflection and transmission trends for signal of different frequencies, it is possible
to look for the system resonance and thus obtaining the spectroscopy of the circuit
under test. Two different VNA have been employed in this thesis work. The first
one correspond to a slot of the PXI chassis shown in Fig. 3.5 which is a multi-slot
system produced by Keysight Technologies, where each slot plays a different role.
The first slot is occupied by an embedded controller which allows to manage the
different modules through a direct communication with computer programs. One of
the slots works as a two port VNA, which is the one exploited to perform the spec-
troscopy measurements. Additionally, there are other modules that carry out different
operations, such as: the arbitrary waveform generators, signal generator, IQ mixers
and attenuators that allow to perform the heterodyne detection of qubit described in
Chapter 2. A second type of VNA that has been employed is the Rohde&Schwarz
Vector Network Analyzer ZVL6 (R&S ZVL) [47], which is a two port VNA. As
shown in Fig. 3.6, differently from the previous one, this VNA presents a physical
interface that allows to set different features related to the measurements and a dis-
play that shows the acquired data. Just as the previous one, it is possible to remotely
control the VNA through an external computer linked to it.
Another important task in the experimental validation is to provide the fluxes Φ1
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FIGURE 3.5: PXI chassis with 18 slots plus one dedicated to the con-
trol unit. Each slot plays a different role: 2,3,5,6,12,13 (IQ Mixer),
4,8,11 (AWG), 15 (Digitizer), 18 (2 ports VNA). In this thesis work

only the VNA has been used.

and Φ2 to the JDPD. The instrument that played this role is the Keithley SourceMe-
ter. The SourceMeters are electronic device capable of supplying and measuring
the voltage or the current through their input/output lines. These devices have been
connected to the input on the Triton head to the flux lines of the JDPD in order to
generate a current across them. The DC currents ultimately develop a magnetic field
proportional to the current traversing the lines that couples with the loops of the
JDPD, providing the required fluxes Φ1, Φ2. By adequately tuning the current sent
through the SourceMeter, multiple sweeps of the fluxes Φ1, Φ2 can be performed
with a good resolution allowing to study the JDPD behaviour for different applied
fluxes. Both the VNA and the SourceMeters can be remotely controlled through an
external computer linked to them. All the measurements performed and described
in Chapter 5 have been done by executing Python scripts on a computer linked to
the electronic set-up. The Python scripts contain various strings of code that are sent
to the electronic device with the aim of setting and querying different commands to
dynamically set different features required by the experimental protocols.

3.4 Connections to the device under test

In Sec. 3.2 and 3.3 I have described the role and the functioning of the main instru-
ments employed in this thesis work. Another fundamental part in the experimental
setup are the connections between the mentioned devices, which are essential for the
readability and the accuracy of the output results.
The Triton provides two sets of lines with specific filtering components dedicated
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FIGURE 3.6: Front view of the Rohde&Schwarz Vector Network An-
alyzer ZVL6, which is a two ports VNA. The electronic connection
with the device under test can be created through the ports at the bot-
tom. The various buttons allows to set different features of the VNA,
as well as changing its functioning modality. The results of the mea-

surements are shown on the display.

to DC measurements and spectroscopy measurements of the device under test, re-
spectively. The DC set involve current lines and voltage lines that allow a 4-point
probe configuration of the device under test at the bottom of the cryostat. The lines
are made of different materials along the different temperature stage of the cryostat.
Each component is chosen with the aim of minimizing the thermal dissipation, which
could disturb the measurement as well as the cryostat functioning. The current lines
are made of copper between the room temperature stage and the 4 K stage due to
the small resistivity of copper, and superconducting Nb-Ti alloy at temperatures be-
low 4 K to exploit the zero resistance of superconductors at such temperatures. The
voltage lines are made of manganin (Cu-Mn-Ni alloy) that has a low thermal con-
ductivity. These lines pass through several filtering stages, located on some of the
cryostat plates, before reaching the device under test, in order to filter the external
electromagnetic noise. An initial filtering stage positioned on the head of the cryo-
stat is defined by a pair of EMI filters that suppress electromagnetic high frequency
peaks coming from the external environment. Inside the cryostat, the first filtering
stage that the DC lines find is composed by a pair of low-pass RC filter with a cut-
off frequency of fc = 100 kHz. After this preliminary filtering, the DC lines pass
through a second filter component called "Cu Powder Filter" anchored to the cold-
plate at 100 mK. The latter component, shown in Fig. 3.7 further blocks the passage
of high frequency components in the signal by exploiting the skin effect.
For spectroscopy measurements, instead, the lines set is made up of coaxial cables,

called RF lines, that carry the microwave signals produced by an external microwave
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FIGURE 3.7: Photos of the Cu Powder Filter (Left) and the low pass
RC filter (Right) used for the DC lines in the Triton cryostat.

signal generator inside the VNA. There are twelve input lines, made of stainless steel,
split on two different paths, and two output lines made of Cu-Ni, from room tem-
perature to 4 K, and superconducting Nb-Ti, from 4 K to the mixing chamber. Like
the DC lines, the coaxial cables are thermally anchored to the different plates of the
cryostat in order to favor a progressive thermalization of the lines. Along the cryo-
stat, the microwave signals go through various components, as shown in the scheme
of Fig. 3.8. The input lines pass through a series of attenuators that limits the signal
power, allowing to get near the single photon limit to reduce dissipations effect [36].
In particular, the input cables pass through a total attenuation of −50 dBm, that can
be further increased by adding other attenuators at room temperature. The output
readout signal passes through a cryogenic high electron mobility transistor (HEMT)
amplifier produced by Low Noise Factory and biased using DC lines, consisting
of a home-made copper loom. The amplifier is an active element and therefore it
generates thermal noise, which becomes significant at the characteristic temperature
Tn = 1.5 K. For this reason, the device is placed at the 4 K stage in order to re-
duce the heat load. This device amplifies the previously attenuated signal in order to
make it more readable for the VNA. Both input and output lines are connected to the
I/O ports on the chip-holder shown in Fig. 3.4 through secondary connections that
ultimately link the device under test to the electronic set-up at room temperature. Be-
fore entering the latter connections, the read-out signal generated by the VNA passes
through a pair of circulators. A circulator is a three ports device where the input on
one port is routed to become output from the next port in the sequence. Two circu-
lators have been mounted on a copper extension anchored to the mixing chamber in
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FIGURE 3.8: Schematic of the experimental setup. The different com-
ponents are labelled.

order to prevent backaction from the attenuators and amplifiers along the system.
Both VNA have been employed for the characterization of the various connections
in order to detect possible source of losses or mismatch in the system. SourceMeters,
instead, have been used to evaluate the impedance of the various lines. This latter
analysis is essential in the calibration of the currents produced by the SourceMeter
in order to generate the flux Φ1 and Φ2.

3.5 Flux supply

To explore the dynamic of the JDPD, it is necessary to have control on the magnetic
fluxes Φ1,2. In particular, by controlling Φ+ = Φ1 +Φ2 and Φ− = Φ1−Φ2 it is
possible to manipulate the JDPD potential energy and thus its dynamics, as shown in
Eq. 2.19, 2.20 . A significant part of the JDPD experimental validation has thus been
dedicated to the calibration part in order to find the best way to provide Φ+ and Φ−
through the SourceMeters. To provide the magnetic fluxes inside the JDPD loops,
the DC lines and the fast flux line have been probed to Keithley SourceMeters.
The calibration consists in defining the relation between the current or the voltage
provided by the SourceMeter and the magnetic fluxes Φ+ and Φ− induced into the
JDPD. Due to some connection problems, the spectroscopy circuit tested and mea-
sured during my thesis work presented different working components. The first de-
vice presented a faulty DC line, while in the second one every component worked
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fine. Each case thus required different ways to provide the fluxes Φ+ and Φ−. Both
employed methods are illustrated hereafter.

3.5.1 1st device calibration

FIGURE 3.9: Schematic representation of the JDPD in the first mea-
surement run.

To understand how the flux can be provided in the situation depicted in Fig. 3.9,
let’s consider the relation that defines the coupling between the fluxes Φ1 and Φ2

across the loops of the JDPD, and the current I1 and I f provided by the DC lines, as
labelled in Fig. 3.9. Assuming as convention that the positive direction of the flux is
the one getting out of the loop, the coupling relations are defined as below:

Φ1 =−MdI1 +M f 1I f

Φ2 =−McI1 +M f 2I f
(3.6)

where Md and Mc are the direct coupling and the cross coupling coefficient of the DC
line, respectively, while M f 1 and M f 2 are the coupling coefficients of the fast flux line
with the two loops, respectively. Given the geometry of the system shown in Fig. 3.9,
it is possible to assume in a good approximation that M f 1 = M f 2 = M f . To obtain a
definition of Φ+ = Φ1 +Φ2 and Φ− = Φ1−Φ2, the two previous equations can be
summed and subtracted, obtaining:

Φ+ = −(Md +Mc)I1 + 2M f i f = −M+I1 + 2M f I f

Φ− = −(Md−Md)I1 = −M−I1
(3.7)
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where for simplicity the following coefficients have been introduced: M+ = Md +

Mc, M− = Md−Mc. By measuring the resistance of the lines through the SourceMe-
ter it is possible to define a similar relation also between the fluxes Φ± and the
voltages V1, Vf across the DC line and the Fast DC line, respectively:

Φ+ = −M+

R1
V1 +

2M f

R f
Vf = −a+V1 + a fVf

Φ− = −M−
R1

V1 = −a−V1

(3.8)

where a± = M±/R1 and a f = 2M f /R f are the new coupling coefficients that take
the place of M± and M f . An inverse relation that links the fluxes Φ± to the voltages
can be extracted from Eq. 3.8. To do so the inverse of the matrix that links the
voltages to the fluxes must be calculated:Φ+

Φ−

=

−a+ a f

−a− 0

V1

Vf

 →

V1

Vf

=

 0 −1/a−
1/a f −a+/a f a−

Φ+

Φ−

 (3.9)

From the latter matrix expression it is possible to provide separately the fluxes Φ+

and Φ−. Assuming that Φ− = 0 or Φ+ = 0 the previous expressions provide respec-
tively the following relations:

Φ+ 6= 0 ; Φ− = 0 → V1 = 0 ; Φ+ = a fVf = a+V+

Φ+ = 0 ; Φ− 6= 0 → V1 =
a f

a+
Vf ; Φ− = −a−V1 = −

a−a f

a+
Vf = ma−V−

(3.10)

Through these relations it is possible to supply the desired fluxes Φ± to the JDPD
and thus drive the spectroscopy circuit as requested by the experimental protocols.
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3.5.2 2nd device calibration

In this situation there are more degrees of freedom that can be used to drive the
JDPD, as shown in Fig. 3.10, allowing to exploit the full circuit. Assuming as before

FIGURE 3.10: Schematic representation of the JDPD in the second
measurement run.

that the positive direction of the fluxes is the one getting out of the loop, the coupling
relations are defined as below:

Φ1 =−MdI1 +McI2 +M f I f

Φ2 =−McI1 +MdI2 +M f I f
(3.11)

Through summing and subtracting each member of the expression, the following
definition of Φ+ and Φ− are obtained:

Φ+ = −(Md +Mc)I1 +(Md +Mc)I2 + 2M f I f = M+I++ 2M f I f

Φ− = −(Md−Mc)I1− (Md−Mc)I2 = −M−I−
(3.12)

where the new coefficients are defined: M± = Md ±Mc, I± = I2∓ I1. As done in
previous case, it is convenient to consider also the link to the voltages. Assuming
that the resistance across the DC lines and the fast flux line is R and R f respectively,
the relation is defined as follows:

Φ+ = M+I++ 2M f I f =
M+

R
V++ 2

M f

R f
Vf = a+V++ a fVf

Φ− = −M−I− = −M−
R

V− = −a−V−

(3.13)
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with V± = V2∓V1 and the new coefficients a± = M±/R and a f = 2M f /R f defined
as before. The presence of a second DC line in this case allows to drive the flux
Φ± in an easier way. It is in fact possible to use separately the fast flux line and
the DC lines to respectively provide Φ+ and Φ− to the JDPD, as highlighted by the
underlying conditions:

Φ+ 6= 0 ; Φ− = 0 → V1 = V2 = 0;Φ+ = a fVf or V− = Vf = 0;Φ+ = a+V+

Φ+ = 0 ; Φ− 6= 0 → V+ = Vf = 0;Φ− = −a−V−
(3.14)

The latter expressions highlight the ease with whom the JDPD can be driven and
thus execute the read-out protocol proposed in Sec. 2.2. In principle, Φ− can be
permanently set to a certain value by linking the DC lines to a pair of DC generators
that provide an adequate pair of fixed voltages in order to eliminate the effect of
potential geometric asymmetries in the circuit. After taking care of the asymmetries,
Φ+ can be individually controlled through a separate voltage generator that provides
the voltage pulses needed to perform the read-out protocol, that relies exclusively on
the action of Φ+ in the absence of asymmetries.
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Chapter 4

Preliminary simulation and
experimental preparation

In order to design each component of the whole readout circuit and to realize optimal
devices, a fundamental step has been the study of the electrodynamics of the Joseph-
son Digital Phase Detector (JDPD) through different types of simulations. The aim
of these simulations was not only to check the capability of the JDPD to perform the
mentioned QND read-out protocol, but also to create some reference points and pre-
dictions regarding the spectroscopy behaviour of the circuit to optimize the design
of the circuit in terms of readability. In this chapter I will briefly discuss the models
used to perform the simulations and their main outcomes. In the first section I will
describe the simulation of the read-out protocol through the PSCAN2 simulator. The
second section will be dedicated to the characterization of the components of the cir-
cuit of Fig. 3.1 and to the description of the chip fabrication. The last part will cover
all the simulations regarding the spectroscopy behaviour of the circuits in the chips,
thus providing a set of predictions, to be compared with experimental outcomes.
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4.1 Protocol simulation

