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Chapter 1

Introduction

In the last decades of the past century, the study of the black holes has ac-
quired a great importance. A crucial event that changed our past knowledge
was Hawking’s 1976 discover that black holes emit thermal radiation at a
temperature:

T =
κ

2π
, (1.1)

where κ is the horizon surface gravity. More precisely, this phenomenon
is a characteristic of any local horizon [1]-[5] and can occur even in a flat
spacetime if there are observers with constant acceleration. In fact, the
casual structure of the Rindler space is similar to that of the maximally-
extended Schwarzschild spacetime of an eternal black hole. The studies on
the temperature associated to the Rindler horizon were made for the first
time by Unruh in order to understand the physics of the Hawking effect.
Another fundamental discovery was made by Bekenstein, who conjectured
that a black hole must have an intrinsic entropy proportional to the area
of its event horizon, in order to preserve the second law of thermodynamics
[6, 7]. Related to the Hawking temperature (1.1) is the well-known expression
of the Bekenstein-Hawking entropy of black holes in terms of their horizon
area A:

SBH =
A

4ℏG
(1.2)

where ℏ is the Planck constant and G is the gravitational constant [8].
In [6, 7] it was shown that the event horizon of a black hole hides information
and since entropy measures the missing information, we can think that an
event horizon has an associated entropy. One can ask what is the nature of
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6 CHAPTER 1. INTRODUCTION

such entropy: some works have suggested that the black hole entropy can be
interpreted as entanglement entropy [9, 21].
Since the black hole horizon is a casual boundary, it makes sense to compute
a reduced density matrix tracing over the degrees of freedom of a quantum
field inside the horizon, as discussed in [22]. In fact, let us suppose to have
two regions, I outside the horizon and II inside of the horizon. If we trace
over the degrees of freedom behind the horizon we obtain a reduced density
matrix which describes a mixed state because the two regions are entan-
gled. This density matrix, computed as ρI ≡ trII |0⟩ ⟨0|, can be expressed as
ρI = N exp(−βH), where N is the normalization constant, H is the genera-
tor of the time translations outside the horizon and β = 2π/ℏκ. We can see
that this matrix is proportional to that one of the canonical ensamble at the
Hawking temperature. Thus the entanglement entropy obtained from this
density matrix has the nature of a thermal entropy [9].
Hawking’s result marked an important change in the study of Quantum Field
Theory in curved spacetime and led to the information-loss paradox. When
Hawking radiation escapes to infinity, energy goes away from the black hole:
the mass shrinks and the surface gravity increases with the temperature.
During this process the entire mass evaporates, just Hawking radiation re-
mains and the information used to specify the system before it became a
black hole is lost. The attempts to unify Quantum Field Theory with Gen-
eral Relativity seem very hard: in fact, a pillar of the former is unitary time
evolution (the information that specifies a state at a certain time is equal to
that required to specify the state at next time) which appears to be violated
if via the mechanism of Hawking radiation black holes allow the evolution of
pure quantum states into mixed states [11]. The impossibility to reconcile
these two theories is one of the greatest challenges of theoretical physics.

The focus of the present thesis is on the entanglement entropy of ther-
mofield double states (the same states that are at the basis of the Hawking
and Unruh thermal phenomena) and how these can be described in the sim-
plest conformal field theory: Conformal Quantum Mechanics. After this
introduction, in Chapter 2 it’s shown how the Unruh effect works in a two-
dimensional Minkowski spacetime and how thermal effects are possible for
an accelerating observer in a vacuum state. In Chapter 3 the focus is on the
entropy and its properties, on the concept of entanglement and on what is
the entanglement entropy. A brief introduction to the AdS/CFT correspon-
dence is given in Chapter 4 where we also introduce the thermofield double as
a vacuum state in Conformal Quantum Mechanics. In the following Chapter
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5, starting from the density matrix of a harmonic oscillator, we computed
the entanglement entropy and then repeated the calculation for a system of
two harmonic oscillators, showing that it has the structure of a thermofield
double state. The Chapter 6 is the central chapter of this thesis: considering
the thermofield double state of conformal quantum mechanics, evaluating its
reduced density matrix, that is thermal, we computed its entanglement en-
tropy following the same steps made for a system of two harmonic oscillators.
In this chapter we show the results of our studies. In the final Chapter 7
there are conclusion and future prospects.
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Chapter 2

The Unruh effect

In this chapter we want to introduce a known concept in quantum field the-
ory: the notion of vacuum state is observer dependent [10]. This generates
a phenomenon called Unruh effect, which was discovered in order to under-
stand the Hawking effect. To describe it, we’ll follow Carroll’s work [11]. The
Unruh effects states that an accelerating observer in the Minkowski vacuum
state perceives a thermal spectrum of particles and it has a great importance
whenever there is a black hole event horizon, but it’s manifest even when
there is a local horizon. To explain how this effect works, let us consider a
two-dimensional Minkowski space with metric ds2 = −dt2 + dx2 and a uni-
formly accelerating observer which is moving along the x-direction with a
trajectory xµ given by:

t(τ) =
1

α
sinh(ατ)

x(τ) =
1

α
cosh(ατ)

(2.1)

where α is the magnitude of the acceleration. According to these coordi-
nates, since x2(τ) = t2(τ) + α2, the observer will move along an hyperboloid
asymptoting to null paths x = −t in the past and x = t in the future. Now
we can choose new coordinates (η, ξ), with ranges −∞ < η, ξ < +∞, that
describe this accelerated motion. If we choose t and x as:

t =
1

a
eaξ sinh(aη)

x =
1

a
eaξ cosh(aη),

(2.2)

9



10 CHAPTER 2. THE UNRUH EFFECT

where x > |t|, then (2.1) becomes:

η(τ) =
α

a
τ

ξ(τ) =
1

a
ln
( a
α

) (2.3)

and the metric ds2 = e2aξ(−dη2 + dξ2). The first region of the Minkowski
space-time with this metric is called Rindler space. We notice that the metric
so expressed is indipendent of η and so ∂η is a Killing vector, that can be
written as:

∂η =
∂t

∂η
∂t +

∂x

∂η
∂x =

= eaξ[cosh(aη)∂t + sinh(aη)∂x] = a(x∂t + t∂x).

(2.4)

Thus the vector ∂η is the generator of Lorentz boost in the x-direction and
it’s space-like in regions II and III and time-like in regions I and IV. The null
lines x = t and x = −t, that we recall H+ and H−, are Killing horizons for
this vector field.
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Figure 2.1: Minkowski space-time in Rindler coordinates (η, ξ). The image
is taken from S.M. Carroll, “Spacetime and geometry: an introduction to
General Relativity”, Cambridge University Press.

At this point we can construct two sets of modes, one with positive fre-
quency for the region I and one with negative frequency for the region IV.
In fact, if we consider the Klein-Gordon equation in Rindler coordinates

□ϕ = e−2aξ(−∂η2 + ∂ξ
2)ϕ = 0, (2.5)

we can see how the plane wave gk = (4πω)−1/2e−iωη+ikξ, with ω = |k|, solves
the equation. This plane wave is divided into two parts:

g
(1)
k =

{
1√
4πω

e−iωη+ikξ I

0 IV

g
(2)
k =

{
0 I

1√
4πω

e−iωη+ikξ IV

(2.6)
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and we can expand the field ϕ in terms of these modes and their conjugates,
introducing the annihilation operators b̂

(1,2)
k :

ϕ =

∫
dk

(
b̂
(1)
k g

(1)
k + b̂

(1)†
k g

(1)⋆
k + b̂

(2)
k g

(2)
k + b̂

(2)†
k g

(2)⋆
k

)
. (2.7)

Nevertheless we know that, rather than the Rindler modes, it’s possible an-
other expansion in terms of the Minkowski modes:

ϕ =

∫
dk

(
âkfk + â†kf

⋆
k

)
. (2.8)

This difference in writing ϕ gives rise to two different notions of vacuum,
the Minkowski vacuum |0M⟩ satisfying âk |0M⟩ = 0 and the Rindler vacuum

|0R⟩ satisfying b̂(1)k |0R⟩ = b̂
(2)
k = 0. The two vacua don’t coincide because the

Rindler annihilation operators are superpositions of Minkowski creation and
annihilation operators, since Rindler modes have support on the half-line.
This implies that a Rindler observer in the Minkowski vacuum state detects
a certain number of particles, while an inertial observer describes the state as
it’s empty. To see this, it’s necessary to evaluate the Bogoliubov coefficients
between Minkowski and Rindler modes and then the expectation value of the
Rindler number operator in the Minkowski vacuum: in this way we obtain a
Planck spectrum with temperature T = a

2π
. As we’ll see soon, we can notice

that this temperature has the same form of the Hawking temperature where,
instead of a, there is the surface gravity κ. If we rewrite the temperature
restoring units, we have:

T =
a

2π

ℏ
ckB

(2.9)

where ℏ is the reduced Planck constant, c is the speed of light in the vacuum
and kB is the Boltzmann constant. If we make the limit ℏ → 0 and c → ∞
we can notice that the temperature goes to zero. Thus we can conclude that
the Unruh effect is a quantum mechanics and a relativistic effect.

2.1 Connection with the entropy

An important aspect we want to focus on in this chapter is the presence
of casual horizons because we should associate entropy to them. In fact the
observation suggests that they hide information [12]. Using these arguments,
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we know that it’s possible to derive the Einstein’s field equations from a
relation that holds for all the local Rindler causal horizons:

δQ = TdS (2.10)

where Q is the energy that flows across the horizon, S is the entropy and T
is just the Unruh temperature we told about. In quantum field theory the
entropy associated to the horizon is divergent but if there is a cutoff length lc,
then the entropy is finite and, we should assume, proportional to the horizon
area in units of l2c .
These last considerations show that the Unruh effect can have important im-
plications in quantum gravity and that it’s connected with the entropy [14].

