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Introduction

Quantum Field Theory is the product of decades of attempts to construct a frame-

work within which we can successfully describe the fundamental constituents and

interactions of nature. The history of this compelling challenge begins with the

unification of Quantum Mechanics and Special Relativity and has come down to

the present day preserving the theory’s undisputed power and centrality in hu-

man understanding of the phenomena underlying the universe, which to this day

is encapsulated in the Standard Model of Particles. The conceptual structure of

the theory has several milestones that make it one of humanity’s greatest scien-

tific achievements, among them we can mention: Perturbations Theory, Gauge

Theories and the Rinormalization Group. As has often been the case in Physics,

having a fundamental theory is not always synonymous with a total understand-

ing of phenomena; nature is often difficult to understand. For example, we can

exactly describe the structure of a hydrogen atom using the Schrodinger Equa-

tion, the heart of non-Relativistic Quantum Mechanics, but it becomes hard to

study even the simplest molecule with the same tool, and this teaching still holds

even in Fundamental Physics. One of the most glaring cases is that of 3-colors

QCD, the fundamental theory of the interaction between quarks and gluons, the

elementary constituents of hadrons. QCD is a non-Abelian gauge theory and it

exhibits several properties that make it one of the phenomenologically richest in-

teractions ever: asymptotic freedom and confinement. The interaction becomes

weak, hence perturbative, at high energies, while at low energies it cannot be

studied with the usual perturbative techniques, and this greatly complicates the

study of the physics of baryons and mesons that are precisely part of the low-

energy spectrum of the theory. This complexity forces us to separate the theory
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into regimes, each of which can be studied with different techniques and ap-

proaches. These difficulties underlie the introduction of Effective Theories that

capture the characterizing aspects of the theory in a given regime. In this way

one is able to obtain very accurate predictions at the cost of having accurate

results in that specific regime only. In the set of effective theories of QCD we

can mention the theory of Chiral Perturbations where the fundamental particles

are hadrons themselves and the masses of the quarks are considered negligible,

or the Effective Theory of Heavy Quarks and so on. In this context, fundamental

theories become the nucleus of a constellation of effective theories, which in turn

require the introduction of new methods and strategies of theoretical investiga-

tion that often open up new lines of research with a life of their own. The aim

of this work is to jointly apply some cutting-edge techniques concerning effective

theories and QFT more widely. Specifically, we will start by illustrating a gener-

alisation of the well-known Linear Sigma Model and upon this we will carry out a

fixing of the charges associated with the global symmetries of the system, this op-

eration has a double value, phenomenological and technical. Firstly, it allows the

various phases of a theory to be probed as the system’s charge density changes,

and secondly it allows new perturbative parameters to be introduced, which are

necessary when constructing an effective theory. In a second step we will exploit

a fundamental property of such a model, namely the fact that it possesses a fixed

point, a value of the coupling constant for which the beta-function vanishes. We

will see how this implies the possibility of the system acquiring Conformal Invari-

ance. We will then introduce the fundamental aspects of Conformal Field Theory

and see how this theory, applicable to our case, is capable of extending the limits

of the perturbative approach even where it is not possible in non-conformal QFT,

allowing for example the calculation of the anomalous dimensions of large-charge

operators.
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Chapter 1

The SU(2N) Linear Sigma Model

1.1 Effective Theories

Solving a QFT means being able to calculate all n-point correlation functions.

However, some theories are more complex than others and as already mentioned,

it is sometimes necessary to separate the theory into regimes and study them sepa-

rately. The notion of complexity of a theory in QFT has a very precise meaning.

It depends on the behaviour of the degrees of freedom along the RG-flow, the

number of independent parameters of the theory and the relationships between

these parameters, the exact and approximate symmetries that are realised and the

breaking patterns of these symmetries. The interplay of these features can make

it difficult not only to solve the theory in the various regimes, but even to correctly

identify and split the regimes themselves. This is the case with QCD, where the

combination of features such as asymptotic freedom, colour confinement, inhomo-

geneity between masses of quarks, and approximate symmetries, makes the study

of strong interaction very challenging and organised into effective theories, each

with its own ’phase’ of pertinence. Before moving onto the aspects we want to

focus on, it is therefore good to briefly explore the theory and draw an intuitive

picture of its phases. The elementary degrees of freedom of the theory are the

quarks ψa
f and the gluons Aa

µ, where f is the flavour index and a = 1, 2, 3 the

colour index. The quarks transform into the fundamental representation of the

colour group SUC(3) while the gluons into the adjoint representation. Being f a
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flavour index, the Lagrangian of QCD has the form

L =
∑
f

ψ̄a
f (iD̄ −mf )ψf −

1

4
Ga

µνG
µν
a (1.1)

where Ga
µν is the field strenght tensor defined as

Ga
µν = ∂µA

a
ν − ∂νA

a
µ − gfabcAb

µA
c
ν . (1.2)

So far, we can make a first important classification among quarks. The masses

of the quarks are quite different as the flavors vary and can differ even by several

orders of magnitude, this allows us to introduce very well-defined energy scales at

which effective theories pertaining to a certain energy scale can be constructed,

neglecting the dynamics that take place at other energy scales. We could then

ideally consider the mass of the light quarks to be zero and that of the heavy

quarks as infinite, leaving the coupling constant the only parameter in the the-

ory. We can then calculate the one-loop β-function which will give us essential

information on the behaviour of the theory as the energy scale involved changes.

Direct calculation results in

β(g) = − g3

16π2
(
11

3
Nc −

2

3
Nf ) (1.3)

It is self-evident that for Nf <
11
2
Nc the theory is asymptotically free, this implies

that the coupling is strong at low energies and weak at high energies. We can

emphasise this point by calculating the coupling constant itself, remembering

that the β-function is the logarithmic derivative of g with respect to the energy

scale q, we have

g2(q2) =
16π2

(11
3
Nc − 2

3
Nf ) log

(
q2

Λ2
QCD

) (1.4)

The only dimensional parameter in the above expression is ΛQCD, which in simple

terms sets the scale at which QCD is no longer perturbative. The estimation of

this parameter would deserve a rigorous independent treatment, for our purposes

we will simply say that approximately the scale of Λ corresponds more or less

with the hadronic scale, thus ≃ 3 − 4 × 102 MeV. We have introduced a first

important distinction between perturbative and non-perturbative regimes, but
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it is an inconclusive analysis as long as the symmetries of the theory and the

behaviour of the degrees of freedom in these regimes are not analysed. Let us

then study the local and global symmetries of the theory. The theory has a local

gauge symmetry SUC(3), let U(x) be a local SUC(3) transformation,

ψ(x) → U(x)ψ(x) ; Aµ(x) → U(x)AµU
†(x) + iU(x)∂µU

†(x), (1.5)

Whether in some cases the masses of quarks can be considered equal, we gain

a new global invariance related to rotations in the flavor’s space, the Flavor

Symmetry

ψf → Vfgψg , Vfg ∈ SU(3) (1.6)

The symmetry is enlarged to SUL(3) × SUR(3) if the masses are set to zero. In

fact, in the latter case any coupling between left-handed and right-handed spinors

vanishes. Being ψL,R the chiral components of ψ, namely

ψL,R =
1

2
(1± γ5)ψ, (1.7)

the action of SUL(3)× SUR(3) reads as

ψL,f → Lf,gψg , ψR,f → Rf,gψg ; Lf,g, Rf,g ∈ SUL(3), SUR(3). (1.8)

We know for sure that the masses of the quarks are neither zero nor all equal,

but for light quarks we have mu,md < ms ≪ ΛQCD, and it is certainly licit to

make use of the chiral symmetry. The Lagrangian possesses two additional U(1)

symmetries :

ψL(x) → eiαψL(x) ; ψR(x) → eiαψR(x) UV (1), (1.9)

ψL(x) → eiβψL(x) ; ψR(x) → e−iβψR(x) UA(1). (1.10)

The UV (1) symmetry is exact even when the masses of the quarks are non-zero

and is the baryon number conservation symmetry, whereas the UA(1) symme-

try, although classically valid, is quantum-mechanically anomalous. In fact, the

associated current has non-zero divergence:

∂µJ
µ
A =

g2Nf

16π2
Tr(F̃µνF

µν) (1.11)
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In QCD the chiral symmetry is spontaneously broken by the condensate〈
ψ̄fψg

〉
= δfgΛ (1.12)

acquiring a non-zero vacuum expectation value that only preserves the SUV (3)

vectorial subgroup of SUL(3)×SUR(3) that we actually know is explicitly broken

due to the mass difference between the quarks. Since mu,md ≪ ms, the isospin

symmetry SU(2) is a better symmetry than the previous one. If we assume these

symmetries to be correct, we expect a number of Goldstone bosons to appear

from the spontaneous symmetry breaking mechanism :

SUL(3)× SUR(3) → SUV (3) → 8 Goldstone′s, (1.13)

SUL(2)× SUR(2) → SUV (2) → 3 Goldstone′s. (1.14)

If the breaking is induced by the condensate, it is then natural to set ourselves the

goal of constructing a theory in which the condensate corresponds to the VEV

of an ’effective’ field, Σ, whose transformation properties are exactly inherited

from the condensate itself. Being L and R transformations of SUL and SUR

respectively, the effective field Σ must transform as :

⟨Σ⟩ ∼
〈
ψ̄fψg

〉
⇒ Σ → LΣR†. (1.15)

Such a field can be interpreted as the field describing the fluctuations around the

condensate, it is the chiral order parameter and the Goldstone bosons are the Σ

fluctuations invariant under the coset (SUL(Nf )×SUR(Nf ))/SUV (Nf ) elements.

This is the first step towards the construction of an ’effective theory’, i.e. a theory

that reproduces the symmetries of a given fundamental theory but whose degrees

of freedom correspond to the ’net’ particle content of the microscopic theory at

a certain scale. For example, the 3 Goldostones of Σ in the SU(2) case could

represent pions. Recalling that the condensate is a matrix, the kinetic part of the

lagrangian describing Σ will be of the type :

L ∼ Tr(∂µΣ∂µΣ
†). (1.16)

We could of course add potential terms or even terms that take into account

the masses of the quarks at the effective level without changing the starting
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global symmetries, we also have several choices in the explicit parametrization

of the Σ field. The class of theories we obtain in this way is known as σ-models

and, depending on the parametrization, we can distinguish between Linear Sigma

Models or Non-Linear Sigma Model. For example, in the SU(3) case we can use

the exponential parametrization :

Σ = e
iλaπa

fπ , (1.17)

where λa are the Gell-Mann matrices and fπ is the pion decay constant. The

advantage of this parameterisation is that the Lagrangian can be developed to a

given order in the powers of ∂
fπ
, so a perturbative scheme is automatically intro-

duced. In the case of isospin invariance, exploiting the homomorphism between

SU(2) × SU(2) and SO(4), knowing that 3 Goldstones are expected from this

theory, we can introduce a chiral partner of pions, typically denoted by σ, and

use a linear parameterisation

Σ = σ + iτ⃗ · π⃗ (1.18)

If we wish to retain the interpretation of pions as pseudo-Goldstone bosons, we

must ensure that only σ acquires mass and that π⃗ remains massless. We then

introduce potential terms and study symmetry breaking pattern

L =
1

4
Tr(∂µΣ∂µΣ

†) + u0Tr(Σ
†Σ) + v0Tr(Σ

†Σ)2 (1.19)

For u0 > 0, the potential’s minimum is obtained for

〈
σ2 + π⃗2

〉
=
u0
v0

(1.20)

and we may require that ⟨π⃗⟩ = 0, obtaining ⟨σ⟩ =
√

u0

v0
. If we assume that parity

cannot be spontaneously broken in QCD then ⟨π⟩ = 0 is no longer a choice but

a requirement. This result is known as the Vafa-Witten theorem, which states

that vector-like global symmetries, including parity in vector-like gauge theories,

such as QCD, cannot be spontaneously broken as long as the θ-angle is zero [12].

This result is clearly consistent with Goldstone’s theorem, the spontaneously

broken symmetries of SO(4) are all and only those involving the σ direction, and
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therefore the Goldstone bosons are equal in number to the dimension of SO(4),

i.e. n(n−1)
2

, minus the number of pairs of axes involving the σ axis, i.e. 3, from

which we obtain 3 massless bosons.

