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Chapter 1

Introduction

In recent years, the role of entanglement and information theory in shading
light on holography and space-time emergence has become more and more cen-
tral in all the main approaches to quantum gravity, starting from the context
of AdS/CFT, in string theory [1], up to the main non-perturbative quantum
gravity approaches. In facts, a first key result showing a deep relation be-
tween entanglement and geometry was provided by the Ryu-Takayanagi holo-
graphic area/entropy formula[2], as a direct consequence of the holographic
gauge/gravity duality setting. In this case, the entanglement entropy of a bound-
ary CFT vacuum state was derived to be proportional to the area of a minimal
surface in the dual AdS bulk. Via holographic duality, this result suggested the
possibility to reconstruct information on geometrical data of a certain region of
a AdS bulk via the quantum correlations of the CFT state at the boundary of
such region. Many generalizations have followed since then.[3, 4, 5]

The radical idea of a correspondence between geometry and entangled echoed
in the framework of non-perturbative and background independent models of
quantum gravity, such as Loop Quantum Gravity (LQG) [6] and its covari-
ant generalizations [7], where continuum space-time geometry is replaced by
pre-geometric structures, described by spin-networks labelled by algebraic and
combinatorial variables. Spin network states provide a consistent model of quan-
tum geometry that fits well the study of the nature of gravity in the quantum
regime. Tools of quantum information and entanglement theory have been more
and more used in this setting recently to describe the quantum skeleton of space-
time as a set of fundamental microscopical entities held together by entangle-
ment [8, 9, 10, 11]. In this sense, entanglement of spin networks is expected
to play a key role in understanding how a continuum geometric description of
space-time emerges from the quantum gravity regime [12, 13, 14]

The Thesis investigates the conjectured entanglement-geometry correspon-
dence in non-perturbative quantum gravity [15, 10, 16], by studying for the first
time measures of Rényi negativity [4, 17] in quantum states of 3d geometry
described by quantum spin-networks [5] in the formalism of Group Field Theory
[11], and investigating their holographic properties.
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6 CHAPTER 1. INTRODUCTION

In Group Field Theory, space-time and geometry are emergent from a quan-
tum many-body description of quantum space in terms of collections of inter-
acting entangled simplicies, intended as quanta of space, dual to quantum spin
network states.

In this formalism, generalised quantum spin network states can be described
in terms of symmetric tensor networks. This allows to import techniques of
quantum many-body physics in non-perturbative quantum gravity.

In this setting, our analysis focuses on the holographic properties of the typi-
cal Rényi negativity derived for mixed random spin-networks with boundaries,
defined as open networks of entangled random simplices. The random character
of the networks is motivated by attempt to mimic the complexity of the quan-
tum geometry states as a signature of the (unknown) quantum gravitational
dynamics.

Negativity [5, 18] is a measure of entanglement well defined for both pure and
mixed states, this allows a generalisation of the study of quantum correlations
in quantum geometry for system which are generally multi-partite.

Given a multi-partite system, negativity quantifies the entanglement of a
state according to the amount of negative eigenvalues of the associated partial
transposed density matrix. Indeed a necessary condition [19, 20] for a state
to be unentangled is to have vanishing negativity. As for VN entropy, we can
define also Rényi negativity of order k. In particular, we focus on logarithmic
negativity [21] that is a monotone entanglement measure that provides many
simplification in the calculations. In our approach, log-negativity will thus be
obtained as the limit k to 1 of a k-th typical Rényi negativity.

The setting we consider is the following: we deal with an open random spin
network state describing 3d quantum geometry with a boundary. We are inter-
ested in studying the holographic and geometric character of the entanglement
among the subregions of the associated boundary state. In order to generalise
the work in [16], we consider then a multi-partition of the boundary in three
subregions A, B, C, and define a reduced boundary mixed state AB by tracing
out the C system, intended as a generic environment. Thereby we look at the
correlation among A and B with a measure of negativity.

To compute the typical k-th Rényi negativity we use two different approaches
used in random tensor network literature: a diagrammatic approach [17] and
a permutation approach [5]. In our analysis, both approaches require to be
generalised in order to account for the symmetries and new degrees of freedom
of the random spin networks, such as the intertwiners numbers associated to
each vertex of the graph.

The diagrams method has been used in details for the calculations of typical
value of 2nd and 3rd order Rényi negativity given by the ensemble averaging of
the trace of the partial transposed density matrix to the power of the considered
order.

In the calculation, tensor traces, adjacency matrix contractions and aver-
aging can be graphically represented via diagrams and a list of short rules [4]
allows us to write the result in term of the dimension of the Hilbert spaces of
each subsystem.
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The analysis of the results obtained via the diagrammatic approach for a set
of simple spin network states, shows a clear internal symmetry emerging related
to the Permutation group: one readily realise that the k-th order of negativity
is the sum of a finite number of terms that is equal to the cardinality of the
group Sk, given by k! elements. This leads to reformulate the diagrammatic
calculations of the k-th momenta of the mixed boundary in the Rényi formula
in terms of a partition function of a generalised Ising model, with Ising spin
variables replaced by elements of the permutation group attached to each vertex,
interacting and spreading in the graph.

In this setting, we compute the typical log-negativity associated to a bipar-
tition of a mixed spin network state. We recover the expected Ryu-Takanayagi
area scaling law for the mutual information associated with the log-negativity
at all orders, where again the minimal areas are associated to domain walls of
the statistical model living on the spi-network graph.

Finally, we study the effect of bulk correlations by introducing link-wise
maximal entangled correlators among intertwiners of the bulk network. We see
that by adding non-local correlations to the bulk corresponds to a tendency of
the domain walls to increase, with a sensible deformation of the area law.

The work is organized in six Chapters. Chapter two introduces to the no-
tion of quantum geometry starting from the canonical quantization approach of
the Einstein-Hilbert action, along with the original viewpoint of LQG, leading
to the definition of quantum spin network states. Chapter three recall the no-
tion of entanglement and its measurements in terms of Von Neumann entropy
and Rényi generalisation. At this stage the main entanglement structures of
spin networks are discussed. Chapter four introduces the notion random spin
networks, recently proposed in [16], and it reviews the statistical derivation of
Rényi entropy for such states with an emphasis on its holographic behaviour.
Chapters two to four provide the conceptual and technical preliminary toolbox
for the central part of the thesis consisting in the derivation of the typical neg-
ativity for a set of random spin network states in Chapter five. A summary of
the results and a discussion follows in Chapter six.
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Chapter 2

Quantum geometry states

As a first step of our work, in this Chapter we introduce the non-perturbative
description of quantum geometry states given by quantum spin networks, as a
result of the canonical quantization program for classical space-time first derived
in Loop Quantum Gravity [7].

Starting from Einstein-Hilbert action and introducing ADM formalism, Gen-
eral Relativity is described as a dynamical theory with diffeomorphism invari-
ance and on-shell conditions expressed through constraint on the metric space,
described by a Lagrangian. Following Dirac quantization procedure one can
consistently define a “kinematic” Hilbert space of the theory. The description of
gravity in quantum language however further requires to reformulate the theory
with a new set of variables in the Lagrangian, i.e. tetrad and Ashtekar con-
nections. The latter are su(2)-valued one forms of connection. A new Gauss
constraint emerges, eventually leading to a description of gravity as a local
SU(2) Yang-Mills theory, which is now suitable for quantization.

Following the procedure of local gauge theory, connection and tetrads are
smeared on paths and surfaces, leading to the holonomy-flux algebra in terms of
which we perform canonical quantization [6]. Quantum states of 3d geometry are
realised as wave functionals of holonomies evaluated on a finite set of holonomy-
paths forming closed graph and expressed in terms of quantum spin network
states. Some basic examples of spin networks are provided at this stage (i.e.
Wilson line, trivalent node, tetra-valent node) [22] with an emphasis on the
role of the gauge constraint in the construction of the Hilbert space and their
geometrical interpretation [23, 24, 25].

2.1 Canonical quantization of General Relativity

The Hamiltonian formulation of GR [6] is the starting point of the canonical
approach to the quantization of geometry. It is well known that it is possible
to derive Einstein’s equation in vacuum by varying Einstein-Hilbert action whit

9
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respect to the metric tensor:

SEH =
1

16πG

∫
d4x
√
−gRµνgµν (2.1)

δSEH

δgµν
= 0 =⇒ Rµν −

1

2
Rgµν = 0 (2.2)

where g is the determinant of the metric, Rµν is Ricci’s tensor and R is the
scalar curvature.
In order to obtain a canonical formulation for Einstein’s equation we need to
identify a couple of conjugated variables and perform a Legendre transformation,
namely to pass from a Lagrangian to a Hamiltonian formulation. The action
describing the dynamics of a classical system can be written in terms of the
Lagrangian L(qi, q̇i) ∈ F(TQ) that is a function on the tangent bundle of the
configuration space Q.

S =

∫
dtL(qi, q̇i) (2.3)

Thus we can define the conjugated canonical momentum as pi = ∂L
∂q̇i and map

TQ into T ∗Q as follows :

S =

∫
dt
(
piq̇

i −H(qi, pi)
)

(2.4)

where H ∈ T ∗Q is the Hamiltonian of the system. T ∗Q is the phase space which
dimension is dim(T ∗Q) = 2dim(Q) and it is endowed with the symplectic form

ω =
1

2
ωijdx

i ∧ dxj (2.5)

Being ω non degenerate by definition there exists its inverse matrix Λ such that

ω−1
ij = Λij =⇒ Λ =

1

2
Λij ∂

∂xi
∧ ∂

∂xj
(2.6)

∂

∂xi
=

{
∂

∂xi for i = 1...n = dim(Q)
∂

∂pi for i = n+ 1...2n
(2.7)

Λ is called Poisson structure (or bivector) and it induces a skew-symmetric
binary differential operation on F (T ∗Q) called Poisson bracket:

{·, ·} : (f, g) ∈ F (T ∗Q)× F (T ∗Q) −→ {f, g} = ∂f

∂xi
∂g

∂xj
− ∂f

∂xj
∂g

∂xi
(2.8)

Since H is defined as H(q, p) = piq̇
i − L(qi, q̇i), it is possible to derive the

equations of motion through the Poisson brackets:
˙⃗q = {q⃗, H} (2.9)
˙⃗p = {p⃗, H} (2.10)

According to this description, in order to perform canonical quantization, we
need to find a couple of conjugated variables in terms of which we can rewrite
the Einstein-Hilbert action.
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2.1.1 Hamiltonian formalism of General Relativity
Let assume space-time manifold M naturally split into M =̃ R × Σ where Σ
is a three-dimensional spatial manifold. Thus we can identify this split as a
foliation ofM into a one-parameter family of spatial hypersurfaces obtained by
embedding Σ into M as follows :

Σt = Xt(Σ) (2.11)

This allows us to identify also the parameter t ∈ R as a time parameter.
Nevertheless a crucial point of this analysis is the fact that t has not the physical
meaning of a time parameter as previously said: Einstein-Hilbert action is invari-
ant under diffeomorphism, thus given ϕ ∈ Diff(M), the quantity X ′ = X ◦ ϕ
represent a new foliation with a different parameter t′. But we cal also express
diffeomorphisms as composition of multiple foliations i.e. ϕ = X ◦X ′. Thus, we
can chose to work with a foliation Σt keeping in mind that physical quantities
shall not depend on t.

Now we have to focus on the foliation Xt to understand its meaning in gen-
eral relativistic sense. We shall focus on the approach proposed by Arnowitt,
Deser and Misner in 1960 [26, 27]. They found a change of variables that sim-
plifies the complexity of such canonical formulation, first attempted by Dirac
in 1958 [28]. Through the following change of variables, we can provide a clear
geometrical interpretation of kinematic between different foliations.
Given coordinates (t, x) on Xt, we can define the time flow vector :

τµ =
∂Xµ(t)

∂t
= (1, 0, 0, 0) s. t. gµντ

µτν = g00 (2.12)

Time flow vector is not to be confused with the unit normal vector nµ. Such
vector is also a time-like one:

gµνn
µnν = −1 (2.13)

but they are not parallel in general.
Thus we can decompose τ in normal and tangential component with respect to
n. We obtain:

τµ(x) = N(x)nµ +Nµ(x) (2.14)

where N(x) is called Lapse function and Nµ has only spatial coordinates, say
Nµ = (0, Na). We refer to Na as the Shift vector. It is useful for our aim
to parametrize also nµ in terms of Lapse and Shift to better understand their
geometrical meanings.

nµ =
( 1
N
,−N

a

N

)
(2.15)

Now it’s easy to graphically represent the role of Lapse and Shift during the
evolution from different foliations Xt and Xt+δt :
In order to express Einstein-Hilbert action in terms of Lapse and Shift, the next
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Figure 2.1: The point yµ = xµ + δxµ lies on the surface labelled by time parameter t+ δt.
It’s not hard to understand that the Lapse function is the proper time elapsed between the t
surface and the t + δt surface for a static observer on the surface. The Shift vector instead
measures the shift of spatial coordinates between the two surfaces for an observer not moving
on the initial surface.

step is to restrict our analysis only to the three-dimensional metric induced on
the foliation by the space time metric1:

gab = qab for a, b = 1, 2, 3 (2.16)

Furthermore, by considering (2.12) and (2.13), we can easily express N and Na

in terms of space-time metric components. In fact:

gµντ
µτν = g00 = −N2 + gabN

aN b (2.17)

τµN
µ = g0bN

b = gµντ
µNµ = gµν

(
Nµ +Nµ

)
Nν = gabN

aN b

⇒ g0b = gabN
a = Nb

(2.18)

The line element reads

ds2 = −
(
N2 −NaN

a
)
dt2 + 2Nadx

adt+ qabdx
adxb (2.19)

In addition to the useful geometric interpretation of these two fields,the main
reason why this change of variables is clever will be soon evident: we are go-
ing to discover immediately that the Lagrangian does not depend on the time
derivatives Ṅ and Ṅa [7]. This fact simplifies considerably the following canon-
ical analysis leading us to an Hamiltonian proportional to Lagrange multipliers
that vanishes on the constraint surfaces.

1Actually the spatial component of the space-time metric gµν is different from the induced
intrinsic metric on Xt. In fact we should rigorously define qµν = gµν − nµnν . However, any
contraction between spatial tensors on Xt with nµ clearly vanishes. This allows us to inherit
calculus on Xt from the one on M.
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Now we can calculate the Lie derivative of the intrinsic metric with respect to
the normal unit vector n, thus obtaining the extrinsic curvature of Σt:

Lnqµν = 2Kµν (2.20)

This tensor encodes the differences between the Riemann tensors inM and Σt,
called respectively R and R. In fact:

Rµ
ναβ = qµµ′q

ν′

ν q
α′

α q
β′

β R
µ′

ν′α′β′ −KναK
µ
β −KνβK

µ
α (2.21)

Now we are ready to exhibit formally the action in terms of curvature K and
Riemann tensor R evaluated on Σ:

SEH =
1

16πG

∫
dt

∫
Σ

d3x
√
qN
[
R−K2 − Tr(KK)

]
(2.22)

As anticipated we have found an action that involves no time derivatives of
Lapse and Shift field. So N and Na play the role of Lagrange multipliers with
vanishing conjugated momenta :

δL
δṄ

= 0
δL
δṄa

= 0 (2.23)

The unique dynamical variables are the spatial component of the induced metric
qab, whose conjugated momenta can be easily computed:

πab =
δL
δqab

=
√
q
(
Kab −Kqab

)
(2.24)

Finally computing Legendre transform we obtain the Hamiltonian for gravita-
tional field:

S
(
qab, πab, N,N

a
)
=

1

16πG

∫
dt

∫
d3x
(
πabq̇ab −NaHa −NH

)
(2.25)

We are using short notation for H and Ha, defined as follows:

H =
1
√
q
Gabcdπ

abπcd−√qR Gabcd = qacqbd + qadqbc − qabqcd

Ha = −2√q∇b

( πb
a√
q

) (2.26)

The phase space of GR is thus parametrized by the canonical couple (qab, πab)
with canonical Poisson bracket:

{πab(t, x), qcd(t, x′)} = δc(aδ
d
b)δ(x− x

′) (2.27)

By varying the action with respect to Lagrange multiplier we trivially obtain:

Ha = 0 H = 0 (2.28)
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called respectively space-diffeomorphism constraint and scalar Hamilto-
nian constraint. The Hamiltonian of the system is given by:

H =

∫
d3x(NaHa +NH) (2.29)

where we have set 16πG = 1.
Since Hamiltonian is proportional to Lagrange multipliers, it vanishes on-shell,
i.e. when the constraints equations are satisfied. Hence we understand that
there is no dynamics (or no physical evolution) with respect to the time param-
eter t, and this result is joyfully coherent with the previous discussion on the
diffeomorphism invariance of the foliation induced by the topology of M.

2.1.2 Manifestly covariant formulations and vanishing Hamil-
tonian

So far we have found a result (apparently) surprising since Hamiltonian vanishes
and clearly there is no dependence on the parameter we have been using. Such
fact obviously matches the requirement that t has no physical meaning because
of diffeomorphism-invariance of General Relativity. Moreover the fact that H
vanishes does not mean that such formulation for the theory has no information
on dynamics. To highlight the presence of this information it is possible to ex-
hibit the result for a single particle equation in manifestly covariant formulation.
The most basic action for such system is:

S =

∫ +∞

−∞
dτ
(
ẋµkµ −N

[
kµkνηµν −m2

k

])
(2.30)

Where τ in an auxiliary parameter, xµ are fields on the worldline, ẋµ = ∂xµ

∂τ
and N is a Lagrange multiplier whose role is to impose the on-shell condition
on momenta. Indeed:

∂L
∂N

= 0 =⇒ kµkνη
µν −m2

k = 0 (2.31)

To obtain H we compute Legendre map and we obtain:

H = ẋµkµ − L = N
[
kµkνη

µν −m2
k

]
(2.32)

Even in this case, we obtain an Hamiltonian which is proportional to constraints
that vanishes for onshell (or physical) states, H = 0. Nevertheless this only
means that physics does not depend of the arbitrary parameter used to formu-
late the theory, and this is definitely a good result. Also evaluating Hamilton
equation for xµ:

ẋµ =
∂H
∂kµ

= 2N
(
kνη

µν
)

xµ = x̄µ + 2N
(
kνη

µν
)
τ

(2.33)
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We understand that both time and spatial coordinates depends on N and τ .
Thus we call partial observables the quantity x0(τ) and xk(τ) for reasons that
will be clear soon: in fact if we invert x0(τ) in τ(x0) and combine xk(τ(x0)) we
get the equations of motion for special relativistic free particle:

xk = x̄k +
kk

k0
(
x0 − x̄0

)
(2.34)

We use the adjective partial to stress the fact that these observables evaluate
the evolution of physical quantities with respect to the arbitrary parameter used
to formulate theory, so they can be predicted from the knowledge of the initial
state of the system but there is no way to measure their values as it is intended
in quantum language. Nevertheless we have just shown that combining partial
observables we can build up physical observables, that therefore can be defined
as relations between partial observales.
Beside the physical interpretation of the equations derived, the crucial point of
this analysis is that we menage to describe the dynamics even for a system with
vanishing Hamiltonian.

2.2 Tetrad formalism and Ashtekar variables

Before continuing the path of canonical quantization, we shall recall briefly the
main step we have already performed:

• We began with the search of a canonical formulation of EH action, focus-
ing mainly of the role of diffeomorphism invariance of space time.

• We performed the ADM change of variables, that brought us to Lapse
and Shift fields as the main protagonist of the evolution between leaves
obtained by the foliation of space-time.

• Explicitly writing Lagrangian in such terms, we have easily computed the
Hamiltonian related to gravitational field and we obtained a pure con-
straint Hamiltonian, proportional to Lapse and Shift, encoding diffeomor-
phism invariance and scalar Hamiltonian constraints as:

Ha = 0 H = 0 (2.35)

At this stage, we shall then perform a quantisation procedure à la Dirac, in the
sense that we want to define the dynamical physical states as the ones that get
annihilated by the constraints. To obtain such states in a coherent way we need
to define:

• A map from the phase space onto an Hilbert space.
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• A way to promote unambiguously commutation rules of Poisson brackets
in terms of Lie Bracket: {

·.·
}
→ 1

iℏ
[
·, ·
]

(2.36)

• A way to promote constraints to operator Hµ acting on some (kinematic)
Hilbert space that will be defined afterwards.

After this steps we can finally impose constraints in quantum language by re-
quiring, as anticipated, the condition:

Hµ |ψphys⟩ = 0 ; ∀ |ψphys⟩ ∈ Hphys (2.37)

The meaning of this requirement is that we are restricting the previous Hilbert
space to a new one, that we use to call physical Hilbert space.

In the following, it will be briefly shown how lots of difficulties emerge in this
approach. We mainly focus on a rigorous definition of the kinematic and physi-
cal Hilbert space and the lack of possibility to define a scalar product structure
that takes into account of diffeomorphism invariance of metrics tensor. This
limit will bring us to introduce the tetrad formalism and a different point of
view on a discretized geometry of space-time.

2.2.1 Kinematic and physical Hilbert space

Dirac’s procedure has the advantage to apply to any constrained system. We
would like to use this tool for gravity in ADM formulation.
What we are looking for is a set of functionals that realizes the quantum version
of Poisson’s algebra. Given qab and πab, we know that metrics’ component and
conjugated momenta realize a classical symplectic algebra. We can imagine to
promote such quantities to operators with commutation rules:[

q̂ab(x), π̂
cd(y)

]
= iℏδcd(ab)δ

(3)(x− y)[
q̂ab(x), q̂cd(y)

]
= 0[

π̂ab(x), π̂cd(y)
]
= 0

(2.38)

We can decide to proceed similarly to the case of a scalar field, so considering
a Schrödinger representation of these operators, such that they act by multipli-
cation or derivative on the wave functional evaluated on the 3-metric:

q̂ab(x)ψ[qab] = qab(x)ψ[qab] ; π̂ab(x)ψ[qab] = −iℏ
δψ[qab]

δqab(x)
(2.39)

At this level, to build this pre-geometric or kinematic Hilbert space, we only
need to define a scalar product between wave functional. Although this is a
well known, useful and practical procedure for scalar field, if we apply it to the
gravitational context, a lot of difficulties and obstacles emerge:
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• If we define the scalar product

⟨ψ|ψ′⟩ =
∫
dg ¯ψ[g]ψ′[g] (2.40)

the absence of a Lebesgue measure on the space of metrics modulo diffeo-
morphism prevents us from defining the element dg in a clear mathematical
way.

• If we do not define dg it is simply impossible to verify if q̂ab or π̂cd are
actually hermitian operators. We can’t either prove that q̂ab has a positive
definite spectrum, as required for a space-like metric.

Anyway, this problem has been vastly ignored in literature, and such analysis
continued simply assuming that a well defined HKin could exist. The next step
is to promote the vectorial and scalar constraints to operator and to impose
the classical invariance in quantum terms, that is to narrow further the Hilbert
space to constrained states:

Hkin
Ĥa

−−→ HDiff
Ĥ−→ HPhys (2.41)

If we first consider the vectorial constraint in terms of Schrödinger representa-
tion, smearing the integral of H over a surface Σ:

Ĥaψ[qab] = 2iℏ
∫
Σ

d3x∇bNa
δψ

δqab
= 0 (2.42)

This integral can be solved by integration by parts and leads to the condition:

ψ[qab] = ψ[qab + 2∇(aNb)] (2.43)

This is the result of vector constraint and surprisingly it realizes, in a well
defined way, diffeomorphism invariance of metric at quantum level. Although
this result might seem encouraging, the main problem of this approach still
exists, according to the fact that HDiff clearly inherit from HKin the lack of
Lebesgue measure, preventing us from define scalar product once again.
Moreover, if we use the same procedure to solve the scalar constraints H, we
can write:

Ĥψ[qab] =
[
−ℏ2

2
Gabcd+ :

1
√
g

δ2

δqab(x)δqcd(x)
: −√gR(g)

]
ψ[qab] (2.44)

The : · : symbols stands for normal ordering product. The expression (2.44)
is also know as Wheeler-DeWitt equation. Even if we assume to be able to
perform a good normal ordering prescription, and so to regularize the product
of operator in the same point, differently from the previous case, we have no
characterization of solutions. Beside the lack of scalar product, it is not even
remotely possible to understand the form of the physical states of this theory.



18 CHAPTER 2. QUANTUM GEOMETRY STATES

So far we developed an uncomplete theory, that clearly exhibit the anoma-
lous behaviour of gravitational field at quantum level.
Instead of changing the quantization paradigm, we will now to try describe
gravity using different variables. Indeed it’s not surprising that not all choices
of classical variables suit well during quantization.
We will use a different description for gravity that leads us to the tetrad for-
malism and still another formulation of EH action in terms of a two-form of
curvature associated to an so(1, 3)-valued connection one-form. A new Gauss
constraint will emerge, in a form that is very similar to a SU(2) Yang-Mills
theory. We will focus on the description of the theory in terms of Electric fields
(Densitized triad) and Ashtekar-Barbero connections. The latter will be one of
the main protagonist in the description of loop, thus finally writing the generic
form of a LQG state.

2.2.2 Tetrad formalism and spin connection

A tetrad [6] is a quadruple of 1-form eI(x) = eIµ(x)dx
µ such that µ = 0, 1, 2, 3

and I = 0, 1, 2, 3 is an internal index. We define tetrads starting by a general
relativistic metric:

gµν(x) = eIµ(x)e
J
ν (x)ηIJ (2.45)

where η is the flat Minskowski metric. Tetrads represent an isomorphic map
between general reference frame to an inertial map. Indeed we notice that they
capture the information on the space-time coordinate x, expliciting the fact that
space-time locally appears like a Minkowskian flat manifold.
The definition in (2.45) is manifestly Lorentz invariant:

eIµ(x)→ ẽIµ(x) = ΛI
J(x)e

J
µ(x) (2.46)

Moreover contracting tetrads with tensors of any rank we obtain object that
transforms under Lorentz group. Namely tetrads realize an isomorphism be-
tween the tangent boundle TM and a Lorentz principal boundle F(M, SO(3, 1)).
On the latter we can define the so(3, 1) valued connection 1-form ωIJ

µ and a
derivative of the fiber:

Dµv
I(x) = ∂µv

I(x) + ωI
µJ(x)v

I(x) (2.47)

We can also define covariant derivative, for object with both indices:

Dµe
I
ν(x) = ∂µe

I
ν(x) + wI

µJ(x)e
J
ν (x)− Γρ

µν(x)e
I
ρ(x) (2.48)

We require the following condition:

• Γ(x) is the Levi-Civita connection, so its metric compatible in the sense
that ∇ρgµν = 0

• ω is tetrad compatible, in the sense that Dµe
I
ν = 0. We call this object

spin connection.
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If we write explicitly this request and combine the 2 resulting equation we obtain
that spin connection and tetrads are related by the following relations:

ωI
µJ = eIν∇µe

ν
J

dωe
I = deI + ωI

Je
J =(∂µe

I
ν + ωI

µJe
J
ν )dx

µ ∧ dxν = 0
(2.49)

where we are using the following notation: d is the exterior derivative, ∧ is the
wedge product between forms and dω is the covariant exterior derivative.

Given the spin connection, we can define the curvature associated to it:

F IJ = dωω = dωIJ + ωI
Kω

KJ (2.50)

We can explicitly write its components:

F IJ
µν = ∂µω

IJ
µ − ∂νωIJ

µ + ωI
Kµω

KJ
ν − ωJ

Kµω
KI
ν (2.51)

Now if we use the relation between spin connection and Levi-Civita one from
(2.49) in (2.51) we get the Cartan second structure equation :

F IJ
µν (w(e)) = eIρeJσRµνρσ (2.52)

Now we can write EH action in terms of F :

SEH =

∫
d4x
√
−ggµνRµν =

=

∫
d4xeeµI e

IνRµνρσe
ρ
Je

Jσ =

∫
d4xeeµI e

ρ
JF

IJ
µν (ω(e)) =

=

∫
d4x

1

4
ϵIJKLϵ

µνρσeKρ e
L
σF

IJ
µν =

=
1

2
ϵIJKL

∫
eI ∧ eJ ∧ FKL(ω(e))

(2.53)

This result shows explicitly that gravity is a local gauge theory, its local group
being the Lorentz group and Riemann tensor is defined as the field-strength of
the spin connection.
We can also consider the connection as an independent variable such that we
can write the renowned Palatini action:

S(e, ω) =
1

2
ϵIJKL

∫
eI ∧ eJ ∧ FKL(ω) (2.54)

Even if it depends on an extra filed, this action gives the same equation of
motion. In fact, varying with respect to ω we only impose the form for spin
connection. We notice that the previous formulation of GR required that tetrads
were not degenerate, i.e. inverible. The last equation instead does not require
this condition since the inverses of tetrad do not appear. Moreover if we re-
quire connection being an independent variables, we can add another terms
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to the Lagrangian that has mass dimension 4 and perfectly suits with all the
symmetries:

S(e, ω) =
(1
2
ϵIJKL +

1

γ
δIJKL

) ∫
eI ∧ ej ∧ FKL(ω) (2.55)

γ is a parameter 2 , while (2.55) is called Holst action.