2.2 Hawking effect and Unruh effect

We can now show the connection between Hawking effect and Unruh effect,
that we mentioned before [28].
First of all we have to obtain the expression of the Planck length. Let us
consider a space region ∆x. In according to the Heisenberg’s uncertainty
principle ∆E∆t ≃ ℏ/2, the energy fluctuations in this region will be ∆E ≃
ℏc/(2∆x). We can consider that ∆x is of the order of the Schwarzschild
radius associated to the mass ∆M : R = (2G∆M)/c2, thus ∆x becomes:

∆x =
2G∆M

c2
=

2G∆E

c4
=

Gℏ
c3∆x

=

(
Gℏ
c3

)1/2

(2.11)

where we used the fact the ∆E = ∆Mc2. This length is just the Planck
length LP , that is the scale at which strong fluctuations of the quantum
vacuum appear and virtual black holes are created.
Now let us consider a Schwarzschild black hole with radius R = 2GM/c2. A
particle with mass m near to the horizon will have a pontential energy:

U =
GMm

R
(2.12)

and a potential gradient:

U =
GMm

R
∆x (2.13)
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where ∆x is its displacement. The lost potential energy ∆U is equal to the
kinetic energy ∆Ec and if this last one is the energy needed to create a pair
particle-antiparticle, that is ∆Ec = 2mc2, we obtain:

GMm

R2
∆x = 2mc2 (2.14)

and

∆x = 2c2
R2

GM
. (2.15)

If we repeat this process of creation and annihilation, we will have a gas of
particle and every particle of this gas will have a mean kinetic energy:

Ec =
3

2
kT (2.16)

where T is the temperature of the gas. This energy should be compared to
the kinetic energy that particles have when they move in a space ∆x and
remembering the Heisenberg’s uncertainty principle:

∆E =
ℏc
2∆x

=
ℏGM
4cR2

=
ℏc3

16GM
(2.17)

we get:
3

2
kT =

ℏc3

16GM
(2.18)

and thus:

T =
ℏc3

24kGM
. (2.19)

This relation is very similar to that one computed by Hawking:

T =
ℏc3

8πkGM
. (2.20)

We can notice that they differ just for a little quantity.
At this point we focus on the temperature perceived by the Unruh effect.
Let us suppose to have an Einstein lift uniformly accelerated toward the top.
In the inner of this lift there are some electrons, each of which has a kinetic
energy:

∆Ec = mv∆v = ma∆x (2.21)
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where a is the acceleration of the lift. As we said before, this energy can be
equal to that needed to create a pair particle-antiparticle and thus:

ma∆x = 2mc2 (2.22)

and:

∆x =
2c2

a
. (2.23)

This ∆x is just the space in which there are the pairs particle-antiparticle.
Every particle feels an uncertainty in the kinetic energy equal to:

∆E =
ℏc
2∆x

=
ℏa
4c

(2.24)

that has a thermal nature because of the agitation of the particles. Thus:

3

2
kT =

ℏa
4c

(2.25)

and

T =
ℏa
6kc

. (2.26)

This is the temperature perceived by the particle gas subjected to the accel-
erated observer. This expression for T is very similar to the one obtained by
Unruh:

T =
ℏa
2πkc

. (2.27)

Also in this case they differ for a little quantity.
We can now verify if there is a connection between the Hawking effect and
the Unruh effect. Since the Unruh effect is manifest also in curved space-
time, we can consider an observer in a gravitational field generated by a
mass M , that will measure a gravitational acceleration g = GM/r2. In this
gravitational field a particle of mass m, after a displacement ∆x, will have a
potential energy:

∆U = gm∆x (2.28)

which can create a pair particle-antiparticle:

gm∆x = 2mc2 (2.29)

and thus:

∆x =
2c2

g
. (2.30)
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Each of this particle has an energy whose uncertainty is:

∆E =
ℏc
2∆x

=
ℏg
4c
. (2.31)

This is again a thermal kinetic energy:

T =
ℏg
6ck

. (2.32)

At this point we can invoke the equivalence principle, according to which
the observer in the gravitational field will perceive a temperature(2.2) with
g⃗ = −a⃗. In the presence of a Schwarzschild black hole, near the horizon, the
gravitational acceleration is:

gSCH =
GM

R2
SCH

=
c4

4GM
(2.33)

and the temperature near the horizon is:

T =
ℏg
6ck

=
ℏc3

24kGM
, (2.34)

which is the Hawking temperature of the black hole. This shows the connec-
tion between the Hawking effect and the Unruh effect.



Chapter 3

Entanglement and entropy

At this point we are ready to introduce some important concepts that con-
stitute the base for this thesis.

3.1 Entanglement

Entanglement is one of the most surprising phenomenon of quantum mechan-
ics and one of the most evident that distinguishes it from classical mechanics.
Even if the term “entanglement” was introduced by Schroedinger, the con-
cept appeared for the first time in 1935 in a paper by Albert Einstein, Boris
Podolsky and Nathan Rosen [13]. To describe it, let us consider two non-
interacting systems A and B with respective Hilbert spaces HA and HB such
that the Hilbert space of the composite system is H = HA ⊗ HB. If the
first system is in the sate |ϕ⟩A and the second is in the state |χ⟩B, then the
composite system is in the state |ψ⟩AB = |ϕ⟩A ⊗ |χ⟩B. When a state can be
written as tensorial product of states, we are in the presence of a separable
state, but when this is not possible we can say that the state is entangled.
This implies that |ϕ⟩A and |χ⟩B are correlated, that is a measure on the first
state isn’t independent from the second.

3.2 Entropy

Entropy plays a fundamental role in different fields of physics and our intent
is to analyze it from the point of view of statistical mechanics, introducing
the Shannon entropy and the von Neumann entropy.

17



18 CHAPTER 3. ENTANGLEMENT AND ENTROPY

First of all, let us consider a classical system with a discrete state space
labelled by a. If p⃗ is the probability distribution of the states, with pa ≥ 0
and

∑
a pa = 1, we can write the Shannon entropy as:

S(p⃗) =< − ln pa >p⃗= −
∑
a

pa ln pa (3.1)

where 0 ln 0 is defined to be zero. This entropy is a measure of the indefi-
niteness of the state. In fact, given an observable Oa, that is a function of a
that doesn’t depend on p⃗, and its expectation value:

⟨Oa⟩p⃗ =
∑
a

Oapa, (3.2)

if S(p⃗) = 0 then all observable have definite values, i.e. ⟨O2
a⟩ = ⟨Oa⟩2,

otherwise S(p⃗) > 0.
Now we can move on to quantum mechanics. We know that the expectation
value of an observable can be written in terms of the density matrix, which
is an operator such that:

ρ† = ρ

ρ ≥ 0

Tr ρ = 1

(3.3)

and thus:
⟨O⟩ρ = Tr(Oρ). (3.4)

The density matrix can be diagonalized as:

ρ =
∑
a

pa |a⟩ ⟨a| (3.5)

where pa form a probability distribution. The Shannon entropy of this dis-
tribution is the von von Neumann entropy of ρ:

S(ρ) =< − ln ρ >ρ= −Tr ρ ln ρ. (3.6)

If a state is pure, that is ρ = |a⟩ ⟨a|, there is only one a such that pa ̸= 0
and then S(ρ) = 0. Thus the von Neumann entropy is a measure of the
mixedness of the states and it’s an example of entanglement entropy.
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3.3 Entanglement entropy

In recent years entanglement entropy has acquired an important role in the
study of quantum mechanical systems because it allows us to treat a large
number of information in a simpler way [16]. If we have N classical spins,
which can be 0 or 1, we deal with N numbers but in a quantum mechanical
system the dimension of the Hilbert space is 2N . Thus it’s clear that the
number of degrees of freedom is enormous to manage. What we could do is
to slice the Hilbert space to obtain some subsystems more manageable, but
if this is possible with systems that interact weakly, we can’t tell the same
for strong interactions. For all these cases, entanglement entropy can be very
useful.
Let us start with a state |ψ⟩ and with a Hilbert space H, that we can break
up into two subspaces: H = A⊗ Ā. Introducing the formalism of the density
matrix, associated to the state |ψ⟩ we have:

ρ = |ψ⟩ ⟨ψ| . (3.7)

We can trace out the subfactor Ā, obtaining the reduced density matrix:

ρA = TrĀ |ψ⟩ ⟨ψ| . (3.8)

Using this reduced density matrix, we can evaluate the von Neumann en-
tropy:

S = −TrρAlogρA. (3.9)

It can be seen as a measure of the disorder of a system. In fact, if we consider
a pure state:

|ψ⟩prod = |↑⟩A |↓⟩Ā , (3.10)

where we identify the first spin with A and the second with Ā, we can cal-
culate the reduced density matrix:

ρA,prod = ⟨↑|Ā
(
|↑⟩A |↓⟩Ā ⟨↑|A ⟨↓|Ā

)
|↑⟩Ā + ⟨↓|Ā

(
|↑⟩A |↓⟩Ā ⟨↑|A ⟨↓|Ā

)
|↓⟩Ā =

= |↑⟩A ⟨↑|A .
(3.11)

We can see that we obtain a pure state again and the von Neumann entropy
is zero: we don’t have loss of information. Nevertheless, if we repeat the same
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calculation for an entangled state, the result is different. Let us consider the
EPR state:

|ψ⟩EPR =
1√
2

(
|↑⟩A |↓⟩Ā + |↓⟩A |↑⟩Ā

)
. (3.12)

If we compute the reduced density matrix, we obtain:

ρA,EPR =
1

2

[
⟨↑|Ā

(
|↑⟩A |↓⟩Ā ⟨↑|A ⟨↓|Ā + |↑⟩A |↓⟩Ā ⟨↓|A ⟨↑|Ā +

+ |↓⟩A |↑⟩Ā ⟨↑|A ⟨↓|Ā + |↓⟩A |↑⟩Ā ⟨↓|A ⟨↑|Ā
)
|↑⟩Ā+

+ ⟨↓|Ā
(
|↑⟩A |↓⟩Ā ⟨↑|A ⟨↓|Ā + |↑⟩A |↓⟩Ā ⟨↓|A ⟨↑|Ā+

+ |↓⟩A |↑⟩Ā ⟨↑|A ⟨↓|Ā + |↓⟩A |↑⟩Ā ⟨↓|A ⟨↑|Ā
)
|↓⟩Ā

]
=

=
1

2

(
|↑⟩A ⟨↑|A + |↓⟩A ⟨↓|A

)
(3.13)

that isn’t that of a pure state; the two spins are correlated, but not in a
classical manner: we can say that the two spins are quantum mechanically
entangled. The proof of this is given by the von Neumann entropy that in
this case is no longer zero but:

S = −1

2
⟨↑|A

(
|↑⟩A ⟨↑|A + |↓⟩A ⟨↓|A

)
|↑⟩A + |↓⟩A

(
|↑⟩A ⟨↑|A + |↓⟩A ⟨↓|A

)
|↓⟩A =

= log 2.