1.2 Charge Fixing

Another important tool that we wish to introduce for further development and

subsequent applications is the fixing of charges in a QFT. Assuming that a QFT

has a certain number of global symmetries, whose conserved Noether charges are

of course associated, we could in principle require that the system shows a certain

fixed charge. There are several reasons why this idea can be instructive, and they

are both technical and phenomenological. Firstly, in a system of quantum nature

where a charge is conserved, assuming that the charge is sufficiently large with

respect to a certain scale that depends on the system under examination, we

expect the system to ’classicize’ so it comes naturally to introduce semi-classical

techniques. We will see that this demand in general does not preserve Lorentz

invariance. Moreover, a charged system in such a way allows us to introduce

the so-called ”large charge expansions”, an idea that turns out to be particularly

useful in the area of strongly coupled theories where the inverse of the fixed

charge, in the limit where this is sufficiently large, can be used as a perturbative

parameter in terms of which observables are expanded. Lastly, charge fixing is

especially fruitful in the study of the ’phases’ of a theory, as it is possible to

construct actual phase diagrams in which the aforementioned fixed charge is one

of the axes, and in this way analyse possible phase transitions. An emblematic

case of this latter approach is represented by QCD-like thoeries, which will be at

the heart of the subsequent developments of this work. In the remaining of the

present chapter we want to develop these ideas, bringing notable examples and

preparing ourselves for the subsequent discussion of the QCD-like theories. Let

us illustrate the ideas we briefly introduced earlier in more detail, starting with

the simplest charge fixing model. Let jµ be a Noether current for a relativistic
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theory, then its conserved charge will be

Q =

∫
dxd−1j0. (1.21)

The charge fixing condition is trivially expressed by imposing that the equation

Q = Q̃ is satisfied, where Q̃ is just the charge fixed value. We know that the zero

component of the current transforms as a vector, so the charge fixing constraint

seems to explicitly break the Lorentz invariance. The Fixed Charge constraint

can be implemented at the Lagrangian level by simply introducing a chemical

potential term :

L̂ = L+ µQ. (1.22)

An interesting aspect lies in the relationship between fixed charges and the mech-

anism of spontaneous symmetry breaking. Let Ĥ be the Hamiltonian operator

associated with L̂, the vacuum of the theory |0⟩, is by definition the state which

minimizes Ĥ

Ĥ = H − µQ (1.23)

Ĥ |0⟩ = 0 (1.24)

It can happen that the vacuum is not an eigenstate of Q̃, for instance when the

symmetry related to Q̃ is spontaneously broken by |0⟩ itself. Indeed, there is

nothing to prevent the charge-fixing operation from inducing non-zero Vacuum

Expectation Value. The first remarkable consequence is that, since the vacuum

is no longer eigenstate of charge, it cannot be the eigenstate of H, which implies

that the states of the system cannot be classified with the eigenvalues of the

relativistic Hamiltonian H, but it is necessary to diagonalise Ĥ, which ,as can

be seen, is not relativistic. There are several arguments why the breaking of the

Lorentz invariance is not of concern. Indeed, we note that the chemical potential

term can be seen as a coupling between the field and the zero component of a

background gauge field. Furthermore, the starting theory remains relativistic, so

the non-relativistic system can be interpreted as a state of a relativistic theory

where the Lorentz-invariance is only spontaneously broken. Thus, the charge
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fixing has a significant interplay with the mechanism of spontaneous symmetry

breaking and this aspect proves to be crucial in the construction of effective

theories. Let us analyse a simple case, which will serve as the first basic template

for subsequent developments and generalisations, of the application of these QFT

methodologies by introducing 2-colour QDC at finite baryonic dentity [kogut1]

with the purpose of building the Effective Theory. Although this model does not

refer to a theory of nature, which would be the 3-colour QCD, it possesses some

unique features that make the treatment simpler and more powerful. Suppose

then that we want to determine the spectrum of such a theory whose Lagrangian

in Euclidean formulation is

L =

Nf∑
f=1

ψ̄fγ
µDµψf +mqψ̄fψf + µψ̄fγ

0ψf , (1.25)

where Nf is the number of flavor and f the flavor index. For the sake of simplicity,

let us consider the massless case with Nf = 2. At µ = 0, with two colors

and two flavors, the theory admits a pseudo-real representation of SUc(2), so

we have an SU(4) global flavor symmetry which is spontaneously broken by

the condensate into Sp(4) with the creation of 5 Goldstone Bosons. For µ ̸=

0 the SU(4) symmetry is explicitly broken into SUL(2) × SU(2)R × U(1) and

spontaneously into SUL(2)×SUR(2) creating a single Goldstone with the other 4

acquiring a mass proportional to µ≪ ΛQCD. The latter statement is fundamental

and is the reason why Effective Theory is needed: we are studying the 2-color-2-

flavors QCD below the Chiral Symmetry Breaking Scale ΛQCD.We will elaborate

towards the end on how these methods are related to one of the most important

and challenging aspects of QCD: its phases. The fundamental Lagrangian is

L = q†LiσµDµqL + L = q†Riσ̄µDµqR, (1.26)

we can now use the color pseudo-reality T ∗
a = T T

a = −T2TaT2, where Ti are Pauli’s

matrices, then

DT
µ = −T2DµT2 → −∂⃗µ + Aa

µT
T
a , (1.27)
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defining q̃ = σ2T2q
∗
R and q̃† = qTRT2σ2, for Nf = 2 if Ψ = (q1, q2, q̃1, q̃2)

T , then the

covariant derivative part of the lagrangian becomes

L = Ψ†iσµDµΨ (1.28)

As can be easily seen, the total global symmetry is SU(2Nf ) × UB(1). Whitout

pseudo-reality it would have been SUL(2)× SUR(2)×U(1). We can also rewrite

the mass term as

q†RqL + q†LqR = q̃Tσ2T2q + q†σ2T2(q̃
†)T =

1

2
ΨTσ2T2

 0 1

−1 0

Ψ, (1.29)

while the chemical term becomes

q†LqL + q†RqR = q†q − q̃†q̃ = Ψ†

1 0

0 −1

Ψ. (1.30)

The chemical term preserves separately SU(2) × SU(2) × U(1). At µ = 0 the

non-zero VEV of the mass term breaks SU(4) spontaneously into Sp(4) (5 Gold-

stones), while for µ ̸= 0 the symmetry is SUL(2)×SUR(2)×UB(1), spontaneously

broken into Sp(2)× Sp(2) (1 Goldstone). Four of the previous 5 Goldstones ac-

quire mass dependent on the chemical potential that goes to zero when µ goes

to zero. This is the general picture of the microscopic theory once the charge-

fixing is performed. We want now to construct the Effective Theory in which

the degrees of freedom are represented by fluctuations of the condensate in the

microscopic theory, namely Σ1

Σ ∼ ΨΨTσ2T2 (1.31)

Under SU(4) we have Ψ → UΨ, therefore the Effective Field Σ transforms as

Σ → UΣUT . The kinetic effective Lagrangian takes the form

L = f 2
π Tr(∂µΣ

†∂µΣ) (1.32)

The Σ matrix encodes 5 degrees of freedom corresponding to 5 Goldstones in

the microscopic theory for µ = 0, so it has to be unitary and anti-symmetric

1io so cosa vuoi dire ma devi introdurre un po’ meglio le cose: σ chi sono? T chi sono? U

chi è? meglio spendere qualche parola in più per essere più chiari
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in order to codify 5 independent real fields. The chemical potential term of the

microscopic theory explicitly breaks SU(4). We can first recover this symmetry

by also transforming the source coupled to the breaking term, to do so we write

the term in µ as

µΨ†iσµBµΨ (1.33)

Mµ = δoµ =

1 0

0 −1

 (1.34)

but this time B also transforms under SU(4) as

Mµ → UMµU
† (1.35)

This procedure is just a direct way to introduce at the effective level a potential

term through the simplest non-linear term in S and B, i.e. µ2Tr(ΣM tΣ†M), this

term will allow us to find a minimum and also the masses of the pseudo-Golstones

encoded in the second derivatives. The last step is the insertion of a symmetry

breaking term and the computation of the Pseudo-Goldostone masses dependence

on µ; symmetry will bu our guide. Global symmetries in the microscopic theory

can be exstended to local symmetries, statement which requires

Mµ → UMµU
† +

1

µ
U∂µU

† (1.36)

∂µΣ → DµΣ = ∂µΣ + µ(MµΣ + ΣMT
µ ) (1.37)

We are not really realising a gauge theory, this ”gauging” procedure is noth-

ing more than a way of effectively linking the mass term with the kinetic term

and fixing the relationship between masses and chemical potential. Explicitly

calculating the minimum leads us to the relation:

MΣ0 = Σ0M
T → Σ0 =

σ2 0

0 σ2

 (1.38)

which can be written recursively for arbitrary powers of M and MT ,

MΣ0 = Σ0M
T →M2Σ0 =MΣ0M

T = Σ0(M
T )2 → ...MnΣ0 = Σ0(M

T )n (1.39)
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making the following exponential relation valid

Σ0 = eiMtΣ0e
−iMT t (1.40)

This minimum is not unique, there is a U(1) degeneracy related to the barion

number corresponding to the exponentiation of M . In order to capture the cur-

vature of Σ around its vacuum alignment it is convenient to write Σ as UΣUT

, with U near to the Identity. At this level, the best thing to do is to separate

generators that leave the vacuum invariant (Ti) from those which do not (χi) .To

find the former let’s write the corresponding condition

UΣoU
T = Σ0 (1.41)

U = eiΦjT
j

(1.42)

The Ti generators form the Sp(4) sub-group and solve the equation

TiΣ0 = −Σ0T
T
i (1.43)

whose solutions are

T1−3 =

σi 0

0 σi

 ; T4−6 =

σi 0

0 −σi

 (1.44)

T7−9 =

 0 σi

σi 0

 ; T10 =

 0 i

−i 0

 (1.45)

while the χj solving χaΣ0 = Σ0χa are

χ1−3 =

 0 iσi

−iσi 0

 ; χ4 =

0 1

1 0

 (1.46)

χ5 =

1 0

0 −1

 =M (1.47)

It should not be surprising that one of the χ’s transforming the vacuum is exactly

the M matrix, since they solve the same equation. We can finally conclude that,
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writing U = eiπaχa , π5 is the single real Goldstone. The other four π’s are Pseudo-

Goldostones and we can compute their mass

−2∂2Tr(ΣT
µΣ

†Mµ) → −2∂2TrU4 = 4(∂µπa)
2Tr(I) (1.48)

And, as expected, one getsmPG = m1−4 = 2µ. Starting from this specific case, we

can make some general considerations on symmetry-breaking patterns that will

give us precise indications in the construction of more general effective theories, in

the sense that we will not make restrictive assumptions on the number of fermions

in the microscopic theory. From the previous discussion we have seen that the

Ti generators belong to the global symmetry group of the effective theory that is

not spontaneously broken, i.e. Sp(4), while the Xa generators are relative to the

subgroup of SU(4) that is obtained by eliminating the Sp(4) component, i.e. the

coset SU(4)/Sp(4). Recall that the dimensions of the above groups are

Dim(SU(2Nf )) = 4N2
f − 1 (1.49)

Dim(Sp(2Nf )) = Nf (2Nf + 1) (1.50)

Therefore, when µ = 0, the number of Goldstones, degrees of freedom in the

effective theory, is NGµ=0 = Nf (2Nf − 1) − 1, which in the case of Nf = 2

returns precisely 5-Goldstones. At non-zero chemical potential the pattern is

µ ̸= 0 → SU(2Nf )
ESB−−−→ SU(Nf )× SU(Nf )× U(1) (1.51)

The equation for the condensate 1.29 shows that this is a rank 2 anti-symmetric

tensor, so the pattern becomes

µ ̸= 0 → SU(2Nf )
ESB−−−→ SU(Nf )×SU(Nf )×U(1)

SSB−−→ Sp(Nf )×Sp(Nf ) (1.52)

from which we can easily see that the goldstone number goes from Nf (2Nf−1)−1

to 2(N2
f − 1)−Nf (Nf + 1) = Nf (Nf − 1)− 1 = NGµ̸=0. Following the previous

reasoning, then the Pseudo-Goldstone number (NPG) is obtained by subtracting

from the Goldstone number at µ = 0 that at µ ̸= 0, i.e.

NPG = NGµ=0 −NGµ̸=0 = N2
f (1.53)
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which in fact in the case of Nf = 2 returns the four P-GBs calculated earlier.

A general feature of these models is the fact that, working at generic Nf , the

degrees of freedom in the actual theory must be NGµ=0 = Nf (2Nf − 1) − 1 ,

consequently it must hold that Σ is antisymmetric, unitary and unimodular.

Σ = −ΣT ; Σ†Σ = I ; det(Σ) = 1 (1.54)

That it has exactly NGµ=0 = Nf (2Nf − 1)− 1 independent components.

1.3 The Sp(N) group

In the latter subsection we explicitly saw the spontaneous symmetry breaking pat-

tern SU(4) → Sp(4) which arises from the mass term when neglecting the chem-

ical potential term. The same pattern has been then generalized by analogy into

SU(2Nf )
SSB−−→ Sp(2Nf ). We now recall the definition of Symplectic Group

and give a formal proof of the generalized pattern above. For the Nf = 2 case,

we saw that the pattern is induced by a second rank anti-symmetric tensor and

this remains true also for Nf ̸= 2, the reason is easily understood [symple]. We

should first note that once the pseudoreality of SUC(2) is employed, regardless of

the number of fermions, every single fermion mass term can be cast in the form

1.29, then Nf only affects the dimensionality of the Ψ multiplet which becomes

Ψ = (q1, q2, ...qNf
, q̃1, q̃2, ...q̃

T
Nf

), therefore the generalized mass term must be :

Lmass =
1

2
ΨTσ2T2

 0 INf

−INf
0

Ψ (1.55)

where σ2 and T2 just carry the SU(2)-spin and SUC(2) color indices respectively.

Being Ω the Symplectic matrix :

Ω =

 0 INf

−INf
0

 (1.56)

it is self-evident that the SU(2Nf ) subgroup preserving Lmass must satisfy the

equation

UTΩU = Ω (1.57)
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The latter is actually the defining equation for the Symplectic Group Sp(2Nf ).

We could make the following ansatz for an arbitrary element belonging to Sp(2Nf )

U ∈ Sp(2Nf ) ; U =

A B

C D

 (1.58)

where every block is an Nf × Nf matrix, it turns out that, in order to satisfy

the 1.57, the block components above have to solve the following set of matrix

equations

CTA = ATC ; BTD = DTB ; ATD − CTB = INf
(1.59)

The first two equation are independent constraints in the form X = XT , giving

n2−n
2

constraints each, the last equation is also and independent constrain in the

form Y −Z = I, so it gives n2 constraints, therefor the dimension of the Sp(2Nf )

group in equal to dimSp(2Nf ) = 4N2
f − (N2

f − Nf ) − N2
f = Nf (2Nf + 1). For

the case of generic Nf we can construct the effective theory in exactly the same

way as before, and the condensate will obviously continue to have the structure

1.31 consequently the equation finding the minimum in the effective theories will

have exactly the same structure, with the only prescription.

