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1 Introduction

Today, quantum computers are gaining more and more popularity in the scientific
community. One of the reasons of this strong interest is their ability to solve hard
problems which could not be solved by classical computers (in reasonable times)
[1]. Some examples of these problems are the study of large molecules for medical
applications [2], the prime factorization of large numbers [3], which is largely used
by modern cryptography [4], and finally financial systems modelling [5].
The operations of a quantum computers are based on Quantum Mechanics (QM).
This is a very interesting aspect because, by studying a qubit, we are able to in-
spect the behaviour of a quantum two-level system, such as an atom, and observe
its behaviour. Thus, quantum computation is also an inspiring platform where to
test fundamental notions of QM and where to test the most advanced protocols of
information technology.
One of the greatest challenges in realizing quantum computers is controlling and
fighting decoherence. According to QM, a quantum object is described by a wave-
function, which is characterized both by a density of probability and a phase [6].
This description introduces a series of quantum phenomena, such as interference
and entanglement, the very essence of quantum physics. However, the system can
undergo through dephasing if exposed to an external perturbation [7]. Moreover,
a quantum system may be very sensitive to environmental noise and can easily
switch between the ground and excited states by adsorption or emission. As a mat-
ter of fact, any interaction between a quantum system and the external world can
introduce a perturbation and destroy the coherence. Because of these, scientists are
trying to find a good candidate for engineering qubits whose coherence times are
sufficiently longer than the desired computational times.
In particular, today’s most studied quantum computers are based on superconduct-
ing quantum processors. The superconducting quantum computer is currently the
only one able to operate with more than 100 qubits [8], [9]. The outstanding re-
sult of such devices is the possibility to control the quantum state of the qubit by
tuning the circuit parameters by means of macroscopic quantities, like the voltage,
the current, the magnetic flux. Moreover, the reduction of decoherence sources for
each qubit allows an overall enhancement of the control of the computer architec-
ture, which is a mandatory step towards scalability [9].
All superconducting qubits are based on the Josephson effect [10], in this thesis
we will consider the most common one: the transmon [11]. Since superconduct-
ing qubits are based on solid state circuits, the sources of decoherence are also
determined by the control electronics and the intrinsic properties of the materials.
Typical noise sources are the coupling with the readout and control circuits, the
charge offset in the Josephson junctions (JJs), which are the building elements of

3



the transmon qubit, the dielectric losses in the substrate. By changing the qubit
design, the scientists tried to suppress one or more decoherence channels in order
to enhance coherence times. The transmon qubit reduces decoherence induced by
charge offset noise, as will be discussed in this work.
In chapter 2, we will describe the basic principles of superconducting qubits. Af-
ter having introduced the concept of quantum bit and the basic requirements for
quantum computation (section 2.1), we will describe the phenomenology of su-
perconductors, in section 2.2, and the Josephson effect, in section 2.3. A special
focus will be given to the phenomenon of flux quantization and its manifestation
in the SQUIDs (section 2.4), which are fundamental for tuning and control of most
qubits. In section 2.5, we will demonstrate that a superconducting qubit with a JJ
can be described by a QM model, based on the circuit Quantum Electrodynamics.
We will introduce the transmon qubit circuit and its main features (section 2.6), and
point out how to tune its parameters through an external flux bias (section 2.7). In
order to perform quantum algorithms, we must be able to initialise and control the
qubit state, as discussed in section 2.7. As in any classical computer, it is manda-
tory to read and write the qubit state, but, according to QM, measuring the state of a
quantum system implies its destruction. Therefore, in section 2.8, we will describe
how to perform Quantum Non Demolitive measurements. We will also study the
coupling between two qubits (section 2.9), which is the basic request for quantum
computation.
In chapter 3, we will discuss noise and decoherence for a single tunable transmon
qubit. In view of the final target of understanding the principal sources of decoher-
ence in such systems, providing a self-consistent method for the identification of
these sources in real qubits measurements. We will use the Bloch-Redfield model
for noise in a two level system, and the noise power spectral density as a finger-
print of its behaviour and effect. We will focus on the energy relaxation processes
in section 3.3, and on the dephasing channels in section 3.4, then summarized in
section 3.5, respectively.
Afterwards, in chapter 4, we will describe the experimental setup. We will start
from the design of the multi-qubit measured in this work (section 4.1), then we
will focus on the dilution cryostat (section 4.2), and the electronics at cryogenic
temperatures 4.3. In section 4.3.2, we will give an overview on the room temper-
ature electronics used for qubit measurements. The principal protocols for qubit
characterization are reported in section 4.3.3. We will give a particular focus on
the time evolution measurements (section 4.3.4), which allow evaluating the coher-
ence times of the qubit, i.e. the relaxation and dephasing rates.
Finally, in chapter 5, we will report the measurements and the analysis performed
in this work. In sections 5.1.1 and 5.1.2, we will measure the characteristic pa-
rameters of two coupled split-transmon qubits, as well as their readout resonators.
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Then, in section 5.2, we will focus on the time evolution of our systems by per-
forming the Rabi protocol (section 5.2.1). In order to understand the contribution
to decoherence of the noise sources previously described, we will compare the ex-
perimental relaxation time, in section 5.2.2 with the decoherence times simulated
with the Python library scqubits [12]. This package is based on the noise analysis
reported in section 3.1. Then, by observing the Ramsey fringes measured in section
5.2.3, we will give a first estimation of the dephasing time of the qubits. Thanks to
the Hahn Echo protocol (section 5.2.4), we will measure the coherence times of the
two qubits. By comparing the experimental results with scqubits [12] simulations,
we will provide a self-consistent evaluation of the flux noise amplitude, and the
resulting theoretical dephasing time.
In section 5.3, we will report on two-qubits coupling measurements, thus demon-
strating that as the coupling became relevant, novel noise sources arise when the
two qubits enter an entangled state.
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2 Superconducting qubits

2.1 Qubits and DiVincenzo criteria

Quantum bits, or qubits, are a unit of computational information, based on a quan-
tum two-level system, with eigenstates |0⟩ and |1⟩ [13]. The state |0⟩ is called
ground state, while |1⟩ is the excited state. Unlike classical bits, which are binary
systems where the information is encoded in just two possible values, for qubits the
quantum superposition is a powerful way to encode the information in a quantum
state of the type [7]:

|ψ⟩ = α |0⟩+ β |1⟩ , |α2|+ |β2| = 1. (1)

Indeed, the main difference between classical computers and quantum processors
is that, because of the probabilistic nature of QM, qubits allow for an infinite su-
perposition of the two states |0⟩ and |1⟩, thus making quantum computation much
more efficient than the classical one.
A qubit can be represented as a vector on the Bloch sphere in figure 1, where the
Dirac notation is used as a set of orthonormal basis [13], [7]:

|0⟩ ≡

1

0

 |1⟩ ≡

0

1

 . (2)

In this representation, a generic state of the qubit is a point of the Bloch sphere,

Figure 1: Bloch sphere representation: the generic quantum state |ϕ⟩ is a point on the sphere with
coordinates ϕ and θ [13]
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defined by a combination of |1⟩ and |0⟩:

|ψ⟩ = cos
θ

2
|0⟩+ sin

θ

2
eiϕ |1⟩ , (3)

where the angles θ and ϕ define the position on the Bloch sphere. The ground state
|0⟩ corresponds to the North Pole while the excited state |1⟩ is the South Pole.

In 1996–2000, scientists questioned what basic criteria the qubit had to satisfy
in order to work and to build a quantum computer [1], [13]. In particular, coher-
ence, isolation from the environment and ability to control the qubit state with an
external degree of freedom became the most interesting topics in the field. The
theoretical physicist DiVincenzo proposed a list of requirements necessary to build
a quantum computer [13], [1]. Firstly, it must be possible to fabricate registers with
several qubits, i.e. the qubits must be scalable. As in a classical computer, it must
be possible to read the state of the qubit. As will be discussed in section 2.8, it is
not a simple request because it is often required to measure the qubit state without
destroying it, but from the QM principles, any measure of a quantum object will
make it collapse. Because of this, it is mandatory to find an indirect way to mea-
sure the qubit state, also known as Quantum Non Demolitive Readout, which will
be discussed in section 2.8. In order to control the qubit state, it must be possible to
initialise it. Moreover, the requirement for quantum algorithms, makes mandatory
to implement multi-qubits gates with a high fidelity. Finally, in order to be able to
implement several single and two qubits gates, the coherence time of our system
must exceed the duration of a large number of gates. One of the main problems that
the scientists had to face in order to build a quantum computer, in fact, was finding
a compromise between the need to use a quantum two-level system, such as an
atom, a very sensitive object, with the fundamental requirement to easily control
and readout its state, and the difficulties of maintaining it coherent during these
processes.

Superconducting qubits, and in particular JJs-based qubits, satisfy these crite-
ria to a reasonable degree. First, superconducting qubits chips are based on solid
state physics and semiconductors technology, just as the processors used in clas-
sical computers. This make superconducting qubits easy to fabricate and to scale
up. Moreover, the circuital nature of these systems allows for a practical way to
manipulate and read the qubit state, thus giving the possibility to implement actual
quantum gates [7].

In section 2.2 and 2.3 we will point out the most important properties of su-
perconductors and why they are so useful to build a quantum computer. We will
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discuss under which circumstances a superconducting circuit can be exploited to
build a computational space, and can be studied with a QM model through the
circuit Quantum Electrodynamics (section 2.5). After having introduced the trans-
mon qubit in section 2.6, which will be characterized in this thesis, in section 2.7,
we will demonstrate that a superconducting qubit can be controlled and initialized
with a drive signal, while in section 2.8, we will study a way to read the state of
the qubit without destroying it, by coupling it with a readout resonator. Moreover,
since a two-qubit coupling is required in future computational applications, we will
also show a way to implement it and observe energy exchange between two qubits,
in section 2.9.

2.2 Superconductors

Superconductors are special materials, which manifest particular macroscopic ef-
fects when they are cooled below a critical temperature TC , like zero resistance and
perfect diamagnetism [10], [14]. This means that below TC , DC electrical resis-
tance is experimentally zero, as we can see in figure 2 (a), and the external magnetic
field, is completely expelled below a certain critical magnetic field threshold. This
second phenomenon is called Meissner effect, and it is described in figure 2 (b).
Critical temperatures of superconductors largely employed in quantum circuits,

Figure 2: Empirical properties of superconducting materials. a) The electrical resistivity as a func-
tion of the temperature for a superconductor (green) and a normal metal (purple). Above the critical
temperature Tc of the superconductor, the electrical resistivity follows an ohmic behaviour, while for
T < Tc it abruptly goes to zero. b) Pictorial representation of the Meissner effect: in the supercon-
ducting state (T < Tc), the magnetic field B is completely expelled from the superconductor.

like Aluminium or Niobium compounds, range from 1 K to 10 K, respectively.
Superconductors can be described microscopically by the Bardeen-Cooper-
-Schrieffer theory [15]. At sufficiently low temperature, electrons near the Fermi
surface become unstable and tend to form correlated pairs called Cooper pairs, cou-
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ples of electrons in a singlet state, with an effective mass m∗ = 2me and charge
e∗ = 2e [15]. This behaviour occurs because there is an attraction between the
electrons in the pair that is able to overcome Coulombian repulsion. Cooper pairs
behave like bosons, i.e. they can form a Bose-Einstein condensate below TC . They
are described by [14], [15]:

|ψ⟩BCS =
∏
k

(
uk + vke

iθkc†k↑c
†
−k↓

)
, (4)

where c†k↑ and c†−k↓
are the creation operators of the electrons, uk and vk are the

probabilities to form or not a Cooper pair, related by the equation [15][14]:

ukvK =
1

2

Ek

∆k
. (5)

Here ∆k is the superconductors’ energy gap andEk is the single-particle excitation
energy [15], [14]:

Ek =
√
∆2

k + ξ2k, (6)

where ξk is the energy of the non-interacting electrons. The energy gap in the
excitation spectrum in equation 4 can be rewritten as a function of the temperature
as [15], [14]:

∆k = −
∑
l

vkl
∆l

2El
tanh

El

2kBT
. (7)

This means that if the energy of the system is lower than the energy gap ∆, single-

Figure 3: Single-particles excitations spectrum of a Bardeen-Cooper-Schrieffer superconductor: if
single-particle energy ϵk is below the superconducting energy gap ∆, the system is superconducting.

particle excitations are forbidden and electrons remain in the condensate [15], [14].
Therefore, if a current of Cooper pairs is induced, there is no voltage drop across
the system, i.e. below Tc the resistance of the superconductor is zero, and there is
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no ohmic dissipation. On the contrary, if the energy overcomes this gap, single-
particle excitations are allowed.
Superconductivity can also be described as a critical phenomenon, as discussed in
the Ginzburg-Landau (GL) theory [14]. It derives from Landau’s theory of second
order phase transitions, in which the free energy F near the transition is expressed
in terms of an order parameter. In the GL theory, the order parameter is the super-
conducting wavefunction:

ψ = |ψ| eiϕ, (8)

where |ψ|2 is the density of superconducting particles and ϕ is the superconduct-
ing phase. The important result of this theory is that we can access QM properties
like the wavefunctions with macroscopic parameters, such as the density of Cooper
pairs and the macroscopic phase of the superconductor [14]. Starting from this ex-
pression, we can derive other properties of superconductors, such as the Josephson
effect, described in section 2.3, and the flux quantization, as discussed in section
2.4.

2.3 Josephson effect

The Josephson effect is a macroscopic quantum phenomenon that occurs when two
superconductors are separated by a thin barrier of around 1 nm [10] (figure 4). The
current through the junction depends on the phase difference of the superconduc-
tors. The two Josephson equations are [10]:

Figure 4: Schematic representation of a JJ: the superconducting electrodes, S1 and S2 in grey, are
separated by an insulating barrier, in orange. Both electrodes are connected to an external conven-
tional circuit, represented by a voltage multimeter V and a current generator A [16].

IS(t) = IC sinϕ, (9)

∂ϕ

∂t
=

2eV (t)

ℏ
, (10)
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where ϕ = ϕ1 − ϕ2 is the difference between the two macroscopic phases of the
superconductors, while V (t) is the potential across the junction. The first equation
9 states that the superconducting current is nonlinear as a function of the supercon-
ducting phase difference. When current-biasing the Josephson junction (JJ) with a
current I > IC , namely the critical current, a voltage appears across the junction,
while for I < IC it becomes superconducting [10].
Equation 10 states that the time evolution of the phase difference is linked to the
voltage. We observe that if the phase is constant, V = 0 and the non-dissipative
behaviour is confirmed.
By applying the chain rule to the second Josephson equation, 10, we obtain:

∂I

∂t
=
∂ϕ

∂t

∂I

∂ϕ
=

2eV (t)

ℏ
IC cosϕ, (11)

i.e. the junction is a non-linear inductance:

L(ϕ) =
LJ

cosϕ
, (12)

where:
LJ =

ℏ
2eIC

. (13)

We can describe a Josephson junction with several models, like the tunnel junction
microscopic (TJM [17]) model or the Resistively Capacitance Shunted Junction
(RCSJ model [17]), according to which we can associate the junction with a circuit
like the one in figure 5. The Josephson junction can be seen as a non-linear inductor
in parallel with a parallel plate capacitance C, which forms due to the presence of
a non-superconducting barrier between the two superconducting electrodes. The
resulting charge energy will be:

EC =
e2

2C
. (14)

At the same time, the resistance R in the circuit 5 is due to an ohmic and dissipative
term, which relates to the formation of the so-called quasiparticles in the junctions.
Depending on the interplay between capacitive and dissipative elements in the
junctions, we can distinguish between different transport regimes fundamental for
the understanding of the main noise sources in Josephson devices [10]. If the junc-
tion is current-biased, from the circuit in figure 5 we obtain [17]:

I = IC sinϕ+
V

R
+ C

dV

dt
. (15)
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Figure 5: Current-biased Josephson junction equivalent circuit scheme according to the Resistively
and Capacitively Shunted Junction model [10], whose elements are: the Josephson current IC0,
resistance R, capacitance C and bias current Idc

If we use the second Josephson equation 10 for the voltage, the circuit equation
describes the phase dynamics, and reads as:

C

(
ϕ0
2π

)2 ∂2ϕ

∂t2
+

1

R

(
ϕ0
2π

)2 ∂ϕ

∂t
+
∂U

∂t
= 0, (16)

where the potential U, known as washboard potential, describes the energy stored
in the junction [18] (figure 6):

U = −EJ

(
cosϕ+

I

IC
ϕ

)
, (17)

with
EJ =

ℏ
2e
IC , (18)

is the energy associated to the junction, called Josephson energy.
The capacitance C is related to the inertia of a particle associated to the phase
difference ϕ. The motion of the phase particle along the washboard potential de-
termines the state of the junction: resistive and superconducting, depending on the
ratio α = I

