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1 Introduction
Today’s world is becoming hungrier and hungrier for computational power. Quantum
computers are viewed as capable of propelling our computation capabilities to a new
level. For example, they have been proposed to solve analytically many-body problems,
like the study of large molecules [1], [2] and to provide noticeable speed-up in tasks
like numbers factorization, which would break modern Cryptography [3]. These devices
are based on Quantum Mechanics and are promoting an amazing progress on our under-
standing of quantum protocols, quantum algorithms and of the quantum hardware, which
makes possible the realization of a Quantum computer. There has been much progress in
this area and today Quantum computers are starting to become a reality.

One of the most advanced Quantum computers is based on solid state systems like su-
perconducting devices. The operation of a superconducting quantum computer is based
on very advanced knowledge on physics and technology. The amazing notion which is
behind the operation of a superconducting qubit is that they obey to the same rules of
Quantum mechanics. As a matter of fact, superconducting qubits allow to artificially
implement an atom-like system, i.e. quantized levels. The building blocks of supercon-
ducting quantum computers are the tunnel Josephson junctions, which behave as giant
atoms. By carefully engineering their circuital features, they provide practical ways to
access to macroscopic Quantum Mechanics.

Superconducting quantum circuits have unique technological advantages in terms of scal-
ability and integration. At the same time they are strongly affected by the interaction with
the environment, thus providing a unique possibility to study a variety of complex funda-
mental problems on noise, dephasing, relaxation, decoherence, being the qubit somehow
a very sophisticated sensor. The decoherence in superconducting quantum systems plays
a fundamental role also in the implementation of high-quality Quantum Gates, the basic
operations in Quantum algorithms.

In order to perform quantum computing tasks, qubits must be able to maintain quantum
coherence for the overall algorithm duration. Coherence times and the ability to perform
gates are tightly related to design characteristics of the device. Leading companies and re-
search groups have developed a large variety of geometries and architectures, which may
be protected by non-disclosure agreement, as for the system studied in this thesis. Specif-
ically speaking, this work comes within a collaboration between Seeqc, QuantWare and
UniNa, and hardware details on a deeper level cannot be disclosed. Nevertheless, the main
goal of this project is not meant to discuss the hardware chip design and specification, but
to provide a self-consistent and general protocol for single- and two-qubit systems char-
acterization suitable for any superconducting multi-qubit systems in the transmon regime.

We hereby discuss in detail the sequence of experimental techniques that must be used in
order to achieve high-performance superconducting transmon qubits. Such protocols are
also a powerful tool for the understanding of the dissipation and decoherence processes
due to the unavoidable interaction between the qubit, the user and the environment.

A special focus is given on the optimization of the control signals. This is a crucial step,
because the interaction with qubits highly impacts their performance, i.e. how many er-
rors occur when we perform tasks on them. Such optimization protocols are necessary in
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order to achieve high performing single- and multi-qubit operations, which are essential
for quantum computing.

In addition, we study the physics of two coupled superconducting transmon qubits, by
showing our first results on two-qubits iSWAP gate. This is not only a crucial step to-
wards the implementation of scalable superconducting Quantum computers, but it also
underlines the fundamental role played by control optimization techniques in order to
achieve state of-the-art multi-qubit gate fidelities.

In Chapter 2 we are going to set the theoretical principles of superconducting quantum
computation. There we discuss the importance of superconductivity (Section 2.2), quan-
tum circuit electrodynamics (Sections 2.3-2.5), operations and performance of the single
qubits (Section 2.8) and coupled qubits (Sections 2.9 and 2.10). In Chapter 3 we describe
the experimental set-up used in this work. We start with the chip design (Section 3.1),
then we proceed with the description of the cooling mechanism of the dilution refrigera-
tor (Section 3.2). Afterwards, we discuss the cryogenic and room-temperature electronics
employed in the experiments (Section 3.3) and finally we describe the instruments used
for the characterization of qubits (Sections 3.4 and 3.5). In Chapter 4 we are going to
explain all the protocols used for the characterization of the qubits and their performance
evaluation. In Sections 4.1-4.3 we explore all the characterization procedures necessary
to study the relevant features of the qubits. Then, in Sections 4.4 and 4.5 we discuss the
protocols for signal optimization and how to evaluate the qubit performance. We also
discuss a protocol that couples two qubits (Section 4.6). In Chapter 5 we show our ex-
perimental results and we are going to discuss their validity with respect to the theoretical
expectations and results in literature.
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2 Principles of superconducting qubits

2.1 Basic principle of quantum computing
In this Chapter, we will outline the basic concepts behind the implementation of a special
class of qubits, namely the superconducting qubits.

While classical computers are binary system in which the information is encoded in
just two possible bits (ones and zeros), quantum computers can encode the information
in qubits, which correspond to a quantum vector |ψy represented on the Bloch sphere.
In Figure 2.1 the Bloch sphere is reported, for which each point of the spherical sur-
face represents a possible quantum state. The orange arrow shows a generic vector
|ψy “ α |0y ` β |1y [4], with |α|2 ` |β|2 “ 1 since the Bloch sphere is unitary. The ground
and excited states are also called north pole (|0y) and south pole (|1y), respectively. The
generic operation consists of rotations of the vector |ψy, with corresponding variations of
the angles (θ, φ) [4].

Figure 2.1: Representation on the Bloch sphere of the generic qubit state |ψy “ α |0y ` β |1y.

One of the main challenges behind quantum computation is the physical realization of
quantum computers, which must fulfill precise requirements, known as Di Vincenzo cri-
teria [3]:

• Capability of building scalable system with many qubits (DV1).

• It must be possible to initialise the quantum system to a known state (DV2).

• High fidelity single and multi-qubit universal gate operations must be available
(DV3).

• It must be possible to read out the state of the quantum system, typically via readout
of individual qubits (DV4).
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• A large number of single and 2-qubit gate operations must be performed within the
coherence time of the qubit (DV5). During this mean time the qubit should not
randomly go into another state.

Superconducting qubits are very well suited for these five criteria, since they are built
on macroscopic circuits that can be realized and manipulated with large flexibility [4].
Superconducting qubit fabrication techniques are similar to those used in semiconduct-
ing technology for decades, thus they are promising for scalable systems. As it will be
shown in the following, superconducting qubits are macroscopic circuits working at the
microwave range, therefore it is possible to initialize the qubit in a known state [5] with
commercially available electronics. There have been countless demonstrations of high
fidelity single and 2-qubit gates [6], [7], [8]. Moreover, in specific circuital designs, the
readout of the single qubits is done via a coupled resonator [9]. The DV5 criterion is
more challenging for superconducting qubits, which are susceptible to the external envi-
ronment. The qubit coherence time is the key parameter that has been improved of orders
of magnitude in these last 20 years, and it has boosted the amazing progress in the field
[9], [10], [11].

In this Chapter we will present the underlying physics of superconducting qubits and the
techniques used to characterize isolated and coupled qubits. First of all, we will recall
the advantages of using superconducting technology for these types of devices (Section
2.2). After that we will show how and under which conditions it is possible to establish
a computational space by exploiting the peculiar non-linear behavior of the building ele-
ment of a superconducting qubit, i.e. the Josephson junction (JJ) (Sections 2.3 and 2.4).
The next logical step is to start describing how we can engineer superconducting quantum
circuits and how to implement a physical coupling between two or more qubits (Sections
2.5, 2.6, 2.7 and 2.9). This will naturally lead to discuss the recent advancements in su-
perconducting technologies. In particular, we will focus on a specific superconducting
qubit implementation, i.e. the transmon, which is so far one of the most performing cir-
cuits, and up to now the main circuital design exploited by leading industries in the field,
such as Google, IBM, etc. [12], [13]. The main goal of this work is indeed to provide
a self-consistent experimental protocol for the characterization of the performances of
single and multi-qubit transmon platforms for the implementation of high-fidelity single
qubit gates (Section 2.10), a fundamental step in order to deal with two- and multi-qubit
quantum gate operations.

2.2 Basic phenomenology of superconductors
Superconducting qubits are based on the superconductive state of matter, which is char-
acterized by:

• Perfect conductivity: no heat dissipation

• Meissner effect: expulsion of external fields up to a certain critical field.

The conventional superconductors are described by the Bardeen - Cooper - Schriffer
(BCS) theory [14]. According to this theory, the superconducting state occurs below a
critical temperature Tc, of the order of a few Kelvin, because of the formation of the so
called Cooper pairs. These are pairs of electrons with opposite spin, which form as a
result of a collective perturbation of the lattice. More specifically, one electron interacts



2.3 Circuit Quantum Electrodynamics with superconducting system 7

with the crystal lattice through the phonons of the material, it deforms the lattice and later
another electron interacts with the deformed lattice [14]. The result of this process is the
Cooper pair. It has a charge of 2e, with e the electrical charge of an electron.

Cooper pairs in the superconductor are described by a macroscopic wave function,

|ψy “ ψ0eiφ, (2.1)

where φ is the gauge-invariant phase. As in microscopic quantum objects like electrons,
atoms or molecules, superconductors are capable to maintain a high coherence in their
ground state, even if they are massive macroscopic systems. The energy dispersion re-
lation is reported in Figure 2.2. It shows that there is an energy gap in the excitation
spectrum. If the external sources of excitation provide an amount of energy E lower than
the superconducting gap 2∆, the Cooper pair remains in its fundamental state [15]. When
a current of Cooper pairs is induced in the superconductors, there is no voltage drop across
the system, i.e. the resistance of the superconductor becomes zero below Tc. Therefore,
the power dissipated by Cooper pair flow is zero, and superconductors are dissipationless.

Figure 2.2: Excitation spectrum of a BCS superconductor. When the energy of the Cooper pairs is below
2∆, the system is superconducting. Figure adapted from [15].

The Meissner effect is also called perfect diamagnetism, referring to the fact that, up to a
critical external magnetic field, the superconductor is capable of expelling all the external
magnetic fields, expect for a superficial region of thickness λ (London length) [16], as
shown in Figure 2.3. If this critical field is reached, the superconductivity is broken [16].
The superconducting material undergoes a transition to its normal state (metallic state) as
occurs when going above the critical temperature.

Superconductors are also characterized by an inductance given by:

Ls “ Lk ` Lg, (2.2)

where Ls is the total inductance of the superconductor, Lg is the typical geometric induc-
tance and Lk the kinetic inductance. The geometric inductance is related to the physical
dimension of the superconductor and the composition of the superconducting material,
and is the same as in the normal state. The kinetic inductance is related to superconduct-
ing parameters, like the London penetration depth λ [14], [17].

2.3 Circuit Quantum Electrodynamics with superconducting system
Circuit Quantum Electrodynamics studies the Hamiltonian of an electrical circuit [18].
In order to exploit the properties of superconductors for computational purposes, we can
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Figure 2.3: Meissner effect representation: in the superconducting state (T ă TC , with TC the critical
temperature) magnetic fields lines are expelled, whereas in the normal state (T ą TC) the magnetic lines

penetrate the superconductor.

first consider a superconducting Quantum Harmonic Oscillator (QHO). In Figure 2.4 we
show that a superconducting LC circuit behaves as a QHO with quantized levels [4]. This
is also the model we use to describe the readout resonators mentioned in Section 3.1.

Figure 2.4: Isolated ideal LC oscillator (on the left) and quantized energy levels of an LC circuit which
behaves as a quantum harmonic oscillator with frequency ωr (on the right) [4]. Lr is the inductance and Cr

is the capacity of the superconducting circuit, V is the voltage potential across Cr, i is the current flowing
through the loop and ϕ is the gauge-invariant phase. Figure adapted from [4].

The Hamiltonian of the harmonic oscillator is the following [4]:

HQHO “ 4ECn2
`

1
2

ELϕ
2, (2.3)

where n is the excess number of Cooper pairs on the capacitance Cr, ϕ is the gauge-
invariant phase, EC “ e2

2Cr
is the charging energy and EL “

`

Φ0
2π

˘2 1
Lr

is the potential
energy due to the inductance with Φ0 “ h

2e “ ℏπ
e the superconducting flux quantum. ϕ

and n are canonical conjugate observables, such that reiϕ, ns “ eiϕ [4]. By introducing the
creation and annihilation operators of single excitations of the harmonic oscillator as

n “ nzp f ˆ ipa ´ a:
q (2.4)

ϕ “ ϕzp f ˆ pa ` a:
q, (2.5)
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where nzp f “

´

EL
32EC

¯
1
4

and ϕzp f “

´

2EC
EL

¯
1
4
, the QHO Hamiltonian reads as:

HQHO “ ℏωr

ˆ

a:a `
1
2

˙

, (2.6)

where ωr “
?

8ELEC
ℏ

“ 1?
LrCr

is the resonator frequency, which gives the spacing between
the energy levels as shown in Figure 2.4. Despite having plenty of quantized levels, they
are all equally spaced. As a consequence, it is not possible to distinguish between which
levels a transition occurred [4]. The QHO is not suitable for building a proper compu-
tational space, since some degree of anharmonicity is necessary. This can be introduced
through a non-linear inductance. The device that is able to achieve this goal is the Joseph-
son Junction (JJ) [15].

2.4 Josephson Junctions in superconducting qubits

Figure 2.5: Schematic representation of a typical Josephson junction. The blue parts indicate the
superconductors and the white part represents the barrier between the superconducting layer. The graph
below shows the penetration of the macroscopic wave function |ψy into the opposite superconductor. ρ is

the Cooper pair density and φL,R are the wave function phases, in the left (L) and right (R) superconducting
electrodes.

A Josephson junction (JJ) is generally made of a non superconducting layer (barrier)
sandwiched between two superconductors. A schematic representation is given in Figure
2.5. The barrier needs to be thin enough (of a thickness around 1 nm in the case of the
most common barrier, which is an insulator) to enable the superconducting wave function
of either superconducting electrodes to penetrate into each other. This allows for the
tunneling of Cooper pairs, which gives rise to the Josephson effect. The Josephson effect
is described by the 1st and 2nd Josephson equations [15]:

#

Is “ IC sin ϕ
Bϕ

Bt “
2eVptq
ℏ

. (2.7)

IS is the superconducting current, V(t) is the voltage across the JJ and IC is the critical cur-
rent, i.e. the maximum supercurrent that the JJ can sustain. The JJ is important because
it is the only device that is at the same time superconducting (no dissipation), non-linear
(shown in the 1st Josephson equation in Eq.2.7) and it allows to study the phase of quan-
tum systems. The phase of a JJ is a macroscopic variable (ϕ “ φL ´ φR phase difference
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between the two superconductors) which can be measured through IS and Vptq, as shown
in Eq.2.7. One can notice that in absence of any time variation of ϕ, the voltage drop
across the junction is zero. Therefore, a JJ is a non-dissipative element.

Moreover, the JJ behaves as a non-linear inductance. This can be demonstrated by com-
bining the two Josephson equations as follows:

9IS “
BIS

Bϕ
9ϕ “

2e
ℏ

BIS

Bϕ
V ” L´1

J V. (2.8)

Therefore, the Josephson inductance can be defined as:

LJ “
ℏ

2eIC cos ϕ
. (2.9)

The non-linearity of LJ induces also a non-linearity in the potential energy of the JJ. By
using the 2nd Josephson equation in Eq. 2.7, we derive the phase dependence of the energy
stored in the JJ, shown in Figure 2.6, as:

Us “

ż t

0
IsptqVptqdt “

ℏ

2e
Ic

ż φ

0
sin ϕdϕ “

ℏIC

2e
p1 ´ cosφq, (2.10)

where EJ “
ℏIC
2e “

ICΦ0
2π is the Josephson energy.

Figure 2.6: a) Circuit schematics of a Josephson junction. b) Non-linear potential energy of a Josephson
junction (blue line), obtained from Eq. 2.11, compared to the potential energy of a harmonic oscillator

(dashed red line), obtained from Eq. 2.3. Figure adapted from [4].

The barrier in Figure 2.5 behaves as a capacitance CJ in the JJ. In this way we have an
object that has a non-linear inductance LJ and a capacitance CJ. The Hamiltonian of the
circuit in Figure 2.6a is [15]:

H “ 4ECn2
´ EJ cos ϕ, (2.11)

where EC is the charging energy of the Josephson junction. In Figure 2.6b we show a plot
of the energy levels of the JJ (solid blue line). The JJ provides not equally spaced energy
levels and we call this feature anharmonicity. This allows us to establish a computational
subspace by using the ground state (|0y) and the first excited state (|1y), respectively.
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Figure 2.7: Circuit diagram of a Cooper Pair Box, with EJ the Josephson energy, CJ the capacitance of the
Josephson junction, Cg the coupling capacitance and Vg the signal generated by the external electronics.

2.5 The Transmon Qubit
In order to define the functioning principle of a specific superconducting quantum cir-
cuit and the corresponding quantum observable, we introduce the ratio EJ

EC
. It defines the

interplay between the two fundamental circuit energy scales, the Josephson energy EJ,
related to the non linear inductance of the circuit, and the charging energy EC, related to
the capacitive elements. The first successful superconducting qubit was the Cooper Pair
Box (CPB), which is shown in Figure 2.7. The CPB is characterized by a small super-
conducting island coupled to the JJ: the capacitance Cg couples the CPB to the external
electronics in order to measure the charge, which is the quantum observable. Indeed, for
the CPB the charge is a well defined quantum variable since the circuit satisfies the con-
dition EJ ă EC.

The ratio EJ
EC

is fundamental also in evaluating the impact of different noise sources on the
behavior of the superconducting qubit [9]. The importance of this ratio is shown in Figure
2.8, which describes the dependence of the energy levels on the effective offset charge ng
[9]. The energy dispersion of the CPB is defined as [9]:

ϵ ” Em

ˆ

ng “
1
2

˙

´ Empng “ 0q » p´1q
mEC

24m`5

m!

c

2
π

ˆ

EJ

2EC

˙
m
2 ` 3

4

e´

b

8 EJ
EC . (2.12)

An increase in EJ
EC

results in an exponential decrease of energy dispersion with respect to
the charge. Indeed, when the charging energy is larger or comparable to the Josephson
energy, the circuit energy strongly depends on the charge fluctuations and noise. However,
when the EJ

EC
becomes sufficiently large

´

EJ
EC

Á 50
¯

, such fluctuations can be suppressed,
i.e. the qubit is well protected by charge noise.

A CPB shunted by a large capacitance allows to increase EJ
EC

enough to suppress the charge
fluctuations, but we need a different approach in order to read the qubit state without
causing excitations to the qubit. The solution comes in a new circuit called transmon,
which stands for transmission line shunted plasma oscillation qubit (Figure 2.9) [9]. For
readout the transmon uses a resonator, which is represented in the microwave regime by
a harmonic LC oscillator [9]. By shunting the qubit with the large capacitance CB and the
coupling capacitance Cg, it has been found that the transmon increases EJ

EC
up to 50-100.

The resulting capacitance CΣ is larger than the CPB and provides a noticeable decrease in
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Figure 2.8: Charge dispersion of the qubit energy levels as a function of the number of Cooper pairs ng for
different EJ

EC
ratios. Figure adapted from [9].

Figure 2.9: Circuit diagram of a transmon qubit: the Josephson junction is identified by CJ and EJ , CB is
the shunt capacitance, the resonator is identified as an LC circuit (Lr and Cr), Cg is the coupling

capacitance and Cin is the coupling capacitance to the external electronics. Figure adapted from [9].

the charging energy EC, which in turn increases EJ
EC

[9].