To test the correctness of the read-out protocol in Sec. 2.2, I have collaborated to sim-
ulate the response of the JDPD to the flux sequence planned in the read-out protocol
by using the simulator PSCAN2 1 (Portable Superconductor Circuit ANalyzer) [49]
[50]. The dynamics of the Josephson junctions in the simulated circuits is described
by the Tunnel Junction Microscopic (TJM) model . TJM is the most appropriate
model to describe the behavior of a Josephson junction in a circuit and it is based on
Werthamer model [51], thus employing Dirichlet series approximation of its integral
kernels [52].
To initiate the mentioned simulation, I have written a .cir file and a .hdi file that de-
fine the components connections and the components properties, respectively. The
simulated circuit consists of a JDPD connected to a current source, as shown in the
schematic of Fig. 4.1. The current source allows to reproduce the two phase-shifted
signals that come out from the transmission of an electromagnetic signal through the
cavity coupled to the qubit, according to Fig. 2.3(b). In this way it is possible to test
the JDPD actually provide two different and distinguishable outcomes depending on
the phase of the input signal and thus on the state of the qubit. The simulated JDPD
compared to the circuit in Fig. 2.8 presents two additional inductors L1 and L2. These
inductors, neglected in the analytical description of the JDPD, represent the kinetic
inductance of the superconducting branches linking the components of the JDPD.
The simulation thus plays a double role: it allows also to prove the JDPD capability
of performing the read-out protocol and if the kinetic inductance of the branches can
significantly affect the process.
The results of the simulations are depicted in Fig. 4.2. The profile of the input elec-
tromagnetic signal and the evolution of the provided flux Φ+ have been defined in
the .hdi file. The chosen signals produced by the current source are sinusoidal wave
packets of fixed amplitude and duration but with different phase offset. The Φ+ se-
quence emulates the sequence of the protocol in Fig. 2.9 with the switching time and
rise time indicated in Fig. 4.2.
As shown in the IL and ϕ plots of Fig. 4.2, depending on the phase offset of the input
signal, the superconducting phase across the central inductor, as well as the current
along it, acquires two equal and opposite values that allow to distinguish between
the two cases. This means that by sending a sinusoidal envelope signal to the cav-
ity, the JDPD is able to distinguish between the two states of the qubit, dispersively
coupled to the cavity, by providing two current outputs with different direction. This

1PSCAN2 is a superconductor circuit simulator that comprises a Python module and a KLU-
library-based linear equation system solver [48]. The Python part of the program performs netlist,
parameters and prepares the sparse matrix for the solver.
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FIGURE 4.1: Schematic of the circuit simulated with PSCAN2. All
the various component and their links have been declared in the .cir
file related to the simulation. Id is the driving current source that pro-
duces the input signals and Rd is the related resistance with a value
set to Rd = 30 Ω. The crossed squares on the sides of the JDPD
are TJM Josephson junctions Jc described by the following set of
properties: critical current JC = 10 µA; Stewart-McCumber param-
eter βc = 60; gap voltage ∆Vg = 2.64 mV ; Ambegaokar-Baratoff ra-
tio JCRn/Vg = 0.8; normal-to-subgap resistance ratio Rn/Rsg = 0.01.
The central linear inductor L and the passive kinetic inductance on the
sides L1, L2 are set to L = 65.8pH and L1,2 = 32.9pH. This leads
to a ratio between the central inductance and the passive inductance
of L/L1,2 = 2, which represents a large underestimate of the ratio
expected in the real JDPD. This choice was made to check that the
passive inductance would not perturb significantly the read-out proto-
col, even in such cases. All these properties have been set in the .hdi

file related to PSCAN2 simulation.
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confirms that the JDPD is able in principle to perform QND read-out of supercon-
ducting qubits and also that the kinetic inductance of the branches does not affect the
mentioned process.

FIGURE 4.2: PSCAN2 read-out protocol simulation. The upper plot
shows the shape of the input signals sent to the JDPD. The middle plot
portrays the evolution of the current that develops across the central
inductor depending on the input signal. The bottom plot depicts the
evolution of the superconducting phase between the ends of the central
inductor depending on the input signal. The dashed lines in the upper
plot indicate when Φ+ is being set to Φ+ = π (green) and to Φ+ = 2π

(purple). The rising time of both pulses is of 50 a.u..
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4.2 Circuit characterization

After testing the correctness of the read-out protocol, I have characterized the com-
ponents in the circuit reported in Fig. 3.1. This step is essential for the optimization
of the spectroscopy circuit towards a better readability of the experimental data ac-
quired by using the cryogenic and electronic setup described in Chapter 3.
I have performed some simulations where, by tuning the circuital parameters, I have
searched for the spectroscopy circuit layout that better satisfy the above mentioned
goal. The conditions to be satisfied are summarized in the following points:

a. Circuit resonance frequency in the range of [4− 8] GHz, which is the frequency
range of the HEMT amplifier.

b. Maximise the resonance frequency shift between the different JDPD states in or-
der to distinguish them.

c. Making the circuit capable of sustaining relatively high powers in the whole
frequency range, without an excessive use of attenuators, in order to avoid the
switching of the Josephson junctions to the resistive state.

d. Maximise the quality factor of the circuit in order to have a narrow resonance that
does not cause significant losses.

The simulations are performed both numerical, through Python scripts, and by em-
ploying the circuit simulator QUCS 2 (Quite Universal Circuital Simulator) [53] [54].
It offers the ability to set up a circuit with a graphical user interface and simulate its
dynamics from different points of view, such as the S parameters, which are the fea-
tures mainly exploited in this thesis work.
Currently QUCS library does not allow the simulation of superconducting circuit and
consequently does not contain the typical elements of a superconducting circuit, such
as the Josephson junctions. To overcome this issue, I have emulated the spectroscopy
circuit in the QUCS environment by replacing the JDPD with a tunable linear induc-
tor, as shown in Fig. 4.3. In this approximation the different JDPD states are linked
to different values of the inductance, following the arguments of Sec. 3.1. To sim-
plify the simulations, I have focused on the two most important JDPD states for the
read-out protocol: the zero state (Φ+ = 0) in Fig. 2.9(a), characterised by a single

2QUCS is a free-software electronics circuit simulator software released under the General Public
License (GPL). QUCS supports a growing list of analog and digital components as well as SPICE
sub-circuits, that can be inserted in the simulation netlist. The simulation and the data processing are
both performed through OCTAVE with the numerical analysis packages based on classical numerical
mathematics routines for the solution of linear and non-linear, real and complex, algebraic equations
and time domain algebraic and differential equations.
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absolute minimum, and the bistable state (Φ+ = π) in Fig. 2.9(d), characterised by
two absolute minima symmetrical with respect to the origin.

4.2.1 Transmission line length and JDPD β

The first circuital component that I have characterised is the transmission line that
links the JDPD to the VNA through a capacitive coupling. The schematic of the
simulated circuit is portrayed in Fig. 4.3, which is similar to the spectroscopy circuit
in Fig. 3.1 with the JDPD replaced by a linear inductor. As mentioned in Sec. 3.1, the
transmission line acts as a λ /4 resonator, which allows to achieve a maximum of the
current in correspondence of the JDPD, in order to maximize the signal transfer and
decrease the potential losses. Assuming that the JDPD is perfectly symmetric (EJ−=

FIGURE 4.3: Spectroscopy circuit schematic in QUCS environment.
The various components that make up the circuit are labelled in the

figure.

0), the first numerical simulation that I have performed aims at the understanding of
how the resonance frequency of the circuit, and the spectroscopic difference between
the zero state and the bistable state of the JDPD is influenced by the length of the
transmission line and the ratio β = 2EJ/EL of the JDPD. The ratio β is a parameter
used to differentiate the JDPD from each other, and it is linked to the influence of the
sinusoidal term in the potential energy formula in Eq. 2.20 and thus on the effect of
the Josephson junctions on the JDPD dynamics. To ease the analytical treatment, the
transmission line is approximated to be a single mode λ /4 resonator where the only
mode f0 corresponds to the fundamental one, defined [34]:

f0 =
cl

4l
(4.1)
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where cl is the speed of light along the transmission line and l is the length of the
latter. Assuming that cl = c and fixing the characteristic impedance to Z0 = 50 Ω,
which is the required value to have an impedance match with the VNA, the capacity
and inductance of the resonator are defined by the following relations [34]:

Cr =
1

2πZ0 f0
(4.2)

Lr =
Z0

2π f0
(4.3)

Neglecting for now the influence of the coupling capacitor, the similarities of the
circuit with an LC oscillator allows to define its resonance frequency through the
following expression

ω =
1√

Cr(Lr +LJDPD)
(4.4)

As mentioned in Sec. 3.1, the inductance LJDPD will depend on the fluxes Φ+ and
Φ−. Through the JDPD potential energy defined in Eq. 2.20 and Eq. 3.3, I have
extracted the following expressions of LJDPD in the zero state (Φ+ = 0) and in the
bistable regime (Φ+ = π), respectively:

L0 = Llin =
Φ0β

4πIC
(4.5)

1
Lbist

=

(
2π

Φ0

)2 d2U
dϕ2 =

1
Llin
−
(

2π

Φ0

)2

βcos(ϕ) =
1

Llin
− 1

LJJ
(4.6)

By employing all the previous expressions, the numerical simulations can be summa-
rized in the plots in Fig. 4.4, that show the average resonance frequency (a) and the
frequency shift (b) between the zero and bistable regime in terms of the transmission
line length and the JDPD β ratio.
These outcomes point out that a decrease of the transmission line length leads an
increase of the system resonance frequency and of the spectroscopic shift, while an
increase of the β ratio leads to an increase of the spectroscopic shift but does not
affect the resonance frequency. Inside the borders set by conditions (a.) and (b.) it
is thus possible to design JDPD with different β ratios while keeping the circuit in
the desired frequency range with a high and constant frequency shift between the
zero and bistable state by following the arrow in Fig. 4.4(b). Further simulations
that confirm this behaviour are portrayed in Fig. 4.5, where the profile of the reso-
nance frequency is reported as a function of the transmission line length is shown,
for different values of the β ratio in different JDPD states.
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FIGURE 4.4: Spectroscopy simulation of the circuit in Fig. 4.3. (a)
Average resonance frequency of the system for different combination
of the length l and β . Average resonance frequency is defined by the
average between the resonance frequency showed in the harmonic and
the bistable state of the JDPD. (b) Resonance frequency shift when the
JDPD is in the harmonic or bistable state. The orange arrow represents

the direction to tread in order to keep the difference constant.
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FIGURE 4.5: Plots of the system resonance frequency as a function
of the transmission line length for different β and JDPD states. Each
colour is related to a different condition or state of the JDPD: bare
circuit without the JDPD (green), circuit with JDPD not perturbed by
external fluxes (blue), circuit with JDPD in the bistable regime (or-
ange). The plots show that an increase of β leads the harmonic curve
to be more and more distant from the other two. This happens be-
cause in these simulations a β variation is achieved by modifying the
JDPD linear inductance energy EL while keeping the critical currents
and thus the Josephson energy EJ fixed. Consequently, a variation of
β leads to a change of the concavity in the harmonic state, leaving the

bistable state unperturbed.
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Keeping these results in mind, I have made a step towards a more efficient and
realistic circuital model by replacing the simple transmission line with a CoPlanar
Waveguide (CPW) [55]. Coplanar waveguides are a type of electrical planar trans-
mission line which can be fabricated using the well known printed circuit board tech-
nology, and are used to convey microwave-frequency signals. Conventional coplanar
waveguides consist of a single conducting electrode deposited above a dielectric sub-
strate, together with a pair of return electrodes, one to either side of the central elec-
trode, as shown in Fig. 4.6. All three conductors are on the same side of the substrate,
and hence are coplanar. The return conductors are separated from the central elec-
trode by a small gap, which has a fixed width along the length of the line. CPWs play
an important role in the field of CQED, where they allow for high field strength and
thus strong coupling to superconducting qubits by confining a microwave photon to a
volume that is much smaller than the cube of the wavelength [56]. In addition to that,
they can also be employed as quantum buses to couple multiple qubits to each other
thanks to their high quality factors [57] that allow to reduce possible interferences
effects [13].