(3.14)

At this point we can list some properties of the entanglement entropy:

• if we divide a system in two parts, A and Ā, then for a pure state

SA − SĀ = 0 (3.15)

because the eigenvalues of ρA and ρĀ are the same. In fact, let us
consider a state:

|0⟩ =
∑
ia

ψia |i⟩A |a⟩Ā (3.16)

with density matrix (ρA)ij = (ψψ†)ij and (ρĀ)ab = (ψTψ∗)ab. Since
Tr ρkA = Tr ρk

Ā
for any positive integer k, then ρA and ρĀ have the same

eigenvalues. This property doesn’t depend on the characteristics of A
and Ā, but on the fact that the system has divided in two subsystems
[15];
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• if we divide a system into two parts as before, for a mixed state ρ with
entropy S(ρ), the Araki-Lieb inequality holds:

|SA − SĀ| ≤ Sρ ≤ SA + SĀ, (3.17)

thus the difference between the entropy of A and of Ā depends on how
impure the state ρ is;

• if we have a Hilbert space made of three or more tensor factors, that
is H = ⊗iHi, and S1 is the entanglement entropy of the first subfactor
H1, S2 the entanglement entropy of the second, S12 of the subfactor
H1 ⊗H2, then we have the strong subadditivity:

S12 + S23 ≥ S2 + S123 S12 + S23 ≥ S1 + S3. (3.18)

Now we want to see how entanglement entropy works in a field theory. Let
us consider a manifold M and a submanifold A ⊂ M . In this way we have
elements inside A and outside A, so it makes sense to ask how the region A is
entangled with the remaining part of M . Computing entropy in a quantum
field theory is not simple, but a general formula is:

SA =
Area(∂A)

ϵd−2
+ ... (3.19)

where d is the dimension of M , ∂A is the boundary of A and it’s called
entangling surface and ϵ is the UV cutoff. This rule is valid only for d > 2.
For d = 2 there is a well-known formula valid for a finite interval:

S(L) =
c

3
log

(L
ϵ

)
(3.20)

where L is the length of the interval, c the central charge of the CFT 1 and
ϵ the cutoff. We can notice the presence of the logarithmic.
Now we want to compute the entanglement entropy of an interval A of length

L on the Lorentzian plane with coordinates x± = t± x, where x ∈
[
−L

2
, L
2

]
.

Let us consider the coordinate transformation:

x± =
L

2
tanh

(y±
2

)
y± = τ ± y. (3.21)

1We can define the centrale charge starting from the product of stress tensors:

T (z1)T (z2) =
c/2

z1−z2

4
+ 2T (z2)

z1−z2

2
+ T (z2)

(z1−z2)
+ {regular terms}. The c is the central charge of

CFT and has different interpretation. For CFT2 it can be seen as: degrees of freedom of
the theory, measure of Casimir energy, measure of Weyl anomaly etc.
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This change allows us to trace out the degrees of freedom outside A and to
consider only the region D[A], that is the inner region. The density matrix
associated to a state with these y± coordinates is hermitian and positive
semidefinite and can be expressed as [31, 32]:

ρ(y±) = exp(−πHτ ) (3.22)

where Hτ is the generator of time evolution. Using this generator we can
construct the unitary operator:

U(s) = ρis = e−πiHτ s (3.23)

that generates a symmetry of the system. The transformations U(s) form
a one-parameter group and if they are extended to complex parameters,
the KMS periodicity relation in imaginary time is respected [33]. Thus the
coordinate τ has the periodic form:

τ ∼ τ + 2iπ. (3.24)

From this we deduce that the system is at a temperature T = 1
2π
, so ρ(y±) is

a thermal density matrix. To determine the von Neumann entropy we need
the reduced density matrix that is related to ρ(y±) by the following equation:

ρ(y±) = UρA,(x±)U
† (3.25)

where U is a unitary map that transform the operators in x± coordinates
in operators in y± coordinates. Since the von Neumann entropy is invariant
under unitary trasformations, we need only ρ(y±). In a 2d CFT with a finite
temperature we can use the Cardy formula:

S =
πc

3
RT (3.26)

when R ≫ T−1. As usual, c is the centrale charge of the CFT and, as we
said, T = 1

2π
. R is the length of the interval which, according to (3.21),

when y → ∞, is infinite. Thus it’s clear that the entanglement entropy is
UV divergent and we need to regulate it introducing a UV cutoff ϵ such that

now x ∈
[
−L

2
+ ϵ, L

2
− ϵ

]
and R becomes finite:

R = 2 log
(L
ϵ

)
, (3.27)



3.4. ENTROPY OF A FREE MASSLESS SCALAR FIELD 23

from which we obatain (3.20).
We have obtained the formula of the entanglement entropy on a plane, but
we can repeat the procedure for a infinite cylinder in 2d CFT because it can
be conformally mapped to the plane by the exponential map z = ew. Let us
suppose that time interval is compact and that it has a periodicity β: as we
have seen before, the system is at a finite temperature and the von Neumann
entropy is:

S(L)β =
c

3
log

( β
πϵ

sinh
(πL
β

))
(3.28)

where L is the length of the interval and β is the inverse of the temperature.
When L≪ β, we reproduce (4.10), but when L≫ β we obtain:

S(L≫ β)β ∼ πc

3

L

β
(3.29)

which reproduces the Cardy formula (3.26).
In this chapter we have seen that there isn’t a general formula to compute
the entanglement entropy and the problem is often difficult. The only known
expression is in 2d CFT but our purpose is to study entanglement entropy
in a 1d CFT .

3.4 Entropy of a free massless scalar field

In a famous paper [15], Srednicki has shown how, given a reduced density
matrix for a massless free field, the resulting entropy is proportional to the
area of a sphere of radius R. Since entropy is an extensive quantity, we
should expect that S ∼ R3 but, as we said in the previous section, the
entropy S inside the sphere is equal to the entropy S ′ outside the sphere
because they have the same eigenvalues. This suggests that the entropy
should be proportional to the region that S and S ′ have in common, that
is the boundary A = 4πR2 but, since entropy is dimensionless we need the
presence of some dimensional parameters: one is the ultraviolet cutoff M
and the other is the infrared cutoff µ. We should expect that the physics in
the inner region, and so also S, are independent of µ and conclude that S is
proportional to M2A. Following Srednicki argument, we can start with the
Hamiltonian of two coupled oscillators:

H =
1

2
[p21 + p22 + k0(x

2
1 + x22) + k1(x1 − x2)

2] (3.30)
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and with the normalized ground state wave function:

ψ0(x1, x2) = π−1/2(ω+ω−)
1/4 exp

[
−(ω+x

2
+ + ω−x

2
−)/2

]
(3.31)

where x± = (x1 ± x2)/
√
2, ω+ = k

1/2
0 and ω− = (k0 + 2k1)

1/2. Now we
can compute the ground state density matrix and then the reduced density
matrix tracing over the first oscillator, obtaining:

ρ2(x2, x
′
2) =

∫ ∞

−∞
dx1ψ0(x1, x2)ψ

∗
0(x1, x

′
2)

= π1/2(γ − β)1/2 exp
[
−γ(x22 + x′22 )/2 + βx2x

′
2

] (3.32)

where β = 1
4
(ω+ − ω−)

2/(ω+ + ω−) and γ − β = 2ω+ω−/(ω+ + ω−). At this
point we have to find the eigenvalues pn of ρ2, in order to know the entropy
which is S = −pn log pn. The eigenvalues can be obtained by the equation:∫ ∞

−∞
dx′ρ2(x, x

′)fn(x
′) = pnfn(x). (3.33)

For the solution we can write pn and fn as:

pn = (1− ξ)ξn

fn(x) = Hn(α
1/2x) exp

(
−αx2/2

) (3.34)

where Hn is a Hermite polynomial, α = (γ2 − β2)1/2 = (ω+ω−)
1/2, ξ =

β/(γ + α) and n goes from zero to infinity. Thus the entropy is:

S(ξ) = −(1− ξ)ξn log(1− ξ)ξn = −(1− ξ)ξn log(1− ξ)− (1− ξ)ξn log ξn =

= − log(1− ξ)− (1− ξ)ξnn log ξ = − log(1− ξ)− ξ

1− ξ
log ξ.

(3.35)

We can repeat the same procedure for a system of N coupled harmonic
oscillators, whose Hamiltonian is:

H =
1

2

N∑
i=1

p2i +
1

2

N∑
i,j=1

xiKijxj (3.36)

where K is a real symmetric matrix with positive eigenvalues. Again the
normalized ground state wave function is:

ψ0(x1, ..., xN) = π−N/4(detΩ)1/4 exp[−x · Ω · x/2]. (3.37)
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We can write K as UTKDU where KD is a diagonal matrix and U is an
orthogonal matrix and Ω as UTK

1/2
D U . Now we can write the reduced density

matrix tracing over the first n oscillators:

ρn+1,...,N(xn+1, ..., xN ;x
′
n+1, ..., x

′
N) =∫ n∏

i=1

dxiψ0(x1, ..., xn, xn+1, ..., xN)ψ
∗(x1, ..., xn, x

′
n+1, ..., x

′
N).

(3.38)

To solve these integrals, we can see that Ω can be written as:

Ω =

(
A B
BT C

)
(3.39)

where A is a n×n matrix and C is a (N −n)× (N −n) matrix. The reduced
density matrix becomes:

ρn+1,...,N(x.x
′) ∼ exp[−(x · γ · x+ x′ · γ · x′)/2 + x · β · x′] (3.40)

where β = 1
2
BTA−1B and γ = C − β. To find the final expression for

the entropy we can try to reproduce (3.32) because the total entropy is S =∑
i S(ξi). The first step is to find the eigenvalues of ρn+1,...,N , so if we consider

that γ = V TγDV and x = V Tγ
−1/2
D y, we obtain:

ρn+1,...,N(y, y
′) ∼ exp[−(y · y + y′ · y′)/2 + y · β′ · y′] (3.41)

where β′ = γ
−1/2
D V βV Tγ

−1/2
D . Setting y = Wz where W is orthogonal and

W Tβ′W is diagonal, we find the expression of the redued density matrix:

ρn+1,...,N(z, z) ∼
N∏

i=n+1

exp
[
−(z2i + z′2i )/2 + β′

iziz
′
i

]
(3.42)

where β′
i is an eigenvalue of β′. Comparing this equation with (3.32), we can

see that they are identical if γ → 1 and β → β′
i. We can get the expression

of the entropy looking at the examples of two coupled harmonic oscillators,
considering that ξi = β′

i/[1 + (1− β′2
i )

1/2].
Now we can consider the Hamiltonian of a free massless scalar field in 3 + 1
dimensions:

H =
1

2

∫
d3x

(
π2(x) + (∇ϕ(x))2

)
. (3.43)
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Let us introduce the partial wave expansion:

ϕlm(r) = r

∫
dΩϕ(x)Ylm(θ, ϕ)

πlm(r) = r

∫
dΩπ(x)Ylm(θ, ϕ)

(3.44)

where Ylm(θ, ϕ) are spherical harmonics and ϕlm and πlm obey the canonical
commutation relations:

[ϕlm(x), πl′m′(x′)] = iδll′δmm′δ(x− x′). (3.45)

The Hamiltonian becomes H =
∑∞

l=0

∑l
m=−lHlm where:

Hlm =
1

2

∫ ∞

0

dr

(
π2
lm(r) + r2

[
∂

∂r

(ϕlm(r)

r

)]2
+
l(l + 1)

r2
ϕ2
lm(r)

)
. (3.46)

Instead of the continuous radial coordinate x we use a lattice of discrete points
with spacing a, so we can use a−1 as an ultraviolet cutoff. On the other side,
if we consider that the system is in a sphere of radius L = (N + 1)a, where
N is a large integer, we can choose L−1 as an infrared cutoff. In these terms,
the Hamiltonian becomes:

Hlm =
1

2a

N∑
j=1

[
π2
lm,j +

(
j +

1

2

)2(ϕlm,j

j
− ϕlm,j+1

j + 1

)2

+
l(l + 1)

j2
ϕ2
lm,j

]
(3.47)

where ϕlm,N+1 = 0 and again:

[ϕlm,j, πl′m′,j′ ] = iδll′δmm′δjj′ . (3.48)

This Hamiltonian is that of a system of N coupled harmonic oscillators, that
is Hlm is the general form of:

H =
1

2

N∑
i=1

p2i +
1

2

N∑
i,j=1

xiKijxj. (3.49)

For a fixed value of N we can compute the entropy summing over l and m:

S(n,N) =
∑
lm

Slm(n,N). (3.50)
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Since Hlm is independent of m and summing over m we obtain a factor
(2l + 1), then the entropy becomes:

S(n,N) =
∑
l

(2l + 1)Sl(n,N). (3.51)

If l >> N the term that depends on l is dominant and we can compute Sl

perturbatively:

Sl(n,N) = ξl(n)[− log ξl(n) + 1] (3.52)

where

ξl(n) =
n(n+ 1)(2n+ 1)2

64l2(l + 1)2
+O(l−6). (3.53)

If we consider a radius R = (n+ 1
2
)a, it’s possible to fit the computed values

of S(n,N) as a functions of R2 with N = 60 and 1 ≤ n ≤ 30 finding that
S = 0, 30M2R2 with M = a−1.