A drawback related to the increase of the ratio EJ
EC

is the reduction of the relative and
absolute anharmonicity, defined as [9]:

α ” E12 ´ E01 αr ”
α

E01
, (2.13)

which sets the separation between the energy levels of the transmon. It is indeed possible
to find approximate forms of these anharmonicities in the EJ

EC
Ñ 8 limit, which are:

α » ´EC αr » ´

ˆ

8EJ

EC

˙´ 1
2

. (2.14)

The dependence of the anharmonicities as a function of EJ{EC is shown in Figure 2.10.
Nevertheless, the anharmonicity only decreases as a power law, compared to the charge
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Figure 2.10: Relative a) and absolute b) anharmonicity at the charge degeneracy point (ng “ 1
2 ) as a

function of the ratio EJ
EC

[9]. The solid curves correspond to the exact expressions [9], while the dotted red
curves correspond to the approximated result in Eq. 2.14. Figure adapted from [9].

dispersion, which decreases exponentially [9]. For these reasons the transmon qubit is
widely used as the fundamental qubit of small quantum processors, since the charge noise
is strongly reduced without affecting too much the anharmonicity of the system.

2.5.1 Readout of qubits

The transmon qubit also drastically improves the readout of the qubit state, since the res-
onator provides an appropriate tool to read the qubit state without destroying it. This type
of measurement is called Quantum Non Demolitive (QND), because the qubit does not
collapse in a particular state when readout is attempted [4].

The Hamiltonian of the transmon, including the coupling with the superconducting res-
onator, is given by [4]:

HJC “ ωr

ˆ

a:a `
1
2

˙

`
ωq

2
σz ` gpσ`a ` σ´a:

q. (2.15)

This is called Janynes-Cummings Hamiltonian [4] and is the sum of three terms: the res-
onator Hamiltonian, the qubit (two-level system) Hamiltonian and the interaction between
the qubit and the resonator, respectively. ωr is the resonance frequency of the resonator,

ωq is the frequency of the qubit, g « e
b

ωr
Cr

Cg

CB`Cg`CJ

´

EJ
EC

¯
1
4

is the coupling between the
qubit and the resonator with e the electron charge [9], σ`,´ are the operators that repre-
sent excitation and de-excitation of the qubit and a:, a are the creation and annihilation
operators of the resonator, respectively. When we couple the qubit to the resonator, we
are creating a quantum system in which the observables of the qubit are entangled with
those of the resonator.

Specifically speaking, transmon qubits generally work in the so-called dispersive regime
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[4]. We define the detuning as ∆ “
∣∣∣ωq ´ ωr

∣∣∣ and we reach the dispersive regime for
g ! ∆. In the dispersive regime, it is possible to develop a second-order perturbation
theory with respect to g

∆
and obtain the corresponding Hamiltonian [4]:

Hdisp “ pωr ` χσzq

ˆ

a:a `
1
2

˙

`
ω̃q

2
σz, (2.16)

where χ “
g2

∆
is known as dispersive shift. In this expression both qubit and resonator

frequencies are renormalized: ω̃q “ ωq `
g2

∆
and ω̃r “ ωr ` χσz. In the dispersive state,

the resonance frequency of the resonator will shift positively or negatively accordingly to
the detuning sign, as shown in Figure 2.11. In the dispersive regime, the qubit and the
resonator are not directly exchanging energy, since they are far detuned from each other.
For this reason we can probe the resonator with an appropriate RF signal and obtain
information about the qubit state without destroying it, hence Quantum Non Demolitive
measurement.

Figure 2.11: Effect of the dispersive shift on: a) the magnitude of the readout resonance, and b) the phase,
depending on the qubit state |0y and |1y. Figure adapted from [19].

2.5.2 Qubit Drive

Figure 2.12: Circuit diagram of microwave drive line capacitively coupled to a transmon qubit. Figure
adapted from [4].

As requested by the Di Vincenzo criteria, the qubit state has to be initialized in a par-
ticular quantum state. Moreover, to perform gate operations it is necessary to drive the
qubit along the Bloch Sphere. As it will be shown in the next Sections, qubit frequen-
cies of superconducting circuits are in the microwave range, therefore the qubit drive is
done through an RF signal which resonates with the qubit, and the particular shape of the
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signal allows for different operations. In Figure 2.12 we show the circuit diagram of the
transmon coupled to a microwave drive line.

In case of a capacitive coupling between the drive signal and the transmon, the Hamilto-
nian reads as:

H “ HJC `
Cd

Cρ

VdptqQ̂, (2.17)

where HJC is the Hamiltonian of the transmon in Eq. 2.15, Q̂ is the charge operator, Cd is
the coupling capacitance, Cρ “ Cd ` C and Vdptq is the drive signal. Since the charge in
Eq. 2.17 can be written as [4]:

Q̂ “ ´iQzp f pa ´ a:
q, (2.18)

with Qzp f “

b

ℏ
2Z and Z “

b

L
C , the Hamiltonian reads as:

H “ ´
ωq

2
σz

loomoon

H0

`ΩVdptqσy
looomooon

Hd

, (2.19)

whereΩ “
Cd
Cρ

Qzp f andωq “
E1´E0
ℏ

´EC. Here we have omitted the resonator Hamiltonian
term for the sake of simplicity. H0 represents the Hamiltonian of the two-level system
and Hd is the Hamiltonian of the drive signal. We now move into the rotating frame and
rewrite Hd as [4]:

H̃d “ ΩVdptqpcos pωqtqσy ´ sin pωqtqσxq; (2.20)

where Vdptq can be expressed as Vdptq “ V0vptq and vptq is:

vptq “ sptq sin pωdt ` ϕq “ sptqpcos pϕq sin pωdtq ` sin pϕq cos pωdtqq. (2.21)

s(t) is a dimensionless envelope function, so that the amplitude of the drive is set by V0sptq.
We define the in-phase component as:

I “ cos pϕq (2.22)

and the out-of-phase component as:

Q “ sin pϕq. (2.23)

The drive Hamiltonian in the rotating frame then becomes:

H̃d “ ΩV0sptqpI sin pωdtq ´ Q cos pωdtqq ¨ pcos pωqtqσy ´ sin pωqtqσxq. (2.24)

By expressing the drive pulse in the dipole approximation, valid for δω “ ωq ´ ωd !

ωq ` ωd, we can drop fast rotating terms in Eq. 2.24. On the typical time scales of
the phenomena into play, terms oscillating with frequency ωq ` ωd average out to zero
(rotating wave approximation, or RWA). In the RWA we obtain:

H̃d “
1
2
ΩV0sptq rp´I cos pδωtq ` Q sin pδωtqqσx ` pI sin pδωtq ´ Q cos pδωtqqσys ,

(2.25)
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or by using the definition in Eqs. 2.22 and 2.23:

H̃d “ ´
Ω

2
V0sptq

ˆ

0 eipδωt`ϕq

e´ipδωt`ϕq 0

˙

. (2.26)

When δω “ 0, i.e. when the drive signals resonate with the qubit frequency, Eq. 2.26
becomes:

H̃d “ ´
Ω

2
V0sptqpIσx ` Qσyq. (2.27)

This shows that for an in-phase pulse (ϕ “ 0) the drive applies a rotation around the x-axis
of the Bloch sphere, whereas for an out-of-phase pulse (ϕ “ π

2 ) it applies a rotation around
the y-axis. Therefore, qubit drive can be performed by combining in-phase and out-of-
phase pulses. In Section 3.4 we define how I and Q signals are generated by standard
microwave electronics.

2.5.3 Rabi Oscillations of a two-level system

The dynamics of a two-level system exposed to a time-dependent drive field Ĥ:

Ĥptq “
ℏ

2

ˆ

ωq ωde´iωt

ωdeiωt ´ωq

˙

, (2.28)

where ω is the frequency of the rotating frame, ωq is the qubit transition frequency and
ωd is the frequency of the drive field, satisfies the Schrödinger equation:

iℏ
d
∣∣∣ψptqy

dt
“ Ĥ
∣∣∣ψptqy , (2.29)

where
∣∣∣ψptqy “ a1ptq |1y ` a0ptq |0y, where |0y stands for the ground state and |1y for the

excited state [20]. By moving into the rotating frame, the coefficients, the state and the
Hamiltonian become:

b1ptq “ e
iωt
2 a1ptq (2.30)

b0ptq “ e´ iωt
2 a0ptq (2.31)∣∣∣ψ̃ptqy ” b1ptq |1y ` b0ptq |0y (2.32)

H̃ “
ℏ

2

ˆ

´δω ωd

ωd δω

˙

. (2.33)

The dynamics of H̃ is still the same as that of Ĥ according to:

iℏ
d
∣∣∣ψ̃ptqy

dt
“ H̃
∣∣∣ψ̃ptqy (2.34)

and through its diagonalization the time-dependent eigenstate is:

∣∣∣ψ̃ptqy “ cos
ˆ

θ

2

˙

e
it
2

?
δω2`ω2

d
∣∣∣ψ̃´y ` sin

ˆ

θ

2

˙

e´ it
2

?
δω2`ω2

d
∣∣∣ψ̃`y , (2.35)

where ∣∣∣ψ̃`y “ cos
θ

2
|1y ` sin

θ

2
|0y (2.36)
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Figure 2.13: Bloch sphere representation of
∣∣∣ψ̃ptqy in presence of a perturbative field. The system is

on-resonance with δω “ 0, hence θ “ π
2 and at t=0 we find it in the |0y state, while at t we find it at

∣∣∣ψ̃ptqy.

∣∣∣ψ̃´y “ ´ sin
θ

2
|1y ` cos

θ

2
|0y (2.37)

and θ is the angle of
∣∣∣ψ̃`,´y in the laboratory frame from the z-axis (Figure 2.13), such

that tan θ “ ´
ωd
δω

.

The probability that the two-level system is excited in |1y through the application of a
drive field is:

P1 ”
∣∣∣x1|ψptqy

∣∣∣2 ”
∣∣∣x1|ψ̃ptqy

∣∣∣2 “
ω2

d

ω2
d ` δω2

sin2

¨

˚

˝

t
b

δω2 ` ω2
d

2

˛

‹

‚
, (2.38)

which means that the population of the two-level system oscillates with frequency Ωr “?
δω2`ω2

d
2 , called Rabi frequency (Figure 2.14) [20].

Figure 2.14: Simulation of Rabi oscillation of a two-level system for two different detunings δωd “ 0 (red
curve) and |δωd | “

?
3ωd (blue curve). From the expression of P1 in Eq. 2.38 we expect oscillations with

decreased amplitude when the detuning increases. Moreover, the Rabi oscillation frequency increases
when the detuning becomes larger.

From Eq. 2.38, it is possible to notice that when the detuning between the drive field
and the qubit frequency is large, the amplitude of the oscillations reduces. On the con-
trary, when the detuning is small, the Rabi oscillation frequency increases (Figure 2.14).
Therefore, driving the qubit with an oscillating field allows to identify when the drive
frequency resonates with the qubit, i.e. when Rabi oscillations show maximum amplitude
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and minimum Rabi frequency. In this case, the half period of these oscillations represents
the π-pulse, i.e. the pulse that sends the qubit from |0y to |1y.

2.6 Relaxation and dephasing of qubits
As discussed in Section 2.1, qubits are sensitive to decoherence phenomena due to re-
laxation and dephasing when they are coupled to the environment. We can distinguish
decoherence phenomena in: longitudinal relaxation, pure dephasing and transverse relax-
ation [4].

2.6.1 Longitudinal relaxation

Figure 2.15: Graphical representation of longitudinal relaxation: the blue line represents the decay from
|1y to |0y (Γ1Ó) and the orange line represents the excitation from |0y to |1y (Γ1Ò) due to the interaction with

the environment. Figure adapted from [4].

When a qubit interacts with its environment, due to the transverse noise on the x-y
plane, it is possible to observe transitions |0y Ø |1y. The effects of such interactions are
shown in Figure 2.15.

While in principle both relaxation and excitation are possible, superconducting qubits
work at ultra-low temperatures, of the order of 10 mK, thus preventing excitations from
the ground state to the first excited state. This will be discussed in more detail in Section
3.2. Therefore, the excitation rate Γ1Ò in Figure 2.15 can be neglected [4], i.e. the total
relaxation rate corresponds to Γ1 « Γ1Ó.

This decay rate gives rise to the characteristic time T1 ” 1
Γ1

, which describes the time for
which the qubit remains in |1y after being excited in that state. State-of-the-art transmon
qubits are able to reach T1 times in the range of tens of µs and even values of low hundreds
of µs have been reported [4].

2.6.2 Pure dephasing

The pure dephasing rate Γφ, shown in Figure 2.16, describes depolarization in the x–y
plane of the Bloch sphere. In the rotating frame, the Bloch vector appears stationary.
Pure dephasing in the transverse plane arises from the longitudinal noise. Such longitudi-
nal noise causes the qubit frequency ωq to fluctuate, such that it is no longer equal to the
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Figure 2.16: Graphical representation of pure dephasing on the equator of the Bloch sphere due to
longitudinal noise. Figure adapted from [4].

rotating frame frequency ωd, and causes the Bloch vector to precess forward or backward
in the rotating frame. A Bloch vector along the x-axis will diffuse clockwise or counter-
clockwise around the equator due to the stochastic frequency fluctuations, depolarizing
the azimuthal phase with a rate Γφ. This eventually leads to a complete depolarization [4].

Comparing energy relaxation and pure dephasing, there are two main distinctions. Pure
dephasing is not a resonant phenomenon. It is affected by a broad range of frequencies
that change the frequency of the qubit [4]. Moreover, pure dephasing is elastic, which
means that there is no energy exchange with the environment [4]. As a consequence, it
can be inverted through a unitary operation [4].

2.6.3 Transverse relaxation

Figure 2.17: Graphical representation of transverse relaxation: in red, the dephasing and in blue the
energy relaxation processes due to longitudinal and transverse noise sources, respectively. Figure adapted

from [4].

The transverse relaxation rate describes the loss of coherence of a superposition state
(Figure 2.17), and reads as [4]:

Γ2 “
Γ1

2
` Γφ (2.39)
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In this case there are both pure dephasing processes due to longitudinal noise and en-
ergy relaxation processes due to transverse noise. Such relaxation processes can break
the phase, because it makes the Bloch vector point to the north pole |0y, thus losing all
information about the direction in which the vector had been pointing along the equator.
The relative phase of the superposition state is lost.

From Γ2 one derives T2 ” 1
Γ2

. The typical T2 times for superconducting qubits are in the
range of the tens or low hundreds of µs and are limited by the relaxation time T1 [9]. The
best that one can get, for ideal Γφ “ 0, is T2 “ 2T1.

2.7 Flux tunability of superconducting qubits
In this thesis, a special focus will be given to split transmons, which is a particular type
of transmon with a DC-SQUID instead of a single JJ, as reported in Figure 2.18. SQUID
stands for Superconducting Quantum Interference Device and it introduces a further de-
gree of freedom (external flux) into the transmon. The DC SQUID is made of a super-
conducting ring with two JJs and it allows to tune the frequency of the qubit, like in the
insets of Figure 2.18. The qubit frequency depends on the Josephson energy EJ as [9]:

ωq “

d

8ECEJ

∣∣∣∣∣∣cos
ˆ

πΦ

Φ0

˙

∣∣∣∣∣∣. (2.40)

The external flux allows to tune the Josephson energy, hence the frequency of the qubit,
as shown in Figure 2.18. The current flowing in a symmetric DC SQUID (the two JJs
have equal critical currents) is [21]:

Is “ Is1 ` Is2 “ IC sinφ1 ` IC sinφ2 “ 2IC cos
´φ1 ´ φ2

2

¯

sin
´φ1 ` φ2

2

¯

, (2.41)

with Is1,2 the superconducting currents across the two JJs, IC the critical current of both
JJs and φ1,2 the phase across the two JJs. The phase difference φ2 ´ φ1 is not independent
and it is bound to the flux quantization:

¿

Γ

∇⃗φ ¨ dl⃗ “ 2πn, (2.42)

with φ the phase variable and Γ the closed circuit of the DC SQUID over which the linear
integral is done. This provides the expression for the phase difference:

φ2 ´ φ1 “
2πΦext

Φ0
, (2.43)

with Φext the external flux.

The possibility to tune the qubit frequency by means of an external knob, such as the flux,
opens up the possibility to provide a useful and practical way to control and manipulate
the qubit. However, it also introduces novel noise sources that may affect its perfor-
mance. In order to tackle this problem, the research community has focused its interest
in the implementation of asymmetric DC-SQUID, i.e. when the two JJs in the loop are
fabricated with different critical currents compared to symmetric DC-SQUID. The impact
of symmetric and asymmetric SQUIDs, where the asymmetry parameter is d “

γ´1
γ`1 with
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Figure 2.18: Flux dependence of the qubit frequency transitions ω01 and ω12 in the case of symmetric and
asymmetric transmons [4]. In a) Schematics of a symmetric split-transmon with Ic critical current of the
Josephson junctions in the SQUID; in b) schematics of an asymmetric split-transmon, with γ the scaling
factor for the critical current of one of the two Josephson junctions; in c) and d) ω01 (blue curve) and ω12

(red dashed curve) as a function of the external magnetic flux field Φext for a symmetric and an asymmetric
split-transmon, respectively, with EJ , EC and γ defined in the legends. Red dots identify the transmon

sweet-spots. Figure adapted from [4].

γ “
EJ2
EJ1

, is shown in Figures 2.18c. The variation of EJ in the asymmetric case is much
lower when compared to the symmetric case. The derivation for the Hamiltonian of the
asymmetric transmon gives the following expression [4]:

H “ 4ECn2
´ EJΣ

b

cos2pφeq ` d2sin2pφeq
loooooooooooooooomoooooooooooooooon

E1
Jpφeq

cospϕq, (2.44)

where φe “
πΦext
Φ0

and EJΣ “ EJ1 ` EJ2. The interaction Hamiltonian with the environment
provides the way to quantify the noise affecting the system:

Ĥint “ νÔqλ̂, (2.45)

where Ôq represents the qubit degrees of freedom and λ̂ the noise source.

It is possible to show that the transitions between qubit eigenstates due to the external
noise follow an exponential decay law [4]. Therefore, it is possible to find Γ1:

Γ1 “
1
ℏ2

∣∣∣∣∣∣ x0|
BĤq

Bλ
|1y

∣∣∣∣∣∣
2

S λpωqq. (2.46)

S λpωqq is the corresponding noise spectral density [4]. It is possible to reduce Γ1 to zero
when BĤq

Bλ
“ 0. When this occurs, the system is in the sweet spot with respect to λ.
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In case of flux-tunable transmon, there are flux sweet spots in both the symmetric and
asymmetric cases, which correspond to the maxima or minima of the Josephson potential
in Eq. 2.44. While in both cases it is possible to sit on a sweet spot, fluctuations may move
the qubits away from the sweet spots and may cause flux noise [4]. In the asymmetric case,
the behavior of the qubit frequency as a function of magnetic flux is smoother than the
symmetric one, therefore fluctuations from sweet spots induce lower noise levels when
compared to the symmetric case [22].