FIGURE 4.6: QUCS circuit schematic with a CPW. The chosen
CPW geometric parameters for the simulations are the following:
width of the central conductor (W = 11 µm); dielectric gap (G =
7 µm); conductor thickness (T = 0.135 µm); substrate height (H =
200 µm); electric permittivity (εr = 11.9); conductors resistivity
(ρ = 1.72 10−8 Ω m); losses tangent (tanδ = 10−7); roughness
(Θ = 0.1 µm). These choices allow to have an impedance match
with the signal generator fixed at Z0 = 50 Ω. The length l of the CPW

electrode depends on the desired resonance frequency.
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I have started looking for different spectroscopy circuits that can be connected to
the same feed-line in the final chip in order to test the JDPD feasibility in a parallel
configuration, like the one depicted in Fig. 2.11, where different JDPD through dif-
ferent quantum buses are linked to the same feed-line. These various circuits have
to satisfy the mentioned criteria (a.), (b.) and simultaneously posses resonances that
do not overlap with each other in any of the JDPD state. An overlap, in fact, not
only makes two ports resonant to the same signal, but can also lead to interference
between the two circuits.
To achieve the mentioned goals I have conducted S parameters simulations of the
circuit in Fig. 4.6 both numerically and through the QUCS simulator. Differently
from the previous circuit in Fig. 4.3, the transmission line is replaced by a CPW with
the properties indicated in Fig. 4.6.
The numerical simulations are aimed to evaluate the effects of replacing the trans-
mission line with a CPW. The results are shown in Fig. 4.7 where the resonance
frequency and of the spectroscopic shift are reported as a function of the CPW track
length. Comparing the plots in Fig. 4.7 with those reported in Fig. 4.4, 4.5 an overall
consistency between the various numerical approaches can be noticed. Nonethe-
less there are some slight variation due to the particular geometrical structure of the
CPW. The CPW replacement, in fact, lowers the length l needed to reach a certain
frequency range, due to the dielectric gap between the conductive walls that leads to
a cl = c/εr 6= c. Additionally, the spectroscopic shift curve is shifted to lower values
of the CPW length l in different ways depending on the β ratio.
Further simulations have been executed through the QUCS simulator in order to ex-
tract some possible configurations that better satisfy the above mentioned conditions.
After checking that the numerical results reproduce with a good approximation the
spectroscopy behaviour of the circuit, three different circuit configurations have been
extracted. In Fig. 4.8 the estimated resonances for the two different JDPD states
under study are reported for fixed values of β and l. All the three layouts satisfy
conditions (a.), (b.) and are also characterised by different β ratio. This means that it
is possible to fabricate and analyse various JDPDs characterised by various β ratio,
in order to evaluate the significance of this parameter on the circuit performance.
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FIGURE 4.7: Numerical simulation of the circuit with CPW charac-
terised by the parameters listed in Fig. 4.6. The upper plot shows the
circuit resonance frequencies for different values of the CPW length,
that is independent from the ratio β ; the lower plots represent the
spectroscopic shift between the harmonic and bistable regimes of the
JDPD for different values of the CPW length and of the β ratio. The
latter plots highlight that in order to design circuits with various β

ratios, while keeping similar spectroscopic shift, it is necessary to ad-
equately decrease the CPW length if the β ratio increases.
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FIGURE 4.8: QUCS simulation of the circuit in Fig. 4.6. The plots
show the resonances in the harmonic and bistable state for fixed values
of CPW length and beta ratio of the JDPD chosen to be realized in the
final chip. The shift in the frequency domain between the dips related
to each pair (lCPW ,β ) is always near 150MHz, which is a shift that
in principle allows to experimental distinguish the two states with the
available measurement set-up. The resonance frequencies as well as
the spectroscopic differences that result from the QUCS simulations
are slightly lower than the values obtained in the numerical simula-
tions. This discrepancy is caused by approximating the CPW as an
LC oscillator in the numerical simulations, which gives an underesti-

mate of its effective capacity and inductance.
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4.2.2 Interdigited capacitor

Another component that I have estimated is the coupling capacitor that links the sig-
nal generator to the rest of the circuit. Given the dimensions and the geometry of
the circuit, the ideal kind of capacitor is the interdigitated capacitor [58]. The inter-
digitated capacitor is an element made up of microstrip lines arranged as depicted
in Fig. 4.9 in order to produce a capacitor-like behaviour between the fingers that
compose the system. The coupling capacitor is linked to the the current that gets to

FIGURE 4.9: Schematic representation of an interdigitated capacitor.
The long conductors or “fingers” provide coupling between the input
and output ports across the gaps. Typically, the gaps G between fingers
and at the end of the fingers GE are the same. The length L and width
W of the fingers are also specified. Since the conductors are deposited

on a substrate, its characteristics will also affect the performances.

the JDPD and to the external quality factor of the system. The external quality factor
is a fundamental parameter of the cavity resonator; it represent the coupling strength
between the cavity resonator and waveguide carrying the input signal. In particular, it
determines the electromagnetic power radiated from the cavity to the waveguide. In
the case of superconducting cavities, the external Q is especially important because
the internal loss of signal power is negligible in comparison to the radiated power,
and the bandwidth of the system is determined by the external quality factor [59].
The best capacity value is thus the one that maximizes the quality factor while main-
taining the current across the JDPD below the critical current of the Josephson junc-
tions, considering the attenuation across the Triton lines in Fig. 3.8. By using QUCS,
I have simulated the current passing across the JDPD and the quality factor of the
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system for different values of the coupling capacity. The results of the QUCS sim-
ulations for a fixed attenuation of −90 dBm are shown in Fig. 4.10, which reports
the plots of the current (a) as a function of the frequency for different values of the
coupling capacity, of the maximum current (b) across the JDPD and of the external
quality factor (c) as a function of the coupling capacity. In particular, the plot in
Fig. 4.10(b) shows that with an attenuation of −90 dBm, no value of the coupling
capacity leads to the passage of a current higher than 2.2 µA. An attenuation of
−90 dBm can be easily reached through the VNA considering also the attenuators
along the input lines. Additionally, given the JDPD form, the input current splits
along the two independent branches of the circuit leading to a further reduction of
the risk of incurring in a Josephson junction switch. This means that according to the
plot of the external quality factor in Fig. 4.10(c), it is convenient to choose the low-
est possible value of capacity in order to have the highest quality factor. By taking
into account the dimensions of the chip allowed by the fabrication process and the
typical values of interdigitated capacitors [60] the minimum feasible capacity is of
10 f F . Before starting with the conclusive design of the chip, the circuit parametriza-
tion has been tested through additional simulations performed by using Ansys HFSS.
Ansys HFSS is a 3D electromagnetic simulation software for designing and simulat-
ing high-frequency electronic products such as microwave components, high-speed
interconnects, filters, connectors and printed circuit boards. The program has been
employed to simulate the electric field inside the CPW with the border conditions
given in the previous simulations (Fig. 4.11(Top)) and its resonance frequency as a
function of the JDPD inductance (Fig. 4.11(Down)). The results further prove that
the border condition set on the CPW leads the latter to act as a λ /4 resonator and
that the resonances are consistent with the results in Fig. 4.8(Down) for a difference
in the order of hundreds of MHz, which still keep the resonance in the desired range
of [4−8] GHz.
All the simulations performed in this section do not take into account the supercon-
ductivity behaviour of the circuit components. Both QUCS and HFSS, in fact, do
not allow to simulate superconducting quantum circuits and thus some slight differ-
ence are expected between the simulations and the circuit at temperature below the
the critical temperature of its superconducting components. Nonetheless, the room
temperature behaviour predicted by the simulations guarantee that the conditions
initially mentioned should be respected even with the variation occurring when the
circuit enters its superconducting state, allowing the start of the chip fabrication.



Chapter 4. Preliminary simulation and experimental preparation 70

FIGURE 4.10: QUCS simulations of the circuit in Fig. 4.6 for an at-
tenuation of the signal source of −90 dbM, which is a typical value
that can be used in the experiments. (a) Plots in the frequency range
of the current IL entering the JDPD for different values of the cou-
pling capacitance. (b) Trend of the IL maxima for different values of
the coupling capacitance. This simulation proves that given the initial
attenuation, for no values of the coupling capacitance the current ex-
ceeds the threshold of 5µA. (c) Curve of the external quality factor
[34] related to the CPW for different values of the coupling capaci-

tance.
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FIGURE 4.11: HFSS simulations of the CPW in the spectroscopy
circuit with l = 4.245 mm. (Up) Simulation of the electric field dis-
tribution along the CPW. A maximum of the electric field is expected
at the capacitive pole and a node at the inductive pole. (Down) Simu-
lation of the spectroscopy circuit resonance for different values of the
JDPD inductance. The resonance values are coherent with the values

obtained from QUCS simulations.
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4.3 Layout and fabrication

Taking into account the previous simulations it was possible to produce four chips
layout through Klayout, an open source editor specific for circuit design. The general
architecture of these chips is shown and described in Fig. 4.12 where it is possible to
distinguish the fundamental units that made up the chips. The chosen value of CPW
length and JDPD β ratio are the one depicted in Fig. 4.8, taken in various combi-
nation, as shown in Fig. 4.12. Differently from the simulations reported in Section
4.2, in this case the β ratio is changed by adequately tuning the Josephson junctions
critical current while keeping the equivalent inductances fixed for every JDPD in the
chip. The linear inductance has been fixed at 200 pH, while the critical currents for
the various JDPDs are IC = 2.4 µA for β = 3, IC = 4 µA for β = 5 and IC = 5.5 µA

ifor β = 7, which are the values indicated in the plots of Fig. 4.8. Different combi-
nations of the pair (l,β ) are arranged into the chip, where it is possible to note that
there are circuits isolated from the others and multiple circuits linked to each other
through a unique feed-line. This architecture allows to analyse the functioning of the
JDPD both as a stand-alone circuit and in a parallel arrangement. The design of the
circuit can vary also for the DC line configuration employed to drive the JDPD from
one state to the other. There are two types of DC line configurations: the first type is
the "U configuration" where the two ends of the line are linked to two different pads,
and the second type is the "L configuration" where one end of the line is linked to a
pad and the other to the ground plane of the chip through an hole inside the metallic
layers. Different DC line configurations have been inserted in order to test which
layout offer the better maneuverability of the fluxes provided to the JDPD. Each of
the four chips differs from the other in terms of circuit parameters, DC line types
and arrangement of the latter. In addition to those, some chips present the so called
"Mots", which are holes inside the superconducting layer that protect the chip from
potential flux noise by exploiting the flux quantization of superconductors. Other
elements inserted to improve the chip efficiency are the "Bridges", which are metal-
lic layers that go above the feed-lines which connect the circuits to the pads. These
components guarantee that the ground plane is nominally a zero for the voltage.

The fabrication of the various chips had been performed by SeeQC in the United
States through photolithography process. Photolithography is a process used in mi-
crofabrication to pattern specified design on a thin film or the bulk of a substrate.
It uses light to transfer a geometric pattern from a photomask to a photosensitive
chemical photoresist on the substrate. Multiple copies of the different chips were
later delivered to our lab in Naples, where it have been measured and analysed as
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FIGURE 4.12: Layout of the chip #2 in Klayout environment. Each
color represents a different layer that can belong to one of the follow-
ing polarity: positive (red-purple), negative (green). Positive layers
indicate area where the material is present; negative layers indicate
areas where there is absence of the background material. Every cir-
cuit is composed of a CPW and a JDPD in series, which are coupled
through an interdigitated capacitor to one of the pads on the border
of the chip. The pads are consequently bonded to the electronic set-
up of the cryostat that allows to create a connection with the VNA
at room temperature. The pink lines on the sides of the JDPD repre-
sent the "DC lines" that drive the magnetic fluxes across the respective
loop of the JDPD. The white lines inside the green layer represent the
"fast flux lines", which go below the corresponding JDPD and couple
with both its loops. Each circuit is labelled with a certain sequence
of symbols. The letter indicate the resonance frequency of the CPW
in the circuit. It is indicated by the letters: "H","M" or "L" which
respectively stand for "High" (6.8 GHz), "Medium" (6 GHz), "Low"
(5.4 GHz), which are the values indicated in the simulations of Fig.
4.8. The numbers indicate the β ratio of the JDPD. The underscore at
the end indicates if the DC lines are of 2nd type or not. The materials
employed are the Niobium Nb for the superconducting parts (ground,
Josephson junctions ends, feed-line core, lines), the Aluminum-Oxide
AlOx as insulator for the Josephson junction barrier, the Niobium-
Nitride NbNx which is a high inductance material used for the central

inductor of the JDPD and Gold-Palladium Pd/Au for the pads.
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FIGURE 4.13: Layout of the chip #1 in Klayout. Differently from the
fourth chip, the ground plane is covered of mots as highlighted by the
zoom on the left. The zoom on the right shows the bridges that are

arranged through one of the CPW in the chip.

described in the following sections. Some microscope images of the essential com-
ponents upon the chips are shown in Fig. 4.14.
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FIGURE 4.14: Images taken with ZEISS optical microscope of the
JDPD (a), the coupling capacitor (b) and CPW (c) related to the H_7_

circuit of Chip 2
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4.4 Spectroscopy circuit and Josephson Digital Phase
Detector dynamics

In this Section, additional Python simulations will be discussed with the aim of study-
ing the spectroscopy behaviour of the designed circuits, schematically represented in
Fig. 3.1. These simulations aim at providing some reference terms concerning the ex-
perimental measurements reported in the next Chapter, in order to create a direct link
between the latter and the JDPD dynamics. The model used for the following simu-
lations is based on the analogy between the circuits and an LC oscillator, described
in Sec. 3.1. In particular it employs Eq. 3.1 to define the resonance frequency of the
circuit, the potential energy definition in Eq. 2.20 to represent the JDPD dynamics
and Eq. 3.3 to evaluate the contribution of the JDPD to the resonance frequency of
the system. To provide the phase particle position, required by Eq. 3.3, I have as-
sumed that the domain of positions coincides with the minima of the JDPD potential
energy defined by Eq. 2.20. Therefore, in this model the passive inductance of the
JDPD loops, the plasma oscillation of the phase particle [20], the coupling capacity
and the passive capacitance of the Josephson junctions have been neglected as well
as. Additionally, the Josephson junctions energy EJ and inductance LJ are assumed
to be constant and thus insensitive to the external magnetic fields. These series of
approximations are consistent with the features of the designed circuits where the in-
ductance of the JDPD central inductor is much higher than the kinetic inductance of
the other JDPD branches and the Josephson junctions in the circuit are characterised
by a low capacitance.
This allows to evaluate the dynamics of the circuit for different values of the applied
fluxes Φ± and β ratio. The first simulations that I have performed, in fact, aim at
studying the dynamics of the JDPD phase particle for different values of Φ+. The
phase particle represents the phase difference between the ends of the central linear
inductor L in Fig. 2.8, which plays the role of the dynamical variable of the JDPD
according to Eq. 2.19. The spectrum of the central inductor phase ϕ can be extracted
by evaluating the minima in the potential energy curve for different values of Φ+,
according to the model described in the introduction of this section. Assuming the
JDPD potential energy is symmetric (Φ− = 0, IC1 = IC2), the outcome of this sim-
ulation for a JDPD with β = 7 is reported in Fig. 4.15. The obtained results show
that different values of Φ+ correspond to different positions of the phase particle. In
particular, to some values of the flux Φ+ can correspond multiple distinct position of
the phase particle, due to the multiple minima of the potential energy profile for those
fluxes. This means that the application of the flux Φ+ to tune the phase difference ϕ

can provide different outcomes depending on the initial condition.
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FIGURE 4.15: The graph on the left shows a sweep on the flux Φ+ for
Φ− = 0 of the phase ϕ across the JDPD central inductor. Each colour
represent a position of the phase particle related to a different potential
energy minima, as highlighted by the potential energy graphs on the
right. In particular, the colours: green, red and blue are assigned to the
first, second, third minimum found on the potential energy profile by
going from −2π to 2π , respectively. For these simulations, the circuit
is assumed to have a ratio β = 7 and no asymmetries between the
Josephson junctions (IC− = 0). For Φ+ near 0 the potential energy
has three minima as in Fig. 2.9(a) and thus the phase particle can be
trapped in three different positions. For Φ+ near π/2, instead, the
potential energy turns into the harmonic state of Fig. 2.9(b) where the
phase particle is always near the origin. For Φ+ larger than π/2 the
potential energy starts to show the bistable behaviour depicted in Fig.
2.9(d) where the phase particle falls in one of the two dips, leading to

equal and opposite phases across the linear inductance.