Mµ = δ0µ

INf
0

0 −INf

 (1.60)

Finding the minimum in the Effective Theory will still lead us to the equation

1.38 and clearly the subgroup leaving the vacuum invariant depends strongly

on the choice of Σ0. We can prove that if Σ0 is a 2Nf × 2Nf complex matrix

satisfying Σ0Σ
†
0 = Σ†

0Σ0 = |c|2I2Nf
, where c is a C-number, and the SU(2Nf )

generators in the defining representation are given by {Ta, Xb}, where Ta and Xb

are respectively the unbroken and the broken generators,

TaΣ0 = −Σ0T
T
a unbroken (1.61)

XaΣ0 = Σ0X
T
a broken (1.62)

then the Ta’s span the unbroken Sp(2Nf ) sub-algebra. The first consequence of

our demands on Σ0 is that

|c|2T T
a = −Σ†

0TaΣ0 (1.63)
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as shown in [symple2], for every even-dimensional complex anti-symmetric ma-

trix M there exists an unitary matrix U such that UMUT = diag(J1,J2, ...JN),

where Ji =

 0 zi

−zi 0

, with |zi|2 eigenvalues of MM †. Since Σ0Σ
†
0 has one |c|2

fully degenerate eigenvalue, thus we can find two unitary matrix such that

U1Σ0U
T
1 = cU2ΩU

T
2 = diag(cJ , cJ , ..cJ ) (1.64)

J =

 0 1

−1 0

 (1.65)

There will be also a unitary matrix Ũ = U−1
2 U1 such that

ŨΣ0Ũ
T = cΩ (1.66)

Finally, replacing the 1.66 into the 1.63 and defining T̃a = ŨTaŨ
−1, one finds

T̃a
T
= ΩT̃aΩ (1.67)

therefore, we canconclude that, since there is a one-to-one correspondence be-

tween the T̃a set and the Ta set, and since T̃a manifestly span the symplectic Lie

algebra, then SU(2Nf ) is broken into Sp(2Nf ) under the aforementioned choices

on the vacuum.
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Chapter 2

Conformal Field Theory

In the previous chapter we preliminarily introduced the scheme by which effective

theories with fixed charges can be constructed with the aim of applying these

methods on a more general and complex model. As will become clear later, the

model we are about to study possesses an interesting property, the conformal

symmetry. This additional symmetry, together with the previous techniques, will

prove to be enormously good in solving the theory as it will allow us to restore the

applicability of perturbative methods where it would not otherwise be possible.

We will then introduce the basics on the conformal group by mainly following the

approach of [difra] and [slava], next we will demonstrate the formidable tools

of Conformal Field Theory and again show how to employ them on a simple

model, as done by [epsilon], before seeing how these results can be put together

to compute observables in regimes where the usual techniques would fail.

2.1 Conformal Invariance

Conformal Field Theories (CFTs) are a special class, more precisely a subset,

of Quantum Field Theory which exibit invariance under an enlarged symmetry

group, the Conformal Group. CFTs can emerge in any spacetime dimensions,

the case of d = 2 is a special one because of the infinite dimension of the Viraroso

algebra. In this work we will not focus on the latter case. In any number of

dimensions, the Conformal Group is defined by spacetime transformations that
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leave angles unchanged, it turns out to be the Poincarè Group in addition with

Dilatations and the so called Special Conformal Transformations. The CT Group

forms the largest finite dimensional subsgroup of Diff(Rd). CFTs have many

applications in QFT that we can briefly report as follows:

1. Dilations invariance requires the absence of any dimensionful parameter,

then CFTs are massless theories.

2. The Renormalization Group flow of non-conformal theories can end in a

CTF in the IR or UV. This is for instance the fate of QCD.

3. Within the set of renormalizable QFTs, CFTs are a special subset, the one

for which the β-function vanishes.

The latter point will be crucial in our discussion. It is that CFTs are a ”vanishing

mesure” subset of all possible QFTs, despite this the Conformal Invariance is a

powerful tool to study some peculiar regimes of the RG flow of QFTs. Let us

define the Conformal Group in an arbitrary dimension D > 2. Under a general

coordinates transformation, the metric tensor transformas as

gµν → g
′

µν = gαβ
∂xα

∂x′µ

∂xβ

∂x′ν
(2.1)

Conformal Transormations are those which only change the sclae of the metric

tensor

g
′

µν(x
′) = ω(x)gµν(x) ; ω(x) > 0 (2.2)

The Poincarè Group is the subset defined by ω = 1, and Scale transformations

x→ λx are also included in the (562.2. From the defining relation we want to ex-

plicitly characterize the conformal transformations in d ≥ 3 with the Minkowski

metric gµν = ηµν = diag(1,−1...− 1). First we consider infinitesimal transforma-

tions on the coordinates

xµ → x′µ = xµ + ϵµ(x) ;
∂xρ

∂x′σ
= δρσ −

∂ϵρ

∂x′σ
(2.3)

We substitute the transformation into 2.1 by imposing that 2.2 is satisfied in the

above hypotesis, getting
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∂µϵν + ∂νϵµ = f(x)ηµν (2.4)

By contracting both sides of the latter equation with ηµν , we get

∂µϵµ =
d

2
f(x) (2.5)

we can also differentiate the 2.4 with respect to ∂ρ and sum over the three possible

permutations of indices, this leads to

2∂ρ∂µϵµ = ∂ρf(x)ηµν + ∂µf(x)ηρν − ∂νf(x)ηµρ (2.6)

contracting again with ηµν we get

2∂2ϵν = (2− d)∂νf(x) (2.7)

Now it is sufficient to apply ∂ν on the latter equation and combine with the (59),

this results in

(1− d)∂2f(x) = 0 (2.8)

We could also differentiate the (61) with respect to ∂µ and use the (60), this leads

to

(2− d)∂µ∂νf = ηµν∂
2f (2.9)

The equation 2.8 together with the equation 2.9 imply that the f function can

only be linear in coordinates

f(x) = A+Bµx
µ (2.10)

where A and Bµ are constants. The previous equations imply that ϵµ is at most

quadratic in coordinates

ϵµ = aµ + bµνx
ν + cµνλx

νxλ (2.11)

Since the last relation must be true in any space-time point, we can substitute

order by order in the previous equations in order to constrain the parameters. It

is straightforward to check that the aµ parameters are not constrained, therefore

the aµ part defines translations, while using 2.11, 2.4 and 2.5 we get

bµν + bνµ =
2

d
bρρ ηµν (2.12)
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The 2.12 forces bµν to be sum of a pure trace part and an ωµν-part preserving

ηµν

bµν = ληµν + ωµν (2.13)

The λ part of the latter corresponds to Scale Transformations x→ λx, while the

ωµν part involves rigid rotation in Minkowski space, i.e. Lorentz transformations.

Finally, sobsitution of the quadratic term into 2.11 yields

cµνρ = ηµρCν + ηµνCρ − ηρνCµ ; Cµ =
1

d
cσσµ (2.14)

The latter cohefficients define what we call Special Conformal Transformations,

which are basically combinations of respectivelly an inversion xµ → xµ

x2 , a trans-

lation and another inversion. The entire collection of Conformal Transformation

is then given by

• (Translations) x′µ = xµ + aµ

• (Dilations) x′µ = λxµ

• (Lorentz Transformations) x′µ = Λµ
ν x

ν

• (Special Conformal Transformations) x′µ = xµ−Cµx2

1−2(Cρxρ)+C2x2

If we neglect transformations for fields, then the Conformal Generators read as

• (Translations) Pµ = −i∂µ

• (Dilations) D = −ixµ∂µ

• (Lorentz Transformations) Lµν = i(xµ∂ν − xν∂µ)

• (Special Conformal Transformations) Kµ = −i(2xµx · ∂ − x2∂µ)

Therefore, the commutation rules which define the Conformal Algebra are

i[Pµ, Kν ] = −2gµνD + 2Mµν ; i[Mβ, Kγ] = gαγKβ − gβγKα

i[D,D] = i[D,Mµν ] = i[Kµ, Kν ] = 0

i[D,Pµ] = Pµ ; i[D,Kµ] = Kµ

(2.15)
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Once the conformal group has been constructed, it is necessary to study the

transformation properties of the classical fields under the conformal group and

provide examples of representations. Given an infinitesimal conformal transfor-

mation parametrized by ωa, we are searching for generators Ta such that a general

multicomponents field transforms as

Φ′(x′) = (1 + iωaTa)Φ(x) (2.16)

In order to find this generators, we can first represent the sonformal subgroup

which leaves the origin x = 0 invariant and then translate the generator elsewhere.

Let Sµν be a matrix representing an internal Lorentz transformation, namely the

Spin, and Lµν our Lorentz generator, clearly

LµνΦ(0) = SµνΦ(0) (2.17)

By use of the Poincaè algebra and the Hausdorff formula

e−ABeA = B + [B,A] +
1

2
[[B,A], A] + ... (2.18)

we get the following value for the generator away from the origin

eixµPµ

Lµνe
−ixµPµ

= Sµν − xµPν + xµPν (2.19)

Finally, the full action of Lµν must be

LµνΦ(x) = i(xµ∂ν − xν∂µ)Φ(x) + SµνΦ(x) (2.20)

We can proceed the same way for the full conformal group taking care that

the subgroup preserving the origin is just made up by rotations, dilations and

special conformal transformation. Being Sµν ,∆, kµ respectively the value of the

generators Lµν , D and Kµ at the origin we get

KµΦ(x) =
{
kµ + 2xµ∆− xνSµν − 2ixµx

νδν + ix2∂µ
}
Φ(x) (2.21)

DΦ(x) = (−ixµ∂µ +∆)Φ(x) (2.22)

with the subalgebra

[∆, Sµν ] = 0 ; [∆, kµ] = −ikµ (2.23)

[kρ, Sµν ] = i(ηρµkν − ηρνkµ) (2.24)
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The Shur’s lemma states that any matrix commutating with all the set of Sµν

must be proportional to the identity, this result fixes ∆ to be a multiple of the

identity and the k’s to be zero. So if we require the Φ(x) field to belong to

an irreducible representation of the Lorentz group, then the conformal group

representation that we get is nothing but a Lorentz representation augmented by

a dilation. We define quasi − primary a spinless field which transforms under

dilations according to

Φ(x) → Φ′(x) =

∣∣∣∣∂x′∂x

∣∣∣∣−∆
d

Φ(x) ;

∣∣∣∣∂x′∂x

∣∣∣∣ = Λ(x)−
d
2 (2.25)

where Λ(x) is the usual scale factor. Before moving on the quantum-mechanical

side of Conformal Field Theory, it is proper to see how the symmetry properties of

a certain theory under the conformal group are encoded in its stress-energy tensor.

To convince ourselves we need to calculate the change in action under conformal

transformations, as usual we perform an infinitesimal dilation transformation

x′µ = xµ + ϵµ ; Φ′(x) = (1 + iϵαT
α)Φ(x) (2.26)

the infinitesimal change in the action reads as

δS = −
∫
ddx ∂µT

µν
B ϵν (2.27)

here the stress-energy tensor is assumed to be symmetric, the symmetry can be

easily achieved by using the Belinfante form for T µν
B which is obtained by adding

the divergence of an antisymmetric tensor to the canonical stress-energy tensor

T µν
c

T µν
B = T µν

c + ∂ρB
ρµν ; Bρµν = −Bµρν (2.28)

It can be shown [difra] thaht ∂ρB
ρµν can be cast in the form

Bρµν =
i

4

{
δL
δ∂µΦ

SρνΦ +Perm.

}
(2.29)

It follows that for dilations the conserved current is given by the trace of the

symmetrized stress-energy tensor.

∂µj
µ
D = TB

µ
µ (2.30)
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Therefore, a conformally invariant theory must have a traceless energy-momentum

tensor. The latter result is crucial for many developments and represents a con-

nection between conformal invariance and Quantum Field Theory. By using

Ward Identities and the Callan-Symanzik equation one can prove that given a

pure Yang-Mills Theory, the trace of the energy-momentum tensor is given by

T µ
µ ∼ β Tr {FµνF

µν} (2.31)

where β is the β-funcion and Fµν the force tensor.Thus if the β-function vanishes

at some value of the coupling constant, then the theory can acquire confrormal

invariance. This establishes a strong relation between the Renormalization Group

flow and Conformal Field Theory, we could say that Conformal Field Theory are

a null measure set of Quantum Field Theories, more specifically, there are QFT’s

whose renormalization group flow goes into CFT’s, this is for instance the case

with QCD. The study of the Renormalization Group flows of any Quantum Field

Theory is the most powerful theoretical tool to understand the main features of

the dynamics of the theory and how it evolves from the UV to the IR. Following

the RG flows of a theory it’s a way to highlight different ”phases” of the theory

itself. The richest case is the one of Non-Abelian Gauge Theories. In the sim-

plest case of a pure Yang-Mills theory the β-funtion is negative, this means that

the largest is the scale of energy involved, the smallest is the coupling coupling

constang g. This was one of the greatest discovery (Gross, Wilczek, Politzer and

others) arising from the study of strong interactions, the Asymptotic Freedom.