Figure 3.1: Entropy as a function of R2. We can see that the points are
perfectly fit by a straight line.
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An interesting result is obtained when we consider a one-dimensional
system: in this case the numerical results suggest that S = κ1 log(MR) +
+κ2 log(µR) with κ1 and κ2 numerical constants. We can notice the presence
of the infrared cutoff µ.
This area law recalls the Bekenstein-Hawking entropy formula:

SBH = (1/4)A/L2
Pl, (3.54)

where A is the area of the black hole horizon and LPl =
√
Gℏ/c3 is the Planck

length, but it’s a general property of quantum field theory [26]. Since en-
tanglement entropy has acquired a great importance during these last years,
another area law has been found, i. e. Ryu-Takayanagi formula, using the
correspondence AdS/CFT [27]. We could think that the study of black
holes and entanglement entropy will allow us to make important discoveries
in quantum field theory.

3.5 Modular Hamiltonian

In this last section we want to introduce a concept that will be very useful
later.
Let us suppose to have a Hilbert space HA and a reduced density matrix ρA,
then we can define a formal Hamiltonian HA, called modular Hamiltonian,
such that:

ρA =
1

Z
e−βHA =

1

Z

∑
a

e−βEa |a⟩A ⟨a|A . (3.55)

From eq. (3.6) we have:

S(A) =< HA > + lnZ. (3.56)

If the Hilbert space HB is a copy of HA, we can construct the state:

|ψ⟩ = 1√
Z

∑
a

e−βEa/2 |a⟩A ⊗ |a⟩B . (3.57)

This state is known as thermofield double state.



Chapter 4

Thermofield double in
conformal quantum mechanics

In [17] is shown how conformal quantum mechanics can be seen as a 0 + 1-
dimensional conformal field theory dual to AdS2. Using this evidence, we’ll
see that the vacuum state in Minkowski space-time has the structure of a
thermofield double.
Let us consider a region of Minkowski space-time defined by the intersection
of past and future light cones of two events called casual diamond. There’s
a connection between these casual diamonds and the Rindler space, given
by the two-point function. We can show this starting from the fact that
there’s a correspondence between the generators of radial conformal sym-
metries in Minkowski space-time and the generators of time evolution in
conformal quantum mechanics [18].

4.1 Radial conformal Killing vectors in Minkowski

space-time

Let us consider the metric of Minkowski space-time in spherical coordinates:

ds2 = −dt2 + dr2 + r2dΩ2, (4.1)

where dΩ2 = dθ2 + sin2 θdϕ2. The most general radial conformal Killing
vector [19] is such that Lξηµν ∝ ηµν where Lµν is the Lie derivative and ηµν

29
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is the Minkowski metric, and so we can write it as:

ξ = aK0 + bD0 + cP0. (4.2)

K0, D0 and P0 are respectively the generators of special conformal transfor-
mations, dilations and time translations; they close the sl(2,R) Lie algebra:

[P0, D0] = P0

[K0, D0] = −K0

[P0, K0] = 2D0.

(4.3)

These generators can be written in terms of ∂r and ∂t:

P0 = ∂t

D0 = r∂r + t∂t

K0 = 2tr∂r + (t2 + r2)∂t

(4.4)

and thus the generator ξ becomes:

ξ = [a(t2 + r2) + bt+ c]∂t + r(2at+ b)∂r. (4.5)

If we evaluate the quantity ∆ = b2 − 4ac, we obtain three different types of
generators:

• ∆ < 0: the radial conformal Killing vector is everywhere time-like;

• ∆ = 0: the radial conformal Killing vector is everywhere time-like
except for t = −( b

2a
), r = 0;

• ∆ > 0: the radial conformal Killing vector is null on the light cones and

for t = t±, r = 0 where t± = −b±
√
∆

2a
, time-like inside either lightcone or

outside both ligth cones and space-like everywhere else.

Now let us consider that in conformal quantum mechanics the most general
form of the Hamiltonian, that is the generator of time evolution, is:

G = uH + vD + wK (4.6)

where H, D and K close the sl(2,R) Lie algebra:

[H,D] = iH

[K,D] = −iK
[H,K] = 2iD.

(4.7)
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We can see that the generators H, D and K in quantum mechanics corre-
spond to the generators P0, K0 and D0, which represent the Killing vectors
of AdS2 in Poincaré coordinates, if we make the identification H = iP0,
K = iK0, D = iP0 and u = c, v = b and w = a. If we consider the invariance
of the sl(2,R) Casimir:

C =
1

2
(HK +KH)−D2 (4.8)

we can classify three different types of Hamiltonian, evaluating the quantity
∆ = b2 − 4ac as before:

• ∆ < 0: these are the generators of elliptic transformations. An example
of this type is the generator of rotations R:

R =
1

2

(
αH +

K

α

)
; (4.9)

• ∆ = 0: these are the generators of parabolic transformations, like H
and K;

• ∆ > 0: these are the generators of hyperbolic transformations, like the
generator of dilations D and the following generator:

S =
1

2

(
αH − K

α

)
. (4.10)

The presence of α (it has dimensions of length) is necessary to make R and S
dimensionless and α is also the radius of the casual diamond. In Minkowski
space the generator S maps a casual diamond into itself , while in conformal
quantum mechanics S is the generator of time evolution restricted to the
domain t ∈ (−α, α): in the first case α represents the finite lifetime of a
static observer in the origin.
At this point we can verify if there are thermal effect in conformal quantum
mechanics, that can be seen as a 0+1-dimensional field theory, in which there
are translations, dilations and special conformal transformations. This field
theory is constructed starting from a set of eigenstates |n⟩ of the generator
L0 [20]:

L0 |n⟩ = rn |n⟩
rn = r0 + n, r0 > 0, n = 0, 1...

⟨n|n′⟩ = δnn′

L± |n⟩ =
√
rn(rn ± 1)− r0(r0 − 1) |n±⟩

(4.11)
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where

L0 ≡
1

2

(K
α

+ αH
)

(4.12)

L± ≡ 1

2

(K
α

− αH
)
±iD (4.13)

and r0 is related to the eigenvalue of the Casimir (4.8):

C = r0(r0 − 1). (4.14)

The operators L0 and L± satisfy the following commutation relations:

[L−, L+] = 2L0, [L0, L±] = ±L±. (4.15)

From the |n = 0⟩ “vacuum state” we can construct |τ⟩ states on which H
acts as generator of translations [17], i.e. H |τ⟩ = −i∂τ |τ⟩:

|τ⟩ = N(τ) exp(−ω(τ)L+) |n = 0⟩ (4.16)

where

N(τ) = [Γ(2r0)]
1
2

(ω(τ) + 1

2

)2r0
, ω(τ) =

a+ iτ

a− iτ
. (4.17)

For completness we report the action of the generatorsD andK on |τ⟩ states:

D |τ⟩ = −i
(
τ
d

dτ
+ r0

)
|τ⟩ (4.18)

K |τ⟩ = −i
(
τ 2

d

dτ
+ 2r0τ

)
|τ⟩ . (4.19)

Returning to (4.16), we notice that, for τ = 0, ω(τ) = 1 and |τ⟩ becomes:

|τ = 0⟩ = Γ(2r0)
1
2 exp(−L+) |n = 0⟩ . (4.20)

Now we can introduce the two point function of this theory, that can be
identified with the inner product between τ -states [18]:

G2(τ1, τ2) ≡ ⟨τ1|τ2⟩ =
Γ(2r0)α

2r0

[2i(τ1 − τ2)]2r0
(4.21)

where r0 is the conformal weight. From this expression we can see that
|τ⟩-states are not orthonormal because G2(τ1, τ2) is divergent for coincident
points.
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For r0 = 1 this two-point function is proportional to the two-point func-
tion of a free massless scalar field in Minkowski space-time evaluated along
the trajectory of a static inertial observer in the origin, thus the two-point
function in Minkowski space-time are in correspondence with the two-point
function of conformal quantum mechanics for states |τ⟩.

4.2 The thermofield double state

Starting from the state (4.20), we want to derive the diamond temperature,
considering that [23, 24]:

L+ = a†La
†
R

L− = aLaR

L0 =
1

2

(
a†LaL + a†RaR + 1

)
.

(4.22)

From (4.20), setting r0 = 1, we can write the τ -vacuum as:

|τ = 0⟩ = exp
[
−a†La

†
R

]
|0⟩L ⊗ |0⟩R (4.23)

where we used the decomposition of the vacuum state |n = 0⟩:

|n = 0⟩ = |0⟩L ⊗ |0⟩R . (4.24)

Expanding the exponential function and considering that (a†)n |0⟩ = n! |n⟩,
we obtain the expression for the τ -vacuum:

|τ = 0⟩ =
∞∑
n=0

(−1)n

n!

(
a†La

†
R

)n

|0⟩L ⊗ |0⟩R =
∞∑
n=0

(−1)n |n⟩L |n⟩R (4.25)

where |n⟩L and |n⟩R are the eigenstates of the number operators NL = a†LaL
and NR = a†RaR. We can notice the bipartite structure of the system and,
precisely, its thermofield double structure. Considering the expression (4.10)
for S, we can make the identification L0 = iS. So the |n⟩ states are eigen-
states of the Hamiltonian S and the vacuum |n = 0⟩ = |0⟩L ⊗ |0⟩R is its
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“ground state”. Now let us rewrite the τ -vacuum in a more useful way.
Recalling Euler’s formula, we obtain:

|τ = 0⟩ =
∞∑
n=0

eiπn |n⟩L |n⟩R (4.26)

and using the expression of L0 in terms of creation and annihilation operators
and its relationship with S, we have:

|τ = 0⟩ =
∞∑
n=0

eiπ(n+
1
2
− 1

2
) |n⟩L |n⟩R = −i

∞∑
n=0

eiπL0 |n⟩L |n⟩R =

= −i
∞∑
n=0

e−πS |n⟩L |n⟩R .
(4.27)

As we can see in literature [29] this state has the same structure of a ther-
mofield double of a bosonic oscillator. If we evaluate the density matrix
ρ = |τ = 0⟩ ⟨τ = 0| and then the reduced density matrix obtained tracing
over one set of L or R degrees of freedom, we find a thermal density matrix
at temperature T = 1

2π
. As we said before, it’s necessary to include a factor α

to give the right dimensions to S: in this way the Hamiltonian of the system
is S

α
and the temperature becomes T = 1

2πα
.