2.2.3 Hamiltonian analysis
To obtain the Hamiltonian formulation of the theory we can proceed as pre-
viously done for the ADM formalism. We first suppose M = R × Σ, so the
space-time foliates into a family of one-parameter hypersurfaces. Then we in-
troduce the Lapse and Shift field (N,Na) to encode information on observer
on different sheets of space-time. We can express tetrad in terms of Lapse and
Shift as follows:

eI0 = eIµτ
µ = NnI +NaeIa, δije

i
ae

j
b = gab (2.56)

The terms eia are the spatial component of tetrads and are called triad.
Now we want to identify a pair of canonically conjugated variables. We will meet
two different issues: the first one is that by using tetrad formalism we introduce
a new symmetry in the theory, i.e. the local Lorentz invariance. The second one
is the fact that we are treating tetrads and connections as independent variables,
so the new variables will be function of both e and ω (besides their derivatives).
To simplify the task we can work in "time gauge" eIµnµ = δI0 and introduce the
following change of variables:

Ea
i =

1

2
ϵabcijke

j
be

k
c (Densitized triads or Electric fields)

Ai
a = γω0i

a +
1

2
ϵijkω

jk
a (Ashtekar-Barbero connection)

(2.57)

With an easy calculation it is possible to prove this variables to be conjugated.
This allows us to write the action in terms of Lapse, Shift, densitized triads and
Ashtekar connection:

S(A,E,N,Na) =
1

γ

∫
dt

∫
Σ

d3x(Ȧi
aE

a
i −Ai

0Gi −NH −NaHa) (2.58)

where:
Gi = DaE

a
i = ∂aE

a
i + ϵijkA

j
aE

ka

Ha =
1

γ
F j
abE

b
j −

1 + γ2

γ
Ki

aGi

H =
[
F j
ab − (γ2 + 1)ϵjmnK

m
a K

n
b

]ϵjklEa
kE

b
l

det(E)
+

1 + γ2

γ
Gi∂a

Ea
i

det(E)

F j
ab = ∂aA

j
b − ∂bA

j
a + ϵjklA

k
aA

k
b

(2.59)

2In quantum theory, this parameter plays a key role, and there it’s called Immirzi param-
eter. If it’s chosen to be real or imaginary, there are big consequences about constraints
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Once again, we obtain a diffeomorfism constraint and a Hamiltonian one, but
those are significatively modified with respect to the EH formulation, by the
change of variables and by the new formulation of the theory based on Gauge
invariance. Indeed both F j

ab and Gi are, respectively, the curvature associated
to the connection and the Gauss constraint that appear in Yang-Mills SU(2)
theory. In particular the term Gi is actually a new constraint: it is not surprising
at all since we defined tetrad to keep in mind the invariance under local gauge
transformation, so this new constraints exhibit this invariance at the canonical
level. Yet the action we defined was required to be Lorentz invariant, we could
be mislead to expect the group of local symmetry to be the Lorentz one. This
unexpected anomaly arises because of the change of variables in (2.57). The
Ashtekar-Barbero connection is an SU(2) connection, not a Lorentz’s one. The
pair of conjugated variables we used to perform Legendre map is indeed given
by (A,E) that transform respectively as a SU(2) vector and an su(2)- valued
connection one-form, thus the Gauss constraint generates SU(2) local symmetry.
The key point of this result is that we are using SU(2) as an auxiliary group
to describe local symmetry; that brings us to describe Gravity as a local SU(2)
Yang-Mills theory, more suitable for quantization.

2.2.4 Canonical quantization

So far we have defined Ashtekar-Barbero connection and densitized triad that
brought us to formulate gravity as a local SU(2) gauge theory. We would like
to proceed by applying the typical step of the canonical quantization, so:

• Promote canonical variables to operators and Poisson bracket to commu-
tators;

• define wave functionals of connection variables, namely ψ[A], a scalar
product on the space of functionals, so realizing an Hilbert space;

• promote Gauss constraint to operator and select "physical" states impos-
ing Ĝiψ[A] = 0;

• study dynamics on this Hilbert space, by applying the Hamiltonian oper-
ator on the space of physical states.

We can thus promote canonical Poisson bracket to commutators [6] :

{Aa
i (x), E

b
j (y)} = γδab δ

j
i δ(x, y) =⇒ [Âa

i (x), Ê
j
b (y)] = γδab δ

j
i δ(x, y) (2.60)

and define the wave functional such that Â and Ê act respectively multiplicativly
and derivatively, namely:

Âa
i ψ[A

b
k] = Aa

i ψ[A
b
k]

Êi
aψ[A

b
k] = −iγ

δ

δAi
a

ψ[Ab
k]

(2.61)
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In order to simplify the equations of constraints, Ashtekar proposed to use γ = i.
This choice leads to a simplification of Hamiltonian constraint but, on the other
hand, variables become complex and to recover GR one has to impose reality
conditions. Since this approach is particularly difficult at quantum level, most
of the recent works on LQG focus on γ real [29, 30].

2.2.5 Holonomy-flux algebra
Following the procedure usually adopted in local gauge theory, we have to reg-
ularize connections and electric fields by integrating them over the whole space
with the same type of test functions. The different tensorial nature of Ai

a and
Ea

i plays a key role.
In fact densitized triads are 2-forms, so it’s natural to smear them on a surface:

Ei(S) =

∫
S

naE
a
i d

2σ (2.62)

where na = ϵabc
∂xb

∂σ1

∂xc

∂σ2
is the normal to the surface. This quantity belongs

to su(2). Concerning Ashtekar connections, they are 1-form so it is natural
to smear them on a one-dimensional path. Indeed one can consider the fact
that connections define a notion of parallel transport of fiber over the base
manifold, thus we can associate to a given Lie algebra-valued connection 1-form
A = Ai

aτidx
a an element of the group hγ(A) called holonomy defined by

hγ(A) = Pexp
{∫

γ

A

}
(2.63)

where

• γ : [0, 1]→ Σ is a path in the spatial hypersurface parametrized by

s ∈ [0, 1] such that
∫
γ

A =

∫ 1

0

dsAi
a(x(s))

dxa(s)

ds
τi (2.64)

• P stands for the path ordered product:

P exp
{∫

γ

A

}
= IdSU(2)+

∞∑
n=1

∫ 1

0

ds1

∫ 1

s1

ds2· · ·
∫ 1

sn−1

A(γ(s1)) . . . A(γ(sn))

(2.65)

The holonomy of a connection A along γ is the unique solution of the equations{
d
dshγ(A(γ(s))) = hγ(A(γ(s)))A(γ(s))

hγ(A(γ(0))) = IdSU(2)

(2.66)

Physically, a holonomy gives a measure of how data fail to be preserved when
parallel transported along a closed path. Performing this change of variable
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A → hγ(A) we have no loss of information, so we can consider all the possible
paths in the manifold and get the same information as specifying connection at
each point.
We can list some of the key properties of the holonomies:

1. The definition of hγ(A) does not depend on the parametrization of the
path.

2. Connections transform under gauge transformation g ∈ SU(2) as

A→ Ag = g−1dg + g−1Ag (2.67)

so hγ transforms as

hγ(A)→ hγ(Ag) = g(γ(0))hγ(A) g
−1(γ(1)) (2.68)

If we identify γ(0) and γ(1) as the source and the target of the path γ,
say the initial and end point, we understand that if we act with a Gauge
transformation on the bulk of the path, the holonomy will change only on
the end points of γ.

3. The holonomy of a degenerate path (single point) is simply given by
IdSU(2).

4. If we have two oriented path such that γ1(1) = γ2(0), the holonomy

hγ1◦γ2
(A) = hγ1

(A)hγ2
(A) (2.69)

5. Combining the two previous point we have:

h−1
γ (A) = hγ−1(A) (2.70)

6. If we act with a diffeomorphism ϕ ∈ Diff(M):

hγ(ϕ
∗A) = hϕ◦γ(A) (2.71)

We have regularized connections A and electric fields E through flux and
holonomies, thus smearing the conjugated variables on paths and surfaces in-
stead of all the space. It is possible to write the new algebra in terms of hγ and
Ei(S). This is called the holonomy-flux algebra. This algebra becomes very
simple if we assume S and γ only have one intersection [6]:

{hγ(A), hγ′(A)} = 0

{Ei(S), Ej(S)} = −ϵijkEk(S)

{Ei(S), hγ(A)} = τihγ(A)

(2.72)

We can easily notice a particular anomaly with respect to what we usually get
in Poisson brackets: although the electric fields Ei play the role of conjugated
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momenta, they do not commute. This leads us to consider only holonomies as
configuration variables to avoid the difficulties that arise if we proceed with a
non commutative flux algebra.

Since the metric is a dynamical object in the theory, we need to find a way
to define a measure on the space of connections that is metric independent. In
order to achieve this task, in the next section we will introduce the cylindrical
function as functionals depending on the connection only through holonomies
on a finite set of paths. This will bring us to define graphs and spin network
states.

Before introducing the notion of spin network, it’s useful to underline the role
of SU(2) in this approach: starting from a generalization of the Ponzano-Regge
model, we will give a description of the geometry of Spin Network state in terms
of simplicial complex, i.e. a triangulation of the manifold, where each face of
the simplicial complex is labeled by a spin variable associated to an irreducible
representation of SU(2). In particular, being Σ a 3-dimensional manifold, tetra-
hedra will be the main protagonists along the path. This approach will be soon
discussed in detail and will be particularly fascinating because geometrical quan-
tities, such as areas and volumes, have a clear and well defined description in
terms of quantum observables. Moreover we will be able to introduce graphs
both as paths of connected holonomies and as the dual picture of connected
tetrahedra.

2.3 Spin Network states

So far we have obtained a description of gravity in terms of SU(2) holonomies
hγ(A) associated to a path γ and of Ashtekar-Barbero connections Ai

a. These
paths play a crucial role in the Dirac quantization procedure. Our aim is to
construct the unconstrained kinematic Hilbert space Hkin.

2.3.1 Cylindrical functions

Cylindrical functions are functionals on the space of connection that only de-
pends on the connections through a finite set of parameters [6]. In particular it
is straightforward to define such functions as depending on connections through
holonomies evaluated on a finite set of paths γi embedded in Σ.

A Graph [22] Γ ⊂ Σ is a finite collection of L oriented paths γl with l =
1, . . . , L embedded in Σ that meet at most at their endpoints. Paths are usually
referred to as links or edge, while intersection points are called nodes or vertices.

Since a SU(2) holonomy lives on each link, we can define a smooth function
f : SU(2)L → C of L holonomies evaluated on the links of the graph f =
f(hγ1

(A), . . . , hγL
(A)). We can define a Cylindrical function as the functional

of connection associated to a given graph Γ and a given function f defined as
above:

ψ(Γ,f)[A] := f(h1, . . . , hL) (2.73)
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where we denoted hl = hγl
. It is also possible to define the space of all cylindrical

functions associated to a graph as:

CylΓ =
{
ψΓ : A → ψΓ[A] ∈ C

}
(2.74)

This space can be turned into an Hilbert space if we introduce a scalar product
between function: :

〈
ψ(Γ,f)

∣∣ψ(Γ,f ′)

〉
=

∫
SU(2)

L∏
l=1

dhlf(h1(A), . . . , hL(A))f
′(h1(A), . . . , hL(A))

(2.75)
Where dhl are L copies of the Haar measure on SU(2). Here we notice that the
change of variable that led us to SU(2) connections (instead of SO(3, 1) ones) is
essential in order to define this scalar product. Indeed Haar measure is a gauge
invariant normalized measure, well defined on a compact Lie Group. Being
SU(2) compact we can unambiguously integrate and calculate scalar product
between cylindrical functions.

We can briefly recall the main properties of Haar measure:

1. dh = d(gh) = d(hg) = d(h−1) ∀g ∈ SU(2)

2.
∫
SU(2)

dh = 1

Moreover, we can underline that a scalar product so defined has the advantage
to exhibit invariance under both gauge transformations and diffeomorphisms.
Indeed the first one is guaranteed by the invariance of Haar measure under
left and right translation; diffeomorphism invariance is a direct consequence of
the fact that the integral does not depend on path γ and the holonomy of the
pullback of A leads back to the holonomy of A on a transformed curve:

hγ(ϕ
∗A) = hϕ◦γ(A) (2.76)

So CylΓ is identified with the Hilbert space HΓ associated to a given graph Γ.
We can thus construct the kinematic Hilbert space of Σ as the space associated
to all the graph embedded in the hypersurface Σ

Hkin =
⋃
Γ⊂Σ

HΓ (2.77)

In fact we are considering a canonical quantization of General Relativity in the
continuum, so we need to take into account of all the graph embedded in Σ with
holonomies along all their edges and surfaces dual to each edge such that the
latter are pierced by one and only one edge in a single point.

This new Hilbert space requires the scalar product to be defined also on
cylindrical function associated to different graphs. This scalar product can be
inherited from that on HΓ by introducing the cylindrical equivalence relation:
namely, we can define equivalence classes of graphs that can be considered as
subgraphs of a bigger one.

[Γ] = {Γ1 ∼ Γ2 iff ∃Γ ⊂ Σ : Γ ⊃ Γ1 Γ2} (2.78)
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So the inner product can be extended as follows:

⟨ψΓ1,f1 |ψΓ2,f2⟩ ≡ ⟨ψΓ,f1 |ψΓ,f2⟩ (2.79)

In the sense that Γ contains both Γ1 and Γ2 and the functions fi are trivially
extended on Γ \ Γi by setting them constant over the links that do not belong
to their original graph.

With this setup, the unconstrained kinematic Hilbert space is thus:

Hkin =

⋃
Γ⊂ΣHΓ

∼
(2.80)

The main result, due to Ashtekar and Lewandowski [31], is that is possible to
identify this Hilbert space as:

Hkin = L2[A, dµAL] (2.81)

that is an Hilbert space over gauge connections A and is endowed with a measure
dµAL called Ashtekar-Lewandowski measure. This means we can see the inner
product (2.79) as scalar product between cylindrical functional with respect to
Ashtekar-Lewandowski measure:

⟨ψΓ1,f1 |ψΓ2,f2⟩ =
∫
dµALψΓ1,f1(A)ψΓ2,f2(A) (2.82)

So far we obtained an Hilbert space that does not require a background metric.
We shall now focus on the representation of holonomy-flux algebra on this space.
It is convenient to find an orthogonal basis on this space.

The Peter Weyl theorem states that a square-integrable function on a
compact Lie group f ∈ L2[G, dµHaar] can be decomposed into matrix elements
of the unitary irreducible representations of the group.

In this case, for g ∈ G = SU(2), one has

f(g) =
∑
j

f̂ jmnD
j
mn(g) (2.83)

where j is an half integer representing the spin of the representation and m,n =
−j, . . . , j are magnetic indices.

Dj
mn(g) is the spin-j irreducible matrix representation of the group element

g: this matrices are called Wigner matrices.
Since HΓ = L2[SU(2)L, dµHaar], where L is the number of link of the graph,

we can apply the Peter Weyl theorem and decompose the cylindrical functions
as follow,

ψΓ,f [A] =
∑

{j},{m},{n}

f̂ j1...jLm1...mLn1...nL
Dj1

m1n1
(h1[A]) . . . D

jL
mLnL

(hL[A]) . (2.84)

Thus an orthonormal basis on HΓ is given by〈
A
∣∣∣Γ, j⃗m⃗n⃗〉 = Dj1

m1n1
(h1[A]) . . . D

jL
mLnL

(hL[A]) (2.85)

where we have used a vectorial notation for j⃗, m⃗, n⃗ to denote the labels of the
UIR of SU(2) associated on each link of the graph.
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2.3.2 Gauge-invariant Hilbert space
So far, we have defined an unconstrained kinematic Hilbert space of the graph,
that is metric independent and endowed with a well defined scalar product.

The next step is solve quantum Gauss constraint and obtain SU(2) gauge
invariant states.
A generic gauge transformation of the connection is given by A→ gAg−1+g−1dg
where g(x) ∈ SU(2) is a local gauge transformation. This translates into the
requirement that holonomies transform as:

hl → h′l = g(γ(0))hlg
−1(γ(1)) (2.86)

Where we can identify γ(0) and γ(1) as the source and target of the holonomy
and, to shorten the notation, we can write g(γ(0)) = gs(l) and g(γ(1)) = gt(l).
Thus a generic Wigner matrix will transform as

Djl
mlnl

(hl)→ Djl
mlnl

(h′l) = Djl
mlnl

(gs(l)hlg
−1
t(l))

=

jl∑
αl,βl=−jl

Djl
mlαl

(gs(l))D
jl
αlβl

(hl)D
jl
βlnl

(g−1
t(l)) (2.87)

By looking at (2.87) we notice that gauge transformations act only on sources
and targets, namely the nodes of the graph. Thus imposing gauge-invariance on
Hilbert space means to impose cylindrical function to be gauge invariant under
SU(2) action at every node:

f0(h1, . . . , hL) = f0(gs1h1g
−1
t1 , . . . , gsLhLg

−1
tL ) (2.88)

Given a cylindrical function f ∈ HΓ we can easily obtain a gauge invariant
function through group averaging:

f0(h1, . . . , hL) =

∫
SU(2)

∏
n

dgnf(gs1h1g
−1
t1 , . . . , gsLhLg

−1
tL ) (2.89)

In the following paragraphs we will explicitly calculate how to impose gauge
invariance on some simple example of graph that will generalized and will con-
stitute the building brick for each complex graph. The key point is to introduce
(at each node) a projector onto the gauge invariant subspace of the Hilbert
space, called intertwiner.

In order to introduce such tool, it is useful to recall that, through Peter-Weyl
decomposition theorem, it is possible to decompose the Hilbert space associated
to a graph into the tensor product of orthogonal subspaces that are basis of an
irrep of SU(2), say H =

⊗
l V

jl . We will show that for a p-valent node, an
intertwiner is an element of InvSU(2)[V

j1 ⊗ . . .⊗ V jp ] .

Wilson Line Wilson lines (and loops) arise in quantum field theory as gauge
invariant operators. In particular Wilson loops are gauge invariant operators
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associated to parallel transport of gauge variables along closed paths. The aim
is to fully describe gauge theories in term of loops.
Let consider the formulation of gauge theories in terms of principal boundle:
for each point of the spacetime M there exists a copy of the gauge group G,
the fibre of the fibre boudle. Wilson lines allow us to compare points on fibres
at different points on M . This is the same role of the connection in GR that
makes possible to compare tangent vector of tangent space at different point.
For principal bounlde, this can be made by introducing a connection, that is
equivalent to a gauge field. The unique solution of Wilson line equation, in term
of the Lie-algebra valued gauge field A is given by:

W [x1, x2] = Pexp

(
i

∫ x2

x1

Aµdx
µ

)
(2.90)

Loops are defined as the trace of a closed Wilson line:

W [γ] = tr

[
Pexp

(
i

∫
γ

Aµdx
µ

)]
(2.91)

The set of holonomies forms a subgroup of the gauge group.
In our framework Wilson lines are exactly the holonomies, so a state of the
Hilbert space corresponding to a single edge of the graph. We can label the
matrix irrep of this state with γ, j, a and b, being a and b, mathematically
speaking the magnetic indices of the representation or graphically speaking the
source and the target of the link.

|W ⟩ = |γ, j, a, b⟩ (2.92)

The wave function associated to this state is:

a j b

ψγ,j,a,b[h(A)] = ⟨h|γ, j, a, b⟩ =
√

2j + 1Dj
ab

(
hγ(A)

)
(2.93)

where
√
2j + 1 is a coefficient that is necessary for the normalization of the

state. Our aim is to glue together two Wilson line in a node, imposing gauge
invariance through group averaging.
Consider two Wilson line states:

⟨h1|γ1, j1, a, b⟩ =
√
2j1 + 1Dj1

ab(h1)

⟨h2|γ2, j2, b, c⟩ =
√
2j2 + 1Dj2

bc(h2)
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a

j1

b
j2

c

Since we have a single node we have to integrate over only one element of SU(2),
in particular we notice that the node b can be seen as the target of the holonomy
h1 and the source of the holonomy h2. Thus, our gauge invariant state will be:

ψ0 =
√
2j1 + 1

√
2j2 + 1

∫
dgDj1

ab(h1g
−1)Dj2

bc(g1h2) =

=
√

2j1 + 1
√
2j2 + 1

∫
dgDj1

aα(h1)D
j1
αb(g

−1
1 )Dj2

bβ(g1)D
j2
βc(h2) =

=
√
2j1 + 1

√
2j2 + 1Dj1

aα(h1)D
j2
βc(h2)

∫
dgDj1

αb(g
−1
1 )Dj2

bβ(g1) =

=
√

2j1 + 1
√
2j2 + 1Dj1

aα(h1)D
j2
βc(h2)

δj1j2δαbδbβ
2j1 + 1

=
√
2j1 + 1Dj1

aα(h1)D
j1
βc(h2)

δαβ√
2j1 + 1

Where we have used the following properties of representations and Wigner
matrices:

1. Dj
ab(g

−1) = (Dj
ab(g))

−1 = Dj
ab(g)

∗

2.
∫
SU(2)

Dj
ab(g)

∗Dj′

a′b′(g) =
δjj′δaa′δbb′

2j+1

After the calculation we notice that it is possible to build a gauge invariant
state made up of two Wilson line by multiplying the projector1 δαβ√

2j+1
in the

vertex. Geometrically speaking, this is the same configuration of two angular
momentum recoupling to give null total angular momentum, so in this simple
case the only possibility is given by j1 = j2 and magnetic number of the first
target and the second source to be equal.
Moreover we notice that, since we imposed gauge invariance on a single node,
performed through group averaging by integrating over a g ∈ SU(2), the Hilbert
space of the resulting state ψ0 will no longer be H = L2(SU(2)2) but
H = L2

(SU(2)2

SU(2)

)
since we have restricted the space from the one generated by

product of Wigner matrices to the quotient set of the previous one with respect
to the action of SU(2).
In the following example we will show that this situation can be generalized for
a graph with L links and N nodes.

1It is possible to demonstrate that this object is a projector. This will be clear once we
define intertwiners and their properties.
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Trivalent node and Intertwiner The case of a trivalent node is way more
interesting both at the conceptual level and at the computational level. We can

n1

j1 m1

n2

j2

m2

n3

j3

m3

begin considering a generic state in H = L2(SU(2)3) build up as product of
three Wigner matrices with some generic coefficients:

ψ(h1, h2, h3) =
∑

{jl},{ml},{nl}

f j1j2j3m1m2m3n1n2n3
Dj1

m1n1
(h1)D

j2
m2n2

(h2)D
j3
m3n3

(h3)

(2.94)
To obtain a gauge invariant state, once again, we have to compute group aver-
aging on the node. Since we have a single node we shall integrate over a single
g ∈ SU(2). It is possible to consider this node as source or target of the three
links and the result will be the same.

ψ0(h1, h2, h3) =
∑

{jl},{ml},{nl}

f j1,...,j3m1,...,n3

∫
dgDj1

m1n1
(gh1)D

j2
m2n2

(gh2)D
j3
m3n3

(gh3) =

=
∑

{jl},{ml},{nl}

f j1,...,j3m1,...,n3
Dj1

α1n1
(h1)D

j2
α2n2

(h2)D
j3
α3n3

(h3) ×

×
∫
dg Dj1

m1α1
(g)Dj2

m2α2
(g)Dj3

m3α3
(g) (2.95)

The quantity
∫
dgDj1

m1α1
(g)Dj2

m2α2
(g)Dj3

m3α3
(g) projects the state on the gauge

invariant subspace. It can be written in terms of Wigner 3-j symbols:∫
dgDj1

m1α1
(g)Dj2

m2α2
(g)Dj3

m3α3
(g) =

(
j1 j2 j3
m1 m2 m3

)(
j1 j2 j3
α1 α2 α3

)
(2.96)

where the 3-j symbols are normalized Clebsch-Gordan coefficients:(
j1 j2 j3
m1 m2 m3

)
=

(−1)j1−j2−m3

2j3 + 1
⟨j1m1, j2m2|j3m3⟩ (2.97)

Obviously the standard conditions for CB coefficients to no be null still hold:

1. |mi| ≤ ji

2.
∑

imi = 0
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3. |j1 − j2| ≤ j3 ≤ (j1 + j2)

So imposing gauge invariance requires the spin associated to the representations
to satisfy CB conditions as if we are recoupling two angular momentum into a
non-vanishing third one. We also understand that the previous case (two Wilson
line) is a trivial case of the trivalent node where j3 = 0. In fact it is possible to
prove that (2.97) with j3 = m3 = 0 gives back the product of three δ as in the
previous case. The gauge-invariant state can be written as:

ψ0(h1, h2, h3) =
∑

{jl},{ml},{nl}

f j1,...,j3m1,...,n3

(
j1 j2 j3
m1 m2 m3

)(
j1 j2 j3
α1 α2 α3

)
×

× Dj1
α1n1

(h1)D
j2
α2n2

(h2)D
j3
α3n3

(h3) =

=
∑

{jl},{nl}

f j1,...,j3n1,n2,n3
ια1α2α3
j1,j2,j3

Dj1
α1n1

(h1)D
j2
α2n2

(h2)D
j3
α3n3

(h3) (2.98)

Where the 3j symbol with magnetic indices m has been absorbed in the coeffi-
cients that only depend on the degrees of freedom on the dangling legs of the
graph. The second 3-j symbol is an invariant tensor in the space ⊗l∈njl of all
the spins entering the node n. It is called intertwiner and plays the role of
projecting the state onto its gauge invariant part. After the following example it
will be shown that intertwiners project each node into the singlet state. This
gauge invariant state belongs to H = L2

(SU(2)3

SU(2)

)
.

Theta graph The theta graph is a closed graph composed of three links and
two nodes. We can write the cylindrical function in term of the orthonormal

j1
n2

j2

n1
j3

basis. To impose gauge invariance this time we need to integrate over two
element since we have a source and a target for each link:

ψ0(h1, h2, h3) =
∑

{jl},{ml},{nl}

f j1,...,j3m1,...,n3
×

×
∫
dg1dg2D

j1
m1n1

(g1h1g
−1
2 )Dj2

m2n2
(g1h2g

−1
2 )Dj3

m3n3
(g1h3g

−1
2 ) =

=
∑

{jl},{ml},{nl}

f j1,...,j3m1,...,n3
Dj1

α1β1
(h1)D

j2
α2β2

(h2)D
j3
α3β3

(h3)×

×
∫
dg1dg2D

j1
m1α1

(g1)D
j2
m2α2

(g1)D
j3
m3α3

(g1)D
j1
β1n1

(g−1
2 )Dj2

β2n2
(g−1

2 )Dj3
β3n3

(g−1
2 )

(2.99)
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Using the properties of Haar measure the last integral can be written in terms
of product of 3-j symbols:

ψ0(h1, h2, h3) =
∑

{jl},{ml},{nl}

f j1,...,j3m1,...,n3
Dj1

α1β1
(h1)D

j2
α2β2

(h2)D
j3
α3β3

(h3)×

×
(
j1 j2 j3
m1 m2 m3

)(
j1 j2 j3
α1 α2 α3

)(
j1 j2 j3
β1 β2 β3

)(
j1 j2 j3
n1 n2 n3

)
(2.100)

Absorbing the first and the last 3-j in the coefficients we get the final gauge
invarinat state:

ψ0(h1, h2, h3) =
∑
{jl}

f j1,j2,j3Dj1
α1β1

(h1)D
j2
α2β2

(h2)D
j3
α3β3

(h3)ι
α1α2α3
j1j2j3

ιβ1β2β3

j1j2j3

(2.101)
This wave function is a gauge invariant state with respect to two separate action
of SU(2) on the Hilbert space, namely:

ψ0 ∈ L2

(
SU(2)3

SU(2)2

)
. (2.102)

We can finally generalize the results obtained in the previous example for
a graph of L links and N nodes: imposing SU(2) gauge invariance on a graph
reduces the Hilbert space to

H0
kin = L2

(
SU(2)L

SU(2)N
, dµHaar

)
(2.103)

Group averaging corresponds to inserting on each vertex v the quantity

ιv =

∫
dg
∏
l∈v

Djl(g) . (2.104)

It is possible to show [6] that this object is a left and right invariant projector.
Indeed it projects our state into its gauge invariant part.
The integrand in (2.104) is an element of the tensor product of base spaces of
SU(2) irrep: ∏

l

Djl(g) ∈
⊗
l

V (jl) (2.105)

This tensor product space can be decomposed into:⊗
l

V (jl) =
⊕
i

V ji (2.106)

So ι projects on the gauge invariant part of (2.106), namely the first term of
the sum, or the singlet space V (0) :

ιv :
⊗
l

V (jl) → V (0) (2.107)
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Being this object a projector, it can be decomposed in terms of the basis {iα}
and the basis of its dual {i∗α} as:

ιv =

dimV (0)∑
α=1

iαi
∗
α (2.108)

This invariant projectors are called intertwiners. Let’s focus on the case of
3-valent and 4-valent intertwiner. About the former we know that the CG
condition

|j1 − j2| ≤ j3 ≤ j1 + j2 (2.109)

must hold. As explicitly calculated in Appendix A of [22]

dimV (0) = dim

(
InvSU(2)

[
V j1 ⊗ V j2 ⊗ V j3

])
= 1 (2.110)

So for a 3-valent intertwiner there is one and only one intertwiner, given by the
3-j symbol.
However for a n-valent node (n > 3), V (0) will have larger dimension, and the
construction of the intertwiner is still possible in term of 3-valent intertwiner,
decomposing the node into 3-valent ones glued through virtual link, also labelled
by a spin variable k. The case n = 4 is pretty easy to imagine and to derive:

j1

j2

j3

j4

j1

j2

k

j3

j4

Since triangular inequality must hold in both nodes we get:

max{|j1 − j2| , |j3 − j4|} ≤ k ≤ min{(j1 + j2), (j3 + j4)} (2.111)

Thus it is clear that a 4-valent intertwiner is constructed by contracting two
3-valent intertwiner over the virtual spin k as follows:

ιj1j2j3j4 = ιkj1j2ιkj3j4 (2.112)

Intertwiners will play a crucial role in the further discussions about quantum
correlations in spin network. This is quite obvious if we think that the condi-
tion for which the space V (0) exists is that the Clebsch-Gordan conditions are
satisfied. Moreover, in the next chapter we will show that gauge invariant state
(obtained through intertwiner) are maximally entangled states: in fact gluing
spin network with the gauge invariance requirement will be responsible for the
appearance of entanglement in open spin networks. Although it’s important to
underline that the maximum entanglement holds only for base states and not
necessarily for spin network that are superposition of base states.
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2.3.3 A Spin Network basis for Quantum Geometry States
Intertwiners only act on the vertices of the graph. The action of ιv on Hkin

gives back gauge invariant states built contracting a Wigner matrix (irreducible
spin-j representation of the holonomy h on the link) for each link of the graph
with an intertwiner for each vertex of the graph. For a generic graph, a quantum
geometry state is written as

ιv ∈ Inv
[⊗

l∈v V
(jl)
]
:

ψ0(Γ, jl, ιv)[hl] =
⊗
l

Djl(hl)
⊗
v

ιv (2.113)

A Spin Network is a triplet (Γ, j⃗, ι⃗) where Γ is tha graph embedded in Σ, j⃗
is a short hand notation for the L spins that label the links and similarly ι⃗ are
the N intertwiners associated to the nodes. The cylindrical function (2.113)
is actually the wave function of a spin network state labeled by the quantum
number associated to the basis

∣∣∣Γ, j⃗, ι⃗〉:〈
A
∣∣∣Γ, j⃗, ι⃗〉 = ψ0(Γ, jl, ιv)[hl(A)] =

⊗
l

Djl(hl(A))
⊗
v

ιv , (2.114)

where Wigner matrices and intertwiners are contracted according to the connec-
tivity of the graph. The main result of this construction is that Spin Network
states form a complete orthonormal basis for Hkin of a graph, in the sense that〈

Γ, j⃗, i⃗
∣∣∣Γ′, j⃗′, i⃗′

〉
= δΓΓ′ δ⃗jj⃗′ δ⃗ii⃗′ (2.115)

and that SU(2) gauge invariance is guaranteed by implementing in each node
an intertwiner. As cited before the kinematic space can be obtained as direct
sum over all the H spaces of the graphs embedded in Σ, namely

Hkin =
⊕
Γ⊂Σ

H0
Γ (2.116)

The physical interpretation of such states as quantum geometry states can be
formulated by defining on this space observables related to geometric quantities.