Consider Nf massless quarks described by Dirac fermions and Nc as the number

of colors, at Nf = 3 and Nc = 3 we obtain QCD, the current theory of strong

interactions in nature. The β function for such a theory is at one loop

β(g) = − g3

16π2
(
11

3
Nc −

2

3
Nf ) (2.32)

It is glaring that if Nf < 11
2
Nc, the theory is asymptotically free. Otherwise,

we lost asymptotic freedom and the theory becomes IR-free, similar to the QED

with massless electrons. Therefore, 11
2
Nc is a critical value discerning between

completely different behaviors. We can deepen this question and go to two-loops,
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then the β will be

β(g) = − g3

16π2
(
11

3
Nc−

2

3
Nf )−

g5

(16π2)2
(
17

3
Nc

2− Nf

6Nc

(13Nc
2−3))+O(g7) (2.33)

At small g, the β0 the one-loop contribution, namely −β0 g3

16π2 ,is dominant and β

behaves as above. If Nf ≃ 11
3
Nc, then we can neglect β0, β develops a zero due

to the −β1 g5

(16π2)2

g∗

2π
=
β0
β1

(2.34)

The effects of higer order corrections are suppressed by 1
Nc

powers. The zero of β

is the Banks-Zaks IR fixed point in which the theory is in the so called Conformal

Phase. For Nf ≪ Nc we are in the Chiral Symmetry Breaking phase. Since for

Nf = 11
2
Nc we certainly are in the Conformal Phase, there should exist a critical

value N∗
f so that in the N∗

f ≤ Nf ≤ 11
2
Nc the theory is in the Conformal Phase.

The latter interval is known as the Conformal Window. Sometimes it happes

that the nth order, β-function with fixed n,does not have a fixed point in four

dimensions but it has in d = 4− ϵ, this is the so called Wilson-Fisher fixed point.

This results are of enormous interest from both a phenomenological and a purely

technical point of view,in fact, on the one hand, a CFT must be either massless

or have a continuous mass spectrum, while on the other hand acquiring a new

symmetry, such as symmetry by dilations, can be useful in gaining more control

over perturbative expansions of observables. The last point will be precisely the

one on which we will focus part of the subsequent discussion; in fact, we will

show how scaling dimensions and anomalous field sizes at the fixed point become

observables and how they can be computed through a systematic approach that

can be employed in conjunction with charge fixing with the aim of boosting the

applicability of perturbation theory.

2.2 Radial Quantization and Weyl Map

For a scalar field of scaling dimension ∆, under conformal transformations one

has

ϕ(x) → ϕ′(x′) =

∣∣∣∣∂x′∂x

∣∣∣∣∆d ϕ(x) (2.35)
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A field with a given ∆, which transforms as 2.35, it’s called ”Primary”, otherwise

it is called ”descendant”. For example, ∂µϕ is descendant. The main consequence

of the covariance property above is that ⟨ϕ1(x1)...ϕn(xn)⟩ transforms like

⟨ϕ1(x1)...ϕn(xn)⟩ =
∣∣∣∣∂x′1∂x1

∣∣∣∣
∆1
d

...

∣∣∣∣∂x′n∂xn

∣∣∣∣∆n
d

⟨ϕ′
1(x

′
1)...ϕ

′
n(x

′
n)⟩ (2.36)

This result imposes severe restrictions on 2- and 3-pt functions of primaries. In

order to identify invariants on which n-pt functions we need to construct some

invariant of the CG in d-dimensions. Translation invariance tells us that n-pt

functions cannot depend on xi, but only on the differences xi − xj, we have

d(n − 1) different choices. For scalar objects, rotational invariance (at large

enough d) imposes thee dependence on rij = |xi − xj|, so we have n(n − 1)/2

invariants. Scale invariance forces the dependence on
rij
rhk

, and finally the SCT’s

invariants are the cross ratios
rijrlm
rkmrlj

. We can conclude that our n-pt functions

will depend on cross ratios only, due to the fact that they surely includes all the

previous invariants. This fixes the 2-pt function form as follows

⟨ϕ1(x1)...ϕn(xn)⟩ =

c12 r
−∆1−∆2
12 if ∆1 = ∆2

0 if ∆1 ̸= ∆2.

(2.37)

So far we have not justified the existence of primary operators, in order to do that

we should first construct an Hilbert space and introduce the so called ”Radial

Quantization”. In CFT it is convenient to foliate the space-time in Sd−1 spheres

of r radius, the Dilations generator D will evolve states from one leaf to another.

Basically, D takes the place of the usual P 0 of Quantum Mechanics. Hence, the

scaling is the energy in the radial quantization.

P 0 → D ; U = eiP
0∆t → U = eiD∆t (2.38)

where in the right-hand side of the last equation t = log r. States living on a

certain sphere will be classified by their scaling dimension

D |∆⟩ = i∆ |∆⟩ (2.39)

Since angular momentum Mµν commutes with D, then |∆, l⟩ is also a basis for

Mµν . Let us now insert operators on the sphere. The simplest case is |0⟩, the
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vacuum state, that corresponds to insert nothing, the dilation eigenvalue is zero

for |0⟩. If we insert operators O∆ at the origin x = 0, the generated state |∆⟩ =

O∆(0) |0⟩ will have

D |∆⟩ = DO∆ |0⟩ = [D,O∆] |0⟩+O∆D |0⟩ = i∆O∆ |0⟩ = i∆ |∆⟩ (2.40)

Finally, if we insert on Operator O∆(x) in x ̸= 0, |ψ⟩ = O∆(x) |0⟩ > is no longer

D’s eigenstate. Anyway

|ψ⟩ = O∆(x) |0⟩ >= eiPxO∆(0)e
−iPx |0⟩ = eiPx |∆⟩ (2.41)

since [D,Pµ] = iPµ, Pµ raises ∆ by unit (Kµ does the opposite). We can go

backword: given a state of defined ∆ we can construct primary operators of

scaling dimension ∆ by the ”state-operator correspondence”

⟨ϕ1(x1)ϕ2(x2)...O∆(0)⟩ = ⟨0|ϕ1(x1)ϕ2(x2)... |∆⟩ (2.42)

It can be fruitful to introduce a new one set of coordinates, so far we have worked

in radial coordinates

r > 0 ; n⃗ ∈ SD−1 ⊂ RD (2.43)

where n⃗ is the normal vector on the SD−1 sphere surface. Let τ be τ = log r,

under dilations one gets

r → eλr ; τ → τ + λ (2.44)

In terms of these coordinates, the n-pt funtions become

⟨ϕ1(r1, n⃗1)...ϕn(rn, n⃗n)⟩ =
1

r∆1
1

...
1

r∆n
2

...f(τi − τj, {n⃗i}) (2.45)

We can define fields on the cylinder by

ϕcyl.(τ, n⃗) = r∆ϕ(r, n⃗) (2.46)

Whit this in mind, it is easy to see

⟨ϕcyl,1(τ1, n⃗1)...ϕcyl,n(τn, n⃗n)⟩ = f(τi − τj, {n⃗i}) (2.47)

The latter suggests that the dynamics on the cylinder is invariant under τ trans-

lations. The new and old metrics are connected by Weyl transformations

ds2flat = dr2 + r2dn⃗2 ; ds2cyl = dτ 2 + dn⃗2 =
1

r2
ds2flat (2.48)
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We deduce that, if the theory is conformal, then form any metric connected by

Weyl transformations the correlation functions are related by simple rescaling

factor as in 2.46. So ϕcyl is exaxtly the same thing as ϕflat, but its correlators are

measured in a different geometry. We have mentioned products of operators at

different points and have corresponded them with the states of the theory. We

now want to show that the product of two or more operators at different points

can be expressed as a sum of operators at the same point. This is the core idea

of the OPE and it applies to sufficiently local operators. For simplicity, consider

a scalar field and some state

|ψ⟩ = ϕ1(x1)ϕ2(0) |0⟩ (2.49)

our state can be expanded in a basis of D’s eigenstates

|ψ⟩ =
∑
n

cn |∆n⟩ (2.50)

|∆n⟩ can be created by primaries and descendants which come from acting on

primaries with momenta. We can re-organize the sum in multiplets

|ψ⟩ = ϕ1(x1)ϕ2(0) |0⟩ =
∑
ϕ,I

C∆,I(∂, x)ϕI(0) |0⟩ (2.51)

where ϕI is fixed to be primary, ∂ gives the descendants fields and I labels the

representation (multiplets). So far we took it for granted that the ϕ fields that

transform as in 2.35 are basis of irreducible representations of the Conformal

Group. Note that each term of the previous series includes a certain primary ϕI

and all of its descendants P n1 ...P nk |ϕI⟩. Promoting the latter equation to an

operator identity, one gets

ϕ1(x1)ϕ2(0) =
∑
ϕ,I

C∆,I(∂, x)ϕI(0) (2.52)

This equality is true only inside correlation functions and works in a certain

neighbor-ought of x. From dimensional analysis we can guess the first term of

the sum, let I = 0 be the trivial representation

C∆(∂, x)ϕ(0) =
C

|x|∆1+∆2−∆
(ϕ(0) + ...) (2.53)
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In fact the ∆ dimension of ϕ(0) cancels out the −Delta in the denominator’s

power giving the right form of the 2-pt function. we can corroborate this result

by acting directly with the D operator

Dϕ1(x)ϕ2(0) |0⟩ = i(∆1 + x · ∂)ϕ1(x)ϕ2(0) |0⟩+ i∆2ϕ1(x)ϕ2(0) |0⟩ (2.54)

if we suppose 3.64 to be true, then we get

Dϕ1(x)ϕ2(0) |0⟩ = i(∆1 +∆2 − (∆1 +∆2 −∆)
C

|x|∆1+∆2−∆
(ϕ(0) + ...) (2.55)

so the guess is good. The second term, the one involving the first descendant, is

fixed by C.I

C∆(∂, x)ϕ(0) =
C

|x|∆1+∆2−∆
(1 + αxµ∂µ + ...)ϕ(0) (2.56)

the α parameters is fixed by Special Conformal Transformations. The claim is

that Conformal Invariance entirely fixes the O.P.E. Consider

⟨ϕ1(x)ϕ2(0)ϕ∆(z)⟩ =
∑
∆′

C12∆′C∆′(x, ∂y)⟨ϕ∆′(y)ϕ∆(z)⟩y=0 (2.57)

We can first perform the OPE oh the first two operators and then get a 2-pt

function, which imposes ∆′ = ∆, so that

⟨ϕ1(x)ϕ2(y)ϕ∆(z)⟩ = C12∆C∆(x, ∂y)⟨ϕ∆(y)ϕ∆(z)⟩y=0 (2.58)

Since we already know

⟨ϕ∆(y)ϕ∆(z) =
1

|y − z|2∆
(2.59)

then the 3-pt function becomes

⟨ϕ1(x)ϕ2(0)ϕ∆(z)⟩ =
C12∆

|x|∆1+∆2−∆|z|∆+∆2−∆1|x− z|∆1+∆−∆2
(2.60)

We can now expand the 3-pt function for small x and choose C∆(x, ∂) to match

term by term.
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2.3 Semiclassics for the U(1) model

CFT can be successfully applied to explore regimes where the ordinary Pertur-

bation Theory breaks down in order to solve Quantum Field Theory. We can

show this remarkable result in the U(1) theory example brilliantly explored in

[epsilon]. It is a fact that, even in a weakly coupled theory, the Perturbation

Theory eventually fails when the number n of legs grows. This represents a no-

ticeable difficulty in solving multilegged observables. In the next example we will

consider a U(1) theory with quartic interactions in d = 4 − ϵ dimensions at the

Wilson-Fisher fixed point to ensure the Conformal Invariance and show how it is

possible to compute the Scaling Dimension ∆ϕn for the large charge operator ϕn.

The computation will be done in the double limit

λ0 → 0 , λ0n = const (2.61)

We the above hypothesis in mind, let us consider the theory

L = ∂ϕ̄∂ϕ+
λ0
4
(ϕ̄ϕ)2 (2.62)

Up to two-loops corrections, the beta function gets the form

β(λ) = −ϵλ+ 5
λ2

(4π)2
− 15

λ3

(4π)4
+O(λ4) (2.63)

which means that the theory posses a fixed point in

λ∗
(4ϕ)2

=
ϵ

5
+

3

25
ϵ2 +O(ϵ3) (2.64)

the fixed point depends on the dimensionality, so the theory is weakly coupled

for ϵ≪ 1. Let [ϕn] be the rinormalized field and Zϕ the rinormalization factor of

the field

ϕn = Zϕn [ϕn] (2.65)

the anomalous dimension γϕn is then given by

γϕn =
∂ log(Zϕn)

∂λ
β(λ) (2.66)
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Solving the Callan-Symanzik equation, one can show that the operator’s physical

dimension at the fixed point is

∆ϕn = n(
d

2
− 1) + γϕn(λ∗) (2.67)

The anomalous dimension is scheme dependent but it becomes oservable at the

Wilson-Fisher fixed point. A first attempt to calculate the scaling dimension

could therefore involve the perturbations theory to obtain γ.The calculation can

be performed in two ways, both perturbative and divergente as n grows even

when λ is small, the first one is a direct diagrammatical computation which up

to 3-loops (whose details are collected in the Appendix of [epsilon]) working in

the Minimal Subtraction Scheme gives us

Zϕn == 1− λn(n− 1)

(16π2)2ϵ
− λ

16π2

[
n4 − 2n3 − 9n2

9ϵ2
+

2n3 − 2n2 − n

2ϵ

]
(2.68)

which implies

γϕn = n

[
λ

16π2

n− 1

2
−
(

λ

16π2

)2
2n2 − 2n− 1

4

]
(2.69)

and one can easily compute the scaling dimension at the fixed point

∆ϕn = n

[(
d

2
− 1

)
+

ϵ

10
(n− 1)− ϵ2

100
(2n2 − 8n+ 5)

]
(2.70)

The second way is to work directly on the correlation function and computing it

via a semi-classical expansion on the path integral around a non-trivial trajectory.