IC
. If the bias current is small compared to the critical current (α < 1),

the phase of the junction is trapped in a potential minimum and the state is super-
conducting. For α > 1, the washboard potential will bend and let the phase escape
from the well, so the regime will be resistive [10].
These escaping events also occur stochastically for bias-currents I close to Ic, but
not necessarily larger (I ≲ Ic), induced by both Macroscopic Quantum Tunnelling
(MQT) of the phase and thermal fluctuations [17], [10], and represent a noise
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Figure 6: Washboard potential: as the ratio α = I/IC increases, the potential starts to bend and the
phase can escape from the well, determining the voltage state. On the contrary, if the phase remains
trapped in a minimum of the potential energy, the junction is in the superconducting state [17].

source for the junction.
In order to characterize dissipative effects in a Josephson junction, we introduce
the dimensionless Stewart-McCumber parameter [10]:

βJ =
1

ωJRC
, (19)

where:
ωJ =

1√
LJC

, (20)

is the plasma frequency of the circuit, i.e. the oscillation frequency of the phase-
particle in the superconducting state on the washboard potential. For β ≫ 1 ,
i.e. for metallic-like barriers with small capacitance, we are in the so called over-
damped regime. For large capacitance, β ≪ 1 and we are in the underdamped
regime. As a matter of fact, the Stewart-McCumber parameter is strictly connected
to the quality factor of the circuit as β = 1

Q2 . In qubit circuits, underdamped
Josephson junctions are a strong requirement because their quality factor is larger
compared to overdamped junctions. This guarantees lower dissipation related to
quasiparticles formation, and reasonable coherence times [11] (section 3.1).
Quasiparticles currents can be generated by means of two main mechanisms: i)
thermal breaking of Cooper pairs for thermal energies kBT > ∆1 + ∆2, where
∆1 and ∆2 are the energy gaps of the superconducting electrodes in the junction;
ii) high-energy eV > ∆1 + ∆2. While most of Josephson-based superconduct-
ing quantum circuits, such as qubits, are operated at temperatures much smaller
than the superconducting gap electrodes, quasiparticles can still arise because of
point ii). An experimental footprint able to quantify the quasiparticles dissipation
is the IV curve of the JJ, shown in figure. 7. By current-biasing a JJ with a current
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I > IC , the IV curve follows a standard ohmic behaviour with normal resistance
RN [10], [17]. Therefore, the dissipation can be quantified in terms of the ohmic
parameter RN . However, by ramping the bias current below IC , it is still possible
to recover a finite voltage across the device. This indicates the presence of dissipa-
tive quasiparticles term that strongly depends on the shape of the IV curve below
the superconducting gap (subgap region with resistanceRsubgap) [10]. Specifically
speaking, the subgap IV curve shape is intrinsically related to the barrier charg-
ing energy. In the case of overdamped junction, the path from superconducting

Figure 7: Josephson current for a JJ with two identical superconductors (∆1 = ∆2 = ∆): in a)
we highlight the transition (in blue) from superconducting to ohmic states, in b) from ohmic back to
superconducting (in blue). In black, we can see the normal ohmic I-V characteristic for a metallic
junction, recovered for T > Tc.

to ohmic states, and back, is not hysteretic, thus the only dissipative contribution
comes from the RN value. For underdamped junctions, we observe hysteresis in
the IV characteristics curve. This means that if the system goes from supercon-
ducting to ohmic states, the main dissipative contribution is given by RN (figure 7
(a)). On the other hand, when it returns to the superconducting state, the dissipa-
tion is quantified by means of the subgap resistance (figure 7 (b)). The larger is the
resistance of the dissipative quasiparticles channel, the smaller will be the proba-
bility for quasiparticles to induce tunnelling currents across the junction, and as a
consequence dissipation in the system. As a matter of fact, JJs in superconducting
qubits are typically required to have large subgap resistances [19], [20], [10].

2.4 SQUID and flux quantization

A superconducting loop with two JJs is called superconducting quantum interfer-
ence device (SQUID) [10]. If a SQUID is exposed to a perpendicular magnetic
field, the flux Φ through the loop area is quantized. This behaviour is known as
flux quantization. By applying the properties of zero resistance and perfect dia-
magnetism, we found that the magnetic flux calculated on a closed loop in a super-
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conductor is a multiple of a flux quantum [14], [10]:

ΦS(B) =

∫
B · dS =

∫
∇×AdS =

2mπℏ
2e

= mΦ0, (21)

where Φ0 = h
2e is the superconducting flux quantum. From this result, by using

and using the GL superconducting wavefunction 8, it can be proven that the phase
difference across the loop is linked to the external flux as ϕ = 2πΦ/Φ0 [10], [14].
In this way, the current, and thus the energy, of the SQUID can be easily controlled
by an external flux bias.

Figure 8: DC SQUID schematic representation [21]: the incoming current I splits in the two
branches of the superconducting ring. There, it crosses two JJs, whose currents are ICa and ICb ,
with corresponding resistances Ra and Rb. The loop is exposed to a perpendicular magnetic flux
ΦB .

As we did for the JJ, the equivalent circuit for the DC-SQUID in figure 8 is de-
scribed by the circuit equation [21], [17]:

I = ICa sinϕa + ICb
sinϕb +

V

Ra
+
V

Rb
. (22)

By applying flux quantization and assuming that the two junctions are identical,
we find that:

I = 2IC sinϕ cos
πΦ

Φ0
+

(
1

Ra
+

1

Rb

)
V, (23)
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where ϕ = ϕa − ϕb is the phase difference, Φ is the external magnetic field flux
and Φ0 its flux quantum. By means of the relation E ∝ −dI/dΦ, it is possible to
recover the dependence on the external flux of the SQUID energy as [11]:

EJ,SQUID = EJ | cos
πΦ

Φ0
|. (24)

This result is fundamental for the design of tunable superconducting qubits 2.6, as
shown in section 2.7.
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2.5 Circuit Quantum Electrodynamics

In this section, we will show that a circuit with a JJ can be studied with a QM
model [7], [11]. In general, Josephson devices can be treated as binary system
under particular circumstances, and therefore they can be used for qubits hardware.
Let us start from the time-dependent Schrödinger equation [7]:

Ĥ |ψ⟩ = iℏ
∂

∂t
|ψ⟩ ,

where |ψ⟩ is the state of the quantum system at time t and Ĥ is the Hamiltonian
that describes the total energy. To understand the dynamics of a superconducting
qubit circuit, we can start with a linear LC resonant circuit (figure 9 (a)). The
kinetic energy can be associated with the electrical energy of the circuit, while
the potential energy with the magnetic energy. The elements of the circuit can be
represented in terms of generalized circuit coordinates, charge and flux [7]. For the
flux, we define the time integral of the voltage [7]:

Φn(t) =

∫ t

−∞
Vn(t

′)dt′, (25)

where Vn(t) are the voltages at the circuit nodes. For the charge, we have:

Qn(t) =

∫ t

−∞
In(t

′)dt′, (26)

where In(t) are the currents in the circuit branches. By using the classical relations
V = LdI

dt and I = C dV
dt , the energy terms for the inductor and the capacitor in an

LC circuit, as a function of the node flux, become:

TC =
C

2
Φ̇2, (27)

and
UL =

C

2
Φ2. (28)

Thus, the Hamiltonian reads as:

H =
Q2

2C
+

Φ2

2C
=
CV 2

2
+
LI2

2
. (29)

This Hamiltonian is analogous to the one of a mechanical harmonic oscillator with
mass m = C and resonance frequency ω = 1√

LC
, where the role of the position

x̂ and momentum p̂ is played by Φ and Q, respectively [7]. In order to describe a
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quantum circuit, the flux and the charge must be promoted to quantum operators
which satisfy the commutation relation [7]:

[Φ̂, Q̂] = iℏ, (30)

and so the indetermination relation:

∆Q∆Φ ≥ 1. (31)

Thus, if the charge is well-defined, the flux will not and vice versa.
From flux quantization (section 2.4), we observe that the flux and the phase op-
erators are linked through the relation ϕ̂ = 2πΦ̂

Φ0
. Defining the phase, or reduced

flux, operator ϕ̂ and the reduced charge operator n̂ = Q
2e , the Quantum Mechanical

Hamiltonian for the circuit can be written as [7]:

H = 4ECn
2 +

ϕ2EL

2
, (32)

recovering the Hamiltonian of a particle in a one-dimentional quadratic potential,
a quantum harmonic oscillator (QHO), as shown in figure 9 (b). Treating ϕ as
the generalized position coordinate, the solution to the eingenvalues problem gives
an infinite series of eigenstates corresponding to eigenenergies equally spaced [7].
The plasma frequency of this harmonic oscillator is

ωr =
1√
LC

=

√
8ELEC

ℏ2
. (33)

In second quantization, the QHO hamiltonian becomes [7]:

H = ℏωr(â
†â+

1

2
). (34)

The degeneration of the QHO energies does not allow building a quantum com-
putational base set. However, by replacing the linear inductor with a non-linear
element, like a JJ (figure 9 (c)), the functional form of the potential energy follows
the nonlinear behaviour of the Josephson energy in equation 2.3, and H becomes:

H = 4ECn
2 − EJ cosϕ, (35)

where the charge energy is:

EC =
e2

2Cσ
, (36)

and Cσ = CJ + CS is the total circuit capacitance, which includes shunt capaci-
tance and Josephson capacitance. The JJ introduces the anharmonic element that
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Figure 9: Comparison between an LC circuit (quantum harmonic oscillator, QHO), on the left, and
a nonlinear anharmonic oscillator with a JJ (transmon), on the right [7]. In a) equivalent circuit of
an LC oscillator with Lr and Cr; b) energy potential for QHO, where energy levels are equidistantly
spaced ℏωr; c) Josephson qubit circuit, the non-linear inductance LJ represented by the JJ is shunted
with a capacitanceCs; d) energy potential of a transmon qubit in blue, compared to the quadratic one
of a QHO (dashed red). We can isolate the ground state |0⟩ and the excited state |1⟩, whose energy
separation ℏω01 is different from ℏω12 [7].

ensures an inhomogeneous separation of the energy levels, thus the possibility to
implement an artificial quasi-two-level system (Fig 9 (d)) [7].
Superconducting qubits are characterized in terms of the ratio EJ

EC
and the compu-

tational basis used for the two-level system implementation [13]. According to the
indetermination principle in equation 31, for high values of the ratio EJ

EC
the phase

is well-defined, while for low values of the EJ
EC

ratio the dynamics is determined
by the number of Cooper pairs. Therefore, it is possible to define three main super-
conducting qubits archetypes: the phase, the flux and the charge qubits [11]. Minor
or major modifications to one of these main circuits allows for the implementation
of several other superconducting qubits. The main reason behind the searching of
innovative designs is the need to fight decoherence, as we will see for the transmon
qubit [11] (section 2.6, 3.1). We now summarize the main characteristics of the
three superconducting qubit archetypes [13].

• Phase qubit: In a phase qubit, the two-level system is formed by the poten-
tial wells of a current-biased JJ [13] (10 (c)). This is based on the phase dy-
namics of the JJ (section 2.3). Specifically, the two-level system is obtained
by taking the first two energy levels of a well of the washboard potential,
discussed in equation 6 [13]. In this qubit, the ratio EJ

EC
is much larger than

one, and this property protects this qubit from charge noise [11]. The main
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Figure 10: Circuital representation and potential energy of a Cooper-Pair-Box (a), a flux-qubit and
c) a phase qubit [13].

problem of the phase qubit is the fact that coherence times are too short [13].
In fact, they are very sensible to phase noise, induced by critical current fluc-
tuations. This unavoidably introduces decoherence, as will be discussed in
section 3.4.

• Flux qubit: In its simplest form, it consists of a SQUID controlled by an ex-
ternal flux [13]. The flux qubit Hamiltonian can be seen as the one describing
a particle with an isotropic mass moving in a periodic two-dimensional po-
tential [13]. It was observed that if Φext/Φ0 = 0.5 the potential is symmetric
and the states have a well-defined parity [13] (10 (b)). In addition, in order
to create a two-level system, the circuit must have a large self-inductance, so
the superconducting loop needs to be large [13]. This introduces a high sen-
sitivity to flux noise [11]. On the other hand, if the external flux is near this
sweet spot, the two lowest levels are well separated from the others, making
the circuit a good qubit [13].

• Charge qubit: It is also known as Cooper pair box (CPB) [11], [13]. It con-
sists of a superconducting island connected to a superconducting reservoir
through a JJ [13]. It can be controlled by a voltage VG through a gate capaci-
tance, which determines a background charge ng. The resulting Hamiltonian
expressed in the basis of the number of Cooper pairs operator n̂ can be stud-
ied as a tight-binding Hamiltonian with EC and ng determining the on-site
energy and EJ setting the tunnelling matrix element between neighbouring
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states [11]. As we have seen for the flux qubit, there is a sweet spot for
offset charge [13]. In fact, if ng = m + 1

2 , we observe that the eingen-
states have defined parity, and the first two of them are well separated from
others (10 (a)). In addition, the energies of the states |m⟩ and |m+ 1⟩ are
degenerate, and the transition frequency depends on EJ only [13]. Most im-
portantly, at these points the qubit is less sensitive to charge noise, meaning
that ∂HCPB/∂ng = 0. If we are far from the sweet spots, this type of qubit
is affected by charge noise [11].

2.6 A charge-noise protected qubit: the transmon

As discussed in the previous section, depending on the circuital design of super-
conducting qubits, they may be very sensitive to environmental noise, and this can
affect their performance. The transmon qubit was specifically designed to have a
reduced sensibility to charge noise. Its name is an abbreviation of the term trans-
mission line shunted plasma oscillation qubit. It is a CPB with a large shunt ca-
pacitance whose purpose is to lower charge energy and thus increase the ratio EJ

EC

[11], [13], as we can see from the equivalent circuit in figure 11. For readout, the
transmon uses a superconducting resonator, which is represented in the microwave
regime by a harmonic LC oscillator, as will be discussed in section 2.8.

Figure 11: Transmon equivalent circuit: the JJ, identified by CJ and EJ , is shunted by the capaci-
tance CB , and capacitively coupled through Cg to the readout resonator, represented as an LC circuit
(Lr and Cr). The external electronics represented by Vg is capacitively coupled through Cin to the
circuit. [7].

In order to study the transmon qubit Hamiltonian, we start with the one of the
CPB with an additional parallel capacitance [7]. It can be proven that the effective
Hamiltonian for a transmon qubit circuit in terms of the generalized coordinates
number of Cooper pair n̂ and phase difference across the junction ϕ̂ is:

Ĥ = 4EC (n̂− ng)
2 − EJ cos ϕ̂. (37)
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Thanks to the shunt capacitance Cb the charge energy is:

EC =
e2

2CΣ
(CΣ = Cg + Cb + Cin), (38)

far smaller than EJ . This makes the phase a good quantum number, so the Hamil-
tonian can be solved in the ϕ̂ basis in terms of the Mathieu function, thus giving
the eigenvalues [11]:

Em(ng) = ECa2[ng+k(m,ng)](−EJ/2EC), (39)

where aν(q) is Mathieu’s characteristic value and k(m,ng) is an appropriate sort-
ing function:

k(m,ng) =
∑
l=±1

[int(2ng + l/2)mod 2]× int(ng) + l(−1)m[(m+ 1)div 2].

(40)
From this we can evaluate the charge dispersion of the transmon ϵm, which is

Figure 12: Energy spectrum as a function of the Cooper-pair offset charge ng in a Cooper-pair box
with: a) EJ

EC
= 1, b) EJ

EC
= 5, c) EJ

EC
= 10, d) EJ

EC
= 50. Plots produced with the Python library

scqubits [12].
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defined as the difference between the energy levels at ng = 0 and ng = 0.5,
i.e. in the sweet-spot and far from the sweet-spot of the circuit. If we study the
asymptotics limits of the Mathieu’s characteristic values, the charge dispersion is
given by:

ϵm = Em(ng = 1/2)− Em(ng = 0) =

= (−1)mEC
24m+5

m!

√
2

π

(
EJ

2EC

)m
2
+ 3

4

e−
√

8EJ/EC . (41)

The very crucial result is that the dispersion, which represents charge noise, de-
creases exponentially with the ratio EJ

Ec
, as we can see from figure 12.

The major drawback of the increasing of the ratio EJ/Ec is the reduced anhar-
monicity of the circuit. We define the absolute and relative anharmonicity [11] as
the energy difference between the computational base-set energy E10 and the first
excited energies E12 as:

α ≡ E12 − E01, αr ≡ α/E01. (42)

It can be proven that, for EJ ≫ EC , the anharmonicities are approximately [7],
[11]:

α ≃ −EC , αr ≃ −(8EJ/EC)
−1/2. (43)

The relative anharmonicity αr only decreases as a power law when increasing
EJ/EC , compared to the exponential reduction of the charge dispersion. This
makes the transmon circuit a good compromise to suppress charge noise while
keeping the anharmonicity sufficiently high.