2.8 Single qubit gates, fidelity and Randomized Benchmarking

Superconducting transmon qubits have been proposed as the building block of gate-based
quantum processors [13], [23], [24]. A gate-based quantum computer is a device able to
perform quantum algorithms, which are typically schematized as a set of unitary oper-
ations, namely quantum gates, applied on an initial input quantum state, followed by a
measurement of the output quantum state [25]. As stated in Section 2.1, in order to build
a quantum computer, it is fundamental to search for a device able to implement universal
gate sets, i.e. a sequence of gates and measurements able to perform generic operation.
An example of possible quantum algorithms are reported in [26], [27], [28]. A universal
gate set can be made with just single- and two-qubits gates.

Single-qubit gates move an arbitrary quantum state from one point on the Bloch sphere to
another point by rotating the qubit state vector by a certain angle and around a particular
axis. Conventionally, the computational basis is the eigenbasis of the σz operator.

Figure 2.19: Single-qubit gates: in the first row quantum circuit representation of single-qubit gates; in the
second and third row action of gates on the ground state |0y and the excited state |1y and representation on

the Bloch sphere, respectively. Figure adapted from [4].

A convenient way to visualize single qubit gates is the quantum circuit representation in
Figure 2.19. We define the most basic qubit gates involving single qubits in terms of their
quantum circuit representation: the identity gate I, which gives in return the initial state,
and the X, Y and Z gates. The last correspond to rotation of the quantum state around the
x-, y- and z-axes of the Bloch sphere, respectively. As a matter of fact, the I, X, Y and Z
gates correspond to the Pauli matrices σ0, σx, σy and σz, respectively:

I “

ˆ

1 0
0 1

˙

X “

ˆ

0 1
1 0

˙

Y “

ˆ

0 ´i
i 0

˙

Z “

ˆ

1 0
0 ´1

˙

. (2.47)
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Since Pauli matrices are unitary, they are also reversible, i.e. applying a gate and its op-
posite should result in the state vector returning to its original form [4].

The evaluation of the performance of the single-qubit gates is a key study in the im-
plementation of superconducting quantum processor. Even though single qubit gates in
Figure 2.19 fulfill mathematically the request of unitarity, quantumness and universality
of the gate set, the physical realization on a realistic quantum hardware is one of the most
challenging goals. This is particularly relevant for superconducting quantum processors,
in which the strong sensitivity to the environmental condition and the unavoidable inter-
action between the user and the system may cause strong deviation on the outcomes of
a single-qubit gate from theoretical expectations. Moreover, related to the problem of
measurement in Quantum Mechanics, the state of a quantum system is represented by a
state vector |ψy on the Bloch sphere only in the scenario of pure states. Quantum states in
physical applications are more likely to be a statistical ensemble of different state vectors,
also known as mixed states. While pure states are represented as vectors pointing on the
surface of the Bloch Sphere, mixed states fall inside the sphere. The scientific community
introduced a mathematical and physical way to quantify the quality of the qubit perfor-
mances by means of the state and the gate fidelity [29].

The state fidelity measures the distinguishability of two quantum states, ρ and σ, where ρ
is the experimental quantum state density matrix and σ is its theoretical expectation. This
is defined as:

Fpρ, σq “ Tr
”
b

?
ρσ

?
ρ
ı2
, (2.48)

i.e. it measures the deviation of an experimental quantum state from the theoretical ex-
pectation. If ρ “ |ψy xψ| and σ “ |ϕy xϕ| are both pure states, then Fp|ψy xψ| , |ϕy xϕ|q “∣∣∣xψ|ϕy

∣∣∣2 becomes the standard definition of quantum probability. More importantly, if the
state |ϕy exactly corresponds to |ψy, the fidelity approaches the limit value of 1, i.e. if the
quantum system is prepared exactly in the state |ϕy we measure the state |ϕy with 100 %
probability.

The definition of state fidelity can be extended to a definition of gate fidelity:

F pÛ, Λ̂Uq “

ż

dρFpUρU:, Λ̂Upρqq. (2.49)

Here U represents an ideal unitary gate, with U: its adjoint, whereas Λ̂U is the imperfect
realization of such gate. Eq. 2.49 describes the fidelity between the result of the ideal op-
eration and the result of the actual operation averaged over all pure-state density matrices
[29]. For a pure state ρ “ |ψy xψ|, the integrand in the gate fidelity can be simplified to:

FpUρU:, Λ̂Upρqq “ xψ|U:Λ̂Up|ψy xψ|qU|ψy . (2.50)

Finally, if the gate Λ̂Upρq is also unitary and exactly implements U, Λ̂Upρq “ UρU:, Eq.
2.50 reduces to 1. This means that we obtain the maximum probability to have the same
outcomes of the application of a unitary gate on the quantum state.

As one can notice in Eq. 2.50, the gate fidelity is given by a projection and averaging
over all pure states |ψy. Since averaging over all pure states is not experimentally possible
[29], a possible solution is given by Randomized Benchmarking (RB).
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The RB procedure produces an average gate fidelity over a set of randomly chosen gates.
A benefit of this approach is that, similarly to Monte Carlo algorithms, the randomized
approach allows to get a fast convergence rate of the fidelity integral. RB does not focus
on a particular gate, hence it provides an aggregate fidelity. The disadvantages are directly
related to the random procedures used in the measurement [29]. Since RB does not focus
on any particular gate, it only quantifies how well we are able to control the qubits. As
a consequence, these results cannot be directly applied to improve the single operations
in the RB protocol. For example, the single-qubit RB protocol uses gates that include
the Z-gate, which corresponds to a π-shift on the Bloch sphere around the z-axis, but we
cannot use the RB result directly to improve the parameters of the Z-gate.

The randomly chosen gates applied in the RB fidelity test fall in the category of the so
called Clifford gates [30]. It tests the concatenation of many operations (hundreds of
operations) applied on a qubit system and is more representative of real life algorithms.
Clifford gates are generated by Ci “ e˘iσu

π
4 with u “ x, y, where σx and σy correspond to

single-qubit gates reported in Eq. 3.1. The complete set of single-qubit Clifford gates is
␣

I,˘Xπ,˘Yπ,˘Zπ,˘X π
2
,˘Y π

2
,˘Z π

2

(

[31].

The general protocol for RB is:

1. Initialize the system in the ground state;

2. Apply a series of random Clifford gates, in the pattern
ś

i CiPi with Ci the Clifford
gate generator and Pi the Pauli rotations, i.e. I, X, Y and Z;

3. Apply the inverse Clifford or Pauli pulse to return to an eigenstate of Z, which
should in theory be the initial state, i.e. the ground state;

4. Perform repeated measurements of Z and compare with theory to obtain the fidelity;

We expect that after the RB test, if there has not been any error, the system will return to
its initial state. The gathered data is called the survival probability, measured by varying
the number of applied Clifford gates. Experimentally, one can notice that the fidelity
instead recovers an exponential decay of the type:

FN “ p1 ´ αnq ` αn

ˆ

1 ´
ϵm

αn

˙ˆ

1 ´
ϵs

αn

˙N

, (2.51)

where αn “ 2n´1
2n gives the dimensionality of the n-qubit system and N is the length of

the Clifford sequence used. The term
´

1 ´
ϵs
αn

¯

is related to what are known as polarizing
errors ϵs and they appear when the Clifford gate and its inverse do not return the qubit to its
initial state.

´

1 ´
ϵm
αn

¯

represents state preparation and measurement (SPAM) errors [29].
SPAM errors with ϵm are related to errors in the preparation of the initial state and to errors
in the measurement of the final state. Therefore, the measurement of the gate fidelity
allows to get information on the quality of the gate implemented on the actual hardware.
In other words, fidelity test provides a measure of how often the system actually returns
in the initial state after the sequence (survival probability), as a function of the number of
Clifford gates applied related to the quality of the gates themselves.

The fidelity is not only related to the electronics and the sequence applied, but it is also



2.9 Coupling of two superconducting transmons 25

intrinsically related to the quality of the qubit itself. In particular, an estimate of the
maximum fidelity achievable in a qubit is strongly dependent on the coherence of the
qubit and the dephasing due to the phenomena explained in Section 2.6. The fidelity for
a system of N coupled qubits is [32]:

F̄N “ 1 ´
d

2pd ` 1q
τ

N
ÿ

k“1

pΓk
1 ` Γk

φq, (2.52)

where d “ 2N and Γ1 and Γφ are the characteristic rates of the qubit, described in Section
2.6. τ is the mean duration of the gate. In the case of the single-qubit Clifford sequence,
we expect a τ in the hundreds of nanoseconds [32].

Even though the performance of a single qubit is of immeasurable importance towards
the implementation of quantum algorithms, it is not possible to build a universal gate set
with just single-qubit gates. Quantum algorithms require at least the possibility to achieve
high-fidelity (F>99 %) two-qubit gates [10]. In order to build such operations, it is funda-
mental to understand how we can couple two or more qubits in superconducting quantum
processors. In the following, we will report the most common circuital approaches to
build coupled quantum systems, as those discussed in this thesis.

2.9 Coupling of two superconducting transmons
In literature, coupling between superconducting qubits can be achieved by means of sev-
eral coupling schemes: via direct capacitive coupling, via direct inductive coupling, via a
capacitively coupled resonator or via another qubit [4], which are all shown in Figure 2.20.
We will focus on two transmon qubits capacitively coupled through a high-frequency res-
onator coupler. The Hamiltonian of two coupled systems takes the generic form:

H “ H1 ` H2 ` Hint, (2.53)

with H1 and H2 the Hamiltonians of the two qubits and Hint is the interaction Hamiltonian
between the two qubits.

Figure 2.20: Circuital schematics of two-qubit coupling: a) direct capacitive coupling; b) capacitive
coupling mediated by a linear resonator coupler; c) direct inductive coupling; d) two-qubit coupling
mediated by a frequency-tunable coupler. a), b), c) are adapted from [4] and d) is adapted from [33].

In this thesis we will operate the system in the dispersive regime and the qubits are far
detuned from the coupling resonators

`

∣∣∣∆1,2

∣∣∣ “ ∣∣∣ωq1,q2 ´ ωr

∣∣∣ " g1,2
˘

. In this limit it is
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possible to apply the second-order perturbation theory and the system is described by the
following effective Hamiltonian [34]:

He f f “
ωq1

2
σz

1 `
ωq2

2
σz

2 ` pωr ` χ1σ
z
1 ` χ2σ

z
2qa:a ` Jpσ´

1 σ
`

2 ` σ`

1 σ
´

2 q, (2.54)

where ωq1,q2 are the frequencies of the two coupled qubits, ωr is the resonance frequency
of the coupling resonator and χ1,2 are the dispersive shifts of the resonator due to the

coupling with the qubits, where χ1,2 “
g2

1,2

∆1,2
with g1,2 « e

b

ωr
Cr

Cg1,g2

CB`CJ1,J2`Cg1,g2

´

EJ1,J2

EC1,C2

¯
1
4

[9]. The J in Eq. 2.54 is the coupling between the two qubits mediated by the coupling
resonator. This is a transverse interaction and has the form [34]:

J “ g1g2
∆1 ` ∆2

2∆1∆2
, (2.55)

where ∆1,2 “ ωq1,q2 ´ ωr. The qubit-qubit interaction is due to the virtual exchange of
photons with the coupling resonator. Eq. 2.54 describes the interaction between two two-
level systems. When ∆12 “ ωq1 ´ ωq2 is comparable to J, this causes an avoided level
crossing [34]. In order to experimentally achieve the avoided level crossing, we tune one
of the qubits into resonance with the other through an external flux.

Figure 2.21: Theoretical simulation of the avoided level crossing for two two-level systems, qubit 1 and
qubit 2, as a function of the external flux Φ applied on qubit 2, according to Eq. 2.56, for J=10 MHz (black
curve) and 30 MHz (orange curve). The blue dashed line represents the eigenvalue of the |11y state, which

is the reference level.

The Hamiltonian in Eq. 2.54 can be represented in matrix form and it is a 4 ˆ 4 matrix.
As reported in Appendix B, its diagonalization leads to [35]:

f pωq2q “
ωq1 ` ωq2

2
˘

b

pωq2 ´ ωq1q
2

` 4J2

2
, (2.56)

where ωq1 is the frequency of the fixed low-frequency qubit and ωq2 “ ω
p0q

q2

c∣∣∣∣cos
´

πΦ
Φ0

¯∣∣∣∣
is the frequency of the tunable high-frequency qubit. The two coupled qubits have the
new eigenbasis:

"

|00y , |ψsy “
1

?
2

p|01y ` |10yq, |11y , |ψay “
1

?
2

p|01y ´ |10yq

*

. (2.57)
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For large qubit-qubit detuning, the two two-level systems realize asymptotically |01y and
|10y as: |ψay Ñ |10y and |ψsy Ñ |01y. When the qubit-qubit detuning decreases, the
entangled states |ψsy “ 1?

2
p|01y` |10yq and |ψay “ 1?

2
p|01y´ |10yq are realized. By using

Eq. 2.56 and the flux dependence of qubit 2, we can predict the avoided level crossing, as
shown in Figure 2.21.

Figure 2.22: Spectroscopic measurement of the avoided level crossing as function of normalized flux Φ
Φ0

threading the first qubit loop with the second qubit at a fixed frequency. The solid lines indicate energy
levels calculated from a diagonalization of the two-qubit Jaynes-Cummings Hamiltonian. Figure adapted

from [35].

An experimental example of this behaviour with transmons is shown in Figure 2.22, where
there is a straight line in the middle of the avoided level crossing. This does not always
occur and it is only expected when the drive power is high enough to induce two-photon
transitions from |00y to |11y and it is only allowed directly at the avoided level crossing.
The possibility to establish an avoided level crossing between two qubits is fundamental
for the implementation of multi-qubit gates. As a matter of fact, it establishes a finite
exchange of energy between the two resonant qubits.

2.10 The iSWAP two-qubit gate
There are more than one universal gate sets [4], because some gate sets are easier to im-
plement on certain types of qubits than others. The feasibility of the gate depends on how
easy it is to implement on the particular hardware. Such gates are called native gates and
they are typically the gates for which the Hamiltonian governing the gate implementation
gives rise to a unitary propagator that corresponds to the gate itself. Among all the possi-
ble two-qubit gates achievable for capacitively coupled qubits, we will focus our attention
on the iSWAP [4].

The iSWAP gate swaps an excitation between the two qubits and adds a phase i “ ei π2 .
The unitary matrix which describes this gate is:

UiS WAP “

»

—

—

–

1 0 0 0
0 0 ´i 0
0 ´i 0 0
0 0 0 1

fi

ffi

ffi

fl

. (2.58)
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The interaction term of the Hamiltonian in Eq. 2.54 is the key to understand how we
perform a two-qubit gate, in particular the iSWAP gate. For simplicity, we can consider
a direct capacitive coupling between the two qubits, instead of the resonator mediated
coupling [4]. This allows us to rewrite the coupling J between the two qubits as:

J Ñ Jq´q “
1
2

?
ωq1ωq2

Cq´q
a

Cq´q ` CJ1
a

Cq´q ` CJ2
, (2.59)

where Cq´q is the qubit-qubit coupling capacitance and CJi is the capacitance of qubit i.
For simplicity, we suppress the explicit flux dependence of the ωqi and simply refer to the
coupling as J [4]. The interaction part of the Hamiltonian in Eq. 2.54 becomes [4]:

Hqq “ J
`

σ´

1 σ
`

2 ` σ`

1 σ
´

2

˘

“
J
2

pσxσx ` σyσyq. (2.60)

The first term of Eq. 2.60 shows that a capacitive interaction leads to a swapping of
excitations between the two qubits, i.e. the iSWAP [4]. As a matter of fact, the unitary
operator corresponding to this interaction is:

Uqqptq “ e´i J
2 pσxσx`σyσyqt

“

»

—

—

–

1 0 0 0
0 cos pJtq ´i sin pJtq 0
0 ´i sin pJtq cos pJtq 0
0 0 0 1

fi

ffi

ffi

fl

, (2.61)

where the time duration for the swap exchange energy is related to the coupling energy as
t1 “ π

2J . Thus, we recover the unitary matrix in Eq. 2.58.

Figure 2.23: iSWAP gate experiment adapted from [4]: a) Pulse sequence to put the two-qubit system in
the |10y state (green line) and the flux pulse used to put the two qubits into resonance (black line). The flux
pulse is applied to one of the two qubits, which is usually the one with higher transition frequency, in this
case (QB1), for a duration τ. b) Probability p01 to find the system in |01y as a function of the amplitude of
the magnetic flux and the flux pulse duration τ. In c) line-cut of panel b) at magnetic flux ΦiS WAP (black

dashed curve), compared with the probability to be in the state |10y, p10 (grey dashed line).

In order to perform an iSWAP experiment, we need to tune into resonance the two qubits.



2.10 The iSWAP two-qubit gate 29

First we need to excite one of the qubits, for example qubit 1, such that the system is in
the |10y state, as shown in Figure 2.23a. Since we want to mitigate possible flux noise,
we operate the qubits at their sweet spot. In this example, this means that we tune qubit
1 because it has the higher sweet spot transition frequency. We leave qubit 2 at its sweet
spot and we apply the flux pulse on qubit 1 to make the two qubits resonant. However, in
order to observe the swap of energy typical of the iSWAP, in accordance with Eq. 2.58,
we need to apply the flux pulse for at least t1 “ π

2J . By varying the amplitude and duration
of the flux pulse on qubit 1 it is possible to measure the probability for the system to be
in the |01y state, as shown in Figure 2.23b. From Figure 2.23c we can observe the swap
of energy between the two qubits, in fact, when qubit 1 goes from state |1y to |0y, qubit 2
goes state |0y to |1y. In order to have a good iSWAP gate, it needs to be fast, so the time
t1 must be as low as possible. This is achieved by having very high coupling J between
the two qubits. If the coupling is too weak, the gates will be too slow for any practical
applications.

The iSWAP gate is a fundamental two-qubit gate, since it can provide a universal gate
set for a quantum processor together with specific single-qubit gates. Therefore, it is one
of the most used in literature. An example of universal gate set containing the iSWAP in
some form is [36]:

G “ tZ´ π
2
,H,

?
iS WAPu, (2.62)

where H is the Hadamard gate represented by the following unitary matrix:

H “
1

?
2

ˆ

1 1
1 ´1

˙

. (2.63)

As shown in Eq. 2.61, by tuning the capacitive coupling between the qubits for a time t1,
we obtain the iSWAP gate. If we tune the coupling for a time t2 “ π

4J , we obtain:

Uqq

´ π

4J

¯

“

»

—

—

–

1 0 0 0
0 1?

2
´ i?

2
0

0 ´ i?
2

1?
2

0
0 0 0 1

fi

ffi

ffi

fl

”
?

iSWAP, (2.64)

The
?

iS WAP gate, which is typically referred to as squareroot-iSWAP gate, can be used
to generate Bell-like superposition states, for example |01y ` i |10y [4].

Another very common gate that uses the iSWAP is the CNOT [4]. This gate uses the first
qubit as for control and the second qubit as the target. The CNOT can be obtained from
the iSWAP as follows:

. (2.65)



30 3 Experimental set-up and qubit measurements

3 Experimental set-up and qubit measurements
Transmon qubit characterization requires both cryogenic systems in order to reach tem-
peratures of 10 mK and microwave cryogenic and room temperature electronics to control
and read the qubit state. In Section 3.1 we will show the chip design based on transmon
qubits. In Section 3.2, we will describe the cooling procedure of the dilution refrigerator
used in this work. In Section 3.3, we will describe the cryogenic and room-temperature
electronics. In Sections 3.4 and 3.5 we will discuss time-domain and spectroscopic mea-
surements, for basic and advanced characterizations of superconducting qubits.

