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Introduction

Quantum Gravity (QG), is the theory that has the attempt to re-conciliate the Gen-
eral Relativity (GR) with the postulates of Quantum Mechanics (QM). Many theo-
ries try to resolve this conflict, such as Loop Quantum Gravity, Super-Gravity, Ge-
ometrodynamics, String Theory, etc. The principal issue is the non-renormalizability
of gravity. From every point of view, Quantum Gravity is related to fundamental
length scale where the smooth manifold model of spacetime does not work any-
more. The most powerful and intriguing framework to study this theory is the
String Theory, where the smallest object, the unit of matter, is the string, which
presents some important features such as

• The way the string is excited corresponds to different mass and spin of par-
ticles

• The string shares some likeness with black holes when it is highly excited

If we want to analyze more deeply on the small scale such as the Planck scale
(LP ), which represents the shortest length-scale of nature in Einstein’s gravity
[1], we reach energies able to create a black hole. The act of measuring a length
shorter than the Planck scale, would require such energy to lead to the formation
of a Schwarzschild radius black hole rs > LP long before we have any chance
to probe the distance itself. From this insight we will show that it is possible to
introduce a metric capable to bond the world of particles and black holes.
Not by chance that we focus on studying black holes. This physical system pro-
vides a deep link to General Relativity, due to high energy, and Quantum Me-
chanics, due to the point-like nature of the singularity of space time. Hence, a
step forward in physics will be achieved only in these extreme conditions where
these two parts of reality are intimately bonded.
Furthermore, the recent advances in astronomy near the event horizons, reached
thanks to the Event Horizon Telescope (EHT) collaboration [2]-[3]-[4]-[5]-[6]-
[7], allow new constraints on the shadow [8], thanks to analytic arguments as well
as numerical calculations, when shortly before it was only possible to test General
Relativity for compact binary objects [9]. Due to these progresses, every theory
that studies orbits, photon-spheres and shadows of these objects can be analyzed
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to show some possible observable deviations from General Relativity .
Coming back, there is an inconsistency between particles and black holes. The
problem is that the Compton wavelength of a particle decreases by increasing the
mass while the Schwarzschild radius of a black hole increases with its mass. It is
possible to conciliate these two aspects considering a suitable energy-stress tensor
that takes a natural cut-off in the limit of the Planck scale, in this way a minimum
limit is provided both to the Schwarzschild radius and to the minimum sondable
length. The last point is the foundation of the UltraViolet (UV) self-complete
Quantum Gravity theory. Using a particular metric from this theory [10], it is pos-
sible to recover an extremal configuration for a black hole with a length equal to
Planck.
But why are extremal configurations so important? Extremal configurations can
be descended from the introducing a fundamental length in the line element and
can be interpreted as a phenomenological input from Quantum Gravity. It is
shown that extremal configuration for black holes suits very well in the UV self-
complete scenario providing a stable, minimum size that explores the transition
point between particles and black holes. It has been shown that Planck size non-
commutative inspired black holes might have been produced during the inflation-
ary state of the Universe [11]. This has some hypothetical phenomenological
consequences, such as that extremal black holes turn out to be valid candidates
for the dark matter component.
Due to this characteristic, it is possible to circumvent the problem of singularity
in a black hole, because everything beneath this scale is meaningless and unsond-
able.
We will substitute the length of this extremal configuration with an arbitrary pa-
rameter. We study the behavior of the resulting case of a static, neutral black hole,
the most simple model to observe the behavior of the metric and its consistency.
Then we consider some astrophysical observables such as event horizons (EHs),
the innermost stable circular orbits (ISCO) of massive particles, the photon orbits
(PHS) and eventually the shadows.
Hence, by following the so-called Newman-Janis algorithm, we recover the ro-
tating nature of a black hole with a specific complexification of some parameters
[12]. Furthermore, with our metric, we investigate some differences with a Kerr
black hole. This will eventually provide corrections to the latter and moreover we
may find some constraints that will emerge from these studies.
This thesis is organized as follows:

• In the first Chapter, we introduce a discussion of what black holes are and
how we detect them. Furthermore we introduce the UV Quantum Gravity
theory that subtend our future considerations and provide us the metric to
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use.

• The second Chapter presents the study of a static black hole including event
horizons, circular photons and timelike orbits.

• The third Chapter is devoted to the study of a rotating black hole metric, a
more realistic case.

• In the fourth Chapter, we will study the shadow for the static case and the
rotating case of black holes as L0 varies.

• Finally, in the conclusions we summarize all the work and we investigate
whether and how the deviations can be observed.
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Chapter 1

Why Ultraviolet Quantum Gravity
metric?

1.1 Introduction to Black Holes

In this Chapter, we will approach the study of the behavior of a black hole with a
particular metric, but first of all, it is important to understand why to study a black
hole.
A black hole is a region of space-time that has such a strong gravitational field
that nothing, neither particles nor light, can escape from it.
These circumstances create the most accurate laboratory to study General Rela-
tivity and Quantum Mechanics, the biggest and the smallest description of nature,
unfortunately, incompatible each other.
Mainly, the problem is the contrast between the smooth description of the space-
time in General Relativity and its oscillations in Quantum Mechanics, due to the
Uncertainty principle [13]-[14].
Nowadays Quantum Gravity is the theory that attempts to resolve this conflict
with the introduction of a fundamental length which avoids the problem to con-
sider a dimensionless point object. Indeed we can recall one of the most fancy and
fascinating theory with this purpose, like the String Theory.
This theory was developed by mistake by Gabriele Veneziano in 1968, when he
saw some similarities of data regarding the Strong Nuclear Force with the beta
function of Eulero [15]. In 1970 this strangeness was explained with the intro-
duction of an elastic string between particles by Leonard Susskind, and Yochiro
Nambu [16]-[17]-[18]-[19]. But it was from the 1974 that theory showed all its
potential with the articles of John Schwarz and Joel Scherk [20]-[21]. From a
quantum point of view, String Theory predicts the existence of the never observed
graviton, the mediator of gravitational force, thanks to the introduction of a very
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small vibrating string close to the Planck length (10−33cm). But this is just the
beginning; the theory also predicts giant strings, the variable intensity of gravita-
tional force, hidden dimensions, cosmological explanations and other results, the
evidences of which are complicated to find with existing technology.
The black holes, which take into account small and large phenomena of reality,
provide the perfect background to test String Theory and other theories of Quan-
tum Gravity.
Now we will see the principal features that distinguish them from the other astro-
physical objects.

1.1.1 Black hole features
General Relativity predicts that any mass with an adequate small radius can form a
black hole, but there are few phenomena in nature that compress the matter spon-
taneously.
These extreme objects are mostly formed in the life cycle’s end of the stars with a
mass approximately of M ∼ 3M⊙ [22]. This seems to be the natural way to form
a black hole, at least for the stellar-mass ones.
The process begins when the nuclear reactions, which merge all the nucleus of the
soft atoms from the hydrogen to steel in the stars, are not enough to resist gravita-
tional force. Besides the stellar-mass black hole, it is estimated that, at the centre
of the majority of the galaxies, there are supermassive black holes of millions of
solar masses, but they are not the only ones. We will divide them into categories,
but now we see their properties.
Some features are in common with all the black holes [22].
In the outermost part of a black hole, the matter in the vicinity of a black hole is so
heated, by the friction of its strength, that it forms a region called "accretion disk"
formed by diffuse material in orbital motion around it. The matter in unstable
orbits will spiral towards the central body increasing the total mass of the black
hole.
The matter, before falling into the center of the black hole, passes through a
boundary called "event horizon". This region is described as the boundary of
the black hole within which the escape velocity is greater than the speed of light,
beyond which it is impossible to go back. It is literally a point of no return and
it is the first ’apparent’ singularity that an object encounters towards the center of
the black hole.
At the center of the black hole, the General Relativity predicts a "singularity"
where all the laws of physics break down. The energy density is infinite and this
suggests that the theory is no longer valid to describe a black hole at those scales.
After a first generic description, let us now study black holes in more detail.
In general, the black holes have to respect the No-Hair theorem that states that
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they can be described by only three externally observable classical parameters
(for this reason we say that they have ’no hair’) : mass M , electric charge Q, and
angular momentum J , that follow the relation