In addition to Φ+, there are also other quantities that can be exploited to manip-
ulate the JDPD dynamics. According to Eq. 2.20, there are the asymmetries Φ− and
EJ−, which break the parity symmetry of the potential energy, and the β = 2EJ/EL

ratio. The latter parameter, which depends on the JDPD structural properties, such
as the Josephson junctions energy EJ and the equivalent inductance L, is linked to
the height of the potential well of the two minima in the bistable regime, as shown in
Fig. 4.16. This feature allows to increase the separation between the two minima and
to avoid "phase slips" (the phase particle can jump from one minimum to the other)
between the two potential wells due to thermal escape or quantum tunneling events.
From this point of view an increase of β seems to be convenient. On the other hand,
some effects due to the backactions have to be considered. In this case the backaction



Chapter 4. Preliminary simulation and experimental preparation 78

FIGURE 4.16: These plots show the JDPD potential energy behaviour
for different β values, as reported in each panel, in the various states
required in the read-out protocol. For Φ+ = 0 the case with the high-
est β shows three different minima, while the other just one minima
in 0. In the harmonic state the potential energy is defined just by the
quadratic term that does not depend on β and thus the curves over-
lap. Finally, in the bistable state the potential energy profile with the
highest β is characterised by the deeper dips and thus by the larger

separation between the phase states related to the two minima.
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is caused by the JDPD photons emission when the read-out is performed. In fact, the
phase particle does not fall directly in the ground state of the selected potential well,
but consecutively falls from the higher energy levels to the lower one in the well,
producing a photon for each decay, like the JPM in Sec. 2.1.2. If the qubit under test
is not transparent to the produced photons, the JDPD read-out can disturb the qubit
state, lowering the fidelity of the read-out or making the read-out destructive. The
best way to engineer the JDPD is thus to choose a β value such that the spectrum of
the emitted photons from the JDPD is transparent to the qubit.
Accounting for the mentioned degrees of freedom that allow to manipulate the JDPD
dynamics, I have executed various simulations in order to evaluate whether these
"effects" have impact on the spectroscopic response of the system. In this context,
starting from the "phase map" in Fig. 4.15, I have developed other numerical simu-
lations in order to acquire the resonance frequency as a function of Φ+ in different
conditions. The results of these simulations for a JDPD with β = 7, is reported in
Fig. 4.17, as a function of Φ+ in the absence of asymmetries (EJ− = Φ− = 0).
Without supplying magnetic fluxes to JDPD loops, the spectroscopy circuit can be
defined by three different values of the resonance frequency, where each one is linked
to one of the three different positions of the phase particle for Φ+ = 0. Due to the
JDPD symmetry, the concavity of the minima on the sides (green and blue) is the
same, leading to the same value of the resonance frequency according to Eq. 3.1,
3.3. Applying 0 < Φ+ < π/2 leads the potential energy to gradually converge to its
harmonic regime for Φ+ = π/2, characterised by a single minimum. This manipu-
lation is achieved with a continuous decrease of the central minimum concavity, that
eventually goes to zero for Φ+ slightly larger than π/2. Therefore, the resonance
frequency follows the same trend as shown in Fig. 4.17. Successively, by further in-
creasing Φ+, the potential energy profile evolves to a bistable curve characterized by
two absolute minima, whose concavity continuously increases until Φ+ = π . Conse-
quently, the resonance frequency of the system rises up again, reaching its maximum
for Φ+ = π . These observations highlight the connection between the spectroscopy
of the circuit in Fig. 3.1 and the dynamics of the JDPD. In Fig. 4.17, in fact, the
JDPD state can be easily extracted by observing that in the unperturbed regime there
are three archs where the red one is higher than the other two (green and blue in Fig.
4.17) which overlap and are related to the side minima, while in the bistable regime
there are two overlapping archs which correspond to the two absolute minima in the
potential energy curve. Nevertheless, in the experiments, there is no direct way to
measure the actual Φ+ that the JDPD experiences, and the only way to identify the
JDPD state is through resonance frequency measurements. The height difference
between the archs of the absolute minima in the unperturbed state and the bistable
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FIGURE 4.17: The graph on the left shows the resonance frequency
of the JDPD device as a function of Φ+. The resonator in series with
the JDPD is assumed to have a resonance frequency of f0 = 6.8GHz
and the JDPD to have a ratio β = 7 and L = 200pH. The color map
is equal to the one used in Fig. 4.15. The inductance exhibited by
the JDPD is inversely proportional to the potential energy concavity
related to the phase particle location on the potential energy profile.
As a consequence, the resonance frequency of the system, defined by
Eq. 3.1, is proportional to the concavity. This brings to the evolution
shown in this figure, where the curves show similar value in all the
range of Φ+ except for Φ+ near π/2, where during the transition
from the harmonic to the bistable state, the potential energy will show
a moment where the concavity of its absolute minima converges to 0.

state archs is of the order of 0.6 MHz, which is non discernible with the available ex-
perimental setup. This similarity creates an issue in the experimental measurements,
since it is not possible to grasp which arch is related to the zero or to the bistable
regime of the JDPD. It is thus necessary to make an initial guess and later verify its
correctness through some specific protocols, introduced in Chapter 5, that allow to
verify if the JDPD is in its bistable regime or not. Additionally, the symmetry of the
potential energy in the bistable regime does not allow to distinguish in which well
the phase particle is. In Chapter 5 I will describe the protocol employed to overcome
this latter problem and to demonstrate the existence of the two wells.
As a next step I have studied the effects that other variables, such as Φ− and β , have

on the resonance frequency of the circuit. First of all, I have analysed the effects of
Φ− both on the JDPD potential energy and on the spectroscopy of the whole circuit.
The results are reported in Fig. 4.18, where it is portrayed how the "phase map" in
Fig. 4.15 change following the application of a Φ− on the system. Comparing the
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plots in Fig. 4.15 and Fig. 4.18, it is possible to see that Φ− breaks the symmetry
of the potential energy and tilt the potential in a direction that depends on the sign of
Φ−. In particular Φ− can be employed to force the phase particle in certain positions
through adequate tilt of the JDPD potential energy. This feature turns to be extremely
useful in the context of the JDPD experimental validation where it allows to analyse
the JDPD dynamics with different initial condition for the phase particle. Despite its
usefulness in the preliminary experimental analysis of the JDPD, the tilt caused by
Φ− is not something desired in the actual employment of the JDPD read-out proto-
col. The fidelity of the read-out protocol is sensitive to the possible asymmetries in
the circuit because they create an absolute minimum in the bistable regime, as shown
in the potential energy profiles of Fig. 4.18. This leads to a preference for the phase
particle to fall in the deepest dip, which unavoidably disturbs the measurement. To
overcome this problem, which in general can be caused by: trapped flux across the
loops or fabrication issues (EJ− 6= 0), an external Φsym

− can be exploited. The tilt
caused by unwanted asymmetries, in fact, can be corrected through an external Φsym

−
flux, which in principle can tilt back the potential energy profile in its symmetric
regime. The mentioned tilt allowed by Φ− leads to some interesting effects on the
spectroscopy response. In Fig. 4.19 the spectroscopy response of the circuit consid-
ered before is reported for different values of Φ−. The first feature that can be noted
is that after a certain threshold, one of the three archs in the unperturbed state dis-
appears. This happens due to the tilt on the potential energy profile, that avoids the
trapping of the phase particle. Additionally, the height difference between the archs
of the two minima in the bistable regime increases as Φ− increases. The application
of Φ−, in fact, also leads to a symmetry break of the second derivative of the potential
energy, that ultimately makes the spectroscopy archs related to the two minima in the
bistable regime distinguishable. This latter feature is essential for the experimental
validation of the JDPD bistable regime, therefore the protocol introduced in Chapter
5 will be based on this observation. Additionally, Φ− also change the widths of the
spectroscopy archs. This is another consequence of the tilt on the JDPD potential
energy that leads to a certain distance between the spectroscopy archs and thus to
different widths. Despite the various effect of Φ− on the system spectroscopy, the
height difference between the archs in the unperturbed state and the bistable regimes
keeps being experimentally non discernible for any values of Φ−. The only case
where it is expected a visible difference between the archs height is by decreasing
the β , as shown in Fig. 4.22. The plots of Fig. 4.20, 4.21, 4.22 portray the sim-
ulations that I have performed of the circuit spectroscopy for different values of β

and Φ−. The plots show that for extremely low values of β the height difference
is around hundreds of MHz for Φ− = 0, which can be measured with the available
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FIGURE 4.18: The graphs on the left and on the right show the spec-
trum of the possible JDPD phase state depending on Φ+, for Φ−= 0.5
and Φ− = −0.5 respectively, for L = 200 pH and β = 7. Compared
to the values for Φ− = 0, represented in Fig. 4.15, it is possible to
see that Φ− shifts the spectra up or down on the y axis, for positive
or negative values respectively. This is caused by the effect of Φ− on
the JDPD potential energy in Eq. 2.19, where it introduces a shift in
the cosine and sine argument that brings a shift on the whole potential
energy as well as a tilt, due to the harmonic properties of the trigono-
metric functions. The tilt allows to have an absolute minima in the
system for Φ+ = π , which leads the phase across the linear induc-

tance to have a favored state.
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experimental setup. This is a consequence of the Josephson junctions that have less
and less effects on the JDPD dynamics as β decreases. The β ratio in Eq. 2.20,
in fact, represents the magnitude of the periodic term in the JDPD potential energy
definition, which comes from the Josephson junctions inside the system. The fading
of this periodic term gradually leads to an harmonic potential energy profile for any
Φ+ applied to the system, and thus to a progressive disappearance of the bistable be-
haviour. In particular the concavity of the minima in the bistable regime is reduced,
as shown in Fig. 4.16, which ultimately leads to archs of lower height compared to
the one for Φ+ ∈ [−π/2,π/2]. Additionally, for such low β the height difference
can also be tuned by providing an appropriate Φ− that decreases the height differ-
ence in the range [0,π ] and increases it in the range [π ,2π ], as shown in Fig. 4.20.
This is a consequence of the tilt that can change the concavity of the potential energy
minima, as already observed for β = 7 in Fig. 4.19.
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FIGURE 4.19: Expected resonance patterns for a sweep of Φ+ in the
range [−2π ,2π ] and for different values of Φ−, as indicated on the
top of each panel, for the spectroscopy circuit with a JDPD with β = 7
and L = 200 pH. The colormap is analog to the one in Fig. 4.17. The
results are consistent with the fact that in the bistable regime the red

and green curves are inverted depending on the Φ− sign.
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FIGURE 4.20: Theoretical spectroscopy behaviour of the circuit in
Fig. 3.1 with a resonator of frequency f0 = 6.8 GHz, a JDPD with no
geometrical asymmetries (J− = 0), L = 200pH and β = 1.2,1.8,2.2.
Compared to the spectroscopy shown in Fig. 4.17 with β = 7, the
system presents just one minimum instead of three for Φ+ = 0 and
also a difference in the resonance frequency between the harmonic
state and the bistable state that is inversely proportional to the ratio β

of the JDPD.
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FIGURE 4.21: Theoretical spectroscopy behaviour of the circuit in
Fig. 3.1 with a resonator of frequency f0 = 6.8 GHz and a JDPD
with no geometrical asymmetries (J− = 0), L = 200 pH, β = 1.2 for
different values of Φ− indicated in the plots title. For Φ− = ±π the
archs related to the bistable state become the highest archs. In the
range Φ− ∈ [−π ,−π/2] the height difference between the archs gets
closer and closer to zero, which is reached for Φ− =−π/2. Then for
Φ− ∈ [−π/2,0] the archs related to the bistable regime become the
shortest ones, with a maximum height difference reached at Φ− = 0.
In the positive range, for Φ− ∈ [0,π/2], like in the range [−π ,−π/2]
the height difference gets closer and closer to zero, which is reached
for Φ− = π/2. Successively, for Φ− ∈ [π/2,π ] the archs related
to the bistable state become again the highest ones. The circuit thus

shows a periodic behaviour in terms of Φ−.
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FIGURE 4.22: Expected height difference between the spectroscopy
archs showed by the circuit in Fig. 3.1 with a resonator of frequency
f0 = 6.8 GHz and a JDPD with no geometrical asymmetries (J−= 0),

L = 200 pH and different values of the β ratio.
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Chapter 5

Experimental results

On the basis of the designs and simulations illustrated in the previous Chapter, the
layout of the Josephson Digital Phase Detector (JDPD) has been sent to the company
SeeQC and a first batch of devices has been fabricated in their labs in the United
States. After several preliminary tests performed by SeeQC to assure the quality of
the fabrication process, the samples have been sent to our lab for a comprehensive
experimental characterization at 10 mK. As mentioned in the previous chapters, the
aim of the experimental measurements is to demonstrate if the JDPD is able, in prin-
ciple, to perform the QND read-out protocol introduced in Sec. 2.2 and as specified
below. To achieve this goal, different features relative to the spectroscopy circuit in
Fig. 3.1 have been experimentally validated. The first one is the Josephson period-
icity, namely the periodic arch-shaped trends of the circuit resonance shown in Fig.
4.17. The periodicity comes from the Josephson junctions employed in the JDPD that
add the periodic term to the JDPD potential energy expression in Eq. 2.19. Regard-
ing the JDPD read-out protocol validation the latter test is only a necessary condition
towards the functioning of the read-out protocol because it does not give any hint
about the number of potential energy minima. An essential step for the functioning
of the read-out protocol is the ability to shape the potential of the circuit to a bistable
a bistable regime that allows to distinguish the qubit state. Therefore, the second
feature that has been experimentally analysed is the presence of two minima in the
JDPD potential energy trend for an adequate value of Φ+, which represents the fun-
damental prerequisite to measure the phase offset of the microwave signal interacting
with the resonator dispersively coupled to the qubit under test. The combination of
these two tests demonstrates the JDPD capability of performing QND read-out of
superconducting qubits.
In this chapter I will illustrate the main experimental steps to carry out these tests, as
well as the obtained experimental results. We have measured two different circuits
characterised by different properties. The first and second section of this chapter are
dedicated to the experimental measurements of these devices, respectively. The same
experimental measurements on different samples gives consistent results, which scale
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with the JDPD properties, giving robustness to the whole approach and to the JDPD
capability of performing QND read-out.