As mentioned before, the Perturbations Theory breaks down at large n. We

therefore want to use a calculation scheme that naturally allows us to perform

the limit with large n, not only when λn is small, but even when λn grows. Let’s

focus directly on the correlation function

⟨ϕ̄n(xf )ϕ
n(xi)⟩ =

∫
Dϕ̄Dϕϕ̄n(xf )ϕ

n(xi) exp[−
∫
L]∫

Dϕ̄Dϕ exp[−
∫
L]

(2.71)

Let’s re write the above integral as follows

ϕ→ ϕ√
λ0

; −
∫

L → − 1

λ0

∫
L (2.72)

and exponentiate the operators insertions
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⟨ϕ̄n(xf )ϕ
n(xi)⟩ =

∫
Dϕ̄Dϕ e[−

1
λ0

∫
∂ϕ̄∂ϕ+ 1

4
(ϕ̄ϕ)2−λ0n(ln(xf)+ln(xi))]∫

Dϕ̄Dϕ e[−
1
λ0

∫
∂ϕ̄∂ϕ+ 1

4
(ϕ̄ϕ)2]

(2.73)

The path integral in the denominator can be computed by the saddle point expan-

sion around the minima ϕ = ϕ̄ = 0, while the one in the numerator is stationary

around non-trivial values of the fields ϕ, ϕ̄ ̸= 0 due to the insertions, which spon-

taneously breaks the U(1) symmetry so that the minimal value is no longer null.

The most general form for the whole path-integral is

Z2
ϕn⟨[ϕ̄n(xf )][ϕ

n(xi)]⟩ = λ0
− 1

2 e
1
λ0

Γ−1(λ0n,xfi)+Γ0(λ0n,xfi)+λ0Γ1(λ0n,xfi)+...
(2.74)

The Γ cohefiicients will have a finite and a divergent part, namely Γdiv
K and Γren

K ,

then we can write ⟨[ϕ̄n(xf )][ϕ
n(xi)]⟩ = n!e

∑
λkΓ

ren
k . At small fixed λ0n the path

integral can still be computed in the usual saddle-point scheme expanding around

ϕ = ϕ̄ = 0, in this case the insertion does not change anything and working at

the order λ one finds

⟨ϕ̄n(xf )ϕ
n(xi)⟩ =

n!
[
1− λn(n−1)

2(4π)2

(
2
ϵ
+ lnx2fi1 + γ + ln π

)
+O(λ2)

]
Ωd−1(d− 2)(x2fi)

( d
2
−1)

(2.75)

where Ωd−1 =
2π

d
2

Γ( d
2
)
and γ is the Eulero-Mascheroni constant. The latter equation

points out how quantum corrections become significant as long as λ0n grows,

thus a new calculation method is required. Turning back to the path-integral

expression, we can treat the operator insertions as sources which obviously modify

the equation of motion into

∂2ϕ(x)− 1

2
ϕ̄2(x)ϕ(x) = − λ0n

¯ϕ(xf )
δ(d)(x− xf )

∂2 ¯ϕ(x)− 1

2
ϕ2(x) ¯ϕ(x) = − λ0n

ϕ(xi)
δ(d)(x− xi)

(2.76)

Solving the previous equations for sufficiently small λ0n should hopefully lead to

the same two-point function computed via diagrammatic calculations. This can

be done using perturbation theory, i.e. expanding the solution as

ϕ = (λn)1/2
[
ϕ(0) + ϕ(1) + ...

]
(2.77)
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where ϕ(k) = O(λknk) and assuming that ϕ(0) solves the equation

∂2ϕ(0)(x) = − 1

ϕ̄(0)(xf )
δ(d)(x− xf )

∂2ϕ̄(0)(x) = − 1

ϕ(0)(xf )
δ(d)(x− xf )

(2.78)

Whose solutions are trivially given by

ϕ(0)(x) =
c0

Ωd−1(d− 2)

1

|x− xf |d−2
(2.79)

Therefore we could compute the first correction ϕ(1) and compute the effective

action, which corresponds to the leading term of the 2.74. The general solution

without restrictions about λn is an aside quest in which studying the theory

at the fixed point in order to gain conformal invariance will be crucial to get

enhanced symmetries to constrain the form of the observables for our large charge

operators. The advantage to work on fixed point is that we can exploit the power

of conformal invariance. First of all, we shall map our theory from the plane to

the cylinder in order to map the eigenvalues of the Dilation D into the eigenvalues

of Hcyl, the energy spectrum on the cylinder. The action on the cylinder reads

Scyl =

∫
ddx

√
g
[
gµν∂µϕ̄∂νϕ+m2ϕ̄ϕ+

λ0
4
(ϕ̄ϕ)2

]
(2.80)

The mass term arises from the request of conformal invariance which can be

gained just by coupling the field to the Ricci’s scalar into a quadratic term as

R(g)ϕ̄ϕ, therefore the m mass is just a rewriting of m2 = (d−2
2R

)2. As said before,

the theory on the cylinder is fully equivalent to the one on flat space by the

correspondence

⟨O†(xf )O(xi)⟩cyl = |xf |∆O |xi|∆O⟨O†(xf )O(xi)⟩flat (2.81)

Computing the limit for xi → 0 corresponding to τi → −∞, one gets

⟨O†(xf )O(xi)⟩cyl
τi → −∞

= e−EO(tf−ti) (2.82)

Where EO = ∆O
R
. We can read the previous equations as follows making use

of the state/operator correspondence: the action of O at −∞ creates a state of

energy EO that carries all the quantum numbers of the operator. Consequently,
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we can get the same expression just by replacing O with ϕn, let be tf , i = ±T/2,

we get

⟨ϕ̄(xf )ϕ(xi)⟩ = N e−EϕnT (2.83)

where the N cohefficient is T -independent and divergent. As above, the structure

og the 2-pt function will have the form of the 2.74. The expontent of 2.74 as the

form λk0Γk, where each Γk has a finite and a divergent part. By comparison with

2.83 we deduce that the divergent part of the Γ will be T -independent and will

fix the N coheficcient, while the finite part will necessary depend on T . Similarly

to the expression ⟨[ϕ̄n(xf )][ϕ
n(xi)]⟩ = n!e

∑
λkΓ

ren
k , we can write :

REϕn =
1

λ0
e−1(λ0n, d) + e0(λ0n, d) + λ0e1(λ0n, d) + ... (2.84)

=
1

λ
ē−1(λn,RM, d) + ē0(λn,RM, d) + λē1(λn,RM, d) + ... (2.85)

where the ēi coefficients are analogous with the ei but renormalized and therefore

they depend on a sliding scale, namely M . Thus, if the coupling is evaluated at

the fixed point λ = lambda∗, the dependence on such a scale must disappear by

scale invariance giving a result of the form : By fixing λ = λ∗ we expect to be able

to compute at least the leading terms of the following semiclassical expansion for

the scaling dimension

∆ϕn =
1

λ∗
∆1(λ∗n) + ∆0(λ∗n) + ... (2.86)

The computation of ∆0 can be set this way; we can make use of the state/operator

correspondence to introduce a state |ψn⟩ of charge n such that 2.83 reads as follow

⟨ψn| e−HT |ψn⟩ =T→∞= N e−EϕnT (2.87)

we could also write ϕ as ϕ = ρ(n⃗)√
2
e−iχ(n⃗), being n⃗ a general coordinate on the

(d − 1)-Sphere, it is good to recall that, as long as we are in the Schrodinger

picture, fields will not depend on the coordinate of the quantization axis. In order

to find the |ψn⟩ state, we cant explicitly build the charge operator Q̂ and figure

out the general form for its eigenstates.The computation of the charge operator is
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straightforward once we know the Noether current related to the U(1) symmetry,

namely

jµ = ϕ̄∂µϕ− ϕ∂µϕ̄ (2.88)

we know that the charge is just

Q =

∫
dΩd−1R

d−1j0 =

∫
dΩd−1R

d−1ρ2∂τχ (2.89)

If our Hilbert Space is made up by functionals |ψ⟩ = Ψ[ρ, χ], then iit is easy to

convince ourselves that the operator corrisponding to the classical charge (2.89)

is just

Q̂ =

∫
dΩd−1R

d−1 − iρ̂2
∂

∂χ
(2.90)

thus, a quite general state of charge n is given by

|ψn⟩ =
∫

Dχ exp
{
i

n

Ωd−1Rd−1

∫
dΩd−1χ

}
|ρ, χ⟩ (2.91)

if we perform an homogeneity ansatz on ρ = f , where f is a constant, then our

amplitude is given by

⟨ψn| e−HT |ψn⟩ = Z−1

∫
DχiDχf e

i n

Ωd−1R
d−1

∫
dΩd−1(χf−χi)

∫ ρ=f,χ=χf

ρ=f,χ=χi

DχDρe−S

(2.92)

where

Z =

∫
Dϕ̄Dϕe−S (2.93)

using that ∫
dΩd−1(χf − χi) =

∫ T
2

−T
2

dτ

∫
dΩd−1χ̇ (2.94)

we can writhe the amplitude as a simple path-integral in the form

⟨ψn| e−HT |ψn⟩ = Z−1

∫ ρ=f

ρ=f

DρDχe−Seff (2.95)

where the effective action S⌉{{ is given by

Seff =

∫ T
2

T
2

dτ

∫
dΩd−1

1

2
(∂ρ)2 +

1

2
ρ2(∂χ)2 +

m2

2
ρ2 +

λ0
16
ρ4 + i

n

Rd−1Ωd−1

χ̇ (2.96)

The equation of motion with respect to our ansatz give the following solutions

ρ = f ; χ = −iµτ + const (2.97)
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where µ is called ”chemical potential”, which plays the same role of the chemical

potential introduced in the previous section, in fact the presence of this term is

related to the ansatz of homogeneity on the vacuum and reflects the fact that we

are dealing with a fixed charge density j0 = µf 2 . The effective action evaluated

upon this solutions gives us the (−1)-th order of the expansion 2.74

e−1(λ0n, d)

R

1

λ0
=
Seff

T
(2.98)

Finally, if we consider the classical value for the chemical potential arising from

the equation of motion and put λ = λ∗ with d = 4 we get the leading-order-scaling

dimension

∆−1

λ∗
=

n
[
1 + 1

2
λ∗n
16π2 − 1

2
(λ∗n)2

(16π2)2
+O

(
(λ∗n)3

(16π2)3

)]
for λ∗n≪ 4π2

8π2

λ∗

[
3
4

(
λ∗n
8π2

) 4
3 + 1

2

(
λ∗n
8π2

) 2
3 +O(1)

]
for λ∗n≫ 4π2

(2.99)

This computation is a proof of how CFT can provide some remarkable tools to

compute observables restoring the perturbation theory which, as we can see in

2.75 can fail even if we are dealing with weakly-coupled theories. We will use the

latter calculation as a template to discuss the scaling dimension for the SU(2Nf )

Linear Sigma Model extending this techniques to the computation of next-to-

leading-order corrections to ∆. The next-to-leading-order computation is similar

but much more complicated, the idea is to use the same solution for the equation

of motion as seen for ∆−1 but with an additional perturbative term dependent

on coordinates both for ρ and χ and compute the second order Action and the

functional determinant of the resulting differential operator in the action. The

first thing we need to compute is the second order action. In order to capture

fluctuations we write fields as :

ρ = f + r(x) ; χ = −iµτ + 1

f
√
2
π(x). (2.100)

The one-loop action written in the above mentioned fluctuations reads :

S(2) =

∫ T
2

T
2

dτ

∫
dΩd−1

1

2
(∂r)2 +

1

2
(∂π)2 − 2iµτr∂τπ + (µ2 −m2)r2. (2.101)

Computing zeros of the determinant of the inverse propagator in the action and

solving them with respect to the energy ω, we find

ω2
± = J2

l + 3µ2 −m2 ±
√

4J2
l µ

2 + (3µ2 −m2)2, (2.102)
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where J2
l is the squared momentum or, equivalently, the eigenvalues of the Lapla-

cian on the sphere. So far, we just need to write the one-loop extended version

of the 2.95, which is :

⟨ψn| e−HT |ψn⟩ = e
e−1(λon,d)T

λoR

∫
DrDπ e−S(2)∫

DϕDϕ̄ exp
{
−
∫ T

2
T
2

(
∂ϕ̄∂Φ +m2ϕ̄ϕ

)} = (2.103)

Ñ exp

{
−
[
e−1(λon, d)

λ0
+ e0(λ0n, d)

]
T

R

}
. (2.104)

The latter shows ho we can identify the e0 coefficient with fluctuations of the

Gaussian integral in (2.105), explicitly :

??
T

R
e0 = log

{ √
det(S(2))

det
(
−∂2t −∆Sd−1

+m2
)} = (2.105)

T

2

∞∑
l=0

nl

∫
dω

2π
log

(ω2 + w2
−(l))(ω

2 + w2
+(l))

ω2 + ω2
0(l)

, (2.106)

where nl is the multiplicity of the Laplacian on the (d− 1)−dimensional sphere,

and ω0 is the energy of the free theory :

nl =
(2l + d− 2)Γ(l + d− 2)

Γ(l + 1)Γ(d− 1)
; ω2

0 = J2
l +m2. (2.107)

Computing explicitly the integral in (2.106) and neglecting the sum of zero point

energy, we find :

e0(λ0n, d) =
R

2

∞∑
l=0

nl [ω+(l) + ω−(l)] . (2.108)

This result has to be regularized, therefore, we first need to isolate the divergent

part of it. We could think of computing the latter in a large momenta limit, which

can be intuitively identified as a large l limit. A simple asymptotic analysis of

the right hand side of the last equation can show that the large l behavior of the

summand in (2.108) is :

nl [ω+(l) + ω−(l)] ∼
∞∑
n=1

ld−n. (2.109)

In d = 4 dimensions, the first five terms of this sum carry a divergent contribution.