M2 −
(
J2/M2

)
−Q2 ≥ 0

where G = c = 1. For the parameters that obey this relation we have a unique
solution of black hole for Einstein-Maxwell equations.
The first exact solution have been developed in 1916 by K. Schwarzschild [23]. It
is about the study of Einstein’s equations of a static symmetrical body in vacuum.
Only the mass, of the three parameters that define a black hole, has been consid-
ered in the solution.
We introduce a metric tensor gµν which defines the notions of distance, angle and
curvature, so describes how space-time changes due to the presence of an object.
Explicitly Schwarzschild metric can be written in spherical coordinates as

ds2 =

(
1− 2GM

c2r

)
c2dt2 −

(
1− 2GM

c2r

)−1

dr2 − r2dθ2 − r2sin2θdϕ2

Where G is the gravitational constant, c is the speed of light and M is the mass of
the considered object. This solution is singular in r = 0, where we have the so-
called singularity, but it also contains an ’apparent’ singularity in r = rs, where
we have the event horizon at the Schwarzschild radius rs = 2GM/c2 derived for
gtt = g−1

rr = 0.
The event horizon is an apparent singularity because, with an adequate coordinate
system called Eddington-Finkelstein coordinates [24], we can observe how it is
traversable, reducing the singularity only to a problem of choice of the reference
system. This exact solution is a useful approximation to study slowly spinning
black holes, but unfortunately, real black holes are rotating, so we have to use
another more complicated solution.
Indeed, in this case we have to introduce also a rotation parameter of the black
hole describing its angular momentum. For this reason we use another solution
developed by R. P. Kerr in 1963 [25], which represents the most realistic case.
It describes the geometry of an axially-symmetric black hole, and it is also an
exact solution of the Einstein equations despite its very highly non linear form.
The Kerr metric describes the geometry of space-time in the vicinity of a mass
M rotating with angular momentum J . We write it in Boyer-Lindquist coordi-
nates, which represent a generalization of the coordinates used for the metric of a
Schwarzschild black hole. The metric has the following form
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ds2 = −
(
1− 2Mr

Σ

)
dt2 − 4Mrasin2θ

Σ
dtdϕ+

Asin2θ

Σ
dϕ2 +

Σ

∆
dr2 + Σdθ2

The coordinates r, θ andϕ are standard oblate spheroidal coordinates.
Here it was considered G = c = 1, Σ = r2 + a2cos2θ, ∆ = r2 − 2Mr + a2 and
A = (r2 + a2)

2 −∆a2sin2θ, where M is the mass and a is the rotation parameter
linked to the angular momentum as J = aM .
In addition to the central singularity for r = 0, unlike the case of Schwarzschild
metric, we have two event horizons, derived by gtt = g−1

rr = 0, for

r− =
rs +

√
r2s − 4a2

2
r+ =

rs +
√
r2s − 4a2cos2θ

2

we can see how the horizons of events touch each other at the poles for θ = π/2.
The region between these two surfaces is called "ergosphere". This region is lit-
erally a vortex of the space-time. The matter, in this region, has the possibility
to escape from the ergosphere, because it is still outside the inner event horizon
but it cannot escape radially because of the strength of the vortex inside the outer
event horizon.
If we want to include also the electric charge, in that case we use the Kerr-Newman
solution [26].
This is the way we can infer the gravitational field of the black holes in the Gen-
eral Relativity. But that is not enough, the theory cannot explain problems such as
those relating to the central singularity.
For this issue, it is considered that an efficient model for their explanation will be
only an adequate theory that also accounts for Quantum Mechanics because of the
point-like nature of the singularity, i.e. Quantum Gravity.
A theory, which also fully includes Quantum Mechanics in General Relativity,
will provide more explanations than now.
When we account for Quantum Mechanics, even at a basic level, something strange
happens as S. Hawking found out in 1975 [27]. Before that, a black hole was
thought to be eternal, but later we realized that it actually evaporated with the so
called Hawking radiation. The idea is that, from the vacuum of space, pairs of
particles are created, but near the event horizon, some can escape from it forming
an emission when their partners are trapped in it.
The debt in energy for the void is paid by the black hole that decreases its mass
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increasing its temperature. This process is inversely proportional to the mass and
the effect time for a common black hole is more larger than the age of the entire
Universe.

1.1.2 Mass, a first discriminant
Now, we will list the main classes of black holes we know about. There are
principally four types of black holes, divided by mass and formation [22]:

• Stellar-mass black holes are the most understood of this kind, they are gen-
erated by the collapsing of a massive star approximately between ∼ 3M⊙
and ∼ 30M⊙. The lower limit is given by the Tolman-Oppenheimer-Volkoff
limit, which give an upper bound to the mass of cold, non-rotating neutron
stars. If the mass of the collapsing core of the star is larger of this limit, one
expects a formation of a black hole.

• Intermediate-mass black holes , as the name suggests, lie between stellar-
mass and supermassive black holes. They have been observed from
∼ 60M⊙ to ∼ 130M⊙, also if they are usually defined as black holes with
a mass of up to 105M⊙ [28]. They are formed by the merging of various
stellar-mass black hole.

• Supermassive black holes are giant of their kind, they overpass 105M⊙ and
there are only theories for their genesis. Their formation is thought to be
due to the fusion chain of black holes and stars, but their origin is mostly
unknown.
Their core incorporate more and more material from the outside until they
eventually are collocated at the centre of the galaxies, such as Sagittarius A
at the centre of the Milky Way (our galaxy) with a mass of 4 × 106M⊙ or
M87 at the centre of Virgo cluster with a mass of 6, 6 × 109M⊙ [7]. The
latter is the first black hole directly observed in 2019 by the EHT [2]-[7].