5.1 1st device

Chip #2, shown in Fig. 4.12, has been the first measured sample in the Triton dilution
fridge, described in Sec. 3.2. The chip was located on the chip-holder in Fig. 3.4
that allows the connection to room-temperature electronics through the I/O ports.
Among the different circuits and lines on the Chip #2, the following lines have been
connected by using aluminium bonds:

• The central feed-line ends and the H_7_ circuit dedicated feed-line

• The DC lines and fast flux line of H_7 connected to the central feed-line

• The DC lines and fast flux line of M_5 connected to the central feed-line

• The DC lines and fast flux line of L_3 connected to the central feed-line

• The DC lines and fast flux line of the standalone H_7_ circuit

The bonds to the feed-line pads allow to connect them to the VNA to perform reflec-
tivity/transmittivity measurements and also to supply dc current to the fast flux lines.
At the same time, the bonds to the DC line pads allow to supply dc current along
the lateral flux lines of the JDPD. The chip-holder has been mounted to the copper
L-shaped extension anchored to the mixing chamber of the Triton cryostat, as shown
in Fig. 3.4, in order to cool it down to 10 mK. Before initiating the cool down, all the
electrical connections have been checked by using the VNA and the Sourcemeter in
order to test their functioning at room temperature. These preliminary measurements
have shown that all the connections were fine and also that the resonances of the cir-
cuits corresponded to the expected ones.
As soon as the cryostat reached the base temperature, the first measurements were
dedicated to evaluate the trasmittivity and reflectivity of the circuits in the chip
through the VNA of the Keysight Chassis in Fig. 3.5. These measurements have
been performed to check if any problem occurred to the system by reaching this
ultra-low temperature range and to test if the resonance frequencies of the various
circuits were not affected in the cooling procedure. During these tests the trans-
mittivity measurements were the ones less affected by noise. The transmittivity is
evaluated from the S21 data acquired by the VNA by sending a microwave signal
with defined power and frequency chosen to the first port connected to the fast flux
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line pad of the circuit under test and evaluating the amplitude of the transmitted sig-
nal on the VNA second port connected to the feed-line pad. The data acquired in the
frequency range [4− 9] GHz and VNA attenuation of −20 dBm are shown in Fig.
5.1. The outcomes show that the trends exhibit various ripples, which are an indica-

FIGURE 5.1: VNA measurements of the transmittivity with a room
temperature attenuation of −20 dBm. The figure portrays the ampli-
tudes of S21 in the frequency range [4−9] GHz, namely the transmit-

tivity of the different lines reported in the legend.

tion of impedance mismatch [34] between the signal source and the load, represented
in this case by the VNA and the spectroscopy circuits, respectively. The impedance
mismatch causes the bouncing back of a certain quantity of photons, leading to losses
during the measurements. Impedance mismatch can be due to overlooked geometri-
cal effects in the design or to fabrication flaws that can slightly modify the impedance
of the circuit, with respect to the impedance of the VNA. In order to overcome this
issue and identify the circuit resonance, the DC lines were employed. In fact, if a
spike in the spectroscopy curves represents a resonance, it must move under the ap-
plication of fluxes in the JDPD. These latter measurements have been prevented by a
second issue, since most of the DC lines did not work properly at 10 mK, indicating
some fabrication imperfections. By supplying a dc current to each fast flux line, in
fact, the circuits spectroscopy appeared significantly disturbed, while by supplying
the current to the DC lines there was no effect on it, except for one of the DC lines
of the H_7_ circuit. As a consequence the measurements for this first run have been
performed on device H_7_, whose layout allows to provide the fluxes Φ+ and Φ−
through the calibration procedure discussed in Sec. 3.5.1.
In the following sections I will illustrate the experimental results obtained from the
analysis of the H_7_ circuit and their contribution to the validation of the JDPD
read-out protocol. All the following spectroscopy measurements are performed by
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FIGURE 5.2: Plots of the transmissivity of the H_7_ circuit for current
in the range of [−4,8] mA across the fast flux line (a) and in the range
of [−3,3]mA for the DC line (b). The range has been chosen by taking
care of the different resistance of the lines and of the possible heating
effects in the cryogenic environment due to Joule heating. The upper
Python plot shows what the expected evolution from the simulation.

evaluating the trasmittivity of the circuit, namely S21, since the measured signals are
less affected by noise issues. In particular, to improve the quality of the measure-
ments, the trasmittivity data is normalized in post-acquisition by dividing all the S21

plot with respect to the frequency with the first acquired one.

5.1.1 Josephson periodicity

The first measurements on the H_7_ circuit were dedicated to evaluate the effect that
the currents across the DC line I1 and the fast flux line I f have on the system. There-
fore, individual sweeps of I1 and I f have been performed, and for each current value
the VNA measured the correspondent trasmittivity in the frequency range [4−7]GHz

for different VNA power attenuations. The sweep on the VNA attenuation has been
performed in order to find the optimal conditions in terms of visibility of the acquired
signal. In Fig. 5.2 the best plots regarding the effect of I1 and I f on the circuit spec-
troscopy are shown. Both plots, obtained with a −30 dBm VNA attenuation, show
the presence of archs in full agreement with the simulations in Sec. 4.4. These results
prove the quality of the sample and that the model used for the simulations reported
in Sec. 4.4 represents a good approximation of the real system, thus allowing to study
the dynamics of the JDPD device from spectroscopy measurements. Comparing the
results with the simulation reported in in Fig. 4.17, many relevant information can be
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obtained about the circuit under study. The first feature is that the circuit characteris-
tic resonance, represented by the height of the archs, has dropped to about 5.75 GHz,
instead of the expected 6.8 GHz. This difference between the experimental resonance
and the simulated one comes from having neglected the effect of superconductivity
on the system spectroscopy due to the impossibility of the employed software pro-
gram (QUCS, HFSS) to emulate the change that the superconducting state leads to
the system. Additionally, the performed spectroscopy simulation did not take into
account the whole circuit structure and thus some geometrical effects may have been
overlooked. These artefacts happen in the design of a completely new device and
are iteratively improved by using software and programs which can better reproduce
all physical aspects of the circuit under investigation. A second peculiar discrepancy
with the simulations is the presence of a |S21| peak at the end of each arch in the data,
for frequencies higher than the archs height. This phenomenon does not arise for
higher VNA attenuation and is thus caused by the VNA signal that is able to force
the phase particle to go in other minima of the potential energy profile with higher
concavity values. Finally, focusing on the predicted Josephson periodicity, the plots
in Fig. 5.2 show that depending on which line is employed to supply the fluxes to the
JDPD, the whole circuit will have a different spectroscopy behaviour for the same
dc current value. In particular, the spectroscopy response derived from the I1 sweep
has a much smaller periodicity compared to the one measured by sweeping I f . This
difference is caused by the various attenuation stages along the RF lines that con-
vey the electromagnetic signal I f across the fast flux line, with respect to the current
line connected to the dc current line I1, that passes along a series of low pass filters.
Beside this technical feature, there are also geometrical differences between the two
flux supply methods, that show off in the different shape of the spectroscopy curves
in Fig. 5.2. The archs obtained through I1 all have a similar shape that recalls the one
from the simulations in Fig. 4.17, while the ones related to I f sweep have a different
width. This is due to a different coupling between the magnetic field generated by I1

and I f with the loops of the JDPD. Considering Eq. 3.8, the current I1 provides si-
multaneously the fluxes Φ+ and Φ− while the current I f supplies the flux Φ+. This
means that the left plot in Fig. 5.2 is the one that shows how the system behaves
under different Φ+ values as desired. Regarding the width difference between the
archs in Fig. 5.2(a), according to the simulations in Fig. 4.19 it must be an effect
brought by Φ−, that can come from unwanted trapped flux across one of the loops.
This is a common artefact happening in superconducting circuits, that can disturb the
dynamics of the system and thus the experimental measurements [25].
Once that the flux Φ+ is correctly supplied through the fast flux line an explicit re-
lation between the voltage V+, supplied by the Sourcemeter to the fast flux line, and
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the flux Φ+ provided to the JDPD inside the H_7_ circuit has been obtained. Despite
the presence of a flux Φ−, the comparison between the simulations and the experi-
mental trend in Fig. 5.2(a) allows to evaluate a correspondence between Φ+ and V+,
defined by the following relation:

V+ = Φ+
∆V
2π

+Vo f f (5.1)

where ∆V is the Josephson period in units of Volt and Vo f f is the offset in the
experimental trend in units of Volt. The V+ obtained by using Eq. 5.1 just work as
initial guess that must be demonstrated through further checks capable of show off
the regime in which the system is.
A sweep larger than the one in Fig. 5.2(a) has been applied in order to define the value
∆V and Vo f f required by Eq. 5.1. The results of this measurement are shown in Fig.
5.3, where despite the losses that decrease the quality of the measurements, it is pos-
sible to observe that the system has a periodic behaviour in terms of V+, and that the
flux Φ+ is supplied correctly through the fast flux line. Given the high β = 2EJ/EL

ratio of the JDPD in the circuit under study, each arch posses the same height of the
others, as predicted by the simulations reported in Fig. 4.17. This feature makes
the archs related to the different JDPD regime difficult to distinguish. Therefore, to
define the value of Vo f f , it is necessary to make an initial guess about which archs are
related to the regime with one absolute minimum and the regime with two absolute
minima. The chosen guess is shown in the right plot of Fig. 5.3, where the dark blue
and the orange dashed archs indicate the presumed zero and bistable regime archs,
respectively. According to this choice, the offset is equal to Vo f f =−24.3 mV , while
the period, which can be extracted regardless of the mentioned assumption, is equal
to ∆V = 129.4 mV . Inserting the extracted values into Eq. 5.1 allows to define an
estimate of the V+ that the Sourcemeter must supply in order to provide a certain flux
Φ+ to the JDPD. The correctness of this evaluation is demonstrated in the follow-
ing section, that focuses on the experimental steps performed to prove that, for an
adequate combination of flux, the JDPD has the properties expected in the bistable
regime.
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FIGURE 5.3: Results acquired from the VNA for different sweeps
on the fast flux line voltage V+. The graphs display the S21 pattern,
namely the trasmittivity of the system with respect to signals with fre-
quencies in the range [5.0,6.0] GHz for different values of V+ in the
range [−200,200] mV (Left) and [−40,50] mV (Right). The voltage
range in the left graph has been chosen in order to cover the widest
possible region without heating the chip and thus the mixing chamber
of the cryostat, while the right figure is a software zoom to focus on
a small region around V+ = 0. The dashed lines in the right graph
represent the assumption about the alleged position of the JDPD spec-
troscopy archs in the V+ domain. The blue curve corresponds to the
presumed unperturbed-harmonic state curve, while the orange one to

the bistable regime arch.

5.1.2 Phase particle trapping

We now need to check whether the assumption of Fig. 5.3 about the position of the
spectroscopy archs in the acquired data, it is now required to check this hypothesis.
In order to test the JDPD capability of performing the read-out protocol, we have
studied whether the JDPD enters a bistable regime by supplying an adequate voltage
V+ to the fast flux line.
In the theoretical read-out protocol described in Sec. 2.2, the bistable behaviour of
the JDPD shows up as a superconducting current across the central inductance of the
JDPD, whose direction depends on the particular well in which the phase particle has
fallen. With the available experimental setup, though, there is no way of measuring
the superconducting current that passes along the central inductance. Consequently
it is necessary to find a way to observe the bistable regime by using the spectroscopy
measurement allowed by the VNA. As mentioned before, the main obstacle is the fact
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that for JDPD with a high β ratio, the resonance frequency archs related to the JDPD
regimes are indistinguishable from one another. This phenomenon is a consequence
of the fact that the concavity of the JDPD potential energy profile in correspondence
of its minima is the same in both regimes, leading to the same equivalent inductance
in the circuit.
To overcome this experimental hurdle, a specific experimental protocol has been em-
ployed. The protocol takes inspiration from the hysteresis measurement performed
in the work [14], and exploits both Φ+, Φ− to adequately manipulate the JDPD po-
tential energy. The protocol is based on the comparison between the experimental
outcome of the two experimental procedures portrayed in Fig. 5.4. Assuming that
the JDPD potential energy is defined by Eq. 2.19, the initial steps of the first (sec-
ond) procedure, depicted in Fig. 5.4(a-e), force the phase particle to be in the deepest
minimum on the left (right) of the potential energy trend in the tilted bistable regime,
achieved by supplying the fluxes Φ+ = π;Φ− =−π/2 (Φ+ = π;Φ− = π/2). The
deepest minimum is also the one characterised by the highest concavity, which is the
measurable quantity in the experimental setup, thanks to Eq. 3.1, 3.3 that define a
link with the circuit resonance frequency. At this point, by progressively increasing
(lowering) the flux Φ−, the initial tilt slowly diminishes, providing a gradual decrease
of the concavity related to the minimum where the phase particle is trapped, as por-
trayed in Fig. 5.4(f), which ultimately leads to a lowering of the resonance frequency.
In conclusion, if the JDPD potential energy is in the bistable regime, predicted by Eq.
2.19 and thus allows to emulate the procedures just introduced, then by forcing the
phase particle in two different initial conditions depicted in Fig. 5.4, the resonance
frequency is lowered by sweeping Φ− in two opposite directions depending on the
fixed initial condition. In a few words, depending on Φ− history, the system behaves
differently, showing a hysteretic behaviour that is a direct consequence of the JDPD
bistable behaviour.