What we have shown is that, even in a very simple system, we are able to
find thermal effects using the correspondence between the generators of time
evolution in conformal quantum mechanics and the radial conformal symme-
tries in Minkowski space-time, when time evolution is restricted to a finite
domain.



Chapter 5

Entanglement entropy of
quantum oscillators

Starting from the von Neumann entropy of a single harmonic oscillator, we
want to compute the entanglement entropy of a thermofield double state
constructed form a system of two coupled harmonic oscillators [26].

5.1 Entanglement entropy of a single harmonic

oscillator

Let us consider the Hamiltonian of a single harmonic oscillator:

H =
1

2

(
π2 + ω2ϕ2

)
(5.1)

where

ϕ =
1√
2ω

(
a† + a

)
(5.2)

π =

√
ω

2
i
(
a† − a

)
(5.3)

35
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and a† and a are the creation and annihilation operators. Of course, inserting
(5.2) and (5.3) in (5.1) we obtain:

H =
1

2

[ω
2
(a† − a)2 + ω2 1

2ω
(a† + a)2

]
=

=
1

2

(
a†a† + aa− a†a− aa†

)
+
ω

2

(
a†a† + aa+ a†a+ aa†

)
=

=
1

2

[
ω(a†a+ aa†)

]
=

1

2

[
ω(a†a+ 1 + a†a)

]
= ω

(
a†a+

1

2

) (5.4)

where we used the commutator [a, a†] = 1.
We can find the eigenstates of the number operator a†a using the following
equation:

|n⟩ = 1√
n!
(a†)n |0⟩ . (5.5)

For this harmonic oscillator we can prepare a Boltzmann thermal ensemble
with temperature kT = 1

β
and we can define a density matrix:

ρnm = δnm
1

Z
e−βω(n+ 1

2
) (5.6)

where Z is the partition function of the harmonic oscillator:

Z =
∞∑
n=0

e−βω(n+ 1
2
) =

e
−βω
2

1− e−βω
=

1

2 sinh
(

βω
2

) . (5.7)

At this point we can compute the von Neumann entropy:

S(ρ) = − tr(ρ log ρ) =

−
∞∑
n=0

(
1− e−βω

)
e−βωn log

[(
1− e−βω

)
e−βωn

]
=

= −
∞∑
n=0

(
1− e−βω

)
e−βωn log

(
1− e−βω

)
+

−
∞∑
n=0

(
1− e−βω

)
e−βωn log

(
e−βωn

)
=

= − log
(
1− e−βω

)
−

∞∑
n=0

ne−βωn log
(
e−βω

)
=

= − log
(
1− e−βω

)
+ βω

∞∑
n=0

ne−βωn

(5.8)
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where we used the fact that: log
(
e−βωn

)
= n log

(
e−βω

)
.

Remembering that:
∞∑
n=0

ne−βωn =
e−βω

(1− e−βω)2
(5.9)

we obtain the final expression for the entropy:

S = − log
(
1− e−βω

)
+ βω

e−βω

1− e−βω
. (5.10)

5.2 Entanglement entropy of a system of two

harmonic oscillators

Now we want to repeat the same procedure for a system of two coupled
harmonic oscillators. The Hamiltonian of this system will be:

H =
1

2

2∑
i=1

π2
i +

1

2

2∑
i,j=1

ϕiKijϕj (5.11)

where Kij is real and symmetric. Using π̃i = Oijπj and ϕ̃i = Oijϕj, we can
write an equivalent Hamiltonian:

H =
1

2

2∑
i=1

(
π̃i

2 + ω2
i ϕ̃i

2
)
. (5.12)

Now let us introduce the notation: ϕi = ϕL, ϕR and write the matrix Kij

explicitly:

Kij = ω2

(
1 + 2 tan2 θ 2 tan θ

cos θ
2 tan θ
cos θ

1 + 2 tan2 θ

)
. (5.13)

The Hamiltonian becomes:

H =
1

2

{
π2
L + π2

R + ω2
[
ϕ2
L(1 + 2 tan2 θ) + 2ϕL

2 tan θ

cos θ
ϕR + ϕ2

R(1 + 2 tan2 θ)
]}
.

(5.14)
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In order to find the eigenvalues that diagonalize Kij, we have to solve the
equation det(Kij − ω2

±I). Explaining the calculation:

ω2
[
(1 + 2 tan2 θ − ω2

±)(1 + 2 tan2 θ − ω2
±)−

(
2
tan θ

cos θ

)(
2
tan θ

cos θ

)]
=

= ω2
[
1 + 2 tan2 θ − ω2

± + 2 tan2 θ + 4 tan4 θ − 2ω2
± tan2 θ+

− ω2
± − 2ω2

± tan2 θ + ω4
± − 4

tan2 θ

cos2 θ

]
=

= ω2
[
ω4
± − 2ω2

± − 4ω2
± tan2 θ + 1 + 4 tan2 θ + 4 tan4 θ − 4

tan2 θ

cos2 θ

]
.

(5.15)

We can solve the equation for ω2
±:

ω2
± =

ω2

2

[
2 + 4 tan2 θ±

±
(
(−2− 4 tan2 θ)2 − 4

(
1 + 4 tan2 θ + 4 tan4 θ − 4

tan2 θ

cos2 θ

)) 1
2
]
=

=
ω2

2

(
2 + 4 tan2 θ±

±
(
4 + 16 tan4 θ + 16 tan2 θ − 4− 16 tan2 θ − 16 tan4 θ + 16

tan2 θ

cos2 θ

) 1
2
)
=

=
ω2

2

(
2 + 4 tan2 θ ± 4

tan θ

cos θ

)
=

= ω2
(
1 + 2 tan2 θ ± 2

tan θ

cos θ

)
= ω2

(cos2 θ + 2 sin2 θ ± 2 sin θ

cos2 θ

)
=

= ω2
(cos2 θ + sin2 θ − sin2 θ + 2 sin2 θ ± 2 sin θ

cos2 θ

)
=

= ω2
(1 + sin2 θ ± 2 sin θ

cos2 θ

)
= ω2

[(1± sin θ)2

cos2 θ

]
.

(5.16)
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Having found the eigenvalues of Kij we can write the diagonalized Hamilto-
nian in the following way:

H =
1

2
[π̃2

+ + π̃2
− + ω2

+ϕ̃
2
+ + ω2

−ϕ̃
2
−] =

=
1

2

[1
2
(πL + πR)

2 +
1

2
(πL − πR)

2 + ω+

(1
2
(ϕL + ϕR)

2
)
+ ω2

−

(1
2
(ϕL − ϕR)

2
)]

=

=
1

2

[
(π2

L + π2
R)+

+
ω2(1 + sin θ)2

2 cos2 θ
(ϕ2

L + ϕ2
R + 2ϕLϕR) +

ω2(1− sin θ)2

2 cos θ
(ϕ2

L + ϕ2
R − 2ϕLϕR)

]
=

=
1

2

{
π2
L + π2

R +
ω2

cos2 θ
[ϕ2

L + ϕ2
R + sin2 θ(ϕ2

L + ϕ2
R) + 4ϕLϕR sin θ]

}
.

(5.17)

At this point we are ready to introduce the vacuum state of the coupled
system using the ansatz:

|0⟩ =
√
1− A2eAa†La

†
R |0⟩L |0⟩R . (5.18)

The factor A can be computed requiring that |0⟩ is annihilated by the oper-
ator:

a± =
1√
2

(√
ω±ϕ̃± +

i
√
ω±

π̃±

)
a± |0⟩ = 0.

(5.19)

After the calculation, contained in appendix C, we should obtain:

A =
tan θ

2√
1− tan2 θ

2

. (5.20)

This expression of A is arbitrary because it depends on how we construct
the matrix Kij. As we’ll soon see, the angle θ is related to the temperature:
we can consider different values of θ, for example if we choose θ → 0, that
means T = 1

β
→ 0, we find the decoupled system:

|0⟩ = |0⟩L |0⟩R (5.21)
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while if we choose the angle θ → π
2
we obtain divergent values of A. Returning

to the state (5.18) we can rewrite it expanding the exponential:

|0⟩ =
√
1− A2

∞∑
n=0

An

n!
(a†L)

n(a†R)
n |0⟩L |0⟩R . (5.22)

Remembering that |n⟩L |n⟩R = 1
n!
(a†L)

n(a†R)
n |0⟩L |0⟩R, the state becomes:

|0⟩ =
√
1− A2

∞∑
n=0

An |n⟩L |n⟩R . (5.23)

We can notice that the state has a thermofield double structure, even if it’s
not a thermal state but a pure state with entanglement between right and left

part. If we multiply and divide for |A| and make the substitution |A| = e−
βω
2

we obtain:

|0⟩ =
√
1− A2

1

|A|

∞∑
n=0

(−1)nAn|A| |n⟩L |n⟩R

=
√
1− A2

1

e−
βω
2

∞∑
n=0

(−1)nAne−
βω
2 |n⟩L |n⟩R .

(5.24)

We can use the phase convention: |n⟩′R = (−1)n |n⟩R. Introducing the parti-
tion function of the harmonic oscillator:

Z =
∞∑
n=0

e−βω(n+ 1
2
) =

e−
βω
2

1− e−βω
(5.25)

and thus
√
1− A2 1√

A
=

√
(1− e−βω)e

βω
2 = 1√

Z
.

Finally the vacuum state becomes:

|0⟩ = 1√
Z

∞∑
n=0

e−
βωn
2 e−

βω
2 e

βω
4 |n⟩L |n⟩R =

1√
Z

∞∑
n=0

e−
βω
2
(n+ 1

2
) |n⟩L |n⟩R (5.26)

where we renamed |n′⟩R with |n⟩R. The density matrix of the state is:

ρRL = |0⟩ ⟨0| = 1

Z

∞∑
n=0

e−βω(n+ 1
2
) |n⟩L |n⟩R ⟨n|L ⟨n|R . (5.27)
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Considering the partial trace, we obtain the reduced density matrix:

ρL = trR |0⟩ ⟨0| =

= ⟨n|R |0⟩ ⟨0|n⟩R =
1

Z

∞∑
n=0

e−βω(n+ 1
2
) |n⟩L ⟨n|R |n⟩R ⟨n|R |n⟩R ⟨n|L .