• Primordial black holes, they are only hypothetical and were probably born at
the beginning of the Universe, in the first second after the Big Bang, when
the Universe was not yet homogeneous and some parts of the space-time
were rich in energy. They have a mass up to ∼ M⊙ and can be a possible
explanation to supermassive black holes. There is a lower limit in mass in
order that the Hawking radiation allows their existence. It can be estimated
that black holes with a mass of about ∼ 5 × 1014g would not resist until
now.
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1.1.3 How to detect them?
There are some indirect ways to see them, here we list some of.
Because of their gravitational strength, the black holes influence the matter in
their vicinity, forcing it to warm up until huge temperatures. So, the emission of
particles at great intensity is the first sign of the presence of a black hole. This
emission lies in the spectrum of the X-rays. Unfortunately, the atmosphere is a
wall for this interval, but thanks to telescopes in orbit, it is possible to detect them.
In this way, we have detected a binary system of a black hole and a companion
star, Cygnus X-1 [29], composed of a supergiant blue star and a stellar mass black
hole of ∼ 14, 8M⊙ according to the last estimates [30]. The latter was the first
indirect evidence of a black hole in 1971.
Another suspicion of their presence is due to the orbits of the stars around a gravi-
tational center and the lensing effect that produces multiple images in the Celestial
sphere [31]. From their orbits it is possible to recover the mass of the gravitational
centre. If the mass exceeds three solar masses, it is likely the presence of a black
hole.
In the end, there is the study of the gravitational waves. They are formed when
two or more black holes are merging each other. This movement is so violent that
the space-time is altered because of their increasing orbital velocity to the apex
of the merging, producing gravitational waves such as those detected from LIGO
and Virgo collaborations in 2016 [32].
LIGO and Virgo [33]-[34] are huge observatories respectively of 4 km and 3 km,
L-shaped, situated in Louisiana, Washington and Pisa. The technology of the ob-
servatories is based on laser interferometry of Michelson in which there are two
arms with two laser beams inside, in the infrared, which interfere. When a grav-
itational wave is detected, there is a phase displacement that produces a signal.
In 2016 we have observed for the first time the merger of two stellar-mass black
holes, one of ∼ 29M⊙ and the other of ∼ 36M⊙.
Thanks to the increase of the technology, now it is possible also to see directly the
image of a black hole.
It was in 2019 that Event Horizon Telescope [3] announced the first image of M87,
a supermassive black hole in the Virgo constellation. It is the most large telescope
in humanity’s history, and it uses very-long-baseline interferometry (VLBI) sta-
tions around Earth.
The dimension of this virtual telescope is large as the Earth, and operates at
the nominal operating wavelength of λ ∼ 1.3mm with an angular resolution
of λ/D ∼ 25µas, where D is the virtual telescope’s diameter.
In the future, the aim of the collaboration is to improve the data reducing the ob-
servational wavelength and so the angular resolution.
This is the wavelength where the EHT is well established to observe the imme-
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diate nearby of the black holes. The shorter are the observable wavelengths, the
more challenging are the difficulties due to noise in electronics and the decreased
efficiency of radio telescopes [2]. The angular resolution has reached such a de-
gree of sensitivity, that for comparison, is the same as observing of one of the
dimples of a golf ball in Los Angeles from New York.
Every day the possibility to test Quantum Gravity theories in the details is becom-
ing ever and ever more solid and Sagittarius A will be soon the next to observe,
providing us to have a further way to discriminate the various theories emerging.
Comforted by the increase of these technologies, we approach the study of the
Ultraviolet Quantum Gravity.

1.2 Ultraviolet Quantum Gravity

This chapter aims to introduce an appropriate metric to study a case in which
there is a fundamental length, the Planck scale, which we consider as the length
of a black hole’s extremal configuration.
We want to use the Ultraviolet (UV) Quantum Gravity because it provides a so-
lution for the problem of the black hole’s singularity, as it provides a wall to
observations in the Planckian and sub-Planckian length scale, as mentioned above
in the Introduction, making it unnecessary to ask what happens to the scales of a
singularity.
This is the foundation for some further generalizations, such as the use of an arbi-
trary scale for the extremal configuration as we will do. This argument is largely
based on the paper [10] which is the framework of this work.

1.3 From energy density to metric

In this section we look for a metric that takes into account the transition from par-
ticles and black holes.
Building step by step a tensor with all the features of interest, we search an ad-
equate form for energy density of Einstein’s equations. This particular tensor
allows for passages between particle-like objects and black holes, as UV self-
complete Quantum Gravity requires (Figure 1.3) to get a consistent metric.
The general energy density for a point-particle in spherical coordinates is

ρr =
M

4πr2
d

dr
θ(r) (1.1)

The energy distribution (1.1) in this form, for the moment, implies a black hole for
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Figure 1.1: This shows a plot of length in function of energy. Particles (dot-
ted line) and black holes (solid line) cannot probe length shorter than the Planck
length, the area represented by a grey box. This picture is taken in P. Nicolini and
E. Spallucci [10], see Figure 1 there

every value of mass M , also for values under the Planck scale where we expect
just particles. θ(r) is the function of Heaviside tied to delta Dirac as

δ(r) =
d

dr
θ(r) (1.2)

Particles and black holes can be accounted for by modifying the energy distribu-
tion acceptably, such as to tame the ambiguities of the Schwarzschild metric in the
near-Planckian regimes. This can be achieved by considering a smooth function
h(r) instead of the Heaviside step

θ(r) → h(r) (1.3)

Then the new energy density becomes

ρr =
M

4πr2
d

dr
h(r) ≡ T 0

0 (1.4)
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The other components of the stress tensor are determined from the conservation
equation ∇µT

µν = 0 which turns out to be of the form

T µ
ν = diag(−ρ, pr, p⊥, p⊥) (1.5)

Where pr is obtained from the equation of state −ρ = pr and the angular pressure
is specified by the conservation of the stress tensor p⊥ = pr+

r
2
∂rpr. By inserting

the tensor in Einstein equations, one finds that the metric is (for G = 1)

ds2 = −
(
1− 2m(r)

r

)
dt2 +

(
1− 2m(r)

r

)−1

dr2 + r2dΩ2 (1.6)

with

m(r) = 4π

∫ r

dr′(r′)2ρ(r′) (1.7)

We can see that some properties are fulfilled such as that at large distances r >>
LP , the above energy density has to vanish in order to preserve the vacuum case
of Schwarzschild metric. Conversely, at shorter distances r ∼ LP , the density
ρ(r) (and accordingly h(r)) has to fulfil the following requirements:

• No curvature singularity in the core;

• Self-implementation of a characteristic scale l0 equal to the extremal con-
figuration r0 ;

the aim is just to use r0 as fundamental scale, not considering of any l0 that comes
out from any theory not arising from Einstein field equations. Since there is noth-
ing beyond Planck Scale providing us a natural limit, we setting r0 = LP .
In this way it is achieved the first requirement and implemented the second con-
dition. At this point, the resulting extremal black hole is just the smallest object
one can use as unity of distance in physics. In this way, for the UV self-complete
Quantum Gravity, it is not physically meaningful to ask about curvature singular-
ity inside the horizon because the spacetime that we consider is no longer defined
below this length scale. The most natural choice for h(r) it is then

h(r) = 1− L2
P

r2 + L2
P

(1.8)
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and substituting this in (1.1), it is obtained the quantity

ρ(r) =
M

2πr

L2
P

(r2 + L2
P )

2 (1.9)

finding the following metric that models a particle-black hole system

ds2 = −
(
1− 2ML2

P r

r2 + L2
P

)
dt2 +

(
1− 2ML2

P r

r2 + L2
P

)−1

dr2 + r2dΩ2 (1.10)

where M is defined as

M =
1

2L2
P rh

(
r2h + L2

P

)
(1.11)

M has the physical meaning of mass for a spherical, holographic screen with ra-
dius rh.
In the framework of this theory, the physics in three-dimensional space can be
projected on a two-dimensional "viewing screen" with no loss of information [35].
There are some intriguing arguments on behalf of holographic theory, such as the
question that the the maximum entropy is proportional to the area and not to the
volume of the region [36] and the question that the dynamic of the three dimen-
sional space can be projected in a "viewing screen", a large region that represents
the boundary of our Universe that can be regarded to be a flat space at infinity
[37].
Some remarks are worth to see for this metric such as that we have M =MP only
if rh = LP and that the metric (1.10) admits a pair of horizons given from

r± = L2
P

(
M ±

√
M2 −M2

P

)
(1.12)

ForM =MP the two horizons meet each other in r± = r0 = LP . ForM >> MP

the outer horizon approaches the shape of the Schwarzschild case.
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Chapter 2

Static case "Schwarzschild like"

In this Chapter, as ground for the development of the work, we take the UV metric
and substitute the Planck length LP with a free parameter L0, in this way it is
provided an extremal configuration no more fixed.
The behavior of a black hole emerging from this metric will be the subject of this
thesis.
Then we analyze the resulting horizons and photonspheres to run the parameter
L0 for the static case [38]. These quantities will be more closely probed thanks
also due to recent advances in gravitational waves astronomy, besides EHT [2]-
[7], we can see a development on data from LIGO collaboration [39] and from
LISA collaboration [40].
Hence, there is a chance that can be possible to distinguish between near-horizons
physics of classical black hole and potentially astrophysical mimickers.