The first step towards the experimental implementation of the hysteresis protocol
is to find a way to simultaneously provide the fluxes Φ+ and Φ− to the JDPD. In
Eq. 3.8 it is shown that the DC line can be exploited together with the fast flux
line to achieve this goal. Therefore, before applying the hysteresis protocol a further
calibration of the fluxes provided by the simultaneous action of the DC line and the
fast flux line has been done. According to the simulations reported in Fig. 4.19, in the
case of JDPD with large β ratio, the effect of Φ− on the archs that characterise the
trasmittivity map of the circuit, is to slightly squeeze or enlarge their width. These
preliminary measurements thus focused on analysing how the archs are shifted for
different values of Φ− for a definite range of Φ+ values. In Fig. 5.5 the data acquired
by the VNA in well defined ranges of frequencies and V+ values are shown, for
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FIGURE 5.4: JDPD potential energy profile in the different steps of
the first procedure (second protocol). (a) Φ+ = 0;Φ− = 0, the JDPD
is in its unperturbed state. (b) Φ+ = 0;Φ− = −π/2 (Φ+ = 0;Φ− =
π/2), the fluxes lead to a potential energy trend with an absolute min-
imum in order to set the state of the JDPD. (c-e) Φ+ = π;Φ−=−π/2
(Φ+ = π;Φ− = π/2), in the transition from Φ+ = π/2− ε to
Φ+ = π/2+ ε (c,d), where ε is a generic small value, the phase par-
ticle switches from one side to the other with respect to the origin
and finally falls into the absolute minimum of the potential energy at
Φ+ = π (e). The latter step is performed to guarantee that the phase
particle is positioned in a predicted well, avoiding undesired trapping
in non absolute minimum that could have happened during the first
two steps. (f) Φ+ = π;Φ− = π/2 (Φ+ = π;Φ− = −π/2), the po-
tential energy well containing the phase particle is tilted by the sign
change of Φ− which brings the well higher in energy and simulta-
neously decrease the concavity, as shown by the dashed curves. The
green phase particle indicate when the circuit is analysed through the

VNA.
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different values of the voltage V− between the ends of the DC line. The results show
that for different V− the archs shift as a function of the current across the DC line,
confirming that the flux Φ− is properly supplied to the JDPD in this way. According
to Eq. 3.8 the current across the DC line supplies also a certain amount of Φ+. This
means that if currents flow simultaneously through both lines, the flux Φ+ depends
on both lines, in disagreement with Eq. 5.1. Nevertheless, in the JDPD layout the
DC line is much more coupled to the nearest loop of the circuit rather than the more
distant one. This means that in the employed range of current the contribution of
the fast flux line to Φ+ is much more significant than the one coming from the DC
line and, thus that the latter can be neglected in a good approximation. It is thus
possible to simultaneously supply Φ+ through the fast flux line and Φ− through the
DC line, thus providing the physical and technical tools to perform to performing the
mentioned hysteresis protocol.

FIGURE 5.5: Trasmittivity of the H_7_ circuit with a power attenu-
ation of −50dBm in the range [−50,50] mV of V+ for different val-
ues of V− pointed out in the various plots. The results show that the
archs that highlight the resonance of the circuit are shifted of a certain

amount of V+ depending on the V− provided by the Sourcemeter.

In the last steps of the first (second) method, described in Fig. 5.4(e-f), the flux
Φ− is shifted from Φ− =−π/2 (Φ− = π/2) to Φ− = π/2 (Φ− =−π/2), but the
protocol works perfectly fine also for Φ− 6=±π/2, since it just leads to smaller tilts
of the potential energy trend with respect to the one shown in Fig. 5.4. The protocol
was thus performed by employing Eq. 5.1 to provide the appropriate value of Φ+,
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for different values of V− and different VNA power attenuation in order to find the
experimental settings that guarantee the best experimental execution of the hystere-
sis protocol. In Fig. 5.6 the data acquired by the VNA with a power attenuation of
−50 dBm are shown, following the first (second) method performed by providing the
flux Φ+ according to Eq. 5.1, while setting initially V− =−100 mV (V− = 100 mV )

and gradually increasing (decreasing) it to V− = 100 mV (V− = −100 mV ). The V−
range has been chosen to explore the largest range of V− values while avoiding the
overheating of the cryostat due to the current passing across the DC line. In the first
procedure test, in Fig. 5.6(a) by going from V− = −100mV to V− = 100mV the
resonance profile initially decreases as expected until V− = 25 mV , where there is
a "jump" to a higher value. After the jump the resonance frequency profile inverts
its slope and starts to increase as V− increase, which is the opposite of its original
behaviour. An analog evolution is observed in the experimental replica of the sec-
ond procedure, in Fig. 5.6(b), where the jump is observed at V− = −25 mV and the
resonance follows an evolution similar to the one observed in Fig. 5.4(Up) but for
inverted direction of the V− sweep.
The physical explanation behind these resonance jumps, according to the potential
energy trend depicted in Fig. 5.4, is that the phase particle has passed from one min-
imum to another in the potential energy profile. Additionally, the distance between
the trends after and before the jump also shows that the final minimum is charac-
terised by a concavity higher than the starting one. These phenomena may have
different origins, such as the thermal escape or the macroscopic quantum tunneling
[20] that for low enough energy separation between the minima can lead to a not
negligible escape probability of the phase particle. Additionally there are also the
transmitted photons coming from the VNA, that are able to excite the phase particle.
Analysing the plots in Fig. 5.6, the fact that the resonance frequency of the system
changes significantly indicates that the escape happens when the potential energy
has an asymmetric shape with the minima characterised by different concavities. In
addition to that, the fact that the jump happens always with the same amount of cur-
rents across the DC line, points out that the tilt of the potential energy trend with
V− = ±25 mV leads to a natural passage of the phase particle to another minimum
in the potential energy trend. The slope inversion after the jump further proves that
the jump is an indicator of the phase particle escape from one minimum to another in
the potential energy trend. Focusing on the two minima of the potential energy trend
in Fig. 5.4(e-f) it can be observed that a tilt of the potential energy trend leads to an
increase of the concavity related to one minimum while decreasing the other, which
is exactly what has been observed from the measurements shown in Fig. 5.6
Knowing that for V− = ±25 mV the potential energy is tilted enough to induce
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a phase particle jump, other protocol tests have been performed in the range of
[−25,25] mV in order to observe the hysteresis without incurring in phase particle
escape from one minimum to another.

The results achieved by replicating the two methods in the mentioned range of
V− are shown in Fig. 5.7, acquired for a power attenuation of −60 dBm of the VNA.
The two plots show that following the V− sweep direction indicated in the plots, the
resonance frequency profile decrease as expected due to the concavity decrease of the
potential energy profile shown in Fig. 5.4(e-f). In particular, the two profile, under
the same excitation of V−, exhibit two different values of the resonance frequency,
demonstrating that the system has an hysteretic behaviour. The latter results prove
that the JDPD is characterised by a bistable behaviour and thus that the QND read-out
protocol in Sec. 2.2 can be executed.

Further replica of the latter measurements have been performed in order to check
that the result is reproducible. These measurements show that the system behaves as
expected under the same settings and in addition to that, it has been observed that
by decreasing the VNA attenuation to −50 dBm a phase particle escape similar to
the one in Fig. 5.6 occurs, as shown in Fig. 5.8. Differently from the previous case,
the switch of the phase particle from one minimum to another does not lead to a
significant change of the circuit resonance but just to a slope inversion with respect
to V−, as shown in Fig. 5.8.The absence of a shift between the trends after and
before the escape, points out that the potential energy trend is characterised by a more
symmetric shape with respect to the one that it posses in Fig. 5.6, and is consistent
with the jump occurring near V− = 0. The same phenomenon was observed in some
cases with a VNA attenuation of −60 dBm, proving that in this case the escape is
caused by stochastic effects like the thermal escape and the macroscopic quantum
tunnelling.
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FIGURE 5.6: Trasmittivity trend of the circuit from step (e) to step (f)
of the first (a) and second (b) protocols reported in Fig. 5.4 with V−
spanned in the range [−100,100] mV in the direction indicated in the
plot title and for power attenuation of −60 dBm . In correspondence
of V− = 25 mV and V− = −25 mV there is a "jump" in the resonance
trend of the first and second procedure, respectively. The jump is
characterized by an inversion of the trend slope, pointing out that the
phase particle has gone into another minimum of the potential energy.
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FIGURE 5.7: Trasmittivity trend of the circuit from step (e) to step
(f) of the first (a) and second (b) protocols reported in Fig. 5.4 with
V− spanned in the range [−25,25] mV in the direction indicated in the
plot title and for power attenuation of −60 dBm. Depending on the
procedure, and thus on the initial condition, the resonance frequency
of the system has a different value for the same V−, demonstrating the

predicted hysteresis.
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FIGURE 5.8: Trasmittivity trend of the circuit from step (e) to step
(f) of the first (a) and second (b) procedures depicted in Fig. 5.4 with
V− spanned in the range [−25,25] mV in the direction indicated in the
plot title and for power attenuation of −50 dBm. Regardless of the
initial condition, a phase particle escape is observed near V− = 0 in
both cases. Differently from the escape observed in Fig. 5.6, in this
case there is no frequency shift in the point of slope inversion, namely
the phase particle passes to a minima in the potential energy trend

which is characterised by the same concavity of the initial one.
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5.2 2nd device

A second circuit with different properties has been analysed in order to test how its
dynamics change. A different chip has been mounted on the mixing chamber of the
dilution cryostat to be cooled down and analysed. The chosen sample is the Chip
#1 in Fig. 4.13, that has the same circuital arrangement of the previous one but
differs from it in terms of the structural properties of the circuit. In this context it
has been chosen to continue not studying the circuits coupled through the feed-line
in a parallel configuration, and to focus on the JDPD inside a stand-alone circuit. In
particular, the circuit that has been analysed is the H_4 circuit in Fig. 4.13, which is
characterised by a different DC lines configuration and a lower β ratio with respect
to the previous H_7_.

The H_4 circuit has been connected to the room temperature electronics to check
the functioning and the spectroscopy of the circuit at room temperature. These pre-
liminary measurements have shown similar results to the one acquired in the previous
case, which further prove that the issues observed with the H_7_ device are not spe-
cific of the circuit but depend on the general design of the chip. Differently from the
previous circuit, the use of all the DC lines has a visible effect on the circuit spec-
troscopy, which proves that all the lines work fine and no thermal effects disturb the
connections between the chip pads and the chip-holder pads. Compared to the previ-
ous case, this result guarantees an additional degree of freedom that can be exploited
to study the dynamics of the circuit. The functioning of all the lines allows to drive
the fluxes Φ+ and Φ− through the calibration described in Sec. 3.5.2.

5.2.1 Josephson periodicity

As before, the first measurements have been focused on the study of the effect of
Φ+ on the resonance frequency of the system. The main feature that differentiates
the circuit H_4 from the H_7_ device is that the JDPD is characterised by a lower
β ratio. According to the simulations reported in Fig. 4.16 a lower β , in principle,
leads to a more significant shift between the height of the archs that represent the
circuit resonance frequency in the different regime of the JDPD.
To analyse the trasmittivity of the H_4 circuit the Rohde&Schwarz VNA has been
employed as well as the SourceMeters to supply currents across the DC lines and
the fast flux line of the JDPD and analyse the trasmittivty for different values of the
magnetic flux Φ+. For this measurements, I have written a Python library containing
various routines able to set different features of the VNA and perform the required
trasmissivitty measurements. Regarding the supply of Φ+ to the JDPD, Eq. 3.14
shows that Φ+ can be provided both through the fast flux line and through the DC
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FIGURE 5.9: Plots of the H_4 transmissivity in Chip #1 for different
values of frequency and dc currents to provide Φ+. (a) Transmissivity
of the circuit for different values of frequency and I f , which is the
current supplied to the fast flux line. (b) System spectroscopy for
different values of frequency and Idc

+ , which is defined in terms of the
current provided to the DC lines on the side as: Idc

+ = (I1− I2)|I1+I2=0.
As previously observed, despite the current range covered with I f is
larger than the Idc

+ one, the two figures display the same trasmittivity
trend. This is a consequence of the attenuators across the RF line
linked to the fast flux line, while the current lines connected to the DC
lines just go through a series of low pass filters. Therefore, to have
the same current across the fast flux line and the DC line it is required
much more power across the RF line with respect to the current lines.

lines. In particular Φ+ is linked both to I f , which is the current supplied from the
Sourcemeter to the fast flux line connection, and to Idc

+ = I1− I2|I1+I2=0, where I1

and I2 are the currents provided by the Sourcemeter to the DC line connections, re-
spectively. Both these methods have been tested while also trying different VNA
attenuation values, to check which combination of flux supply method and atten-
uation guarantees the better quality of the measurements outcome. The best data,
displayed in Fig. 5.9, have been obtained with a power attenuation of −30 dBm and
−40 dBm with the DC lines and the fast flux line, respectively.