(5.28)

If we recall the expression of Z, we obtain:

ρL =
(
1− e−βω

) ∞∑
n=0

(
e−βωn

)
|n⟩L ⟨n|L . (5.29)

In order to obtain the expression for the entropy we can repeat the same
procedure we have done before:

S = − tr(ρL log ρL) =

= −
∞∑
n=0

(
1− e−βω

)(
e−βωn

)
log

[(
1− e−βω

)
e−βωn

]
⟨n|L |n⟩L ⟨n|L |n⟩L

= − log
(
1− e−βω

)
+ βω

e−βω

1− e−βω
.

(5.30)

Now we are interested in the case with T → ∞, that is β → 0. First of all
we can rewrite (5.30) in the following way:

S = − log
(
1− e−βω

)
+ βωe−

βω
2

e−
βω
2

1− e−βω
=

= − log
(
1− e−βω

)
+ βωe−

βω
2

1

2 sinh
(
βω
2

) , (5.31)

then we can expand the function sinh
(
βω
2

)
:

S ≃ − log
(
1− e−βω

)
+ βωe−

βω
2

1

2βω
2

= − log
(
1− e−βω

)
+ e−

βω
2 (5.32)

and finally the exponential function:

S ≃ − log(1− (1− βω)) + 1− βω

2
= − log(βω) + 1− βω

2
. (5.33)



42CHAPTER 5. ENTANGLEMENT ENTROPYOF QUANTUMOSCILLATORS

We can identify βω with ϵ and obtain the final expression for the entropy:

S ≃ − log ϵ+ 1− 1

2
ϵ. (5.34)

Even in this case we can notice the logarithmic dependence of the entropy,
as we already shown in Chapter 3.
We have seen that thermofield double states are built entangling two copies of
a conformal field theory and starting from them we obtain a density matrix
which is a thermal density matrix at a temperature T = β−1 [29]. This
systems allow us to study many aspects of entanglement, black holes and
quantum information.



Chapter 6

Entanglement entropy of the
τ-vacuum state

In the previous chapter we computed the entanglement entropy of a coupled
system of two harmonic oscillators, seen as a thermofield double state, and
we found that the entropy has a logarithmic dependence in the limit T → ∞.
Now we have all the tools to develop the main argument of this thesis, that is
the calculation of the entanglement entropy of the τ -vacuum state, introduced
in Chapter 4. We want to do it reproducing the same procedure that allowed
us to obtain the entropy of the harmonic oscillators.
Let us recall the expression for the vacuum state of two coupled harmonic
oscillators reviewed in the previous chapter (5.18):

|0⟩ =
√
1− A2eAa†La

†
R |0⟩L |0⟩R . (6.1)

This expression can be compared to the τ -vacuum state:

|τ = 0⟩ = e−a†La
†
R |0⟩L |0⟩R =

∞∑
n=0

(−1)n

n!
(a†La

†
R) |0⟩L |0⟩R =

∞∑
n=0

(−1)n |n⟩L |n⟩R .

(6.2)
This state is not normalizable because, as we can easily see, there is an
infinite sum, which is divergent. Thus, as a consequence, if we compute the
entanglement entropy, this will be divergent.

Looking at the state (5.18) we can notice that when A = −1, that is the
case of the τ -vacuum state (6.2), the normalization constant N = 1

1−A2 → ∞,
thus we can add an infinitesimal factor σ in the exponential to regularize it:
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|τ = 0⟩ = 1√
N
e(−1+σ)a†La

†
R |0⟩L |0⟩R =

=
1√
N

∞∑
n=1

(−1 + σ)n

n!
(a†La

†
R) |0⟩L |0⟩R =

=
1√
N

∞∑
n=1

(−1 + σ)n |n⟩L |n⟩R .

(6.3)

Considering that:

N =
1

1− (−1 + σ)2
(6.4)

neglecting higher order infinitesimal terms, we obtain:

1√
N

=
√
2σ. (6.5)

Let us rewrite the state:

|τ = 0⟩ =
√
2σ

∞∑
n=0

(−1 + σ)n |n⟩L |n⟩R . (6.6)

We can notice that, in the limit σ → 0, the factor N diverges.
Now we can introduce the density matrix:

ρRL = |τ = 0⟩ ⟨τ = 0| = 2σ
∞∑
n=0

(−1 + σ)2n |n⟩L |n⟩R ⟨n|L ⟨n|R , (6.7)

and considering the partial trace:

ρL = trR ρRL = ⟨n|R
(
2σ

∞∑
n=0

(−1 + σ)2n |n⟩L |n⟩R ⟨n|L ⟨n|R
)
|n⟩R =

= 2σ
∞∑
n=0

(−1 + σ)2n |n⟩L ⟨n|L ,
(6.8)



45

we can compute the von Neumann entropy:

S(ρL) = − tr(ρL log ρL) =

= −
∞∑
n=0

2σ(−1 + σ)2n log

(
2σ(−1 + σ)2n

)
⟨n|L |n⟩L ⟨n|L |n⟩L =

= −
∞∑
n=0

2σ(−1 + σ)2n log

(
2σ(−1 + σ)2n

)
=

= − log(2σ)−
∞∑
n=0

2σ(−1 + σ)2n log(−1 + σ)2n =

= − log(2σ)−
∞∑
n=0

2σ(−1 + σ)2nn log(−1 + σ)2 =

= − log(2σ)− (1− 2σ)

2σ
log(1− 2σ) = − log(2σ) +

(
1− 1

2σ

)
log(1− 2σ)

(6.9)

where we used the fact that:

∞∑
n=0

n(−1 + σ)2n =
(−1 + σ)2

[1− (−1 + σ)2]2
(6.10)

and developed the argument of the logarithm neglecting the term σ2. Since
σ is a little quantity, we can expand the logarithm in (6.9):

S = − log(2σ) +
( σ

2σ
+
σ − 1

2σ

)
log(1− 2σ) ≃

≃ − log(2σ) +
( σ

2σ
+
σ − 1

2σ

)
(−2σ) =

= − log(2σ) + 1− σ

(6.11)

where we neglected the term in σ2 again. This entropy has the same form of
the entropy of the two coupled harmonic oscillators (5.34), but in this case
the argument of the logarithm is σ = βω/2 instead of ϵ = βω.

In order to gain some physical insight in the regularization we just intro-
duced let us consider again the state

|τ = 0⟩ = 1√
N
e−a†La

†
R |0⟩L |0⟩R . (6.12)
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Notice that we can consider a time translation in the parameter ϵ using the
Hamiltonian H

|ϵ⟩ = eiHϵ |τ = 0⟩ = 1√
N
eiHϵe−a†La

†
R |0⟩L |0⟩R =

1√
N
e(α+iϵ)H |0⟩L |0⟩R ,

(6.13)
where we used the identification H = −L+

α
. We can write such state as

follows:

|ϵ⟩ = 1√
N
e−L+( iϵ

α
+1) |0⟩L |0⟩R =

1√
N

∞∑
n=0

(−1)n

n!

(iϵ
α

+ 1
)
|0⟩L |0⟩R =

=
1√
N

∞∑
n=0

(−1)n
(iϵ
α

+ 1
)
|n⟩L |n⟩R =

1√
N

∞∑
n=0

eπ(i−
ϵ
α
)n |n⟩L |n⟩R

(6.14)

where we have used Euler’s formula. The time-translated state |ϵ⟩ is normal-
izable and one can evaluate the normalization constant:

N =
1

1− A2
=

1

1−
(
eπ(i−

ϵ
α
)
)2 =

1

1− e−2π ϵ
α

. (6.15)

We can choose ϵ << 1 and verify that the state (6.6) represents in fact
the same regularization given by the state (6.14), if we rewrite the latter as
follows:

|τ = 0⟩ =
√
2σ

∞∑
n=0

(−1 + σ)n |n⟩L |n⟩R =
√
2σ

∞∑
n=0

(eiπ − σeiπ)n |n⟩L |n⟩R =

=
√
2σ

∞∑
n=0

eiπn(1− σ)n |n⟩L |n⟩R .

(6.16)

Now we can identify the quantity (1−σ) with e−π ϵ
α and the quantity (1−σ)2,

which is in (6.4), with e−2π ϵ
α and thus reproduce (6.14).

We can now write down the density matrix associated to the pure state |ϵ⟩:

ρLR = |ϵ⟩ ⟨ϵ| =
(
1− e−2π ϵ

α

) ∞∑
n,n′=0

eπ(i−
ϵ
α
)neπ(−i− ϵ

α
)n′ |n⟩L |n⟩R ⟨n′|L ⟨n

′|R =

=
(
1− e−2π ϵ

α

) ∞∑
n=0

e−2π ϵ
α
n |n⟩L |n⟩R ⟨n|L ⟨n|R

(6.17)
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and the reduced density matrix:

ρL = trR ρLR =
(
1− e−2π ϵ

α

) ∞∑
n=0

e−2π ϵ
α
n |n⟩L ⟨n|L . (6.18)

The calculation of the entanglement entropy will follow the same procedure
of the Chapter 5 referred to the entanglement entropy of a system of two
harmonic oscillators and, if we identify the factor −πϵ

α
with −βω

2
, we should

obtain a similar result:

S = − tr ρL log ρL =
∞∑
n=0

(
1− e−2π ϵ

α

)
e−2π ϵ

α
n log

[(
1− e−2π ϵ

α

)
e−2π ϵ

α
n
]
=

= − log
(
1− e−2π ϵ

α

)
+ 2π

ϵ

α

(
1− e−2π ϵ

α

) e−2π ϵ
α

(1− e−2π ϵ
α )2

.

(6.19)

The expression of the entropy can be easily rewritten as:

S = − log
(
1− e−2π ϵ

α

)
+ 2π

ϵ

α
e−π ϵ

α
1

2 sinh
(

πϵ
α

) . (6.20)

At this point, recalling the limit T → ∞, that is β → 0 in the case discussed
in Chapter 5, we can make the limit for ϵ → 0. First of all we expand the

function sinh
(

πϵ
α

)
and then the exponential:

S ≃ − log
(
1− e−2π ϵ

α

)
+ 2π

ϵ

α
e−π ϵ

α
1

2π ϵ
α

(6.21)

S ≃ − log
[
1−

(
1− 2π

ϵ

α

)]
+ 1− π

ϵ

α
= − log

(
2π

ϵ

α

)
+ 1− π

ϵ

α
. (6.22)

To conclude this chapter we can make some considerations about the ex-
pression of the entanglement entropy we have obtained. The first thing to
notice is that (6.22) can be compared to (5.34) with the right substitution.
Another comparison to do is between the reduced density matrix of the har-
monic oscillator (5.29) and the reduced density matrix of the τ -vacuum state
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(6.18):

ρL =
(
1− e−βω

) ∞∑
n=0

(
e−βωn

)
|n⟩L ⟨n|L

ρL =
(
1− e−2π ϵ

α

) ∞∑
n=0

e−2π ϵ
α
n |n⟩L ⟨n|L .