2.1 Event Horizon

Taken the following metric

ds2 = −
(
1− 2MGr

r2 + L2
0

)
dt2 +

(
1− 2MGr

r2 + L2
0

)−1

dr2 + r2dΩ2 (2.1)

where G = L2
P , ℏ = 1, c = 1 and M is defined as

M =
1

2L2
0Grh

(
r2h + L2

0

)
(2.2)

L0 represents our fundamental length, and in this case, the deviation from the
Schwarzschild metric.
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(Note that for L0 = 0, Schwarzschild metric is recovered, for L0 = LP we can
recover the metric (1.10) ).
It is possible to obtain the event horizons from the identity

gtt = 1− 2MGr

r2 + L2
0

= 0 (2.3)

Before to continue, we can see how to re-normalize this equation to introduce
some unit of measure. Since G = L2

P , we can write all in function of Planck’s
mass and length.

= 1− 2(MLP )(rLP )
L2
P

L2
P
(r2 + L2

0)
= 0

= 1− 2(M/MP )(r/LP )

(r/LP )2 + (L0/LP )2
= 0

= 1− 2M(MP )r(LP )

r2(LP ) + L2
0(LP )

= 0

(2.4)

Considering that MP ∼ 10−38M⊙ and that LP ∼ 10−38km we can write indis-
tinctly also in these new units

gtt = 1− 2M(M⊙)r(km)

r2(km) + L2
0(km)

= 0 (2.5)

Adimensionally we have the solution

r2 + L2
0 − 2Mr = 0 (2.6)

Plotting before the plots with M fixed and then those with L0 fixed, we can see
the difference for different unit of measures
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Figure 2.1: In black line is represented the outer horizon, in black dotted line
the Cauchy horizon, in gray point and line the Schwarzschild horizon. They are
plotted as r versus the free parameter L0 while M = 10−22M⊙ and M = 1M⊙
above and as r versus the parameter M while L = 1016LP and L = 1LP below.

22



Figure 2.2: Here is shown the behavior of the horizons when all the three param-
eters are free and adimensional for an M = 5

From these graphs we can see that the longer the fundamental length L0 the longer
is the deviation from the static case reached for L0 = 0.
The maximum of L0 is provided from the maximum of M since 0 < L0 < M .
We have seen also the case of 1016LP = 10−19m, the minimum distance reached
from LHC with an energy of ∼ 14TeV [41]. This distance can be deduced by the
formula of photon’s energy

E = hν = h
( c
λ

)
−→ λ =

hc

E
(2.7)

where we obtain a value of the minimum distance investigated of ∼ 1016LP .
In this case we can see that the maximum difference from the static case, for a
mass of 1016MP = 10−22M⊙, is only of 1016LP = 10−19m.

23



2.2 Effective Potential

For the study of photonsphere is useful to start from the vector tangent to world-
line for a massive and a massless particle [38].

gµν
dxµ

dλ

dxν

dλ
= −

(
1− 2Mr

r2 + L2
0

)(
dt

dλ

)2

+

(
1− 2Mr

r2 + L2
0

)−1(
dr

dλ

)2

+r2
(
dΩ

dλ

)2

= ϵ

where ϵ ∈ {−1, 0}, −1 corresponds to massive particle while 0 corresponds to
massless particle.
Thanks to the presence of the time and the angular Killing vector, we can define
the quantities

E =

(
1− 2Mr

r2 + L2
0

)
dt

dλ
L = r2

dϕ

dλ
(2.8)

corresponding to the energy and the angular momentum of the particle. Substitut-
ing them in (2.2) we obtain

E2 =

(
dr

dλ

)2

+

(
1− 2Mr

r2 + L2
0

)(
L2

r2
− ϵ

)
(2.9)

If we set up the metric with θ = π/2. We can identify an effective potential for
geodesic orbits

Vϵ =

(
1− 2Mr

r2 + L2
0

)(
L2

r2
− ϵ

)
(2.10)

2.3 Existence of Photonsphere

For photonsphere orbits we can set ϵ = 0 and get

V0 =

(
1− 2Mr

r2 + L2
0

)
L2

r2
(2.11)

Since for dr/dλ = 0 we have some turning points, a minimum for V0 can give
the circular orbit for a massless particle. So we study the first derivative of an
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effective potential

V ′
0 =

2L2(L4
0 + r3(r − 3M) + L2

0r(2r −M))

r3(L2
0 + r2)2

(2.12)

the location of a circular photon orbit, is given implicitly by the equation

L4
0 + r3(r − 3M) + L2

0r(2r −M) = 0 (2.13)

Rewritten before for M fixed and then with L0 fixed, it provides for the following
plots:

Figure 2.3: In black line is represented the outer horizon, in black dotted line
the Cauchy horizon, in gray Schwarzschild horizon, in orange the Schwarzschild
photonsphere, in blue line the photonsphere, in blue dotted line the photonsphere
of CMOs. Above we have the adimensional graphic for M = 1 and the case of
M = 10−22M⊙ in function of L0, below we have the adimensional graphic for
L0 = 1 and the case of L = 1016LP in function of M
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It is possible to identify the region of existence of the photonsphere for r > 1,
from the point where there is the encounter of photonsphere and event horizon. It
is possible to discriminate also the Compact Massive Objects (CMOs) for L0 > 1
e M < 1.
For L0 = 1, we have compact massive objects for 0.9083 < M < 1.
For example, in the dimensional case, if L0 = 1016LP , we can have CMOs for a
range between 0.9083× 10−22M⊙ < M < 10−22M⊙.
Furthermore we can see that also in this case for L0 = 0, we recover the photon-
sphere of the static case.

2.4 Stability and Instability of photon orbit

To control the stability of the circular orbits for null trajectories we have to study
the second derivative of the effective potential

V ′′
0 =

2L2(3L6
0 + 3r5(−4M + r) + L4

0r(−2M + 9r) + L2
0(−6Mr3 + 9r4))

r4(L2
0 + r2)3

(2.14)

We can check that for circular photon orbits, in the case which M = 1 we have
V ′′
0 < 0 for value L0 < 1.10091.... Substituting this value in (2.13) it obtains
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rph = 1.61603... so we have that for the point (rph, L0) ≃ (1.61603..., 1.10091...)
that V ′′

0 = 0.
Hence, we have existence and instability in the region rph ∈ (1, 1.61603...) and
existence and stability in rph ∈ (1.61603...,∞).

2.5 Timelike circular orbits

For these orbits we have to come back to the effective potential (2.10), and substi-
tute ϵ = −1. In this way we consider all massive particles

V−1 =

(
1− 2Mr

r2 + L2
0

)(
L2

r2
+ 1

)
(2.15)

As done for the massless case, we have to study the first derivative to put equal to 0

V ′
−1 = −2 (L4

0L
2 −Mr5 + L2

0 (Mr3 + L2r(2r −M)) + L2r3(r − 3M))

r3 (L2
0 + r2)

2

(2.16)

So all the timelike circular orbits have to satisfy the following equation

L4
0L

2 −Mr5 + L2
0

(
Mr3 + L2r(2r −M)

)
+ L2r3(r − 3M) = 0 (2.17)

From a physical point of view, we require that 0 ≤ L2 <∞, so we get the angular
momentum

L2 =
Mr5 − L2

0Mr3

r4 − 3Mr3 + 2L2
0r

2 − L2
0Mr + L4

0

(2.18)