In particular one can easily define an Area operator A of a surface in terms
of triads.
The main results are:

• Areas are quantized and the spectrum is well known;

• eigenvalues of A are discrete and the minimal value is proportional to
l2Plank = ℏGN ;

• Area operator acts diagonally on the link of a spink network

A similar discussion can be made for the Volume operator with the main dif-
ferences that the minimal value of eigenvalue is proportional to l3Plank and that
this operator act on the intertwiners rather than on the links. We refer to [6]
and [22] for a more detailed discussion on how these operators are built and
diagonalized.
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2.3.4 Spin Networks Dual to Simplicial Complexes

Further comprehension of how a spin network can clearly be identified as quan-
tum geometry state, in the next section we will study the duality between spin
network and simplicial complexes. In particular, we will understand that a spin
network state associated to a 4-valent node can be seen as the state of a quan-
tum tetrahedron.

So far the quantum states that appeared in the theory are the SN states
built on a graph where each link is labelled by the spin of a certain irreducible
representation of SU(2) and each node is labelled by a quantum number of
intertwiner, which is related to the SU(2) gauge invariant subspace of the tensor
product of the Hilbert spaces of the links meeting at the node. We have cited
that those states diagonalize geometric operators such as Area and Volume
operators. In this sense SN states are eigenstates of geometric observables. We
also noticed that link states are area states and intertwiner are volume states.

It’s well known that SU(2) is the rotation group in Quantum Mechanics. So
there is a link between quantum angular momentum and geometric observables.
This link has been studied in many works with different approaches and different
interpretations of the role of the spin.

In 1968, Ponzano and Regge [23] presented a quantum gravity model in 3
dimension, using some properties of invariant quantities obtained from SU(2)
representations. The main goal of the PR model is to define a partition function
for a 3-dimensional simplicial complex on a 3d triangulated manifold: spins label
the edges of the triangulation and are interpreted as the lengths of the edges.
In fact, the 3-j symbol (2.97) are non zero only if the triangular inequality is
satisfied. Then the product of two 3-j symbols is null unless the values of the
representations’ spins can represent the lengths of the edges of a tetrahedron
which is the building block of a 3d triangulated manifold.

Barbieri [24] was among the first to understand that spin network states
can be regarded as quantum geometric tetrahedra in three dimensions, leading
to the idea that quantum gravity may be about studying discrete geometric
structure, i.e. simplicial complexes.

We will follow the analysis proposed by Baez and Barret in [25], where,
unlike the Ponzano-Regge (PR) model, spins do not label the lengths of the
edges but the areas of the faces of a tetrahedron.

2.3.5 Quantum triangle in 3d gravity

Following the PR model, we can label the edges of a 3d triangulated manifold
through irreducible representation of SO(3) with spin j. Thus we associate to
the spins j1, j2 and j3 the length of the edges of a triangle. A quantum state of
geometry of a triangle will be a state of the Hilbert space

ψ ∈
3⊗

i=1

V (ji) (2.117)
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such that the closure condition
∑

i ji = 0 is satisfied. The quantum version of
the closure condition translates into the requirement that the state be invariant
under the action of SO(3). If the ji satisfy the triangular inequality there will
be an unique invariant element called vertex. We can see graphically that it can
be interpreted as a node of a 3-valent graph

Figure 2.2: A 3-valent node as dual object to a quantum triangle.

So the geometry of the triangle is totally encoded in the length of its edges.
The uniqueness of the vertex is due to the fact that the dimension of the space
of this vertex is 0, and is explained in details in [25]. This is coherent with the
previous example of 3-valent node: we had a unique intertwiner given by the 3-j
symbols and the singlet space in d = 3 had dimension 0.

2.3.6 Classical tetrahedra

The main focus on the study of tetrahedra was to extend the Ponzano-Regge
model in the case o 4-d gravity. In [32], Barret and Crane proposed a topological
state sum model based on the triangulation of a 4-d manifold. The idea was
to describe the geometry associated to a simplex in term of the spin covering
group SU(2) × SU(2) of the original symmetry group SO(4). The description
that arises is carried on in terms of bivectors in R4, representing the vectorial
areas of each face of the simplex. Performing a suitable quantization of this
structure, spins come up to represent the areas of the faces of the simplex.
Although this model completely encode the geometry of tetrahedra in R4, in
order to obtain a description in terms of object that are dual to the previous
structure of spin network we need to restrict this results to R3: this is obvious
if we consider the fact that spin network states, defined in (2.114), emerge as
gauge invariant states which include both information on holonomies and fluxes.
Since the latters are defined by smearing the algebra of Ashtekar connections
and densitized triads on the spatial manifold Σ, the natural ambient on which
spin network are well defined is a 3-d manifold. So, differently from Barret
work [32], we would like to describe the geometry of a 3d manifold in terms of
quantum state of tetrahedra.

This is a simple task thanks to Baez and Barret [25] that noticed that in
the 4-d case, there are also extra constraints implying that all four faces lie in
a common hyperplane. When these are satisfied we are essentially back in the
3-dimensional situation. The geometry of a classical tetrahedron i fully given by
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three vectors e1, e2, e3 3 which are the edge vectors for the three edges pointing
out from a common vertex. As previously cited, this can be translated into a
description in terms of bivectors associated to the each triangular face:

E1 = e3 ∧ e2
E2 = e1 ∧ e3
E3 = e2 ∧ e1
E4 = −E1 − E2 − E3

(2.118)

where ∧ is the usual wedge product, corresponding to cross product in R33, and
the last equation implements the closure condition.

By identifying these bivector with normal areas of the faces and the wedge
product with the usual cross product it is also possible to define:

− E1 · (E2 × E3) = V 2 > 0 (2.119)

where V is 6 times the volume of a non degenerate tetrahedron. Moreover
we notice that all the previous definition can be computed in the same way
also if the edges ei are defined up to sign, i.e. the tetrahedron identified by
(−e1,−e2,−e3) has the same structure but a different orientation in the space.

Since each bivector is an element of so(3)∗ we can start taking the following
space:

(so(3)∗)4 = so(3)∗ × so(3)∗ × so(3)∗ × so(3)∗ (2.120)

and impose the closure constraint thus obtaining a submanifold:

C =
{
E1 + E2 + E3 + E4 = 0

}
⊂ (so(3)∗)4 (2.121)

We note that this closure constraint generates the action of SO(3) on (so(3)∗)4

[25], so the reduced space will be obtained by quozienting the space C with
respect to this action.

In order to quantize this space we could follow two similar paths:

1. quantize (so(3)∗)4 and then imposing constraints at quantum level;

2. quantize the constrained classical reduced space.

Since the second procedure is cumbersome due to geometric issues [22], we will
follow the first and simpler path in order to obtain quantum states.

Geometric quantization takes product into tensor product, so

(so(3)∗)4 → H = H⊗4 (2.122)

where [22] H can be decomposed into:

H =
⊕
i

Vi (2.123)

3Infact in R3 the space of bivector Λ2R3 ∼= R3
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We can promote the bivectors to operators trivially expanding them to the
tensor product (2.122) as follows:

E1 → Ê1 = Ê1 ⊗ 1⊗ 1⊗ 1
E2 → Ê2 = 1⊗ Ê2 ⊗ 1⊗ 1
E3 → Ê3 = 1⊗ 1⊗ Ê3 ⊗ 1
E4 → Ê4 = 1⊗ 1⊗ 1⊗ Ê4

(2.124)

thus we can impose the closure constraints at quantum level: given |ψ⟩ ∈ H

(
ˆ⃗
E1 +

ˆ⃗
E2 +

ˆ⃗
E3 +

ˆ⃗
E4) |ψ⟩ = 0 . (2.125)

Equation (2.125) imposes that the four triangles associated to vectorial areas
Ei must close the boundary of a tetrahedron; this condition also corresponds to
the request of invariance under rotation of the tetrahedron. So the states that
naturally satisfy (2.125) are those who are SU(2) invariant.

Thus the Hilbert space of a tetrahedron will be:

HT = InvSU(2)

[
H⊗4

]
=

⊕
j1,j2,j3,j4

InvSU(2)

[ 4⊗
l=1

Vjl

]
(2.126)

We soon recognize the same Hilbert space of an Intertwiner of a 4-velent node.
In the previous case, this Hilbert space was associated to the Gauge invariant
request under SU(2) action at the node where 4 links of the graph met, forming
a node described by a state in the gauge invariant subspace of the tensor product
of the Hilbert space that were a base of the representation of link associated to
holonomies.

Since we obtained the same identical result it is natural to consider spin
network as a dual picture to a triangulation of a 3-manifold into tetrahedra,
where, similarly to the case of the PR model, we associate a spin variable to the
area of each face of the tetrahedron.

This result is also compatible to the point of view of many other works
such as [33] and [34] where geometric observables related to tetrahedra (or spin
network) are discrete, quantized and come up to be related to the value j that
is the spin associated to the links forming the graph.

2.4 Summary
We can finally sum up the main goals of the previous sections:

1. Starting from Einstein-Hilbert action we managed to restrict GR to a 3-d
spatial manifold Σ embedded in the spacetime.

2. The description in terms of Ashtekar-Barbero connections and densitized
triads allowed us to switch from a SO(1, 3) gauge theory to a SU(2) Yang-
Mills theory on lattice, more suitable to a quantization procedure.
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Following Dirac procedure, we built the kinematic Hilbert space imposing
Gauge invariance on the node of the lattice.

3. Using the definition of holonomy and intertwiner we got to introduce spin
Network states as quantum gauge invariant state on a graph with a
certain connectivity. Those states are build up contracting holonomies
(labelled by a spin variable) and intertwiner (projector on gauge invariant
subspace). It is also possible to introduce a scalar product between spin
network, and expand this typical structure to the Hilbert space given by
the union of all the graph embedded in Σ.

4. Duality between spin network and simplicial complexes gives us a deeper
understanding of Spin network as quantum geometry states. In par-
ticular we shall focus on 4-valent graph, dual to a tetrahedra with a given
classical geometry in the triangulation of space manifold Σ.

5. To convince us even more about the geometric nature of SN states, ref-
erences were made to the possibility to define geometric operators, such
as Area and Volume, such that SN states are actually eigenstates of these
operators and the eigenvalues corresponds to the geometrical properties
of the tetrahedron of which each node is dual.
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Chapter 3

Entanglement Entropy for
Spin Network states

In this Chapter, we review the notion of entanglement by focusing on Von
Neumann entropy and its Rényi generalizations with applications to simple spin-
network states.

After a short review on density matrix formulation of quantum mechanics,
we introduce the concept of reduced state associate with a multipartite system.
We first introduce the notion of Von Neumann (VN) entropy, as the quantum
version of Shannon entropy in information theory. Through VN entropy, we
can also define the entanglement entropy and the quantum mutual information
for a bipartite system. Further we study the property of the Rényi entropy (of
order k), as a generalization of the Von Neumann entropy.

We apply these notions to calculate correlations in quantum geometry states
starting from the simple case of two Wilson lines glued together. The main goal
of this calculation is to show first how entanglement is associated to topolog-
ical connectivity of the spin network graph, where gluing edges corresponds
to entangling the degrees of freedom at the free ends of the vertices, and sec-
ondly how the requirement of spin network states to be gauge invariant induces
quantum correlations. We then characterise the difference of ultra-local gluing
entanglement and non-local entanglement associated to the presence of quan-
tum correlations among spin network vertices in the setting of two entangled
tetrahedra. We notice that the ultra-local entanglement entropy contribution
between two spin network vertices is proportional to the number of link crossing
the surface that separate them: since links are area eigenstates, this shows that
ultra-local entanglement entropy scales with area hence it gets a direct geomet-
ric characterisation and a holographic interpretation. Vertex entanglement is
on the other hand associated to quantum correlations among quana of 3d space
volume. The associated entropy contribution is generally not extensive leading
to corrections to the area law.

41
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3.1 Density operator

Quantum systems present different behavior from the classical one. This is
well known for the case of single particle where properties like superposition
and tunneling differ radically from the classical description of a 1-particle state.
Quantum regime becomes even more fascinating if we study correlations emerg-
ing in a composite systems. Entangled states are states whose correlations
cannot be described as classical probabilities. In order to study the properties
of this type of state in the framework of spin network states, we start the review
on the main tools of quantum information theory.

First of all we have to find a way to describe the physics of a quantum state,
even if we have no complete knowledge of the state itself.

Suppose a quantum system be in one of the states |ψi⟩ where i = 1n . . . , n
with a certain probability pi. We define the density operator of the system as

ρ =
∑
i

pi |ψi⟩ ⟨ψi| . (3.1)

Density operator is also called density matrix. It is possible to show that (3.1)
has enough information on the system to fully describe it’s dynamics in quantum
language, i.e. the postulates of quantum mechanics can be reformulated in terms
of ρ. For example, the evolution under a unitary operator U translates into:

ρ′ =
∑
i

pi |ψ′
i⟩ ⟨ψ′

i| =
∑
i

piU |ψi⟩ ⟨ψi|U† = UρU† (3.2)

If we have complete knowledge of a state, i.e. the state is a certain |ψ⟩, the state
is said to be pure and the density matrix associated is given by ρ = |ψ⟩ ⟨ψ|.
Otherwise, we can imagine that the system is prepared in a state ρi with a
certain probability pi, such that

∑
i pi = 1. So the total density matrix can be

written as:

ρ =
∑
i

ρi (3.3)

The state ρ is said to be a mixed states or a mixture.
The class of density operators is characterized by the following properties:

ρ ≥ 0

Tr(ρ) = 1

ρ = ρ†
(3.4)

Moreover, since we are interested in entanglement entropy of mixed quantum
geometry states, we need a criterion to distinguish pure states and mixed states.

It is possible to prove that Tr(ρ2) ≤ 1, where equality holds if and only if ρ
is a pure state. Therefore to verify if a state is a mixture we need to trace ρ2.
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3.1.1 Composite system
So far the description in terms of density matrix is limited to the case of a state
of a single Hilbert space, i.e. a single particle states. However most realistic
situations that require this formalism are related to systems describing a large
number of subsystem, such as many-body systems.

We call composite or multipartite system a system that can naturally
be decomposed into two or more subsystem, each of which is a quantum state.
The Hilbert space of a multipartite system is given by the tensor product of the
Hilbert spaces of all the subsystem:

H = H1 ⊗ . . .⊗HN (3.5)

For simplicity we assume each space to be finite dimensional.
We can focus on the case of a bipartite system, to obtain results that will be

easily generalized for the multipartite one:

H = HA ⊗HB (3.6)

Given a orthonormal basis for each system {|eA⟩} and {|eB⟩}, the space H will
thus be spanned by |eA⟩ ⊗ |eB⟩. On this space we can define operators acting
both on A and on B, OA ⊗OB such that:

(OA ⊗OB)(O
′
A ⊗O′

B) = OAO
′
A ⊗OBO

′
B

(OA ⊗OB)
† = O†

A ⊗O
†
B

Tr(OA ⊗OB) = Tr(OA)Tr(OB)

(3.7)

Since we are interested in studying local properties of subsystem, it is also useful
to note that each operator acting only on one of the subsystems can be trivially
expanded as acting on the multipartite system:

OA → OA ⊗ 1B

OB → 1A ⊗OB

(3.8)

Suppose now to deal with a composite system such that the state of each sub-
system is pure. The total state is given by the tensor product:

|ψ⟩ = |ψA⟩ ⊗ |ψB⟩ (3.9)

If we perform a measure of a local observable on A, the state of the subsystem
will be projected on the subspace of the eigenstate of OA and the state in B is
untouched by this operation. Then if we perform a measure on B the second
measurement will not be modified by the previous one, i.e. the two results
do not depend on each other. It is thus obvious that the two subsystem are
uncorrelated.

Although this result may lead us to think that we have easily described a
quantum multipartite system, we have to recall that the typical situation in
quantum regime is to deal with mixed states.
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A useful tool to deal with mixtures is the reduced density operator: it
will allow us in short time to deeply understand how and why measurement
outcomes on different subsystems will be now correlated.

Suppose we have a quantum system in the space (3.6) described by density
operator ρAB . The reduced density operator relative to the system A is given
by

ρA = TrB(ρAB) (3.10)

where TrB is a map called partial trace over the system B, defined by

TrB(|eA1⟩ ⟨eA2| ⊗ |eB1⟩ ⟨eB2|) = |eA1⟩ ⟨eA2|Tr(|eB1⟩ ⟨eB2|) (3.11)

where the trace in the last term is the regular trace defined on the system B.
We can soon understand that ρA defined in (3.10) can be identified as a state

that faithfully describe the state of the system A. In particular, it provides the
correct measurement statistics for measurements made on system A. In fact
if we consider a pure state in H given by a superposition of state of the form
|ψA⟩⊗|ψB⟩, we can calculate the mean value of a local observable for the system
A:

⟨OA⟩ = Tr
[
ρ(OA ⊗ 1B)

]
= Tr

[
|ψ⟩ ⟨ψ| (OA ⊗ 1B)

]
=

= TrA
(
TrBρOA

)
= TrA

(
ρAOA

) (3.12)

This equation holds for each local operator in A. So the state in this subsystem
is given by ρA. Obviously a similar argument is also valid for B:

ρB = TrA(ρ). (3.13)

In [35] an explicit calculation underlines the very crucial point of reduced density
operators: even if the state of a bipartite system is pure (we have complete
knowledge of the state),the state of the subsystem is mixed, i.e. we apparently
do not have maximal knowledge. This strange property, that the joint state of a
system can be completely known, yet a subsystem be in mixed states, is another
hallmark of quantum entanglement.

Moreover, even if the states in HA and HB can be written as the reduced
density matrix, the total state of the system will not be given by the tensor
product:

ρ ̸= ρA ⊗ ρB (3.14)

In fact a measure on a subsystem induces a reduction of the state of the entire
system. This means that a measurement on a subsystem will be correlated to
previous measurement on the second subsystem.

3.1.2 Separable and entangled states
We have seen that, for a multipartite system, states differ depending on how
measurements on subsystem are correlated. We can thus classify states in H =
HA ⊗HB based on how local states arise from measurement.
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1. A state is said to be separable if it can be written as tensor product of
local states:

|ψ⟩ = |ψA⟩ ⊗ |ψB⟩
|ψI⟩ ∈ HI I = A,B

(3.15)

2. Otherwise, if local states |ψI⟩ ∈ HI do not exist, the state is said to be
entangled.

∄ |ψI⟩ ∈ HI s.t. |ψ⟩ = |ψA⟩ ⊗ |ψB⟩ (3.16)

In real situation, quantum systems cannot be separated by the environment,
thus the state of a system has to be obtained by tracing out the environment.
This lead us to deal with mixed states.

If we denote ρ(I), I = A,B the density matrix associated to the subsystem
A or B respectively, the state ρ = ρ(A)⊗ρ(B) has no correlations. If we define a
state as convex combination of this type of state, we obtain a separable mixed
state:

ρ =
∑
i

piρ
(A)
i ⊗ ρ(B)

i (3.17)

such that pi ≥ 0 and
∑

i pi = 1. measurements on this type of state will reveal
correlations, in the sense that:

Tr
[
ρ(OA ⊗OB)

]
̸= TrA(ρAOA)TrB(ρBOB) (3.18)

This correlations can be described in terms of pi, i.e. the component of a vector
of classical probability: thus we consider this correlation as classical correlation.

If there not exists local states ρ(I)i such that the state of the total system
can be written as (3.17), the state is said to be mixed entangled state, and
the system will be characterized by correlations that can not be described in
terms of classical probabilities.

Our aim is to apply all this definition to spin network states, in order to
study different measure of quantum correlation between quanta of geometry.
Besides an appropriate definition of entropy, we need a final fundamental tool
to discriminate on sight separable states and entangled ones.

Schmidt decomposition Let |ψ⟩ be a pure state of a composite system AB.

There exists a set of orthonormal states
{∣∣∣e(A)

i

〉}
,

{∣∣∣e(B)
i

〉}
of A and B re-

spectively, such that[22][35]:

|ψ⟩ =
∑
i

λi

∣∣∣e(A)
i

〉
⊗
∣∣∣e(B)

i

〉
λi ≥ 0∑

i

λ2i = 1

(3.19)
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The terms λi are called Schmidt coefficients. They are uniquely defined and the
number of non-zero coefficients |I| is called Schmidt rank.

A state is separable if its Schmidt rank is 1. Indeed if |I| > 1, |ψ⟩ ̸=
|ψA⟩ ⊗ |ψB⟩, thus the state is entangled.

Since Schmidt basis in(3.19) is composed by separable vector states, all the
information on entanglement and correlations are encoded in the coefficients.
The reduced density state of one of the subsystem in the Schmidt basis is given
by[22]:

ρA = TrB

[
|ψ⟩ ⟨ψ|

]
=
∑
i∈|I|

λ2i

∣∣∣e(A)
i

〉〈
e
(A)
i

∣∣∣
ρB = TrA

[
|ψ⟩ ⟨ψ|

]
=
∑
i∈|I|

λ2i

∣∣∣e(B)
i

〉〈
e
(B)
i

∣∣∣ (3.20)

Thus we see that the Schmidt basis is given in terms of eigenstates of reduced
density matrix. Moreover, the two reduced states have the same non-vanishing
spectrum, given by Schmidt coefficients.

We define a maximally entangled state a state with maximal Schmidt
rank, such that all the coefficients are equal. The reduced density matrix of this
state will be maximally mixed.

Through Schmidt decomposition, one can verify if a given quantum state is
separable or entangled (i.e. Schmidt rank to be greater than 1). However, we
need a quantitative measure of correlations, describing the amount of entropy
associated to the lack of knowledge of a certain state.

In the next sections, we introduce two main measures of entanglement: the
Von Neumann entropy and its Rényi entropy generalization. We will
provide some examples of Von Neumann entropy for quantum states of geometry
and define the setting of the Rényi derivation which will be used in Chapter 4
for the special class of random spin network states.

3.2 Von Neumann Entropy
In quantum statistical mechanics, Von Neumann entropy is the extension of
the classical Shannon Entropy. Given a finite set (p1, . . . , pn) representing
the weights of a classical discrete probability distribution, i.e.

∑
i pi = 1 and

pi ≥ 0 ∀i. We can quantify the amount of uncertainty on the outcome of an
experiment, since each possible outcome will have probability pi. The physical
quantity that describes this uncertainty is called Shannon Entropy:

H(p1, . . . , pn) = −
∑
i

pi log(pi) (3.21)

Shannon Entropy is also known as Information entropy and serves as the basis
for many applications in information theory. Nevertheless it is strictly related
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to Gibbs Entropy in statistical mechanics:

S = −kB
∑
i

pi log(pi) (3.22)

pi being the probability of the i-th microstate taken from an equilibrium en-
semble. Although (3.21) and (3.22) may look like the same formula,there is a
subtle difference: while H can be calculated for any probability distribution, S
only refers to thermodynamical systems. However this is a purely theoretical
difference, since any probability distribution can be approximated arbitrarily
closely by some thermodynamic system [36].

For a quantum system described in terms of ρ, Von Neumann entropy is
defined as

S(ρ) = −Tr(ρ log ρ) (3.23)

Since ρ =
∑

i pi |ψi⟩ ⟨ψi|, by simple calculations it is possible to prove that

S(ρ) = −
∑
i

pi log pi (3.24)

As
0 ≤ pi ≤ 1 ∀i → log pi < 0 (3.25)

we see that Von Neumann entropy is positive definite.

We can list some of the main properties of Von Neumann entropy:

1. S(ρ) ≥ 0 where equality holds for pure state.

2. max{S(ρ)} = logN where N is the dimension of the Hilbert space of the
system. This equality holds for maximally mixed states.

3. Given any unitary operator U acting on H, S(ρ) is invariant under this
transformation:

S(ρ) = S(UρU†) (3.26)

4. Subadditivity condition: for bipartite system

S(ρ) ≤ S(ρA) + S(ρB) (3.27)

the equality holds for uncorrelated states, i.e. states that can be written
as ρ = ρA ⊗ ρB . This means that, tracing a subsystem we lose informa-
tion about the correlations between the two subsystems, thus leading to
increasing uncertainty on the state, that is increasing entropy.

5. Strong subadditivity inequality: for tripartite systems, there is a sim-
ilar relation

S(ρABC) + S(ρB) ≤ S(ρAB) + S(ρBC) (3.28)

this means that the subsystems B and C together have more correlations
with A then just B by itself does.
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If we focus on the case of a bipartite system, we notice that, if we perform
Schmidt decomposition, the reduced states will have the same non negative
entropy:

S(ρA) = S(ρB) = −
∑
i

λ2i log λ
2
i (3.29)

This allows us to distinguish separable and entangled states as follows:

1. If
S(ρA) = S(ρB) = 0 (3.30)

then ρ is separable;

2. If
S(ρA) = S(ρB) > 0 (3.31)

then ρ is entangled;

3. If
S(ρA) = S(ρB) = log(NA) (3.32)

(entropy of each subsystem is the max) the state is maximally entangled.

The quantity S(ρA) = S(ρB) quantifies the entanglement between the two sub-
system. It is called Entanglement entropy between A and B.

E(A : B) = S(ρA) = S(ρB) (3.33)

In order to take into account the quantity of information lost after tracing
out a subsystem, we can define the Quantum Mutual Information as:

I(A : B) = S(ρA) + S(ρB)− S(ρ) ≥ 0 (3.34)

I(A : B) measures the amount of information that A has on the system B. It
vanishes for pure states.

3.3 Rényi Entropy
In 1960, [37] Rényi introduced classical Rényi entropy as a generalization of
Shannon entropy, depending on a parameter 0 ≤ q ≤ ∞:

Sq =
1

1− q
log
∑
i

pqi (3.35)

In order to not divide by 0, we could be led to think that the case q = 1 is not
allowed. Instead, thanks to L’Hôpital’s rule, it is quite easy to prove that

lim
q→1

Sq = −
∑
i

pi log(pi) (3.36)

Thus we can identify S1 with the Shannon entropy.
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Rényi entropy has a natural role in physics: it is in fact related to the concept
of free energy. Baez [38] proved that such relation exists if we interpret the
parameter q as a ratio of temperature.
If we consider a state of thermal equilibrium for some Hamiltonian at some
chosen temperature T0 with partition function defined as

Z(T ) =
∑
i

e−
Ei
T (3.37)

and suppose we suddenly change to temperature to T1; then the free energy

F(T1) = −T log(Z(T1)) (3.38)

i.e. the maximum amount of work the system can do as it moves to equilibrium
at the new temperature, is related to Rényi entropy as follows:

F(T1) = −(T1 − T0)ST0
T1

(3.39)

where T0

T1
= q. Relation (3.39) will still hold in quantum regime, although it

will not be discussed here. We refer to Baez article for a more deep discussion
and a detailed way to derive this equation.