(6.23)

From this two equations it’s clear that the entanglement entropy (6.22) can
be seen as the entropy of a harmonic oscillator with ω = 1

α
and T = 1

2πϵ
.

The second important result is that (6.22) recalls the entropy of CFT2 (3.20):

S(L) =
c

3
log

(L
ϵ

)
. (6.24)

In fact ϵ, that we used to make the time translation, coincides with the UV
regulator and L = α

2π
with the dimension of the entangling region.

.



Chapter 7

Conclusion

Since 1927, when entanglement entropy was introduced for the first time by
von Neumann, many studies pointed out its importance and its numerous
applications. In this thesis we focused only on one aspect of the entangle-
ment entropy, starting from the correspondence AdS/CFT , conjectured for
the first time by Maldacena in 1997 [35]. Precisely, we considered a 0 + 1-
conformal field theory, that is the conformal quantum mechanics, and noticed
that, even in this simple case, thermal effects are possible. This happens be-
cause the state associated to the inertial vacuum in Minkowski space-time,
that we called |τ = 0⟩, has the structure of a thermofield double and in fact,
computing the reduced density matrix, we discovered a thermal density ma-
trix. The most evident analogy is with a system of two harmonic oscillators,
in which the thermofield double formalism is used to treat the mixed state
ρ = e−βH . These two oscillators are correlated because the state is entangled,
but we can restrict to one or the other, obtaining a thermal state. At this
point we computed the entanglement entropy and then repeated the calcu-
lation for the state we constructed in quantum conformal mechanics. One of
the results of this thesis is that the entanglement entropy of the τ -vacuum
state can be seen as the entropy of a harmonic oscillator with ω = 1

α
and

T = 1
2πϵ

where α is related to the size of the time interval and ϵ is the UV
regulator. The other result is the analogy with the entanglement entropy in
CFT2. We know that, given an arbitrary state, computing the entanglement
entropy is not simple, but for the case d = 2 there is the famous formula
(3.20). In this thesis we found an expression for CFT1, that is similar to
(3.20), in which there is the logarithmic dependence from the factor ϵ and
the dimension of the entangling region L = α

2π
.
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As we said before, entanglement entropy plays an important role in different
fields of physics and in particular in quantum gravity. Starting from the
EPR paradox, that gave rise to the concept of entanglement, much progress
has been made. In fact, in order to understand the nature of black holes, a
great amount of work was made in the last decades on computing the entan-
glement entropy in field theory and we cannot fail to mention the results of
Srednicki [15], Jacobson [5], Bekenstein [6] and Hawking [8]. Some studies
suggest that the black hole entropy should be interpreted as entanglement
entropy. In this regard we started this work illustrating the main aspect of
a phenomenon central for quantum gravity, that is the Unruh effect, but we
analyzed it in the particular case of d = 2, showing that this is possible even
in a flat space-time when there is a local horizon. We focused on the fact
that the variation of the local horizon entropy is proportional to the inverse
of the Unruh temeperature [12] and that this last one is connected with the
Hawking temperature of the black hole [28]. Other discoveries must be made
if we want to have a more complete picture: in this sense the correspondence
AdS/CFT , in which it’s argued that quantum gravity in anti-de Sitter space-
time AdSd+1 is a conformal field theory at the boundary of AdS spacetime,
should be useful, in particular to understand some aspects of quantum grav-
ity formulated in terms of string theory. In recent years CFT is studied
from the point of view of quantum information [36] and we know that the
entanglement entropy is the central object of this theory.

In this thesis we have discussed the entanglement entropy in the contest
of CFT , in the hope to add a little brick to the knowledge in the field. Re-
cent studies show how entanglement entropy has become an important tool
in other fields of physics. For example, it can be applied to condensed mat-
ter physics: tracing out part of the degrees of freedom of correlated quantum
system, obtaining a reduced density matrix, whose eigenvalues constitute the
entanglement spectrum, it’s possible to study the bipartite structure of clean
and disordered system [34]. Another example we can make is quantum com-
puting, that uses the qubit as the basic unit. Qubits is a two-level quantum-
mechanical system and can be expressed as a superposition of states. Unlike
classical bits, they can exhibit quantum entanglement. These are just two of
the many contexts in which entanglement entropy is fundamental. We hope
that future research will allow us to better understand how the Universe
works.



Appendix A

Quantum field theory in flat
spacetime

Let us consider a real scalar field ϕ(xµ) in flat space-time and the Klein-
Gordon Lagrangian:

L = −1

2
ηµν∂µϕ∂νϕ− 1

2
m2ϕ2. (A.1)

The equation of motion is the Klein-Gordon equation:

□ϕ−m2ϕ = 0. (A.2)

We can get the expression of the conjugate momentum using the following
relation:

π =
∂L

∂(∂0ϕ)
= ϕ̇. (A.3)

By a Legendre transformation we can relate the Lagrangian density to the
Hamiltonian density:

H(ϕ, π) = πϕ̇− L(ϕ, ∂µϕ) =
1

2
π2 +

1

2
(∇ϕ)2 + 1

2
m2ϕ2, (A.4)

where (∇ϕ)2 = δij(∂iϕ)(∂jϕ). It’s easy to see that a good solution for the
equation (A.2) is a plane wave:

ϕ(xµ) = ϕ0e
ikµxµ

= ϕ0e
−iωt+ik·x (A.5)

where kµ = (ω,k) and the dispersion relation holds:

ω2 = k2 +m2. (A.6)
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Since the frequency depends on k, instead of a single solution, we have a set
of them, but we can construct the most general solution using a complete
and orthonormal set of modes, thus we have to introduce an inner product:

(ϕ1, ϕ2) = −i
∫
Σt

(ϕ1∂tϕ
∗
2 − ϕ∗

2∂tϕ1)d
n−1x (A.7)

where Σt is a constant-time hypersurface. Applying Stoke’s theorem we can
see that the inner product is independent of Σt and considering (A.5) referred
to two plane waves, we can do the following calculus:

(eik
µ
1 xµ , eik

µ
2 xµ) =

= −i
∫
Σt

(e−iω1t+ik1·x∂te
iω2t+ik2·x∂t − eiω2t+ik2·x∂t∂te

−iω1t+ik1·x)dn−1x =

= (ω2 + ω1)e
−i(ω1−ω2)t

∫
Σt

ei(k1−k2)·xdn−1x =

= (ω2 + ω1)e
−i(ω1−ω2)t(2π)n−1δn−1(k1 − k2)

(A.8)

where we used tha fact that:∫
eik·xdn−1x = (2π)n−1δ(n−1)(k). (A.9)

From the expression of the inner product we can see that an orthonormal set
of modes is in the form:

fk(x
µ) =

eikµx
µ

[(2π)n−12ω]1/2
(A.10)

and thus:
(fk1 , fk2) = δ(n−1)(k1 − k2). (A.11)

These modes satisfy the relation:

∂tfk = −iωfk, ω > 0. (A.12)

In this set of modes we consider also the complex conjugates f ∗
k(x

µ) which
satisfy the relation:

∂tf
∗
k = iωf ∗

k, ω > 0. (A.13)
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The following relations are valid:

(fk1 , f
∗
k2
) = 0 (A.14)

(f ∗
k1
, f ∗

k2
) = −δn−1(k1 − k2). (A.15)

Through fk and f ∗
k we can expand the solutions of the Klein-Gordon equa-

tion, in fact:

ϕ(t,x) =

∫
dn−1xk[âkfk(t,x) + â†kf

∗
k(t,x)] (A.16)

where âk and â†k are the annihilation and the creation operators. At this
point we should remember the canonical commutation relations on equal-
time hypersurfaces for ϕ(t,x) and π(t,x):

[ϕ(t,x), ϕ(t,x’)] = 0

[π(t,x), π(t,x’)] = 0

[ϕ(t,x), π(t,x’)] = iδ(n−1)(x− x’).

(A.17)

If we insert (A.16) into (A.17) we obtain the commutation relations for âk
and â†k:

[âk, âk’] = 0

[â†k, â
†
k’] = 0

[âk, â
†
k’] = δ(n−1)(k− k’).

(A.18)

The annihilation operator is such that, if we apply it to a vacuum state, we
obtain:

â†k |0⟩ = 0 (A.19)

for all k; at the same time, if we apply many times the creation operator to
a vacuum state, we obtain:

|nk⟩ =
1

√
nk

(
â†k

)nk

|0⟩ . (A.20)

With these two operators we can define the number operator:

n̂k = â†kâk (A.21)
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and the states that are eigenstates of the number operator form the Fock basis.
At this point we can write the Hamiltonian (A.4) in terms of creation and
annihilation operators. Let us start rewriting the term with ϕ2:

1

2
m2

∫
dn−1xϕ2 =

=
1

2
m2

∫
dn−1xdn−1kdn−1k′

(
âkfk + â†kf

∗
k

)(
âk’fk’ + â†k’f

∗
k’

)
=

=
1

2
m2

∫
dn−1xdn−1kdn−1k′

(
âkâk’fkfk’ + â†kâk’f

∗
kfk’+

+ âkâ
†
k’fkf

∗
k’ + â†kâ

†
k’f

∗
kf

∗
k’

)
.

(A.22)

We first consider the piece:∫
dn−1xdn−1k′âkâk’fkfk’

∫
dn−1xdn−1k′âkâk’

e−i(ω+ω′)tei(k+k’)·x

2(2π)n−1
√
ωω′

=

=

∫
dn−1k′âkâk’

e−i(ω+ω′)t

2
√
ωω′

δ(n−1)(k+ k’) = âkâ-k
e−2iωt

2ω

(A.23)

where we used (A.9) and (A.10). In the same way we can find all the other
terms. The final expression for the potential energy is:

1

2
m2

∫
dn−1xϕ2 =

=
1

2
m2

∫
dn−1k

( 1

2ω

)[
âkâ-ke

−2iωt + â†kâk + âkâ
†
k + â†kâ

†
-ke

2iωt
]
.

(A.24)

We can repeat the same procedure for all the terms of the Hamiltonian,
obtaining:

1

2

∫
dn−1xϕ̇2 =

1

2

∫
dn−1k

(ω
2

)[
−âkâ-ke−2iωt + â†kâk + â†kâ-ke

2iωt
]

1

2

∫
dn−1x(∇ϕ)2 = 1

2

∫
dn−1k

(k2

2ω

)[
âkâ-ke

−2iωt + â†kâk + âkâ
†
k + â†kâ-ke

2iωt
]
.

(A.25)

Using (A.6) we can write the final expression for the Hamiltonian:

H =
1

2

∫
dn−1k

[
â†kâk + âkâ

†
k

]
ω =

∫
dn−1k

[
n†
k +

1

2
δ(n−1)(0)

]
ω (A.26)

where we used the commutation relations (A.18).