Now it is possible matching all the values of L2 with the previous plots
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Figure 2.4: In black line is represented the outer horizon, in black dotted line
the Cauchy horizon, in gray line the Schwarzschild horizon, in orange line the
Schwarzschild photonsphere, in blue line the photonsphere, in blue dotted line the
photonsphere of CMOs. It is represented the time like orbits as L2 changes, the
above plot for M = 1, that below for L0 = 1
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Chapter 3

Rotating metric with Newman-Janis
Algorithm

Completed the study of the static case, we demand what happens if we investigate
the more realistic case of the rotating metric and, to do it, we can use an algorithm
called of Newman-Janis. The Newman-Janis algorithm (NJA for simplicity) is a
procedure to obtain a rotating metric from a non rotating one. Despite its sim-
plicity, it is not quite clear why it is so successful. After the original discovery of
the Kerr metric [25], Newman and Janis [42] showed that this solution could be
derived by making an elementary complex transformation to the Schwarzschild
solution. In this way it was been derived also the solution for a rotating and
charged black hole from the Reissner-Nordstrom metric.
There is such a debate on the functioning of this algorithm that seems very suc-
cessful for exterior solutions but not the same one can say for the interior ones.
We can recall such attempts for example in the work of S. P. Drake and R. Tur-
olla [43], where they were searching an interior metric that could be matched
smoothly with the exterior one but with some lack on an acceptable physically
reasonable seed metric; or in the work of Stefano Viaggiu [44] where starting
from the Schwarzschild solution, he recovers the interior Kerr solution with the
application of the NJA and where he studies the slowly rotating limit.
The issue of not finding an acceptable interior solution reflects the fact to find a
physically reasonable source for the Kerr solution due to the several restrictions
to impose, among the most important, the fact that it has to be a non radiating
source and moreover, in the limit of the static case, it has to recover the interior
Schwarzschild solution.
Although the perfect fluid source is the most natural choice, it seems that an
anisotropic source it is a reasonable candidate for the interior solution at least for
an oblate spheroid in Kerr metric until to the fifth grade of a perturbative parame-
ter as shown in the work of P. Florides [45]. Nevertheless this does not implicate
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that a perfect fluid it cannot be found at all.
Hence, the study of the consistencies between the exterior and interior solution
is very important to provide a generalization of the algorithm and also a reason
to why it is so successful. This lack of a generalization is also a reason to why
the NJA is not working in some theories as for instance in rotating Dilaton-axion
Black Hole and BraneWorld in the work of R. Canonico, L. Parisi and G. Vilasi
[46].
Although its imperfections, NJA is a very powerful tool to get a rotating geom-
etry. According to [47] the particular choice of the complexification used in the
standard NJA to generate the Kerr-Newman solution are not arbitrary, but in fact
could be chosen in no other way in order for the NJA to be successful at all. This
provides a sense on the use of the algorithm.
In this work we do not focus on the why NJA works, but we will introduce a
general procedure for it in section 1 and the consecutive application to our met-
ric in section 2. Then we will approach the study of event horizons (EHs) and
photonsphere (PHS) of this new rotating metric in section 3 and 4.

3.1 Four steps for Newman-Janis Algorithm

We treat the NJA as a four-step procedure to generate new solutions of Einstein’s
equations from a general static spherically symmetric body. In the following it is
presented the procedure:

• We start from a symmetric line element [48]:

ds2 = e2ϕ(r)dt2 − e2λ(r)dr2 −H(r)dΩ2

= G(r)dt2 − dr2

F (r)
−H(r)dΩ2

(3.1)

Using the Eddington-Finkelstein coordinates u, r, θ, ϕ, where

u = t− r∗ (3.2)

and dr∗ = dr/
√
GF , the above line element can be written as

ds2 = G(r)du2 +

√
G(r)

F (r)
dudr −H(r)dΩ2 (3.3)
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• Express the contravariant form of the metric in terms of a null tetrad

gµν = lµnν + lνnµ −mµm̄ν −mνm̄µ (3.4)

where lµlµ = mµm
µ = nµn

µ = lµm
µ = nµm

µ = 0 e lµnµ = −mµm̄
µ = 1

( in this case x̄ is the complex conjugate of the general quantity x ) for the
spacetime (3.3) the null tetrad vectors are

lµ = δµ1

nµ =

√
F

G
δµ0 − 1

2
Fδµ1

mµ =
1

2H

(
δµ2 +

i

sinθ
δµ3

) (3.5)

It is also convenient to use the tetrad notation introduced by Newman and
Penrose for null tetrad vectors as Zµ

a = (lµ, nµ,mµ, m̄µ) a = 1, 2, 3, 4

• Extend the coordinates xρ to a new set of complex coordinates x̃ρ

xρ → x̃ρ = xρ + iyρ (xσ) (3.6)

where yρ (xσ) are analytic functions of the real coordinates xσ and simulta-
neously let the null tetrad vectors Zµ

a undergo a transformation

Zµ
a (x

ρ) → Z̃µ
a (x̃

ρ, ¯̃xρ) (3.7)

It is required that the transformation recovers the old tetrad and metric when
x̃ρ = ¯̃xρ . The effect of this tilde transformation is to create a new metric
whose components are (real) functions of complex variables such that

gµν → g̃µν : x̃× x̃ → R (3.8)

• The new metric is obtained from the particular choice of complexification
chosen by Newman and Janis to generate the Kerr-Newman metric

xρ → x̃ρ = xρ + iacosx2 (δρ0 − δρ1) (3.9)
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in this case we use the complex increment

r → r′ = r + iacosθ

u→ u′ = u− iacosθ
(3.10)

Obtaining the null tetrad vectors

lµ = δµ1

nµ =

√
F

G
δµ0 − 1

2
Fδµ1

mµ =
1

2H

(
iasinθ (δµ0 − δµ1 ) + δµ2 +

i

sinθ
δµ3

) (3.11)

From these identities is possible to recover the general form of the trans-
formed metric with the formula (3.4). We see that this procedure is the
same as acting directly on the parameters of the metric written in Eddington-
Finklenstein coordinates, so we have to write it only in the appropriate co-
ordinates.
Hence we recall that in the simple case of G = F and H = r2 the metric in
Eddington-Finklenstein coordinates can be written

ds2 = G(r)du2 + 2dudr − r2dΩ2 (3.12)

3.2 Application of Newman-Janis Algorithm

Taking our metric

ds2 =

(
1− 2Mr

r2 + L2
0

)
dt2 +

(
1− 2Mr

r2 + L2
0

)−1

dr2 + r2dΩ2 (3.13)

we write it in Eddington-Finkelstein coordinates as follows

ds2 = G(r)du2 + 2dudr − r2dΩ2 (3.14)

where

G(r) = 1− 2Mr

r2 + L2
0

(3.15)
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Employing the above steps for applying NJA, it is introduced the complex incre-
ment

r → r′ = r + iacosθ (3.16)

where a is the rotation parameter. Then G(r) is complexified as

G(r, θ) = 1− 2Mr

Σ + L2
0

(3.17)

Where Σ = r2 + a2cos2θ.
For our porpouse we focus only on components gtt and grr, both of them are
essential to recover the trends of the event horizons and the photonsphere. It is
possible to write the components in Boyer-Lindquist from Eddington-Finkelstein
coordinates as

gtt = G(r, θ) grr =
Σ(r, θ)

Σ(r, θ)G(r, θ) + a2sin2θ
(3.18)

obtaining explicitly

gtt = 1− 2Mr

Σ + L2
0

grr =
Σ2 + ΣL2

0

Σ2 + Σ(L2
0 + a2sin2θ − 2Mr) + L2

0a
2sin2θ

(3.19)

3.3 Event Horizons for the rotating case

Now we have all the tools for the study of EHs. For the sake of understanding it
is reminded, in the following, the inner and outer horizons of Kerr metric