Just as Von Neumann entropy, also Rényi entropy need the density matrix
formulation of quantum mechanics to be well defined for quantum state.

Given a density matrix ρ with a certain spectrum (λ1, . . . , λn), we can define
quantum Rényi entropy to be

Sk(ρ) =
1

1− k
log Tr

(
ρk
)
=

1

1− k
log

(∑
i

λki

)
(3.40)

Once again 0 ≤ k ≤ ∞. Moreover we notice three particular cases:

1. k = 0 : S0(ρ) = log(rank(ρ))

2. k = 1, : S1 = −Tr(ρ log ρ)

3. k =∞ : S∞ = log(λ1)

The second case is just the Von Neumann entropy. The values k = 0,∞ instead
are quantities that appear frequently in quantum information theory.

Following [39], we can recall some of the main properties of Rényi entropy,
that hold for each k:

1. If k ≤ l then Sl ≤ Sk;

2. It follow from the first and from the definition of S0 the fact that:

0 ≤ Sk ≤ log(rank(ρ)) (3.41)

3. Sk is minimized only by pure states;
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4. Sk k ̸= 0 is maximized only if λi = 1
n ∀i

Also Rényi entropy obey a weak form of subadditivity. We remind that subad-
ditivity for Von Neumann entropy reads as S(ρAB) ≤ S(ρA) +S(ρB), this form
holds for Sk only if k = 0, 1.

It is possible to prove that, given a bipartite system described by density
matrix ρAB , for each value of k:

Sk(ρA)− S0(ρB) ≤ Sk(ρAB) ≤ Sk(ρA) + S0(ρB) (3.42)

The relation (3.42) is known as Weak subadditivity. The chain of disequality
has been proven in [39].

3.3.1 Why Rényi Entropy?

Although Rényi entropy is defined as a generalization of Von Neumann entropy,
there are several advantages over the latter. First of all, it contains richer physi-
cal information about the entanglement structure of a quantum state. In partic-
ular, the knowledge of Rényi entropies for all orders n allows one to determine
the whole entanglement spectrum, i.e. the set of eigenvalues of ρ. Moreover
Rényi Entropy has been deeply studied in many research fields, such as:

1. Numerical methods like quantum version of Monte Carlo method [40];

2. n-dimensional CFT [41];

3. Tensor network [42].

4. In quantum many-body systems it has been largely discussed [43] how the
study of the second order Rényi entropy S2(A) = − log Tr

(
ρ2A
)
, namely

the purity of the quantum state, is related to the expectation value of
the parity of particle number. In this sense Rényi entropy is much easier
to experimentally measure and numerically study.

Last but not least, it has been shown [10] that all Rényi entropies satisfy a
similar area law in holographic theories: this property will be central in the our
derivations in Chapter 5.

3.4 Entanglement of Spin Network States

Multipartite quantum systems exhibit correlation between subsystems. We have
understood that such correlation can be identified through various methods and
can also be quantified via entanglement entropy measurements. The next step is
to study entanglement in quantum system corresponding to quantised geometry
states realised via spin network states. We begin studying the simple case of
two Wilson lines glued together with a bivalent intertwiner, then we will study
the case of two 4-valent nodes linked through a single leg. The main goal is to
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verify that gluing edges corresponds to entangle the degrees of freedom attached
to their free ends.

Following the procedure of [22, 8, 9], we are going to build a bipartite system,
find the Schmidt decomposition in the spin network basis and compute the Von
Neumann entropy.

3.4.1 Entangled Wilson lines
In the previous chapter we derived the form of a spin network state (2.114).
Let’s keep a step back a consider two non gauge invariant basis states:∣∣∣Γ, j⃗, m⃗〉 (3.43)

Where Γ is the graph, j⃗ is the collection of spin numbers we use to label ir-
reducible SU(2) representations for each link, and m⃗ is a collection of vectors,
each one belonging to the associated spin ji representation space V(ji) ∼= C2ji+1

[8]. Let us consider the states of two Wilson lines as in (2.92). We call γ1 and γ2
the unique paths of each graph, j1 and j2 the spin of the representations defining
Wigner matrices, and si (ti) the source (the target) of the i-th line. For simplic-
ity, we start with the case of single basis state to emphasize the correspondence
between imposing gauge invariance and inducing quantum correlations.

|γ1, j1, s1, t1⟩ → ψγ1j1s1t1

(
h[A]

)
= ⟨h|γ1, j1, s1, t1⟩ =

√
2j1 + 1Dj1

s1t1(hγ1

[
A
]
)

|γ2, j2, s2, t2⟩ → ψγ2j2s2t2

(
h[A]

)
= ⟨h|γ2, j2, s2, t2⟩ =

√
2j2 + 1Dj2

s2t2(hγ2

[
A
]
)

(3.44)

s1

j1

t1 s2
j2

t2

The factor
√
2j + 1 is necessary in order to normalize Wigner matrices. Via

group averaging we can glue the two line into a gauge invariant state. This
means to glue the two paths. The total wavefunction will be:

ψγ1◦γ2 =
√
2j1 + 1

√
2j2 + 1

∫
dgDj1

s1t1(h1g
−1)Dj2

s2t2(gh2) =

=
√

2j1 + 1
√
2j2 + 1Dj1

s1α1
(h1)D

j2
α2t2(h2)

∫
dgDj1

α1t1(g
−1)Dj2

s2α2
(g)

(3.45)

Using wigner matrices properties [13]:

Dj1
α1t1(g

−1) = Dj1
t1α1

(g)∗∫
dgDj1

t1α1
(g)∗Dj2

s2α2
(g) =

1√
2j1 + 1

δj1j2δt1s2δα1α2

(3.46)
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We get a familiar form for the composite state:

ψγjs1t2 =
√
2j + 1

2j+1∑
α=1

Dj
s1α(h1)D

j
αt2(h2) (3.47)

We can rewrite (3.47) in terms of the original cylindrical functions. This allows
us to naturally obtain a Schmidt decomposition:

ψγjs1t2 =
1√

2j + 1

2j+1∑
α=1

ψγ1js1α

(
h[A]

)
ψγ2jαt2

(
h[A]

)
=

=
1√

2j + 1

2j+1∑
α=1

⟨h|
(
|γ1, j, s1, α⟩ ⊗ |γ2, j, α, t2⟩

) (3.48)

This means that the state of Hγ ⊆ Hγ1
⊗Hγ2

can be written as:

|γ, j, s1, t2⟩ =
1√

2j + 1

2j+1∑
α=1

(
|γ1, j, s1, α⟩ ⊗ |γ2, j, α, t2⟩

)
(3.49)

s1

j

α
j

t2

We inserted an Intertwiner in α that according to (3.46) can be written as
the identity realization in the gauge invariant subspace:

ια =
(−1)j+α

√
2j + 1

2j+1∑
α=1

|j, α⟩ ⟨j, α| (3.50)

Moreover we can easily compute entanglement entropy for the state (3.49):

1. Schmidt rank for both subsystem is |I| = 2j + 1;

2. Schmidt coefficients are all equal:

λi =
(−1)j+α

√
2j + 1

∀i ∈ |I| (3.51)

Then, we have

E(γ1 : γ2) = S(ρ1) = S(ρ2) = −
∑
i∈|I|

λ2i log λ
2
i (3.52)

= −(2j + 1)
1

2j + 1
log
( 1

2j + 1

)
= log(2j + 1) = log

(
dim(V (j))

)
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According to (3.32), since entanglement entropy is max, the state is max-
imally entangled. Thus we can say that the requirement of spin network
states to be gauge invariant induces quantum correlations that can be quantified
through entanglement entropy.

In particular, for basis states we have maximally entangled states; for general
states with certain modes (according to Peter-Weyl decomposition theorem for
Cylindrical functions) the resulting gauge invariant state will still be entangled,
but not necessarily maximally entangled.

3.4.2 Entangling tetrahedra via links

We are going to consider two types of entanglement: the first one is the entan-
glement induced by the gluing among the links of the graph, that is related to
the connectivity (i.e. topology) of the graph; the second one the entanglement
between quanta of Volume (i.e. intertwiner), that is possibly related to the
geometry rather than to the topology [44].

Now we can consider a more complex graph, constructed gluing two 4-valent
nodes through only one of their dangling legs:

n2
j2 ι1

n1

j1

n3

j3
n4

j4

n′4

j′4

n′1

j′1

ι2 n′2j′2

n′3

j′3

This system can be seen as dual to two tetrahedra sharing a face (triangle).
We can consider the composite system obtained imposing gauge invariance on
the links labelled by j4 and j′4. The states of the single systems are:

ψ1 =

4∏
l=1

(√
2jl + 1

)
Dj1

m1n1
(h1)D

j2
m2n2

(h2)D
j3
m3n3

(h3)D
j4
m4n4

(h4)ι
m1m2m3m4

(1)

ψ2 =

4∏
l=1

(√
2j′l + 1

)
D

j′1
m′

1n
′
1
(h′1)D

j′2
m′

2n
′
2
(h′2)D

j′3
m′

3n
′
3
(h′3)D

j′4
m′

4n
′
4
(h′4)ι

m′
1m

′
2m

′
3m

′
4

(2)

(3.53)
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To obtain gauge invariant state, we act with group averaging as usual:

ψ =

4∏
l=1

(√
2jl + 1

√
2j′l + 1

) 3∏
i=1

Dji
mini

(hi)

3∏
j=1

D
j′j
m′

jn
′
j
(h′j)ι

m1m2m3m4

(1) ι
m′

1m
′
2m

′
3m

′
4

(2) ×

×
∫
dgDj4

m4n4
(h4g

−1)D
j′4
m′

4n
′
4
(h′4g

−1)

(3.54)

Using representations’ properties and Haar measure invariance, the last integral
can be written as:

Dj4
m4α(h4)D

j′4
m′

4α
(h′4)

∫
dgDj4

αn4
(g)D

j′4
αn′

4
(g) (3.55)

Using the properties [13]∫
dgDj4

αn4
(g)D

j′4
αn′

4
(g) =

1

2j4 + 1
δj4j′4δα,−α′δn4,−n′

4
(−1)α

′−n′
4

ιm1m2m3m4 = (−1)j+m4ιm1m2m3,−m4

(3.56)

Denoting j4 = j′4 = j, it is finally possible to prove [22] that:

ψ =

2j+1∑
α=1

(−1)j+α

√
2j + 1

ψj1,j2,j3,j,n1,n2,n3,α,ι(1)ψj′1,j
′
2,j

′
3,j,n

′
1,n

′
2,n

′
3,−α,ι(2)

(3.57)

Thus linking the nodes is equivalent to projecting the state on the following
state of Vj ⊗ Vj :

|l⟩ =
2j+1∑
α=1

(−1)j+α

√
2j + 1

|j, α⟩ |j,−α⟩ (3.58)

We will soon prove that the link states |l⟩ are maximally entangled and they
will play a crucial role in the definition of Projected Entangled-Pair States
(PEPS).
Returning to the equation (3.57), with a similar computation of the case of the
two Wilson lines, we can derive the Schmidt decomposition for the state of the
composite system:

|ψ⟩ =
2j+1∑
α=1

(−1)j+α

√
2j + 1

∣∣j1, j2, j3, j, n1, n2, n3, α, ι(1)〉⊗∣∣j′1, j′2, j′3, j, n′1, n′2, n′3,−α, ι(2)〉
(3.59)

Once again Schmidt rank is
|I| = 2j + 1 (3.60)

and related coefficients are

λi =
(−1)j+α

√
2j + 1

(3.61)
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Thus we can easily compute Von Neumann entropy between the two tetrahedra
as:

E(T1 : T2) = S(ρ1) = S(ρ2) =

2j+1∑
i=1

λi log λi = log(2j + 1) (3.62)

The contribution to entanglement entropy is given by the dimension of the
Hilbert space that is the basis of the j-representation associated to the link (or
the shared area in the dual picture).

A similar example, the dipole graph Γ2 [22] carries the same result: in this
particular graph two nodes are linked through all their degrees of freedom, i.e.
dangling legs. Computing entanglement entropy one found that:

E(T1 : T2) =
4∑

l=1

log(2jl + 1) (3.63)

This is a fascinating and clarifying result, since it becomes evident that each
link shared by both subsystem carries a contribution to quantum correlation. So
once again gauge invariance is strongly related to quantum correlation arising
in the spin network framework.

3.4.3 Entangling tetrahedra via intertwiners

So far we investigated on the entanglement due to the connectivity of the graph,
i.e. the entanglement between the spin states living on the external legs of the
graph. Since intertwiners can be thought of mathematically as spin labels on
virtual links, we can also consider the entanglement between the two intertwin-
ers [44].

Consider two neighboring vertices of a spin network A and B linked by a
single link labeled with a fixed spin j. We cal j1 . . . j3 and k1 . . . k3 respectively
the spins of the external legs of A and B.

j2 ιA

j1

j3 j

k1

ιB j′2

j′3
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Consider the Hilbert spaces of the intertwiners attached to the two vertices:

H0
A = InvSU(2)

[
Vj1 ⊗ Vj2 ⊗ Vj3 ⊗ Vj⊗

]
H0

B = InvSU(2)

[
Vk1 ⊗ Vk2 ⊗ Vk3 ⊗ Vj⊗

]
(3.64)

Consider now a pure state |ψ⟩ ∈ H0
AB = H0

A ⊗ H0
B . We can calculate the

entanglement between A and B via the Von Neumann entropy of the reduced
density matrices:

E(A : B) = −Tr (ρA log ρA) = −Tr (ρB log ρB) (3.65)

According to the properties of Von Neumann entropy, such entanglement en-
tropy is bounded by the dimension of the intertwiner spaces:

E(A : B) ≤ min(log dim(H0
A), log dim(H0

B) (3.66)

Considering also the connectivity entanglement given by the only internal link,
it is possible to compare the different nature of such correlations [44] which we
can summarize as follows:

1. For a pure basis state ofH0
AB , the intertwiner entanglement vanishes while

the entanglement contribution associated to the connectivity of the graph
(i.e. to the links) does not.

2. For an arbitrary pure state given by a superposition of states in H0
AB

neither intertwiner entanglement nor connectivity entanglement do vanish

So we can quantify the total entanglement of the two states of spin network as
the finite sum of two contributions: the first one due to the connectivity of the
graph, given by the sum of terms with the form log dj (being dj the Hilbert
space dimension of the link gluing the two vertices); the second contribution is
an additional term due to the intertwiners’ correlation.

3.5 Discussion on Entropy-Area scaling

According to the results of the previous section, entanglement entropy for bi-
partite spin network states can be computed with standard methods as formerly
shown [8][9][22]. We are now ready to ask ourselves: why are we interested
in entanglement entropy of quantum geometry states?
This answer is a crucial point of many works of the last decades. Indeed it is
well known in literature that it exists a strong correlation between entropy and
geometric quantities. First of all, the pioneering works leading this idea are due
separately to Hawking and Bekenstein [45][46]. They first noticed and studied
the link between classical entropy and the area of the event horizon of a black
hole:

SBH =
A

4LPlank
(3.67)
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This is the Bekenstein-Hawking entropy, and deserves the glory that be-
longs to it: it is possibly the most noticeable clue that a quantum regime of
gravity required more investigation. Moreover an other noticeable fact is that
thermodynamical quantities were actually related to geometric ones. When
(3.67) was first published, entanglement entropy was already known in quantum
system. Nevertheless SBH referred to a classical thermodynamics regime,
not a quantum one. Spin network states allowed to extend this result to quan-
tum gravity research, thus leading to Ryu-Tagayanagi formula that will be
the main protagonist of the following chapter, when holographic properties of
spin network will be studied.

We can complete this discussion bringing two final arguments about Entropy-
Area correlations that should already be clear at this level:

1. Since spin networks can be interpreted as geometric states, each link,
gluing two nodes, is equivalent to a shared face of a tetrahedron in the
simplicial complex point of view. In particular SNS are eigenstates of
the Area operator and, given a spin j labelling the link state, the area’s
spectrum of this surface is given by

√
j(j + 1) and thus it scales like j

for large enough value of j. We also remember that the entropy of such
maximally entangled states is given by

S(ρ) = log(2j + 1) (3.68)

where 2j + 1 is the dimension of the Hilbert space associated to the link,
thus to the area of the shared surface. This dimension also scales like j for
large values. So it seems reasonable to state that large areas =⇒ bigger
correlation.

2. If we recall what has been said about the dipole graph entropy (3.63),
assume that every j has the same value. We can thus write that result as:

E = 4log(Dj) (3.69)

where Dj = dimV(j).

If we represent graphically the situation of the dipole graph:
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ι1

j1

j2

j3

j4

ι2

j′1

j′2

j′3

j′4

γ

We introduce the curve γ as the curve that separate and distinguish the
two subsystem of which we are studying entanglement properties. We can
notice that γ is pierced by 4 links. If we take a look at (3.69), 4 is exactly
the number of contribution that appeared in entangled entropy. This is
well know since each link brings contribution to correlation. Moreover
(3.69) can be generalized for each number of links connecting two sub-
system. We can interpret this number of intersection as the area of the
minimal surface separating the two subsystem, whose border is given by γ.
Thus if we denote with |γ| the number of intersection between the graph
and the curve, i.e. the number of links between the two subsystem, (3.69)
can be generalized as follows:

E = |γ| log(Dj) (3.70)

This situation is analogous to Ryu-Takayanagi formula emerging in the
context of AdS/CFT duality. We refer to the next chapter for more
detailed discussion on this topic; however it is worth to note that another
area-entanglement correlation emerges from the study of spin network
entanglement.

3. The role of intertwiner correlations introduced deviations from the area
scaling behaviour. In facts we can understand such extra correlations as
bulk correlations generally associated to nonlocal corrections.

3.6 Summary
We focused on the entanglement properties of spin network states:

1. The first step has been to recall how it is possible to describe quantum
system, even if a given observer has no complete knowledge of the state.
Thus we have been led to introduce density operator and a distinction
between pure and mixed states.
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2. This new tool allowed us to describe multipartite system and study a type
of correlation that has no analogue in classical mechanics. We called this
correlation Entanglement.

3. We introduced Von Neumann entropy, in order to quantify the amount
of quantum correlations between two subsystem of a bipartite system,
i.r. we introduce the concept of Entanglement entropy and Quantum
Mutual Information.

4. We studied entanglement entropy for the simple cases of two Wilson line
and two 4-valent nodes (entangled tetrahedra). We highlighted how gauge
invariant state are naturally entangled: in particular base states are max-
imally entangled after the insertion of an intertwiner. Moreover we no-
ticed that each link crossing the separation surface of the subsystems give
a contribution to the Von Neumann entropy, equal to the logarithm of
the dimension of the Hilbert space associated to the Wigner matrix of the
link. Also we define an entanglement entropy contribution arising from
quantum correlations among intertwiners in spin network states. Base
states have vanishing entanglement; in the general case of a superposition
of basis’ states, both connectivity and intertwiner contributions are not
null. In this framework entropy-area scaling is modified by the presence
of quantum correlations between internal degrees of freedom of the spin
network vertices.

These considerations allow us to qualitatively relate the entanglement prop-
erties of a spin network to two geometric aspects of the spin network basis states:
local link correlations are associated to the topology of the quantum geometry
state, reflected in the connectivity of the graph, while generally non-local entan-
glement among intertwiners defines correlations over volumes hence over actual
geometric degrees of freedom. On top of such correlations, further geometric
entanglement should be induced by the given choice of state expressed on the
spin network basis [42, 43, 16, 3].
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Chapter 4

Holographic properties of
Random Spin Networks

Background independent quantisation of gravity requires discrete space-time
structure to be responsible of continuum (macroscopical) geometry. In the pre-
vious sections we investigated discrete quantum geometry states described by
spin network states, by focusing on how entanglement measures can reflect geo-
metric properties of such states. In this chapter we seek a generalisation of the
quantum spin network description within the formalism of Group Field Theory
[11, 12, 16]. In this setting in particular:

• graphs are generic and not embedded; the role of holonomies is generalised
in terms of group elements, in principle going beyond the SU(2) case.

• in particular abstract graphs can be open, allowing for the study of bound-
ary/bulk correlations and holography

• the bottom-up derivation of spin network states for quantum geometries
of canonical quantisation is reversed. in a top-down approach: graphs
are defined by the interaction of single vertex (group )fields interacting to
create a quantum many-body system described by the spin network.

We review the Group Field Theory formalism [12], in which generalised
spin networks states with boundary are defined in analogy with tensor network
states. This allows us to investigate entanglement of quantum geometry states
via tools of quantum many-body system [42, 43].

We specify the previous analysis to the study of entanglement entropy in
terms of Rényi entropy [38] for a particular class of Spin Network states, i.e.
random spin networks. This introduces a new statistical characterisation to the
computation of the quantum correlations of a spin network state [3].

We deal with open graphs, characterised by an adjacency matrix, encoding
all the information about its connectivity. In this setting, we distinguish two
subregions of the graph: boundary and bulk. We call boundary the set of all the

61
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dangling links (external degrees of freedom), while the bulk represents the set of
internal degrees of freedom (contracted links and intertwiners). Via a bulk-to-
boundary mapping [3], we study how quantum correlation between boundary
subregions are affected by the bulk data, encoded in the state’s coefficients after
the contraction.

We are interested in entanglement induced by the combinatorial structure
of the bulk, hence we consider Random Spin Network in which the information
on the vertices is averaged out. This formalism allows us to perform random
averaging as group integration, according to the Haar probability measure.

For such states, we review the key results in [16], where via Replica trick and
performing ensemble averaging, the typical value of the Rényi second entropy
of a bipartite boundary is computed via a mapping to the partition function of
a Ising model, where after averaging:

1. the vertex density matrices at each node of the graph are replaced by the
first two elements of the permutations group, identity and swap, which
can be recast into a spin variable of value +1 or -1;

2. internal edges of the graph weights pairwise Ising interactions;

3. boundary dangling edges are dressed with “pinning fields” providing Ising
model boundary conditions.

In these terms, the computation of typical Rényi entropy in the spin tensor
network states can be mapped to the evaluation of partition functions of a
classical statistical model, namely a generalized Ising models with boundary
pinning fields.

Finally we will reproduce the celebrated Ryu-Takayanagi formula, arising
in AdS/CFT contest, relating the entanglement entropy of a boundary region
to the area of a minimal surface in the dual bulk, in the sense that we will
divide a graph’s degrees of freedom in internal d.o.f. (bulk, i.e. vertices and
links) and external ones (boundary, i.e. open edges labelled by spin variables),
thus realizing a correspondence between entanglement measure on the bound-
ary and geometric observable in the bulk. This idea leads us, once again, to
think to entanglement as the responsible of emerging space-time structures,
thus interpreting quantum texture of space-time as being held together by the
entanglement of its fundamental constituents.

4.1 GFT as Quantum Gravity model

GFT is the theory of a field defined on a group manifold; the excitations of the
field, interpreted as quanta of space, are represented as fundamental simplices
whose geometric properties are encoded in the group-theoretic variables of the
field domain. Following [11] and [12] we can sum up the main result of this
approach regarding the derivation of spin network states.
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A Group Field Theory is the theory of a quantum field ϕ defined on d copies
of a group G:

ϕ : Gd ∋ (g1, . . . gd)→ ϕ(g1, . . . gd) ∈ C (4.1)

The GFT model suitable for quantum gravity requires G = SU(2) and ϕ to
satisfy a closure condition:

ϕ(g1, . . . gd) = ϕ(hg1, . . . hgd) ∀h ∈ G (4.2)

The excitations of this field [11] can be interpreted as (d − 1) simplices, i.e.
quanta of space, whose geometric informations are encoded in the group data
g1, . . . gd. The particular case d = 4 restores the tetrahedra picture and the dual
spin network approach. In a vertex, each edge carries a group variable gi ∈ G.
Since we want a pure quantum description of a simplex, we need to require its
structure to be gauge invariant under the action of the group: thus, for a single
vertex state ϕ ∈ Hv = L2

(
Gd

G

)
.

We can use Peter-Weyl decomposition theorem to write a single-vertex wave-
function in the spin network basis

{∣∣∣⃗j, n⃗, ι〉}, where j⃗ are d spins labelling the
irreducible representations of SU(2), m⃗ labels a basis in the corresponding rep-
resentation space and ι is the intertwiner quantum number arising from the
gauge-invariant recoupling of the edge spins.

|ι⟩ ∈ InvSU(2)

[ d⊗
l=1

Vjl
]
= I j⃗ (4.3)

So the state |ϕ⟩ can be decomposed as follows:

|ϕ⟩ =
⊕
j⃗

∑
m⃗ι

ϕj⃗m⃗,ι

∣∣∣⃗j, m⃗, ι〉 ∈ Hv =
⊕
j⃗

[
I j⃗ ⊗

d⊗
i=1

Vji
]

(4.4)

Since the background independence of gravity requires the vertices to be in-
distinguishable, spin networks defined through GFT lives in a symmetric Fock
space rather than a Hilbert space [12] [16]. However, for practical purposes
related to quantum gravity formalism, we can use the first quantisation lan-
guage, assuming that all physically quantities are symmetrized with respect to
the vertex labels.

4.1.1 Tensor networks
In the following, we will briefly introduce the formalism of tensor networks
[42] and will discuss how GFT states can be interpreted as generalized tensor
network states [3].

Tensor Network A rank-n tensor is an object Tµ1...µn where each leg µk can
assume the values µk = 1, . . . , dk, dk being the dimension of the Hilbert space
Hk associated to the k-th leg. Each tensor network can be matched one to one
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to the wavefunction of a quantum state defined on the tensor product of the
Hilbert spaces Hk:

|T ⟩ =
∑
µk

Tµ1...µn |µ1⟩ ⊗ . . .⊗ |µn⟩ ∈ H =

n⊗
k=1

Hk (4.5)

Before connecting tensors in order to obtain a network, the collection of all
tensors that represent a certain quantum state can be interpreted as a tensor
product state associated to all the vertices, that is

⊗
x |Vx⟩, where x labels the

vertices. To each leg of a tensor we can associate a Hilbert space: there are 2
type of such space:

1. we denote by Hx∂ the Hilbert space (with dimension dx∂) of a dangling
leg, starting from x and ending on the boundary ;

2. we denote by Hxy the Hilbert space (with dimension dxy) associated to a
leg connecting the vertices x and y.

In fact, we can obtain a tensor network by connecting tensors, i.e. contracting
a common leg (summing over a shared index). Moreover connecting two tensor
with an internal link is the same to project the Hilbert space Hxy ⊗Hyx onto
its maximally entangled subspace. in particular the state associated to a link
can be decomposed as follow:

|lxy⟩ =
1√
dxy

dxy∑
µ=1

|µxy⟩ ⊗ |µyx⟩ (4.6)

Thus creating a tensor network means gluing vertex states, i.e. projecting on
links of adjacent vertices (4.6):

|ψ⟩ =
(⊗

<xy>

⟨lxy|
)(⊗

x

|Vx⟩
)

(4.7)

Tensor network with the form (4.7) are usually referred as Projected Entangled
Pair States (PEPS).

This particular type of state recurs in the structure of GFT states: in fact
if we want to glue two vertices together we have to entangle their degrees of
freedom on the legs we are uniting. If we consider 2 vertices v and w and imagine
to link them through their i-th edges, we have to project on the maximally
entangled state: ∣∣eivw〉 = 1√

dj

∑
n

|jn⟩ ⊗ |jn⟩ ∈ Vjiv=j ⊗ Vjiw=j (4.8)

ùIn particular, in order to match the SU(2) gauge invariance condition, we
need to project in the singlet state corresponding to the bivalent intertwiner
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described in (3.58), namely

∣∣eivw〉 =
√

dj∑
n

(−1)j+n√
dj

|j, n⟩ |j,−n⟩ (4.9)

that has exactly the same form of the general link (4.6). Thus we can say
that GFT states are generalized tensor network states in the sense that these
states are symmetric PEPS. Since the connectivity of the graph is expressed in
terms of entangled structure, we refer to this states as entanglement graphs.
Moreover, since connectivity plays a crucial role, we can use the adjacency
matrix to encode all the information about the whole graph structure and thus
formally distinguish between internal and external degrees of freedom, i.e. bulk
and boundary.

4.1.2 Adjacency matrix, bulk and boundary degrees of
freedom

Given a graph, with N vertices, we can encode all the information about the
connectivity through a N × N matrix, called adjacency matrix [47]. Rows
and columns of the matrix are labeled by the vertices of the graph, the elements
being defined by:

1. Avw = 1 if there exists at least one link between the two vertices;

2. Avw = 0 if the two vertices are not linked.

Such information on connectivity can be expressed more in detail, if we include
the information of which magnetic indices of the vertex states are contracted.

In order to include this information we shall promote each element of A to
a dxd matrix where d is the valence of the network. So we have that (Avw)ij =
A(v−1)·d+i,(w−1)·d+j will be equal to 1 if the vertices v and w are linked through
their i-th an j-th magnetic indices, 0 otherwise.

Thanks to this matrix we can encode all the connectivity information of each
graph, in particular we can define two different set of link:

1. We denote by L = {eivw s.t. A(v−1)·d+i,(w−1)·d+i = 1} the set of all the
internal links of the graph;

2. We denote by ∂γ = {eiv s.t. A(v−1)·d+i,(w−1)·d+j = 0 ∀w} the boundary
edges, i.e. dangling legs that are not connected to a vertex of the graph.