2.7 Tunability and Control

As pointed out by the DiVincenzo criteria, it must be possible to control (or drive)
the state of the qubit. This means that we have to couple the qubit to opportunely
chosen circuits in order to drive the qubit. Generally speaking, this occurs when
the qubit interacts with control circuits, and the total Hamiltonian reads as [7]:

H = H1 +H2 +Hint, (44)

where H1 is the uncoupled qubit Hamiltonian, H2 is the Hamiltonian of the non-
interactive circuit and Hint is the mutual interaction between the qubit and the
control circuits, respectively.
In order to control the qubit and implement quantum logic, we need an external

parameter that can tune the qubit frequency, defined as ωq =
√

8EJEC
ℏ2 . A widely
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used technique is to replace the single JJ in the circuit in figure 11 with a DC-
SQUID [7], also known as split-transmon. As we saw in section 2.3, the current
in the ring depends on the external magnetic flux. By using the expression of EJ

shown in equation 24, the effective Hamiltonian becomes [7]:

H = 4ECn
2 − EJ | cos (

πΦe

Φ0
)| cos(ϕ). (45)

This means that EJ(Φe) = EJ | cos (πΦe
Φ0

)| is tunable by the external magnetic
flux Φe. In order to achieve this goal, an inductive coupling is implemented, where
mutual inductanceM12 is shared by the qubit and the flux-bias circuitry, sustaining
currents I1 and I2, respectively. The interaction Hamiltonian reads as:

Hint = M12I1I2. (46)

Here, flux lines are designed as coplanar waveguides (CPW) in proximity to the
DC-SQUID in the transmon circuit. If a current is carried along the flux line,
and an inductive coupling holds, the magnetic field that generates because of the
Biot-Savart law concatenates to the SQUID loop. Therefore, a magnetic field flux
perpendicular to the SQUID loop is generated.

Figure 13: Circuit diagram of qubit capacitively coupled to a microwave drive circuit [7]: the qubit
circuit is coupled to the drive signal Vd(t) through a shunt capacitance Cd, the wiring is represented
by a resistance Rw

Capacitive couplings, instead, are massively employed in transmon circuits for
both readout and control mechanisms. In this case, a capacitor Cg is placed be-
tween the voltage nodes V1 and V2 of the qubit and the readout or the drive circuits,
respectively, and we have:

Hint = CgV1V2. (47)

An example of a capacitively coupled drive circuit is shown in figure 13.
To control the qubit state, we must be able to excite it with a drive pulse. The
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Hamiltonian of a qubit capacitively coupled with a drive signal is [7]:

H = H0 +Hd = −ℏ
ωq

2
σz +

Cd

CD
Σ

√
ℏ
2Z

VD(t)σy, (48)

where the first term is the qubit Hamiltonian with ωq = (E1 − E0)/ℏ, and the
second is the drive signal with Cd the capacitance that couples the qubit with the
RF electronics. Here, Z is the impedance of the circuit to the ground and CD

Σ is the
sum of Cd and the total capacitance of the transmon CΣ.
In order to visualize the role of the drive, we move into a frame rotating with the
qubit frequency ωq [7]. We consider a state |ψ0⟩ evolving as:

|ψ0(t)⟩ = UH0 |ψ0⟩ =
1√
2

 eiωqt/2

e−iωqt/2

 , (49)

where UH0 is the propagator corresponding to H0. We define Urf = U †
H0

= eiH0t

and the state |ψrf (t)⟩ = Urf |ψ0⟩. By applying the Schrödinger equation with the
total Hamiltonian to the new state in the rotating frame, we obtain the new H as
H̃ . We focus on the term which describes the signal H̃d [7]:

H̃d =
Cd

CD
Σ

√
ℏ
2Z

VD(t)(cos (ωqt)σy − sin (ωqt)σx). (50)

We can assume that the time-dependent part of the voltage has the form [7]:

v(t) = s(t) sin (ωdt+ ϕ) = s(t)(cos (ϕ) sin(ωdt) + sin(ϕ) cos(ωdt)). (51)

Here, s(t) is a dimensionless envelope function. We define the in phase component
I = cosϕ and the out of phase component Q = sinϕ and obtain the following
expression for the voltage:

VD(t) = V0s(t)(sin (ωdt)I − cos (ωdt)Q). (52)

If we put these expressions in the Hamiltonian, and we use the Rotating Wave
Approximation (RWA), i.e. we drop out the fast rotating terms with ωd + ωq that
averages to zero, we obtain [7]:

H̃d =
Cd

CD
Σ

√
ℏ
2Z

V0s(t)

2
(σx(Q sin δωt− I cos δωt) + σy(I sin δωt−Q cos δωt)),

(53)

25



where δω = ωq − ωd. If ωd = ωq, i.e. the drive signal is on resonance with the
qubit frequency, the drive Hamiltonian reads as:

H̃d = − Cd

CD
Σ

√
ℏ
2Z

V0s(t)

2
(Iσx +Qσy) . (54)

For example, from figure 14 we can see the effect of a Xπ
2

, i.e. a rotation of π/2
around the x-axis, applied on the ground state on the Bloch sphere.

Figure 14: The action of a rotation of π/2 around the x-axis, showing I (in blue) and Q (in yellow)
components on the Bloch sphere [7].

2.8 Readout

In a superconducting qubit, it is mandatory to find a way to read the state of the
qubit while preserving its quantum state. As a matter of fact, in QM the problem of
the measurement of the quantum state is one of the most intriguing and challenging
issues, directly related to the collapse of a quantum state when it is observed. How-
ever, in transmon qubits it has been proposed to use superconducting resonators to
establish a quantum non demolitive (QND) readout of the qubit state.
A superconducting resonator is typically designed as a Coplanar Waveguide (CPW)
capacitively coupled to the qubit. For RF frequencies and dimensions of the CPW
much smaller than the RF wavelength, the CPW is nothing else than an LC circuit.
The Hamiltonian of a superconducting resonator coupled to a qubit is described in
equation 55. This Hamiltonian is also known as Jaynes-Cummings Hamiltonian
and describes the interaction between a bosonic field and a two-level system [7]:

H = ωr

(
a†a+

1

2

)
+
ωq

2
σz + g

(
σ+a+ σ−a

†
)
, (55)
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where ωr and ωq are the frequencies of the resonator and the qubit, while σ+ and
σ− are the exciting and de-exciting operators of the qubit, and finally a† and a are
the creation and destruction operators of the photons in the resonator. In order to
perform a quantum non-demolition readout, the system must be in the dispersive
regime. In this limit, the detuning ∆ between ωr and ωq is large compared to
the coupling g between the resonator and the qubit, i.e. ∆ = |ωq − ωr| ≫ g.
The Hamiltonian can be approximated using a second order perturbation theory, in
terms of the rate g

∆ , as:

Hdisp = (ωr + χσz)(a
†a+

1

2
) +

ωq

2
σz, (56)

where χ is known as dispersive shift [7]:

χ =
g201
∆
. (57)

Figure 15: Quantum non demolitive readout [22]: the readout resonator shifts its frequency ω̃r as
it couples with the qubit; when the qubit is in |0⟩, we have the blue curve; when the qubit is in |1⟩,
then we observe the red curve.

In this way, the resonance frequency of the resonator is renormalized as a func-
tion of the dispersive shift χ and the qubit state σz as: ω̃r = ωr + χσz , as shown
in figure 15. In this way, we can read the qubit state by probing the resonator and
measuring its shift but, since the detuning is large, we do not directly exchange
energy with the qubit, thus providing a QND readout of the qubit state. Note that
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the dispersive shift χ depends on the detuning ∆. Therefore, depending on the
detuning sign, the shift related to each different initial state for the qubit can occur
towards larger or smaller readout resonator frequencies, compared to the frequency
that the resonator would have if not coupled to a two-level system.

2.9 Coupled qubits

As pointed out by the DiVincenzo criteria, in order to build a quantum computer,
it must be possible to implement at least two qubits gates. In this section, we will
describe qubit-qubit coupling, and then we will discuss the phenomenon of the
avoided level crossing, which is the direct consequence of the energy exchange be-
tween coupled qubits [7], [23].

Coupling between superconducting transmon qubits can be achieved in several

Figure 16: Two qubits coupled by means of coupling capacitancesCg1 andCg2 to a superconducting
resonator (Lr , Cr) [7].

ways [7], [13]. However, in this work we will focus on a specific coupling design,
in which qubits coupling is mediated by a superconducting resonator, also known
as coupler [7]. An example is shown in figure 16, where two transmon qubits are
both capacitively coupled to the central resonator. The two-level system Hamilto-
nian is [7]:

H =
∑
i∈1,2

[ωiâ
†
i âi +

α

2
â†i â

†
i âiâi] + g1r(a

†
1ar + a1a

†
r) + g2r(a

†
2ar + a2a

†
r), (58)

where g1r and g2r are the coupling energies mediated by the coupling resonator. It
can be shown that in the dispersive limit, i.e. if gir ≪ |ωi − ωr|, the resonator can
be treated as an isolated system, and the composite system can be simplified to two
transversely coupled qubits. In this limit, if we ignore higher energy levels, we can
write the Hamiltonian as [23]:

HJ = ℏ
∑
i=1,2

ωge
(i)

2
σ(i)z +ℏ

∑
j

(
ωj + χ

(1)
j + χ

(2)
j

)
a†jaj+ℏJ

(
σ
(1)
+ σ

(2)
− − σ

(2)
+ σ

(1)
−

)
,

(59)
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which is obtained by using the renormalized frequencies in equation 56. The first
term describes the energy of the single-qubits, the second term represents the res-
onators modes characterized by the dispersive shift due to the coupling with the
qubits. Finally, the third term is the effective qubit-qubit coupling, which is char-
acterized by the transverse exchange coupling J [23]:

J =
1

2

∑
j

g
(i)
j g

(i)
j

(
1

∆
(i)
j

+
1

∆
(i)
J

)
. (60)

This Hamiltonian leads to an avoided level crossing of the excited qubit state, i.e.
the energy levels of two interacting qubits do not cross, and avoid each others when
they approach the same value, i.e. when they go on resonance. If the two qubits
are at the same frequency, the size of the splitting is [23]:

2J = ℏ
∑
j

2g
(1)
j g

(2)
j /∆j . (61)

Under these circumstances, the eigenstates of two coupled qubits, will be the sym-
metric triplet states |gg⟩, |ee⟩ and |ψs⟩ = (|ge⟩+ |eg⟩) /

√
2, as well as the anti-

symmetric singlet state |ψa⟩ = (|ge⟩ − |eg⟩) /
√
2. In the cases of |ψs⟩ and |ψa⟩,

we note that the states are entangled, and a single excitation is shared between the
two qubits, as in figure 17 (a). We can put the qubits into resonance by performing

Figure 17: a) Energy level diagram of two transversely coupled transmon qubits, the energy sepa-
ration between symmetric |ψs⟩ and antysimmetric |ψa⟩ states is proportional to the qubit coupling
strength J. b) Flux spectroscopy measurement of the avoided level crossing as a function of the qubit
drive frequency and the external flux in units of the flux quantum [23].

a flux spectroscopy, which will be discussed in chapter 3. The upper and lower
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branches shown in figure 17 (b) can be fitted with the function [23]:

f(ω;ω(1)
ge , J) =

(
ω + ωge ±

√
(ω

(1)
ge − ω)

2
+ 4J2/2

)
. (62)

From this equation, we can evaluate the coupling strength J, which is typically of
the order of tens of megahertz [23].
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3 Noise and decoherence in superconducting qubits

Since superconducting qubits are quantum macroscopic objects easily interfaced
with control and readout electronics, they are very sensitive to environmental noise,
and having good coherence properties is a hard task. This thesis focuses on the
understanding of which are the most important decoherence sources in a supercon-
ducting qubit, by means of a comparative and self-consistent analysis of experi-
mental and theoretical relaxation and coherence times. Indeed, the high sensitivity
to noise of a qubit can be exploited to understand the response of a generic system
to unknown noise sources. In fact, qubits are often used as noise sensors to probe
innovative devices [24]. In this chapter, we will show that superconducting qubits
decoherence is strictly related to the qubit circuital design, the readout and the
control circuits. Even though the peculiar circuital design of transmon qubits has
contributed to the improvement of coherence times towards values of the order of
tens to hundreds of microseconds [11], the understanding of the physical processes
limiting coherence is of fundamental importance.

In order to visualize the decoherence times linked to the main noise sources
as a function of circuital parameters defined by design, and the effect of tunable
and externally controllable parameters, we will use the Python library scqubits
[12]. This package provides a user-friendly, object-oriented Python library of the
most common superconducting qubits. It facilitates automatic construction of cir-
cuit Hamiltonians in an appropriate basis, provides high-level routines for finding
eigenenergies, eigenstates, and matrix elements, and allows the user to quickly
visualize these quantities as a function of external parameters. It also gives theo-
retical predictions of the coherence times, by using the model for noise described
in this chapter [11], [7], [25], [26], [27].

3.1 Bloch-Redfield model for noise

In an open system, the qubit interacts with unknown degrees of freedom in the
environment, which we refer to as fluctuations or noise [7]. We can categorize
the type of noise in two main types: systematic noise and stochastic noise [7].
Systematic noise arises from a control or readout error, while stochastic noise is
related to random fluctuations of the parameters that are coupled to the qubit. The
degree to which a qubit is affected by noise is related to the amount of fluctuations
affecting it, and its susceptibility to them [7].
As introduced in section 2.1, an arbitrary state can be represented as a point of the
Bloch sphere [7]:

|ψ⟩ = α |0⟩+ β |1⟩ = cos
θ

2
|1⟩+ sin

θ

2
eiϕ |1⟩ . (63)
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We note that the density matrix ρ = |ψ⟩ ⟨ψ| for a pure state ψ is:

ρ ≡ 1

2

1 + cos θ e−iϕ sin θ

eiϕ sin θ 1 + sin θ

 =

|α|2 αβ∗

α∗β |β|2

 . (64)

However, fluctuations and noise introduce a spurious decay of the qubit state, char-
acterised by two main decay rates: longitudinal relaxation rate,

Γ1 ≡ 1/T1, (65)

and transverse relaxation rate,

Γ2 ≡ 1/T2 = Γ1/2 + Γϕ. (66)

• Longitudinal relaxation: Γ1 describes a depolarization along the qubit quan-
tization axis, also known as energy relaxation. Longitudinal relaxation is
caused by transversal noise, i.e. a noise source that couples to the qubit via
x or y-axis, which are perpendicular to the quantization axis z (figure 18 (a))
[7]. This comes from the intuition that only off-diagonal matrix elements of
the interaction Hamiltonian can induce transitions between states |0⟩ and |1⟩.
This typically causes both up transition and down transition, i.e. the qubit
can go from a less energetic state to a more energetic one and vice versa.
Only noise at the qubit frequency mediates qubit transitions, absorption or
emission, i.e. it is a resonant phenomenon [7]. In transmon qubits, typical
relaxation times are of the order of tens to hundreds of microseconds [7].

• Pure dephasing: it is described by the decay parameter Γϕ, which concerns
depolarization in the x-y plane of the Bloch sphere, and it is caused by lon-
gitudinal noise, meaning that it couples with the qubit via the z-axis (figure
18 (b)) [7]. In terms of the interaction Hamiltonian, we are considering only
the on-diagonal elements. This type of noise makes the Bloch vector precess
in the rotating frame. We have a total depolarization of the azimuthal an-
gle. This stochastic effect is captured in the transverse relaxation rate Γ2 [7].
Pure dephasing is not a resonant phenomenon, in fact, noise at any frequency
can modify the qubit frequency. It is also elastic because there is no energy
exchange with the environment, so it is reversible [7].

• Transverse relaxation: it is described by the decay parameter Γ2 = Γ1/2+
Γϕ [7], which corresponds to the loss of coherence of a superposition state,
pointed along the x-axis on the equator of the Bloch sphere (figure 18 (c)).
Decoherence is caused by both longitudinal and transverse noise [7].
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Figure 18: Transverse and longitudinal noise on the Bloch sphere: a) longitudinal relaxation due to
transverse noise, b) pure dephasing due to longitudinal noise, c) transverse relaxation representation
on the Bloch sphere [7]

Therefore, the density matrix for a qubit affected by noise becomes [7]:

ρBR ≡

1 + (|α|2 − 1)e−Γ1t αβ∗eiδωte−Γ2t

α∗βe−iδωte−Γ2t |β|2e−Γ1t

 , (67)

also known as Bloch-Redfield representation. We have introduced the longitudinal
decay function e−Γ1t, which is connected to longitudinal relaxation or excitation
between the excited state |1⟩ to the ground state |0⟩. This decay function only con-
tributes to the on-diagonal terms of the density matrix because it determines the
probability to find the qubit in the state |0⟩ or |1⟩.
We also define the transverse relaxation function e−Γ2t, which represents the trans-
verse relaxation. Since transverse decay includes dephasing, we expect to find it
only in the off-diagonal elements, which contains information about the phase ϕ, as
pointed out in equation 64. Moreover, it is fundamental to introduce the detuning
parameter δω = ωq − ωd, which takes in account if the qubit frequency ωq differs
from the one inducing the transition ωd.