3.1 Transmon chip

Figure 3.1: a) Layout of the chip fabricated by QuantWare. The chip contains a feedline, to which 6
readout resonators are coupled by means of an elbow geometry. The five coupled qubits have a Qubit

Drive line and a Flux line. The qubit-qubit coupling through qubit 2 is realized through a coupling
resonator. b) SEM image of qubit 2 and all the lines that couple to it. c) SEM image of the DC SQUID in

the qubits. Images b) and c) are courtesy of the Seeqc quarters in London, UK.

The transmon chip measured and characterized in this master thesis is realized by
QuantWare, spin-off company of the University of Delft, within the framework of a col-
laboration with the University of Napoli Federico II and Seeqc-EU company. The Joseph-
son junctions are composed of aluminum electrodes and AlOx barrier, while the other
components of the circuits are made of niobium-titanium nitride. There are six floating
qubits [37], five of which (qubits 0 to 4) are coupled and the last one (qubit 5) is a single
isolated qubit. The chip layout is shown in Figure 3.1. While qubit 0 and qubit 1 have the
lowest frequency on chip, qubit 3 and qubit 4 have the highest frequency. Qubit 2, which
is coupled to all the qubits, has a medium frequency (see Table 1 for further details). This
design is suitable for advanced quantum error detection and correction [6], [28], [38].

Qubits 0 to 4 are coupled to a flux line, a drive line and the outer qubits (0, 1, 3, 4) are cou-
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pled to the central qubit (2) through high-frequency bus resonators (Figure 3.1b), which
we refer to as coupling resonators, as we have discussed in Section 2.9.

The six readout resonators have been designed in such a way that the corresponding res-
onator frequency increases with the number of the label (except for cavity number 1 cou-
pled to qubit 5, which has the lowest resonance frequency). The designed values of the
resonance frequency are reported in the Table 1. This design choice allows to separate the
cavities so that their resonance frequencies do not overlap.

Table 1: Resonance frequencies of the coupling resonators, of the qubits and EJ
EC

ratios of the qubits in
Figure 3.1a.

We will give particular attention to qubits 0 and 2, which as the other qubits on the chip are
of the split-transmon type. The junctions in the DC SQUIDs of these qubits are made to
be symmetric, which would allow for large variation in the qubit frequencies, as detailed
in Section 2.7. A SEM image of the DC-SQUID is provided in Figure 3.1c. Furthermore,
the charging energy EC and the Josephson energy EJ are engineered so that we are able
to work in the EJ

EC
" 1 regime. This is achieved through the use of a large shunting capac-

itance, as discussed in Section 2.5. Expected readout resonator frequencies and ratios EJ
EC

are reported in Table 1.

Figure 3.2: Chip package mounted on the Mixing Chamber of the cryostat and microwave lines connected
to the external electronics.

The readout resonators, as described in Section 2.5.1, are used to read the qubit state
without destroying it. The resonators are used to measure the state of the qubit and are
operated in the dispersive regime. The electrical signals used for the readout are in the mi-
crowave regime. The resonators are coupled to the feedline and this configuration allows
for multiplexing, i.e. to address multiple resonators with the single feedline by sending
signals with different frequencies. All these lines receive their signal from the chip pads,
which are connected to the external control electronics as shown in Figure 3.2. Every sin-
gle connection to the package corresponds to a microwave line connected to the external
electronics.
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The RF lines designed and realized on the chip are all Coplanar Waveguide (CPW) and
they use Transverse Electromagnetic Modes (TEM). The CPWs can be engineered in such
a way that we can maximize the magnetic or the electric field of the TEM signal. This is
useful because in some cases we need a microwave electric field (qubit drive or readout),
and in other cases we need a magnetic field (flux biasing of the DC SQUID).

In order to maximize the electric field of the TEM modes necessary for driving the qubit
on the Bloch sphere, the drive lines are capacitively coupled to the qubit, as shown in Fig-
ure 2.12. Similarly, the resonators are capacitively coupled, as shown in Figure 2.9, to the
qubits in order to perform quantum non demolitive measurements, as discussed in Section
2.5.1. The flux lines are inductively coupled to the DC-SQUID of the transmon, to apply
an external magnetic flux which tunes the qubit frequency, as discussed in Section 2.7.
The resonators are coupled to the feedline through elbow couplings and the coupling is
capacitive in order to maximize the electric part of the signal.

The characteristics of the readout resonator depend on the materials used and on its ge-
ometry. In general, λ2 or λ

4 resonators are employed. When studying the propagation of the
fundamental TEM mode, we observe in both cases nodes and anti-nodes of the electric
and magnetic parts of the signal, as shown in Figure 3.3.

Figure 3.3: Schematic of a λ
2 resonator a) short-circuited (it maximizes the current I, hence the magnetic

field needed for an inductive coupling) and b) open (it maximizes the voltage V, hence the electric field
needed for the capacitive coupling). In c) a schematic of λ

4 resonator. The V in the graphs refers to the
electric part of the TEM mode, whereas the I to the magnetic part.

By tuning the length and the design of the resonator, both the λ
2 and λ

4 designs are feasible.
However, in the chip measured and analyzed in this work the λ

4 resonator are employed.
The loaded (total) quality factor is related to the internal and coupling quality factors in
this way:

1
Ql

“
1
Qi

`
1

Qc
. (3.1)

Qc considers how well the resonator is coupled to the feedline [39], while Qi takes into
account other possible loss mechanisms in the resonator, such as film and dielectric losses,
radiation loss, etc. [39].

3.2 Dilution Cryostat
The study of superconducting qubits requires the use of a dilution refrigerator, which
cools down the qubits to 10 mK. In Figure 2.6 we showed the energy levels of a JJ, which
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are engineered in the transmon in such a way that the ground |0y and excited |1y states
are separated by several GHz. We can associate this energy to an equivalent temperature
according to:

T “
hν01

kB
, (3.2)

and the typical equivalent temperature is around 200 mK. If the qubits are sufficiently
below this temperature, transitions between the two computational levels are undoubtedly
due to the drive signal and not to thermal fluctuations.

We have employed the dilution cryostat in Figure 3.4a for qubit characterization. It is a
dry dilution BlueFors refrigerator [40] at the CESMA-UniNa-Seeqc joint lab.

Figure 3.4: BlueFors dilution cryostat at the CESMA-UniNa-Seeqc lab. In a), inner view of the cryostat,
the pump rack and nitrogen trap and b) Control Unit (CU).

Dilution refrigerators allow to reach and continuously maintain temperatures around 10 mK.
The BlueFors cryostat consists of three basic components: the cryostat, the Gas Handling
System (GHS) (a)) and the Control Unit (CU) (b)), as shown in Figure 3.4a and b.

The dilution cryostat uses a mixture of two isotopes of helium (3He{4He) mixed in spe-
cific concentration. The process takes advantage of the dilution method, which is endoter-
mic [41]. In the Bluefors system, a Cryomech Inc. Pulse Tube (PT) cooler delivers low
enough temperatures to start the dilution refrigeration (DR) cycle. The cooling schematic
is reported in Figure 3.5a. First there is a cold trap at approximately 50 K, which takes
any contamination out of circulation by freezing it, but also serves as a heat exchanger.
The incoming gas is then thermalized at the regenerator tube and the 2nd stage of the PT.
Figure 3.5b and c show the main parts of our dilution refrigerator: quasi-4K flange, still,
heat exchangers, mixing chamber and heat switches. The heat switches are used for the
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initial pre-cool of the DR with the PT from room temperature to low enough starting tem-
perature (approximately 4.2 K). After the DR is pre-cooled to <4.2 K, i.e. when 4He is
in the liquid state, the 3He{4He mixture has to be condensed into the system. In order to
start the condensation, it is necessary to compress the gas with a 3He mixture compressor
and reduce the temperature below 4 K. The mixture passes through an impedance where

Figure 3.5: a) View of the BlueFors cryostat showing the main components. The pre-cool circuit inside
the cryostat, which is responsible for cooling the cryostat to around 4.2 K highlighted in a), while in b) we
show the dilution process. In c) the dilution unit, which enables us to reach temperatures around 10 mK.

it can undergo isoenthalpic expansion and reach a temperature lower than 2 K, at which
also the 3He is liquid. This cooling phase occurs in the dilution unit (DU). Then the mix-
ture is pumped by the pumping rack, consisting of a turbo and rotative pumps and 3He
compressor, thus lowering the temperature below 1 K. From the phase diagram in Figure
3.6 it is clear that, by continuously cooling the mixture to 800 mK, the mixture reaches a
critical point in the diagram.

Figure 3.6: Phase diagram of the 3He{4He mixture: dilution occurs under 0.8 K. When we reach this
threshold, we have the separation into a dilute and a concentrated phase.

In the Mixing Chamber (MC) the dilution occurs and two phases are formed: a concen-
trated one and a diluted one. The concentrated phase is mostly 3He, while the diluted
one is mostly 4He with a small fraction of 3He. The diluted mixture is pumped from the
MC to the still by the pumping system. The enthalpy of 3He in the dilute phase is larger
than in the concentrated phase. Hence energy is required to move 3He atoms from the
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concentrated to the dilute phase, so cooling will occur down to 10 mK. The process is
maintained active in a closed loop.

There is also an external cold trap in the loop, which is mainly used to clean the mixture
from various contaminants. The cold trap is immersed in a container filled with liquid
nitrogen and is a sponge-like material containing activated charcoals. The contaminants
get absorbed by the charcoal as the mixture passes through the cold trap.

The cryostat has a plate structure, as shown in Figure 3.5. This structure helps the ex-
change of heat in the dilution process and allows the MC to reach 10 mK. At each of
these plates, external screens are used as vacuum or radiation shields. The most external
shield, anchored at the RT plate, is necessary to establish a vacuum of 10´4 mbar in order
to decouple the fridge from the environment. This is achieved with the help of a rotary
and a turbo pump. Other shields, anchored at the 50 K plate, the quasi-4 K plate, the
still plate, the cold plate and the MC plate, serve as Electromagnetic Faraday cages. The
MC and the still plate, in particular, use gold-plated copper screens, which shield from
infrared radiation.

3.3 Cryogenic and room-temperature electronics
The cryostat is equipped with RF coaxial input and output lines, and cryogenic elec-
tronics, thermally anchored to different cryostat plate stages. These plates are made of
gold-plated copper with large thermal conductivity. A photo and a sketch of the lines in
the DR are shown in Figure 3.7.

Figure 3.7: a) Input and output lines used for microwave measurements. These lines are thermalized to the
plates by a copper bracelet. b) Representation of the lines, attenuation, filtering and amplification scheme.

In order to control the qubits, we must use signals which resonate with their characteristic
frequencies, which are usually around the low GHz range. The input RF lines are made
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of stainless steel and are thermalized at every plate. The output lines are made of Cu-Ni,
down to the 4 K plate, and then by Nb-Ti, which is superconducting from the 4 K plate to
the MC. By using a series of attenuators located at the 4 K plate, the 100 mK plate and the
MC plate, it is possible to attenuate the input signal by 50 dB, as shown in Figure 3.7b.
Furthermore, the input lines made of stainless steel attenuate the signal by 10-20 dB in
the 4-8 GHz range. This is an important request for low-power RF experiments, such as
for superconducting qubits which work in the single-photon regime.

The signal response of the qubit is very weak and it needs to be amplified in order to be
detected by the external electronics. We use a HEMT (High Electron Mobility Transistor)
amplifier at 4 K [42]. The HEMT amplifier is biased by the LNF-PBA from Low Noise
Factory [43], which is a Low Noise Power Block (LNPB) (see Figure 3.8) [44], and it
supplies the power to another box called LNF. It uses the voltage source to apply a DC
bias to the HEMT. In this way it enables us to adjust the drain current and voltage (Id and
Vd) and the voltage gap (Vg). The HEMT operates with 40 dB of amplification from 4 to
8 GHz.

Even though HEMT amplifiers are needed to amplify the signal, they also add noise
sources, since they are active elements. In order to protect the qubit from these noise
sources, we use cryogenic isolators at the MC plate. An isolator is defined as a device
which isolates an electromagnetic device from spurious reflections and transmission of an
electromagnetic wave [45]. The waves may be freely transmitted in the direction from the
device through the isolator to the room temperature electronics (designated the forward
direction), but waves originating outside of the device and traveling in the opposite direc-
tion (designated the reverse direction) are attenuated by the isolator to prevent harmful
disturbance on the system under test. The attenuation to the reverse direction is of around
20 dB in a frequency range up to 12 GHz, so totally there are 40 dB of attenuation through
the two isolators.

Finally, the sample is further protected from external radiation and magnetic fields with a
copper-plated cryoperm screen and a tin-plated screen, which is superconducting at low
temperatures. There are also various filters, like ecosorb filters and low-pass filters help-
ing in reducing electromagnetic interference at the MC.

A comprehensive showcase of the room temperature set-up for qubit characterization is
given in Figure 3.8. Among the main instruments, particular attention should be put on
the VNA (Vector Network Analyzer) [46], the up- and down-conversion cards [47], the
AWGs (Arbitrary Waveform Generator) [48], the RF signal generators [49], [50], [51] and
the digitizer [52]. These are used to generate and measure RF signals in a continuous way
and to generate and measure RF signals in the time-domain, respectively. In addition,
there is an attenuator card [53] used to further attenuate input RF signals, an amplifi-
cation card for the output signals and a switch card used to switch from continuous to
time-domain measurements.

3.4 Up - and down-conversion
A schematic representation of the time-domain measurement setup is shown in Figure
3.9. The AWG used in the experimental setup is able to generate microwave signals with
frequencies up to 400 MHz [48]. Since qubits operate typically in the 4-8 GHz range,
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Figure 3.8: Keysight rack with instruments used for characterization of qubits and HEMT bias power
supply. All the instruments are reported in the legend. The trigger and the multiplexer cards have not been

used in this work.

we need faster signals. Commercial AWGs which generate in the GHz range exist, but
are very expensive and more importantly generate pulsed signals with significant noise in
the GHz range [48]. For these reasons, we combine the AWG signal with an RF signal
(Local Oscillator LO) through an I-Q Mixer (in Figure 3.8, I-Q Mixers are stored in the
up and down conversion cards). This process is called up-conversion. In order to generate
an appropriate high frequency signal, the AWG provides the I (the in-phase part of the
signal) and Q (the quadrature of the signal) of the intermediate (IF) signal (ωAWG), with a
frequency lower than that of the LO signal (ωIN´LO), sent into the LO port of the up- and
down-conversion card. The I-Q Mixer output frequency is the input signal for the qubit
(ωin) and is given by:

ωin “ ωAWG ˘ ωIN´LO (3.3)

While the input RF signal has still two frequencies, single-sideband calibration allows to
select just one of them, efficiently generating a high-frequency RF signal [54]. Finally,
the signal is attenuated at room temperature and further attenuated with cryogenics atten-
uators in order to work in the single photon regime.

The output signal is of the order of several GHz, hence it would be very difficult for the
electronics to read it properly. For this reason demodulation and down-conversion are
necessary. The output signal goes in a mixer, which has only 3 ports compared to the I-Q
mixer which has 4 ports. It combines with the LO signal and the resulting signal has the
following frequency:

ωIF “
∣∣∣ωout ´ ωLO´IN

∣∣∣. (3.4)

ωIF is low enough for the digitizer to work properly and convert the signal, in the required
frequency range of the order of 0-500 MHz [52]. It acquires for a time tacq “

Nm
νs

, where
Nm is the number of measurements and νs is the sampling rate of the digitizer, which is
500 MSamples{s. The acquisition time length must be a compromise between a suffi-
cient number of samples during the readout (RO) pulse and the need to remain inside the
duration of the RO pulse signal. The aim is to avoid bad triggering and asynchronous
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Figure 3.9: Simplified schematic of the experimental setup used for dispersive qubit readout and drive.
The blue circuit is responsible for the drive signals, which uses up-conversion, while the orange circuit is

responsible for the readout of the output signal, which uses down-conversion. The magenta circuit is
responsible for the readout input signal, which uses up-conversion.

acquisitions, while acquiring enough data points. Finally, a Fast Fourier Transform is per-
formed by the integrated software of the digitizer in order to extract the original form of
the RO signal coming from the resonators coupled to the qubits. The results are displayed
and stored through the Labber software [55]. In Appendix A we show a brief example on
how the I-Q mixers are used for up-conversion.

3.5 Vector Network Analyser for continuous wave spectroscopy
Spectroscopy measurements provide fundamental information about the qubits under test,
as it will be shown in Sections 4.1 and 4.2. To perform these measurements we use
the VNA, an instrument used for studying continuous signals. The VNA is a two-port
network, i.e. it is an electric circuit with two pairs of terminals (input and output), as
shown in Figure 3.10. Mathematically, a two-port network is fully described by a 2 ˆ 2
matrix of complex numbers that establish relations between the voltage and current across
the ports. A convenient way of expressing the properties of a two-port network is the
ABCD matrix [17]:

ˆ

V1

I1

˙

“

ˆ

A B
C D

˙ˆ

V2

´I2

˙

. (3.5)

Figure 3.10: Schematic of a two-port network characterized by its scattering matrix

When dealing with high frequency signals, it is difficult to accurately measure directly
voltages and currents, hence power and energy variables are used. Thus, the scattering
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matrix describes the relationship between the incident pa1, a2q and reflected pb1, b2q waves
and is given by:

ˆ

b1

b2

˙

“

ˆ

S 11 S 12

S 21 S 22

˙ˆ

a1

a2

˙

. (3.6)

The element in the scattering matrix are called scattering parameters. Each scattering pa-
rameter (S parameter) consists of a complex number, which represents the magnitude and
phase response of the device at a given frequency. S 11 and S 22 are known as the reflection
coefficients from port 1 and port 2, whereas S 21 and S 12 correspond to the transmission
from port 1 to port 2 and vice versa. For a reciprocal two-port network, it holds true that
S 12 “ S 21 and for a symmetrical network S 11 “ S 22 [17]. Therefore, the VNA is the in-
strument which sends the signals and measures the response, as shown in Figure 3.11. The
real and imaginary parts of the transmission parameter S 21 are the key quantities for qubit
characterization, since they allow to extract the readout resonator characteristics (reso-
nance frequency, dispersive shift and quality factors) and qubit transition frequencies, as
shown in Sections 5.1 and 5.2, respectively.

Figure 3.11: Experimental set-up of spectroscopic measurements done with the VNA. The VNA
generates the input signal sent to the qubits (magenta line) measures the response (orange line).
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4 Protocols for single- and two-qubit characterization

The implementation of a precise protocol is crucial for the realization of high-fidelity
gates. By accurately studying the characteristics of the single qubits, we are able to define
the basic features of the signals, like the characteristics of π-pulses and the behavior of the
qubits as a function of the external flux. These characteristics will be the starting point for
the signal optimization, which includes corrections on the output signals of the external
electronics. Thanks to these procedures, we are able to reach high single-qubit fidelities.
The optimization of the single qubits is the starting point for the implementation of high
fidelity multi-qubit gates.