1/grr = 0 → rint =
2M +

√
2M − 4a2

2
gtt = 0 → rout =

2M +
√
2M − 4a2cos2θ

2

To note that the above our components for L0 = 0 recover exactly, as have to, the
Kerr metric.
Returning to our metric, see how the parameters L0,M and a are related from the
domain of existence for gtt = 0, that provide the condition
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M2 − L2
0 − a2 > 0 (3.20)

This relation is verified for intervals

0 < L0 < M,

−
√
M2 − L2

0 < a <
√
M2 − L2

0

Choosing an average value of a as

a =
1

2

√
M2 − L2

0 (3.21)

and respectively fixed the values for M and L0, we can plot the results for θ = 0
and θ = π/2, in the adimensional and dimensional cases.
The horizons 1/grr = 0 → rint and gtt = 0 → rout assume the shape

34



Figure 3.1: In black line is represented the outer horizon for θ = 0, in black dotted
line the inner horizon for θ = 0, in red line the outer horizon for θ = π/2, in red
dotted line the inner horizon for θ = π/2.
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The colours distinguish the viewing angle. The horizons at θ = 0 in black are
overlapping not only for L0 = 0, as have to from the results of General Relativity,
but also for every value of L0.
In red we have the horizons at θ = π/2, in both cases we note a decreasing
behavior in function of L0.
Also in this case we can appreciate differences for only large value of L0, in this
unrealistic case we can appreciate differences ∼ km for L0 = 1km.
In the graphs below, we can note the trend for L0 fixed, and we can see as the
ergosphere, the region between the outer and the inner horizon, is more large for
bigger value of the mass.

3.4 Photon orbits for the rotating case

Last but not least, we approach the calculation of Photonsphere [22]. Restricting
ourselves to the orbital, easier, case θ = π/2, the metric assumes the form

ds2 = gttdt
2 + 2gtϕdtdϕ+ gϕϕdϕ

2 + grrdr
2 (3.22)

or explicitly

ds2 =

(
1− 2Mr

∆L0

)
dt2 +

(
4aMr

∆L0

)
dtdϕ−

(
r2∆L0

∆− 2Mr3

)
dr2

−
(
∆+ 2Mra2

∆L0

)
dϕ2 (3.23)

Where ∆L0 = L2
0 + r2 and ∆ = ∆L0(a

2 + r2) = ∆L0∆a. This metric is indepen-
dent of the coordinates t and ϕ and so we immediately have the two Killing vectors

ξ(t) = (1, 0, 0, 0)

ξ(ϕ) = (0, 0, 0, 1)
(3.24)

We choose the affine parameter λ along the trajectory so that pµ = ẋµ = dxµ/dλ.
Then the conserved quantities, the energy E and angular momentum L, are

E = −ξ(t)µpµ = −gttṫ− gtϕϕ̇

L = ξ(ϕ)µp
µ = gtϕṫ+ gϕϕϕ̇

(3.25)

36



explicitly

E = −
(
1− 2Mr

∆L0

)
ṫ−

(
2aMr

∆L0

)
ϕ̇

L =

(
2aMr

∆L0

)
ṫ−

(
∆+ 2Mra2

∆L0

)
ϕ̇

(3.26)

while the normalization condition p2 = m2 takes the form

gttṫ
2 + 2gtϕṫϕ̇+ gϕϕϕ̇

2 + grrṙ
2 = m2 (3.27)

explicitly (
1− 2Mr

∆L0

)
ṫ2 +

(
4aMr

∆L0

)
ṫϕ̇−

(
∆+ 2Mra2

∆L0

)
ϕ̇2− (3.28)

+

(
r2∆L0

∆− 2Mr3

)
ṙ2 = m2

Substituting (3.26) in (3.28) one obtains the variables ṙ, ṫ and ϕ̇

ṙ = ±

√
E2 (∆ + 2a2Mr) + L2 (2Mr −∆L0)−m2 (2Mr3 −∆)− 4aEMLr

r2∆L0

ṫ =
−E (∆ + 2a2Mr) + 2aMLr

∆− 2Mr3

ϕ̇ =
L (2Mr −∆L0)− 2aEMr

∆− 2Mr3
(3.29)

It is convenient to use the proper time parameter τ = mλ and instead of the en-
ergy E and the angular momentum L, use the specific energy E = E/m and the
specific angular momentum L = L/m.
Equation (3.29) for ṙ takes the form

dr

dτ
= ±

√
P
∆r

(3.30)
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The annulment of P = 0 identify the turning points of the orbit. At these points
we have E = V± and we can recognize the effective potential of the system.
In the vicinity of any turning point r0, one can write a Taylor expansion of the
function P as

P = P0 + P1(r − r0) + P2(r − r0)
2 + ... (3.31)

A circular orbit is a special type of bounded motion when two of its turning points
coincide with each other, and one has

P0 = P1 = 0 (3.32)

Then, in the vicinity of the circular orbit, the radial equation takes the form

dr

dτ
= ±

√
P2

∆r

(r − r0) (3.33)

From (3.32) is possible to establish a relation between three quantities rcirc, Ecirc

and Lcirc which characterize the circular motion. In particular we focus on Ecirc

to find the photonsphere.
Indeed it is recovered from the value of r that send it to infinity.
Then, we compare some values of L0 with the case of Kerr (L0 = 0). In the fol-
lowing plot we see how the inner horizon varies as L0 varies.
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Figure 3.2: Note the change of the inner horizon as change of L0, the various
colour indicates the various L0, the black line indicates the Kerr case

While the photonsphere assumes the form

Figure 3.3: With the same above indications on the colour, we distinguish also the
direct motion and the retrograd motion with the dotted lines
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Last, we consider the photonsphere and the inner horizon together

Figure 3.4: With the same above indications on the colour, we can control the
consistency of results

Furthermore we can also note that for a = 0, when we return to a static case,
there is no difference between prograde and retrograd motion as have to, and this
happens for every value of L0.
In this adimensional case, the dimension is given by the unit of measure of L0, if
L0 ∼ km so r ∼ km, if L0 ∼ LP so r ∼ LP and so on.
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Chapter 4

Shadows

4.1 The Black Hole’s shadow

A century has passed from the calculation that in 1919 allowed the verification
of General Relativity from the deviation of light due to the solar eclipse [49], to
the demonstration of the existence of the shadow of a black hole. It was been a
very success for the theory, that a mighty evidence like this, it is now possible
to see for our instrument (Event Horizon Telescope’s collaboration [2]-[7]). Not
only for the public, namely for the fact that it gives a visual appearance of how a
black hole looks like, but also for the possibility to discriminate the various the-
ories with their parameters, to discriminate the various types of black holes or to
discriminate objects called black holes mimickers or black holes impostors, which
are very massive objects but are not black holes at all. Therefore, the importance
of the shadows are increasing in this epoch, as the instrument to evidence them
are increasing.
For this reason, we approach the study of the shadow in static and rotating case of
our metric as the parameter L0 changes.
Before focusing our attention on the calculation, it is convenient to recall the def-
inition of shadow and of the background in which we study it. There is such con-
fusion around the definition of a shadow. For the inexpert public, it is regarded as
the image of the darkness spot created by the event horizon.
In reality, it is true that the event horizon corresponds to the maximum distance
where the light can escape, but the shadow represents the boundary between the
light geodesics in stable orbits and the light geodesics in unstable orbits, where
the light geodesics present instability on the radius component, so it contains both
the photon orbit and the event horizon.
In particular, as evidenced from the work of J. L. Synge [50], where he studies
the case of a Schwarzschild black hole and the word shadow did not exist yet, the
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angular size under which an observer, at a large distance, would see the black hole
is approximately 2.5 times more bigger than of the angular size of the effective
horizon. We can recall also the work of Zeldovich and Novikov [51], and the work
of V. Perlick and O. Tsupko [52] which in a very similar way calculate this quan-
tity. The angular size of a black hole can be understood from the following figure.