3.2 Noise power spectral density

In order to understand the behaviour of a noise source, we must know its power
spectral density. By analyzing the frequency dependency of the noise source and
its coupling with the qubit, we can say if it induces relaxation or dephasing and
evaluate the resulting rates Γ1, Γ2 and Γϕ.
The frequency distribution of the noise power for a stationary noise source λ is
characterized by Sλ(ω), which is the Fourier transform of the noise correlation
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function cλ(τ) = ⟨λ(τ)λ(0)⟩ [7]:

Sλ(ω) =

∫ ∞

−∞
⟨λ(τ)λ(0)⟩e−iωtdτ. (68)

We can connect relaxation and dephasing to the spectral density Sλ(ω). The cou-

Figure 19: Noise power spectral density [7] as a function of the noise frequency: thermal noise
proportional to temperature T in dashed red; Nyquist noise, which is proportional to ℏω in blue; 1/f
noise in green.

pling between the qubit degrees of freedom Ôq and the ones of an external source
of noise λ can be visualized as an interacting Hamiltonian [7]:

Ĥint = νÔqλ̂. (69)

Here, ν is the coupling strength, linked to the sensitivity of the qubit to environ-
mental noise (∂Ĥq/∂λ) [7]. By evaluating the matrix element corresponding to this
derivative, we will be able to characterize the noise sources and their relaxation and
dephasing rates. In particular, when the noise is resonant with the transition fre-
quency of the qubit, it induces energy relaxation with a rate that is proportional to
the spectral density at this particular frequency [7], [11].
For example, thermal noise proportional to temperature T with a white noise spec-
trum, when resonant with the qubit, will drive to both stimulated emission and
absorption processes [7], as shown in figure 19. If the qubit spontaneously emits
energy to the environment, we have quantum noise, which depends on the fre-
quency as ℏω [7].
A noise source λ can cause energy relaxation with a rate given by the Fermi’s
golden rule [7]:

Γ1 =
1

ℏ2
∣∣∣⟨0| B̂λ |1⟩

∣∣∣2 Sλ(ωq), (70)
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where ωq is the transition frequency of the qubit, Sλ(ωq) is the noise spectral den-
sity evaluated at the qubit frequency and B̂λ is the operator corresponding to the
noise source. From equation 70, we are able to evaluate the relaxation time associ-
ated to a particular noise source, if we know its spectrum and interaction term.
Differently from relaxation, dephasing can be induced by longitudinal noise char-
acterized by a frequency different from the transition frequency of the qubit. In
order to relate the qubit decay rate due to dephasing to the noise spectrum, we can
evaluate the off-diagonal term of the density matrix as (equation 68):

ρ01(t) = eiω01t⟨e−i
∫ t
0 dt′v(t′)⟩, (71)

where v(t) =
∑

j
∂hz(λi)
ℏ∂λj

δλj , with hz(λi) the hamiltonian term of the interaction
on the z-axis with the noise source λi. In terms of the noise power spectral density
[11]:

Sv(ω) =

∫ ∞

−∞
dτ⟨v(0)v(τ)⟩e−iωτ =

∑
j

∂hz(λi)

ℏ∂λj
δλjSλj

(ω). (72)

Thus, the matrix element becomes:

ρ01(t) = eiω01texp

(
−1

2

∫ ∞

−∞

dω

2π
Sv(ω)

sin2(ωt/2)

(ω/2)2

)
. (73)

It can be proven [11] that for correlation times tc small compared to the typical
acquisition time t, the dephasing follows an exponential decay law and the corre-
sponding line shape is Lorentzian:

ρ01(t) ≃ eiω01texp

[
−1

2
|t|Sν(ω = 0)

]
. (74)

However, typical noise sources inducing dephasing have a 1/f spectrum [11], [7],
which diverges at low frequencies, as shown in figure 19 in dashed green. This
type of noise comes from recombination events, so it is a stochastic phenomenon
[11]. For noise generated by a large number of fluctuators that are weakly coupled
to the qubit, the spectral noise distribution is a Gaussian [7]. As a matter of fact,
for noise spectra singular at ω=0, like 1

f noise, the power spectral density has the
following expression [11]:

Sλi
≃ 2πA2

|ω|µ
, (75)

where A is the noise amplitude, which determines the overall amplitude of the
fluctuations [11]. For 1/f spectra, the transverse relaxation rate can be written as
[11]:

ρ01(t) ≃ eiω01texp

[
−A

2

ℏ2

(
∂h

∂λi

)2

t2 |ln(ωit)|

]
, (76)
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where ωi is the infrared cut-off frequency. Equation 76 shows that for this type
of noise, the dephasing rate follows a Gaussian behaviour rather than a decaying
function. Therefore, the experimental study of relaxation and coherence times pro-
vides a practical way to inspect the nature of the noise in terms of their spectral
density, giving the possibility to distinguish between Lorentzian and singular 1/f
noise.
Finally, and most importantly, the noise power spectral density is nothing else than
the fingerprint of a specific noise source. As follows, we will discuss on the rela-
tion between longitudinal and dephasing rates and the power spectrum density of
the most important noise sources in superconducting qubits.

3.3 Effect of noise sources in superconducting qubit relaxation

As discussed in section 3.1, the longitudinal relaxation rate, Γ1 = 1/T1, describes
depolarization along the qubit quantization axis, often referred to as “energy de-
cay” or “energy relaxation”. It is caused by exchange of energy with the environ-

Figure 20: Longitudinal relaxation: excitation rate from |0⟩ to |1⟩ in dashed blue and relaxation rate
from |1⟩ to |0⟩ in dashed red [28].

ment, leading both to excitation and relaxation of the qubits, i.e.:

Γ1 = Γ− + Γ+. (77)

Due to Boltzmann statistics and the fact that superconducting qubits are operated
at low temperatures (T ≤ 20 mK) and with a qubit frequency in the GHz regime,
the excitation rate Γ+ is suppressed [28]. Starting from equation 70, we will now
identify the principal noise sources, which induce relaxation and give an expression
of their relaxation rates [11].

• Spontaneous emission: The first possible relaxation channel is through
spontaneous emission due to the fact that the qubit is coupled with the elec-
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tromagnetic field inside the transmission line resonator. The noise opera-
tor will be the electric dipole d̂ of the transmon, which can be evaluated as
d = 2eL, where L is the distance between the two superconducting islands,
typically 15 µm ([11]). As a result, by applying equation 70, the decay rate
for excited transmon level due to emission of radiation is:

Γ1
rad =

∣∣∣⟨0| d̂ |1⟩∣∣∣2 ω3
01

12πϵ0ℏc3
=

d2ω3
01

12πϵ0ℏc3
. (78)

Typical relaxation times due to spontaneous emission are of the order of 0.3
ms ([11]).

• Purcell noise: When a system is placed inside a resonator, its spontaneous
emission rate is altered. This effect is known as the Purcell effect.
As pointed out in section 2.8, readout resonators in transmon qubits exper-
iments are CPW, whose characteristics are determined by the material and
geometry [29].
In the frame of the Purcell noise, a special role is played by the resonator
quality factor Q. The quality factor is defined by the ratio of the energy
stored in the resonator to the average energy loss per cycle times 2π [30].
We can distinguish between internal and coupling losses, which correspond
to the intrinsic quality factor Qi and the external or coupling quality factor
Qc, respectively. [30]. The former is related to photon losses because of the
superconducting material used, while the latter takes into account the cou-
pling between the resonator and the external electronics [30], [29]. When
evaluating the Purcell decay rate, we must consider the total loaded quality
factor, obtained as [30]:

1

Ql
=

1

Qi
+

1

Qc
. (79)

As a matter of fact, by using the expression in equation 70, we obtain the
following decay rate due to Purcell effect:

Γ1,κ = κ|⟨0| â |1⟩|2, (80)

where â is the annihilation operator for the resonator and κ = 2πℏp(ωk)|λk|2
corresponds to the noise power spectral density. Here, p(ωk) is the state den-
sity of the reservoir and λk determines the coupling strength of the resonator
to this bath mode. The factor κ can also be written as κ = ω

Q , where Q
the resonator total quality factor [30]. In the dispersive limit, discussed in
section 2.8, the spontaneous emission rate due to Purcell effect is [11]:

Γ1,κ = κ
g201
∆2

0

. (81)
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In transmon circuits, superconducting readout resonators are characterized
by large intrinsic quality factors (Qi = 106) [30], [29]. Indeed, there is
a strong effort in the search for novel materials to improve the quality of
readout resonators. Niobium-based resonators, with Qi ≃ 107 [31], were
proven to be more efficient than Aluminium-based ones, with Qi ≃ 103

[32]. Lately, new combination of these materials has been investigated[33],
in particular with a new interest in Tantalum-based devices [34], [35].
However, the need for an external readout circuitry, like for multiplexed
readout of multi-qubit systems [8], make the coupling quality factor Qc or-
der of magnitudes lower than Qi [30]. Therefore, the resonator losses are
typically dominated by Qc, and the loaded quality factor is of the order of
104, i.e. 1/κ = 160ns [11]. In the dispersive regime, for typical values of
the ratio g01

∆0
= 0.1, Purcell effect results in a relaxation time of 16 µs [11],

thus being one of the most important noise sources in transmon qubits.

• Dielectric losses: This noise derives from the charge fluctuations present
in the defects or charge traps that resides in interfacial dielectrics, the junc-
tion tunnel barrier and in the substrate of the qubit [11]. The electric field
is transverse with respect to the quantization axis, so this type of noise is
mainly responsible for energy relaxation (T1). The noise spectral density
can be written as[27]:

Sdiel(ω) =
ωℏ

|ω|CJQcap(ω)

(
1 + coth

ℏ|ω|
2kBT

)
. (82)

Here, CJ is the junction capacitance, T is the temperature and Qcap(ω) [26]
is the dielectric quality factor. Q is linked to the loss tangent of the dielectric
as [26], [27]:

Qcap = 1/ tan δC . (83)

The electric loss tangent tan δC is defined as the ratio between the real and
the imaginary part of the electric permittivity ϵ and quantifies the dielectric
material’s dissipation of electromagnetic energy [26]. Typically,Qcap ≈ 106

[26].
From equation 70, we can evaluate the relaxation time as [26], [27]:

1/T1(ω) =
1

ℏ2
|⟨0| 2en̂ |1⟩|2 Sdiel(ω). (84)

Depending on the dielectric loss tangent tan δC , the relaxation time due to
dielectric losses goes from tens of µs to some ms [27].

38



• Quasiparticle noise: The presence of quasiparticles in the system, due to
an overall odd number of electrons or thermal breaking of Cooper pairs,
mentioned in section 2.3, leads to relaxation in qubits based on JJs. The
corresponding noise operator is the tunnelling Hamiltonian ĤT [36], [37].
It can be proven that the number of quasiparticles for temperatures small
compared to the superconducting gap ∆ may be obtained as [11]:

Nqp = 1 +
3
√
2π

2
Ne

√
∆kBT

EF
exp

{
− ∆

kBT

}
, (85)

where Ne is the total number of quasiparticles with conduction density n
in the superconducting electrodes volume V. The rate of tunnelling for one
quasiparticle across the junction is given by Γqp = (1/νV )g/4πℏ, where ν
is the energy density of state (DoS) and g is the quasiparticles tunnel proba-
bility, which can be quantified in terms of the tunnel conductivity of quasi-
particles through the barrier of a JJ [38]. The smaller is the quasiparticles
conductance, the smaller will be the quasiparticles decay rate, defined as
[11]:

Γ1 = 1/T1 = ΓqpNqp

√
kBT

ℏω01
|⟨g, ng ± 1/2|e, ng⟩|2 . (86)

Here, the matrix element is the Franck-Condon factor, which accounts for the
agitation of the transmon collective mode due to the tunnelling of one quasi-
particle [11]. The quasiparticles conductance in typical tunnel aluminium JJs
in transmon circuits can be calculated as 1/Rsubgap, where Rsubgap has been
defined in section 2.3. Rsubgap is of the order of MΩ, thus providing typical
a relaxation time for a transmon qubit of T1 ≈ 1s [11]. In addition, from the
temperature dependency of T1qp , we observe that this noise source is negli-
gible for temperatures below 100 mK. Therefore, at cryogenic temperatures,
quasiparticles should not lead to significant contributions to relaxation [11]
(figure 21).

• Flux coupling noise: The coupling of the transmon to an external magnetic
flux bias allows for an in situ tuning of the Josephson coupling energy, but
also opens up additional channels for energy relaxation if it is resonant with
the transition frequency of the qubit. We can distinguish between two de-
cay channels: the first one caused by the intentional coupling between the
SQUID loop and the flux bias via the mutual inductance M and the second
one related to the coupling between the entire transmon circuit and the flux
bias via the mutual inductance M’. In the first case, by treating the noise per-
turbatively and applying equation 70, we can relate the relaxation rate to the
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Figure 21: Number of quasiparticles and contributions to the relaxation time due to inelastic quasi-
particle tunnelling as a function of temperature, the vertical line is the typical cryogenic temperature
at which qubit measurements are made, i.e. 20 mK [11].

Figure 22: Circuit schematics for flux coupling [11]: flux coupling between the transmon’s SQUID
loop and the external flux bias with mutual inductance M, and flux coupling between the transmon
circuit and an external flux bias circuit via the mutual inductance M’.

noise power spectrum, as [11]:

Γ1 =
1

T1
=

1

ℏ2

∣∣∣∣∣⟨1| ∂ĤJ

∂Φ
|0⟩

∣∣∣∣∣
2

M2SIn(ω01), (87)

where ĤJ is the split-transmon Hamiltonian (equation 45), and we have used
the relation between the flux noise and current noise SΦ(ω) = M2SIn(ω).
At low temperatures, kBT ≪ ℏω01 the current quantum noise is given by
[11]:

SIn(ω) = 2Θ(ω)ℏω/R, (88)

where R is the environmental impedance of approximately 50Ω. The maxi-
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mum T1 is reached for an integer number of flux quanta through the SQUID
loop [11]. If EJ = 20GHz, EC = 0.35GHz and M = 140Φ0/AΦ, we
obtain relaxation times between 20 ms and 1s [11]. For the second chan-
nel, the contribution to T1 can be calculated by evaluating the average power
dissipated by the environmental impedance R and using a semi-classical ap-
proximation as [11]:

T1 ≃
ℏω
P

=
R

M ′2ω2C
=
RC

η2
. (89)

Here, η = M ′

L measures the effective coupling strength in units of the Joseph-
son inductance. For R = 50Ω, M ′ = 10Φ0/AΦ and the same values of EJ

and EC used before, we obtain times of the order of tens of ms [11]. In con-
clusion, relaxation by flux coupling does not usually limit the performance
of a transmon qubit [11].

3.4 Effect of noise sources in superconducting qubit dephasing

In section 3.1, we defined the dephasing rate Γϕ as the rate of depolarization on
the x-y plane induced by longitudinal coupled noise, as shown in figure 23. This

Figure 23: Pure dephasing rate induced by longitudinal noise: a state |ψ⟩ = 1
2
(|0⟩ + |1⟩) induced

to rotate on the equatorial plane with the rate Γϕ [28].

section aims at introducing the noise sources which contributes to pure dephasing
basing on their power spectrum.
As discussed in section 3.1, dephasing is due to the broadening of the transition fre-
quency of the qubit, induced by noise sources longitudinally coupled to the qubit.
Starting from this consideration, we will focus on the noise sources that can mod-
ify the transition frequency of a split-transmon, which depends on EC and EJ .
Given the tunability of EJ as a function of an external flux in split-transmon which
is tuned by an external flux bias, the most important noise sources are related to
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charge, current and flux noise.
It has been proven that in the case of the transmon qubit, charge, current and flux
noise sources have a 1/f spectrum and contributes to dephasing at low frequencies
[11], see also equations 75, and 76 [11].

• Charge noise: It derives from fluctuations of the charge in the supercon-
ducting islands of a JJ. At low frequency, charge noise is a 1/f type and its
spectral density takes the form [11]:

SQ(ω) = A2
Q

2π

|ω|
, (90)

where AQ is the charge noise amplitude, typically AQ = 10−4 − 10−3e in
a transmon [11]. As a result, we derive the contribution to Tϕ from equation
76 as:

Tϕ ∼ ℏ
AQπ|ϵ1|

. (91)

For state-of-the-art transmon qubits, we expect the charge dispersion ϵ1 to
be small and the resulting T2 to be large [11]. For example, for EJ =
30 GHz, EC = 0.35 GHz, AQ = 10−4, we obtain Tϕ = 8s [11], proving
that the transverse decay rate is only determined by the longitudinal relax-
ation time (equation 66).
This statement is further proved considering the dependence of T2 as a func-
tion of the ratio EJ/EC in figure 24, simulated by using the Python package
scqubits [12]. By changing the ratio EJ/EC from 10 to 100, we obtain that
T2 due to charge noise spans from 10 to 60 µs, as shown in the simulation
in figure 24. Since we are in the transmon regime, i.e. EJ/EC ≃ 50, the
longitudinal decay time is of the order of tens of µs.
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Figure 24: Scqubits [12] simulation of T2 = 1/(1/(2T1) + 1/Tϕ,charge), taking into account only
charge noise for dephasing, as a function of the ratio EJ

EC

This proves that, thanks to the additional shunt capacitance, which makes
the charge energy smaller and thus the ratio EJ

EC
larger, charge noise has

been partially suppressed [11].