In order to characterize superconducting qubits, we have used a wide variety of protocols,
which explore all the important features of the single qubits, in agreement with what is
commonly reported in literature. In Section 4.1 we show how to perform the readout
resonator spectroscopy, whereas in Section 4.2 the qubit spectroscopy. In Section 4.3 we
discuss the time-domain protocols: Rabi oscillations, T1 measurements, T2 measurement
with Ramsey interferometry and Hahn echo. In Section 4.4 we explain how to calibrate
the pulses used in Randomized Benchmarking for the single qubit fidelity measurements.
In Section 4.5 we show the Randomized Benchmarking protocol. Finally, we discuss how
to put two coupled qubits on-resonance with each other in order to perform an iSWAP gate
(Section 4.6).

4.1 Readout resonator spectroscopy
Readout resonators spectroscopy allows to check if all the readout resonators are present,
whether their frequency corresponds to the designed value and also looks at the frequency
separation between the readout resonators. The latter is important for two reasons: i) if the
readout resonators are too close to each other, they might overlap and this would interfere
with the readout and ii) if the readout resonators are too far apart from each other, multi-
plexed readout, fundamental for the implementation of multi-qubit simultaneous readout,
becomes a hard task.

In the readout resonator spectroscopy, the input signal is a single tone signal, which is
in the range of the resonance frequencies of the resonator. This signal resonates with the
readout resonators and a typical lorentzian dip stands out among the background.

Figure 4.1: Example of dispersive shift spectroscopy from [56]. It shows the shift from the bare to the
dressed state, in accordance with Section 2.5.1.
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Once all the readout resonators are found, another very important procedure consists in
finding out if there is dispersive shift [4]. This measurement guarantees that the resonator
is sufficiently coupled to a working qubit. An example of a dispersive shift measurement
is shown in Figure 4.1 and consists in performing readout resonator spectroscopy as a
function of the power of the input signal. For high values of the input power, the qubit
is completely saturated and the input signal only resonates with the frequency of the iso-
lated readout resonator (bare state). The dispersive shift is recovered by decreasing the
input signal, i.e. pointing towards the single-photon regime. The readout resonator reso-
nance shift allows to estimate the coupling between the readout resonator and the qubit,
as discussed in Section 2.5.1.

4.2 Qubit spectroscopy
For qubit spectroscopy we send a two tone signal, composed of an RF signal which is
close to the frequency of the readout resonator resonance in the dispersive regime, sent
through the feedline to excite the resonator (readout tone), and an RF signal which sweeps
in power and in frequency, which excite the qubit (drive tone). The latter can be either
sent through the feedline or dedicated qubit drive (QD) lines. Continuous wave qubit
spectroscopy uses the VNA to send the readout tone, which is made of three frequency
points close to each other (few kHz span). The reason is that the VNA is not able to send
a single frequency, so we rather send three very close frequencies. The result of the three
measurements, as a function of the qubit signal, is averaged.

Figure 4.2: Example of qubit spectroscopy showing the different transition frequencies (|0y Ñ |1y,
|1y Ñ |2y and |0y Ñ |2y) [56].

When the drive tone is off-resonance with the qubit, the background of the output sig-
nal corresponds to the resonator output signal in the dispersive state, but when it is on-
resonance, there will be a peak, representing the transition frequency of the transmon ω01.
By varying the drive tone power, it is possible to see more than the |0y Ñ |1y transition,
like the |1y Ñ |2y and |0y Ñ |2y transitions, like in Figure 4.2.

4.3 Time-domain protocols
Time-domain measurements are at the core of the qubit characterization. Compared to
continuous wave measurements, in time-domain experiments readout and drive tone sig-
nals are replaced by microwave pulses sequences, generated with I-Q mixers, AWGs and
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RF signal generators, as discussed in Section 3.4. The output signals are down-converted
and read out by the digitizer (Section 3.4). Although this is of immeasurable importance
when investigating the time-domain response of the qubit, pulsed-measurements can be
also used for resonator and qubit spectroscopy, once readout and drive pulses durations
are longer than all the typical time-scales of the qubit (above tens of microseconds). In
this case, readout and drive pulses can be treated as continuous signals. In the following,
we will report the most important time-domain protocols for qubit characterization.

4.3.1 Rabi oscillation

Once all the parameters for the readout resonator and the qubit are inspected through
spectroscopy measurements, including the frequency and the power of the readout tone in
the dispersive regime and the qubit frequencies, Rabi oscillations measurements provide
the estimation of a fundamental quantity for single- and two-qubit gate implementation:
the π-pulse. The π-pulse is a drive signal on-resonance with the qubit frequency with an
amplitude able to bring the qubit from the ground state to the first excited state. Basic
single-qubit gates reported in Section 2.8, like the X and Y gates, are nothing else than
π-pulses sent in order to perform a transition from the ground to the excited states of the
qubit around the x- or y-axes. The difference between the two pulses is just given by
the addition of a relative phase in the drive pulse, but its amplitude is only related to the
outcomes of Rabi oscillations.

Figure 4.3: Pulse sequence used to measure Rabi oscillations in qubits. ∆tQD
d is the qubit drive duration.

In Section 2.5.3 we have obtained for the Rabi oscillations the following result for the
population P1 of the two level system:

P1 “
ω2

d

ω2
d ` δω2

sin2

¨

˚

˝

t
b

δω2 ` ω2
d

2

˛

‹

‚
, (4.1)

which oscillates with the Rabi frequencyΩr “

?
δω2`ω2

d
2 , as shown in Figure 2.14. In order

to measure the Rabi oscillations, we send an RF signal to excite the qubit, followed by a
readout signal sent to the resonators. Reading and digitalization of the output must occur
simultaneously. Indeed, we build a sequence in which the digitizing pulse falls inside the
readout excitation pulse. An example of the protocol is reported in Figure 4.3. In this
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measurement, the changing parameter is the QD pulse plateau ∆tQD
d , i.e. its duration. The

longer it becomes, the larger to induce the transition from the ground state to the first
excited state and then again to the ground state. This explains the expected oscillatory
behavior of a Rabi measurement.

All these signals must be well aligned, in fact there must not be overlap between different
signals or timing mismatches. For these reasons the trigger is carefully chosen. Finally,
by changing the amplitude and the frequency of the drive pulse tone, we can have a more
precise way to measure the qubit frequency, obtained with spectroscopy measurements,
and the π-pulse duration.

For the former, in fact, one can notice that when a detuning between the drive and the qubit
frequencies occurs, the Rabi oscillations change both the periodicity and the amplitude.
To better see these behaviours, see Figure 4.4, which is the so-called Chevron plot [57].
It shows how much the qubit is detuned from the rotating frame frequency, i.e. the drive-
qubit frequency detuning δω “ ωq ´ ωd. The Chevron plot shows that with increasing
detuning the amplitude of the Rabi oscillations decreases, while their frequency increases,
in accordance with Eq. 4.1. The on-resonance qubit frequency is indeed the center of the
Chevron plot.

Figure 4.4: Example of Chevron plot for Rabi oscillation in a qubit [57], where the gradient represents the
amplitude of the oscillations, in terms of the detuning between the qubit frequency and the drive signal δω,

and the duration of the drive pulse.

At the on-resonance frequency of the drive pulse, we can estimate the π-pulse as the semi-
period of the Rabi oscillation. However, the π-pulse duration also depends on the power
of the drive RF signal:

Ωr “
a

A2 ` δω2. (4.2)

The larger the power of the drive pulse is, the faster the Rabi oscillations are, and as a
consequence the π-pulse is shorter. The request for Quantum gate operation is to have the
π-pulse as short as possible, in order to have the largest number of gates implemented in
the coherence time of the qubit. However, we must find a compromise in the choice of the
π-pulse power. As a matter of fact, large drive powers can lead to higher-order transitions
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(as discussed in Section 4.2), which fall outside of the computational space of our qubit
and may be detrimental for the quality of the gate. The better compromise in defining
the π-pulse for gate operations is to have the speediest pulse, while setting the QD power
weak enough to avoid transitions to higher-energy levels of the transmon. The effect of
the QD power in Eq. 4.2 is shown in Figure 4.5 [57].

Figure 4.5: Linear dependence of the Rabi frequency as a function of the qubit drive signal amplitude
Vµw top. Figure adapted from [58].

4.3.2 T1 measurements

The estimation of the π-pulse is not only fundamental for gate implementation, but also
for the measurement of relaxation, dephasing and coherence times of a qubit. As we
discussed in Section 2.8, the coherence and relaxation times give a first indication of
the maximum fidelity achievable in a superconducting qubits. To measure the relaxation
time T1, we use a protocol which brings the qubit in |1y, by sending a π-pulse, and then
we measure its state after an increasing amount of time. In Figure 4.6 we report the T1

protocol sequence.

Figure 4.6: Example of a pulse sequence used to study T1 [4].

The main idea behind this sequence is the following:

• The trigger gives the start of the sequence.
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• After a time tQD
d from the trigger the QD π-pulse of duration ∆tQD

d is sent.

• There is a delay td, as shown in Figure 4.6, between the QD pulse and the Readout
(RO) pulse. This is crucial for the protocol, because it allows us to study the relax-
ation of the qubit. The larger the delay td is, the more the qubit relaxes from the
excited state |1y to the ground state |0y.

• In order to extract the data on the state of the qubit, as usual, the digitizing pulse
falls inside the readout excitation pulse.

Figure 4.7: Example of a T1 measurement result and protocol, and simplified diagram for the sequence
[4].

The graph in Figure 4.7 is obtained by varying td, which represents how much the qubit
relaxes from the excited state until we measure its state.

4.3.3 Ramsey Interferometry

Figure 4.8: Example of pulse sequence used for Ramsey interferometry

Another typical protocol used for the study of the quality of a qubit is Ramsey inter-
ferometry. We first prepare the qubit on the equatorial plane of the Bloch sphere sending
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a π
2 pulse, i e. with half π-pulse amplitude, and we wait for a variable time period before

the application of another π
2 pulse, which brings the qubit in the excited state. We can

measure the effect of dephasing, which is more important the longer the time delay is
between one π

2 pulse and the other.

Figure 4.9: Ramsey interferometry with simplified diagram of the sequence. This measurement allows
give an estimate of the T2, which is usually identified as T ˚

2 [4].

This results in the sequence in Figure 4.8 and it provides the measurement of Ramsey
oscillations in Figure 4.9, where the delay time td between the two π

2 -pulses is increased.
This method provides a quantity called T ˚

2 . The * stands for the fact that the Ramsey
experiment is sensitive to inhomogeneous broadening, i.e. it is highly sensitive to quasi-
static, low-frequency fluctuations [4].

Figure 4.10: Example of Ramsey fringes as a function of the qubit drive frequency and time delay td
between the two π

2 pulses. Figure adapted from [59].

When performing the qubit drive for the Ramsey interferometry the detuning δω “

ωq ´ωd between the qubit frequency and the QD frequency is crucial. The Ramsey output
signal is proportional to cos pδωtqe´Γ˚

2 t. When δω is non zero, we are off-resonance and
we expect the system to behave as a damped oscillator [4]. The period of these oscilla-
tions corresponds to the detuning δω and the damping provides an estimate of T ˚

2 . When
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δω “ 0, we are on-resonance, hence the oscillations vanish and we measure an expo-
nential decay of the qubit state. This behaviour is shown in Figure 4.10. If the detuning
increases, then the oscillations become faster. Furthermore, when we are off-resonance,
the detuning contributes to dephasing in the equatorial plane, but when we are perfectly
on-resonance, this dephasing should decrease [4].

4.3.4 Hanh echo protocol

Figure 4.11: Example of pulse sequence used for Hahn echo protocol

One last common procedure used to characterize qubits is the Hahn echo protocol.
The main goal is to determine the coherence time T2. The sequence used to send the
pulse is very similar to the Ramsey sequence and is shown in Figure 4.11. The main
difference relies in the application of a π-pulse in the middle of the Ramsey sequence.
The mid-π-pulse is also known as refocusing pulse, and allows to perform a rotation of π
around the z-axis of the Bloch sphere, after the qubit preparation in the equatorial plane.
By doing so, the quasi-static contributions to dephasing can be suppressed, leaving an
estimate of T2 that is less sensitive to inhomogeneous broadening mechanisms.

Figure 4.12: Hahn echo experiment with simplified diagram of the used sequence. T2e in the figure is
equal to T2 in the thesis. Figure adapted from [4].

In [60], it has been demonstrated that the inclusion of multiple π-pulses in the middle of
the Hahn-echo sequence allows to approach the theoretical limit in absence of dephasing
for a qubit, T2 “ 2T1, in accordance with Eq. 2.39 in Section 2.6.3. Depending on the
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coherence properties of the qubit, a single π-pulse may not completely cancel dephasing
contribution. From the results in the measurements in Figure 4.9 and 4.12, we see that the
T2 measurement (120 µs) approaches the limit 2T1 (170 µs) [4].

4.4 Pulse optimization for Randomized Benchmarking test
The measurement of relaxation and coherence times in a superconducting qubit is a fun-
damental step in order to provide a first estimation of the qubit fidelity. However, the
experimental protocol for the study of the performances of a superconducting qubit in
Quantum processors necessarily requires a careful benchmark of its performances. As
mentioned in Section 2.8, Randomized Benchmarking (RB) is one way to evaluate the
performance of the qubit.

RB test is based on the measurement of the qubit state after the application of a sequence
of Clifford gates. Such Clifford gates are mainly made by a combination of X and Y
gates, i.e. drive pulses with π- and π

2 -amplitudes. The implementation of quantum algo-
rithms [38], [61] requires single-qubit fidelities above 99.9 % [10], [11], [62]. One way
to achieve such high fidelities is to reduce state preparation and measurement (SPAM)
errors, which contribute to the fidelity, as stated in Section 2.8. SPAM errors [63] can be
reduced by a careful generation of drive pulses. As provided in more detail in Section
4.3, I e Q signals for π-pulses are typically provided by an Arbitrary Waveform Gen-
erator (AWG) and by using an I-Q mixer [4]. It can easily happen that the I-Q mixer
could be imbalanced, which means that I and Q signals coming out of the AWG are not
equal in amplitude when they should be. Therefore, the calibration of π- and π

2 -pulses is
a fundamental step prior to fidelity measurements.

4.4.1 Calibration of the π and π
2 amplitude

In order to calibrate the amplitude of the π-pulse, we prepare the qubit in the ground state.
Then, we send a sequence of an even number of π-pulses, as shown in Figure 4.13.

Figure 4.13: Pulse sequence for Vamp,π and Vamp, π2 optimization. Vamp,π corrects the mismatch between the
I and Q parts of the π-pulse signal and Vamp, π2 corrects the amplitude of the π

2 -pulse.

Ideally, 2n π-pulses should carry the qubit from the ground state to the excited state, and
then again in the ground state. However, when increasing the number of π-pulses, the
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qubit may not return to the ground state, because of the unbalance between the I and Q
drive signals. In particular, this happens both when the π-pulse amplitude is larger than
the ideal one, or smaller. In order to find the optimal π-pulse amplitude, we start with
8 π-pulses as a function of a scaling parameter Vamp,π, which identifies the ratio between
the I and Q signals. Then, we gradually increase the number of π pulses following an
exponential trend.

As occurs for the π-pulse, a similar calibration is performed for correction of the π
2 pulse,

which is derived from the π-pulse by halving the latter’s amplitude. However, in order to
return to the ground state, we need to use π

2 sequences which are multiples of four. In this
case, the sweep parameter is the correction of π-pulse amplitude Vamp, π2 .

In both π and π
2 optimization sequences, we expect to find the qubit in the ground state.

This means that, for the best Vamp,π and Vamp, π2 , we should measure a constant voltage,
corresponding to the ground state. By increasing the number of pulses in the train, we are
essentially increasing our sensitivity to deviations from the optimal parameters. In fact,
the train with less pulses can be used to narrow down the range of parameters to explore,
while the longer trains give a preciser estimate of the correction parameters.

4.4.2 π and π
2 calibration through DRAG optimization techniques.

In addition to the correction of the π and π
2 pulses amplitude, we have also exploited what

is known as DRAG (Derivative Reduction by Adiabatic Gate) pulse shaping [4].

Drive pulses are square wave-like with finite rise time, as shown in Figure 4.14, given by
the minimum time of the AWGs generation (1 ns). Specifically, we implement a cosine
rise. The duration of the signal is that of the π-pulse for each qubit. When ramping the
pulse, the overshoot can be significantly enough to excite the first non-computational state
|2y. This behaviour is similar to what we discuss in Section 4.2, where we show that by
increasing the power of the pulse we are able to observe higher order transitions in the
qubit spectroscopy. It is also possible that there are higher harmonics in the signal, which
go into resonance with the |2y state.

Figure 4.14: Example of square wave-like pulse generated by the AWG with a finite rise time and
overshoot due to the limitations of the electronics.

These imperfections cause problems with the control of the qubit. Specifically, this un-
balance causes under- or over-rotations on the Bloch sphere. In order to contrast this
behaviour, which of course influences the gate performance of the qubit, the DRAG pulse
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shaping implements a correction on the drive signal in the following way:

Ω
1

ptq “ Ωptq ´ iα
9Ωptq
∆

, (4.3)

where Ωptq is the original pulse, α is known as DRAG scaling factor and ∆ is the qubit
anharmonicity. The effect of α on Eq. 2.51 is to vary both the fidelity and the SPAM
errors. An example of this study is given in [63], where the predominant SPAM error is
the leakage, i.e. the involvement of higher transitions like |1y Ø |2y transition.

When trying to implement the DRAG scheme with only α, the results in Figure 4.15 show
that there are different sweet spots for the fidelity and the leakage.

Figure 4.15: Example of the effect of DRAG correction on the fidelity and the leakage error [63]. We can
reduce the leakage errors by increasing α to 1, but this does not amount to the best fidelity possible, which

is obtained at intermediate α (0.5).

α “ 1 greatly reduces the leakage, but it makes the fidelity much poorer than for α “ 0.5.
The motivation relies in the presence of phase errors, which may shift the |1y Ø |2y

transition due to repulsion between the two levels, similarly to an AC-Stark shift [63].
Due to the repulsion of the |1y and |2y levels, a small shift in the frequency of the qubit
arises, which detunes it from the QD frequency and causes dephasing [63]. This behaviour
could be corrected by adding a detuning pulse:

Ω
2

ptq “ Ω
1

ptqe2πiδ f t. (4.4)

This signal redefines the anharmonicity to:

∆ “ ω21 ´ pω10 ` 2πδ f q. (4.5)

The results of this approach in [63] are shown in Figure 4.16. Without the detuning
correction, we must find a trade-off that minimizes both the phase and leakage errors.
When the detuning correction is applied, we become insensitive to phase errors and we



4.4 Pulse optimization for Randomized Benchmarking test 51

only correct for leakage. Even though the use of a detuning correction increases the
fidelity performance for all α and allows to choose the sweet spot for the leakage, the
error per Clifford is still limited by the coherence of the qubit, so the improvement in
overall fidelity from leakage reduction is not so big [63]. In this thesis, we have chosen to
optimize only the scaling parameter α.

Figure 4.16: Total gate fidelity and leakage rates versus DRAG weighting α, measured using RB. In a)
there is only the α correction, whereas in b) there is also the correction on ∆. The detuning pulse can

improve the optimization of the fidelity and the leakage errors [63].