Appendix B

Bogoliubov transformation

In order to obtain the Unruh temperature, it’s necessary to know the Bo-
goliubov coefficients. We’ll briefly introduce quantum field theory in curved
space-time to compute these coefficients.
Let us start with the Lagrange density of a scalar field:

L =
√
−g

(1
2
gµν∇µϕ∇νϕ− 1

2
m2ϕ2 − ξRϕ2

)
(B.1)

where g is the determinant of the metric tensor gµν, R is the curvature scalar
and ξ is the parameter involved in the conformal coupling and it’s equal to
1
6
in four dimensions. Starting from this Lagrangian we can compute the

conjugate momentum:

π =
∂L

∂(∇0ϕ)
=

√
−g∇0ϕ. (B.2)

The canonical commutation relations are:

[ϕ(t,x), ϕ(t,x’)] = 0

[π(t,x), π(t,x’)] = 0

[ϕ(t,x), π(t,x’)] =
i√
−g

δ(n−1)(x− x’).

(B.3)

The equation of motion for ϕ is:

□ϕ−m2ϕ− ξRϕ = 0. (B.4)
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and the inner product between ϕ1 and ϕ2 is:

(ϕ1, ϕ2) = −i
∫
Σ

(ϕ1∇µϕ
∗
2 − ϕ∗

2∇µϕ1)n
µ√γdn−1x (B.5)

where Σ is a spacelike hypersurface, γ is the metric and nµ the unit normal
vector. We can expand the field ϕ in terms of a complete and orthonormal
set of solutions fi(x

µ), that is:

ϕ =
∑
i

(
âifi + â†if

∗
i

)
(B.6)

where:

(fi, fj) = δij

(f ∗
i , f

∗
j ) = −δij.

(B.7)

The known commutation relations for the annihilation and creation operators
are:

[âi, âj] = 0

[â†i , â
†
j] = 0

[âi, â
†
j] = δij.

(B.8)

If we apply the annihilation operator to a vacuum state we have:

â†i |0f⟩ = 0 (B.9)

for all i. If we apply many times the creation operator to this vacuum state
we can construct the Fock basis:

|ni⟩ =
1√
ni!

(
a†i

)ni

|0f⟩ . (B.10)

We remember that the number operator is n†
fi
= â†i âi. The modes fi(x

µ) are
not the unique choice, in fact we can consider the set of modes gi(x

µ) and
expand ϕ in terms of them:

ϕ =
∑
i

(
b̂igi + b̂†ig

∗
i

)
; (B.11)
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the new operators b̂i and b̂
†
i have the same commutation relations (B.8). In

the same way there will be a vacuum state |0g⟩ such that:

b̂i |0g⟩ = 0 (B.12)

for all i. We can build the Fock basis as before and define the number
operator n̂gi = b̂†i b̂i. These two sets of modes originate two different notions
of vacuum because two observers will see a different number of particles. We
can understand this expanding each set of modes in terms of the other:

gi =
∑
j

(
αijfj + βijf

∗
j

)
fi =

∑
j

(
α∗
jifj − βjig

∗
j

)
.

(B.13)

These transformations are known as a Bogoliubov transformation and
αij and βij are the Bogoliubov coefficients. We can express the operators

âi and b̂i in terms of these coefficients:

âi =
∑
i

(
αjib̂j + β∗

jib̂
†
j

)
b̂i =

∑
j

(
α∗
ij âj − β∗

ij â
†
j

)
.

(B.14)

In the f -vacuum the observer will not perceive any f -particles, but what
about an observer which uses the g-modes? To answer this question we have
to calculate the expectation value of the g number operator in the f -vacuum:

⟨0f | n̂gi |0f⟩ = ⟨0f | b†ibi |0f⟩ = ⟨0f |
∑
j

k
(
αij â

†
j − βij âj

)(
α∗
ikâk − β∗

ikâ
†
k

)
|0f⟩ =

=
∑
jk

(−βij)(−β∗
ik) ⟨0f | âj â

†
k |0f⟩ =

∑
jk

βijβ
∗
ik ⟨0f |

(
â†kâj + δjk

)
|0f⟩ =

=
∑
jk

βijβ
∗
ikδjk ⟨0f |0f⟩ =

∑
j

βijβ
∗
ik.

(B.15)

This quantity differs from zero. This shows that the notion of vacuum is not
absolute: if an observer perceives a vacuum state, we cant’ say the same for
another one.
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Appendix C

The value of A in the ground
state

Considering the operator a+ (5.19), we have to rewrite it using (5.16):

a+ =
1√
2

{√
(1 + sin θ)ω

cos θ

[ 1

2ω
(a†L + aL) +

1

2ω
(a†R + aR)

]
+ i

√
cos θ

(1 + sin θ)ω

[√ω
2
i(a†L − aL) +

√
ω

2
i(a†R + aR)

]}
.

(C.1)

Now we can apply it to the ground state of the system of two coupled har-
monic oscillators (5.18), obtaining:

a+ |0⟩ =

=
1

2
√
2

[√
1 + sin θ

cos θ
(a†L + aL + a†R + aR)−

√
cos θ

1 + sin θ
(a†L − aL + a†R − aR)

]
√
1− A2eAa†La

†
R |0⟩L |0⟩R .

(C.2)

We know that a†+ = 1√
2
(a†L+a

†
R) and that a+ = d

da†+
, thus a+ = 1√

2
( d

da†L
+ d

da†R
).

We can apply again the operator to the vacuum state:

1√
2

( d

da†L
+

d

da†R

)
|0⟩ = 1√

2

√
1− A2ea

†
La

†
RA(a†L + a†R) |0⟩L |0⟩R . (C.3)
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This equation can be compared to (C.2), remembering that aL |0⟩L |0⟩R =
aR |0⟩L |0⟩R = 0:

1√
2

√
1− A2ea

†
La

†
RA(a†L + a†R) |0⟩L |0⟩R =

=
1

2
√
2

[√1 + sin θ

cos θ
(a†L + aL + a†R + aR)+

−
√

cos θ

1 + sin θ
(a†L − aL + a†R − aR)

]√
1− A2eAa†La

†
R |0⟩L |0⟩R .

(C.4)

The equation for A is:

A =
1

2

[√
1 + sin θ

cos θ
−
√

cos θ

1 + sin θ

]
. (C.5)

Squaring both sides we obtain:

A2 =
1

4

( cos θ

1 + sin θ
+

1 + sin θ

cos θ
− 2

)
=

=
1

4

(cos2 θ + (1 + sin θ)2 − 2 cos θ(1 + sin θ)

(1 + sin θ) cos θ

)
=

=
1

2

(1 + sin θ − cos θ(1 + sin θ)

(1 + sin θ) cos θ

)
=

1

2

(1− cos θ

cos θ

)
.

(C.6)

Thus the value of A is:

A = ± 1√
2

√
1− cos θ

cos θ
. (C.7)

Considering that:

±
√

1− cos θ

2
= sin

θ

2
(C.8)

and that:

cos θ = cos2
θ

2
− sin2 θ

2
(C.9)

we obtain:

A =
sin θ

2√
cos2 θ

2
(1− tan2 θ

2
)
=

tan θ
2√

1− tan2 θ
2

. (C.10)
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Thus if we choose the angle θ = 0 we find the decoupled system:

|0⟩ = |0⟩L |0⟩R (C.11)

while if we choose, for example, the angle θ = π
2
we obtain divergent values

of A.



62 APPENDIX C. THE VALUE OF A IN THE GROUND STATE



Appendix D

Another way to compute the
entanglement entropy

In order to obtain a well-known expression for the entropy, we can rewrite
the state:

|τ = 0⟩ =
∞∑
n=0

(−1 + σ)n |n⟩L |n⟩R (D.1)

in another way. Using Euler’s formula, we obtain:

|τ = 0⟩ = 1√
N

∞∑
n=0

(eiπ − σeiπ)n |n⟩L |n⟩R =
1√
N

∞∑
n=0

eiπn(1− σ)n |n⟩L |n⟩R =

=
1√
N

∞∑
n=0

eiπne−δn |n⟩L |n⟩R

(D.2)

where we used the identification (1 − σ) = e−δ. In fact, in the limit σ → 0
we obtain 1, that is the same result of the limit δ → 0. We can notice that
there is a connection between σ that regularizes (6.2) and δ that regularizes
the state:

|τ = 0⟩ = 1√
N

∞∑
n=0

eiπn |n⟩L |n⟩R . (D.3)

Making the limit σ → 0 in (D.1) we reproduce (6.2), at the same time, if we
make the limit δ → 0 we reproduce (D.3).
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Let us consider the normalization constant:

N =
1

1− A2
=

1

1− e−2δ
. (D.4)

The state becomes:

|τ = 0⟩ =
(√

1− e−2δ
) ∞∑
n=0

ei(π+iδ)n |n⟩L |n⟩R . (D.5)

First of all we want to compute the entanglement entropy for this state and
then check if it coincides with (6.9). The density matrix ρ = |τ = 0⟩ ⟨τ = 0|
will be:

ρ =
1

N

∞∑
n,n′=0

eiπ(n−n′)e−δ(n+n′) |n⟩L |n⟩R ⟨n′|L ⟨n
′|R =

=
1

N

∞∑
n=0

e−2δ |n⟩L |n⟩R ⟨n|L ⟨n|R

(D.6)

where

N =
1

1− e−2δ
. (D.7)

The reduced density matrix is obtained computing ρL = trR |τ = 0⟩ ⟨τ = 0|:

ρL =
(
1− e−2δ

) ∞∑
n=0

e−2δn |n⟩L ⟨n|L . (D.8)
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At this point we are ready to compute the entropy, using the fact that S =
− tr ρL log ρL:

S = −
∞∑
n=0

(
1− e−2δ

)
e−2δn log

[(
1− e−2δ

)
e−2δn

]
=

= − log
(
1− e−2δ

)
−

∞∑
n=0

(
1− e−2δ

)
e−2δn log e−2δn =

= − log
(
1− e−2δ

)
+
∑
n=0

(
1− e−2δ

)
e−2δnn2δ =

= − log
(
1− e−2δ

)
+
(
1− e−2δ

) e−2δ(
1− e−2δ

)22δ =

= − log
(
1− e−2δ

)
+

e−2δ(
1− e−2δ

)2δ =
= − log

(
1− e−2δ

)
+ e−δ 1

2 sinh δ
2δ.

(D.9)

First of all we can expand the function sinh δ and then the exponential e−2δ,
when δ → 0:

S ≃ − log
(
1−

(
1− 2δ

))
+
(
1− δ

) 1

2δ
2δ =

= − log(2δ) + 1− δ.
(D.10)

We can notice that when δ → 0, the term log(2δ) → ∞. Now if we consider
the substitutions:

1− σ = e−δ

(1− σ)2 ∼ 1− 2σ = e−2δ
(D.11)

and if we use in (6.9) we can easily verify that:

S = − log
(
1− e−2δ

)
+ log

(
e−2δ

)1− e−2δ − 1

1− e−δ
=

= − log
(
1− e−2δ

)
+ 2δ

e−2δ

1− e−2δ

(D.12)

that is exactly (D.9).
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