• Flux noise: It arises from the stochastic flipping of spins (magnetic dipoles)
that reside on the surface of superconducting metals [11]. In the case of the
tunable transmon qubit, the external magnetic field couples to the qubit and
modulates the transition frequency. Typically, the flux noise is longitudinal
to the transmon, so it contributes to pure dephasing (Tϕ). At low frequency,
it is a 1/f noise and its spectral density is [11], [7]:

Sϕext = A2
ϕext

(
2π

|ω|

)γΦext

, (92)

where γΦext = 0.8− 1 [7]. By using the Mathieu’s eigenvalues of the trans-
mon Hamiltonian and equation 76, we find the resulting dephasing time [11]:

Tϕ =
ℏ
AΦ

∣∣∣∣∂E01

∂Φ

∣∣∣∣−1

=
ℏΦ0

AΦπ

(
2ECEJΣ

∣∣∣∣sin πΦΦ0
tan

πΦ

Φ0

∣∣∣∣)−1/2

, (93)

valid for EJ ≫ EC , alias the transmon regime. For a flux bias of Φ = Φ0/4
and an amplitude of AΦ = 10−5, we obtain a dephasing time of the order
of approximately 1 µs [11]. We note that for Φ = nΦ0, with n integer, the
dephasing time diverges. These points are known as sweet spots for the flux,
where the slope ∂ω

∂Φ is zero and second order transitions dominate. Here, Tϕ
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can be evaluated as [11]:

Tϕ ≃
∣∣∣∣π2A2

ℏ
∂2E01

∂Φ2

∣∣∣∣−1

Φ=0

=
ℏΦ2

0

A2π4
√
2EJΣEC

, (94)

obtaining a dephasing time of some ms [11].

Figure 25: Comparison between the two first transition frequencies, ω01 in blue and second transi-
tion frequency ω12 in dashed red, as a function of the external magnetic flux Φext, in units of the
flux quantum, for symmetric (a) and asymmetric (b) tunable transmon, with and γ = 2.5, both with
EJ/EC = 50 [7].

Although the possibility to operate the transmon in their sweet-spots in order
to take advantage of the reduced sensitivity to flux noise is massively em-
ployed in the field [11], certain applications still require tuning the qubit far
from the sweet-spots. For example, the typical protocol used in two-qubit
systems coupled by fixed high-frequency bus resonators, as those used in
advanced systems for Quantum Error Correction [39] and also in this work,
requires putting on resonance two qubits by means of an external flux mod-
ulation. The drawback related to the tunability far from the sweet-spot is an
increasing sensitivity to flux noise.
The transmon sensitivity to flux noise can be reduced, while maintaining the
tunability, by making the two junctions of the SQUID asymmetric, i.e. by
including in the DC SQUID two JJs with different critical currents IC1 and
IC2 (figure 25). In this case, the SQUID Josephson energy reads as [7]:

EJ(Φ) = EJΣ cos
πΦ

Φ0

√
1 + d2

(
tan

πΦ

Φ0

)2

, (95)

where EJΣ = EJ1 + EJ2 and d = γ−1
γ+1 , with the SQUID asymmetry pa-

rameter γ =
EJ1
EJ2

[7]. As we can see from figure 25, both for symmetric and
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asymmetric transmon the resonance frequency modulates as | cosϕ|, but in
the asymmetric case the slope at the semi-periods is reduced, and thus flux
noise is minimized. In order to stress this point, we report, in figure 26, a
simulation scqubits [12] of the dephasing time due to flux noise as a function
of the flux bias, for a symmetric (a) and an asymmetric (b) split-transmon,
with the following parameters: EJ = 30 GHz, EC = 0.35 GHz and
AΦ = 10−5.

Figure 26: scqubits [12] simulation of the dephasing time due to flux noise as a function of the
external flux in units of the flux quantum for a) symmetric spilt transmon, b) asymmetric split-
transmon, with d = 0.6, EJ = 30 GHz, EC = 0.35 GHz and AΦ = 10−5.

The introduction of an asymmetry in the DC SQUID allows to reduce the
effect of flux noise far from the sweet-spot, as can be observed in figure 26
(b). We can see that, at the semi-integer multiples of Φ0, the dephasing time
is orders of magnitude larger than in the symmetric case, reported in 26 (a),
and approximately the same of the one at integer multiples of Φ0. In this
thesis, we will measure a symmetric transmon, so flux-noise is likely to be
an important noise source.

• Critical current noise: Another source of fluctuations of the Josephson en-
ergy consists of noise in the critical current, which is generated by trapping
and detrapping of charges associated with spatial reconfigurations of ions
inside the tunneling junction [11]. This influences the critical current and
hence the Josephson energy. By using equation 76, the resulting dephasing
time can be evaluated as [11]:

Tϕ ≈ 2ICℏ
AICE01

. (96)

For AIC = 10−6IC [11] and the same values of charge and Josephson en-
ergy used before, we obtain typical dephasing times ranging from tens to
hundreds of µs, depending on the external flux field [11], as pointed out in
figure 27.
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Figure 27: scqubits [12] simulation for dephasing due to critical current as a function of the external
flux in units of the flux quantum with AIC = 10−6IC , EJ = 30 GHz, EC = 0.35 GHz.

3.5 Summary

In conclusion, a qubit is exposed to various noise sources, and thanks to the Bloch-
Redfield model we can understand how each of them contribute to decoherence,
including both energy relaxation and dephasing. By studying the noise power
spectral density, we are able to study a noise source and evaluate the resulting
depolarization time.
Moreover, by using the typical parameters of a state-of-the-art split-transmon cou-
pled to a superconducting readout resonator, we found that the relevant noise sources
causing relaxation are Purcell noise and dielectric losses noise, as one can see from
the summary table 1. For what concerns dephasing, we obtained that the main noise
sources to take in consideration are flux noise and critical current noise. In chapter
5, we will apply these considerations to the noise analysis of single and coupled
split-transmons.
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Noise
source

Ônoise Noise spectral
density

Decoherence
time

Relaxation

Spontaneous
emission

d̂ ∝ d2ω3
01ℏ

πϵ0c3
T1 ≃
0.3 ms [11]

Purcell
effect

â ∝ ω
Qresonator

T1 ≃ 16µs
[11]

Dielectric
losses

2en̂ ∝ ωℏ
CJQcap(ω)

T1 ≃ 1 µs−
18 ms [27]

Quasiparticle
tun-
nelling

ĤT ∝ ΓqpNqp

√
kBT
ℏω01

T1 ≃ ∞
[11]

Flux bias
line

∂ĤJ
∂Φ ∝M2Θ(ω)ℏω/R T1 ≃ 20 ms

[11]

Dephasing

Charge
offset

∂Ĥ
∂ng

∝ A2
Q

1
|ω| Tϕ ≃ 8 s

[11]

Flux ∂Ĥ
∂Φ ∝ A2

ϕext

1
|ω| Tϕ ≃ 1 µs−

1 ms [11]

Critical
current

∂Ĥ
∂IC

∝ A2
IC

1
|ω| Tϕ ≃ 35 µs

[11]

Table 1: Principal noise sources and their decoherence effect for a split-transmon qubit.
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4 Experimental setup

The study of the decoherence processes in superconducting qubits requires an enor-
mous care when dealing with the experimental setup and the measurements proto-
cols. As a matter of fact, it is mandatory to provide an experimental platform able
to protect the qubit from the environmental noise sources, while still being able
to access their behaviour. We will first describe the device analyzed in this work
(section 4.1). Then, in section 4.2, we will discuss on the working principle of
dilution refrigerators, used to cool down transmon qubit devices down to few mil-
likelvins. Finally, we will report the cryogenic and room-temperature electronics
(sections 4.3.1 and 4.3.2) used to acquire the data reported in this work, and the
characterization methods (sections 4.3.3 and 4.3.4).

4.1 Chip design

The chip we measured and characterized in this thesis is realized by Quantware in
collaboration with the University of Napoli Federico II and Seeqc-EU company. It
is made of 6 tunable transmons, 5 of them coupled and one single-qubit. Qubit 2
is coupled by a resonator with qubit 0, qubit 1, qubit 3 and qubit 4, as shown in
figure 28 (a). Qubits 0 and 1 are designed to have the lowest frequencies, qubit 2
a medium frequency, and qubits 3 and 4 the highest frequencies. This schematic is
typical of state-of-the-art devices, in particular quantum error correction systems
[39].
The JJs in the qubit, figure 28 (c), are made of Aluminium electrodes and AlOx

barrier, while the resonators are Niobium-Titanium Nitride. The junctions are lo-
cated in a DC SQUID and are made to be symmetric.
In section 2.6, we pointed out that the transmon circuit is characterized by a large
shunt capacitance, in order to make the ratio EJ

Ec
. This capacitance is represented

by the pads in yellow in figure 28 (b).
In this work, we will focus on the characterization of qubit 2 and qubit 4. In par-
ticular, we will analyze the coherence properties of the single-qubits, starting from
single-qubit measurements, which will be discussed in section 4.3.3. Then, we will
observe the coupling between them through the avoided level crossing, described
in section 2.9.
The RF lines on the chip are Coplanar Waveguide (CPW) and use Transverse Elec-
tromagnetic Modes (TEM). In order to apply an external flux to the DC SQUID
and tune the qubit frequency, CPW flux lines in figure 28 (a) are inductively cou-
pled to the DC-SQUID loop in the transmon. The drive lines and the resonators are
capacitively coupled to the qubits.
As we can see from figure 28 (a), all the qubits are equipped with a readout res-
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Figure 28: In a), qubit chip design analyzed in this work. Here highlighted five intercoupled trans-
mon qubits and a single transmon-qubit, the corresponding readout resonators (cavities), the drive
and the flux lines for qubit control and tuning, and the feedline for simultaneous qubit multiplexing
readout. In b), SEM image of central qubit 2, while in c) we show a zoom on the DC-SQUID in the
transmon. SEM images are courtesy of Seeqc quarters in London, while the circuit design has been
provided by QuantWare.

onator. Each resonator is capacitively coupled through an elbow coupling to a
transmission line used for readout, called feedline. It is designed to allow mul-
tiplexing, i.e. we can control multiple readout resonators by sending signal with
different frequencies. The resonators are coupled to the feedline through elbow-
shaped coupling capacitors, which allows maximizing the electric part of the sig-
nal.
The length and the shape of the resonator determine its characteristics, such as the
resonance frequency and the quality factor, as discussed in section 3.3.
Resonators can be measured either in reflection or transmission. For a transmission
measure, it is impossible to directly determine the internal losses of the resonator
by probing the resonator’s transmission due to the missing reference baseline [30].
In a reflection measurement instead, we can evaluate the losses due to the cou-
pling with a transmission line, and thus the external quality factor. Therefore, we
measure the resonators in reflection, by choosing a so-called notch type geometry
[30], where the resonator is coupled to the transmission line, as shown in figure
4.1. In this case, the coupling quality factor Qc takes into account the losses due to
the coupling with the external environment through the feedline, while the internal
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Figure 29: Coupling quality factor for a notch port geometry: an LC resonator is coupled to the
transmission line [30]

quality factor Qi takes into account the internal losses in the resonator.
The characteristic parameters by design of qubits 2 and 4 and their readout cavities
are reported in table 2.

Table 2: Design frequencies and energies of the qubits characterized in this thesis and bare frequen-
cies of the corresponding cavities.

In order to protect the chip from environmental noise, it is provided of several
shields. First, it is placed inside a package provided by Quantware, which consists
of a copper cavity for infrared radiation protection. Then, we find a superconduct-
ing thin shield, which protects the chip from external magnetic radiations thanks
to Meissner effect, discussed in section 2.2. Finally, the package is surrounded
by cryoperm, a soft magnetic nickel-iron alloy, covered in copper, for infrared ra-
diations protection. Cryoperm is superconducting, and specifically designed for
magnetic shielding.
In order to reach the critical temperatures of the superconductors cited in this sec-
tion, the chip is connected to the coldest plate of a dilution refrigerator, whose base
temperature is 10 mK.

4.2 Dilution refrigerator

As discussed in Chapter 2, superconducting qubit characterization requires reach-
ing temperatures down to 10 mK, a lot cooler than the transition temperature of
the superconductors used in the circuit. This choice is made to protect the sample

50



from environmental noise. As discussed in section 3.1, qubits are very sensitive
objects and external noise sources can induce decoherence and relaxation. More-
over, since the qubit frequencies usually fall in the few GHZ range, temperatures
far lower than 200 mK are needed in order to avoid transitions from the ground
state to the first excited state in the transmon [11].
In order to reach this goal, we use a dry dilution cryostat, the Bluefors dilution
refrigerator (DR) [40], shown in figure 30. The Bluefors is composed of six copper
gold-plated plates, thermally decoupled one from each other by means of Stainless-
Steel (SS) supports [40], as we can see in figure 30:

• the RT-plate at room temperature;

• the PT1, at ∼ 50 K;

• the PT2, at ∼ 4.2 K;

• the still plate, at ∼ 700m K;

• the IAP-plate, at ∼ 100m K;

• the MC-plate, at ∼ 10m K.

Figure 30: a) Bluefors dilution cryostat in the CESMA-Seeqc Quantum Joint Lab of the University
of Napoli Federico II with the main cooling stages. b) Focus on the dilution unit of the cryostat and
schematics of the main cryogenic stages in the dilution process.

First, the system must be placed in a vacuum chamber, an enclosure which ther-
mally and mechanically protects all the cold parts of the system. Inside the com-
mon vacuum space, in order to thermally isolate it from its surroundings, there are
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three steel shields and one copper shield for high frequency and infrared radiation.
The refrigeration process uses a mixture of two isotopes of helium: 3He and 4He.
When cooled below approximately 870 mK, the mixture undergoes spontaneous
phase separation and divides into a 3He-rich phase (the concentrated phase) and a
3He-poor phase (the diluted phase), as shown in figure 31. This separation is an
endothermic process, that allows to lower the temperature to tens of millikelvin.
The main cooling phases of the dilution refrigerator are: the precooling, the con-
densation, the dilution and the circulation.

• Precooling: First there is a cold trap at ∼ 50K, which both cleans the 3He-
4He mixture by freezing eventual contaminant particles and serves as heat
exchanger. At this stage, the mixture is a gas, which is pre-cooled at the
second cold plate (PT2) at < 4.2K, thanks to a Pulse Tube Refrigerator
(PTR). At 4.2K, the 4He becomes liquid. This is helped by different heat
exchangers.

• Condensation: In order to start the condensation, the pressure of the he-
lium mixture is raised to about 2 bar. The heat exchangers in the condenser
line cool the pressurized mixture to low enough temperature for the 4He to
condense (because of the Joule-Thomson effect). At this stage, the 3He is
still gaseous, so the mixture passes through an impedance, where 3He un-
dergoes isoenthalpic expansion and reaches its condensation temperature of
1.7 K. The 3He and 4He mixture is now in the liquid phase.

• Mixing and dilution: Now the mixture is pumped by turbo and rotative
pumps and then by a 3He compressor. In this way, the temperature drops
below 0.8K. As reported in the phase-diagram in figure 31, the phase sepa-
ration occurs in the mixing chamber, due to the enthalpy difference between
the concentrated (incoming) and the diluted (outgoing) liquid. The first liq-
uid is pure 3He, the second one is predominantly 4He with a small fraction
of 3He. The heat necessary for the dilution is the cooling power of the re-
frigerator, because this process is endothermic and removes heat from the
mixing chamber environment. Therefore, the temperature of the plate at
which the mixing chamber is thermally and mechanically anchored, the MC
plate, is the coldest one, with a base temperature of 10 mK.

• Circulation: After the phase separation, the diluted 3He flows from the
mixing chamber to a chamber called still, located at the still plate. The 3He
evaporates and circulates thanks to the pumping system towards the hottest
plates, and then at room temperature. This phase is called circulation. On its
way up, the diluted 3He cools the flowing concentrated 3He via the heat ex-
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Figure 31: Phase-diagram of the 3He-4He mixture: dilution occurs under 0.8K. When the mixture
reaches this threshold, we have the separation into a diluted and a concentrated phase.

changers and enters the still, restarting the cycle. This closed loop maintains
the cooling process active.
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4.3 Electronics and measurement protocols

In order to characterize transmon qubits, we exploited a wide range of investiga-
tion protocols that use radio-frequency (RF) signals, both continuous or made by
complex sequences of pulses. The main motivation relies on the requirement to
resonate with both the readout resonators and the qubit itself, characterised by fre-
quencies of the order of 4-8 GHz. As follows, we will first report details about
the cryogenic electronics employed in this thesis, then we will focus on the room-
temperature electronics. Finally, we will give a comprehensive showcase of the
measurement protocols employed, with a specific focus on coherence time-domain
measurements.