The set E = L ∪ ∂γ is the set of the edges of the graph.

Writing explicitly a generic quantum state defined on a graph γ [3], it is
possible to show that the degrees of freedom of a graph state are:

1. Spins jiv (and magnetic number niv) associated to the edges lying on the
boundary eiv ∈ ∂γ;
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2. Spins jivw associated to the internal links of each vertex;

3. Intertwiner quantum number ιv, associated to each vertex v, collectively
indicated as γ̇.

The first set identifies the boundary degrees of freedom, i.e. the external part
of the graph. The two remaining sets constitute the bulk degrees of freedom,
where in particular the first encodes the connectivity structure while the second
represents the internal degrees of freedom associated to each vertex. From
a geometric (simplicial) point of view, the bulk contains information on the
volumes of tetrahedra (intertwiner) and on the areas of the connected faces of
adjacent quanta of space (since spins jivw encode information on such areas).

The tensor network formalism, can be used not only to define quantum
states, but also to construct a holographic map, such that we can map bulk
indices into boundary’s ones.

4.1.3 Bulk and boundary subspaces

Each quantum state defined on a given graph, according to the previous discus-
sions, lives in the Hilbert space [3]:

Hγ =
⊕
J

(⊗
v∈γ̇

Ij
v

⊗
⊗
j∈∂γ

Vj

)
(4.10)

Because of the sum over J , it is impossible to factorize this Hilbert space into
Hγ̇ and H∂γ . However such factorization is possible in each subspace with J
fixed.

If we consider a single vertex Hilbert space:

Hv =
⊕
jv

Hv(jv) =
⊕
jv

(
Ijv ⊗

d⊗
i=1

Vjiv

)
(4.11)

each fixed-spin subspace Hv(jv) can be naturally decomposed into tensor prod-
uct of a space of intertwiner (bulk) and edges (boundary), thus we can factorize
the basis vector onto bulk and boundary basis states:

Bulk
∣∣∣⃗j, ι〉 ∈ Hγ̇ =

⊗
v

InvSU(2)

[ d⊗
l=1

Vjlv

]

Boundary
∣∣j1m1

〉
⊗ . . .⊗

∣∣jdmd
〉
∈ H∂γ =

d⊗
l=1

Vjl

(4.12)

Consider now a set of N vertices with individual wave functions fv and
spins j⃗v composing a graph γ. A quantum state for the graph can be computed
contracting the tensor product of all the vertex state

⊗
v |fv⟩ with an edge

∣∣eivw〉
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for each non vanishing element of the the adjacency matrix A, the link being a
maximally entangled state (4.8). The state of the graph will be [3]:

|ϕγ⟩ =
( ⊗

eivw∈L

〈
eivw
∣∣)⊗

v

|fv⟩ =

=
∑

ne∈∂γ

∑
ι1,...,ιN

(∑
ne∈L

∑
p

∏
v

(fv)
j⃗v
m⃗vιv

∏
eivw∈L

δmi
vp

vw
i
δmi

wpvw
i

)⊗
e∈∂γ

|jeme⟩ ⊗
⊗
v

∣∣∣⃗jvιv〉
(4.13)

We can note that
⊗

e∈∂γ |jeme⟩ is the basis element of the Hilbert space

associated to the boundary, while
⊗

v

∣∣∣⃗jv, ιv〉 is the basis element of the Hilbert
space associated to the bulk:

H∂γ(∂J) =
⊗
e∈∂γ

Vje

Hγ̇(J) =
⊗
v

Ijv
(4.14)

where J is the set of the spin attached to each vertex and ∂J is the set of spin
of the boundary edges.

So we can decompose the Hilbert space of a fixed-spin graph as tensor prod-
uct of bulk and boundary subspaces:

Hγ(J) = Hγ̇(J)⊗H∂γ(∂J) (4.15)

In the following, we will work in fixed-spin graph, in order to take advantage
of being able to decompose the Hilbert space in the form (4.15).

This decomposition will be useful when we will consider the case of a mixed
bulk state, described in terms of a certain density operator rather than a pure
state |ϕbulk⟩.

4.1.4 Holographic map: from bulk to boundary

We will show that a spin network state naturally defines a map between bulk
and boundary subspaces, according to the previous separation (4.15).
For simplicity, following [3], we can consider a graph state that is a PEPS
constructed by some vertex wave function {fv} picked on edge spins jv. We
can define the total state |ϕγ⟩ ∈ Hγ . Moreover we can consider (in the j-
fixed subspace), the bulk state, encoding information on intertwiner quantum
number:

|ζ⟩ =
∑

ι1,...ιN

ζι1,...,ιN

N⊗
v=1

∣∣∣⃗jvιv〉 (4.16)
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The corresponding boundary state, can be derived by contracting the total state
|ϕγ⟩ with (4.16):

|ϕ∂γ(ζ)⟩ = ⟨ζ|ϕγ⟩ =

= ⟨ζ|
( ⊗

eivw∈L

〈
eivw
∣∣⊗

v

|fv⟩
)

=

=
∑

me∈∂γ

(
ϕ∂γ(ζ)me∈∂γ

) ⊗
e∈∂γ

|jeme⟩

(4.17)

Where the coefficients are calculate by the contraction between ζι1,...,ιN and the
ones of |ϕγ⟩, according to the connectivity information encoded in the links.

Thus, given an entanglement graph described by a quantum state |ϕγ⟩ we
can naturally define a map [3] that associates bulk state with the boundary
state:

M[ϕγ ] : Hγ̇ =
⊗
v

Ijv ∋ |ζ⟩ → M[ϕγ ] |ζ⟩ = ⟨ζ|ϕγ⟩ = |ϕ∂γ⟩ ∈ H∂γ =
⊗
e∈∂γ

Vje

(4.18)
We note that there exist a family of map of this form between the same bulk and
boundary states, defined by all the possible states |ϕγi

⟩ associated to graphs γi
with the same bulk and boundary.

The previous discussions have been carried on with the assumption to work
on the fixed spin subspaces of bulk and boundary, i.e. Hγ̇(J) and H∂γ(J). In
the most general case, an entanglement graph will be given by an arbitrary spin
superposition, that is performing the sum over J . To do so, link states and bulk
states have to be modified, including the direct sum over J :∣∣eivw〉 =⊕

J

∑
n

(−1)j+n√
dj

|jn⟩ |j − n⟩

|ζ⟩ =
⊕
J

∑
ι1,...,ιN

(ζ(J)ι1,...,ιN )
⊗
v

∣∣∣⃗jvιv〉 (4.19)

Thus it is possible to show [3], by direct calculation, that a map between bulk
and boundary states still exists, but the input and output Hilbert space will be
respectively

Hγ̇ =
⊕
J

Hγ̇(J), H∂γ =
⊕
J

H∂γ(J) (4.20)

It is important to note that, although it is not possible to factorize the total
Hilbert space without fixing the spins J , we can still read generic graph states
as correspondences between bulk and boundary states.

The impossibility of factorizing the total Hilbert space depends on the fact
that in the case of spin superposition, intertwiner degrees of freedom strictly
depend on the incident spin. However it is possible to make bulk d.o.f. in-
dependent from the boundary one: to do so we have to fix the spin on the
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boundary J∂ ; by doing so the space Hγ̇ reduces to the direct sum of subspaces
with certain value of J such that the boundary portion of J coincides with the
fixed J∂ .

In the following section, we will introduce Rényi entropy as a generalized
Von Neumann entropy. In particular we will prove that the 2nd Rényi entropy
is related to the partition function of a classical Ising model defined on the
same graph as the tensor network. Moreover, the geometric parameters (the
dimensions of the Hilbert spaces) of bulk and boundary will play the role of the
temperature for the Ising model. Thus, within the limits of large dimensions,
the Ryu-takayanagi formula emerges.

4.2 Rényi entropy from Ising free energy

Following [32] we can study the entanglement properties of the boundary of a
spin network, in particular we will focus on how this entanglement in related to
the combinatorial structure of the bulk and to the quantum correlations between
intertwiner.

Since we are interested in entanglement induced by combinatorial structure
of the bulk, it is useful to consider a particular class of quantum states, that is
Random Tensor Network introduced in [42]. Differently from Hayden et al.
work, tensor networks in our approach posses a natural geometrical interpreta-
tion, being dual to the triangulation of a space-time manifold.
Given a vertex state |fv⟩, we know that it is possible to build a network by glu-
ing edges’ degrees of freedom by projecting on the maximally entangled state
(4.8), thus obtaining a PEPS.

To give a tensor network the "random" feature, we have to consider |fv⟩ as
a unit vector chosen independently at random from its respective Hilbert space.
To implement this randomness we can use the uniform probability measure,
that is invariant under unitary transformation. Equivalently one can chose an
arbitrary fiducial vector |0v⟩ and define:

|fv⟩ = Uf |0v⟩ (4.21)

where Uf is an unitary operator. Thus we can perform the random average of
an arbitrary function of this state as group integration, according to the Haar
probability measure, that is well defined for Unitary operator:

g(|fv⟩) =
∫
dUg(U |0v⟩) such that

∫
dU = 1 (4.22)

Non trivial entanglement properties of Spin Network are induced by partial
tracing a subsystem. The main advantage in using random spin network is that
the average (4.22) can be carried out before taking the partial trace, since the
latter is a linear operation.

Consider a spin network, which state is given by the tensor product of vertex
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states contracted through PEPS:

|τγ⟩ =
(⊗
e∈L

〈
eivw
∣∣)⊗ |fv⟩ (4.23)

where |fv⟩ =
∑

j,m,ι f
j⃗
m⃗,⃗ι

∣∣∣⃗jm⃗〉⊗∣∣∣⃗jι⃗〉 and |τγ⟩ ∈ Hγ(J) =
⊗N

v=1 I j⃗v⊗
⊗

e∈∂γ Vjiv .
Consider now a generic bulk state |ζ⟩ ∈ Hγ̇ and its induced boundary state

|τ∂γ(ζ)⟩ = ⟨ζ|τγ⟩ (4.24)

Consider a region A ⊂ ∂γ described by a density matrix ρA = TrA(ρ) where
ρ = |τ∂γ⟩ ⟨τ∂γ | is the density matrix of the boundary state (4.24). Rényi second
entropy of the density matrix ρA is thus given by:

S2(ρA) = − log Tr
[
ρ2A
]

(4.25)

Rényi entropy (4.25) can be easily calculated using replica trick:

S2(ρA) = − log Tr
[
ρ2A
]
= − log

(
Tr[(ρ⊗ ρ)SA]

Tr(ρ⊗ ρ)

)
(4.26)

Here we introduced the Swap operator SA acting on the direct product ρ⊗ ρ of
two copies of the original system that swaps the states of the two copies in the
region A, namely [42]:

SA

(
|mA⟩1⊗|nA⟩1⊗|m

′
A⟩2⊗

∣∣n′
A

〉
2

)
=

(
|m′

A⟩1⊗|nA⟩1⊗|mA⟩2⊗
∣∣n′

A

〉
2

)
(4.27)

In order to shorten the notation in (4.26) we can put:

S2(ρA) = − log

(
Z1

Z0

)
Z1 = Tr

[
ρ⊗2SA

]
Z0 = Tr

[
ρ⊗2

] (4.28)

Consider now the random character of vertex states |fv⟩ = U |0v⟩, we can com-
pute the average second Rényi entropy in the domain of large dimension, such
that [16, 3]:

S2(ρA) = − log
Z1

Z0

(4.29)

with

Z1 = Tr

[
ρ⊗2
ζ ⊗ ρ

⊗2
L ⊗

⊗
v

ρ⊗2
v SA

]
Z0 = Tr

[
ρ⊗2
ζ ⊗ ρ

⊗2
L ⊗

⊗
v

ρ⊗2
v

] (4.30)
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where ρζ = |ζ⟩ ⟨ζ| is the bulk density matrix, ρL =
⊗

e∈L |e⟩ ⟨e| is the link
density matrix and ρv = |fv⟩ ⟨fv| is the single vertex density matrix. The
main result of this analysis [48] is that we can explicitly calculate the result of
randomization on vertex state using Schur’s Lemma:⊗

v

ρ⊗2
v =

⊗
v

1v + Sv

D2
v +Dv

(4.31)

The numerator is given by the sum of two operator (Identity and Swap) acting
on each vertex v of the graph; the denominator is a numeric factor arising from
Schur’s Lemma that is proportional to the dimension Dv of the single vertex
Hilbert space. For reasons that will be clear in the next chapter it is also
convenient to notice that the numerator of (4.31) can be written as the sum of
representation of the two element of the permutation group S2 acting on the
Hilbert space of the single vertex state:⊗

v

ρ⊗2
v =

⊗
v

∑
σ∈S2

P (σ)

D2
v +Dv

(4.32)

However we can keep the calculation using (4.31) and write Z1/0 in the following
way:

Z1/0 =
∏
v

1

D2
v +Dv

Tr

[
ρ⊗2
ζ ⊗ ρ

⊗2
L ⊗

(
1v + Sv

)
SA/1

]
(4.33)

It is possible to show [3] that the quantities Z1/0 0 are equivalent to partition
functions of a classical Ising model defined on the graph.
The procedure to derive this result can be summed up in the following steps:

1. Randomization over vertex wavefunctions brings us to implement in each
vertex v an Ising spin σv. Such spin can only assume value +1 or −1.

2. Each edge eiv of the vertex carries a copy of the spin, in the sense that the
Ising state of the vertex is transmitted to all its edges.

3. A set of virtual spins, called "pinning fields", carries the information
about the region A ⊂ ∂γ: namely we attach a virtual spin µeiv

to each
dangling leg of the boundary eiv ∈ ∂γ. This spin take value −1 if eiv ∈ A
or +1 otherwise.

4. Ising spins and virtual spins on the same edge interact, and the strength
of the interaction is proportional to log djiv .

5. Ising spins σv and σw laying on linked vertices, interact and the strength
of the interaction is proportional to log djivw

.

It is also possible to write the partition function for this Ising model:

Z[µ] =
∑
σ⃗

e−A[µ](σ) (4.34)
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when the action can be obtained by calculating all the traces in (4.33) (see
Appendix A of [3] for details and entire calculation):

A[µ](σ) = −1

2

∑
eivw∈L

(σvσw−1) log djivw
− 1

2

∑
eiv∈∂γ

(σvµeiv
−1) log djiv +S2(ρζ↓)+k

(4.35)
where k is a constant term and S2(ρζ↓) is the 2nd Rényi entropy of the bulk
state reduced to the region with σv = −1. By direct calculation it is possible
to prove that the quantities (4.33) correspond to the partition function (4.34)
evaluated with corresponding pinning filed boundary condition. In particular

Z0 = Z(µe = +1 ∀e ∈ ∂γ)
Z1 = Z(µe = −1 ∀e ∈ ∂A, µe = +1 ∀e ∈ A)

(4.36)

Remember now that Rényi entropy is given by:

S2(ρA) = − log

(
Z1

Z0

)
= − logZ1 + logZ0 (4.37)

In the previous section we introduced the Free energy F as F(µ⃗) = − logZ(µ⃗),
thus we can write Rényi second entropy as:

S2(ρA) = F1 −F0 (4.38)

namely the free energy cost of flipping down the boundary pinning field in the
region A.

4.3 Effects of bulk contribution and Ryu-Takayanagi
formula

Now we will investigate how bulk entropy, namely physical correlations between
intertwiners, lead to a correction term in the area scaling law. We will focus on
the model of an homogeneous spin network that is associated to a graph with
all spins variables along the link equal to each one other.

4.3.1 Homogeneous Spin Network
We can now study the correlation between bulk entropy S2(ρζ↓) in A[µ⃗] defined
as:

A[µ](σ) = −1

2

∑
eivw∈L

(σvσw−1) log djivw
− 1

2

∑
eiv∈∂γ

(σvµeiv
−1) log djiv +S2(ρζ↓)+k

(4.39)
To do that we can consider the homogeneous case [16] in which all spins are
equal to a certain value, namely

jiv = jivw = J ∀eiv, eivw (4.40)
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We can thus introduce the parameter β = log dJ , since all the dimensions in
the action are equal. Indeed, in this particular regime, we can easily write the
partition function in terms of an Hamiltonian

Z[µ⃗] =
∑
σ⃗

e−βH[µ⃗](σ⃗) (4.41)

Where H is given by

H[µ⃗](σ⃗) = β−1A[µ⃗](σ⃗) = −1

2

[∑
eivw

(σvσw−1)+
∑
eiv

(σvµv−1)
]
+β−1S2(ρζ↓)+cost

(4.42)
Note that the Hamiltonian is given by a classical Ising model on γ plus an
additional term related to the bulk entropy. In this framework β plays the role
of the inverse of a temperature: since we started with a random state in the
large d limit, we are actually interested in the low temperature regime. thus the
partition function is dominated by the lowest energy configuration:

F = − logZ[µ⃗] ≃ βmin
σ⃗
H[µ⃗](σ⃗) (4.43)

Moreover since Rényi entropy is given by the difference of the values of the free
energy of the two configurations, we can set the constant term equal to 0. By
doing so F0 = 0, i.e. the lowest energy configuration is the one where there is
no interaction (all the spins point up). So Rényi entropy is given by F1. We
want to show how the presence of the bulk entropy becomes relevant.

4.3.2 Vanishing bulk entropy
To better understand the role of Bulk entropy, we can start considering the case
of vanishing bulk entropy S2(ρζ) = 0. In this case the Hamiltonian is given by:

H1(σ⃗) = −
1

2

[∑
eivw

(σvσw − 1) +
∑
eiv

(σvµv − 1)

]
(4.44)

From this expression we can soon notice that each pair of linked vertices with
antiparallel spins (i.e. σvσw = −1 carries a contribution of +1 to the energy
and the same holds for the boundary pinning field. In this sense, H1 is equal
to the size of the domain wall Σ(σ⃗) between the regions with spin up and spin
down. The size of this domain wall is quantified by the number of link crossing
it:

H1 = |Σ(σ⃗)| (4.45)

For example given a generic graph with a particular configuration of spin (track-
ing the boundary region A) we can visualize graphically the Hamiltonian of the
configuration by counting the number of edges that link A to A:
In the picture above, we used the following colours conventions:

1. red lines and dots represent edges and vertex of the region A;
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2. black lines and dots are graph elements belonging to A;

3. the blue dashed line is the domain wall between the two region in this
particular configuration;

4. yellow lines are the links crossing the domain wall, which carry a contri-
bution +1 to the Hamiltonian.

Finally, Rényi negativity can be computed as:

S2(ρA) ≃ log dj min
σ⃗
|Σ(σ⃗)| (4.46)

The equation (4.46) is a version of Ryu-Takayanagi formula [2, 1] for ho-
mogeneous random spin network. RT formula arises in AdS/CFT theory and
relates the entanglement entropy of a boundary region to the area of a minimal
surface in the dual bulk:

SA =
Area of γA

4GN
(4.47)

In our result (4.46) log dj is indeed proportional to the area of the surface dual
to the link, while minσ⃗ |Σ(σ⃗)| corresponds to the number of links (surfaces)
that crosses the domain wall in the lowest energy configuration. In this sense
we have a direct correspondence between Rényi second entropy and geometric
observables (areas).
Geometrically, we can give a precise interpretation of what this formula means
in the spin network case: the configuration associated to Z0 all the spins point
up; as the configuration switch to Z1 the Ising spins next to A are induced to flip
down thus realizing a spin down region that spreads into the bulk until H1(σ⃗) is
minimized. Moreover if the bulk entropy is not null but still negligible respect
to H1, Rényi entropy continues to satisfy RT formula with a correction term to
the area law:

S2(ρA) = log dj
(
min
σ⃗
|Σ(σ⃗)|

)
+ S2(ρζ↓) (4.48)

in this case the minimization over σ⃗ can be performed independently from the
bulk term: the spin down region spreads in the graph according to the mini-
mization of H1.
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4.3.3 Bulk entropy effects

Consider now the case of large bulk entropy, i.e. the latter is comparable to the
entanglement contribution of the Ising Hamiltonian H1.

Consider the case of a bulk that is a random pure state, as studied by Hayden
[42] in RTN, re-adapted in the spin network contest [16]. Bulk entropy is thus
given by:

S2(ρ↓) = log
DN

J + 1

D
|σ↓|
j +D

|σ↑|
J

(4.49)

where N is the number of vertices of γ, and |σ↓| (|σ↑|) stands for the cardinality
of the spin down (spin up) region. We can calculate the bulk contribution easily
in the case of a 4-valent graph, since intertwiner’s space dimension DJ is equal
to edges’ dimension dj (in the homogeneous case). Following [16] we can thus
consider

DJ = dj = eβ (4.50)

and evaluate the bulk entropy in the large β limit.

eβN + 1

eβ|σ↑| + eβ|σ↓|
≃ eβN

eβ|σ↑|
(
1 + eβ(|σ↓| − |σ↑|)

≃ eβ(N−max{|σ↓|,|σ↑|}) = eβmin{|σ↓|,|σ↑|}

(4.51)
thus the bulk correction is given by

S2(ρ↓) = βmin{|σ↓| , |σ↑|} (4.52)

The Hamiltonian is given by the sum of the classical Ising Hamiltonian plus the
additional term given by β−1S2(ρ↓):

H1(σ⃗) = −
1

2

[∑
(σvσw − 1) +

∑
(σvµv − 1)

]
+min{|σ↓| , |σ↑|} (4.53)

In this case the procedure of minimization of H strongly depends on the bulk
entropy contribution: in particular the behaviour of the minimum domain wall
depends on the number of vertices in each region of the graph.

An important consequence of the bulk entropy is the lost of degeneracy of
the minimum of H1. An example of this result can be found in figure 3,4 and
5 of [16]: first consider a generic spin network and a boundary region A ∈ ∂γ.
If the bulk state is a separable state, i.e. it’s entanglement contribution is null,
there are two possible domain wall (Σa and Σb) such that the Hamiltonian H1

is minimum: Ha = Hb = 5.
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Figure 3 from Bulk area law for boundary entanglement in spin network states:
entropy corrections and horizon-like regions from volume correlations.

Instead, if we insert a bulk state made up of a random pure state in a bulk
disk Ω and a direct product state in (Ω = γ̇ \ Ω) namely:

|ζ⟩ = |ζΩ⟩ ⊗
⊗
v∈Ω

|ζv⟩ (4.54)

the degeneracy of the minimal energy surface is removed and the energetically
favored configuration will be the one that enter "the least" in the bulk region
(Ha).

Figure 4 from Bulk area law for boundary entanglement in spin network states:
entropy corrections and horizon-like regions from volume correlations

By direct calculation Ha = 6 and Hb = 7. Moreover, increasing the dimen-
sion of the bulk disk, with more correlations, the domain wall gets pushed out
of the bulk:



4.4. SUMMARY 77

Figure 5 from Bulk area law for boundary entanglement in spin network states:
entropy corrections and horizon-like regions from volume correlations

4.4 Summary
Concretely, the Rényi second entropy is computed as a minimal free energy of
such a model, which ends up being equal to the number of links that cross the
minimal surface in bulk that separate the two subsystems on the boundary. In
this sense, the Rényi entropy is proportional to the area of that surface and one
obtains an area law that is a version of Ryu-Takayanagi formula for entangled
spin network.

Further, the presence of extra bulk entanglement reflects into a modification
of the minimal surface hence in interesting deviation from the holographic area
law. For instance, energetically favored configurations are the ones that enter
the least in the bulk; if the correlation of the bulk are sufficiently large, the
minimal surface gets pushed out thus creating a black hole-like region in the
bulk.

Such a model is capable to describe the scaling of geometrical quantities such
as areas, with entanglement entropy of a quantum states, described in terms of
a generalised random spin network. A limits of this analysis is certainly given by
the inability to derive such formulation for multipartite system of mixed states.
Both of these situations represent a hot topic in the framework of quantum
black holes [49, 14]. To use properly spin network formalism in this framework
we must be able to quantify the entanglement entropy for a multipartite mixed
state. In the next chapter we will introduce Negativity that will be a useful
tool to generalize what has been derived in this chapter and adapt such ideas
to mixed states of a multipartite spin network boundary.
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Chapter 5

Negativity measures for
Random Spin Networks

5.1 Rényi Negativity on random induced mixed
states

Negativity [4] is a measure of entanglement that is well defined for both pure
states and mixed states. We begin with a review of its definition and some
results on its Rényi generalization on random mixed spin network states. We
introduce Haar Random State that will allow us to study quantum correlation
between two subregions of the boundary of a graph, described by a spin network
state.

5.1.1 Negativity
Consider a bipartite Hilbert space H = HA ⊗HB , whose states are given by a
density matrix ρAB . We can fix an orthonormal basis |i⟩A in HA and similarly
|j⟩B in HB . The partial transpose with respect to one of the subsystem, say
B, is the density matrix with elements:

ρTB

iAjB ,kAlB
= ρiAlB ,kAjB (5.1)

We can recall that the full transposition is an Hermitian and trace-preserving
operation that lead to a new density matrix:

ρT = ρ∗ (5.2)

with the same eigenvalues of ρ. Hence the full transposition in a completely
positive definite map.

Partial transpose is still Hermitian and trace-preserving map, therefore its
eigenvalues are still real. Yet the map is not completely positive, i.e. ρT may
have negative eigenvalues.

79
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The fact that negative eigenvalues arise is related to the presence of quantum
correlation in ρ. Checking if the partial transpose has negative eigenvalues is a
test to distinguish quantum correlations from classical one.

Negativity is a measure that quantify the entanglement of a state according
to the amount of negative eigenvalues of the partial transpose.

NA:B :=
∥ρTB

AB∥1 − 1

2
(5.3)

where ∥•∥1 is the trace norm. Since ρTB

AB is Hermitian, its trace norm is the sum
of absolute values of its eigenvalues, hence (5.3) can be rewritten as:

NA:B =
∑
λi<0

|λi| (5.4)

The above quantity measures how negative the eigenvalues are.
We can easily prove that Negativity is related to quantum correlation . Indeed
if we consider a separable state written as:

ρ =
∑
a

paρ
(A)
a ⊗ ρ(B)

a (5.5)

with pa ≥ 0 and
∑

a pa = 1. If such state is separable both ρ(A) and ρ(B) are
density matrix. This implies that partial transpose acts trivially:

ρTB =
∑
a

paρ
(A)
a ⊗

(
ρ(B)
a

)T (5.6)

Since ρ(B)
a

T
is still a density matrix it will have no negative eigenvalues. This

directly implies that NA:B = 0, i.e. a necessary condition for a state to be
unentangled is to have vanishing Negativity [19].

It has also been proven by Peres [20] that the positivity of the partial trans-
position of the state is not a sufficient condition in general to distinguish unen-
tangled states. Moreover we can notice that the previous result does not depend
on the chosen basis for the Hilbert spaces and that it still holds if we interchange
A and B.

A more suitable formulation [21] of entanglement in term of negative eigen-
values is given by Logarithmic Negativity (LN), defined as:

EA:B := log∥ρTB

AB∥1 (5.7)

This quantity exhibits monotonic behaviour under general positive partial trans-
pose preserving operations, i.e. it is a monotone entanglement measure that will
provide many simplifications in the calculations.

5.1.2 Rényi Negativity
In the previous chapter we have discussed on Von Neumann generalized entropy,
called Rényi entropy:

S(k)(ρ) =
1

1− k
log Tr

[
ρk
]

(5.8)
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In a similar way [5] we can define Rényi generalization of Negativity measures:

Nk(ρAB) = Tr
[(
ρTB

AB

)k] (5.9)

We refer to Nk as the k-th Rényi Negativity or as the moment of order k. Notice
that, since ρTB

AB has negative eigenvalues, even and odd moments must be treated
separately:

N
(odd)
k (ρAB) =

∑
i

sgn(λi) |λi|k

N
(even)
k (ρAB) =

∑
i

|λi|k
(5.10)

Since LN only depends on the absolute values of eigenvalues, we can define it to
be the k → 1 limit of the logarithm of even momenta. Thus, if we set k = 2n,
LN takes the form:

EA:B = lim
n→ 1

2

logN
(even)
2n (ρAB) (5.11)

We can only consider the analytic continuation of even momenta since the log-
arithm of the odd ones vanishes in the limit k → 1 since partial transpose is
trace-preserving, i.e. Tr

(
ρTB

AB

)
= Tr(ρAB) = 1. Since odd momenta are related

to different measures of correlations, such as partially transposed entropy [5]
and refined Rényi negativities [10], we will not deal with this quantities.

5.1.3 Haar Random State

Since we are interested in the study of negativity of mixed states, it is useful to
introduce a particular class of random states that are suitable for dealing with
induced mixed states.

Consider a multipartite system described by an Hilbert space that is tensor
product of three Hilbert spaces [4] :

H = HA ⊗HB ⊗HC (5.12)

respectively endowed with an orthonormal basis |i⟩A,|j⟩B and |k⟩C , such that
i = 1, . . . , dA , j = 1, . . . , dB and k = 1, . . . , dC .
A pure Haar Random state is defined as:

|ψ⟩ = N
∑
ijk

Xijk |i⟩A |j⟩B |k⟩C (5.13)

where Xijk are complex gaussian i.i.d. matrix elements of the matrix X with
unnormalized joint probability distribution given by:

P
(
{Xijk}

)
∝ exp

{
−dAdBdC Tr

(
XX†)} (5.14)
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In order to obtain an induced random mixed state we can trace out on of the
subsystem, say C:

ρ =
XX†

Tr{XX†}
(5.15)

The reduced density matrix on HA ⊗HB is given by [50]:

ρ =
XX†

Tr{XX†}
(5.16)

The unnormalized reduced density matrix XX† is called Wishart ensamble and
it is a well known object in random matrix theory [18, 4].