First of all, we measure the same resonance frequency decrease observed before,
with the same drop to 5.75GHz, which is consistent with the explanation given in the
previous case. A second visible feature is the presence of a periodicity in both plots
as well as an height difference between the spectroscopy archs. As highlighted in Fig.
4.20, this latter feature is an indicator that the JDPD in the circuit is characterised by
an extremely low β ratio. From the experimental data in Fig. 5.9 it was extracted an
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experimental height difference of ∆ f = 15 MHz between the archs, which compared
with the simulation in Fig. 4.20 points out that the effective β of the system is
β = 0.8. This unexpected decrease of the β ratio is linked to the JDPD layout,
where the kinetic inductance of the JDPD superconducting branches, overlooked in
the design simulation, lowers significantly the equivalent inductance of the system
and thus the β ratio of the JDPD. Being the JDPD layout the source of this drastic
decrease of the β ratio, an overestimate of the β ratio was probably made also for
the previous circuit. In the context of the H_7_ circuit, though, this decrease has not
been detected due to the higher critical current of the Josephson junction in the JDPD
that keeps the β value high enough, therefore a significant height difference between
the archs has not been observed.
In the context of the JDPD dynamics characterization, this feature allows to eliminate
the "guess and check" step in order to distinguish the archs related to the different
JDPD regimes. The only criteria that needs to be checked in this context is in fact
that the flux Φ− provided to the JDPD due to external flux noise is not contained
in the interval [π/2;π ], where the arch related to the bistable regime becomes the
highest one, as shown by the simulations reporting in Fig. 4.16.
After checking that the flux Φ+ can be controlled through the fast flux line and the
DC lines, a second set of measurements has been dedicated to check if also Φ− can
be provided to the JDPD through the relation in Eq. 3.14. In order to accomplish this
check, various measurements similar to the previous ones have been performed under
different Φ− provided to the system. Following Eq. 3.14, the fluxes Φ+ and Φ− have
been simultaneously provided through an adequate combination of currents across
the DC lines. In particular, Φ+ is linked to I+ = I1− I2, while Φ− to I− = I1 + I2.
Therefore, the currents actually supplied by the Sourcemeters are the solutions of
the linear system with the chosen I± as constant values. The data acquired from
these measurements are displayed in Fig. 5.10 where it can be seen that for different
values of I− the height distance between the archs is different, as expected from the
simulations in Fig. 4.16. The latter results thus guarantee that the flux Φ+ and Φ−
can be provided to the JDPD, separately or simultaneously, through the DC lines on
the sides of the JDPD.

5.2.2 Phase particle trapping

The same protocol carried out in Sec. 5.1.2 for the first device, has been executed
also on this second circuit, in order to confirm the JDPD capability, also for lower β

ratio, of entering the bistable regime for an appropriate magnetic flux. In this case,
the fluxes Φ+ and Φ− have been simultaneously supplied to the JDPD through the
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FIGURE 5.10: Plots of the transmittivity across the circuit H_4 in re-
spect to frequency as a function of I+ and I− that are both defined
by the DC lines on the sides of the JDPD. By going from negative to
positive values of I+, in the range [−0.44,−0.14]mA the archs on the
sides are the highest one and the height difference gradually goes to
zero, which is reached for I− = −0.14 mA. After this range the cen-
tral arch become the highest one and the height difference gradually
increase until I− = 0.28 mA. After I− = 0.28 mA the side archs rise
up, decreasing the height difference, that eventually goes to zero near

I− = 0.48 mA.
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DC lines on the sides by employing the same method used to perform the measure-
ments in Fig. 5.10.
In order to choose the values of I+ and I− required to perform the procedures reported
in Fig. 5.4, the spectroscopy measurements displayed in the previous section have
been compared with the simulations in Sec. 4.4, assuming that no trapped flux has
modified significantly the circuit spectroscopy. In particular, to provide the required
amount of Φ+ to the JDPD, the measurements in Fig. 5.9(b), compared with the
simulations in Fig. 4.20, have been taken as a reference, while for Φ− the measure-
ments reported in Fig. 5.10 and the simulations of Fig. 4.20 have been used. In this
way, to provide Φ+ = π the Sourcemeters must supply a current to the DC lines such
that I+ = 0.3 mA; while for Φ− =−π it is necessary to supply I− =−0.5 mA, which
is the value where the spectroscopy trend returns to its original form. Starting from
these considerations, multiple tests of the hysteresis protocol have been performed
with different VNA power attenuation.
Differently from the previous case, no hysteresis has been observed between the two
protocols in this case for any VNA power attenuation and after many tests of the
magnetic fluxes provided through the DC lines. All the measurements displayed the
trend shown in Fig. 5.11, where the resonance frequency of the circuit initially de-
creases and then rises up after a certain threshold value which is slightly different
depending on the measurement protocol employed. The absence of trend difference
between the plots in Fig. 5.11 shows that there is no hysteresis effect. The fact that
the behaviour is similar by using both measurement protocols, can be linked to the
fact that the phase particle is trapped in the same minima in both cases, and their
concavity is independent from the Φ− sweep direction. This means that the poten-
tial energy trend of the JDPD under test is not characterised by a bistable behaviour
under the provided current of I+ = 0.3 mA.

The cause of this result, compared with the successful results obtained with the
previous circuit, can only be linked to the lower β ratio of the JDPD in the H_4 cir-
cuit. Considering the plots in Fig. 4.16, it can be seen that in the bistable regime a
lower β ratio leads to a lower energy separation between the two minima. According
to the analytical model, in fact, for β < 1 the JDPD does not show off a bistable
behaviour, avoiding the possibility to perform the hysteresis protocol, as the experi-
mental results prove. The conclusion is thus that the feasibility of the JDPD for QND
read-out of superconducting qubits strongly depends on its β ratio that is related to
the separation between the minima in the bistable regime of the JDPD.
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FIGURE 5.11: Trasmittivity trend of the circuit from step (e) to step
(f) of the first (a) and second (b) measurements protocol reported in
Fig. 5.4 for a power attenuation of −20 dBm with I− spanned in the
range [−0.5,0.5] mA in the direction indicated in the plot title. No
significant difference is observed between the plots except for a small

shift.
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Conclusions

In this thesis I have presented the work made to study the dynamics of an innovative
superconducting quantum circuit, called Josephson Digital Phase Detector (JDPD),
with the aim to demonstrate that it is able to perform quantum non demolition read-
out of superconducting qubits. The read-out is performed by following a specific
protocol that is based on the tunability of the JDPD dynamics through external mag-
netic fields. This device leads to potential advantages in a quantum computer design.
In addition to the non demolition read-out of the qubit state, the JDPD allows a
significant scalability enhancement of quantum computer architecture thanks to its
reduced dimensions, its suitability in parallel configurations and, more importantly,
to the possibility to digitalize the read-out in the form of magnetic flux quanta. The
latter feature in particular makes the JDPD compatible with superconducting elec-
tronics employing Rapid Single Flux Quantum (RSFQ) logic [3–6].
To demonstrate the feasibility of the JDPD as a qubit read-out device, its dynamics
has been analysed with the specific aim of validating its capability of performing
the non-destructive read-out protocol. I have simulated the JDPD with the PSCAN2
simulator to test if the device is able in principle to perform the read-out protocol.
Then, I have characterised, through Python scripts and simulator softwares such as
QUCS and HFSS, the various components of a circuit used to study the JDPD dy-
namics through spectroscopy measurements. This characterisation has allowed the
design and the realization of various chips containing multiple JDPDs with different
properties, where each of them can be analysed through the available instrumenta-
tion. Moreover, I have written some Python scripts, based on the analytical model
describing the JDPD, with the aim of predicting the spectroscopy behaviour of the
various circuits under different conditions. I have investigated how the circuits re-
spond to a variation of the applied magnetic flux on the JDPD and how the response
changes depending on the structural feature of the latter device. These simulations
have been used to predict the behaviour of the chips and also to have some reference
terms during the experimental measurements, in order to link the experimental spec-
troscopy measurements with the JDPD dynamics. I have then collaborated to the
experimental measurements of the JDPD dynamics. The measurements are devoted
to validate that the device follows the analytical model by comparing the experimen-
tal results with the simulations. Moreover, we have checked that the JDPD, for an
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appropriate magnetic flux drive, enters into a bistable regime which is essential for
the functioning of the read-out protocol. The outcome, that has been extracted by
the acquired experimental data, is that the analytical model accurately describes the
JDPD dynamics and that for the application of the latter device for qubit read-out,
it must be given great attention to its structural properties. By comparing the results
obtained from two JDPDs, that differ for the critical current of their Josephson junc-
tions, it has been observed that if the product between the critical current and the
equivalent inductance of the device is too low, the JDPD does not show a distinct
bistable behaviour and it is thus not suitable for performing qubit read-out, as pre-
dicted by the analytical model.
In conclusions, the strong consistency between the experimental results and the an-
alytical model confirms that the JDPD is able to execute the read-out protocol and
thus of non-destructively reading the qubit state, in principle. The next natural steps
towards the complete validation of the JDPD as a read-out device are an accurate
analysis of its fidelity, given the sensitivity of the read-out protocol outcome to asym-
metries in the system, and of the potential backaction issues that the device can give.
After optimizing the device by minimizing the backaction and maximising the fi-
delity, the next step will be to test the read-out with an actual superconducting qubit.
If the test returns positive results the further steps will be to optimize the implemen-
tation of the JDPD into a quantum computer based on RSFQ logic. The realization
and the successful operation of the JDPD are not only a remarkable quantum techni-
cal achievement, but condense the quantum capabilities of superconducting circuits
and Josephson junctions. It is a superb demonstration of how their functionality can
be engineered and tuned to reveal and communicate quantum information.
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Appendix

IQ mixing

An IQ mixer is essentially a 4 port device that takes in input two signals with the
same intermediate frequency and opposite amplitude:

I(t) = a(t)cos(ωIFt)

Q(t) = −a(t)sin(ωIFt)

The I(t) and Q(t) signals are called respectively the "In phase" and "Quadrature"
components of a signal with ωIF frequency, and represent the real and imaginary part
of the latter in the complex plane. Along with these two, a third signal with unitary
amplitude called "local oscillator" or "carrier signal" is added to the mixer:

L(t) = cos(ωLOt)

This last signal is split in two signals that share a phase difference of π

2 through an
Hybrid Coupler. Consequently these two signals are then respectively coupled with
the I and Q component and added together, obtaining the following output signal:

RF(t) = a(t)cos(ωIFt)cos(ωLOt)−a(t)sin(ωIFt)sin(ωLOt) = a(t)cos[(ωIF +ωLO)t]

Therefore to obtain an input signal of a certain frequency ωd it is possible to feed
to the IQ mixer two signal with frequencies ωIF and ωLO, such that ωd = ωIF +ωLO.
Using the same logic it’s possible to carry out a down conversion too. If the I and Q
port of a second IQ mixer are probed to the output of the previous mixer, using the
same local oscillator it is possible to effectively down convert the output signal and
make it readable for standard electronic devices.
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FIGURE 5.12: Block diagram of an IQ mixer. The right ports indicate
the four input necessary to perform the IQ mixing. The I and Q port
are related to the "In phase" and "Quadrature" component of the input
signal, respectively, the LO port is the "Local Oscillator" and the 50 Ω
load port is an idle port of the system. The left port is the RF output
of the mixer, where the radio frequency signal up-converted or down-

converted is sent to the rest of the circuit.
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Josephson Digital Phase Detector: Potential energy

FIGURE 5.13: Schematic representation of the Josephson Digital
Phase Detector. The flux convention adopted in this section is indi-

cated in the figure.

To define the potential energy of the Josephson Digital Phase Detector (JDPD), let’s
consider its circuital representation in Fig. 5.13. Following the Lagrangian treat-
ment of electromagnetic circuits in Sec. 1.1, the system can be described by assign-
ing a flux to each branch of the circuits, following the convention portrayed in Fig.
5.13. The fluxes will be the position-like degree of freedom of the circuit, whose
Lagrangian is defined by the underlying expression:

L = EJ1cos
(

2π
Φ1

Φ0

)
−

Φ2
2

2L
+EJ2cos

(
2π

Φ3

Φ0

)
(5.2)

Considering the fluxes Φext
1 and Φext

2 provided by the external current lines to the
JDPD loops, the fluxes Φ1,Φ2,Φ3 across the branches have to respect the following
condition:

Φ1−Φ2 = Φext
1 (5.3)

Φ2−Φ3 = Φext
2

The latter conditions leads to relations between the phases across the superconduct-
ing branches of the circuit. By applying the flux-phase relation in Eq. 1.17, the
expressions in Eq. 5.3 can be rewritten in the following way:(

Φ0

2π

)
ϕ1−

(
Φ0

2π

)
ϕ2 = Φext

1 → ϕ1−ϕ2 =

(
2π

Φ0

)
Φext

1 (5.4)
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(
Φ0

2π

)
ϕ2−

(
Φ0

2π

)
ϕ3 = Φext

2 → ϕ2−ϕ3 =

(
2π

Φ0

)
Φext

2

To take advantage of the latter relations, let’s rewrite the Lagrangian in Eq. 5.2 in
terms of the phases:

L = EJ1cos (ϕ1)−
(

Φ0

2π

)2
ϕ2

2
2L

+EJ2cos (ϕ3) (5.5)

The two conditions in Eq. 5.4 allow to rewrite the Lagrangian of the whole circuit in
terms of only one variable. Therefore, the Lagrangian of the JDPD becomes a one
variable function that depends parametrically on the external fluxes Φext

1 and Φext
2 .