4.3.1 Cryogenic electronic setup

Figure 32: RF cryogenic setup: in input, we find the drive lines and the flux lines of qubit 2 and
qubit 4, and the feedline, with all the corresponding attenuators and filters; in output, we have the
isolators and filters, then the HEMT amplifier and the Room Temperature amplifiers.

The cryostat is provided of RF input and output lines, thermally anchored to
the different plates of the cryostat. The input lines are made of stainless steel,
while the output lines are made of superconducting Nb-Ti, from the 4K plate to the
MC, and copper at higher temperatures. In superconducting transmon qubits, the
main requirement is to work in a single-photon regime, for both the QND readout
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and the control signals. Therefore, the input signals are attenuated by 50 dB by
the attenuators placed on the plates of the cryostat. Moreover, the stainless steel
of the input lines attenuates the signal by 10-20 dB in the 4-8 GHz range (figure
32). In addition, a complex scheme of low-pass filtering is implemented. We use
10 GHz low-pass coaxial RF filters for the feedline and the control lines, while a
lower cutoff frequency is used for the flux lines. As a matter of fact, flux lines work
either in a DC mode operation or in pulsed mode, with pulses frequencies much
lower than 1 GHz. Additional eccosorb filters are mounted on a limited number
of lines in order to cutoff spurious signals in the high-GHz regime (> 10 GHz).
Such filtering schematics is fundamental in order to suppress spurious stochastic
noise arising from the interaction with the radiative environment, which may be
detrimental for qubit coherence.
The signal response of qubit is typically very weak, so it needs to be amplified. We
use a HEMT (High Electron Mobility Transistor) [41] amplifier at 4 K, biased by
a power supply LNF-PBA from Low Noise Factory [42]. The HEMT works with
40 dB of amplification from 4 to 8 GHz. This amplifier introduces an additional
noise source, which can cause disturbances and spurious waves reflected back to
the qubit. Because of this, once the signal comes out of the sample, it passes
through two isolators, which prevents the signal to be reflected back to the chip.
This device introduces an attenuation of 20 dB on signals coming from room-
temperature, and works in a frequency range up to 12 GHz. Finally, we have two
amplifiers at room-temperature, with 20 dB amplification each.
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4.3.2 Room temperature electronics setup

Figure 33: RF setup: Keysight rack with all the modules used for characterization of qubits, and
HEMT bias power supply. In the legend are reported the corresponding labels. We note that in the
measurements reported in this thesis, we did not use the clock card (f).

The room-temperature experimental setup is equipped with a highly compact
and integrated PXI electronics provided by Keysight Technologies, shown in figure
33. The Keysight rack includes signal generation and measurement modules. By
using this system, we can generate and measure both continuous and pulsed RF
signals.
Continuous measurements use the Vector Network Analyzer (VNA) (figure 33 (m))
in order to perform spectroscopic measurements. This instrument allows measur-
ing the scattering parameters of the device under test (DUT), the reflection and the
transmission. The scattering parameters of an electromagnetic wave are mathemat-
ically defined as the component of the scattering matrix, related to the transmitted
and reflected power at the two ports of a two-terminal DUT. The scattering matrix
relates the incident (a1 and a2) electromagnetic components and the reflected (b1
and b2) waves at the port 1 and 2 of the DUT (figure 34), and reads as::b1

b2

 =

S11S12
S21S22

a1
a2

 . (97)

Each element of the matrix is a complex number, and the VNA can acquire both
real and imaginary parts of the signal. The measurement of the scattering pa-
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Figure 34: VNA schematics: the signal goes from port 1 to the device under test (DUT), and the
VNA acquires both the transmitted and the reflected signal at port 1 and 2.

rameters allows having useful information on the readout resonators and the qubit
spectroscopy.
In addition to spectroscopic measurements, qubit characterization also requires
pulsed protocols in order to perform time-domain measurements. The most impor-
tant time-domain characterization procedures covered in this thesis (section 4.3.4),
like relaxation, Ramsey interferometry and Hahn-echo [7], requires the ability to
generate pulses at the typical frequencies of the qubit and resonators, i.e. 4-8GHz.
Instead of using an RF pulse generator in the range of GHz, the signal can be ob-
tained by mixing a Local Oscillator (LO), the higher frequency signal, generated by
means of RF signal generators (figure 33 (d) and (l)), and the in-phase (I) and out-
of-phase (Q) components of the output of an arbitrary waveform generator (AWG)
[43]. The AWG used in the experimental setup, in figure 33 (b) and (g), is able to
generate microwave signals with frequencies up to 400 MHz. So, its signal fre-
quency ωAWG, also called IF frequency, is a few orders of magnitude smaller than
the one of the LO. The mixing is performed by an IQ mixer, located in home-made
cards in the Keysight chassis, in figure 33 (c) and (h), which gives two possible
outputs: ωRF1 = ωLO − ωIF and ωRF2 = ωLO + ωIF. This process is known
as up conversion [7], in figure 35. We can select one of these outputs thanks to
single-sideband calibration [7].
In the same way, the signal coming out from the qubit circuit must be down con-
verted, since it would be difficult for the electronic to read a GHz signal. As a
matter of fact, the Keysight chassis is equipped with a Digitizer ADC (Analog to
Digital Converter) with a sampling rate of 500 MSample/s, thus limiting the mea-
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Figure 35: Schematics of the experimental setup for readout and drive pulsed measurements: in blue
we have the up-conversion of the Drive signal, while in yellow the down-conversion of the Readout
signal, both going to the cryostat lines; in red the Down-conversion of the output signal, which is
measured with the digitizer and then is stored, manipulated and visualised with Labber [44]

surable frequency to 500 MHz (figure 33 (i)). The output response of the DUT
goes into a three-port mixer located in the home-made readout card in figure 33
(h), and is combined with the same LO of the readout input signal, used for the
input signal up conversion. The output signal has the following frequency ωIF :

ωIF = |ωout − ωLO|, (98)

which is in the range of 500 MHz. The original form of the RO signal of the res-
onator is obtained by performing a Fast Fourier Transform of the down-converted
signal. The results are stored and visualized through the Labber software [44].

4.3.3 Spectroscopy measurements

The characterization of transmon devices is fundamental for both the estimation of
fundamental circuit parameters to be compared with the design specification, but
also and most importantly to experimentally access to fundamental physical pro-
cesses, such as decoherence effects hereby analyzed.
The most important parameters required in order to achieve this goal are: the read-
out resonator parameters, which determine the quality of the readout; the qubit
parameters, including the qubit frequency, the fundamental energy scales EJ and
Ec, and their tunability as a function of the flux.
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In order to measure these experimental values, spectroscopy measurements are in-
tensively used in literature [7]. Readout resonator spectroscopy uses single tone
measurements. The input signal, generated by either the VNA port 1 (figure 34)
in a continuous mode, or by the up-conversion card in a pulsed mode (figure 35)
resonates with the readout resonators. The output signal is typically a Lorentzian
whose dip corresponds to the resonance frequency. The amplitude of this reso-
nance is linked to the resonator quality factor, discussed in sections 3.3 and 4.1,
as:

Q =
fr
∆f

, (99)

where ∆f is the Full Width at Half Maximum (FWHM) and fr is the resonator
frequency.
Single-tone spectroscopy also allows to measure the dispersive shift of the res-
onator given by the coupling with the qubit. If the power of the input signal is too
large, the two-level system represented by the qubit is saturated. Therefore, the
readout resonance frequency corresponds to the value in absence of the qubit, also
known as bare state. If the power is sufficiently low, the resonator frequency will
shift, recovering the dressed state and the dispersive shift (equation 57). As re-

Figure 36: Cavity power spectroscopy [45]: colorplot of the amplitude of the readout signal as a
function of the power and the frequency of the input signal. The dispersive shift depends on the
coupling g and the detuning δ [45].

ported in figure 36, the dispersive shift measurement allows obtaining information
on the readout-qubit coupling strength g, once known the qubit-resonator detuning
∆.
Single-tone spectroscopy of the readout resonator can also be performed as a func-
tion of an external flux field applied to the qubit. We change the flux in the loop by
sending a DC current through the flux lines inductively coupled with the qubit on
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chip. The current through the flux lines is generated by means of a voltage applied
across the resistive input flux lines of the cryostat (R=50 Ω). The voltage offset
is generated by dedicated AWG modules (figure 33 (e)). As reported in section
2.3, for a tunable transmon qubit, the transition frequency follows a cosinusoidal
behaviour as a function of the flux. This also reflects in a cosinusoidal modulation
of the readout resonator frequency in the dispersive regime, since the dispersive
shift χ is proportional to 1/ωq(Φ). This measurement is fundamental in order to
provide information on the split-transmon, like the SQUID asymmetry parameter
d, and the relation between the flux voltage applied and a flux period Φ0, as we
will discuss in chapter 5. Most importantly, it allows finding the flux sweet-spots,
defined in sections 3.4 and 2.6, as the working points less sensitive to flux noise.
For qubit spectroscopy measurements we send a two-tone signal, composed of an
RF signal which is close to the frequency of the readout resonator in the dispersive
regime, (readout tone), and an RF signal which sweeps in power and in frequency
in order to excite the qubit (drive tone). The former is sent through the device feed-
line, and is used to excite and readout the qubit state, while the latter can be either
sent through the feedline or dedicated qubit drive (QD) lines.

Figure 37: Trigger scheme for pulsed qubit spectroscopy measurements: the experiment trigger (in
yellow), starts the experiment, the QD pulse (in red) is set to end at the AWG trigger (in black), the
RO pulse (in blue) starts at the trigger, and the digitizer pulse (in green) starts after the trigger with a
small delay.

Both the readout and drive tones are pulsed RF signals generated by up conversion.
In order to perform the measurement, a trigger signal starts every experimental cy-
cle. For each experiment period, we build a QD Gaussian pulse characterised by a
finite plateau length ∆td, and variable frequency, by combining into the IQ mixer
two channels of the AWG cards, as described in section 4.3.2. We do the same
for the square RO pulse, for which we set both the duration and the frequency.
The AWGs are able to generate an internal trigger common with all their channels,
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which we set to be delayed from the experiment trigger, as shown in figure 37. We
then set the end of the QD pulse and the start of the RO pulse to be always aligned
with the AWG trigger signal. In this way, no RO is performed without first having
introduced a qubit drive pulse on the qubit. Finally, we digitize the output signal
after down conversion (section 4.3.2), soon after the RO pulse. The acquisition
process can be schematized as (figure 37):

• Trigger that starts the sequence;

• QD pulse starts with a delay;

• RO starts after QD pulse;

• The digitalization always occurs within a window inside the duration of the
RO pulse.

Figure 38: Qubit spectroscopy [45]:(a) qubit spectrum showing anharmonic energy levels where f12
is the transition frequency between the first excited state |1⟩ and second excited state |2⟩, f02/2 is
the two-photon transition frequency between the ground state |0⟩ and |2⟩ and f01 is the transition
between |0⟩ and |1⟩. (b) The resonance peak of f01 as a function of the power. (c) Spectroscopic full
width at half maximum linewidth versus driving power.

In two-tone spectroscopy measurements, we will measure a peak in the readout
output signal when the frequency of the drive tone resonates with the transition
frequency of the qubit. In fact, when ωd = ωq, the qubit goes from the ground
state to the first excited state. On its way back, the qubit emits a photon, which is
absorbed by the resonator, showing a maximum in the energy spectrum (figure38
(a)). In addition, we observe that, by increasing the drive tone power the FWHM of
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the transition frequency peak broadens, as shown in figure 38 (b) and (c), and ad-
ditional peaks emerge. This is related to the possibility to excite higher order qubit
transitions, which will occur at lower frequency, given the negative anharmonicity
of the transmon. The separation between each peak in the qubit spectroscopy al-
lows determining the charging energy Ec, as pointed out in equation 43.
As discussed for the resonator, we must study the qubit transition frequency’s de-
pendency with the flux by changing the flux inside the circuit. This allows giving
another estimation of the flux sweet spot.
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4.3.4 Time domain measurements

The experimental measurement of the transmon main circuital parameters by spec-
troscopy measurements is fundamental for the study of the decoherence in trans-
mon qubits. However, in order to perform measurements on the relaxation and
dephasing times, we need to move from the frequency domain to the time domain.
Typically, the first time domain measurement for a superconducting qubit is the

Figure 39: Rabi measurement protocol: we send a drive pulse of increasing duration, then we
measure the qubit state by sending the readout and acquisition pulses. We note that the QD pulse
ends at the AWG trigger, and the RO pulse starts at the AWG trigger.

measurements of Rabi oscillations, whose experimental protocol is reported in fig-
ure 39. Once the transition frequency of the qubit is found by means of the qubit
spectroscopy, we send a pulse of variable duration in order to excite the qubit and
induce coherent transitions between the ground and excited states, as predicted by
the Rabi model [6]. It can be proven that a two-level system in the presence of an
external perturbation, like the qubit drive signal, will oscillate between its states as
a sinusoidal function of time [6]. We can represent the perturbation in terms of its
amplitude A and frequency ωd and use the rotating frame representation introduced
in section 2.7. In this way, the time dependent Schrödinger equation can be easily
solved for the coefficients α(t) and β(t) of the Bloch sphere representation. The
probability for the ground state to be excited as a function of time is [6]:

Pe(t) = |Ce(t)|2 =
A2

Ω2
Rℏ2

sin

(
ΩRt

2

)2

, (100)

where ΩR is the Rabi oscillation frequency. It depends on the amplitude of the
perturbation signal and on the detuning ∆ = ωq − ωd between the qubit frequency
and the drive frequency [7] as:

ΩR =

√
A

2

2

+∆2. (101)
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Figure 40: Rabi oscillations [7]: a) Rabi Chevron plot of the output signal as a function of the
detuning between the qubit frequency and the drive frequency ∆ in units of 2π, and the time duration
of the drive pulse; b) Rabi oscillations with detuning ∆ = 0, 3 and 10 in units of 2π.

By increasing the detuning ∆, the amplitude of the oscillation decreases and their
frequency increases, according to equation 101. On resonance, the amplitude of the
Rabi oscillations is maximum and the Rabi frequency is the smallest possible. An
experimental outcome of this behavior is represented by the well-known Chevron
plot, reported in figure 40 (a) (adapted from [7]), i.e. a colorplot of the Rabi oscil-
lation as a function of both the frequency and the time duration of the Drive pulse.
The centre of the Chevron plot identifies the drive frequency which resonates with
the qubit (red curve in figure 40 (a), which reports Rabi oscillations for different
values of the detuning ∆).
Another fundamental information given by Rabi oscillation measurement is the du-
ration of the π pulse, which is the qubit drive plateau duration needed for the qubit
to make a transition from the ground state to the first excited state [7]. From equa-
tion 101, we observe that the Rabi frequency grows with the amplitude A of the
drive signal, thus the π pulse becomes shorter. For Quantum Gates implementa-
tion, we want a π pulse as short as possible, in order to have the largest number of
gate implemented, but a pulse with large power can induce higher-order transitions,
as depicted in figure 5.1.2 (b). Because of this, we have to find a compromise be-
tween the time duration of the π pulse and the optimal amplitude of the qubit drive
signal [7].
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(a) (b)

Figure 41: a) T1 measurement protocol: we send a π pulse to the qubit, which is set to end at the
AWG trigger, then we wait (free evolution) for an increasing amount of time before the readout pulse,
and the acquisition pulse, which is as usual inside the RO pulse. The readout pulse is set to start at
a variable delay td from the AWG trigger. b) Qubit simulation of the T1 protocol measurement, the
qubit starts in the ground state |0⟩, then it is excited to |1⟩ with the π pulse.

Once the duration of the π pulse and the transition frequency are set, it is pos-
sible to perform decoherence measurements. The relaxation time T1 can be mea-
sured by sending a π pulse to excite the qubit and then waiting for it to return to the
ground state, as shown in figure 41 (a). In figure 41 (b), we can observe an example
of the T1 measurement protocol on the qubit, visualized on the Bloch sphere. This
simulation is realized with the Python package Qutip [46].

Figure 42: Ramsey measurement protocol: we send a π/2 pulse, and we wait for the system to
freely evolve for a time τ . Then we send another π/2 pulse that ends at the AWG trigger. We finally
measure the qubit state by sending the readout pulse and the acquisition pulse.

For what concerns the study of dephasing processes in a transmon qubit, the most
widely used experiment is based on the Ramsey interferometry, which is based on
the following protocol (figure 42): we first prepare the qubit on the Bloch sphere
equator, by sending a π

2 pulse, i.e. a qubit drive signal with half the amplitude of
a π pulse. Then, after waiting for a variable time (free evolution), we send another
π
2 pulse and finally measure the qubit state, as shown in figure 42. Since we let the
qubit freely evolve in the equatorial plane, this measurement allows us to give a
first estimation of the dephasing time of the qubit.
Ramsey interferometry is highly sensitive to the drive-qubit frequencies detuning
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Figure 43: In a) Ramsey oscillation at δω = 135 MHz. In b) Ramsey fringes colorplot of the free
evolution time τRamsey and the detuning ∆f [34].