This resulting density matrix will inherit the random character for the orig-
inal pure state. Moreover it’s a mixed state of which it is possible to calculate
negativity. In particular we will study the residual quantum correlations be-
tween the two remaining system. In the spin network framework, the three
Hilbert spaces are associated to different region of a given graph γ. In particu-
lar we will study quantum correlation between two specific regions (A and B)
on the boundary ∂γ.

Instead of wildly going into the calculation of Rényi Negativity with this
setup, we can anticipate a comfortable alternative path to describe Haar Ran-
dom states. As we did in the previous section, we can consider a reference state
|0⟩ ∈ H and act with an Unitary operator U ∈ U(dimH). In calculation of k-th
negativity, using the replica trick, we will be interested in ensemble averaging

over k copies of the Haar random states
(
|ψ⟩ ⟨ψ|

)⊗k. In the next section we
will bring strong arguments showing us that the unitary operator acting on the
reference state has to be a unitary representation of the permutation group.
Since it is a finite group, all the integrals, i.e. averaging, with respect to the
Haar measure, are finite sum. In particular, the average over k copies of Haar
random states are sum of permutation τ of the k copies [4]:

(
|ψ⟩ ⟨ψ|

)⊗k
=

∑
τ∈Sk

gτ∑
τ∈Sk

Tr{gτ}
(5.17)

where gτ is the matrix representation of the permutation τ ∈ Sk and the denomi-
nator ensures state has unit norm. The trace of a permutation is straightforward
to calculate, being equal to the dimension of the Hilbert space to the number
of cycles of the permutation. A deeper and more detailed discussion about the
permutation approach will be given in the next sections. The main thing to
focus on is that considering a mixed state, induced taking partial trace of a sub-
system (consider a bipartite system for simplicity), we can easily compute the
ensemble averaging over k copies of the reduced density matrix, since tracing
and averaging are commuting operations:

ρ⊗k
A = TrB

[
|ψ⟩ ⟨ψ|⊗k]

=

∑
τ∈Sk

gτA Tr
[
gτB
]∑

τ∈Sk
Tr
[
gτ
] (5.18)
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Where τI is a permutation acting only on the subsystem I. Thus the denomi-
nator can be written easily:∑

τ∈Sk

Tr
[
gτ
]
=
∑
τ∈Sk

(
dAdB)

C(τ) (5.19)

In particular we will show that in the large dimension limit such denominator
can be approximated to the leading order (dAdB)k. It is easy to understand that
in this limit, this averaging is completely equivalent to the Wishart ensamble
result in (5.16).

To justify and rigorously prove what we have said so far about permutations,
we will introduce the diagrammatic approach [4, 18] and some illuminating
example in the calculation of the purity and third Rényi negativity in Random
Tensor Network [17]. We will emphasize the visually distinguishable symmetries
and the emergence of the permutation formula.

5.2 Diagrammatic approach

Consider a tensor network made up of a single tensor represented by a Haar
pure state of a tripartite system [4].

|ψ⟩ =
∑
ijk

Xijk |i⟩A |j⟩B |k⟩C (5.20)

Since our aim is to calculate Rényi negativities, we consider the multipartition
of the system following the conventions that:

1. A is the part of the system that is left untouched;

2. B is the region that get partial transposed;

3. C is the subsystem we trace out in order to get a mixed state.

Diagrammatic approach has the advantage of skipping many calculation both
of traces and of ensamble averaging.
Consider now the density matrix associated to the full state:

ρ = |ψ⟩ ⟨ψ| (5.21)

Each matrix element of the density matrix can be represented drawing a line
for each index:

ρijk,lmn = XijkX
∗
lmn =

i j k n m l
(5.22)

Where we are using dotted lines for the system A, straight lines for B and dashed
lines for C.
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Notice that each group of lines correspond to a bra or a ket and each line
carries an index of the subsystem it belongs to. The lower ends of the diagram
are reserved for matrix manipulation, such as traces and partial transpose. We
can perform all this operation simply by drawing lines.

From now on we will no longer write indexes, assuming the convention to
use dotted lines for the system A, straight lines for B and dashed lines for C.

The first example of calculation we can show is the purity, namely the
second Rényi entropy.

Purity The second Rényi negativity corresponds to the purity of the par-
tial transposed matrix:

N2 = Tr(ρTB )
2 (5.23)

We can use diagrams to perform all the operation leading to the final result.
newline Let start with the standard tripartite density matrix

ρij,lm = (5.24)

Tracing over C is graphically represented by:

ρij,lm = (5.25)

which is a mixed state of the subsystem AB. We can also implement partial
transpose switching the indices of the subsystem B. Graphically that means

ρim,lj =

jm

(5.26)

Since we need the second power of this matrix we can glue the right indices of
the first matrix with the left indices of the second one:

ρTB 2 =
(5.27)
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and its trace will be:

To calculate diagrammatically the ensamble averaging we have to work on the
upper part of the drawing. Notice that each group of 3 three lines corresponds
to the indices of a given ket (bra), i.e. it is the matrix element of X (X†), the
random matrix of the Haar state (5.20). Averaging correspond to contract in
each possible way X to X†. Since we are at second order, we have two copies
of X to X† so there are only 2 possible way to do that:

Each of these diagrams will give a contribution to the second Rényi negativity
that we have to sum up.

The two rules to obtain this contribution through diagrams are the following:
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• A factor (variance) of 1∏
I dI

for each contraction in the upper part of the
diagram.

• A factor dI for each loop, for summing over the index of the random
density matrix.

Note that we have chosen Xijk to be a random variable with Gaussian distri-
bution P{Xijk} = Nexp

{
1

dAdBdC
XX†} so that

V ar(X) = XijkX
†
lmn =

1

dAdBdC
δilδjmδkn (5.28)

and in the large d limit, fluctuations around this value are negligible. Thus if
we refer to the two previous diagrams we can colour the lines of each subsystem
to better identify loops:

The first contribution is dAdBd2
C

d2
Ad2

Bd2
C

, the second one is dAd2
BdC

d2
Ad2

Bd2
C

.
So the second Rényi negativity is:

N2 =< Tr(ρTB )2 >=
dAdBd

2
C

d2Ad
2
Bd

2
C

+
d2Ad

2
BdC

d2Ad
2
Bd

2
C

=
dAdB
dAdBdC

+
dC

dAdBdC
(5.29)
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This is exactly the same result for the 2nd Rényi entropy in the large d limit
[17]. This coincidence occurs because partial transpose is trace preserving but
also has to obey the identity Tr

[
(ρTB )2

]
= Tr

[
ρ2
]
, and this becomes very clear

looking at diagrams.

Third Rényi Negativity The first non-trivial case we can approach
through diagrams is 3rd Rényi Negativity

N3 =< Tr(ρTB )3 > (5.30)

We can proceed as we did in the previous case.
The partial transposed reduced density matrix is represented by:

ρ3 is the multiplication of 3 copies of this diagramm:

and its trace will be

We have three copies of XX†, so there are 6 = 3! possible way to contract in
ensemble averaging. In fact if we label each copy with a number 1, 2 or 3, we
can close the line in the upper part of the diagram in the following ways:

1. XI −→ X†
I I = 1, 2, 3 (1 diagram);

2. XI −→ X†
I XJ −→ X†

K s.t. J,K ̸= I (3 diagrams);

3. XI −→ X†
I±1 (2 diagrams);

The diagram of the first case is:
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The three cases with one X contracted with the X† of the same copy and
the other two contracted with each other, are represented by diagrams of the
form:

These 3 diagrams actually gives the same contributions so we can just count
them three times.
The two remaining diagrams are the cyclic one and anti cyclic one.
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We can calculate each contribution by counting the number of loop of each
line and we get:

N3 =
dAdBd

3
C + 3d2Ad

2
Bd

2
C + dAd

3
BdC + d3AdB

d3Ad
3
Bd

3
C

=
d2A + d2B + d2C + 3dAdBdC

d2Ad
2
Bd

2
C

(5.31)
Putting together the result of second and third Rényi negativities (5.29) and
(5.31) we can notice two remarkable fact:

• < Tr(ρTB

AB)
k > is symmetric whit respect to the interchange A → B; in

fact given a partition (A and B) negativity, being defined as the sum of
negative eigenvalues does not depend on what of the two subsystem we
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partial transpose. This result confirms this fact.

• For k = 2 we have 2 = 2! terms caused by all the possible contraction in
the ensamble averaging. For k = 3 we still have 6 = 3! terms.

At this point it should be clear that there is a strong correlation between en-
tanglement in random tensor (spin) network and the permutation group Sn. In
fact the number of diagrams (contributions to n-th Rényi negativity) is equal to
the cardinality of the group Sn. In the following we will recap some properties,
definitions and results about the permutation group, in order to obtain a sta-
tistical model "Ising-like" that generalizes the result on 2-nd Rényi entropy, in
particular the action (4.39), for any order of negativity, in terms of the Cayley
metric on permutation group. Instead of using spin variables attached to ver-
tices we will use pinning fields (as seen in the previous chapter) given by group
data (i.e. permutation) that spread into the graph and interact as spin did in
the Hamiltonian (4.42).

5.3 Permutation approach
It seems evident that the permutation group is going to play a crucial role in
the study of k-th Rényi negativity. We briefly recall some useful tools regarding
this group. After that we will show how to interpret the results of diagrams
through permutation.

5.3.1 Permutation Group
The Permutation group of order n is a finite group Sn which cardinality is n!.
Each element σ ∈ Sn is defined to be a bijection of a given set M to itself, i.e.

σ(i) = j ∀ i, j ∈M (5.32)

Notation There are different notations to represent a permutation. We will
use two of them: the first one is Cauchy’s two lines notation that is very practical
in the calculation of the composition of two group element; the second one is the
cyclic form, whose name itself suggest its strong usefulness in the calculation of
cycles and Cayley’s metric that we will define soon.

Cauchy’s two lines notation consists in writing two rows. Say σ ∈ Sn is a
permutation acting on a given set of n element {x1, . . . , xn}. In the first row we
list all the element of the set. In the second row we write the image under the
permutation below each number:

σ =

(
x1 x2 . . . xn

σ(x1) σ(x2) . . . σ(xn)

)
(5.33)

For instance a particular permutation of the set {1, 2, 3, 4} can be written as
follows:

σ =

(
1 2 3 4
2 4 3 1

)
(5.34)
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We can also write this permutation using cyclic notation: we write in round
brackets the chains of number such that the second one is the image of the first
one, the third element is the image of the second on and so on. For example the
previous permutation is written as (124)(3) where (3) is a trivial cycle because
it is left unchanged by the permutation.

5.3.2 Geodesic on permutation group
Permutation group in equipped with a natural metric that will appear in the
Ising model we will introduce in the following. Since our aim is to minimize
the action of this model, we need to study geodesic on permutation group, in
particular we focus on the class of permutations that are geodesic between the
identity, the cyclic permutation and its inverse [5].
Consider a permutation g ∈ Sk, we can define the length of g as the minimum
number of Swap to get g starting by the identity. For example in S3 the per-
mutations (12)(3) and (123) have respectively length 1 an 2.
Similarly we can define the number of disjoint cycles of a permutation as
χ(g) = #(cycles). The permutation (12)(3) and (123) have respectively 2 and
1 cycles. By this example it is easy to understand that:

l(g) + χ(g) = k (5.35)

We can thus introduce a natural metric, given by:

d(g, h) = l(g−1h) = k − χ(g−1h) (5.36)

As cited before, we will be interested in studying the distance between 3 par-
ticular permutations of Sk:

1 = (1)(2) . . . (k)

X = (12 . . . k)

X−1 = (k . . . 21)

(5.37)

Since both lenghts and cycles are easy to calculate for this permutations, we
can easily resume the results on their distances:

d(1, X) = k − 1 d(1, X−1) = k − 1 d(X,X−1) =

{
k − 1 k odd
k − 2 k even

(5.38)
A set of permutation (g1, g2, . . . gn) is a geodesic on the permutation group if

d(g1, g2) + d(g2, g3) + . . .+ d(gn−1, gn) = d(g1, gn) (5.39)

The set of permutations that are on a geodesic between 1 and X , i.e. d(1, g)+
d(g,X) = d(1, X) = k − 1, is known to be in bijection with the set of Non-
Crossing Partitions of the set [k] = {1, 2, . . . k}. A NCP is a set of non-empty
pairwise disjoint subsets called "blocks", such that no two blocks cross each
other: consider the following permutations in S5

g = (1)(25)(34) h = (1)(24)(35) (5.40)
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Those permutation can be diagrammatically drawn as: We can see that only

1 2 3 4 5

1 2 3 4 5

(1)(25)(34) is a non crossing pairing. The number of NCP of Sk is given by the
Catalan number :

Ck = |NC(k)| =

(
2k
k

)
k + 1

(5.41)

We will use this information to obtain the set of permutation that are simulta-
neously geodesic for the three distances (5.38). Namely we are looking for the
permutations such that:

d(1, τ) + d(τ,X) = k − 1

d(1, τ) + d(τ,X−1) = k − 1

d(X, τ) + d(τ,X−1) =

{
k − 1 k odd
k − 2 k even

(5.42)

These conditions are equivalent to:

d(1, τ) =

⌊
k

2

⌋
d(X, τ) = d(X−1, τ) =

⌈
k

2

⌉
− 1

(5.43)

where
⌊
k
2

⌋
and

⌈
k
2

⌉
represent respectively the approximation to the smaller and

lager integer. Solving these conditions it is possible to prove that τ is on the
geodesics only if it is a permutation corresponding to a non-crossing partition
of the set [k] containing only block of length 2 plus a single block of length 1
if k is odd. We call this set Non Crossing Pairings NC2(k) and its cardinality
is denoted by ak. For even k there exists a bijection NC2(k)←→ NC(k2 ), and
for odd k we have ak = kak−1. Thus we can calculate cardinality in the two
different cases:

ak =

{
kC k−1

2
odd

C k
2

even
(5.44)

whose limit for k → 1 is given by:

lim
k→1

ak =

1 odd

8

3π
even

(5.45)
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This detailed discussion of permutations’ properties provides a quick recap of
all the mathematics we need to develop a statistical model for Rényi negativity.
Indeed, recalling how we defined pure Haar Random states (5.13), we already
said that there exists an alternative way to describe this class of states. Fol-
lowing the previous works on Random Spin Network [16, 3], we can consider a
reference state |0⟩ ∈ H and consider all the state that can be obtained acting
with a Unitary operator. As we show so far, Negativity exhibit a natural in-
ternal symmetry related to the permutation group. So it is natural to consider
the Unitary operator acting on the reference state as a unitary representation
of the group Sn. Since we are interested in ensemble averaging for induced
mixed states, we can consider a preliminary example to see how permutations’
properties arise in the calculation [18].
Consider a bipartite system:

H = HA ⊗HB (5.46)

described by a density matrix ρ. Tracing over B we have an induced mixed
state. If we calculate the average over α copies of ρA, since trace and averaging
are commuting operations, we get:

ρ⊗α
A = TrB

[
|ψ⟩ ⟨ψ|⊗α

]
(5.47)

group averaging is given by the sum over all the possible permutations acting
on α copies of the system, so:

ρ⊗α
A =

∑
τ∈Sα

gτA Tr [gτB ]∑
τ∈Sα

Tr [gτ ]
(5.48)

where τA and τB are permutation acting only on the subsystems A and B. The
trace of a permutation is easy to calculate since it is equal to the dimension of the
Hilbert space (dA or dB) to the number of the cycles χ(τ). So the denominator
becomes: ∑

τ

Tr [gτ ] =
∑
τ

(dAdB)
χ(τ) (5.49)

This quantity can be summed exactly: the number of permutation of α element

with k cycles is given by the well known Stirling number of first kind
[
n
k

]
.

Since we are interested in the regime of large dimensions, only the permutation
that maximizes χ(τ) will contribute at leading order. This permutation is the
Identity, i.e. the only permutation of Sα with α cycles. Thus the denominator
can be approximated to (dAdB)

α.
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5.4 Generalized Ising model for Rényi k-th Neg-
ativity

Consider a spin network state associated to a graph γ. For simplicity we consider
the case of fixed spin. The three sets of degrees of freedom discussed in the
previous chapters are:

1. boundary region ∂γ given by the dangling legs of the graph;

2. bulk region, given by Intertwiner γ̇ and internal links gluing vertices L.

To each vertex we associate a state belonging to a single vertex Hilbert space
Hv. So the state of the disconnected graph is given by the tensor product of all
the vertex states described by:

|fv⟩ =
∑
m⃗,ι

f j⃗m⃗ ι

∣∣∣⃗jv, m⃗, ι〉 ∈ Hv = I j⃗v ⊗
⊗
i

V jiv (5.50)

The graph state is given by contracting with links that project the state into
the maximally entangled state:

|ϕγ⟩ =

 ⊗
eivw∈L

〈
eivw
∣∣⊗

v

|fv⟩ (5.51)

where
∣∣eivw〉 is a bivalent intertwiner that glue the vertices v and w through the

i-th edge ∣∣eivw〉 =∑
m

(−1)j+m√
djivw

∣∣jivw,m〉 ∣∣jivw,−m〉 (5.52)

The density matrix associated to this state is given by

ρ = |ϕγ⟩ ⟨ϕγ | = TrL

{
ρL ⊗

⊗
v

|fv⟩ ⟨fv|
}

(5.53)

where ρL =
⊗

e∈L

∣∣eivw〉 〈eivw∣∣.
In order to calculate k-th Rényi Negativity, we can consider a tripartite system
as in the previous example of diagrams. We will use the same notation, namely:

1. A is the part of the system that is left untouched;

2. B is the region that get partial transposed;

3. C is the subsystem we trace out in order to get a mixed state.

The average k-th Rényi negativity is given by:

Nk = Tr

[(
ρTB

AB

)k]
(5.54)
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Using replica trick, (5.54) can be rewritten as [5]:

Nk =
Zk

Z0

(5.55)

Where Zk and Z0 are given by the following expressions:

Zk = Tr

[
ρ⊗k
L ⊗

(⊗
v

(|fv⟩ ⟨fv|)⊗k

)
⊗ PA (X)⊗ PB

(
X−1

)
⊗ PC (1)

]

Z0 = Tr

[
ρ⊗k
L ⊗

(⊗
v

(|fv⟩ ⟨fv|)⊗k

)] (5.56)

We denote by PI(σ) a unitary representation of the permutation σ acting on the
subsystem I. That correspond to attach at each vertex of the graph an appro-
priate pinning field according to what subsystem the vertex belongs to. These
pinning fields are respectively the cyclic, anticyclic and identity permutation
for the system A,B and C. According to the previous discussion, the averaging
over the vertex states can be computed as follows [18]:

(|fv⟩ ⟨fv|)⊗k
=

(Dv − 1)!

(Dv + k − 1)!

∑
gv∈Sk

Pv(gv) (5.57)

where Pv(gv) is the representation of the permutation gv acting on the k copies
of the vertex Hilbert space Hv, whose dimension is Dv. In order to compute
the effects of this permutation on the different degrees of freedom of the graph,
we can factorize Pv(gv) into three different operators:

Pv(gv) = Pv,0(gv)⊗
⊗

eivw∈L

Pv,i(gv)⊗
⊗

eivv̄∈∂γ

Pv,i(gv) (5.58)

where Pv,0(gv) acts on k copies of the Intertwiner space;
⊗

eivw∈L Pv,i(gv) acts
on k copies of the internal links;

⊗
eivv̄∈∂γ Pv,i(gv) acts on the boundary semi-

edges since v̄ represents (as in the previous sections) a virtual vertex which is
connected with v with the boundary edge eivv̄.
We can focus on the expectation value of Zk and, performing the average on
the vertex states we obtain:

Zk = Tr

ρ⊗k
L ⊗

⊗
v

∑
gv∈Sk

Pv(gv)

⊗ PA (X)⊗ PB

(
X−1

)
⊗ PC (1)

 (5.59)

This trace factorizes over the different degrees of freedom and it is given by a
sum over all the configuration of elements gv.
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Link contribution Tracing over links:

TrL

ρ⊗k
L ⊗

⊗
v

∑
gv∈Sk

Pv(gv)

 =

∑
{gv}

Tr

[
1

dkjivw

(∣∣eivw〉 〈eivw∣∣)⊗k ⊗ (Pv,i(gv)⊗ Pw,i(gv))

]
=

∑
{gv}

∏
eivw∈L

d
−k+χ(g−1

v gw)

jivw
=

∑
{gv}

∏
eivw∈L

d
−d(gv,gw)
jivw

(5.60)

Boundary contributions

Tr∂A

⊗
v∈A

1

dkjiv

∑
gv∈Sk

Pv(gv)⊗ PA(X)

 =

Tr∂A

⊗
v∈A

1

dkjiv

∑
gv∈Sk

⊗
eivv̄∈∂A

Pv,i(gv)⊗ PA(X)

 =

∏
v∈A

1

dkjiv

∑
gv∈Sk

∏
eivv̄∈∂A

Tr∂A [Pv,i(gv)⊗ PA(X)] =

∑
{gv}

∏
v∈A

∏
eivv̄∈∂A

d
−k+χg−1

v X

jiv
=

∑
{gv}

∏
∂A

d
−d(gv,X)
jiv

(5.61)

Similarly, the terms related to ∂B and ∂C are given by:

Tr∂B

⊗
v∈B

1

dkjiv

∑
gv∈Sk

Pv(gv)⊗ PB(X
−1)

 =

∑
{gv}

∏
∂B

d
−d(gv,X

−1)
jiv

(5.62)

Tr∂C

⊗
v∈C

1

dkjiv

∑
gv∈Sk

Pv(gv)⊗ PC(1)

 =

∑
{gv}

∏
∂C

d
−d(gv,1)
jiv

(5.63)
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Bulk contribution

TrȦ

⊗
v

∑
gv∈Sk

1

Dk
jv

Pv,0(gv)PA(X)

 =

∑
{gv}

∏
ιv∈A

D
−d(gvX,1)
jv

=
∑
{gv}

∏
ιv∈A

D
−d(gv,X

−1)
jv

(5.64)

TrḂ

⊗
v

∑
gv∈Sk

1

Dk
jv

Pv,0(gv)PB(X
−1)

 =

∑
{gv}

∏
ιv∈B

D
−d(gvX

−1,1)
jv

=
∑
{gv}

∏
ιv∈B

D
−d(gv,X)
jv

(5.65)

TrĊ

⊗
v

∑
gv∈Sk

1

Dk
jv

Pv,0(gv)PC(1)

 =

∑
{gv}

∏
ιvv∈C

D
−d(gv,1)
jv

(5.66)

Putting together this results we can write Zk as follows:

Zk =

(∏
v

(Dv − 1)!

(Dv + k − 1)!

)∑
{gv}

{ ∏
eivw∈L

d
−d(gv,gw)
jivw

 ·
 ∏

eivv̄∈∂A

d
−d(gv,X)
jvi

 ∏
eivv̄∈∂B

d
−d(gv,X

−1)
jvi

 ∏
eivv̄∈∂C

d
d(gv,1)
jvi

 ·
·

∏
ιv∈Ȧ

D
−d(gv,X

−1)
jv

∏
ιv∈Ḃ

D
−d(gv,X)
jv

∏
ιv∈Ċ

D
−d(gv,1)
jv

}
(5.67)

Following the procedure in [5], the result in (5.67) can be written as:

Zk =
∑
{gv}

e−Ak

[
{gv}

]
(5.68)

where Ak is the action of a generalized Ising Model :

Ak

[
{gv}

]
=

∑
eivw∈L

d(gv, gw) log djivw
+

∑
eivv̄∈∂A

d(gv, X) log djiv +

+
∑

eivv̄∈∂B

d(gv, X
−1) log djiv +

∑
eivv̄∈∂C

d(gv,1) log djiv +

+
∑
ιv∈Ȧ

d(gvX,1) logDjv +
∑
ιv∈Ḃ

d(gvX
−1,1) logDjv +

+
∑

ιv∈Ċ∪Ω

d(gv,1) logDjv + ξ (5.69)
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where ξ is a constant term.
The same procedure can be used to derive a similar expression for the denomi-
nator of (5.55):

Z0 =
∑
{gv}

e−A0

[
{gv}

]
A0

[
{gv}

]
=
∑

eivw∈L

d(gv, gw) logdjivw
+

∑
eivv̄∈∂γ

d(gv,1) log djiv +
∑
ιv∈γ̇

d(gv,1) logDjv + ξ
(5.70)

The pinning fields X,X−1 and 1 are permutations attached to virtual vertices
that interact via a two-body interaction with the generalized spins (i.e. per-
mutations) on each vertex of the graph. The strength of these interactions is
proportional to log d, d being the dimension of the link, semi-link or Intertwiner
space according to what term we are considering. Differently from [5], the par-
tition function (5.69) contains new terms due to the internal degrees of freedom
(Intertwiner), that characterize the spin network structure of the graph, inter-
acting with boundary pinning fields. Since we are interested in the study of the
entanglement structure for boundary states (Ryu-Takayanagi model) we have
to insert a bulk state and repeat the same procedure with only boundary states.

Bulk entropy contribution As it has been shown in Cap. 3, given a
graph γ with fixed spins j and a bulk state |τ⟩, the corresponding boundary
state is given by the bulk-to-boundary map:

M[ϕγ ] : Hγ̇ =
⊗
v

Ijv ∋ |τ⟩ → M[ϕγ ] |τ⟩ = ⟨τ |ϕγ⟩ = |ϕ∂γ⟩ ∈ H∂γ =
⊗
e∈∂γ

Vje

(5.71)
To study the effect of quantum correlations in the bulk on boundary entropy
we can insert a particular bulk state:

|τ⟩ = |τΩ⟩ ⊗

⊗
v∈Ω̄

|τv⟩

 ∈ Hγ̇ (5.72)

Consider a region Ω ∈ γ̇ with a generic type and number of correlations between
intertwiners encoded in the state |τΩ⟩; its complementary region Ω̄ is contracted
with a direct product state of intertwiner for each vertex (i.e. there is no corre-
lations between them). After the mapping into |ϕ∂γ⟩ the three regions A,B and
C are boundary regions, since there are no more free internal degrees of freedom.
It is easy to show that non-correlated intertwiners give no contribution to the
partition function. Indeed, consider |τv⟩ =

∑
ι τ

(v)
ι

∣∣∣⃗jv, ι〉 and its contraction
with vertex states |fv⟩:

|fv(τ)⟩ = ⟨τv|fv⟩ =
∑
m⃗

f(τ)j⃗m⃗

∣∣∣⃗jv, m⃗〉 (5.73)
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where f(τ)j⃗m⃗ =
∑

ι f
j⃗
m⃗ ι(τ

(v)
ι )∗ are the coefficients of the boundary states. Such

states are random boundary states: we can compute typical values of Rényi
Negativity:

Nk = Tr

[(
ρTB

AB

)k]
=
Zk

Z0

(5.74)

The averaging over the random boundary states can be written in terms of
permutations, as in the previous case:

(|fv(τ)⟩ ⟨fv(τ)|)⊗k
=

(Dv − 1)!

(Dv + k − 1)!

∑
gv∈Sk

Pv(gv) (5.75)

In order to obtain a generalized Ising partition function, we need to factorize
the permutation like previously done (5.58). This time we can only factorize
Pv(gv) into two different operator:

Pv(gv) =
⊗

eivw∈L

Pv,i(gv)⊗
⊗

eivv̄∈∂γ

Pv,i(gv) (5.76)

the first term acts on k copies of the internal links; the second one acts on the
boundary semi-edges. Compared to the previous case the term Pv,0(gv) does
not appear, since we inserted a bulk state, i.e. contracted intertwiner degrees
of freedom. Now we can show that the intertwiners that get contracted with
a state |τv⟩ ∈ Ω̄ do not contribute to R´nyi negativity, while the remaining
part |τΩ⟩ gives a crucial contribution. We can write the partition functions as
follows:

Zk = Tr

{
ρ⊗k
τΩ ⊗ ρ

⊗k
L ⊗

(⊗
v∈Ω

(
|fv⟩ ⟨fv|

)⊗k
)
⊗
(⊗

v∈Ω̄

(
|fv(τ)⟩ ⟨fv(τ)|

)⊗k
)
⊗

⊗ PA

(
X
)
⊗ PB

(
X−1

)
⊗ PC

(
1
)}

(5.77)

Z0 = Tr

{
ρ⊗k
τΩ ⊗ ρ

⊗k
L ⊗

(⊗
v∈Ω

(
|fv⟩ ⟨fv|

)⊗k
)
⊗
(⊗

v∈Ω̄

(
|fv(τ)⟩ ⟨fv(τ)|

)⊗k
)}
(5.78)

Using (5.75) and (5.76), these partition functions can be written in terms of
permutations and, after the same calculations of the previous case, we can write
down the action of the Ising model as follows:

Zk/0 =
∑
{gv}

e−Ak/0[{gv}] (5.79)
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Ak

[
{gv}

]
=

∑
eivw∈L

d(gv, gw) log djivw
+
∑

eivv̄∈A

d(gv, X) log djiv +

+
∑

eivv̄∈B

d(gv, X
−1) log djiv +

∑
eivv̄∈C

d(gv,1) log djiv +

+ A(Ω) + ξ (5.80)

A0

[
{gv}

]
=

∑
eivw∈L

d(gv, gw) log djivw
+

∑
eivv̄∈∂γ

d(gv,1) log djiv +

+ A(Ω) + ξ (5.81)

where

A(Ω) = − log

[
TrΩ

{
ρ⊗k
τ

(⊗
v∈Ω

Pv,0(gv)

)}]
(5.82)

is a contribution related to the bulk entropy that depends on the correlation
inserted in Ω, namely on the form of the state |τΩ⟩.
In the following, we will consider only pair-wise correlations between couples of
vertices in the bulk, so that the state can be written as a maximally entangled
intertwiners state:

|τΩ⟩ =
⊗

⟨v,w⟩∈Ω

D
− 1

2

j⃗vw

∑
ι

∣∣∣⃗jvw, ι〉⊗ ∣∣∣⃗jvw, ι〉 (5.83)

With this setting, the bulk entropy contribution A(Ω) has the same structure
of the link contribution:

A(Ω) =
∑

⟨vw⟩∈Ω

d(gv, gw) logDj⃗vw
(5.84)

For each order of negativity, the denominator (5.81) can be easily computed
in the large dimension limit, so we will focus our analysis on the minimization
procedure of the k-th order action Ak [{gv}] for simple graphs, in particular we
will focus on the effect of the bulk entropy.