The DRAG scaling factor optimization in this thesis is provided by the AllXY technique.
The AllXY technique is based on the implementation of gate sequences made of Xπ, Yπ,
X π

2
, Y π

2
. The error accumulated after the application of two of these pulses depends on both

the DRAG scaling factor and the DRAG detuning. The matrix describing the rotation of
a qubit by an angle θ about the axis σ̂ is given by:

Ûpθ, σ̂q “ e´i θ2 σ̂ (4.6)

In the first column of Table 2 we show the ideal state of arrival for the sequence [64]. The
second and third columns show the first and second pulse in the tested sequence. In the
fourth column of Table 2 we show the power error for the sequences. An error in pulse
power by x dB is correctly captured by Eq. 4.6 by scaling θ by a factor of 10

x
20 , because

of the logarithmic units [64]. In the fifth column we show the detuning error, which is
understood as an additional z field to σ̂ (longitudinal noise). It is clear from the study in
[64] that different sequences introduce not only a different scaling of the error, but also
different signs (positive or negative).

The protocol to find the optimal α parameter in the DRAG scheme uses these four se-
quences:

`

Xπ ´ X π
2

˘ `

Xπ ´ Y π
2

˘

,
`

Yπ ´ X π
2

˘ `

Yπ ´ Y π
2

˘

. For the
`

Xπ ´ X π
2

˘

and
`

Yπ ´ Y π
2

˘
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Table 2: These are all the possible two-pulse combination. The first column shows the ideal state of arrival
in the σz basis. The second column is the first pulse and the third column is the second pulse. The fourth

and fifth column represent the amplitude and the detuning dependence of the error, respectively [64].

pulses the detuning error dependence is of the second order and of the same sign. For the
`

Xπ ´ Y π
2

˘

and
`

Yπ ´ X π
2

˘

pulses, instead, the detuning error dependence follows a linear
trend with a slope that depends on the error sign.

Figure 4.17: In a) we show the ideal gate sequences
`

Xπ ´ Y π
2

˘

and
`

Yπ ´ X π
2

˘

. In b) we show the gate
sequence

`

Xπ ´ Y π
2

˘

and
`

Yπ ´ X π
2

˘

when there is noise causing detuning error dependece. This graphs
have been simulated using the mesolve method of QuTiP [65].

The effect of the detuning error on the qubit arrival state after a XπY π
2

(blue curve) and
YπX π

2
(red curve) has been simulated in Figure 4.17. In the ideal case of no longitudinal

noise (ϵ “ 0), the arrival state of the two sequences is predicted to lead the qubit on the
equator of the Bloch sphere (Figure 4.17a)). When longitudinal noise cannot be neglected,
the detuning error dependence for the sequence XπY π

2
(YπX π

2
) is negative (positive), caus-

ing an undershoot (overshoot) on the final qubit state. The DRAG calibration procedure
has the aim to correct the behaviour in Figure 4.17b so that the system behaves as Figure
4.17a. The protocol used to send the pulses is reported in Figure 4.18. After the prepa-
ration of the qubit state in the ground state, we apply a

`

Xπ ´ Y π
2

˘

pulse sequence and
we measure the state as a function of the drag scaling factor. Since

`

Xπ ´ Y π
2

˘

sequence
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Figure 4.18: Example of the protocol used for DRAG scaling calibration. After every Trigger period we
change the α parameter and measure the real and imaginary parts of the signal.

introduces a negative sign in the error dependence on the scaling factor amplitude, the
sequence gives a negative slope in the readout voltage as a function of the scaling factor.
If we instead apply

`

Yπ ´ X π
2

˘

, the error sign is positive and the sequence gives a positive
slope. Therefore, this measurement provides us with two distinct curves for

`

Xπ ´ Y π
2

˘

and for
`

Yπ ´ X π
2

˘

as shown in Figure 4.19. The two sequences have opposite slopes and
the optimal operational point is where these two curves intersect. This is the best com-
promise between sequences with opposite sign error. At the intersection point both pulses
are not perfectly tuned, but, since their errors are of opposite signs, we expect them to
cancel each other.

Figure 4.19: Calibration of the DRAG coefficient α by using AllXY technique. The expected state on the
equator of the Bloch sphere will be designated by a certain voltage, so by changing α we are changing the

arrival state of the qubit. When the two lines cross, we find the optimal α for the DRAG scheme [64].
Figure adapted from [64].



54 4 Protocols for single- and two-qubit characterization

4.5 Randomized Benchmarking
Once the correction parameters for π and π

2 pulses are implemented, Randomized Bench-
marking (RB) test is performed. The RB sequence is reported in Figure 4.20. We initialize
the qubit in the ground state. Then we send a sequence of Clifford gates and its inverse
gate, so that the final state of the qubit theoretically matches with the initial one. Then
we measure in what state the qubit is found. The fidelity of RB is the measure of how
often we return to the initial state. We repeat this measurement by increasing the number
of Clifford gates in the sequence. As shown in Section 2.8, by increasing the number of
Clifford gates the probability to accumulate errors in the sequence increases.

Clifford gates in the sequence are generated randomly, chosen by a pseudo-random seed.
By changing the pseudo-random seed, we acquire multiple traces, which are averaged in
order to extrapolate the qubit fidelity, as shown in Eq. 2.51.

Figure 4.20: Sequence used for RB. The number of Clifford gates (C) and their inverse (C´1) is increased
with every step.

In the ideal case of perfectly coherent qubits and unitary Clifford gates with no SPAM
errors, the outcome of this experiment should be a constant readout voltage related to
the initial state of the qubit when increasing the number of Clifford gates. In reality, the
applied inverse might not be the exact inverse of the Clifford gate. Also, the qubit is not
perfectly coherent, so both these factors contribute to get as a result a state different from
the initial one. An example of this behaviour is shown in Figure 4.21 [30].

Figure 4.21: Average fidelity as a function of the number of applied computational gates. Computational
gates consist of a randomized Clifford generator [30].

The exponential decay obtained through fidelity measurement (Figure 4.21) can be fitted
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by Eq. 2.51, which can be simplified as follows [66]:

FN “ A ` BpN , (4.7)

where p is responsible of the exponential decay and gives an estimate of the polarizing
error, A in Eq. 4.7 corresponds to p1 ´ αnq in Eq. 2.51 and B corresponds to αn

´

1 ´
ϵm
αn

¯

.

In Section 2.8 we showed that the average fidelity related to the imperfect realization of a
Clifford gateΛ is given by Favg “ 1´r, with r representing the average error committed in
the sequence. The depolarizing errors mentioned in Section 2.8 can be expressed through
Λdep [67], which is the imperfect realization of the Clifford gates due to depolarization.
In [67] they find that all the errors are due to depolarization, so we can equate the average
fidelity due to Λ and the fidelity due to Λdep. For this reason p and r are related by [67]:

r “ 1 ´ p ´
1 ´ p

d
. (4.8)

By finding the fit parameter p, we are able to estimate the avarage fidelity as:

Favg “ p `
1 ´ p

d
(4.9)

4.6 iSWAP gate
The next logic step is to study how two qubits interact. Specifically, in this thesis we have
investigated two coupled qubits, qubit 0 and qubit 2 (see Section 3.1 for further details).
We are going to show how to put qubits 0 and 2 on resonance with each other, as described
in Section 2.9, and how to evaluate if there is a swap of energy in the form of the iSWAP
gate, which we described in Section 2.10.

First we tune the frequency of qubit 2, which in our chip is the the high-frequency qubit
with its flux line, and we perform a qubit spectroscopy on qubit 2.

The avoided level crossing occurs when qubit 2 frequency is on resonance with the low-
frequency qubit, which in our chip corresponds to qubit 0. This qubit is kept fixed in
frequency during all the measurement. Hence, the range of flux that we investigate corre-
sponds to the values for which qubit 2 has a frequency close to qubit 0.

Once found the avoided level crossing region, we apply a flux voltage pulse on qubit 2 by
changing the amplitude and the duration of the pulse. The amplitude is chosen so to be in
the avoided level crossing region. In this measurement, we readout simultaneously qubits
0 and 2. The protocol used to send the flux signal is shown in Figure 4.22.

Simultaneous readout uses two signals through the feedline, which need to satisfy the
following relation:

#

ω
pLOq

r,0 ´ ω
pIFq

r,0 “ ω
pRFq

r,0

ω
pLOq

r,2 ´ ω
pIFq

r,2 “ ω
pRFq

r,2

(4.10)

where ωpIFq

r,0 and ωpIFq

r,2 are the intermediate frequency signals from the AWG, ωpLOq

r,0 and

ω
pLOq

r,2 are the local oscillator signals and ωpRFq

r,0 and ωpRFq

r,2 are the frequencies used to res-
onate with the readout resonators of the two qubits. Since all the readout resonators are
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Figure 4.22: Sequence used to enable the energy swap between qubits 0 and 2. Through a π-pulse we
prepare qubit 2 in the |1y state. The swap consists in the oscillation between |01y and |10y. We vary the the

amplitude and duration of the flux pulse and we use two readout pulses for qubits 0 and 2 in accordance
with Eq. 4.10.

capacitively coupled to the same feedline, we are indeed able to perform multiplexing
readout. This motivates the chip design discussed in Section 3.1.

We fix the local oscillator frequencies such that ωpLOq

r,0 “ ω
pLOq

r,2 “ ω
pLOq
r . ωpIFq

r,0 and ωpIFq

r,2
frequencies must satisfy Eq. 4.10 in order to read the two qubits simultaneously. The
diagram of this measurement is shown in Figure 4.22.
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In this Chapter we will focus on the characterization of the qubits labeled as 0 and 2 in
Figure 3.1. In Section 5.1 we study the readout resonators coupled to these qubits. In Sec-
tion 5.2 single-qubit spectroscopy is reported. In Section 5.4 we will explore time-domain
characterization, which provides the π-pulse duration, T1 and T2. Then we will show in
Section 5.5 how to optimize the pulses used in single-qubit Randomized Benchmarking
(RB), which we analyze in Section 5.6. Finally, we discuss the avoided level crossing in
Section 5.7 with possible future implementations.

5.1 Coupling resonator spectroscopy
In Section 4.1 we explained how resonator spectroscopy is performed. Now we present
our results for the readout resonators coupled to the two qubits. Let us begin with the
readout resonator labeled as Cavity 2 which is coupled to qubit 0.

Figure 5.1: a) Cavity 2 dispersive shift colormap: on the y-axis, VNA input power in dBm, on the x-axis
resonator tone frequency. The color scale identifies the magnitude of the readout S 21 output. In b)

comparison of the magnitude of the S 21 output for different VNA input power.

In Figure 5.1a we report the transmission magnitude S 21 as a function of the input power
of the VNA. We observe a dip when the readout tone resonates with the resonator, follow-
ing the protocol reported in Section 5.1. We can clearly notice a shift from the bare state
of the resonator at higher powers to the low photon regime at lower powers. Line-cuts
for different input powers are reported in Figure 5.1b. The bare state occurs when we
send enough power to the qubit (in this case qubit 0) to saturate the transitions from |0y to
|1y, thus decoupling the resonator from its qubit, as discussed in Section 2.5.1. When the
power is low enough, the dispersive regime is recovered.

In order to evaluate the dispersive shift, we fit the experimental data representing the bare
state and the low photon regime. We use the Python library resonator tools [68] to fit
the resonances and extrapolate all the relevant parameters (quality factors, resonance fre-
quency, respective errors). In Figure 5.2 we show the results of our fits for Cavity 2 in the
bare state (10 dB) and the low photon regime (-58 dB).

The resonance frequency in the two states are ωr,bare “ 7.50088 ˘ 0.00005 GHz and
ωr,lphr “ 7.50299 ˘ 0.00003 GHz, where the errors provided by resonator tools are sta-
tistical errors. The experimental bare resonator frequency is nearly 300 MHz larger than
the designed resonator frequency of 7.20GHz. This can be attributed to defects in the
fabrication, but as long as its frequency does not overlap with the resonances of other
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resonators, it does not cause simultaneous excitation of more than one resonator. Using
this data, we can calculate the dispersive shift χ “ 2.11 ˘ 0.08 MHz. The error on χ is
obtained from that of the resonance frequencies by propagation of statistical errors.

Figure 5.2: Cavity 2 fit in the bare (VNA input power = 10 dBm) a) and dressed (VNA input power = - 58
dBm) states b) performed with resonator tools Python package [68].

The fit allows also to give an estimate of the quality factors of the readout resonator as
shown in Table 3 (Section 3.1).

Table 3: We give the loaded (total) quality factor (Ql), the coupling quality factor (Qc) and the internal
quality factor (Qi) of Cavity 2 from the fit with resonator tools. The errors in this table are obtained from

resonator tools and are of the statistical type.

The intrinsic quality factor Qi, the coupling quality factor Qc and the total quality quality
factor Ql are related by the relation:

1
Ql

“
1
Qi

`
1

Qc
(5.1)

Qc takes into account how well the resonator couples to the rest of the system, Qi give us
an idea of all the possible losses in the resonator. In our case, the internal quality factor Qi

is much higher than the coupling quality factor Qc, so the resonator is not limited by inter-
nal losses. In the case of niobium compounds superconducting resonators, these numbers
comply with the literature [69] and allow to perform the readout of the qubit state.

We perform the same investigations for readout resonator labeled as Cavity 4, which
is coupled to qubit 2. We show in Figure 5.3 the resonator spectroscopy, performed
by varying the power of the VNA input signal, where Cavity 4 exhibits the expected
dispersive shift. To evaluate it, we fit the resonances in the bare state (10 dB) and in
the low photon regime (´60 dB), as shown in Figure 5.4. The fit provides us the reso-
nance frequencies in the two states, which are ωr,bare “ 7.661144 ˘ 0.000005 GHz and
ωr,lphr “ 7.665630 ˘ 0.000007 GHz. The dispersive shift is χ “ 4.49 ˘ 0.01 MHz.

When we compare the readout resonators of qubits 0 and 2, the dispersive shift of Cav-
ity 4 is twice as big. In the hypothesis of similar coupling factors g, which holds if we
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Figure 5.3: In a) Cavity 4 dispersive shift colormap: on the y-axis, VNA input power in dBm, on the
x-axis resonator tone frequency. The color scale identifies the magnitude of the readout S 21 output. In b)

comparison of the magnitude of the S 21 output for different VNA input power.

Figure 5.4: Cavity 4 fit in the bare (VNA input power = 10 dBm) a) and dressed (VNA input power = - 60
dBm) states b) performed with resonator tools Python package[68].

consider that the two resonators are fabricated within the same conditions, the larger dis-
persive shift can be attributed to smaller detuning for Cavity 4 compared to Cavity 2.
More favourable outcome of the limiting manufacturing tolerances leads also to better
coupling and less losses for Cavity 4 compared to Cavity 2.

Table 4: Loaded (total) quality factor (Ql), the coupling quality factor (Qc) and the internal quality factor
(Qi) of Cavity 4 from the fit with resonator tools [68]. The errors in this table are obtained from resonator

tools and are of the statistical type.

We can now focus on the flux dependence of the resonance frequency of the two readout
resonators, which is found in ω̃r “ ωr ` χpΦq. Recalling the flux dependence of the
qubit frequency in Eq. 2.40 and the dispersive shift in Eq. 2.16, we expect the resonator
resonance frequency to modulate with the flux as:

χ “
g2

∆
“

g2∣∣∣∣∣∣
c

8ECEJ

∣∣∣∣cos
´

πΦ
Φ0

¯∣∣∣∣´ ωr

∣∣∣∣∣∣
(5.2)
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This relation suggests a behaviour similar to the one found in Figure 2.18. The results we
have obtained are shown in Figure 5.5.

Figure 5.5: a) Flux modulation of Cavity 4 resonance frequency coupled to qubit 2: the x-axis is the
voltage applied across the flux line, the y-axis is the resonator frequency, the color scale identifies the

magnitude of the S 21 output. In b) we extrapolate the modulation and fit the curve with a cosine. In c), flux
modulation of the Cavity 2 resonance frequency coupled to qubit 0: the x-axis is the voltage applied across

the flux line, the y-axis is the resonator frequency, the color scale identifies the magnitude of the S 21
output. In d) the fit of the extrapolated curve.

We see from Figure 5.5a that one flux period corresponds to approximately 3 V applied
across the flux line of qubit 2. In order to give a quantitative estimate, we extrapolate the
modulation and fit it with a cosine function, obtaining a period of T “ 3.22 ˘ 0.06 V .
We have used the Python library lmfit [70] for the fit in Figure 5.4 as for most of the fits
in this thesis. The errors are given by Non-Linear Least-Squares Minimization. While in
Eq. 5.2 the external flux is given in weber (Wb), we use its equivalent in volts in Figures
5.4a and 5.4c. Stainless steel flux lines in our cryostat have a total resistance of the order
of 50Ω considering also the presence of low-pass filters of 1 GHz anchored at the MC
plate. This implies that a current I “ V ¨ 50Ω flows in the flux lines on chip. According
to the Ampère law, this generates a concatenated magnetic flux ΦpBq orthogonal to the
surface of the qubit DC-SQUID. Therefore, the relation between the voltage applied and
the flux satisfies: Φ “ LV

R , where L is the inductance of the DC-SQUID in the qubit.

The behaviour of Cavity 2 is similar (Figure 5.4c). Nevertheless, the fit is not quite per-
fect, which is mainly because we are not able to clearly distinguish the maximum of the
modulation (this is a limitation of the experimental setup, which can supply up to 1.5 V).
We would need more points across a wider flux range for the fit to be more precise. From
Figure 5.4c we expect a period of around 4 V and with the fit shown in Figure 5.4d we
obtain T “ 4.5 ˘ 0.2 V .

A very important feature of these measurement regards multiplexing. As explained in
Section 3.1, we want the frequency of the readout resonators to be close, but also not
too close to each other in order not to overlap. From the measurements in this Section
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we have clearly demonstrated that, when working in the dispersive regime, the frequen-
cies of Cavities 2 and 4 are sufficiently far from each other, even when a magnetic field
flux is applied. This is crucial when we perform a two-qubit gate in Section 6, where
a simultaneous readout is necessary and we employ the multiplexing capabilities of our
system.

5.2 Qubit spectroscopy

Figure 5.6: Qubit 0 spectroscopy: on the y-axis, the qubit drive Q0 frequency, the x-axis is the attenuation
of the qubit drive signal, the color scale identifies the demodulated voltage magnitude in dB of the readout

resonator.

On the basis of the arguments given in Section 4.2, we discuss the experimental re-
sults of qubit spectroscopy. This measurement give a first estimate of the qubit transition
frequencies. In Figure 5.6 we show the magnitude of the demodulated output readout volt-
age as a function of the qubit drive frequency and the qubit drive power applied across a
dedicated drive line for qubit 0. We apply 1.3 V on the flux line of qubit 0 to put it at its
flux sweet spot.

Figure 5.7: Qubit 2 spectroscopy: on the y-axis, the qubit drive Q2 frequency, the x-axis is the attenuation
of the qubit drive signal, the color scale identifies the demodulated voltage magnitude in dB of the readout

resonator.

We only observe the fundamental transition |0y Ñ |1y, since the power sent to the qubit
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is not high enough to excite the |0y Ñ |2y transition. A rough estimation of the qubit fre-
quency obtained through qubit spectroscopy is 4.846 ˘ 0.002 GHz. The errors from qubit
spectroscopy are maximum errors. A more precise method is through Ramsey interferom-
etry, as shown in Section 5.4.2. When increasing the qubit drive power, the broadening of
the transition increases. This is related to the increasing number of photons in the system,
which increases the loss mechanisms.