δω = ωq − ωd. In fact, from the Bloch-Redfield model, discussed in section 3.1,
we know that the off-diagonal density matrix element depends on δω as [7]:

ρ10 = αβ∗eiδωte−Γ2t. (102)

Therefore, for delta δω ̸= 0, Ramsey interferometry will give as a result a damped
cosinusoidal free evolution, as shown in figure 43 (a), while for δω = 0, Ramsey
oscillations become a pure exponential. An example of a typical Ramsey interfer-
ometry on superconducting qubit as a function of the free evolution time (τRamsey)
and the qubit drive frequency detuning ∆f = δω, provides the famous Ramsey
fringes, as reported in figure 43 (b). Data are adapted from [34].
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(a) (b)

Figure 44: a) T2 Hahn-echo protocol: we send a π
2

pulse, then let the qubit freely evolve for a time
τ1. We send a π pulse to move the qubit on the equatorial plane, then wait for a time τ2 for it to
refocus. We finally send another π

2
pulse that ends with the AWG trigger, when the Readout pulse

starts, followed by the acquisition pulse. b) Qutip simulation for T2 Hahn-echo protocol: the qubit is
prepared on the ground state identifies by the red arrow, then it is driven to the equatorial plane with
a π/2 rotation around the y-axis. After waiting a time τ2, it is refocused with a π pulse around the
x-axis, and finally a rotation of π/2 around the y-axis drives the qubit to the excited state. Then, RO
and acquisition take place.

Finally, the coherence time T2 is measured by performing a spin echo mea-
surement. In this protocol, we send a π

2 pulse, so the qubit can freely evolve on the
equatorial plane, then we send a π pulse for the qubit to refocus it on the equatorial
plane, and finally another π

2 pulse. This protocol is known as Hahn-echo T2 mea-
surement, and it is reported in figure 44 (a). The introduction of the intermediate π
pulse in the middle of a protocol similar to Ramsey interferometry, in fact, allows
reducing the effect of dephasing and thus approach the theoretical limit in absence
of dephasing, i.e. T2 ≃ 2T1 [11], [7]. In figure 44 (b), we can observe an exam-
ple of the Hahn Echo protocol visualized on the Bloch sphere. Qubit dynamics
simulations are performed with the Python Qutip package [46].
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5 Measurements and data analysis

In this chapter, we will report on our experimental outcomes, with a particular fo-
cus on noise and decoherence. The aim of this data analysis is to identify the main
noise source of relaxation and dephasing. We used the Python library scqubits [12]
for an estimate of the different decay times, based on the measured values for flux
bias, charge offset,EJ andEc. Then, we compared these results with the measured
T1 and T2. We will focus on qubits 2 and 4 of the chip, because they showed a very
different behaviour for what concerns noise and decoherence.
First, we will report the spectroscopy measurements (section 5.1) in order to char-
acterize the readout resonators (section 5.1.1) and the qubits (section 5.1.2). Then,
in section 5.2, we will perform time domain measurements in order to evaluate and
analyze the coherence times. Finally, we will observe how the coupling between
these two qubits can affect their coherence properties (section 5.3).

5.1 Spectroscopy measurements

5.1.1 Readout resonator spectroscopy

(a) (b)

Figure 45: Power shift of cavity 4 coupled to qubit 2: a) colorplot of the transmission parameter S21

as a function of the frequency, on the x-axis, and the attenuation, on the y-axis, of the input signal;
the color scale identifies the voltage magnitude in V, the black line identifies the bare state at power
10 dB, and the green line the low photon regime at -60 dB; in b), the straight line curves (in black
and red) correspond to the fits of the bare resonance frequency at 10 dB (blue) and shifted resonance
frequency at -60 dB (orange), respectively.

As discussed in the previous section, we first measure the power shift of the cavi-
ties. Cavity 4 is coupled to qubit 2, while cavity 6 to qubit 4, as shown in section
4.1. In figure 45 (a), we can observe the colorplot of cavity 4 power shift. The
response of the resonator clearly indicates adsorption of photons, as shown in fig-
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ure 28, in which a dip corresponding to the resonance frequency of the resonator
arises. If the power is low enough, i.e. we are in the single photon regime, the read-
out frequency shifts, as pointed out in figure 45 (b). The same occurs for cavity 6
in figure 46.

(a) (b)

Figure 46: Power shift of cavity 6 coupled to qubit 4: a) on the x-axis we have the frequency of
the input signal, and on the y-axis its attenuation, the color scale shows the voltage magnitude of the
output signal in V, the black line identifies the bare state at power 10 dB, and the green line the low
photon regime at -60 dB ; b) bare resonance frequency at 10 dB (blue) fitted with resonator tools
[47] (the straight line in black) and shifted resonance frequency at -60 dB (orange), and its fit (the
red straight line).

By performing a Lorentzian fit of the readout resonances with the Python li-
brary resonator tools [47], we evaluated the resonance frequency of the cavities and
their quality factors, defined in equation 79. For cavity 4, we measured a bare fre-
quency of ωr = 7.66113± 0.00003 GHz, with maximum error, given by the min-
imum step points acquisition of the VNA, and a shift of: χ = 3.29 ± 0.06 MHz.
The quality factors are: Ql ≃ 104, Qi ≃ 105 and Qc ≃ 104. While, for cavity 6,
the resonance frequency is ωr = 8.05394±0.00003 GHz, and the dispersive shift
χ = 0.48 ± 0.06 MHz. The computed quality factors are: Ql ≃ 104, Qi ≃ 105

and Qc ≃ 104.
Another important measurement to perform on cavities is flux spectroscopy, as de-
scribed in section 4.3.3. Since the resonator is coupled to the qubit, its frequency
will modulate with the external flux bias (section 2.6). By taking into account
the dispersive shift in equation 57, and the expression of EJ for a split-transmon
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(equation 95), we obtain:

ωr,dressed = ωr,bare +
g2

∆
=

= ωr,bare +
g2

|
√

8ECEJ | cos πΦ
Φ0

|
√
1 + d2 tan2

(
πΦ
Φ0

)
− ωr,bare|

. (103)

In our measurements, we have assumed the transmon qubits to be symmetric, i.e.
d=0. By using the Python library lmfit [48], based on the least square method, we
performed a fit of the resonator frequency as a function of the flux, as shown in
figure 47 (a). We used a fitting function of the type (a + b sin(x)), according to
equation 103. We obtained that the period of the oscillations, which corresponds
to the flux required to introduce in the DC-SQUID two flux quanta Φ0, is 3.22 ±
0.06 V , and the voltage at the flux sweet spot is Φsweetspot = −0.15± 0.01 V .

(a) (b)

Figure 47: Cavity 4 coupled to qubit 2 flux spectroscopy: a) colorplot of the modulation of the
transmitted signal as a function of the flux bias, on the x-axis, and the readout frequency, on the
y-axis, the color scale identifies the voltage magnitude in V; b) sinusoidal fit (in green) of the readout
frequency (in blue) extrapolated from (a) as a function of the flux.

The same procedure has been followed for the readout cavity of qubit 4, cavity
6, as shown in figure 48.
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(a) (b)

Figure 48: Cavity 6 coupled to qubit 4 flux spectroscopy: a) colorplot of the modulation of the
transmitted signal as a function of the flux bias, on the x-axis, and the readout frequency, on the
y-axis, the color scale identifies the voltage magnitude in V; b) sinusoidal fit (in green) of the readout
frequency (in blue) extrapolated from (a) as a function of the flux.

We obtained that the period of the oscillation is 5.7 ± 0.6 V , and the flux
sweet spot is at Φsweetspot = −2.50 ± 0.3 V . For both the readout cavity flux
spectroscopy measurements, the errors are statistical.
In table 3, we report all the relevant quantities measured for the readout resonators
with their errors. The measured values are consistent with the ones predicted by
design (table 2).

Cavity spectroscopy analysis

Quantity Cavity 4 Cavity 6

Bare frequency
(GHz)

7.66113 ±
0.00003

8.05394 ±
0.00003

Ql 104 104

Qi 105 105

Qc 104 104

Shift (MHz) 3.29± 0.06 0.48± 0.06

Table 3: Cavity spectroscopy measurements: we here report the main quantities evaluated for cavi-
ties 4 and 6, the resonance frequencies, the quality factors and the dispersive shift.
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5.1.2 Qubit spectroscopy

(a) (b)

Figure 49: a) Qubit 2 power spectroscopy colorplot: output signal as a function of the qubit drive
frequency, on the x-axis and power, on the y-axis, the color scale shows the voltage magnitude in V.
b) fit (in red) for ω01 transition, based on a Lorentzian function, of the voltage magnitude (in blue),
measured at attenuation 10 dB, as a function of the QD frequency.

We performed a power spectroscopy on qubit 2 (figure 49 (a)) and qubit 4 (figure
50 (a)), by two-tone spectroscopy described in section 4.3.4, in order to determine
the qubits transition frequencies. From these data, we can evaluate the resonance
frequency ω01 by performing a Lorentzian fit with the Python library lmfit [48],
and using the function ((Γ/(Γ2 + (x− x0)

2)))). Here, Γ is the resonance FWHM,
and x0 is the resonance frequency. The fit of ω01 at qubit drive (QD) attenuation
12 dB is reported in figure 49 (b). We obtained a resonance frequency of 5.516 ±
0.001 GHz, with maximum error.
In the same way, we evaluated the resonance frequency of qubit 4, thanks to a
Lorentzian fit shown in figure 50 (b), finding a resonance frequency of 6.090 ±
0.001 GHz.
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(a) (b)

Figure 50: a) Qubit 4 power spectroscopy colorplot: output signal as a function of the qubit drive
frequency, on the x-axis and power, on the y-axis. b) fit (in red) for qubit 4 resonance frequency,
based on a Lorentzian function, of the voltage magnitude (in blue), measured at attenuation 10 dB,
as a function of the QD frequency.

We observe that, since dephasing is related to the broadening of the transition
frequency, from the amplitude of these resonances we can evaluate T ∗

ϕ = 2Qr/ωr.
We obtained T ∗

ϕ = 443 ± 16 ns for qubit 2 and T ∗
ϕ = 420 ± 30 ns for qubit 4,

with statistical errors. In section 5.2.3 and 5.2.4, we will see that dephasing time
measured through Ramsey and Hahn-echo measurements are much larger than the
values here reported. We must stress that two-tone spectroscopy implies qubit drive
pulses with an average length of the order of 10 to 50 µs, i.e. comparable with typ-
ical relaxation time in transmon circuits, while for typical Ramsey and Hahn-echo
sequences the drive pulses have typical length of few nanoseconds. Therefore,
during this measurement, the qubit coherence may be particularly affected by the
driving electromagnetic field. Moreover, the QD frequency is slightly different, a
few MHz, from the optimal one measured through Rabi Chevron plot and Ramsey
fringes, thus inducing dephasing.
In case of qubit 2, as we can see from figure 49 (a), we identified both the transi-
tion from the ground state to the first excited (ω01, the thicker line in the right) and
the two photons transition from the ground state to excited to the second excited
energy level (ω02/2, the thinner one on the left). If we take into account the expres-
sion of the anharmonicity discussed in section 2.7, we can compute it by using the
measured ω02 and ω01 as α = 2(ω01 − ω02/2) = 322 ± 4 MHz, where the error
is maximum. By design, the anharmonicity should be the same for every qubit, so
we can use this result as a reference for qubit 4.
We now report the flux spectroscopy for qubit 2, following the protocol discussed
in section 4.3.4. Having extracted the frequency of the peaks as a function of the
flux bias, we can evaluate the flux sweet spot by fitting with equation 103 the qubit
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Figure 51: Qubit 2 flux spectroscopy: a) colorplot of the output signal as a function of the flux bias
and the drive frequency, b) sinusoidal fit performed by using equation 103, of the qubit transition
frequency as a function of the flux bias.

transition frequency ω01 as a function of the flux bias (figure 63 (b)). We obtained
the following results for qubit 2: the period of the oscillation is 4.492 ± 0.003 V ,
and the voltage at the flux sweet spot is Φsweetspot = −0.1759 ± 0.0002 V .
These results are consistent with the ones obtained for cavity 4, reported in sec-
tion 5.1.1. We repeated the same analysis for qubit 4, and found an oscillation
period of 5.67 ± 0.01 V and a voltage at the flux sweet spot of −1.8 ± 0.1 V .
Here, the errors are statistical. This shows that the cavities are correctly coupled to
the qubits, and that the qubit frequency modulates as predicted by theory.
We now report in table 4 all the relevant quantities measured in this section, which
will be useful to understand the behaviour of the qubit and its coherence proper-
ties. From the resonance frequencies of the qubit and the readout resonator, we
can evaluate the detuning ∆, and thus the coupling g, which are consistent with
the values expected by design. By knowing the transition frequency ω01 and the
anharmonicity α, we are able to measure the charge energy EC and the Josephson
energy EJ (equations 33 and 43). From table 4, we note that their ratio is ≃ 50,
showing that we are in the transmon regime (figure 12 (d)).
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Qubit Spectroscopy analysis

qubit ω01

(GHz)
EJ

(GHz)
EC

(GHz)
∆
(GHz)

g
(MHz)

2 5.516±
0.001

13.2 ±
0.1

0.322±
0.004

2.145±
0.001

97±
1

4 6.090±
0.001

15.9 ±
0.2

0.322±
0.004

1.964±
0.001

30±
2

Table 4: Qubit spectroscopy results: we here report the transition frequencies of qubit 2 and 4, their
energies EC and EJ , evaluated from equation 33, the detuning ∆ = ωr − ω01 and the coupling
χ = g2/∆ evaluated from the cavities transition frequencies and their dispersive shift χ in table 3.

75



5.2 Time evolution measurements

In this step of the qubits characterization, we aim at studying the evolution over
time of qubits analyzed in this work, and measuring coherence times by performing
the protocols described in section 4.3.4.

5.2.1 Rabi oscillations

In order to perform measurements of the coherence times, we must be able to excite
the qubit by finding the duration of the π pulse. As discussed in section 4.3.4, the
Rabi protocol makes the qubit oscillates between the ground and excited states as
a function of the frequency ωd and the amplitude A of the drive (equation 100).
As an example, we show the Rabi oscillations as a function of the frequency of
the drive signal (Chevron plot) for qubit 4 in figure 52. As the drive frequency
is on-resonance with the qubit frequency, the oscillation period decreases, while
the oscillation amplitude is maximum. The centre of the Chevron plot, in fact,
identifies the drive frequency resonant with the qubit, i.e. 5.962±0.002 GHz, with
maximum error, which is consistent with the one measured through spectroscopy
in section 5.1.2.

Figure 52: Qubit 4 Rabi Chevron plot: colormap of the voltage magnitude as a function of the QD
pulse time duration (y-axis), and the QD frequency (x-axis).

On resonance with the qubit frequency, we performed a Rabi protocol at differ-
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ent amplitudes of the QD power. As discussed in section 4.3.4, we expect that the
period of the oscillation reduces when the qubit drive amplitude is increased (figure
53 (a)). We can estimate the duration of the oscillation semi-period, the π pulse
by fitting the Rabi oscillation with the function (c+(a/b)2(sin (b× x+ d))2. The
result is shown in figure 53 (b), where we found πpulse = 17 ± 1 ns, where the
error is maximum, given by the resolution of the AWG.

(a) (b)

Figure 53: Qubit 4 Rabi oscillation in power: a) colorplot of the output signal as a function of the
drive pulse attenuation in dB, on the y-axis, and the drive pulse time, on the x-axis; b) sinusoidal fit
for Rabi oscillation at attenuation 0.0 dB.

We repeated the same measurements for qubit 2, first observing the Chevron
plot in order to set the transition frequency, then evaluating the optimal π pulse
duration by changing the drive pulse power. We found a transition frequency of
5.517 ± 0.001 GHz, and a semi-period of πpulse = 25 ± 1 ns, with maximum
error, as shown in figure 54.

Figure 54: Qubit 2 Rabi oscillation frequency estimation: we performed a sinusoidal fit (in blue),
with lmfit [48], of the Rabi oscillations (in red) at QD attenuation 0.0 dB.
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5.2.2 Relaxation time

We now report the measurements of T1 for qubit 2 and qubit 4, by using the proto-
col described in section 4.3.4. We sent a π pulse to the qubit in order to excite the
qubit, and then we let it freely evolve. In order to understand which noise source
is more relevant, we compared our experimental results with the simulations per-
formed by scqubits [12], described in section 3.1. Thanks to this library, we can
simulate the transmon relaxation times by setting the parameters EJ , EC and d
previously evaluated (table 4). We also must set the flux bias in units of the flux
quantum, measured in sections 5.1.2, and 5.1.1. In figure 55 we show the exponen-
tial decay as a function of time for qubit 2. The decay time of this evolution will
give an estimation of T1.

Figure 55: T1 exponential decay fit performed by lmfit [48] for Qubit 2: we evaluated the relaxation
time with an exponential fit (in red) on the raw data (in blue).