Figure 4.1: It is represented the shadow of a static black hole and its photonsphere,
the green ball represents the observer.

For the background in which the shadow is studied, it is considered a uniform
distribution of light sources beneath the black hole.
For simplicity it is not considered any light sources between the black hole and the
observer. In this idealization, the observer issues the light rays in the past, some
reach the light source, some not.
The limit of these two types of light defines the shape of the shadow.
It is clear that this idealization is far from the reality, where we have light sources
everywhere between the black hole and the observer and where some light rays
are deflected or absorbed. However it is a very powerful instrument to have an
idea of the behavior of a black hole.
Furthermore, there is a difference between the static and the rotating case of the
shadow.
The first case is the most easy, because the attention is focused more on the angu-
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lar size of the shadow than on the shadow itself, and we recall the principal work
already cited of J. L. Synge [50] followed by V. Perlick and O. Tsupko [52] and
A. Grenzebach, V. Perlick, and C. Lammerzahl [53].
The second case, on the contrary, is more complicated due to rotation that flattens
the shadow on one side, and by the fact that we have a photon region rather than
a photon sphere due to retrograde and prograde motion of the light geodesics. In
this case we can recall besides the last two work also the principal works of J. M.
Bardeen [54] and S. Chandrasekhar [55].

4.2 Shadow in static case

Using the background discussed before, we follow the calculation from the work
of V. Perlick and O. Tsupko [52] based on the work of J. L. Synge [50].
It is considered the more general case of spherically symmetric static metric

gµνdx
µdxν = −A(r)dt2 +B(r)dr2 +D(r)

(
dθ2 + sin2θdφ2

)
(4.1)

Here we consider c = 1. For this metric we can write the Lagrangian

L(x, ẋ) = 1

2

(
−A(r)ṫ2 +B(r)ṙ2 +D(r)(θ̇2 + sin2θφ̇2)

)
(4.2)

Thanks to the symmetry we can consider the geodesics in the equatorial plane
placing θ = π/2 and sinθ = 1.
From the Eulero Lagrange equation

d

dλ

(
∂L
∂ẋµ

)
− ∂L
∂xµ

= 0 (4.3)

we can obtain the components for t and φ that provide us the constants of motion

E = A(r)ṫ2, L = D(r)φ̇ (4.4)

Substituting these constants in the first integral of geodetic equation gµν ẋµẋν = 0,
i.e.

− A(r)ṫ2 +B(r)ṙ2 +D(r)φ̇2 = 0 (4.5)

we can have the orbits of light geodesics
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(
dr

dφ

)2

=
D(r)

B(r)

(
D(r)

A(r)

E2

L2
− 1

)
(4.6)

The ratio of the two constants of motion L/E represents the so called impact pa-
rameter b, it can be defined as the limit from the center of a black hole to the
border between stable and unstable photon orbit.
In the point where dr/dφ = 0, we have a turning point or the minimum distance
for a light ray, we called this turning point R. Hence, we can identify the follow-
ing relation

1

b2
=
E2

L2
=
A(R)

D(R)
(4.7)

Considering also the function h2(r) = D(r)/A(r), inserting all these relations in
(4.6), we obtain (

dr

dφ

)2

=
D(r)

B(r)

(
h2(r)

h2(R)
− 1

)
(4.8)

In the idealization of the computation, it is considered that an observer issues a
light ray in the past towards a black hole, so the angular size α between this light
ray and the radial direction is given by

sin2α =
h2(R)

h(r0)
(4.9)

Where r0 is the distance from the observer. In the limit, in which the light ray
approaches the unstable orbit R → rph, is obtained the angular size of the shadow

sin2αsh =
h2(rph)

h(r0)
(4.10)

The photon sphere for the static case is obtained in Chapter 1

L4
0 + r3ph(−3M + rph) + L2

0rph(−M + 2rph) = 0 (4.11)

In our metric A(r) = 1− 2Mr/r2 + L2
0 and D(r) = r2, then h2(r) will be

h2(r) =
r2

1− 2Mr
r2+L2

0

(4.12)
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For an observer at large distance from the black hole r0 >> 3M , the formula, for
the angular size, is simplified as

αsh =
h(rph)

r0
(4.13)

Hence, in the following, we show some results for some values of L0

M = 1 L0 = 0 L0 = 0.2 L0 = 0.5 L0 = 0.8

r0αsh 3
√
3 (5.196) 5.172 5.044 4.767

This shows as the angular size decreases when L0 increases, obviously for L0 = 0
we recover the Schwarzschild case as it has to.

4.3 Shadow in rotating case

We are now ready to introduce the shadow for the more complicate rotating case
[52]. The complicate nature of this situation is due to the rotating parameter that
for our purpose depends on M and L0, i.e.

a ≤
√
M2 − L2

0 (4.14)

deducible from the existence condition of the event horizon.
Furthermore there is the problem of the photon orbit, not more made of circular
lightlike geodesics but made of spherical lightlike geodesics called photon sphere
or photon shell [56].
The difference is the existence of a prograde and retrograde motion that changes
as a changes, shaping the shadow in a peculiar way.
Anyway the aim is to deduce the shadow from the limit in wich the lightlike
geodesics approach the orbit. To this purpose we rely on four constants of motion:

• the first integral, used also in the static case, of the geodetic equation gµν ẋµẋν =
0,

• the z-component of angular momentum and the energy derived from the
symmetries of the system for t and φ,

• the Carter constant K derived from the separability of the Hamilton-Jacobi
equation for geodesics [57]
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To begin with, the setting of our idealization is fundamental.
We consider, like before, a light ray issued from an observer distant r0 from the
black hole to an angle ϑ0 in Boyer-Lindquist coordinates [53]. In the observer’s
reference system we introduce a tetrad eµ

e0 =
(r2 + a2) ∂t+ a∂φ√

Σ∆r

∣∣∣∣
r0,ϑ0

e1 =

√
1

Σ
∂ϑ

∣∣∣∣∣
r0,ϑ0

e2 = −(∂φ+ asin2ϑ∂t)√
Σsinϑ

∣∣∣∣
r0,ϑ0

e3 = −
√

∆r

Σ
∂r

∣∣∣∣∣
r0,ϑ0

(4.15)

where we have introduced the quantities

Σ = r2 + a2cos2ϑ

∆r = g−1
rr Σ = Σ− 2MrΣ

(Σ + L2
0)

+ a2sin2ϑ

This tetrad has the property that the surfaces e0 + e3 and e0 − e3 are tangetial
respectively to ingoing and outgoing lightlike geodesics issued in the past, it is
useful to look the Figure 4.3 of the work [53].
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Figure 4.2: It is shown the tetrad respect to the observer and the stereographic
projection from celestial sphere of point (θ, ψ). See figure 8 in work of A. Gren-
zebach, V. Perlick, and C. Lammerzahl [53]

The tangent vector of the light ray λ(s) in the observer’s reference system can be
write

λ̇ = −e0 + sinθcosψe1 + sinθsinψe2 + cosθe3 (4.16)

Equaling the coefficients of ∂φ and ∂r in (4.16) and (4.15) and substituting the
solutions for φ̇ and ṙ from the Eulero-Lagrange in there, we obtain the final out-
comes

sinψ =
LE(rph)√
KE(rph)

sinθ =

√
∆r(r0)KE(rph)

r0 − aLE

(4.17)

Some constants are introduced such as

aLE =
aLz

E
= r2 − 4r∆r

∆′
r

KE =
K

E2
=

16r2∆r

(∆′
r)

2 (4.18)

Here, rph can be seen as the spherical light orbit which a light ray with azimutal
angle ψ towards in.
The value (θ, ψ) represents a point in the celestial sphere, as it is shown in Figure
4.3. At fixed θ, changing ψ from [−π/2, π/2] we obtain the lower shape of the
shadow, and for symmetry we obtain the upper one.
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It is recovered also the last static case if we consider the case for a = 0 and
rph = 3M where in this case θ represents our αsh.
After all this mathematics digression, we are able to plot the shadows using the
stereographic projection of the celestial sphere on a plane tangent to θ = 0 thanks
to the transformations (see formula [53]-[54] in [53])

x(rph) = −2tan

(
θrph
2

)
sin (ψ(rph))

y(rph) = −2tan

(
θrph
2

)
cos (ψ(rph))

(4.19)

In the following, we plot the shadows as L0 changes.