Qubit spectroscopy for qubit 2 is reported in Figure 5.7. A rough estimation of the qubit
frequency with -0.15 V applied on the flux line is 5.517 ˘ 0.002 GHz. For this qubit, we
can clearly distinguish two peaks. The higher-frequency one corresponds to the |0y Ñ |1y

transition. Increasing the qubit drive power, this transition becomes less pronounced,
while the lower-frequency peak becomes stronger and broader. This peak corresponds to
the |0y Ñ |2y transition. This allows to extrapolate the anharmonicity as α “ ω01 ´ ω12

and we obtain α “ 322˘4 MHz, where the error is a maximum error. The anharmonicity
by design is α “ 270 ˘ 30 MHz, where the error accounts for a 10 % tolerance on EC, as
discussed in more detail in Section 5.3.

From Figures 5.6 and 5.7 we observe the |0y Ñ |2y transition for qubit 2, but not for qubit
0. A key role is played by the coupling between the dedicated drive line and the qubit.
It is plausible that the qubit-drive line coupling for qubit 0 is not as strong as for qubit
2. For this reason, rather than attenuate the qubit drive signal, we should amplify it at
room-temperature in order to observe the |0y Ñ |2y transition.

Figure 5.8: Flux spectroscopy of qubit 2. a) Colorplot with x-axis the flux on Q2, y-axis the Q2 drive
frequency signal, and the color scale the normalized magnitude in a.u. of the readout resonator. b) Fit of

the qubit frequency ω01 extrapolated from a).

As discussed in Sections 2.9 and 4.6, two-qubit gates require that the two coupled qubits
must be set on resonance by means of a flux tuning. Single-qubit spectroscopy measure-
ments confirmed that qubit 0 is the lowest frequency qubit in the pair, as expected from
the device specifications. Therefore, qubit 0 will be fixed thorough every two-qubit exper-
iments at its sweet-spot (see Section 2.9), while qubit 2 will be flux-tuned towards qubit
0. Hence, qubit 2 spectroscopy as a function of the flux field for a fixed QD attenuation
is a crucial step (Figure 5.8). From the theoretical fit, in accordance with Eq. 2.40, we
can extrapolate the period T “ 4.492 ˘ 0.003 V , where the errors are statistical. This
result is in agreement with the fit of the period of Cavity 4. This experiment also allows
to find the sweet spot of the qubit, i.e. where the derivative of the cosine is zero and it is at
´0.1759 ˘ 0.0002 V where errors are statistical. As for qubit 0, Cavity 2 spectroscopy
as a function of the flux in Figure 5.4c suggested that the sweet-spot for qubit 0 falls in a
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range of flux-voltages close to the maximum resolution of our experimental set-up, thus
preventing qubit 0 spectroscopy as a function of the flux. Nevertheless, as mentioned in
Section 2.7, we want the qubits to be in their flux sweet spot when possible. In this way
we minimize flux fluctuations and this definitely benefits the coherence times of the qubit.

5.3 Summary and comparison with design parameters
On the basis of the presented experimental outcomes, we are able to extract many of the
characteristics of our chip and compare them to the expected ones by design. In Table 5
we compare the design characteristics with those calculated from the measurements. In
order to calculate the charging energy, we use the approximation EC « ´α [9]. Since we
did not observe the |0y Ñ |2y transition for qubit 0, 2e will use for qubit 0 a value for EC

close to the one obtained for qubit 2, since EC is designed to be similar for all the qubits
on chip.

We can calculate EJ by applying 2.40. From this we are able to calculate the EJ
EC

and es-
tablish whether we are in the low charge noise regime. We assume the same experimental
error for qubit 0 as for qubit 2, i.e. a maximum error of 4 MHz in accordance with Figure
5.7. The error for the theoretical results is obtained by supposing a 10 % error on EC due
to the capacitance C and a 10 % error on EJ due to the critical current Ic. We estimate a
ratio EJ

EC
of 37 ˘ 1 and 41 ˘1 for qubit 0 and qubit 2 respectively, while the expected val-

ues are 42 ˘ 8 and 60 ˘ 10. The EJ
EC

ratio of qubit 2 is lower than the expected one, which
is due to higher than expected anharmonicity and lower than expected Josephson energy.
However, the EJ

EC
ratio for qubit 0 is within errors, since the calculated Josephson energy is

much closer to expected one. Despite not matching the design parameters within error for
qubit 2, the fabrication process is capable of realising the intended designs, which enables
the qubits to reach the EJ

EC
" 1 regime.

Table 5: Comparison between the expected values by design and the actual values of the two qubits under
study (Q0 and Q2): qubit frequencies (bare), charging energy, Josephson energy EJ , read-out resonator

frequencies (bare), χ shift, EJ
EC

ratio and critical current. T stands for theoretical and R stands for real. Note
that the values in italic blue are not derived from measurements, but are an educated guess.

For qubit 0 we expect by design gT “ 170 ˘ 20 MHz, which is related to the theoret-
ical dispersive shifts through χ “ ´

g2

∆
α
∆´α

. We obtain from our measurements gR “

220 ˘ 3 MHz, according to this formula. For Cavity 4 we expect by design gT “

110 ˘ 10 MHz, but we obtain gR “ 254 ˘ 6 MHz. For the theoretical estimations
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of gT we assume a typical error of 10 % due to manufacturing tolerances. For the ex-
perimental estimation of gR we use maximum errors. The theoretical and measured dis-
persive shift for the readout resonator of qubits 0 are χT “ ´1.19 ˘ 0.02 MHz and
χR “ ´2.1 ˘ 0.2 MHz, while those of qubit 2 are χT “ ´0.74 ˘ 0.01 MHz and
χR “ ´4.49 ˘ 0.04 MHz. We have used maximum error propagation for the theo-
retical results and maximum error for the experimental ones. Since the error of χ is
statistical, we have taken three times the standard deviation to be able to compare it to
the other maximum errors. The theoretical and measured detuning ∆ for qubit 0 are
∆T “ ´2.5 ˘ 0.2 GHz and ∆R “ ´2.655 ˘ 0.004 GHz, while for qubit 2 we have
∆T “ ´2.0 ˘ 0.2 GHz and ∆R “ ´2.144 ˘ 0.004 GHz. In both cases the errors are
maximum errors. The larger than expected dispersive shift for both qubits explains the
higher than expected qubit-resonator couplings.

5.4 Time domain measurements
As mentioned in Sections 2.5 and 2.6, the time domain measurements give a vast amount
of information about the performance of the single qubit. We here present: Rabi oscilla-
tions (Section 4.3.1), T1 measurements (Section 4.3.2), Ramsey interferometry (Section
4.3.3) and Hanh echo (Section 4.3.4). These measurements allow us to find the optimal
π-pulse, T1, T ˚

2 and T2. The π-pulse is important because it is the reference pulse for all
single-qubit gates, so we need to optimal signal parameters in order to find a fast π-pulse.
The relaxation and coherence times are crucial to evaluate the maximum potential of our
qubits, since they give us the maximum fidelity we can achieve (Section 2.8).

5.4.1 Rabi oscillations

The Chevron plot in Figure 5.9a shows that the Rabi oscillation frequency for qubit 2
increases while the amplitude decreases when we change the frequency of the QD. This
measurement allows us to find for which frequency the QD is resonant with the qubit and
it is 5.517 ˘ 0.001 GHz.

In order to perform gates, we want a π-pulse which is as fast as possible. In Figure 5.9b
we set QD frequency to the Chevron plot centre in Figure 5.9a and we vary the attenua-
tion on the QD. In agreement with Eq. 4.2, increasing the QD power leads to larger Rabi
frequencies.

Figure 5.9: Measurement results of Rabi oscillations for qubit 2. a) Chevron plot for qubit 2: colorplot
with x-axis the Qubit Drive frequency, y-axis the pulse time and color scale the magnitude of the readout

resonator. b) Behaviour of Rabi oscillation when changing the attenuation on the Qubit Drive pulse.
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In Figure 5.10, we fit Rabi oscillations for 0 dB Qubit Drive attenuation. The first trial
function is a simple sin2

pxq (orange curve). The fit parameters provide a π-pulse duration

Figure 5.10: Comparison of Rabi oscillations fitting functions for qubit 2. The orange curve represents the
fitting function sin2 pxq, the dashed green curve the fitting function

`

sin2 pxq ˆ e´x
˘

.

of 48.6 ˘ 0.1 ns, where the error is of the statistical type. In Figure 5.10 we see an ex-
ample of some decoherence, in fact, trying to fit with a

`

sin2
pxq ˆ e´x

˘

type of function
(dashed green line in Figure 5.10), we obtain better agreement with the data. This can
happen if we do not put the qubit in its flux sweet spot [22]. From the analysis of Figure
5.8b, we have found out that the sweet spot of qubit 2 is -0.1759 V, but in the Rabi os-
cillations we used is -0.1500 V. This accounts for the small decoherence that we observe.
Despite this, the duration of the π-pulse is the same.

We have done the same measurements for qubit 0 and the results are shown in Figure
5.11. We obtain the expected Chevron plot and compared to qubit 2 we can see more
fringes. The reason is that we are sending more power to qubit 0 compared to qubit 2.
In accordance with Eq. 4.2, we expected the Rabi oscillation frequency to increase when
we increase power. With the same technique, we estimate the π-pulse for qubit 0 and we
obtain 36.5 ˘ 0.4 ns, where the error is statistical.

Figure 5.11: Chevron plot for qubit 0: colorplot with x-axis the Qubit Drive frequency, y-axis the pulse
time and color scale the magnitude of the readout resonator.

5.4.2 T1 measurements

We explored the protocol for T1 measurements in Section 4.3.2 and now we will apply it
to qubits 0 and 2. T1 measures the relaxation from the excited state to the ground state.
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Figure 5.12: T1 measurement for qubit 0: demodulated voltage output as a function the sequence duration
has been fitted with e´x. Experimental data in time are measured with a logarithmic step.

For qubit 0 we obtain the result in Figure 5.12. We fit the data in Figure 5.12 with an
exponential fit and obtain the characteristic decay time T1 “ 23.4 ˘ 0.4 µs, where the
error is statistical. This result is in accordance with T1 times typically found in literature
[63].

Figure 5.13: T1 measurement for qubit 2: demodulated voltage output as a function the sequence duration
has been fitted with e´x. Experimental data in time are measured with a logarithmic step.

We can do the same measurement for qubit 2 and we obtain the behaviour in Figure 5.13.
From the exponential fit we are able to extract T1 “ 14.6 ˘ 0.6 µs. We can see that both
qubits have very good coherence times [63] and this is definitely positive for the execution
of gates [32], as explained in Section 2.8.

5.4.3 Ramsey interferometry

Ramsey interferometry, discussed in Section 4.3.3, gives a very precise evaluation of the
qubit frequency. It is also a way to give an estimate of T2 when dephasing is relevant. In
order to find the qubit frequency, we perform the Ramsey protocol and we sweep across
different QD frequencies. This results in the Ramsey fringes in Figure 5.14a for qubit
2. In order to extrapolate the qubit frequency, we choose the frequency with the longer
oscillation period, as shown in Figure 5.14a. In order to verify which of the surrounding
frequencies is the closest to resonance, we can compare 5 curves around the center of
the Ramsey fringes, as shown in Figure 5.14b. By doing this, we are able to determine
that the frequency of qubit 2 is ωq2 “ 5.51645 ˘ 0.00003 GHz. The error in the qubit
frequency is of the maximum type. This result is much more precise compared to the
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qubit spectroscopy shown in Figure 5.7.

Figure 5.14: Extrapolation of the frequency of qubit 2. a) Ramsey fringes for qubit 2: colorplot with
x-axis the pulse duration, y-axis the Qubit Drive frequency and color scale the magnitude of the readout

resonator. The centre of Ramsey fringes has been highlighted with the black straight lines. In b) line-cuts
of the colorplot in a) for fixed Qubit Drive frequencies around the black line.

Another important result is the T ˚
2 measurement. It is typically done off-resonance, so

that it includes a higher degree of dephasing, as shown in Eq. 2.39. The performed fit
uses the function

´

sin pxq ˆ e´x2
¯

. We can extrapolate the decay time of the exponential
and obtain T ˚

2 .

Figure 5.15: On- and off-resonance Ramsey oscillation fit. In a) fit of the off-resonance Ramsey
oscillation at δω “ 2.99 ˘ 0.01 MHz detuning using

´

sin pxq ˆ e´x2
¯

. In b), fit of the on-resonance

Ramsey measurement with pe´xq.

The same procedure can also be done on-resonance, where we simply use an exponential
decay of the type pe´xq to fit data points (Figure 5.15). The off-resonance measurement
in Figure 5.15a gives us T ˚

2,o f f “ 9.2 ˘ 0.4 µs, where the error is statistical. We can
also extrapolate the detuning from fitting the oscillation frequency and we obtain δω “

2.995 ˘ 0.009 MHz, where the error is of the statistical type. The decay time in the
on-resonance case in Figure 5.15b is T ˚

2,on “ 12 ˘ 3 µs. It is clear that on-resonance the
dephasing has decreased and we obtain longer T2 times.

We have done the same measurements for qubit 0 (Figure 5.16a). In Figure 5.16b we
plot five Ramsey measurements at fixed QD frequency and we look out for the one that
oscillates the least. From this procedure we are able to extract the frequency of qubit 0,
which is ωq0 “ 4.84762 ˘ 0.00002 GHz, where the error is maximum. Fit of the on- and
off-resonance Ramsey measurements gives a decay time and detuning: T ˚

2,o f f “ 3.8 ˘

0.5 µs and δω “ 2.37 ˘ 0.04 MHz. The on-resonance decay time is T ˚
2,on “ 4.7 ˘0.4 µs.

The errors of T ˚
2,o f f , T ˚

2,on and δω are all statistical. We observe an increase of T ˚
2 when

going from off-resonance to on-resonance, as expected.
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Figure 5.16: Extrapolation of the frequency of qubit 0. a) The centre of Ramsey fringes has been
highlighted with the black straight lines. In b) line-cuts of the colorplot in a) for fixed Qubit Drive

frequencies around the black line.

5.4.4 Hahn Echo measurement

Figure 5.17: Hahn Echo measurement for qubit 0. We plot the real part of the demodulated output voltage
signal. The orange line is the fit given by pe´xq to give the Hahn-echo time T2. Experimental data in time

are measured with a logarithmic step.

The Hahn Echo measurement is a way to measure T2 in which the effect of dephasing
is suppressed. As shown in Section 4.3.4, this is achieved through a refocusing pulse,
which counteracts dephasing on the equatorial plane by putting the qubit state on the other
side of the equator of the Bloch sphere. As a consequence, we expect a T2 « 2T1. Using
the protocol in Section 4.3.4, we obtain Figure 5.17 for qubit 0 and Figure 5.18 for qubit
2. For qubit 0, we obtain T2 “ 44 ˘ 5 µs, while for qubit 2 we obtain T2 “ 27 ˘ 2 µs,
where both the errors are statistical.

As in the case of T1, the T2 times are comparable to those found in literature [63]. The
two qubits are also comparable to each other. In Hahn echo protocol we expect to have
noticeably diminished the effect of dephasing and we expect to be in the T2 « 2T1 limit.
For qubit 0 we obtain T2 “ 44 ˘ 5 µs and 2T1 “ 46.8 ˘ 0.8 µs, therefore the two
estimates are compatible within the errors. For qubit 2 we obtain T2 “ 27 ˘ 2 µs and
2T1 “ 29 ˘ 1 µs, as expected.

5.5 Conclusion of single-qubit characterization
After the spectroscopy and time-domain measurements, we have found out the key char-
acteristics of the two qubits under study. They are summarized in Table 6. By using Eq.
2.52 in Section 2.8, we are able to give an estimate of the maximum fidelity expected for
the qubits we characterized. We obtain the dephasing decay as Γφ “ Γ2 ´

Γ1
2 from Eq.
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Figure 5.18: Hahn Echo measurement for qubit 2. We plot the real part of the demodulated output voltage
signal. The orange line is the fit given by pe´xq to give the Hahn-echo time T2. Experimental data in time

are measured with a logarithmic step.

Table 6: A brief summary of all the important qubit characteristics at their flux sweet spot, which will be
useful for gate operation and their benchmarking: qubit transition frequency, duration of the π-pulse,

relaxation time T1, on- and off-resonance Ramsey T2 times, Hanh echo T2 times and maximum fidelity for
τ “ 100 ns mean gate duration. The errors of the qubit frequency and maximum fidelity are of the

maximum type, while the remaining are statistical.

2.39. For qubit 0 we have Γφ “ 0.001 ˘ 0.003 µs´1 and Γφ “ 0.003 ˘ 0.004 µs´1

for qubit 2, which means that dephasing (Γφ) consistent with zero and is less of a factor
compared to relaxation and decoherence (Γ1 and Γ2). The errors for the dephasing rates
are of the maximum type. By substituting these results into Eq. 2.52 with a gate dura-
tion τ “ 100 ns we obtain a maximum fidelity F0

max “ 99.85 ˘ 0.01 % for qubit 0 and
F2

max “ 99.76 ˘ 0.03 % for qubit 2, as shown in Table 5. The errors for the fidelities
are maximum errors. The goal in the following Sections is to optimize the pulses we
use for Randomized Benchamarking and try to get as close as possible to the maximum
theoretical value.

5.6 Calibration of π- and π
2-pulses

In Section 4.4.1 we have discussed how to calibrate the π- and π
2 -pulses and the great

impact that this kind of calibration has on the fidelity of the qubits. In this Section we are
going to search for the parameters that optimize the π- and π

2 -pulses for our qubits. We
begin with the calibration of the π-pulse of qubit 0. We have to correct for possible dif-
ferences in amplitude between the I and Q parts of the signal, generated by the AWG, the
LO cards and the I-Q mixer. Ideally, the I and Q parts of the signal have equal amplitudes,
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but a mismatch is not excluded. We use the protocol described in Section 4.4.1 to study
and correct this behaviour. We here send a train of 8, 16, 64 and 256 π-pulses to obtain
Figure 5.19a.

Figure 5.19: π-pulse calibration for qubit 0. a) We apply a train of n π-pulses (n is provided in the legend),
and we measure the demodulated voltage magnitude as a function of the parameter Vamp,π. When we
increase the number of π-pulses the effect of the mismatch between I and Q is more noticeable. b)

Representation on the Bloch sphere of the applied π-pulses train.

The larger is the number of π-pulses, the larger the probability to observe the effect of
the I and Q mismatch. If there is no error, we expect the qubit to be found in the ground
state, which is the initial state, for Vamp,π “ 1. However, since there are unbalances, we
expect to see variations when sweeping across different Vamp,π. Specifically speaking, we
observe an oscillatory behavior of the demodulated output voltage as a function of Vamp,π.
Such behavior depends on the number of π-pulses applied: the larger it is, the faster these
oscillations are. Therefore, we here perform a recursive tune-up: the starting point is the
sequence with a small number of π-pulses. See, for example the blue and orange lines in
Figure 5.19a (namely, for 8 and 16 pulses, respectively). Then, we send longer trains of
pulses, in order to narrow down the range of Vamp,π that matches the I and Q parts of the
signal. When we find the optimal parameter, looking at the Bloch sphere in Figure 5.19b,
we ensure that by performing a long train of π-pulses we actually return to the ground
state as wanted. We perform this sequence of pulses and we find that the optimal Vamp,π is
0.9962 ˘ 0.0004 V , where the error is maximum.