We found a relaxation time T1 = 12.6± 0.4 µs, where the error is statistical.
In order to evaluate the consistency of these experimental results, we evaluated
the relaxation times caused by the main noise sources described in section 3.3.
Since the chip is at cryogenic temperatures, i.e. 10 mK quasiparticle noise can be
neglected (section 3.3). As discussed in section 3.3, two of the intrinsic relaxation
channels for a transmon qubit are the spontaneous emission and the Purcell effect.
From the qubit transition frequency, we can evaluate the resulting relaxation times
T rad
1 and TPurcell

1 , by using equations 78 and 81, respectively, as discussed in
section 3.3. By assuming the distance between the superconducting islands to be
L ≃ 15 µm [11], and using the measured transition frequency measured in section
5.1.2, we obtained T rad

1 ≃ 4 ms for qubit 2. Since the total relaxation time
measured for qubit 2 is of the order of 10 µs, spontaneous emission is unlikely
to be the main relaxation source.
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Figure 56: Exponential fit (in red) of the T1 protocol decay raw data (in blue) for Qubit 4.

For what concerns the Purcell decay time, within the readout parameters inspected
in section 5.1.1 and 5.1.2, we obtain TPurcell ≃ 100µs for qubit 2. These results
are consistent with the ones reported in literature [11]. Since these decay times are
larger than the measured relaxation time of a transmon qubit of tens of µs, we can
assume that spontaneous emission and Purcell effect do not determine the qubit
coherence properties.
We now report the theoretical predictions for qubit 2 of the relaxation times due
to flux bias noise and dielectric losses noise, computed by scqubits [12], based on
equations 87 and 84 (section 3.3). For flux bias noise, we obtained a very large
relaxation time of ≃ ∞, meaning that we exceeded the maximum value computed
by the simulator, by using the standard values [11] of M = 400, Z = 50 [11].
For dielectric losses noise, we found a relaxation time that spans from 10 µs to
30 µs, based on equation 84, using a dielectric quality factor Qcap that goes from
105 to 106. [11]. This simulation suggests that the total relaxation time previously
measured is dominated by the decay rate due to dielectric losses.
We repeated the same measurement for qubit 4, as shown in figure 56, and found a
relaxation time of T1 = 13.5± 0.9 µs, where the errors are statistical.
The evaluated spontaneous emission time decay for qubit 4, is T rad

1 ≃ 3 ms,
which is far larger than the measured T1, proving that this decay channel can be
neglected. From the cavity quality factor (section 5.1.1) and the qubit transition
frequency (section 5.1.2), we measured the Purcell relaxation time for qubit 4 of
TPurcell ≃ 1 ms. This shows that Purcell noise does not significantly contribute to
T1. By making a scqubits [12] simulation of the other relaxation times, we found
that the flux coupling noise is ≃ ∞. While, the decay time due to dielectric losses
is ≃ 10− 30 µs, for Qcap = 105 − 106, showing that, also in this case, this is the
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main source of energy relaxation.

Relaxation times

T1 measured(µs) T1,Q2 = 12.6 ±
0.4

T1,Q4 = 13.5 ±
0.9

Relaxation chan-
nel

T1 for qubit 2
(µs)

T1 for qubit 4
(µs)

Spontaneous
emission

4000 3000

Purcell effect 100 1000

Dielectric losses 10− 30 10− 30

Flux bias ∞ ∞

Table 5: Relaxation channel analysis for qubit 2 and 4: we here report the decay times evaluated by
using the model discussed in section 3.3.

5.2.3 Ramsey interferometry

As discussed in section 4.3.4, Ramsey interferometry measurement allows eval-
uating the coherence time of the qubit, T ∗

2 , and the qubit transition frequency.
We performed the Ramsey protocol for qubit 2, described in section 4.3.4, while
changing the frequency of the qubit drive pulse. Thus, we observe the Ram-
sey fringes in figure 57. In order to give another estimation of the qubit fre-
quency, we draw a line at the middle of the modulation and found that the tran-
sition frequency for qubit 2, according to Ramsey interferometry, is approximately
ωQ2 = 5.51645±0.00003 GHz, with maximum error, which is consistent with the
one measured by means of the spectroscopy (section 5.1.2) and the Rabi protocol
(section 5.2.1).
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Figure 57: Qubit 2 Ramsey fringes: colormap of the voltage magnitude, in the color scale, as a
function of the QD frequency (x-axis), and the QD plateau duration (y-axis). The black line identifies
the resonance frequency of the qubit, while the white line corresponds to a detuning of 2.99 ±
0.01MHz.

We performed a fit on the Ramsey decay to evaluate T ∗
2 . Since we want to

observe dephasing, we choose two measurements, one done off-resonance and one
done on-resonance. We expect the dephasing time on-resonance to be a pure ex-
ponential, as pointed out in section 4.3.4. So, we used lmfit [48] to perform an
exponential fit (figure 58) with a trivial function of the type (a + b × e−(x/c)),
obtaining T ∗

2,on = 12 ± 3 µs. Ramsey’s oscillation off-resonance can be fitted by
a function of the type (sinx × e−x2

), as shown in figure 58. By fitting a Ramsey
oscillation with detuning δω = 2.99± 0.001MHz, we obtained a dephasing time
of T ∗

2,off = 8.4 ± 0.4 µs. Here, all the errors are statistical. As one can notice,
pushing the drive signal off-resonance with the qubit frequency introduces dephas-
ing effects, which results in a decrease of T ∗

2 . This is consistent with the lower
T ∗
2 obtained from qubit spectroscopy fit in section 5.1.2, in which the drive-qubit

detuning was of the order of 5 MHz.
We repeated the same procedure for qubit 4. By performing an off-resonance
Ramsey measurement for qubit 4, with a detuning of δω = 0.574 ± 0.001MHz,
and fitting this oscillation with lmfit, we obtained a dephasing time of T ∗

2,off =
6.0± 0.4 µs, where the errors are statistical.
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(a) (b)

Figure 58: Fitting of the Ramsey oscillations for qubit 2 on resonance (a) and off resonance (b). In
blue, we have the raw data, while in red the fitting.

5.2.4 Hahn Echo

Finally, we studied the coherence time of qubit 2 ad 4 with Hahn-Echo measure-
ment, as described in section 4.3.4.
Following the protocol in figure 44 (a), we measured the longitudinal relaxation for
qubit 2. Having set the flux at approximately the flux sweet spot for qubit 2, mea-
sured in section 5.1, the dephasing time due to flux noise should be large enough
to have, according to equation 66, T2 ≃ 2T1.

Figure 59: Hahn Echo measurement for qubit 2: exponential fit (in red), of the voltage magnitude
(in blue) as a function of time for qubit 2.

We fit the Hahn-Echo decay with a pure exponential, as shown in figure 59,
thus providing an estimation of T2 = 26± 2 µs, where the error is statistical. This
is consistent with the ideal value T2 ≃ 2T1, proving that dephasing is suppressed.
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In order to evaluate the consistency of this measurement, we computed the de-
phasing times for qubit 2 with scqubits [12]. In this case, we set the flux in the
SQUID at Φ/Φ0 = 0.003 ± 0.001 from the sweet spot, which is the flux used in
our measurements. We found the following dephasing times for the main dephas-
ing channels, described in section 3.4: for flux noise Tϕ,flux ≃ 330 µs, while for
critical current noise Tϕ,critical current ≃ 1600 µs. For this evaluation, we used
the standard values of the noise amplitude [11] and the values of EJ , EC and d
measured in section 5.1.2. These results confirm that the dephasing times are suf-
ficiently large to not contribute to T2. By making a simulation of T2 as a function
of flux (figure 60), we observe that the predicted coherence time, for the flux bias
set in our measurements, is consistent with the experimental one.

Figure 60: Scqubits [12] simulation for qubit 2 of the total T2 as a function of the flux bias in units of
the flux quantum. In red, the dephasing times computed for Φ/Φ0 = 0.004, as in our measurement.

In the end, for state-of-the-art split-transmon qubit, as qubit 2, dephasing can be
successfully suppressed by working at the sweet-spot. This result is very important
for the implementation of single and two-qubits gate, in which we need the qubit
to remain coherent as long as possible.
We repeated the same measurement for qubit 4. In this case, the flux sweet spot is
larger than the maximum value of the flux bias that we can apply in our experiment.
So, we set the flux as close as possible to the sweet spot, namely at Φ/Φ0 =
0.089± 0.001.
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Figure 61: Hahn Echo measurement for qubit 4: Gaussian exponential fit (in red) of the voltage
magnitude (in blue) for qubit 4 as a function of time.

However, when performing a T2 Echo measurement on qubit 4 (figure 61), we
noted that the decay featured both an exponential and a Gaussian behaviour for
small sequence duration times. As discussed in section 3.2, dephasing caused by
1/f flux noise is characterized by a Gaussian decay. Because of this, we performed
a fit with a function of the type: e−t/τe−t2/σ2

, as shown in figure 61. The resulting
Gaussian and exponential decays are: Tϕ,Gauss = 65± 11 µs and T2,exponential =
3.7± 0.8 µs, with statistical errors. This fit shows us that the effective exponential
decay time for qubit 4 is smaller than the relaxation time measured in section 5.2.2,
thus we are far from the theoretical limit T2 ≃ 2T1. As a matter of fact, for qubit
4, the longitudinal decay is determined by the dephasing time.
From section 3.4, we know that Tϕ is linked to the flux noise amplitude AΦ. It can
be proved that the Gaussian dephasing time depends on the flux noise amplitude

as Γ2,Gauss =

√
AΦ/Φ0

ln 2

ℏ
∂E01
∂Φ/Φ0

[49], [25]. By using this expression and the
Gaussian decay rate measured before, we obtained a noise amplitude of AΦ/Φ0

=
(3± 2) × 10−6. Having performed a simulation of T2 at this noise amplitude,
we obtained a decay time of T2 ≃ 4 µs, which is consistent with T2,measured =
3.7± 0.8 µs.
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Figure 62: Scqubits [12] simulation of T2 (in blue) and Tϕ,flux (in green) for qubit 4 as a function
of the flux bias in units of the flux quantum (x-axis), the red dot is the expected T2 and the yellow
one the expected Tϕ,flux for Φ/Φ0 = 0.089, as in our measurements.

As we can see from figure 62, the dephasing time due to flux completely dom-
inates the total coherence time behaviour as a function of the flux, and contributes
consistently with the values of T2. This result shows that, by introducing a noise
source in our system, we have drastically changed its coherence times, as described
by the Bloch-Redfield model (section 3.1). If we compare the coherence times
measured for qubit 2 and qubit 4, we observe that, for the former decoherence is
dominated by T1, due to dielectric losses only, while for the latter, dephasing in-
troduced by flux noise makes the coherence time T2 much shorter. In both cases,
we used the qubit as a noise detector in order to understand the effect of flux noise
and dielectric losses noise. Therefore, the study of noise sources is fundamental
to understand the physics behind qubits. Moreover, by identifying the main noise
source, in our case the flux in the SQUIDs, one could try to optimize it and improve
the qubit performances.

5.3 Avoided level crossing as noise spectroscopy

In order to observe Q2 − Q4 coupling, it is necessary to performed avoided level
crossing measurement, as discussed in section 2.9, by putting them into resonance.
As observed in section 5.1.2, we can change the qubit frequency by applying a
flux bias. Since qubit 4 has a higher frequency than qubit 2 (table 4), we flux
tune its frequency, while qubit 2 is fixed. By performing a flux spectroscopy on
qubit 4, as the two frequencies approaches, we observe the avoiding of the energy
levels, as shown in figure 63. The eigenstates of the system are a combination of
the excited and ground states of each qubit. Because of this, when the two qubits
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interact, we observe the appearance of the symmetric |ψs⟩ and asymmetric |ψa⟩
entangled wavefunctions, and finally the excited state |ee⟩, as pointed out in section
2.9. Another manifestation of the coherence of the interaction between the two
qubits is the observation of dark states [50], i.e. the spectroscopy signal disappears
because of destructive interferences. The spectroscopic drive is antisymmetric and
therefore unable to drive any transitions to the symmetric state, resulting in a dark
state, as we can see from the opening of a gap in the spectrum in figure 63.

Figure 63: Q2-Q4 Avoided level crossing: colormap of the voltage magnitude (showed in the color
scale) as function of the QD frequency, on the y-axis, and the flux bias, on the x-axis.

As done for the two-tone spectroscopy analysis performed on single qubit 2
and qubit 4, the analysis of the qubit frequency spectrum allows to evaluate the
dephasing time of qubit 4 as a function of the flux.
We performed a Lorentzian fit of the qubit spectra to obtain the qubit transition
frequencies and the quality factors with lmfit [48], based on a function of the type
(Γ/(Γ2+(x−x0)2)))+(Γ∗/(Γ∗2+(x−x∗0)2)) [51], where Γ and Γ∗ are the FWHM
of the resonances, and x0 and x∗0 are the resonance frequencies. Qubit frequencies
as a function of the flux are reported in figure 64 (a). From this measurement,
we can evaluate the coupling factor J between the two qubits (figure 64 (b)), as
the energy difference between |ψs⟩ and |ψa⟩. The measured coupling factor is of
the order of tens of MHz, which is consistent with literature examples [23]. The
quality factors can be computed as Q = x0/Γ. As discussed in section 5.1.2, this
quality factor is related to the frequency broadening, and thus to the dephasing time
as T ∗

ϕ ≃ 2Q/ωr, reported in figure 64 (c).

86



Figure 64: a) Extracted resonance frequency (y-axis) as a function of the flux bias in units of the
flux quantum (x-axis). b) Coupling parameter J (y-axis) as a function of the flux (x-axis) in units
of the flux quantum. c) Comparison between the measured dephasing times (in blue) and the ones
predicted by scqubits [12] (in green), as a function of the flux bias on the x-axis in units of the flux
quantum. The red lines indicate the beginning of the interaction, and the final acquired flux point.

During the coupling, the coherence properties of qubit 4 do not follow the B-
R model. Instead of a standard 1/f dependence on flux predicted by the scqubits
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[12] simulation (figure 64 (c) in green), we observe that the dephasing time shows
a sudden drop close to the avoided level crossing (the blue points in figure 64
(c)). Moreover, from figure 64 (c), we note that the slope of the simulated Tϕ is
less pronounced compared to the experimental data. This comparison could sug-
gest that the flux noise power spectral density may depend on the frequency as
S(ω) ∝ 1/ων , with ν different from 1. In literature, it has been demonstrated that
possible values for ν may range from 0.8 to 1 [7].
This analysis shows us that the coherence properties of a single-qubit can be right-
fully described with a two level system model as discussed in section 3.1, but
drastically change when we consider a two-qubit system, in which the qubit states
are mixed, and the B-R model fails. This highlights the importance of the study of
the main fundamental noise-fluctuations mechanisms in superconducting quantum
circuits.
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6 Conclusions

Throughout this work, we have described Josephson-based superconducting qubits,
with a specific focus on transmon qubits. We have investigated the effect of noise
on transmon devices from an experimental point of view, and we compared our
data within well-known theoretical models for decoherence mechanisms in super-
conducting transmon devices. We pointed out experimental protocols for the study
of the decoherence mechanisms in a state-of-the-art device, such as relaxation time
T1 measurements, Ramsey interferometry, and T2 Hahn Echo. By performing these
measurements, we compared these results with the theoretical predictions obtained
with the python library scqubits [12].
This self-consistent analysis highlighted that the most relevant noise sources for
the device analyzed in this work, within a joint experiment between Quantware,
Seeqc-EU and the University of Napoli Federico II, were: the dielectric losses for
relaxation, and the flux bias for dephasing, particularly relevant far from the flux
sweet-spots. Specifically speaking, Hahn-echo measurements, characterized by a
Gaussian decay, rather than a pure exponential decay, have been compared with
the theoretical simulations of dephasing times in order to extract the amplitude of
flux noise, providing a consistent and comparative way to extract information on
the flux noise. This self-consistent method for the noise characterization of a single
split-transmon allows to identify, on a certain extent, the main decoherence sources
by using the qubit as a noise detector.
Finally, we have investigated on the decoherence processes occurring in a two-
qubit system, and we have experimentally observed that the dephasing time of the
qubits decreases during the coupling. This behaviour can be explained with the fact
that, by coupling the qubits, other sources of decoherence and dissipation arise. In
addition, the behaviour of the measured dephasing time as a function of the flux
was not consistent with a 1/f dependency of the power spectral density for flux
noise.
The evaluation of the exact low-frequency dependence of noise power spectral den-
sities is of immeasurable importance, in order to understand the microscopic and
quantum nature of the noise in superconducting qubits. Therefore, my study con-
firms the need of developing novel simulation tools for the study of decoherence
mechanisms in superconducting qubits. The extension to multi-qubit systems dy-
namics is a mandatory step for advances in the understanding of such phenomena
in scalable superconducting quantum processors. Moreover, the results provided in
this work are of fundamental importance for the engineering of the transmon qubit
design. Once the most relevant noise sources are identified, in our case dielec-
tric losses and flux noise, they can be minimized by searching for novel materials,
fabrication conditions and circuit design.
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