Taking the phase across the central linear inductor as the dynamical variable of the

system, and denoting Φext
1 = Φ1, Φext

2 = Φ2, ϕ2 = ϕ , EL =
(

Φ0
2π

)2
1
L , the Lagrangian

of the JDPD can be rewritten as follow:

L = EJ1cos

(
ϕ +

(
Φ0

2π

)
Φ1

)
−EL

ϕ2

2L
+EJ2cos

(
ϕ−

(
Φ0

2π

)
Φ2

)
(5.6)

Applying the trigonometric addition and subtraction rules the Lagrangian can be
rewritten:

L = EJ1

[
cosϕcos

(
2π

Φ0
Φ1

)
− sinϕsin

(
2π

Φ0
Φ1

)]
−EL

ϕ2

2L
+

+EJ2

[
cosϕcos

(
2π

Φ0
Φ2

)
+ sinϕsin

(
2π

Φ0
Φ2

)] (5.7)

To extract a more compact expression of the JDPD Lagrangian it is convenient to
introduce the following flux quantity:

Φ± =
π

Φ0
(Φ1±Φ2) (5.8)
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By replacing the single fluxes Φ1 and Φ2 with the sum and difference fluxes Φ+

and Φ−, the Lagrangian in Eq. 5.7 is rewritten by the underlying expression:

L = EJ1
[
cosϕcos (Φ++Φ−)− sinϕsin (Φ+−Φ−)

]
−EL

ϕ2

2L
+

+EJ2
[
cosϕcos (Φ++Φ−)− sinϕsin (Φ++Φ−)

] (5.9)

Applying the trigonometric addition and subtraction rules twice, we get to the under-
lying definition of the Lagrangian:

L = EJ1
[
cosΦ+cos (ϕ +Φ−)− sinΦ+sin(ϕ +Φ−)

]
−EL

ϕ2

2L
+

+EJ2
[
cosΦ+cos (ϕ +Φ−)+ sinΦ+sin(ϕ +Φ−)

] (5.10)

The Lagrangian of the JDPD is made up of terms that depends only on the phase
across the central linear inductor, which is the position-like degree of freedom of the
system. This means that the Lagrangian of the system is equal to the opposite of its
potential energy. By introducing EJ± = EJ1±EJ2 we get to the final definition of the
potential energy of the JDPD in Eq. 2.19:

U(ϕ) =
ELϕ2

2
−EJ+cos (Φ+)cos (ϕ +Φ−)−EJ−sin (Φ+) sin (ϕ−Φ−) (5.11)
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Python programs

In this appendix I have reported the Python codes used to study the JDPD dynamics.

JDPD potential energy

This script allows to portray how the tuning of Φ+, Φ− and β affects the JDPD
potential energy profile.

" " "

@author : Pasqua le M a s t r o v i t o

" " "

import numpy as np

from matplotlib import pyplot as plt

from matplotlib.widgets import Slider

phi_0 = 2.0*1e−15
L = 200e−12
E_l = phi_0**2 / (4.0 * np.pi**2 * L)
beta = 7

betap = beta*2
betam = 0

Icp = np.pi*E_l*betap/phi_0
Icm = np.pi*E_l*betam/phi_0
Ic_1 = (Icp + Icm)*0.5
Ic_2 = (Icp − Icm)*0.5
Ejp = phi_0 * Icp / (2.0 * np.pi)
Ejm = phi_0 * Icm / (2.0 * np.pi)
p = np.linspace(−2.0*np.pi, 2.0*np.pi, 1001)
k = phi_0/(np.pi*E_l)
phi_p = 0

phi_m = 0

u = ((p**2) − k*(Icp*np.cos(phi_p)*
np.cos(p+phi_m) +

Icm * np.sin( p + phi_m)*
np.sin(phi_p)))

fig, ax = plt.subplots()

plt.subplots_adjust(left=0.25,
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bottom=0.25)

l, = plt.plot(p, u, lw=2)

plt.ylim(−30,40)
plt.axis(’off’)

ax.margins(x=0)

axcolor = ’lightgoldenrodyellow’

axfluxp = plt.axes([0.25, 0.15,

0.07, 0.03], facecolor=axcolor)

axfluxm = plt.axes([0.55, 0.15,

0.07, 0.03], facecolor=axcolor)

axbeta = plt.axes([0.85, 0.15,

0.07, 0.03], facecolor=axcolor)

# S l i d e r range o f ph i_ + , phi_ − , b e t a

sfluxp = Slider(axfluxp, ’$\Phi_+$’, 0.0, 2*np.pi,
valinit=0, valstep=np.pi/31)

sfluxm = Slider(axfluxm, ’$\Phi_−$’, −2*np.pi, 2*np.pi,
valinit=0, valstep=np.pi/31)

senp = Slider(axbeta, r’$\beta$’, 2, 10,

valinit=0, valstep=1)

def update(val):

phi_p = sfluxp.val

phi_m = sfluxm.val

beta = senp.val

Icm = 0

betap = beta*2
El = phi_0**2 / (4.0 * np.pi**2 * L)
Icp = np.pi*El*betap/phi_0

k = phi_0/(np.pi*E_l)

pot = (p**2) − k*(Icp*np.cos(phi_p)*
np.cos(p+phi_m) +

Icm * np.sin( p + phi_m)*
np.sin(phi_p))

l.set_ydata(pot)

fig.canvas.draw_idle()
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sfluxp.on_changed(update)

sfluxm.on_changed(update)

senp.on_changed(update)

plt.show()

Spectroscopy circuit simulation

This script shows the expected resonance frequencies of the spectroscopy circuit for
different values of Φ+ applied to the JDPD. The β ratio of the JDPD and the flux
Φ− applied to it can be set by the user.

" " "

@author : Pasqua le M a s t r o v i t o

" " "

import numpy as np

from matplotlib import pyplot as plt

import matplotlib.colors as colors

from scipy.signal import find_peaks

plt.close(’all’)

# C o n s t a n t s

phi_0 = 2.0*1e−15
L = 200*1e−12
E_l = phi_0**2 / (4.0 * np.pi**2 * L)

def u(p,icp,icm,pp,pm):

pot = 0.5*(p**2)*E_l − phi_0*(icp*np.cos(p + pm)*np.cos(pp)
+ icm*np.sin(pp)*np.sin(p+pm))/np.pi

return pot

def duddp(p,icp,icm,pp,pm):

pot2 = E_l + (phi_0*(icp*np.cos(p + pm)*np.cos(pp)
− icm*np.sin(pp)*np.sin(p+pm)))/np.pi

return pot2

# R e s o n a t o r

f_0 = 6.8e9
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C_r = 1/(2*np.pi*50*f_0)
L_r = 50*50*C_r

# Beta r a t i o

beta = 7

betap = beta*2
betam = 0

# C r i t i c a l c u r r e n t f o r f i x e d b e t a and L

icp = np.pi*E_l*betap/phi_0
icm = np.pi*E_l*betam/phi_0
Ic_1 = (icp+icm)*0.5
Ic_2 = (icp−icm)*0.5

# F l u x e s and phase v a l u e s

n = 500

p = np.linspace(−2*np.pi, 2*np.pi, n)
pp_values = np.linspace(−np.pi, np.pi, n)
pm = 0

f_res = []

for i,pp in enumerate(pp_values):

U = u(p,icp,icm,pp,pm)

min_ind, _ = find_peaks(−U, distance=1)
min_p = p[min_ind]

min_u = u(min_p,icp,icm,pp,pm)

f_0_ar = []

for p_min in min_p:

L = pow(phi_0/(2*np.pi),2)/(duddp(p_min,icp,icm,pp,pm))
f_0 = 1/(2*np.pi*pow((L_r + L)*C_r ,1/2))*1e−9
f_0_ar.append(f_0)

f_res.append(np.array(f_0_ar))

nf = 201 # Grid t h i c k n e s s

f_sort = [np.sort(item) for item in f_res]

f_values = np.linspace(6.4,6.8,nf)
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f_graph = np.zeros((pp_values.size,f_values.size))

for o,item in enumerate(f_res):

for y,elem in enumerate(item):

index = np.where(f_values > elem)[0][0]

f_graph[o,index] = y+1

pp_mesh,f_mesh = np.meshgrid(pp_values ,f_values)

plt.figure(1)

plt.xlabel(r"$\Phi_{+}$",size=15)

plt.ylabel("$f_{res}$"+" $[GHz]$",size=15)

plt.title(r’$\Phi_{−}$= ’ + str(round(pm,2)) + ’ r$\beta=$’
+ str(beta))

cmap = colors.ListedColormap([’white’, ’green’, ’red’, ’blue’])

boundaries = [0, 1, 2, 3, 4]

norm = colors.BoundaryNorm(boundaries , cmap.N, clip=True)

plt.pcolormesh(pp_mesh, f_mesh, np.transpose(f_graph), cmap=cmap

, norm=norm)

tick_pos = np.linspace(−np.pi,np.pi,5)
labels = [’$−\pi$’, ’$−\pi/2$’, ’$0$’, ’$\pi/2$’ , ’$\pi$’]
plt.xticks(tick_pos,labels)

plt.show()

Height difference of the spectroscopy archs

This script evaluates the difference between the resonance frequency of the spec-
troscopy circuit for Φ+ = 0 and Φ+ = π applied to the JDPD.

" " "

@author : Pasqua le M a s t r o v i t o

" " "

import numpy as np

from matplotlib import pyplot as plt

import matplotlib.colors as colors

from scipy.signal import find_peaks

plt.close(’all’)
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# C o n s t a n t s

phi_0 = 2.0*1e−15
L = 200*1e−12
E_l = phi_0**2 / (4.0 * np.pi**2 * L)

def u(p,icp,icm,pp,pm):

pot = 0.5*(p**2)*E_l − phi_0*(icp*np.cos(p + pm)*np.cos(pp)
+ icm*np.sin(pp)*np.sin(p+pm))/(np.pi)

return pot

def duddp(p,icp,icm,pp,pm):

pot2 = 1*E_l + (phi_0*(icp*np.cos(p + pm)*np.cos(pp)
+ icm*np.sin(pp)*np.sin(p+pm))/np.pi)

return pot2

# R e s o n a t o r

f_0 = 6.8e9

C_r = 1/(2*np.pi*50*f_0)
L_r = 50*50*C_r

#Range o f v a l u e s f o r t h e b e t a r a t i o

beta_start = 1

beta_stop = 7

beta_values = np.linspace(beta_start ,beta_stop ,21) #

df = []

for beta in beta_values:

betap = beta*2
betam = 0

# C r i t i c a l c u r r e n t f o r f i x e d b e t a and L

icp = np.pi*E_l*betap/phi_0
icm = np.pi*E_l*betam/phi_0
Ic_1 = (icp+icm)*0.5
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Ic_2 = (icp−icm)*0.5

# F l u x e s and phase v a l u e s

n = 500

p = np.linspace(−2*np.pi, 2*np.pi, n)
pp_values = np.linspace(−np.pi, np.pi, n)
pm = 0

f_res = []

for i,pp in enumerate(pp_values):

U = u(p,icp,icm,pp,pm)

min_ind, _ = find_peaks(−U, distance=1)
min_p = p[min_ind]

min_u = u(min_p,icp,icm,pp,pm)

f_0_ar = []

for p_min in min_p:

L = pow(phi_0/(2*np.pi),2)/(duddp(p_min,icp,icm,pp,pm))
f_0 = 1/(2*np.pi*pow((L_r + L)*C_r ,1/2))*1e−9
f_0_ar.append(f_0)

f_res.append(np.array(f_0_ar))

nf = 201 # Grid t h i c k n e s s

f_sort = [np.sort(item) for item in f_res]

f_values = np.linspace(6.0,6.8,nf)

f_graph = np.zeros((pp_values.size,f_values.size))

for o,item in enumerate(f_res):

for y,elem in enumerate(item):

index = np.where(f_values > elem)[0][0]

f_graph[o,index] = y+1

pp_mesh,f_mesh = np.meshgrid(pp_values ,f_values)

# F i r s t arch h e i g h t

try:

f_p_pi = max(np.array([f_values

[np.where(f_graph[0,:]
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==1)[0][0]]

,f_values

[np.where(f_graph[0,:]

==2)[0][0]]

,f_values

[np.where(f_graph[0,:]

==3)[0][0]]]))

except:

try:

f_p_pi = max(np.array([f_values

[np.where(f_graph[0,:]

==1)[0][0]]

,f_values

[np.where(f_graph[0,:]

==2)[0][0]]]))

except:

try:

f_p_pi = f_values[np.where(f_graph[0,:]

==1)[0][0]]

except:

f_p_pi = f_values[np.where(f_graph[0,:]

==2)[0][0]]

# Second arch h e i g h t

try:

f_p_0 = max(np.array([f_values

[np.where(f_graph[int(n/2),:]

==1)[0][0]]

,f_values

[np.where(f_graph[int(n/2),:]

==2)[0][0]]

,f_values

[np.where(f_graph[int(n/2),:]

==3)[0][0]]]))

except:

try:
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f_p_0 = max(np.array([f_values

[np.where(f_graph[int(n/2),:]

==1)[0][0]]

,f_values

[np.where(f_graph[int(n/2),:]

==2)[0][0]]]))

except:

try:

f_p_0 = f_values[np.where(f_graph[int(n/2),:]

==1)[0][0]]

except:

f_p_0 = f_values[np.where(f_graph[int(n/2),:]

==2)[0][0]]

delta_freq = f_p_0 − f_p_pi
df.append(delta_freq)

print(beta)

print(delta_freq)

plt.figure()

plt.scatter(beta_values ,np.array(df)*1e+3)
plt.ylabel(r"$\Delta f$ " + " $[MHz]$", size = 25)

plt.xlabel(r’$\beta$’, size = 25)

plt.rc(’xtick’,labelsize=20)

plt.rc(’ytick’,labelsize=20)
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