Figure 4.3: Color lines represent the various L0 respectively red for L0 = 0.2,
orange for L0 = 0.5, green for L0 = 0.8, in black is shown the Kerr metric for
L0 = 0, from a distance r0 = 5M (a = 50%,M = 1, θ = π/2)

This plot is made with a rotation parameter a = 50% of the maximum allowed
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value from the formula (4.14), and as we expect, for L0 = 0 the Kerr metric is
recovered. There is a consistent similitude with the Kerr case, with a contraction
of the shadow when L0 grows as we expected from the study of photonsphere in
Chapter 3 Figure 3.4.
If we want to study how the plots look like, for a = 80% and a = 99% of the
maximum allowed value, see Figure 4.4 - 4.5 below, where it is shown a patho-
logical behavior near the flattened side, more accentuated as a grows despite the
major axis of the shadow is consistent with Kerr.
Hence it can be considered as an observable deviation from the canonical solu-
tions of Kerr.
Furthermore, we can note also the consistency with the static case where the an-
gular size decreases when L0 grows (see section 4.1), in this case the same occurs
with a decreasing of the shadow.

Figure 4.4: Color lines represent the variousL0 , in black is shown the Kerr metric,
from a distance r0 = 5M (a = 80%,M = 1,θ = π/2)
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Figure 4.5: Color lines represent the various L0, in black is shown the Kerr metric,
from a distance r0 = 5M (a = 99%,M = 1,θ = π/2)

Let us concentrate to the first case of closed shadows. We can study the deviation
with respect to General Relativity and so to the Kerr case for L0 = 0, studying
three parameters that distinguish the shadows [58]. The major axis ∆β, the minor
axis ∆α and the axis ratio δ = ∆β/∆α which we can visualize in the following
image

Figure 4.6: There are represented the delta axes of a rotating shadow

From these quantities is possible to understand if EHT can estimate these differ-
ences. The mass of M87 is 6, 6 ∗ 109M⊙ = 6, 6 ∗ 1047MP , also if for absurd, we
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M = 1, a = 0.5 Kerr case L0 = 0.2 L0 = 0.5 L0 = 0.8
∆β 2.007 1.995 (-0.6%) 1.931 (-3.9%) 1.783 (-12.6%)
∆α 1.978 1.966 (-0.6%) 1.898 (-4.2%) 1.752 (-12.9%)
δ 1.0146 1.0147 (+ 0.01%) 1.0173 (+0.26%) 1.0171 (+0.24%)

Table 4.1: In the table is represented respectively the major axis, the minor axis
and the axis ratio versus L0. In parenthesis is indicated the rate difference with
General Relativity

consider an L0 = 1047LP = 1012m, we are in the range where L0 ∼ 0.2 of the
maximum allowed for this mass, so we would appreciate a deviation of the 0, 6%
in the major axis.
We recall that the ring diameter observed for M87 is ∼ 42µas.
The difference of 0.6% for L0 = 0.2 is saying that we should appreciate the dif-
ference for an angular resolution of ∼ 0.25µas. If now it is possible appreciate
∼ 25µas with the actual technology, we must have a 100 times better angular
resolution and this is possible for an observable wavelength of λ ∼ 13µm or a
diameter of our virtual telescope D 100 times bigger (Recall that the formula of
the angular resolution is ∼ λ/D).
But we expect L0 to be roughly the Planck length, 47 orders of magnitude shorter
than the one in use, so even with the most generous approach, we can say that
current technology is not enough, moreover we would have a precise parameter
of rotation.
Now we approach the study of opened shadows. If the parameter rotation a and
the ratio between the fundamental length L0 and the mass M increase, we can
observe this strange behavior of the shadows that predict an intriguing possibility,
the naked singularities.
In this case, the inner horizon fades out and it makes sense considering the ex-
tension for rph < 0, from which it emerges a dark spot represented by an area
inaccessible to us because the light runs from the other side to r = −∞. In figure
is represented by a dashed area in the shadows.
These shadows have point of contact with the work [59] where in that case is con-
sidered a braneworld black hole. The shadows are influenced by the tidal charge
Q due to the action of the gravitational force in a background of five dimensions.
So this parameter can have some affinity with L0. The considerations are taken
from the study of the naked singularity in highly spinning Kerr metric of the work
[60].
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We can consider also a range of mass candidates to establish a possibility to ob-
serve this astrophysical phenomenon.
If the rotation parameter a = 80%, we can observe a naked singularity from
L0 = 0.8 of the maximum allowed.
If 1LP < L0 < 1020LP , we can observe them in a range of 1, 2MP < M <
1, 2× 1020MP = 1.2× 10−18M⊙.
While if the rotation parameter a = 99%, we can observe a naked singularity from
L0 = 0.2 of the maximum allowed.
If 1LP < L0 < 1020LP , we can observe them in a range of 5MP < M <
5× 1020MP = 5× 10−18M⊙.
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Conclusions

We saw at the beginning the static case of our metric. Thanks to the results of
these first considerations, it was possible to establish consistency with this metric,
containing an arbitrary fundamental length L0.
Indeed for parameter’s value tending to zero we have recovered the classical case
of the General Relativity for event horizons and photon sphere, as expected. Fur-
thermore, we can see the tendency of the timelike circular orbits to the variation
of the angular momentum L2.
Beginning from the static metric and using the Newman-Janis algorithm, we were
able to obtain a rotating metric for a more realistic case to be tested.
In this background it has been possible to observe contact points with the Kerr
solution. It was interesting to note that the inner and the outer horizons are the
same not only for L0 = 0 and θ = 0 as they expected, but this result is true also
for every parameter of L0.
Furthermore, for L0 fixed, we can see that the ergosphere increases as M in-
creases.
Meanwhile in general, for other possible values of L0 and θ , both for event
horizons and for photon orbits there is a decreasing trend when the mass M ap-
proaches the order of magnitude of L0.
In the last Chapter we have approached the study of the shadows for the rotating
case. These results are the most intriguing ones.
We plotted the various shadows when both L0 and a, the rotation parameter,
change. For a mean value of a, the shadows decrease their shape as L0 decreases,
and for high rotations a we have opened shadows.
This behavior unlikely provides a possibility to establish the value of the funda-
mental length from some future observations, depending heavily by the orders of
magnitude of L0.
Now we present possible ways to detect it:

• Increasing the sensibility of our instruments (as surely EHT collaboration
will do), this deviation will be more consistent for smaller and closer black
holes.
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• By creating mini black holes in laboratory with the advancements in the
increasing of the energy of the particles accelerators as LHC [61].

• Searching for astrophysical objects related to the naked singularities as black
holes with a darker area in the shadow [60].

• Considering that this very small black holes highly rotating have the effect
to curve the light providing an explanation to the dark matter actually com-
posed of mini black holes.
In this case it would be possible to estimate L0 substituting a density of dark
matter with mini black holes, and calculating the deflection of the light, and
so matching the value of L0.
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