5.4.1 Ising action of a homogeneous spin network

In order to investigate how an area law emerges form the statistical approach
for Rényi negativity measures, we can consider an homogeneous spin network
state with fixed spin, all of which are equal to a given value j. As considered
in the previous chapter (4.40) we clearly obtain that all the dimensions of the
Hilbert spaces are equal:

djivw
= djiv = Dj⃗vw

= d (5.85)
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We can introduce the temperature parameter β = log d and write the action Ak

as:

Ak [{gv}] = βHk [{gv}] (5.86)

where Hk [{gv}] is the Ising-like Hamiltonian describing the two-body interac-
tion between spin network vertices via Cayley distance on permutation group
with pinning fields playing the role of boundary conditions. We will denote with
Hk [{gv}] and Hc

k [{gv}] the Hamiltonians corresponding respectively to a ten-
sor product bulk state (no correlations) and to a bulk state exhibiting link-wise
correlation in the region Ω. With this notation:

Hk =
∑

eivw∈L

d(gv, gw) +
∑
∂A

d(gv, X) +
∑
∂B

d(gv, X
−1) +

∑
∂C

d(gv,1) (5.87)

Hc
k =

∑
eivw∈L

d(gv, gw)+
∑
∂A

d(gv, X)+
∑
∂B

d(gv, X
−1)+

∑
∂C

d(gv,1)+
∑

⟨vw⟩∈Ω

d(gv, gw)

(5.88)
To study the effect of correlations and derive an entanglement-area law, simi-

larly to [16] we will follow the following steps:

• Consider a graph γ composed by a given number of tetravelent vertices
with a generic boundary tripartition A,B and C.

• We trace out the boundary degrees of freedom in C and calculate Rényi
log negativity of the subsystem A.

• We are interested in the large dimension regime, so the relevant contri-
bution from (5.79) are the one associated to the spin configuration that
minimize the action (or the Hamiltonian). So we will numerically study
the values of the Hamiltonians Hk and Hc

k.

• In particular, we will focus on the calculation of H2,H3 and H4 and relate
the minimal values of such Hamiltonians to the values of the areas of the
minimal surfaces that separate the subsystem in the graph.

• spin configurations will be studied according to the possibility of a vertex
to belong to the domain of each subsystem A,B,C or to a intermediate
internal domain, characterized by non-crossing pairings τ that satisfy the
rules (5.43)

Two vertices graph Consider a graph γ composed by two tetravalent vertices
v and w glued with a single link.
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v w

C

A

C

B

Looking at the graph above, we notice that the vertex v has two boundary
legs in A and one in C and similarly w has two boundary legs in B and one in
C; so the k-th Hamiltonian can be written as:

Hk = d(gv, gw) + 2d(gv, X) + 2d(gw, X
−1) + d(gv,1) + d(gw,1) (5.89)

Consider now the case of a correlated bulk insertion, with a link-wise corre-
lation between intertwiners in v and w (5.84). The contribution of A(Ω) to
the Hamiltonian will be given (in the homogeneous case) by an additional link
contribution d(gv, gw), so that the correlated k-th Hamiltonian can be written
as:

Hc
k = 2d(gv, gw) + 2d(gv, X) + 2d(gw, X

−1) + d(gv,1) + d(gw,1) (5.90)

Moreover, such correlation can be drawn as an additional link between vertices,
according to the link-wise nature of |τΩ⟩ in (5.83).

v w

C

A

C

B

We come out with the convention of representing correlations with dashed
lines to make them distinguishable from the internal links.

k=2 The permutation group S2 only has two element:

S2 = {1 = (1)(2), S = (12)} (5.91)

where S can be interpreted as a Swap operator. The cyclic and anticyclic
permutation are equal since X = S = S−1 = X−1 = (12). Moreover, the
case k = 2 present the trivial situation in which the domain of the non-crossing
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pairings corresponds to the domain of A and B since X = X−1 is the only
NCP. Motivated by this considerations, we can only consider three possible spin
configurations. For each configuration we will calculate the value of H2 and
draw the corresponding domain in the graph.

1. gv = 1, gw = 1 → v, w ∈ C The non-correlated Hamiltonian (5.89) can
thus be written as:

H2 = d(1,1) + 2d(1, X) + 2d(1, X−1) + d(1,1) + d(1,1) =

= 2d(1, X) + 2d(1, X−1) =

= 2 + 2 = 4

v w

C

A

C

B

2. gv = X, gw = X−1 → v ∈ A,w ∈ B

H2 = d(X,X−1) + 2d(X,X) + 2d(X−1, X−1) + d(X,1) + d(X−1,1) =

= d(X,1) + d(X−1,1) =

= 1 + 1 = 2

v w

C

A

C

B

In this particular configuration, since we are working with S2 and X =
X−1 the domains of A and B are labelled by the same permutation, so we
can represent the domain walls as surfaces that separates the region AB
from C, namely:



104CHAPTER 5. NEGATIVITY MEASURES FOR RANDOM SPIN NETWORKS

v w

C

A

C

B

3. gv = X, gw = 1 → v ∈ A,w ∈ C

H2 = d(X,1) + 2d(X,X) + 2d(1, X−1) + d(X,1) + d(1,1) =

= d(X,1) + 2d(1, X−1) + d(X,1) =

= 1 + 2 + 1 = 4

v w

C

A

C

B

Note that the configuration gv = 1,gw = X−1 is symmetric up to a reflection to
the third case, so the Hamiltonian has the same value (4).

Now we can repeat the same analysis, including bulk correlation.

1. gv = 1, gw = 1 → v, w ∈ C

Hc
2 = 2d(1,1) + 2d(1, X) + 2d(1, X−1) + d(1,1) + d(1,1) =

= 2d(1, X) + 2d(1, X−1) =

= 2 + 2 = 4

v w

C

A

C

B
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2. gv = X, gw = X−1 → v ∈ A,w ∈ B

Hc
2 = 2d(X,X−1) + 2d(X,X) + 2d(X−1, X−1) + d(X,1) + d(X−1,1) =

= 2d(X,1) + d(X−1,1) =

= 1 + 1 = 2

v w

C

A

C

B

3. gv = X, gw = 1 → v ∈ A,w ∈ C

Hc
2 = 2d(X,1) + 2d(X,X) + 2d(1, X−1) + d(X,1) + d(1,1) =

= 2d(X,1) + 2d(1, X−1) + d(X,1) =

= 2 + 2 + 1 = 5

v w

C

A

C

B

By looking at this partial results we can notice that in the lowest energy con-
figuration (the second one), the domain wall does not enter the bulk region at
all. Correlation seems to play a role in increasing the Hamiltonian value only
in the third configuration, which is the only one with different permutations on
the vertex. As previously said, this case seems to exhibit no particular results,
because of the trivial features of S2, such as X = X−1 and NCP given by only
one permutation, whose domain is actually the same of the second configuration.
More interesting results can be found investigating higher orders of negativity,
since X ̸= X−1 if k ̸= 2. Last we can observe that the value of the minimal
Hamiltonian is equal to the number of links that cross the domain wall. For
higher orders such equality is lost, but a proportionality still holds, thus allow-
ing us to find a formula that directly relate the value of the Hamiltonian to the
number of links crossing domain wall.
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k=3 The permutation group S3 has 3! = 6 elements (identity, three swaps,
cyclic and anticyclic):

S3 = {1 = (1)(2)(3), S12 = (12)(3), S13 = (13)(2), S23 = (1)(23), X = (123), X−1 = (321)}
(5.92)

Cyclic and anticyclic permutations are now different. Using the relations (5.38)
we can write some preliminary calculations on the distances:

d(1, X) = k−1 = 2 d(1, X−1) = k−1 = 2 d(X,X−1) = k−1 = 2 (odd k)
(5.93)

Now we can compute the Hamiltonian for some more configuration, emerging
from the six possible "spin" that can be attached to vertices. To lighten the
notation, we will only write the non-vanishing terms of the Hamiltonian.

1. gv = gw = 1, → v, w ∈ C

H3 = 2d(1, X) + 2d(1, X−1) = 8 (5.94)

v w

C

A

C

B

2. gv = X,gw = X−1 → v ∈ A, w ∈ B

H3 = d(X,X−1) + d(X,1) + d(X−1,1) = 6 (5.95)

v w

C

A

C

B

This time the two domain remain separated since the two permutations
are different.
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3. gv = X,gw = 1 → v ∈ A, w ∈ C

H3 = d(X,1) + 2d(1, X−1) + d(X,1) = 8 (5.96)

v w

C

A

C

B

4. According to (5.43) we know that the set of permutations that are a
geodesic for both 1,X and X−1 is given by Non Crossing Pairings. As
previously stated, NCP must only contain blocks of length two plus (pos-
sible) a single block of length one. In S3 there are three NCP, given by
the three Swap Operator S12,S23 and S13. We denote by τ a generic NCP,
and, using the results in (5.43) we can calculate the value of the Hamilto-
nian of the configuration with Swap operators in the bulk vertices v and
w. In fact:

d(1, τ) = 1

d(X, τ) = d(X−1, τ) = 1

These permutations define a new intermediate domain in the bulk that
we can call transition domain (T).
gv = gw = τ → v, w ∈ T

H3 = 2d(τ,X) + 2d(τ,X−1) + 2d(τ,1) = 6 (5.97)

Such domain delimits the bulk region, preventing domain walls to enter
the bulk:

v w

C

A

C

B

T

Already at this level, differences with the previous case k = 2 can be noted.
However to make them even more evident we can insert bulk correlations, repeat
the analysis and sum up some concrete results.
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1. gv = gw = 1, → v, w ∈ C

Hc
3 = 2d(1, X) + 2d(1, X−1) = 8 (5.98)

v w

C

A

C

B

2. gv = X,gw = X−1 → v ∈ A, w ∈ B

Hc
3 = 2d(X,X−1) + d(X,1) + d(X−1,1) = 8 (5.99)

v w

C

A

C

B

3. gv = X,gw = 1 → v ∈ A, w ∈ C

Hc
3 = 2d(X,1) + 2d(1, X−1) + d(X,1) = 10 (5.100)

v w

C

A

C

B

4. gv = gw = τ → v, w ∈ T

Hc
3 = 2d(τ,X) + 2d(τ,X−1) + 2d(τ,1) = 6 (5.101)
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v w

C

A

C

B
T

Now it is even more evident that the role of bulk correlation is to increase the
value of the Hamiltonian in the configurations with different permutations on
correlated vertices. Like it has been said in the case k = 2, such values depend
on the number of link crossing the domain walls, that glue vertices in different
domains. Because of the link-wise nature on the correlations we are considering,
we also mentioned that those correlations can be drawn as additional links (the
dashed ones). Hence it is clear that if we have the same permutation on two
vertices, their interaction will give a contribution to the Hamiltonian that will
vanish both in the link term as in the bulk term of (5.88). This results also
stress a strong similarity with the discussions in [16], mentioned in the previous
chapter (4.53): if the bulk entropy vanishes (i.e. there is no correlations between
intertwiners) the minimal value of Hamiltonian is 6, and both configurations
(2) and (4) have this value; in this sense we have a degenerate minimum value
of H3. However this degeneracy is lost if we insert bulk correlations: in fact,
interpreting these correlations as links and assuming the proportionality between
H and the number of link crossing the domain walls, we can see that the second
configuration has an higher energy cost because of the additional link, crossing
both domain wall of A and B. Conversely, the transition domain T, is filled up
by the same permutation on the two vertices, the domain wall is pushed out of
the bulk region, the additional link does not cross any domain wall, hence the
Hamiltonian is left untouched and becomes the unique minimum. Last we can
discuss another detail that has been neglected on purpose in this analysis in view
of the results already mentioned: if we consider the uncorrelated Hamiltonian,
actually there are much more degenerate configurations with the same value
of H3 = 6. In particular if we consider a transition domain including only one
vertex, while the other one belongs to the domain of any other region and repeat
the calculations, we can notice that the values of the Hamiltonian associated
to all these configurations is still 6. However, since vertices belong to different
domains, including correlations naturally eliminates all of these degeneracies. So
all these configurations do not need to be discussed at all, since their behavior
is the same of (2).
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k=4 The permutation group S4 has 4! = 24 elements. We can focus on
the set of permutations we are going to use in the calculation of H4:

X = (1234) X−1 = (4321) 1 = (1)(2)(3)(4)

τ = (12)(34), (14)(23)

d(1, X) = d(1, X−1) = 4− 1 = 3

d(X,X−1) = 4− 2 = 2

d(1, τ) =

⌊
4

2

⌋
= 2

d(τ,X) = d(τ,X−1) =

⌈
4

2

⌉
− 1 = 1

In line with the results obtained so far, we can focus on the two degenerate
minimal configurations:

1. gv = X,gw = X−1 → v ∈ A, w ∈ B

H4 = d(X,X−1) + d(X,1) + d(X−1,1) = 8 (5.102)

v w

C

A

C

B

2. The set of Non Crossing Pairings is made up by permutations with two
blocks of length two. In S4 there are two NCP, given by S12S34 and
S14S23. Denoting by τ such permutations:
gv = gw = τ → v, w ∈ T

H4 = 2d(τ,X) + 2d(τ,X−1) + 2d(τ,1) = 8 (5.103)

v w

C

A

C

B

T
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Considering again bulk correlations we have:

1. gv = X,gw = X−1 → v ∈ A, w ∈ B

H4 = 2d(X,X−1) + d(X,1) + d(X−1,1) = 10 (5.104)

v w

C

A

C

B

2. gv = gw = τ → v, w ∈ T

H4 = 2d(τ,X) + 2d(τ,X−1) + 2d(τ,1) = 8 (5.105)

v w

C

A

C

B
T

All the discussions about H3 still hold for H4:

• bulk correlations increase the value of the Hamiltonian of the configuration
with vertices in different domains;

• degeneracies of minimal Hamiltonian is removed by such correlations:

• the lowest energy configuration is characterized by a transition domain
filling the bulk: in this configuration, the domain walls are pushed out of
the bulk similarly to [16]. This configuration is associated to the largest
contribution of the Ising action in the large dimension limit;

Looking at all the different values of the Hamiltonian, it is clear that it scales
both with the number of links crossing the domain walls and with the order
of H. In fact, the same configuration assumes larger and larger values of Hk

with increasing k. Moreover our results perfectly fit the formula (C.3) in [5],
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referring to the lower bound of the energy for a given spin configuration of a
random tensor network. We can thus write the same formula relating the values
of the hamiltonian of our Ising model to the number of link crossing each domain
wall, namely |γA|, |γB | and |γC |:

Hk =

{
k−1
2 (|γA|+ |γB |+ |γC |) odd(

k
2 − 1

)
(|γA|+ |γB |) + k

2 |γC | even
(5.106)

The action is thus given by:

Ak = βHk+ = β

{
k−1
2 (|γA|+ |γB |+ |γC |) odd(

k
2 − 1

)
(|γA|+ |γB |) + k

2 |γC | even
(5.107)

The partition function Zk is dominated by the lowest energy configuration
term, which is unique if we have bulk correlations:

Zk =
∑
{gv}

e−βHk = e−βH(min)
k (5.108)

Recalling the negativity formula:

Nk =
Zk

Z0
(5.109)

if we call H0 the hamiltonian of the denominator (i.e. the situation where all
the permutation are switched with the identity (namely we trace out the whole
boundary) we can write the average k-th Rényi negativity as follows:

Nk =
e−βH(min)

k [gv∈Sk ]∑
gv∈Sk

e−βH0[gv∈Sk]
= Pβ(gv) (5.110)

where Pβ(gv) is the configuration probability of a classical Ising model and is
actually a Boltzman distribution with inverse temperature parameter β = log d.
We could say that the configuration with minimal hamiltonian is the one with
higher probability in the statistical model. Since β = log d≫ 1, the temperature
associated T = 1

KBβ ≪ 1.
We can now calculate log negativity as

logNk = logZk − logZ0 (5.111)

Looking at H0 =
∑

L d(gv, gw) +
∑

∂γ d(1, gv) we notice that its minimal
value is 0, corresponding to the configuration with all vertex labeled by the
identity permutation. So we have

Z0 =
∑
{gv}

e−βH0 ≃ e0 = 1 (5.112)
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Therefore, the log Rényi negativity can be written as

logNk = logZk = −βH(min)
k (5.113)

By using the definition of free energy for Ising model,

F = − 1

β
logZ → logZk = −βFk → Fk = H(min)

k (5.114)

we can identify the free energy of the Ising model with the minimal value of
the Hamiltonian, expressed in term of the geometric areas of the domain wall.

Eventually, we can derive a general expression for the log negativity of a
tripartite boundary region of a spin network as the analytic continuation of
logarithm of the even momenta. We get

logN = lim
k→ 1

2

logN2k = −β lim
k→ 1

2

H2k = β

[
1

2
(|γA|+ |γB |)−

1

2
|γC |

]
(5.115)

This is the main result of the Thesis. The entanglement entropy of a mul-
tipartite induced mixed state is quantified via log negativity and it scales with
the areas of the domain walls spreading into the bulk region. In particular log
negativity is affected by the bulk data, both by its combinatorial structure as
by the quantum correlations between intertwiners. A similar result, has been
recently pointed out in recent works [12, 16] regarding 2-nd Rényi entropy for
a pure bipartite random spin network.

The same area scaling behavior has been obtained in the random tensor
network framework [5], where the right-hand term of the (5.115) is the quantum
mutual information IA:B of the two subsystems. In our case, in the domain of the
third region γC = (γA ∪ γB)c = γAB and we have the equality β |γC | = SAB . By
inserting quantum correlations among intertwiners we removed the degeneracies
of H(min) and a new intermediate region (the transition region T) fill the bulk,
thus fixing the domains of the three region. In particular γC can be seen as the
complementary of the two remaining regions, and log negativity can be written
as the mutual information between A and B. In this term, typical value of log
negativity is given by

logNAB =
1

2
[SA + SB − SAB ] (5.116)

A further confirmation of such area scaling behavior can be seen studying a
more complicated graph, with more vertices. In particular we will focus on a
graph with three vertices and the effects of adding non-local correlations among
intertwiners.

Three vertices graph Consider a graph γ composed by three tetravalent
vertices x,y and z:
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x y z

A

C

C

B

Beside the structural bulk correlation due to the two link xy and yz, we
can insert bulk correlations between intertwiner. We will consider link-wise
correlations, so that only one couple of intertwiners will be correlated. This
simple case allows us to deal with the topic of non-local correlations. In fact we
can insert a link-wise correlator among the intertwiner of two vertices that are
not directly connected by a link, namely x and z. We will study the difference
between local and non local correlations at different order of negativity, starting
by the uncorrelated Hamiltonian

Hk = d(gx, gy) + d(gy, gz) + 2d(gx, X) + d(gy, X)

+ d(gx,1) + +d(gy,1) + d(gz,1) + 2d(gz, X
−1) (5.117)

corresponding to the picture above. If we insert local correlations between
adjacent pairs (xy and yz) the Hamiltonians become

H(xy)
k = 2d(gx, gy) + d(gy, gz) + 2d(gx, X) + d(gy, X)

+ d(gx,1) + +d(gy,1) + d(gz,1) + 2d(gz, X
−1) (5.118)

x y z

A

C

C

B

H(yz)
k = d(gx, gy) + 2d(gy, gz) + 2d(gx, X) + d(gy, X)

+ d(gx,1) + +d(gy,1) + d(gz,1) + 2d(gz, X
−1) (5.119)
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x y z

A

C

C

B

Inserting bulk non-local correlations the Hamiltonian is modified by adding
a new term d(gx, gz) and graphically we can represent such correlation similarly
to the previous ones.

H(xz)
k = d(gx, gy) + d(gy, gz) + d(gx, gz) + 2d(gx, X) + d(gy, X)

+ d(gx,1) + +d(gy,1) + d(gz,1) + 2d(gz, X
−1) (5.120)

x y z

A

C

C

B

As we pointed out in the previous analysis, Rényi second negativity does not
exhibit any relevant result, hence we will begin our investigation starting from
the third order Hamiltonian.

Moreover, since we are dealing with a more complex graph, there are much
more different spin configurations associated with all the possible ways in which
domains can spread within the bulk. To simplify the analysis we will only
discuss the relevant ones representing low energy configurations very close to
the minimal value of the Hamiltonian and the degenerate configurations of the
latter.

k=3 Using the relations on distances in (5.93) we can easily repeat the
calculation for the following configurations:

1. gx = gy = gz = 1, → x, y, z ∈ C

H3 = 2d(1, X) + d(1, X) + 2d(1, X−1) = 10 (5.121)
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x y z

A

C

C

B

2. gx = gy = X, gz = X−1 → x, y ∈ A, z ∈ B

H3 = d(gy, gz) + d(1, X) + d(1, X) + d(1, X−1) = 8 (5.122)

x y z

A

C

C

B

3. gx = gy = gz = τ → x, y, z ∈ T

H3 = 2d(τ,X) + d(τ,X) + 3d(1, τ) + 2d(τ,X−1) = 8 (5.123)

x y z

A

C

C

B
T

4. gx = X, gy = gz = τ → x ∈ A, y, z ∈ T

H3 = 2d(τ,X) + d(1, X) + 2d(1, τ) + 2d(τ,X) = 8 (5.124)
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x y z

A

C

C

B
T

The configuration with x and y in T exhibit the same value of H3.

5. gx = gy = X, gz = τ → x, y ∈ A, z ∈ T

H3 = d(τ,X) + d(τ,X−1) +

+ d(X, τ) + d(1, X) + d(τ,X) + d(X−1,1) = 8 (5.125)

x y z

A

C

C

B
T

The configurations with x or y in T exhibit the same value of H3.

Now we will see that if we insert a bulk with local correlations between adja-
cent vertices (xy or yz) only some degenerations are removed. In fact, consider
the case with a bulk correlation between x and y: the Hamiltonian has ad addi-
tional term that increases its value only if the vertices x and y belong to different
domains, i.e. the distance between the permutations gx and gy is not vanishing.

The configurations (1), (2), (3) are left untouched, since the two spin vari-
ables in x and y are the same. The Hamiltonians of (4) and (5) must be
discussed. As we pointed out (4) actually corresponds to three different degen-
erate configurations with H3 = 8: the ones with the transition region filling
only a couple of vertices of the bulk, e.g. xy, yz and xz. The first of these
configurations will have a vanishing contribution from the bulk link insertion,
so one of these degeneracies will not be eliminated.

The same result holds for (5), since we have the three cases with the transi-
tion region only filling one vertex in the bulk; it is now clear that the configu-
ration with z ∈ T and x, y ∈ A will still have H3 = 8.
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Consider now the other possibility of local correlation, i.e. the couple yz.
The Hamiltonians of the configurations (1) and (3) remain the same. The
Hamiltonian of second one (2) becomes:

H3 = 8 + d(X,X−1) = 10 (5.126)

Similarly to the previous case, the degenerate configurations with pair of ver-
tices in the transition regions are partially removed: xy and xz increase by 1
while H(yz)

3 = 8.
The same result (degeneracy partially removed) goes for the configurations

with the transition region filling only one vertex.
We can only insert one type of non-local correlation in this graph, that is the
xz one

x y z

A

C

C

B

We can study the effect of such correlation on the different configurations.

1. The first configuration is certainly not not minimal one. Even if this
correlation left in unchanged, H3 = 10 > 8.

x y z

A

C

C

B

2. gx = gy = X, gz = X−1 → x, y ∈ A, z ∈ B

H3 = d(gy, gz) + d(gx, gz) +

+ d(1, X) + d(1, X) + d(1, X−1) = 10 (5.127)
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x y z
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3. gx = gy = gz = τ → x, y, z ∈ T

H3 = 2d(τ,X) + d(τ,X) + 3d(1, τ) + 2d(τ,X−1) = 8 (5.128)

x y z

A

C

C

B
T

The configuration with the transition region filling the whole bulk remain
unchanged.

4. gx = X, gy = gz = τ → x ∈ A, y, z ∈ T

H3 = 2d(τ,X) + d(1, X) + 2d(1, τ) + 2d(τ,X) + d(X, τ) = 9 (5.129)

x y z

A

C

C

B
T

5. gx = gy = X, gz = τ → x, y ∈ A, z ∈ T

H3 = d(τ,X) + d(τ,X−1)

+ d(X, τ) + d(1, X) + d(τ,X)

+ d(X−1,1) + d(X, τ) = 9 (5.130)



120CHAPTER 5. NEGATIVITY MEASURES FOR RANDOM SPIN NETWORKS

x y z

A

C

C

B
T

The lowest energy configuration is (3). Once again the dominant term is given
by the configuration with the transition region filling the whole bulk and domain
walls pushed out of the bulk.
The same analysis on fourth order Hamiltonian gives back exactly the same
results: local correlations partially remove degeneracies of lowest energy config-
uration, while non-local correlation prevents the domain to enter the bulk, thus
fixing a single area configuration as the minimal one.



Chapter 6

Discussion

Let us first spend a few words on the results of the previous chapter. The study
of log negativity allowed us to formulate a description of entanglement-area
correspondence in the framework of spin network states associated to quantum
states of 3-d spatial geometry; we found a relation between log negativity and
areas of the domain walls of the generalised Ising model built on a tripartite
boundary of a spin network state, which gets modified by the insertion of a bulk
realised in terms of Bell-like pairwise correlations between intertwiner states in
he graph.

In particular, we have studied the case of a two-vertices and a three-vertices
graph, with the aim of shedding light on the difference between local and non-
local correlations. In both situations a transition domain T arises, preventing
the domain wall to enter the bulk region. The configuration with such domain
characterizes the minimal energy configurations of each order of the Ising model.
For such configurations, we could identify the domain C as the complementary
boundary region to the union of A and B, thereby identifying typical log nega-
tivity ias the half the quantum mutual information between the two subsystem
A and B.

Despite the expect behaviour of the results found, since all the degeneracies
are eliminated and the calculation of log negativity is extremely simple in this
situation, we have to take into account the fact that in a more complex graph,
non-locality could have no more the same effect: indeed, by looking at such
correlations as additional link (beside their different nature), the connectivity
of the three-vertices graph we analysed is such that the additional link between
vertices x and z spreads through all the graph, intersecting the domain walls
of both A and B; both if we consider a graph with more vertices or using a
different tri-partition of the boundary, even non-local correlations could be not
strong enough to push the domain walls out of the bulk, so that not all the
degeneracy could be eliminated. In this sense, non-local correlations must be
further investigated in graph with an arbitrary number of vertices in order to
provide a deeper understanding of their role in the statistical method and their
physical interpretation.

121
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Actually the statistical analysis we conducted (leading to (5.115)) is still
valid if we have degeneracies of the lowest energy configuration. Similarly to
previous results in recent work [5], we obtain

logN = lim
k→ 1

2

logN2k = lim
k→ 1

2

[DkβH2k] = Dβ
[
1

2
(|γA|+ |γB |)−

1

2
|γC |

]
(6.1)

Where Dk is the number of degenerate spins configurations for each order of
negativity k. Such number should depend on both the negativity order and on
the number of vertices and on the connectivity and on possible local or non-local
correlations, so its k → 1

2 limit (that we denoted by D) seems to be actually
difficult to compute in the general case.

Some further considerations can be made on the thermodynamic aspects of
our model. Even if we used a statistical model, the equation (5.110) (Boltzman
distribution) suggest an equilibrium condition on the system; hence we are led
to imagine that a (macroscopic) thermodynamic regime could emerge from this
analysis.

Indeed, if we reconsider the partition function Zk within the homogeneous-
spin assumption, we can think of the state as a system at equilibrium and
calculate the internal energy of the system intended as a closed thermodynamic.
We get

U = −∂β logZ → Uk = −∂β(−βH(min)
k ) = H(min)

k (6.2)

Looking at (5.114) we understand that, in this regime, the change of free energy
of the system is equal to the change of its internal energy. This relation can also
be obtained via Legendre transformation:

F = U − TS (6.3)

Since we are in the low temperature regime, we can consider the second term
negligible and confirm the previous equality. Now we can use the first law of
thermodynamics,

U = Q− L (6.4)

and interpret Q as a form of heat that is transferred during the transformation
when bodies with different temperature "interact". In the homogeneous case,
since β = const we can assume Q to be equal to 0 (heat effect could appear in
the non-homogeneous case).