In order to separate the divergent part from the regular one, we can compute
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d = 4− ϵ expansion of the first five coefficients. By comparison one gets :

c1 =
2

R
+O(ϵ) ; c2 =

6

R
+O(ϵ) ; c3 = 2µ2R +

4

R
+O(ϵ) ; c4 = 2µ2R +O(ϵ)

(2.110)

c5 =
5(µ2R2 − 1)2

4R
+ ϵ

[225µ4R4 + 50µ2R2 + 150γ(µ2R2 − 1) + 113]

120R
+O(ϵ2).

(2.111)

We can now rewrite the (2.108) as a sum of a divergent part and a finite part,

this results in :

∞∑
l=0

nl [ω+(l) + ω−(l)] =
1

2

5∑
n=1

cn

∞∑
l=1

ld−n +
1

2

∞∑
l=1

σ̄(l), (2.112)

where σ̄(l) is just the original summand nl [ω+(l) + ω−(l)] without the divergent

part of the first five coefficient computed above. The divergent contribution

can be even more manipulated remembering the definition of the Riemann Zeta,∑∞
l=0 l

x = ζ(−x), and recalling ζ(1− x) ∼ 1
x
for enough small x. Thus

1

2

5∑
n=1

cn

∞∑
l=1

ld−n = −5(µ2R2 − 1)2

8Rϵ
− 15µ4R4 − 6µ2R2 + 7

16R
. (2.113)

So far we have just computed the first and second terms in (2.112), separating

the divergent part from the finite one in the second term of the (2.113) expansion.

However, we have to recall that our true goal is to compute the regularized version

of e0. Details of a complete regularization scheme can be found in [epsilon], we

will show how to define and compute the regularized scaling dimension in Chapter

4.

∆0 = ē0(λn,RM, 4) +
∂

∂ϵ

[
1

λ
ē−1(λn,RM, 4− ϵ)

] ∣∣∣∣
ϵ=0

, (2.114)

where we can compute the ē−1 as

1

λ
ē−1(λn,RM, 4− ϵ) =

1

λM ϵ
e−1(λnRM

ϵ, 4− ϵ). (2.115)
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Chapter 3

Charging the U(2Nf ) model

3.1 Classical Analysis

Using tools developed in the previous section, we now want to focus on a fairly

general model, whose interesting features and phenomenological implications are

already known [wilczek]. Our analysis will mainly focus on applying methods

and results of the large charge approach in conjunction with a semi-classical study

of the fixed-point system, using techniques shown in the section about CFT. The

original purpose of this work will be to show how, under the aforementioned hy-

potheses, it is possible to introduce a systematic calculation scheme, that makes

use of the observations previously explored in order to characterise the system

under investigation in its crucial features such as: non-relativistic dispersion re-

lations for the modes of the theory, ground state energy, quantum corrections

to the energy and symmetry breaking patterns. The system we have chosen to

study in detail consists of a linear realisation of the Sigma Model for an Nf -flavors

underlying theory with an Higgs-like potential, whose Lagrangian results in

L = Tr
(
∂µH

†∂µH
)
− uTr

(
H+H

)2 − v
(
TrH+H

)2
+m2Tr(H†H) (3.1)

The H field is in perfect analogy with the Σ field of the two-flavor model set

out in section 2. The notable difference is that it is a U(Nf ) × U(Nf ) field

transforming in the adjoint-antisymmetric representation, but our real goal will

be to use pseudo-reality to study an analogous Lagrangian for a field U(2Nf ),
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which we can realize setting NC = 2. There are several reasons why this theory is

an interesting case study. Firstly, the Linear realisation of this model implies that

the theory is renormalizable, but above all that it exhibits a well-defined fixed

point, so that the conformality of the theory is ensured and does not require any

special precautions when applying the Weyl map to the cylinder. The theory,

without any prescription on NC , describes at the effective level the condensate

fluctuations corresponding to a microscopic theory of Nf massless quarks in the

fundamental representation of the SU(NC) gauge group. Such a theory has a

global invariance SU(Nf )×SU(Nf )×UB(1)×UA(1), where UA(1) (axial) can be

classically valid, but quantum-mechanically anomalous. One should then notice

that with these prescriptions we obtain a theory that has exactly the global

starting symmetries set out in the first chapter and the same would apply if we

took U(2Nf ) as the starting global symmetry. This allows us to apply many of

the results of Chapter 2 without loss of generality. Before introducing the U(2Nf )

case, let us first make some general remarks on the SU(Nf ) × SU(Nf ) × U(1)

case studied in [safecft], which we will then adapt. Let’s write the Noether’s

currents and charges associated to the SUL,R(Nf ) symmetry:

JL =
i

2

(
dHH† −HdH†) ; JR = − i

2

(
H†dH − dH†H

)
(3.2)

and

QL =

∫
dx3J0

L ; QR =

∫
dx3J0

R (3.3)

The problem of characterising the vacuum state in our theory is not as trivial as

in the previous case and it is not taken for granted that the vacuum is spatially

homogeneous, we will then use the last relation derived from a simpler case as a

hint to introduce an ansatz on the general form of the vacuum that we will seek

homogeneous, we will then impose that the QL,R charges are still preserved. Let

H0(t) be our vacuum;

H0(t) = eiMLtBe−iMT
R t. (3.4)

By comparison with the previous case, B has the same meaning as Σ0 and the

ML,R matrices are analogues of th M in the previous section and live in the
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Cartan subalgebra of SU(Nf ). The form of the M matrices depends strongly on

the charge-fixing configuration, whereas for B it is sufficient to be a self-adjoint

matrix. Recall that, since we have not determined the vacuum state using the

equations of motion, we must impose that the charges are preserved. These two

constraints will in fact be crucial in fixing some important relations between the

matrices introduced in our ansats. Let V be the volume of the spatial manifold,

namely M3, over which we integrate the zero-components of the currents

Q̇L = −iV eiMLt
(
[M2

L, BB
†]− 2[ML, BMRB

†]
)
e−iMLt = 0 (3.5)

Q̇R = +iV eiMRt
(
[M2

R, B
†B]− 2[MR, B

†MLB]
)
e−iMRt = 0 (3.6)

The resulting relationships give an idea of the interplay between the configura-

tion of fixed charges and the vacuum state. Since charge conservation imposes

constraints on the vacuum state, a configuration of ML,R and B consistent with

this constraints is found, the vacuum state is therefore fixed and this in turn

determines the shape of charges. A simple solution could be the one in which M

and B are diagonal matrices united with ML,R =M , which reduces to

H0 = e2iMtB (3.7)

We would like to use the same form as the above one for the vacuum in the

U(2Nf ) theory, but with a less trivial choice for the M and B matrices. We will

in fact set B to be anti-symmetric and M to be diagonal. Before moving on, we

have to show that such a choice is a practicable one and in order to do that, we

have just to replace U(Nf ) × U(Nf ) with our U(2Nf ). The first consequence is

that we loose the distinction between left and right-handed spinors, so the current

takes the form

J = 4iTr
{(
H∂µH

†) ta} . (3.8)

where ta are generalized Gell-Mann matrices. The conserved charge is

Q = 4i

∫
dx3

(
H∂0H

†) ta (3.9)
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and, requiring that the latter is preserved with the (61) form for the vacuum, we

get that the following choice for M and B are perfeclty coherent.

B = ib

 0 1

−1 0

 ; M = µ

1 0

0 −1

 (3.10)

The choice of the B matrix is dictated by the defining equation of minima, which

can be achieved just by differentiating with respect to the field the potential part

of the Lagrangian. There are several choices of the vacuum, corresponding to

different regimes of the theory, but this will be subsequently discussed with the

due care. Our goal for the moment is just to show that the ansatz in (3.7) is

practicable, since it is coherent with charge conservation. We can first write the

equations of motion varying with respect to H† and substitute the ansats for

the vacuum. This will provide us a further constraint between the Lagrangian

parameters and the defining parameters of the M and B matrices

−∂2H + 2uHH†H + 2vH Tr(H†H) +m2H = 0. (3.11)

If the ansatz is H0(t) = e2iMtB, the equation of motion takes the form

4M2 + 2uBB† + 2vTr(BtB) +m2 = 0. (3.12)

Before proceeding, we must note that, as with the theory in section 2, it is the

relationship between the system’s charge configuration and vacuum that sets the

symmetry-breaking pattern of the model. This will soon be the subject of study,

but it requires an in-depth study of the charges, which, as already mentioned, are

related to the particular choice of the vacuum and of the independent degrees of

freedom of the system. At this stage, we can already draw some very important

and characterising preliminary information on the system. Now that we have put

all the fundamental pieces of the theory in place and specialised the treatment

with the previous hypotheses, we can, for example, think about deriving the

dispersion relations of the theory and the classical energy. This results will be the

starting point for the semi-classical analysis of the following chapters. Since the

theory is non-relativistic, we can derive them by proceeding with an expansion to

the quadratic order of the Lagrangian and calculating the zeros in the determinant
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of the inverse propagators, which of course will lead us to have to specify a block

decomposition for the H field as well. Without specifying the particular form of

Φ,we write the most general form for H, enucleating its vacuum state

H(x) = exp(2iMt)(B + Φ(x)). (3.13)

Substituting H into the Lagrangian and expanding it to O(H2) is a fairly simple

but laborious task, the salient results of which we report here, leaving out the

details in the Appendix.

• The kinetic terms takes the form :

Tr(∂µH∂
µH†) ≃ Tr(∂µΦ∂

µΦ†) + 4µ2Tr
{(

Φ† +B
)
(Φ +B)

}
(3.14)

− 2iµTr


1 0

0 −1

[(
Φ† +B

)
∂oΦ− ∂oΦ

† (B + Φ)
] (3.15)

• While the the potential takes the form :

Tr(H†H) = Tr(B†B) + Tr
{
B
(
Φ + Φ†)}+ Tr(Φ†Φ) (3.16)

Tr(H†HH†H) = 4b2Tr(ΦΦ†) + 2b2Tr
{
B
(
Φ† + Φ

)}
+ (3.17)

+ Tr
(
Φ†BΦ†B

)
+ Tr (ΦBΦB) (3.18)

Tr2(H†H) = 4b2N Tr
(
ΦΦ†)+ Tr2

{
B
(
Φ + Φ†)}+ 4b2N Tr

{
B
(
Φ + Φ†)}

(3.19)

We can get rid of constant terms and by using the constraint of the equations of

motion (3.12), the Lagrangian is greatly simplified :

L =Tr
(
∂µΦ∂

µΦ†)+
− 2iµTr


1 0

0 −1

[(
Φ† +B

)
∂oΦ− ∂oΦ

† (B + Φ)
]+

− 2ub2Tr
(
ΦΦ†)− uTr

(
Φ†BΦ†B

)
− uTr (ΦBΦB)+

− vTr2
{
B
(
Φ + Φ†)} .

(3.20)
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Once we get the second order Lagrangian, we want to study the whole set of

degrees of freedom encoded in the Φ field. In order to find dispersion relations,

we have to expand the field in the u(2N) algebra, formally :

Φ = (Qa + iPa)Ta ; Tr (TaTb) =
δab
2
. (3.21)

This form leads to :

L =
1

2

∑
a

(∂Qa)
2 + (∂Pa)

2 − 2ub2
∑
a

(Q2
a + P 2

a ) (3.22)

−vTr2
{∑

a

2QaBTa

}
− 2u

∑
a,b

Tr {TaBTbB} (QaQb − PaPb) (3.23)

− 2iµ
∑
a,b

Tr


1 0

0 −1

TaTb

Hab

(
Q, Q̇, P, Ṗ

)
, (3.24)

where the Hab coefficient has a symmetric part and an anti-symmetric part under

the exchange of a and b indices, given by

Hab =

 QaQ̇b − Q̇aQb + PaṖb − ṖaPb ; antisymm.

i
(
QaṖb − ṖaQb + PaQ̇b − Q̇aPb

)
; symm.

(3.25)

Before we move forward, we should try to introduce the most convenient orthog-

onal basis in the u(2N)-algebra. To identify this basis, it is good to look at the B

and M matrices, which are 2N × 2N matrices, organized in four N ×N blocks.

Once we notice this, it is clear that a convenient basis should have generators or-

ganized in the same way. Details of the construction of such a basis can be found

in the Appendix, here we just recall that the u(2N)-algebra can be spanned by

four class of generators, namely : Tai , Tbi , Txi
, Tyi , given by:

Tai =
1

2

Ui 0

0 Ui

 ; Tbi =
1

2

Ui 0

0 −Ui

 (3.26)

Txi
=

1

2

 0 Ui

Ui 0

 ; Tyi =
i

2

 0 Ui

−Ui 0

 , (3.27)

where the UN×N
i block within generators spans a u(N)-algebra, therefore the i-

index runs on the {1, 2, ..., N2} interval. It is straightforward to check that this
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is an allowed basis of the u(2N)-algebra, which is made up by 4N2 self-adjoint

generators. The orthogonality condition on the u(N)-blocks is fully inherited by

the u(2N) generators :

Tr(UiUj) =
δij
2

=⇒ Tr
(
Thi

Tkj
)
=
δij
2
δhk, (3.28)

where the h and k indices just specify the class, h, k = a, b, x, y. Now we have

to compute the three terms which give us the mass matrix and the couplings

induced by the chemical potential. Let’s start with the couplings term :

µTr


1 0

0 −1

ThTk

 =M Tr {MThTk} . (3.29)

By explicit computations, it can be shown that this quantity is not null only for

the following generators pairs :

Tr
{
MTaiTbj

}
= Tr {MTbiTai} = Tr

{
−iMTxi

Tyj
}
= Tr

{
iMTyiTxj

}
= µ

δij
2
.