A similar procedure applies for the π
2 -pulse, with a correction parameter Vamp, π2 . The sweet

spot for Vamp, π2 is 0.9322 ˘ 0.0001 V , where the error is of the maximum type.

We repeat the same procedure for qubit 2 and we obtain an optimal Vamp,π of 0.923 ˘

0.001 V , while for Vamp, π2 we found 0.839 ˘ 0.004 V , where these errors are of the max-
imum type.

5.7 DRAG scheme optimization
In Section 4.4.2 we have discussed the DRAG pulse optimization technique and we have
used it to further optimize the signal we are sending to the qubit. We are going to limit
ourselves to calibrate the α parameter in Eq. 4.3 and we leave ∆ fixed. From the AllXY
pulses in 4.4.2 we are going to use the four combinations in the legend of Figure 5.20.

When we vary α, we are moving the state of the qubit on the Bloch sphere. As explained
in more detail in Section 4.4.2, the optimal parameter we find through the intersection of
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Figure 5.20: DRAG scheme optimization for qubit 0 with the AllXY technique: real part of the
demodulated voltage as a function of the DRAG scaling α for the sequences reported in the legend. In
accordance with [64], the Xπ ´ X π

2
and Yπ ´ Y π

2
pulses do not vary with α, while the other two do. The

optimal α is where the two curves (green and orange curves) cross each other.

the two linear fit is α “ ´1.0 nV . We can see that the blue and red curves, which we
expect to have negligible error as described in Section 4.4.2, are in agreement with the
AllXY protocol in [64].

With the same procedure, we do the DRAG scheme for qubit 2 and we obtain the optimal
α “ ´0.42 ˘ 0.04 nV , where this error is maximum. This procedure is very important for
the optimization of the qubit performance. In Section 4.4.2 we showed that it is capable
of reducing phase and leakage errors, hence improving the fidelity of single-qubit gates.

5.8 Randomized Benchmarking
Up to now we have characterized the two qubits and we have optimized the pulses which
we send to perform the single-qubit gates in Section 2.8. Now we are going to perform
the single-qubit Randomized Benchmarking (RB) protocol discussed in Sections 2.8 and
4.5.

Figure 5.21: Randomized Benchmarking of qubit 0. The x-axis represents the number of Clifford gates
used in each sequence and the y-axis is the normalized demodulated voltage of the readout resonator. The

orange curve is the fit of the data points and it provides the fidelity.

In Figure 5.21, we report the real part of the demodulated readout voltage averaged over
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31 pseudo-random seeds, as a function of the number of Clifford gates in the RB se-
quence. We used Eq. 4.7 as fitting function, in order to estimate the parameter p,
which represents the depolarization errors mentioned in Section 4.5. We find out that
p “ 98.803 ˘ 0.001 %, where this error is statistical. The decay fit parameter is related
to the r-parameter through Eq. 4.8. By using Eq. 4.9, we obtain the average single-qubit
Clifford fidelity F “ 99.40 ˘ 0.08 % for qubit 0 and the error is statistical.

Figure 5.22: Randomized Benchmarking outcomes for qubit 0. The orange line is the experimental fit of
the data, obtained from A ` BpN , while the dashed green and magenta curves are the theoretical RB curves

obtained for 99.9 % and 99.4 % target fidelities, respectively, obtained by using 1 ´ τ
3 ¨ pΓ1 ` Γφq and

mean duration gate pulses in the legend. 99.4 % target fidelity is in agreement with the experimental data,
which suggests a mean duration time of the gate pulse sequence of 406.0 ns.

This fidelity is consistent with state of the art qubits [6], [30], but the goal is reaching
99.9 % fidelity for the single-qubit. The higher the single-qubit fidelity is, the better the
two-qubit gates will be. As a matter of fact, when we increase the number of qubits for
multi-gate operation, these small errors accumulate. This is why there is a big push in
making high performance single qubits.

Figure 5.23: Randomized Benchmarking of qubit 2. The x-axis represents the number of Cliffords used in
each sequence and the y-axis is the normalized demodulated voltage of the readout resonator. The orange

curve is the fit of the data points and it provides the fidelity.

From Eq. 2.52 we are able to find the maximum fidelity and compare it the one found
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from the fit. In order to obtain the same fidelity of F “ 99.40 ˘ 0.08 %, we need to have
a mean gate duration τ “ 406 ns, as shown in Figure 5.22. In order to get a fidelity of
99.9 %, the mean duration gate should be 68 ns.

In a similar fashion, we have done the RB measurements for qubit 2 (Figure 5.23).
The fit returns F “ 99.51 ˘ 0.04 % with statistical errors. We can compare it with
the theoretical expectations given in Eq. 2.52 for two different pulses with duration
τ “ r42, 206s ns. The curve with mean gate duration of 206 ns represents the actual
fidelity of F “ 99.51 ˘ 0.04 % and is in agreement with the exponential fit, as shown in
Figure 5.24.

Figure 5.24: Randomized Benchmarking outcomes for qubit 2. The orange line is the experimental fit of
the data, obtained from A ` BpN , while the dashed green and magenta curves are the theoretical RB curves

obtained for 99.9 % and 99.5 % target fidelities, respectively, obtained by using 1 ´ τ
3 ¨ pΓ1 ` Γφq and

mean duration gate pulses in the legend. 99.5 % target fidelity is in agreement with the experimental data,
which suggests a mean duration time of the gate pulse sequence of 206.0 ns.

The curve with mean gate duration of 42 ns represents a fidelity of 99.9 ˘ 0.02 % for
qubit 2 and is the goal of our optimization. From the curves with 99.9 % gate fidelity
it is clear that we have greatly optimized the signals to evaluate the performance of the
qubits, but there is still optimization to be done in order to achieve higher fidelities. The
calibration procedure here proposed has been done iteratively for two times. However, in
order to optimize the process an automatic tune-up is necessary [6], [11], [30], [63], [66].
This is outside the main goal of this thesis, but we stress that the fidelity can be further
improved.

By comparing the results in Figures 5.22 and 5.24, the mean gate time of qubit 0 (τ “

406 ns) is almost double that of qubit 2 (τ “ 206 ns). This can be attributed to how fast
we can make the π-pulse. In the case of qubit 0, the duration of the π-pulse in this mea-
surement is 29.3 ns, while for qubit 2 the duration of the π-pulse is 10 ns. It is obvious
that, if the π-pulse is faster, the qubit is subject to less decoherence while performing a
fixed length sequence, which leads to better fidelities, hence shorter mean gate duration.
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5.9 Avoided Level Crossing
In order to perform two-qubit gates, like the iSWAP discussed in Section 2.10, we need
to couple the two qubits by putting them into resonance. Since qubit 2 has a higher flux
sweet spot frequency (Section 5.2), we flux tune its frequency around that of qubit 0
(Section 4.6).

We perform a spectroscopy on qubit 2 while sweeping the flux on qubit 2 and we observe
the avoided level crossing in Figure 5.25. With a drive attenuation on qubit 2 of 9 dB,
qubit 0 is kept in its ground state at the flux sweet-spot. The avoided level crossing
occurs around the eigenvalue of |11y, obtained from Eq. 2.54. The reason is that, in
order to perform the spectroscopy of qubit 2 in Figure 5.25, we must make the |0y Ñ |1y

transition occur by sending an appropriate QD pulse. Therefore, it is our measurement
that makes the reference energy the eigenvalue of the |11y state of the two coupled qubits.
Furthermore, the faint line between the two branches of the avoided level crossing is only
visible when enough power is sent to excite also the |00y Ñ |11y transition. Since we
are interested in performing a two-qubit gate (the iSWAP), this is definitely an aspect that
might interfere with the swap of energy between the |01y and |10y states, as described in
Sections 2.10 and 4.6. From this experiment we can:

Figure 5.25: Avoided level crossing for qubits 0 and 2: on the x-axis the applied flux on qubit 2 in flux
quanta, on the y-axis the qubit frequency of qubit 2 and the color scale is the demodulated magnitude in
dB of the readout resonator. The black curves represent the |01y and |10y states of the two-qubit system.

They are obtained by fitting the avoided level crossing in accordance with Eq. 2.56.

• estimate the coupling energy J between qubit 0 and qubit 2;

• find the range of the flux on qubit that will allow to put on resonance qubit 0 and
qubit 2, and therefore implement two-qubit gates, like the iSWAP described in Sec-
tion 2.10;

For the latter, we can see that the avoided level crossing occurs around 0.315 ˘ 0.001 Φ0,
where this error is of the maximum type. For the former, we can extract the two curves
from Figure 5.25 and fit them. In order to fit the two curves, we use Eq. 2.56 as a fit model
and we are able to find the coupling J. For the lower branch of the avoided level crossing
we find that Jl “ 8 ˘ 3 MHz, while for the upper branch we find that Ju “ 13 ˘ 2 MHz,
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where both the errors are statistical. The two coupling strengths are compatible with each
other, as expected. Also, the values of the coupling strength are of the same order of
magnitude to those found in literature [34].

5.10 Towards two-qubit gates optimization: preliminary results of
iSWAP gates

The next step is to focus on two-qubit gate operations. In this work, we had the chance
to present preliminary data of an iSWAP gate by using qubits 0 and 2. The starting point
for this measurement are the results in Section 5.9, where we find the optimal flux range
for the two qubits to resonate. In the iSWAP we implement an energy exchange between
the |01y and |10y states of the two qubits, by biasing qubit 2 by means of the external flux
knob, in order to put it on resonance with qubit 0 at its flux-sweet spot.

Figure 5.26: iSWAP exchange of energy between qubit 0 and qubit 2: on the x-axis the magnitude flux
applied on qubit 2 in V, on the y-axis the duration of the flux pulse and the color scale is demodulated

magnitude of the readout resonators of qubit 0 and qubit 2, a) and b) respectively. We perform a
simultaneous measurement of both qubits, as described in Section 4.6. In a) we show the oscillations

between |01y and |10y when reading qubit 0, while in b) we do the same by reading qubit 2.

We here send a flux-voltage pulse with different amplitude and duration, and we obtain
a Chevron-like pattern, which corresponds to the exchange of energy between the states
|01y Ø |10y for both qubits. The proof that the two qubits are actually exchanging energy
is that Figures 5.26a and 5.26b are mirrored with regards to the magnitude of the readout
signal. We extrapolate the oscillations at a fixed flux voltage pulse amplitude, as shown
in Figure 5.27a. We use the approach of Rabi oscillations to find the characteristic os-
cillation time of the two-level system between |01y and |10y. Hence, we fit with a sin2 x
and it results in Figure 5.27b. The oscillations between the states |01y and |10y happen in
21.5 ˘ 0.1 ns, where this error is statistical.

The measured oscillations should be symmetric, as shown in Figure 2.23. We can clearly
see from Figures 5.26 and 5.27 that the oscillations are strongly distorted. This can be due
to many factors. A very common problem is the shape of the signal that we use for the
flux biasing. We typically use square wave-like signal pulse, which has a finite rise. As
occurs for drive pulses, our electronics generate signals similarly to Figure 4.14, which
can cause deviations in the measured response.
This behaviour becomes particularly important when the signal duration is short. When
the signal is long, in fact, over- and under-shooting becomes less relevant. A possible
way to solve this problem is proposed in [71], where they use a hardware solution named
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Figure 5.27: In a) iSWAP exchange energy diagram between Q0 and Q2. The black line identifies the
line-cut corresponding to -0.202 V. In b) line-cut plot, which is fitted with a Rabi-like function in order to

get an estimation of the iSWAP gate duration time.

Cryoscope. It employs a series of filters which correct this kind of behaviour of the sig-
nal.

Other possible imperfections in the system and the setup are: leakage to non-computational
states, gate bleedthrough and cross-talk between next-nearest-neighbors (NNN). In [6]
they have developed an algorithm, called ORBIT, which deals with all the mentioned
problems above. Since transmons are not a perfect two-level system, there are non-
computational levels, like |02y or |20y. When these are close enough to the computational
levels |01y and |10y used in the iSWAP, it is possible that the pulses might cause transi-
tions to the non-computational levels. This can occur because of the overshoot during
the rise. It is also possible that higher harmonics of the signal might not be attenuated
enough, so they could resonate with the non-computational levels. Gate bleedthrough,
instead, refers to the possibility that the mechanism for implementing a gate might not
turn off adequately at the end of the sequence [6]. Finally, NNN manifests itself in the
form of cross-talk, which usually happens when the frequencies of the qubits are similar
and resonate, as described in [6], or if a finite cross-talk occurs in the drive lines on chip.
A possible solution to NNN coupling and parasitic couplings, which could be responsible
for the asymmetry in Figure 5.26, is to change the design of the chip and use a tunable
coupler, i.e. the coupling between two qubits is provided by an additional qubit [33]. It al-
lows to turn on and off the coupling between the qubits, which enables better single-qubit
gates and decreases the cross-talk between NNN qubits. Tunable couplers also help with
reducing parasitic effects when the duration of the gate is longer [33], so that the limiting
factor in gate fidelities is the decoherence of the qubits.
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6 Conclusions
In this thesis we have characterised two coupled qubits. These measurements provide
us with a starting point for the optimization process of the pulses used for single qubit
gates. By adjusting specific parameters of the instruments and applying specific pulse
calibration procedures, the imperfections in the generated pulses are compensated. This
procedure is important because it allows to improve the fidelity of single-qubit operations.
In order to give an estimate of this fidelity we use Randomized Benchmarking (RB). This
procedure is representative of real-life algorithms and we obtain the following gate fideli-
ties: FQ0 “ 99.40 ˘ 0.01 % and FQ2 “ 99.54 ˘ 0.04 %. The optimization process
has enabled us to have high fidelity single-qubit gates. It is reasonable to assume that, by
improving the optimization parameters, it is possible to further improve the RB fidelities,
in accordance with the theoretical predictions.

The implementation of optimization protocols is crucial for two-qubit gates, because their
realization can be hampered if the single-qubit fidelities are low. The golden standard is
99.9 %, but despite this our fidelities are high enough to observe two-qubit gates. Indeed,
we have reported preliminary iSWAP gates measurements, which confirm the possibil-
ity to implement two-qubit gates on the analyzed device. However, we have noticed a
strong asymmetry in the iSWAP oscillations, which may be related to both unoptimized
control and drive pulses, unwanted coupling with nearest qubits on chip and leakage to
non-computational states.

All these problems are common [6], [33], [71], [72],[73], and further investigation is
required in order to optimize the outcomes of the iSWAP measurements for future im-
plementation of high-fidelity two- and multi-qubit gates operations. Future perspectives
include the possibility to provide two-qubit iSWAP gate fidelity, study other types of two-
qubit gates and eventually exploit the circuit design in order to implement multi-qubit al-
gorithms involving all the 5 qubits on the chip, such as quantum error detection/correction
schemes [6], [28], [38]. The results reported in this work are of great value to reach the
goal, because they suggest that a correct and deep tune-up of measurement and charac-
terization protocols for multi-qubit system, and its understanding, is fundamental for the
scaling of superconducting quantum processors.
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Appendix

A Example of up-conversion in an I-Q Mixer

The I-Q mixer requires three input signals: LO signal, I and Q signals. The LO signal is:

sLOptq “ ALO cos pωLOtq, (A.1)

with ωLO the local oscillator frequency and ALO the amplitude of the LO. The I and Q
signals are IF signals of the type:

sIptq “ AI cos pωIFtq (A.2)

sQptq “ AQ sin pωIFtq. (A.3)

The LO signals is equally split between the two branches (Figure A.1) and becomes:

sLOptq
2

“
ALO

2
cos pωLOtq. (A.4)

In one of the two branches occurs a π
2 shift and the LO signal becomes ´

ALO
2 sin pωLOtq.

These signals are combined with the I and Q signals and the resulting signal is of the
following frequencies:

ωRF “ ωLO ˘ ωIF . (A.5)

The output signal is an RF signal of similar frequency of the LO, since the IF signal is
usually an order of magnitude lesser than the LO signal. The RF signal has the following
expression:

sRFptq “ ARF cos pωRFt ` θRFq, (A.6)

with ωRF from Eq. 3.3 and θRF an additional phase given by the mixers when combining
the signals.

Figure A.1: Diagram of the processes happening for the correct operation of an I-Q Mixer
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B Derivation of the theoretical expression of avoided level
crossing

The Hamiltonian of the two qubits coupled through the resonator for ℏ “ 1 reads as [34]:

HJ “
ωq1

2
σz

1 `
ωq2

2
σz

2 ` pωr ` χ1σ
z
1 ` χ2σ

z
2qa:a ` Jpσ´

1 σ
`

2 ` σ`

1 σ
´

2 q. (B.1)

Here we consider only one mode of the cavity, for example j “ 1, and we work in the
low photon regime, such that a:

ja j “ 1. Now we write Eq. B.1 in the matrix form,
remembering that, for example, σz

1 ” σz
1 b 1̂2. These are all matrices in a 4D Hilbert

space and we write them as:

σz
1 “

¨

˚

˚

˝

1 0 0 0
0 1 0 0
0 0 ´1 0
0 0 0 ´1

˛

‹

‹

‚

σz
2 “

¨

˚

˚

˝

1 0 0 0
0 ´1 0 0
0 0 1 0
0 0 0 ´1

˛

‹

‹

‚

(B.2)

σ`

1 “

¨

˚

˚

˝

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

˛

‹

‹

‚

σ´

1 “

¨

˚

˚

˝

0 0 0 0
0 0 0 0
1 0 0 0
0 1 0 0

˛

‹

‹

‚

(B.3)

σ`

2 “

¨

˚

˚

˝

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

˛

‹

‹

‚

σ´

2 “

¨

˚

˚

˝

0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

˛

‹

‹

‚

(B.4)

σ´

2 σ
`

1 “

¨

˚

˚

˝

0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

˛

‹

‹

‚

σ`

2 σ
´

1 “

¨

˚

˚

˝

0 0 0 0
0 0 0 0
0 1 0 0
0 0 0 0

˛

‹

‹

‚

. (B.5)

Using this representation, we can rewrite the Hamiltonian of the two coupled qubits (ig-
noring the coupling resonator) in Eq. B.1 in the matrix form as follows:

HJ “

¨

˚

˚

˝

ωq1

2 `
ωq2

2 0 0 0
0 ωq1

2 ´
ωq2

2 J 0
0 J ´ωq1

2 `
ωq2

2 0
0 0 0 ´ωq1

2 ´
ωq2

2

˛

‹

‹

‚

. (B.6)

Now we diagonalize Eq.B.6 and we obtain four eigenvalues:

f1,2 “ ˘p
ωq1 ` ωq2

2
q (B.7)

f3,4 “ ˘

b

pωq2 ´ ωq1q
2

` 4J2

2
(B.8)

It is clear that the avoided level crossing is described by the eigenvalues f3,4. Let us
suppose that in Eq. B.8 the variable is the frequency of qubit, so ωq1 is kept constant and
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ωq2 “ ω
p0q

q2

c∣∣∣∣cos
´

πΦ
Φ0

¯∣∣∣∣, with the external flux Φ the parameter that we change. In order

for the theoretical predictions and experimental measurements, like those in [34] and [35],
to be in agreement, we cannot use directly Eq. B.8. Whereas, we set the reference level
of the energy to be that of the |11y state, which has the eigenvalue f1. Therefore, the
theoretical prediction that agrees with the experiments is given by:

f pωq2q “
ωq1 ` ωq2

2
˘

b

pωq2 ´ ωq1q
2

` 4J2

2
(B.9)
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