Nevertheless, we are improperly using terms such as energy and temperature,
that rather refers to geometrical quantities associated to a portion of space-time,
whose boundary areas spread inside the bulk. In our model, we have already
seen that the concept of Energy is associated to the way the areas enter the bulk,
while the dimensions of the Hilbert spaces of the graph edges components (β =
log d) play the role of a Temperature in the statistical model, thus encoding the
thermal agitation of quantum space atoms via its structural (links and semilinks,
i.e. areas) and internal (intertwiners, i.e. volumes) dimensions.
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Figure 6.1: A-B bipartition of a (pure) boundary state of a quantum spin net-
works associated to a ball of 3-d space.

As we said before, in the analysis of homogeneous networks with fixed areas,
which corresponds to a system with constant temperature, the internal energy
of the system is thus only consisteing of the work term

1

β
logNβ =

[
1

2
(|γA|+ |γB |)−

1

2
|γC |

]
= −Fβ = −Uβ = Lβ (6.5)

For an isothermal transformation such work term can be calculated as

Lβ = nRT (β) log

(
VB
VA

)
(6.6)

Following the same procedure for switching from statistical mechanics to ther-
modynamics, all the above quantities need to be interpreted in a geometrical
framework related to semi-classical regime of a quantum gravity theory. In this
sense, we could imagine the hypothesis of an isobaric transformation such that

Lβ = p∆Vβ

particularly, since the work term is proportional to the area deformation, this ar-
gument could be read as a relation between volumes’ transformation and areas’
transformation with the pressure term being a proportionality coefficient that
exhibit the inertia of space to change its volume after areas’ deformations in-
duced by connectivity and quantum correlations. These speculative deductions
require further investigations and a more complete theory and phenomenology
of gravitational field at quantum level.

Finally, we shall consider the study of the phase transition of the negativity
for the AB reduced boundary state, as a function of the ratios between the
dimensions of the different subsystems (i.e., one of the subsystems much larger
than the remaining ones, along with the results in [17]. In particular,the en-
tanglement can measure the capacity of the environment (e.g. the subsystem
C) to thermalize the system (e.g. the AB reduced state), making it eventually
separable. Such analysis is extremely interesting in relation to the possibility to
model quantum black hole like regions of 3-d space in terms of spin networks.
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In this framework, the random character of spin networks plays a key role in
simulating the effects of the gravitational dynamics on a microscopical scale via a
strongly interacting chaotic quantum system: recent developments suggest that
scrambling of the quantum information and the emergence of thermalization
as a result of dynamics in a closed quantum system are closely related. The
typical situation that occurs in the study of quantum system requires to trace
out the environment, thus taking into account the effects of loss of information
from a system into the environment, since every system is loosely coupled with
the energetic state of its surroundings. Such a phenomenon is know as quantum
decoherence and the loss of information is quantified via entanglement between
the system and environment.

A similar situation occurs in [44, 16, 3], where a bounded region of a 3-d slice
of space is considered using spin network formalism. In these cases,it is possible
to calculate the quantum correlations through the region using a bipartition of
the associated boundary state, see Fig. 6.1.

Figure 6.2: Page curve behaviour for a tripartite pure quantum system.

However, if we consider the correlations a system (S) has with its environ-
ment (eventually the rest of all the space in the whole universe) and we want to
investigate the quantum correlations on two subregions A and B of S, we must
trace out the environment, thus necessarily dealing with a mixed state for AB.
Moving a step in yhis direction is the main contribution of our Thesis work with
respect to the discussed literature. The ability of the environment to thermalize
the system can be quantified via negativity measure for such tripartite mixed
state. This analysis have to take into account the ratios between the dimen-
sions of the three subsystems. In particular we can focus on the deformation of
the Page curve relating the entanglement entropy between of two subsystem to
the dimensions of the two Hilbert spaces. The presence of a third region mod-
ifies this curve [17], so that there exist both an intermediate region in which
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entanglement entropy is constant and a region in which entanglement entropy
vanishes so that the state is separable in the regime of large dimension of the
environment subsystem (see Fig. 6.2).

The study of this regimes could be a useful tool to develop a toy model for
a quantum black hole if we consider additional degrees of freedom related to
closure defects of spin network vertex states.

Last, these methods can be implemented in spinfoam model if we general-
ize all the previous discussions already to one higher dimension. Rather than
considering a 3-d manifold associated to a spin-network, whose accessible de-
grees of freedom are external legs pointing out of the bulk region, we could deal
with a 4-d model of space-time manifold considering external degrees of freedom
given by spin network graph on the boundary subregions. Such approach could
simulate the dynamical behaviour of geometry in presence of gravity in a 4-d
manifold, allowing for a more precise study of the evolution of the quantum
correlations in a concrete model of of quantum space time.



126 CHAPTER 6. DISCUSSION



Bibliography

[1] Veronika E Hubeny. “The AdS/CFT correspondence”. In: Classical and
Quantum Gravity 32.12 (June 2015), p. 124010. doi: 10.1088/0264-
9381/32/12/124010. url: https://doi.org/10.1088/0264-9381/32/
12/124010 (cit. on pp. 5, 74).

[2] Shinsei Ryu and Tadashi Takayanagi. “Holographic derivation of entangle-
ment entropy from AdS/CFT”. In: Phys. Rev. Lett. 96 (2006), p. 181602.
doi: 10.1103/PhysRevLett.96.181602. arXiv: hep-th/0603001 (cit. on
pp. 5, 74).

[3] Eugenia Colafranceschi, Goffredo Chirco, and Daniele Oriti. “Holographic
maps from quantum gravity states as tensor networks”. In: Phys. Rev. D
105.6 (2022), p. 066005. doi: 10.1103/PhysRevD.105.066005. arXiv:
2105.06454 [hep-th] (cit. on pp. 5, 59, 61–63, 65–68, 70–72, 93, 124).

[4] Jonah Kudler-Flam, Vladimir Narovlansky, and Shinsei Ryu. “Negativity
spectra in random tensor networks and holography”. In: JHEP 02 (2022),
p. 076. doi: 10.1007/JHEP02(2022)076. arXiv: 2109.02649 [hep-th]
(cit. on pp. 5, 6, 79, 81–83).

[5] Xi Dong, Xiao-Liang Qi, and Michael Walter. “Holographic entanglement
negativity and replica symmetry breaking”. In: JHEP 06 (2021), p. 024.
doi: 10.1007/JHEP06(2021)024. arXiv: 2101.11029 [hep-th] (cit. on
pp. 5, 6, 81, 91, 95, 97, 98, 111, 113, 122).

[6] Pietro Doná and Simone Speziale. Introductory lectures to loop quantum
gravity. 2010. doi: 10.48550/ARXIV.1007.0402. url: https://arxiv.
org/abs/1007.0402 (cit. on pp. 5, 9, 18, 21, 23, 24, 32, 34).

[7] Carlo Rovelli and Francesca Vidotto. Covariant Loop Quantum Gravity.
Cambridge University Press, 2014. doi: https://doi.org/10.1017/
CBO9781107706910 (cit. on pp. 5, 9, 12).

[8] William Donnelly. “Entanglement entropy in loop quantum gravity”. In:
Phys. Rev. D 77 (2008), p. 104006. doi: 10.1103/PhysRevD.77.104006.
arXiv: 0802.0880 [gr-qc] (cit. on pp. 5, 51, 56).

127

https://doi.org/10.1088/0264-9381/32/12/124010
https://doi.org/10.1088/0264-9381/32/12/124010
https://doi.org/10.1088/0264-9381/32/12/124010
https://doi.org/10.1088/0264-9381/32/12/124010
https://doi.org/10.1103/PhysRevLett.96.181602
https://arxiv.org/abs/hep-th/0603001
https://doi.org/10.1103/PhysRevD.105.066005
https://arxiv.org/abs/2105.06454
https://doi.org/10.1007/JHEP02(2022)076
https://arxiv.org/abs/2109.02649
https://doi.org/10.1007/JHEP06(2021)024
https://arxiv.org/abs/2101.11029
https://doi.org/10.48550/ARXIV.1007.0402
https://arxiv.org/abs/1007.0402
https://arxiv.org/abs/1007.0402
https://doi.org/https://doi.org/10.1017/CBO9781107706910
https://doi.org/https://doi.org/10.1017/CBO9781107706910
https://doi.org/10.1103/PhysRevD.77.104006
https://arxiv.org/abs/0802.0880


128 BIBLIOGRAPHY

[9] Fabio Anzà and Goffredo Chirco. “Typicality in spin-network states of
quantum geometry”. In: Phys. Rev. D 94.8 (2016), p. 084047. doi: 10.
1103/PhysRevD.94.084047. arXiv: 1605.04946 [gr-qc] (cit. on pp. 5,
51, 56).

[10] Xi Dong. “The Gravity Dual of Renyi Entropy”. In: Nature Commun.
7 (2016), p. 12472. doi: 10 . 1038 / ncomms12472. arXiv: 1601 . 06788
[hep-th] (cit. on pp. 5, 50, 81).

[11] Goffredo Chirco, Daniele Oriti, and Mingyi Zhang. “Group field theory
and tensor networks: towards a Ryu–Takayanagi formula in full quantum
gravity”. In: Class. Quant. Grav. 35.11 (2018), p. 115011. doi: 10.1088/
1361-6382/aabf55. arXiv: 1701.01383 [gr-qc] (cit. on pp. 5, 61–63).

[12] Eugenia Colafranceschi and Daniele Oriti. “Quantum gravity states, en-
tanglement graphs and second-quantized tensor networks”. In: JHEP 07
(2021), p. 052. doi: 10.1007/JHEP07(2021)052. arXiv: 2012.12622
[hep-th] (cit. on pp. 5, 61–63, 113).

[13] Etera R. Livine and Daniel R. Terno. Reconstructing Quantum Geometry
from Quantum Information: Area Renormalisation, Coarse-Graining and
Entanglement on Spin Networks. 2006. doi: 10.48550/ARXIV.GR-QC/
0603008. url: https://arxiv.org/abs/gr-qc/0603008 (cit. on p. 5).

[14] Qian Chen and Etera R. Livine. Intertwiner Entanglement Excitation and
Holonomy Operator. 2022. doi: 10 . 48550 / ARXIV . 2204 . 03093. url:
https://arxiv.org/abs/2204.03093 (cit. on pp. 5, 77).

[15] Edward Witten. “Anti-de Sitter space and holography”. In: Adv. Theor.
Math. Phys. 2 (1998), pp. 253–291. doi: 10.4310/ATMP.1998.v2.n2.a2.
arXiv: hep-th/9802150 (cit. on p. 5).

[16] Goffredo Chirco, Eugenia Colafranceschi, and Daniele Oriti. “Bulk area
law for boundary entanglement in spin network states: Entropy corrections
and horizon-like regions from volume correlations”. In: Phys. Rev. D 105.4
(2022), p. 046018. doi: 10.1103/PhysRevD.105.046018. arXiv: 2110.
15166 [hep-th] (cit. on pp. 5–7, 59, 61–63, 70, 72, 75, 93, 101, 109, 111,
113, 124).

[17] Hassan Shapourian et al. “Entanglement Negativity Spectrum of Random
Mixed States: A Diagrammatic Approach”. In: PRX Quantum 2.3 (2021),
p. 030347. doi: 10.1103/PRXQuantum.2.030347. arXiv: 2011.01277
[cond-mat.str-el] (cit. on pp. 5, 6, 83, 87, 123, 124).

[18] Jonah Kudler-Flam, Vladimir Narovlansky, and Shinsei Ryu. “Distin-
guishing Random and Black Hole Microstates”. In: PRX Quantum 2.4
(2021), p. 040340. doi: 10.1103/PRXQuantum.2.040340. arXiv: 2108.
00011 [hep-th] (cit. on pp. 6, 82, 83, 93, 95).

[19] Michal Horodecki, Pawel Horodecki, and Ryszard Horodecki. “On the nec-
essary and sufficient conditions for separability of mixed quantum states”.
In: Phys. Lett. A 223 (1996), p. 1. doi: 10.1016/S0375-9601(96)00706-
2. arXiv: quant-ph/9605038 (cit. on pp. 6, 80).

https://doi.org/10.1103/PhysRevD.94.084047
https://doi.org/10.1103/PhysRevD.94.084047
https://arxiv.org/abs/1605.04946
https://doi.org/10.1038/ncomms12472
https://arxiv.org/abs/1601.06788
https://arxiv.org/abs/1601.06788
https://doi.org/10.1088/1361-6382/aabf55
https://doi.org/10.1088/1361-6382/aabf55
https://arxiv.org/abs/1701.01383
https://doi.org/10.1007/JHEP07(2021)052
https://arxiv.org/abs/2012.12622
https://arxiv.org/abs/2012.12622
https://doi.org/10.48550/ARXIV.GR-QC/0603008
https://doi.org/10.48550/ARXIV.GR-QC/0603008
https://arxiv.org/abs/gr-qc/0603008
https://doi.org/10.48550/ARXIV.2204.03093
https://arxiv.org/abs/2204.03093
https://doi.org/10.4310/ATMP.1998.v2.n2.a2
https://arxiv.org/abs/hep-th/9802150
https://doi.org/10.1103/PhysRevD.105.046018
https://arxiv.org/abs/2110.15166
https://arxiv.org/abs/2110.15166
https://doi.org/10.1103/PRXQuantum.2.030347
https://arxiv.org/abs/2011.01277
https://arxiv.org/abs/2011.01277
https://doi.org/10.1103/PRXQuantum.2.040340
https://arxiv.org/abs/2108.00011
https://arxiv.org/abs/2108.00011
https://doi.org/10.1016/S0375-9601(96)00706-2
https://doi.org/10.1016/S0375-9601(96)00706-2
https://arxiv.org/abs/quant-ph/9605038


BIBLIOGRAPHY 129

[20] Asher Peres. “Separability criterion for density matrices”. In: Phys. Rev.
Lett. 77 (1996), pp. 1413–1415. doi: 10.1103/PhysRevLett.77.1413.
arXiv: quant-ph/9604005 (cit. on pp. 6, 80).

[21] M. B. Plenio. “Logarithmic Negativity: A Full Entanglement Monotone
That is not Convex”. In: Phys. Rev. Lett. 95.9 (2005), p. 090503. doi:
10.1103/PhysRevLett.95.090503. arXiv: quant-ph/0505071 (cit. on
pp. 6, 80).

[22] Fabio M. Mele. Quantum Metric and Entanglement on Spin Networks.
2017. doi: 10.48550/ARXIV.1703.06415. url: https://arxiv.org/
abs/1703.06415 (cit. on pp. 9, 24, 33, 34, 37, 45, 46, 51, 54–56).

[23] Stefan Davids. “Semiclassical limits of extended Racah coefficients”. In:
Journal of Mathematical Physics 41.2 (2000), pp. 924–943. doi: 10.1063/
1.533171. eprint: {https://doi.org/10.1063/1.533171}. url: https:
//doi.org/10.1063/1.533171 (cit. on pp. 9, 35).

[24] A. Barbieri. “Quantum tetrahedra and simplicial spin networks”. In: Nucl.
Phys. B 518 (1998), pp. 714–728. doi: 10.1016/S0550-3213(98)00093-
5. arXiv: gr-qc/9707010 (cit. on pp. 9, 35).

[25] John C. Baez and John W. Barrett. “The Quantum tetrahedron in three-
dimensions and four-dimensions”. In: Adv. Theor. Math. Phys. 3 (1999),
pp. 815–850. doi: 10.4310/ATMP.1999.v3.n4.a3. arXiv: gr-qc/9903060
(cit. on pp. 9, 35–37).

[26] R. Arnowitt, S. Deser, and C. W. Misner. “Dynamical Structure and
Definition of Energy in General Relativity”. In: Phys. Rev. 116 (5 Dec.
1959), pp. 1322–1330. doi: 10.1103/PhysRev.116.1322. url: https:
//link.aps.org/doi/10.1103/PhysRev.116.1322 (cit. on p. 11).

[27] R. Arnowitt, S. Deser, and C. W. Misner. “Canonical Variables for General
Relativity”. In: Phys. Rev. 117 (6 Mar. 1960), pp. 1595–1602. doi: 10.
1103/PhysRev.117.1595. url: https://link.aps.org/doi/10.1103/
PhysRev.117.1595 (cit. on p. 11).

[28] P. A. M. Dirac. “The Theory of Gravitation in Hamiltonian Form”. In: Pro-
ceedings of the Royal Society of London. Series A, Mathematical and Phys-
ical Sciences 246.1246 (1958), pp. 333–343. issn: 00804630. url: http:
//www.jstor.org/stable/100497 (visited on 09/04/2022) (cit. on p. 11).

[29] Olivier J. Veraguth and Charles H.-T. Wang. “Immirzi parameter without
Immirzi ambiguity: Conformal loop quantization of scalar-tensor gravity”.
In: Physical Review D 96.8 (Oct. 2017). doi: 10.1103/physrevd.96.
084011. url: https://doi.org/10.1103%2Fphysrevd.96.084011 (cit.
on p. 22).

[30] Mohammad H. Ansari. “Generic degeneracy and entropy in loop quantum
gravity”. In: Nuclear Physics B 795.3 (June 2008), pp. 635–644. doi: 10.
1016/j.nuclphysb.2007.11.038. url: https://doi.org/10.1016%
2Fj.nuclphysb.2007.11.038 (cit. on p. 22).

https://doi.org/10.1103/PhysRevLett.77.1413
https://arxiv.org/abs/quant-ph/9604005
https://doi.org/10.1103/PhysRevLett.95.090503
https://arxiv.org/abs/quant-ph/0505071
https://doi.org/10.48550/ARXIV.1703.06415
https://arxiv.org/abs/1703.06415
https://arxiv.org/abs/1703.06415
https://doi.org/10.1063/1.533171
https://doi.org/10.1063/1.533171
{https://doi.org/10.1063/1.533171 }
https://doi.org/10.1063/1.533171
https://doi.org/10.1063/1.533171
https://doi.org/10.1016/S0550-3213(98)00093-5
https://doi.org/10.1016/S0550-3213(98)00093-5
https://arxiv.org/abs/gr-qc/9707010
https://doi.org/10.4310/ATMP.1999.v3.n4.a3
https://arxiv.org/abs/gr-qc/9903060
https://doi.org/10.1103/PhysRev.116.1322
https://link.aps.org/doi/10.1103/PhysRev.116.1322
https://link.aps.org/doi/10.1103/PhysRev.116.1322
https://doi.org/10.1103/PhysRev.117.1595
https://doi.org/10.1103/PhysRev.117.1595
https://link.aps.org/doi/10.1103/PhysRev.117.1595
https://link.aps.org/doi/10.1103/PhysRev.117.1595
http://www.jstor.org/stable/100497
http://www.jstor.org/stable/100497
https://doi.org/10.1103/physrevd.96.084011
https://doi.org/10.1103/physrevd.96.084011
https://doi.org/10.1103%2Fphysrevd.96.084011
https://doi.org/10.1016/j.nuclphysb.2007.11.038
https://doi.org/10.1016/j.nuclphysb.2007.11.038
https://doi.org/10.1016%2Fj.nuclphysb.2007.11.038
https://doi.org/10.1016%2Fj.nuclphysb.2007.11.038


130 BIBLIOGRAPHY

[31] Abhay Ashtekar et al. “Quantization of diffeomorphism invariant theories
of connections with local degrees of freedom”. In: J. Math. Phys. 36 (1995),
pp. 6456–6493. doi: 10.1063/1.531252. arXiv: gr-qc/9504018 (cit. on
p. 26).

[32] John W. Barrett and Louis Crane. “Relativistic spin networks and quan-
tum gravity”. In: J. Math. Phys. 39 (1998), pp. 3296–3302. doi: 10.1063/
1.532254. arXiv: gr-qc/9709028 (cit. on p. 36).

[33] Abhay Ashtekar and Jerzy Lewandowski. “Quantum theory of geometry.
2. Volume operators”. In: Adv. Theor. Math. Phys. 1 (1998), pp. 388–429.
doi: 10.4310/ATMP.1997.v1.n2.a8. arXiv: gr-qc/9711031 (cit. on
p. 38).

[34] Carlo Rovelli and Lee Smolin. “Discreteness of area and volume in quan-
tum gravity”. In: Nucl. Phys. B 442 (1995). [Erratum: Nucl.Phys.B 456,
753–754 (1995)], pp. 593–622. doi: 10.1016/0550-3213(95)00150-Q.
arXiv: gr-qc/9411005 (cit. on p. 38).

[35] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and
Quantum Information: 10th Anniversary Edition. Cambridge University
Press, 2011. isbn: 9781107002173. url: https : / / www . amazon . com /
Quantum-Computation-Information-10th-Anniversary/dp/1107002176?
SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=
xm2&camp=2025&creative=165953&creativeASIN=1107002176 (cit. on
pp. 44, 45).

[36] Wayne C. Myrvold. On the Relation of the Laws of Thermodynamics to
Statistical Mechanics. July 2021. url: http://philsci-archive.pitt.
edu/19361/ (cit. on p. 47).

[37] Gavin E. Crooks. On Measures of Entropy and Information. 2015 (cit. on
p. 48).

[38] John C. Baez. “Rényi Entropy and Free Energy”. In: Entropy 24.5 (2022),
p. 706. doi: 10.3390/e24050706. arXiv: 1102.2098 [quant-ph] (cit. on
pp. 49, 61).

[39] Wim van Dam and Patrick Hayden. “Renyi-entropic bounds on quan-
tum communication”. In: arXiv e-prints, quant-ph/0204093 (Apr. 2002),
quant–ph/0204093. arXiv: quant-ph/0204093 [quant-ph] (cit. on pp. 49,
50).

[40] Matthew B. Hastings et al. “Measuring Renyi Entanglement Entropy in
Quantum Monte Carlo Simulations”. In: Phys. Rev. Lett. 104.15 (2010),
p. 157201. doi: 10.1103/PhysRevLett.104.157201. arXiv: 1001.2335
[cond-mat.str-el] (cit. on p. 50).

[41] Thomas Faulkner. “The Entanglement Renyi Entropies of Disjoint Inter-
vals in AdS/CFT”. In: (Mar. 2013). arXiv: 1303.7221 [hep-th] (cit. on
p. 50).

https://doi.org/10.1063/1.531252
https://arxiv.org/abs/gr-qc/9504018
https://doi.org/10.1063/1.532254
https://doi.org/10.1063/1.532254
https://arxiv.org/abs/gr-qc/9709028
https://doi.org/10.4310/ATMP.1997.v1.n2.a8
https://arxiv.org/abs/gr-qc/9711031
https://doi.org/10.1016/0550-3213(95)00150-Q
https://arxiv.org/abs/gr-qc/9411005
https://www.amazon.com/Quantum-Computation-Information-10th-Anniversary/dp/1107002176?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=1107002176
https://www.amazon.com/Quantum-Computation-Information-10th-Anniversary/dp/1107002176?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=1107002176
https://www.amazon.com/Quantum-Computation-Information-10th-Anniversary/dp/1107002176?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=1107002176
https://www.amazon.com/Quantum-Computation-Information-10th-Anniversary/dp/1107002176?SubscriptionId=AKIAIOBINVZYXZQZ2U3A&tag=chimbori05-20&linkCode=xm2&camp=2025&creative=165953&creativeASIN=1107002176
http://philsci-archive.pitt.edu/19361/
http://philsci-archive.pitt.edu/19361/
https://doi.org/10.3390/e24050706
https://arxiv.org/abs/1102.2098
https://arxiv.org/abs/quant-ph/0204093
https://doi.org/10.1103/PhysRevLett.104.157201
https://arxiv.org/abs/1001.2335
https://arxiv.org/abs/1001.2335
https://arxiv.org/abs/1303.7221


BIBLIOGRAPHY 131

[42] Patrick Hayden et al. “Holographic duality from random tensor networks”.
In: JHEP 11 (2016), p. 009. doi: 10.1007/JHEP11(2016)009. arXiv:
1601.01694 [hep-th] (cit. on pp. 50, 59, 61, 63, 69, 70, 75).

[43] Rajibul Islam et al. “Measuring entanglement entropy through the inter-
ference of quantum many-body twins”. In: (Sept. 2015). doi: 10.1038/
nature15750. arXiv: 1509.01160 [cond-mat.quant-gas] (cit. on pp. 50,
59, 61).

[44] Etera R. Livine. “Intertwiner entanglement on spin networks”. In: Physical
Review D 97.2 (Jan. 2018). doi: 10.1103/physrevd.97.026009. url:
https://doi.org/10.1103%2Fphysrevd.97.026009 (cit. on pp. 53, 55,
56, 124).

[45] S. W. Hawking. “Particle Creation by Black Holes”. In: Commun. Math.
Phys. 43 (1975). Ed. by G. W. Gibbons and S. W. Hawking. [Erra-
tum: Commun.Math.Phys. 46, 206 (1976)], pp. 199–220. doi: 10.1007/
BF02345020 (cit. on p. 56).

[46] Jacob D. Bekenstein. “Black Holes and Entropy”. In: Jacob Bekenstein:
The Conservative Revolutionary. Ed. by Lars Brink et al. Singapur: World
Scientific, 2020, pp. 307–320. doi: 10.1142/9789811203961_0023 (cit. on
p. 56).

[47] JOHN W. ESSAM and MICHAEL E. FISHER. “Some Basic Definitions
in Graph Theory”. In: Rev. Mod. Phys. 42 (1970), pp. 271–288. doi: 10.
1103/RevModPhys.42.271 (cit. on p. 65).

[48] Aram W. Harrow. “The Church of the Symmetric Subspace”. In: arXiv e-
prints, arXiv:1308.6595 (Aug. 2013), arXiv:1308.6595. arXiv: 1308.6595
[quant-ph] (cit. on p. 71).

[49] Aranya Bhattacharya, Kevin T. Grosvenor, and Shibaji Roy. “Entangle-
ment entropy and subregion complexity in thermal perturbations around
pure AdS spacetime”. In: Physical Review D 100.12 (Dec. 2019). doi:
10.1103/physrevd.100.126004. url: https://doi.org/10.1103%
2Fphysrevd.100.126004 (cit. on p. 77).

[50] Karol Zyczkowski and Hans-Jürgen Sommers. “Induced measures in the
space of mixed quantum states”. In: Journal of Physics A Mathematical
General 34.35 (Sept. 2001), pp. 7111–7125. doi: 10.1088/0305-4470/
34/35/335. arXiv: quant-ph/0012101 [quant-ph] (cit. on p. 82).

https://doi.org/10.1007/JHEP11(2016)009
https://arxiv.org/abs/1601.01694
https://doi.org/10.1038/nature15750
https://doi.org/10.1038/nature15750
https://arxiv.org/abs/1509.01160
https://doi.org/10.1103/physrevd.97.026009
https://doi.org/10.1103%2Fphysrevd.97.026009
https://doi.org/10.1007/BF02345020
https://doi.org/10.1007/BF02345020
https://doi.org/10.1142/9789811203961_0023
https://doi.org/10.1103/RevModPhys.42.271
https://doi.org/10.1103/RevModPhys.42.271
https://arxiv.org/abs/1308.6595
https://arxiv.org/abs/1308.6595
https://doi.org/10.1103/physrevd.100.126004
https://doi.org/10.1103%2Fphysrevd.100.126004
https://doi.org/10.1103%2Fphysrevd.100.126004
https://doi.org/10.1088/0305-4470/34/35/335
https://doi.org/10.1088/0305-4470/34/35/335
https://arxiv.org/abs/quant-ph/0012101

	Introduction
	Quantum geometry states
	Canonical quantization of General Relativity
	Hamiltonian formalism of General Relativity
	Manifestly covariant formulations and vanishing Hamiltonian

	Tetrad formalism and Ashtekar variables
	Kinematic and physical Hilbert space
	Tetrad formalism and spin connection
	Hamiltonian analysis
	Canonical quantization
	Holonomy-flux algebra

	Spin Network states
	Cylindrical functions
	Gauge-invariant Hilbert space
	A Spin Network basis for Quantum Geometry States
	Spin Networks Dual to Simplicial Complexes
	Quantum triangle in 3d gravity
	Classical tetrahedra

	Summary

	Entanglement Entropy for Spin Network states
	Density operator
	Composite system
	Separable and entangled states

	Von Neumann Entropy
	Rényi Entropy
	Why Rényi Entropy?

	Entanglement of Spin Network States
	Entangled Wilson lines
	Entangling tetrahedra via links
	Entangling tetrahedra via intertwiners

	Discussion on Entropy-Area scaling
	Summary

	Holographic properties of Random Spin Networks
	GFT as Quantum Gravity model
	Tensor networks
	Adjacency matrix, bulk and boundary degrees of freedom
	Bulk and boundary subspaces
	Holographic map: from bulk to boundary

	Rényi entropy from Ising free energy
	Effects of bulk contribution and Ryu-Takayanagi formula
	Homogeneous Spin Network
	Vanishing bulk entropy
	Bulk entropy effects

	Summary

	Negativity measures for Random Spin Networks
	Rényi Negativity on random induced mixed states
	Negativity
	Rényi Negativity
	Haar Random State

	Diagrammatic approach
	Permutation approach
	Permutation Group
	Geodesic on permutation group

	Generalized Ising model for Rényi k-th Negativity
	Ising action of a homogeneous spin network


	Discussion