(3.30)

The latter equation shows how degrees of freedom are organized into independent

pairs. We should also notice how the ab−type pairs just involve the symmetric

part of the Hhk coefficient, while the xy−pairs just involve the anti-symmetric

part. With this in mind, one can see that the coupling term equals:

−2i
4N2∑
h,k

Tr {MThTk}Hhk = −2µ
N2∑
i=1

(
QaiṖbi − ṖaiQbi + PaiQ̇bi − Q̇aiPbi

)
(3.31)

− 2µ
N2∑
i=1

(
Qxi

Q̇yi − Q̇xi
Qyi + Pxi

Ṗyi − Ṗxi
Pyi

)
. (3.32)

The first mass term is given by −2u
∑

h,k Tr {ThBTkB} (...) , and the non zero

contributions to the latter are:

Tr
{
BTxi

BTxj

}
= −Tr

{
BTyiBTyj

}
= (3.33)

− Tr
{
BTaiBTaj

}
= Tr

{
BTbiBTbj

}
= −δij

2
(3.34)

This result show how the mass matrix is diagonal in the basis we choose. The

u-proportional mass term is then:

−ub2
N2∑
i=1

(
Q2

yi
− P 2

yi
−Q2

xi
+ P 2

xi
+Q2

ai
− P 2

ai
−Q2

bi
+ P 2

bi

)
(3.35)
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We are left with one last term to be studied; −vTr2 {
∑

a 2QaBTa}. In order to

compute this term, it is sufficient to notice that the B matrix is nothing but one

of our generators, specifically B ∼ Ty1 , once we state that U1 = I. Since we

are working with an orthogonal basis, there will be just one generator Th giving

contribution to the latter trace, and this generator can be no other than TY1 itself,

thus

−vTr2
{∑

a

2QaBTa

}
= −4vb2NfQ

2
y1
. (3.36)

Now it’s time to take a breath and recap what we have done so far. We ex-

panded the Φ field in the u(2N)-algebra, using the aforementioned basis in order

to go along with the form of the M and B matrices and get a diagonal mass

matrix. This procedure allow us to get much simpler computations. However,

we overlooked the fact that our field is parameterized by an anti-symmetric ma-

trix, hence we worked with more degrees of freedom than necessary. There is no

need to worry about that, it is sufficient to get rid of the unwanted generators.

It is easy to see that an anti-symmetric generator can be obtained just by re-

quiring that the Ui matrices inside the Tai , Tbi and Txi
are anti-symmetric, while

the Ui block inside the Tyi generators has to be symmetric. Therefore, our true

anti-symmetric basis is made up by:

Tai =
1

2

Ui 0

0 Ui

 ; Ui = −UT
i ; i = 1, 2, ...,

N(N − 1)

2
(3.37)

Tbj =
1

2

Uj 0

0 −Uj

 ; Uj = −UT
j ; j = 1, 2, ...,

N(N − 1)

2
(3.38)

Txk
=

1

2

 0 Uk

Uk 0

 ; Uk = −UT
k ; k = 1, 2, ...,

N(N − 1)

2
(3.39)

+

Tyh =
i

2

 0 Uh

−Uh 0

 ; Uk = UT
k ; k = 1, 2, ...,

N(N + 1)

2
(3.40)

This specification only affects the number of fundamental real fields and the

couplings term, since there is no longer way to get a coupling between x and y

modes. In fact, the Ui inside Txi
and the Uj inside the Tyj are now forced to be
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different, canceling out the δij in the (3.28). With this in mind, the coupling term

becomes :

−2i
∑
h,k

Tr {MThTk}Hhk = −2µ

N(N−1)
2∑

i=1

(
QaiṖbi − ṖaiQbi + PaiQ̇bi − Q̇aiPbi

)
.

(3.41)

We are left with 4N2 − 2N fundamental fields, 2N2 −N of which are coupled in

independent ab−pairs, while the remaning 2N2 x and y fields are free. Everything

is now ready to compute dispersion relations. As we said before, we have some

free real fields, whose dispersion relations are trivial. In fact, being ω the energy

and p the 3-momentum, we have :

ω2
Qxi

= p2 ; ω2
Pxi

= p2 + 2ub2 ;
N(N − 1)

2
d.o.f. each (3.42)

ω2
Pyi

= p2 ; ω2
Qyi

= p2 + 2ub2 ;
N(N + 1)

2
− 1 d.o.f. each (3.43)

ω2
Qy1

= p2 + 4µ2 −m2 ; ω2
Py1

= p2 ; 1 d.o.f. each (3.44)

For the a and b modes, we first need to collect their inverse propagators, which,

in the Fourier space, read as :

D−1
QaPb

=

ω2 − p2 − 2ub2 4iµω

−4iµω ω2 − p2 − 2ub2

 (3.45)

D−1
QbPa

=

ω2 − p2 4iµω

−4iµω ω2 − p2

 . (3.46)

The corresponding dispersion relations are get by solving, with respect to ω, the

zeros of the determinant. Giving :

ωQaPb = ±2µ+
√
p2 + 4µ2 ;

N(N − 1)

2
d.o.f each (3.47)

ωPaQb = ±2µ+
√
p2 + 4µ2 + 8αµ2 − 2αm2 ;

N(N − 1)

2
d.o.f each (3.48)

where we used the equation of motion to rewrite b2 as a function of µ, defining

α = u
u+2NfV

. The spectrum that arises from fixing the baryonic charge and the

particular choice of vacuum we made, exhibits a certain number of degrees of

freedom that are not at all affected by the chemical potential, while all the other
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modes just display a shift in the energy, which is proportional to the chemical

potential. From this we deduce that the former correspond to degrees of freedom

that carry no baryonic charge, while the latter do. The reason this happens, is

that the vacuum we have chosen is invariant under the rotation generated by the

baryonic charge. We can, likewise, choose a vacuum state that does not display

this symmetry. If this is the case, we expect a completely different spectrum, the

typical one of a superfluid phase. One possible choise is:

B = ib

J 0

0 J

 ; J =

 0 INf
2

×
Nf
2

−INf
2

×
Nf
2

0

 . (3.49)

This choice provides the same second-order Lagrangian of the previous case and

the coupling term is still given by the (3.41). Once again, the vacuum is either

one of our generators, or a linear combination of generators of the a−type. The

equation (3.36) still holds, but the only surviving generator will be a certain

Tã, thus we have to replace Qy1 with Qã. The last step is to check how the

−2u
∑

hk Tr {BThBTk} (...) term changes. From direct computation, it results:

Tr
{
BThi

BTkj
}
= −2δhk Tr {JUiJUj} . (3.50)

Since we can always find a {Ui} orthogonal basis within which J is contained,

the right hand side of the latter equation can be written as :

−2δhk Tr {JUiJUj} = −2δhk Tr {UaUiUaUj} = δhkδij. (3.51)

Replacing this result in the u proportional mass term, we get :

−ub2
∑
k

(
Q2

k − P 2
k

)
. (3.52)

This result, conjoined with the −2ub2Tr(ΦdaggerΦ) term, tells us that all the Ph’s

have a zero mass term. For the x and y modes, dispersion relations are :

ω2
Pxi

= p2 ; ω2
Qxi

= p2 + 2ub2 ;
N(N − 1)

2
d.o.f. each (3.53)

ω2
Pyi

= p2 ; ω2
Qyi

= p2 + 2ub2 ;
N(N + 1)

2
d.o.f. each. (3.54)
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On the other hand, the inverse propagators in the momentum space are equal to

:

D−1
QaPb

= D−1
PaQb

= D−1
PãQb̃

ω2 − p2 − 2ub2 4iµω

−4iµω ω2 − p2

 (3.55)

D−1
QãPb̃

ω2 − p2 − 8µ2 − 2m2 4iµω

−4iµω ω2 − p2

 (3.56)

whose dispersion relations for large µ and small momenta are:

ωab = ωãb̃ =

√
u

3u+ 4Nfv
p ; ωab = ωãb̃ =

√
8(3u+ 4vNf )

u+ 2Nfv
µ+O(p2). (3.57)

Thus, the (3.55) kind of inverse propagator corresponds to N(N − 1) − 1 Gold-

stone Bosons and the same number of massive modes, while the latter inverse

propagator gives rise, in the large µ and small p limit, to a Goldstone boson and

a massive mode with energy :

ω =
p√
3
+ ... ; ω = 2

√
6µ+

5p2

12
√
6µ

+ ... (3.58)

The first one is a universal sector for any fixed charge and scale invariant theory,

known as the Conformal Mode.

3.2 Symmetry Breaking Patterns

The theory we chose to study has a global U(2Nf ) ≃ SU(2Nf )×UA(1) symmetry.

Given the potential part of the Lagrangian,

V(H†H) = u0Tr
(
H†H

)2
+ v0

(
TrH†H

)2
+ (m2 − 4µ2) Tr(H†H), (3.59)

we can see that V(H†H) is minimized on a manifold of B vacua defined by :

∂V
∂H† = 2uTr

(
H†HH

)
+2vTr

(
H†H

)
Tr (H)+(m2−4µ2) Tr(H)

∣∣∣∣
H=B

= 0 (3.60)

∂2V
∂H†2

= 2uTr(H2) + 2vTr2(H)

∣∣∣∣
H=B

≥ 0 (3.61)

We can easily check that both minima we chose belong to this manifold. Since we

are fixing the baryon charge, we can distinguish vacua in two classes: those that
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preserves the baryon charge and those which don’t. These two circumstances

characterize two phases of the theory, that can be respectively defined as the

Normal Phase and the Broken Phase, depending on the ratio between the

mass and the chemical potential. Intuitively, we can figure out that, if m2 > 4µ2,

the vacuum is not driven by the chemical potential, and therefore stays invariant

under the baryon generator. Otherwise, if m2 < 4µ2, the ground state is set

by the same chemical potential which fixes the baryon charge, so it must change

under baryon rotations. It is a consequence that the pattern of symmetry braking

is strongly dependent on the phase and we want to check out how symmetries are

broken, both explicitly and spontaneously, in the two phases. The normal phase

is defined by the vacuum :

H0 = B = b

 0 1

−1 0

 ; b ∈ R. (3.62)

It is self-evident that without any chemical potential, the group preserving this

vacuum under the adjoint representation;

UHoU
T = Ho

∣∣∣∣
Ho=B

, (3.63)

is, by definition, the symplectic group Sp(2N), resulting in the trivial pattern:

SU(2Nf )× UA(1)
SSB−−→ Sp(2Nf ) (3.64)

In order to get the full Symmetry Breaking Pattern we can proceed in two ways.

If the ansatz concerning the vacuum is:

H0(t) = e2iMtB, (3.65)

with

B = b

 0 1

−1 0

 ; b ∈ R, (3.66)

M = µ

1 0

0 −1

 ; µ ∈ R, (3.67)

we get an addition term at the lagrangian level, which reads as

−2iµTr
{
M

(
ϕ†∂0ϕ− ϕ∂0ϕ

†)} . (3.68)
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The latter term explicitly breaks the starting symmetry and it is invariant under

the C(M) group, where C(M) is defined by :

UMU † =M =⇒ [U,M ] = 0. (3.69)

By direct computations, one can check that the latter defines :

C(M) = UL(Nf )× UR(Nf ). (3.70)

The insertion of a non-zero chemical potential not only gives rise to the term in

(3.68), but also affects the vacuum, turning the (3.62) into the (3.65). Thus, there

must be a spontaneous breaking from C(M)×UA(1) to another group, namely G,

due to a new configuration of the vacuum when the chemical potential is turned

on.

... C(M)
SSB−−→ G. (3.71)

We can figure out how G looks like just by requiring H0 to be invariant under a

certain group. Since for µ = 0 , the pattern must reduce to the one in (3), then

G is nothing but C(M) when ”embedded” into Sp(2Nf ). This argument is fully

equivalent to find the U(2Nf )-subgroup such that (3.63) is satisfied. Thus, given

the general form of the Sp(2Nf ) Algebra,

Ta =

Aa Ba

B†
a −AT

a

 , (3.72)

with Aa = A†
a, we should write the (243) as :

MTa − Ta†M = 0, (3.73)

which leads to1 0

0 −1

Aa Ba

B†
a −AT

a

−

Aa Ba†

Ba −AT
a

1 0

0 −1

 = 0, (3.74)

whose solutions are :

Ba = 0 ↪→ Ta =

Aa 0

0 −AT
a

 . (3.75)

52



Taking into account the never broken UA(1), the latter equation defines U(Nf ).

This procedure must be read as a way to enlighten and distinguish the role of M

and the one of B. There is no good reason to not writing the (3.63) up directly.

The problem of such an approach is that the pattern one gets requiring (3.63)

from the very beginning, shows both explicit and spontaneous breaking in once

and this is due to the twofold nature of H0, which carries information about

both charge fixing and vacuum state at µ = 0. The previous way of finding the

symmetry breaking pattern can also be cast as follow :

• Starting from the theory L(H), we can redefine

H → e2iMtH̃ ; L(H) → L(H̃), (3.76)

where, in principle, H̃ carries the same symmetries of the old H. The L(H̃)

theory will be the same of the old L(H) except from additional explicit

breaking terms in M .

• We can now set H̃0 to be H̃0 = B, in other words

L(H)
ESB−−−→
µ ̸=0

L
(
e2iMtH̃

)
SSB−−→ L

(
e2iMt(B + Φ)

)
(3.77)

↓ ↓ ↓ (3.78)

U(2Nf )
ESB−−−→
µ ̸=0

C(M)
SSB−−→ U(Nf )× UB(1) (3.79)

↓ µ = 0 (3.80)

Sp(2Nf ) (3.81)

The explicit symmetry breaking due to the insertion of a baryon chemical poten-

tial is fixed and does not depend on the subsequent choice of the ground state,

therefore, in order to capture the symmetry breaking pattern in the broken phase

we just have to ask what is the C(M) subgroup preserving the B vacuum as

follows :

B = ib

J 0

0 J

 , (3.82)
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where J is a Nf ×Nf symplectic matrix. As already stated, C(M) is nothing but

UL(Nf )× UR(Nf ), consequently the generic U ∈ C(M) must have the form

U =

A 0

0 B

 , AA† = I, BB† = I. (3.83)

If we require that U ∈ C(M) also preserves B, we obtain

AJAT = J ; BJBT = J, (3.84)

this two equation crearly define the Sp(Nf ) × Sp(Nf ) group. Finally, the sym-

metry breaking pattern in the broken phase results in :

U(2Nf )
ESB−−−→
µ ̸=0

C(M)
SSB−−→ Sp(Nf )× Sp(Nf ). (3.85)

The number of spontaneously broken generators NSBG in both phases equals the

difference between dim(C(M)) and dim(G(B)), which is nothing but the dimen-

sion of the coset C(M)/G(B), where in both cases G is the group preserving the

vacuum. Thus, we get

NSBG= dim

(
C(M)

G(B)

) ∣∣∣∣
B=i

 0 1

−1 0


= 2N2 −N2 = N2 (3.86)

NSBG = dim

(
C(M)

G(B)

) ∣∣∣∣
B=i

J 0

0 J


= 2N2 − 2

N(N + 1)

2
= N2 −N. (3.87)

As a consequence of the Goldstone Theorem, we expect for each case a certain

number of massless mode that is bigger or equal to the number of broken genera-

tors. From the dispersion relations computed in the previous section it is easy to

check that such an inequality is true in both cases. For sake of completeness, we

should refer to the non-relativistic version of the Goldstone Theorem, details of

which can be found in [GBcount], here we just recall that, in a non-relativistic

scenario, Goldstone Bosons can be classified in two categories, namely Type I GB

and Type II GB, for the former the energy ω is proportional to the momentum,

ω ∼ p, while for the latter ω ∼ p2. The theorem aslo states that, in order to
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get a Type II Goldstone, at least two generator have to be broken, wherease for

the Type I Goldstones a one-to-one correspondence with broken generators still

holds. At the end of the day, in a non-relativistic theory, the number of massless

particle must satisfy the inequality :

NType I + 2NType II ≥ NSBG. (3.88)

3.3 The non-relativistic Goldstone Theorem

...
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Chapter 4

Scaling Dimension

4.1 Next to Leading Order

As we already said, our true purpose is to compute the scaling dimension ∆ as

the computed in Chapter 1 for the U(1) case. We sow that, in order to capture

quantum fluctuation, we need first to compute the leading order energy ELO and

then a sum over dispersion relations as in ??. Let’s now compute the Leading

Order Energy of the system. First of all, it is necessary to evaluate the action on

a classical trajectory. We could, for example, chose the broken phase define by

the block-diagonal vacuum in (3.82), on which the classical energy results in :

8Nfµ
2b2 + 2Nfu0b

4 + 4N2
f v0b

4 + 2Nfm
2b2 = L(H0) (4.1)

We can use the equation of motion as a constrain. Evaluating them on the same

trajectory, this yields to

4M2 + 2u0BB
† + 2v0Tr(B

†B) +m2 = 0 (4.2)

which in terms of the µ and b parameters, reads as

4µ2 + 2u0b
2 + 4Nfv0b

2 +m2 = 0 (4.3)

In order to compute the classical energy ELO, since we are fixing the charges, we

can proceed via the Legendre transform :

U → Û = µQ− U. (4.4)
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This expression would have been good even if we didn’t have a single charge, but

a charge for each generator of the algebra Q ≡
{
Q1, Q2, ..., Q4N2

f−1

}
. For the

latter case, Legendre transform is not so trivial. However, we could have taken

advantage of the fact that the charges transform together with the field :

H → UHUT → Q→ UQU † (4.5)

so we could have ideally SU(2Nf )-rotate the charges into Q = Q̃{1, 0, ...0}. It is

easy to see that the quantity Tr
(
Q†Q

)
is invariant, so computing Q̃ is now trivial

and we just need to normalize the generators into Tr(tatb) = δab. Finally we get

µQ = −16µ2b2Nf . Now it is possible to explicitly compute the Energy and the

direct calculation leads to :

ELO =
mN

2uo + 4v0Nf

(
48
µ4

m4
+ 8

µ2

m2
− 1

)
, (4.6)

coherently with what found in [nonabelian]. The last formula can be rewritten

by reversing the relationship between µ and Q. Using the equations of motion

it is easy to see that µ ∼ Q
1
3 and that therefore ELO ∼ Q

4
3 . These are the first

classical steps of the semiclassical analysis that we are going to complete with

a full calculation of the scaling dimension ∆ next to leading order. In order to

capture the quantum fluctuations it the scaling dimension, we need to replicate

the computation scheme involved in section 2. It is easy to understand that the

right generalization of the scaling dimension in the U(1) which matches with our

model must be in the form :

T

R
∆0 = log

{ √
det(S(2))

det
(
−∂2t −∆Sd−1

+m2
)} =

T

2

∞∑
l=0

nl

∫
dω

2π

∑
i

gi log

{
ω2 + ω2

i (l)

ω2 + ω0(l)

}
,

(4.7)

where gi the degeneracy of the ωi dispersion relation, i.e. the numer of modes

having that dispersion relation. One can note that the whole list of this number

has already been computed via the algebrical characterization of the previous

section. The integral in the last equation can be directly computed, leading to:

∆0 =
R

2

∞∑
l=0

nl

{∑
i

gi(N)ωi(N)− Ñω0(l)

}
. (4.8)
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The Ñ is just the total number of fundamental fields in the theory. It is easy to

convince ourselves that the second part of the summand in (4.8) is a sum over

ground state energies, therefore we will neglect it in upcoming computations. As

it as be done previously, ∆0 is definitely a divergent quantity and, again, we

want to capture the divergent part and then regularize it. We do expect that the

divergent part is related to the UV behavior of the scaling dimension, and it is

hence encoded it the large l asymptotic dependence of the sum over dispersion

relation. We can show that the following relation holds for sufficiently large

momenta :
R

2

∞∑
l=0

nl

{∑
i

gi(N)ωi(N)

}
l≫1−−→

∞∑
n=1

cnl
d−n. (4.9)

Crearly the gi do not depend on l, while nl and ωi do. Recalling the degeneracy

of the laplacian on a d−sphere is given by (2.107), we can use the Stirling formula

to get the large l behavior of the Euler’s Gamma functions in nl, thus :

Γ(l + h+ 1) = (l + h)!
l≫1−−→ (l + h)(l+h)e−(l+h) =⇒ (4.10)

nl ∼ (2l + d− 2)
Γ(l + d− 2)

Γ(l + 1)

h+1=d−2−−−−−→ (2l + h+ 1)
(l + h)(l+h)e−(l+h)

lle−l
. (4.11)

The nl coefficient is also multiplied for ωi(l), whose large l behavior is an l−linear

function. At the end of the day it is an easy task to show that the asymptotic

dependence of the summand in (282) is :

O(l)nl ∼ lh+1e
1
l =

∞∑
n=1

cnl
d−n. (4.12)

Once again, the divergent part of (4.9) must be encoded in the first five terms,

therefore we are interested in fixing the firts five coefficients of the latter expres-

sion. In order to get c1, ..., c5 it is sufficient to compute the large l expansion of

∆0, which is easily achievable once we know the whole set of dispersion relations.
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A direct calculation shows that :

c1 =
N(−1 + 3N)

R
+O(ϵ) ; c2 =

5N(−1 + 3N)

R
+O(ϵ) ; (4.13)

c3 =
2Nv [32R2µ2 −N(15 + 16R2µ2) +N2(45 + 16R2µ2)+]

8R(u+ 2Nv)
+ (4.14)

u [(16− 32R2µ2)−N(7 + 48R2µ2) +N2(33 + 64R2µ2)]

8R(u+ 2Nv)
+O(ϵ) ; (4.15)

c4 =
2Nv [96R2µ2 + 3N2(5 + 16R2µ2)−N(5 + 48R2µ2)]

16R(u+ 2Nv)
+ (4.16)

u [48− 96R2µ2 +N(19− 144R2µ2) + 3N2(−7 + 64R2µ2)]

16R(u+ 2Nv)
+O(ϵ) ; (4.17)

c5 = ... (4.18)

As we can see, the dependence of this coefficients on the theory’s parameters,

such µ or R, exactly matches the one shown in (112) of [epsilon] in the N = 1

limit. Having isolated the divergent part and computed it coefficients we can now

rewrite the analogous of (2.112), which leads to :

∞∑
l=0

nl

{∑
i

gi(N)ωi(N)

}
=

1

2

5∑
n=1

cn

∞∑
l=1

ld−n +
1

2

∞∑
l=1

σ̄(l) (4.19)

Finally, we regularize the (4.19) expression using that
∑∞

l=0 l
x = ζ(−x), and

recalling ζ(1− x) ∼ 1
x
for enough small x. Thus

1

2

5∑
n=1

cn

∞∑
l=1

ld−n =
1

ϵ
X (µ,N,R, u, v) + Y(µ,N,R, u, v). (4.20)

Where the exact expressions of X and Y can be found in the Appendix. Here

we’re just interested in isolating, within the latter sum, a divergent quantity in

the ϵ→ 0 limit.

4.2 Regularization

As anticipated in the last section of Chapter 2, the scaling dimension we have

computed needs to be regularized, and so far we have only shown how to isolate

divergences, but that is only half the job. We now want to show how, in a

semiclassical framework, it is possible to define and compute finite quantities,
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which we can call dressed, from divergent ones, which we will refer to as bare

instead. First we write the bare gi couplings as a function of those dressed g̃i :

gi =M ϵg̃iZgi(g⃗) (4.21)

where Zg defines the β−functions of the theory as

β(gi, ϵ) = −ϵgi + gi
2∂Zgi

∂gi
(g⃗). (4.22)

We can imagine of writing the scaling dimension, or any other quantity, as

∆ =
∞∑

j=−1

gjej(Ao, d) =
∞∑

j=−1

g̃j ēj(A, d, RM), (4.23)

where M is the renormalization scale, the ei are the bare coefficients and the ēi

are the dressed ones, while A0 and A are just vector variables which encode a

set of bare and dressed parameters respectively on which we don’t want to focus.

The latter expression exhibits just one coupling, while we have two couplings, but

it is easy to figure out a natural generalization involving a multi-variable Taylor

Series. Also the following statements can be generalized the same way. Equation

4.21, together with 4.23 show how the dressed coefficients of a given order always

mix the bare coefficients of different orders, therefore, for the leading order energy

e−1, we could write :

e−1(Ao, d)

g
=
e−1(A, d)

g̃
+
∑
j=0

gjfj(A, d, RM). (4.24)

Since the regularized next to leading order scaling dimension ē0 is of the same

order of f0, we have :

ē0(A, d, RM) = e0(A, d) + fo(A, d, RM). (4.25)

We should point out that the next to leading order scaling dimension ∆0 that

we computer so far, corresponds to the e0 in the right hand side of 4.25, and our

true purpose is to compute the one on the left hand side. Equation 4.23 together

with 4.24 also suggests that :

ē−1(A, d) = e−1(A, d). (4.26)
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Thus, in order to get the f0 coefficient, we should expand the leading order

energy ELO, which corresponds to the e−1 coefficient, in powers of the couplings

but working in d = 4− ϵ, The ϵ dependence of such quantities is ensured by the

V volume, which obviously depends on the dimensionality, moreover, couplings

depend on ϵ when evaluated at the fixed point where the β−functions vanish.

Hence, in order to fully characterize the fo coefficient, we need to know the

β−functions. The problem of computing the β’s in absolutely not trivial and it

will be matter of future developments. Anyway, we can figure out what should

happen to the next to leading order scaling dimension even in absence of this

crucial information. As we can see in 4.6, there is a 1/g dependence, where g

specifically is u + 2vN . We can think that, If we perhaps knew the expression

of this coupling at the fixed point, making use of 4.21 for the leading order

scaling dimension ELO,we could expand it the couplings. As we said before, with

the purpose of obtaining the regularization coefficient f0, we should expand the

leading order energy in the couplings, then in ϵ, since couplings at the fixed point

are ϵ-dependent. We cannot know the exact expression of couplings at the fixed

point, but we can at most imagine that they should be some polynomial in ϵ.

Whit this in mind, we could compute an ϵ− dependent ELO by supposing the

aforementioned polynomial takes the place of couplings, therefore:

ELO =
64µ2π

4−ϵ
2 M−ϵR3−ϵ

(
4µ2 − (d−ϵ−2)2

4R2

)
Γ
(
4−ϵ
2

)
(Bϵ+ Cϵ2 + ...)

, (4.27)

Here we have merely replaced the expression of mass and volume as functions

of radius. The polynomial −Bϵ + Cϵ2 + ... that appears in the denominator is

simply a formal expression of what should be the couplings at the fixed point; in

this sense, knowing the beta functions is equivalent to fixing the coefficients of

the polynomial. So, by virtue of the latter expression, computing f0 is equivalent

to expanding into ϵ and retaining only those terms which do not vanish when ϵ

is set to be zero. With this in mind, we get

f0 = −64π2µ2R (4µ2R2 − 1)

Bϵ
+ Z(µ,R,M,B,C) +O(ϵ) (4.28)

where the Z(µ,R,M,B,C) quantity is finite. One should notice that the f0

coefficient has the same structure of 4.20. This is a satisfying result because
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we expect that once f0 is substituted into 4.25 the divergent part in f0 exactly

cancels out the divergent part of ∆0, i.e. the X ϵ−1 in 4.20. This suppression of

divergences solely depends on the B coefficient, and since we do not know B, due

to the lack of β, we can solely read this procedure as a way of computing B by

requiring the regularization a priori. We also expect that the dependence on the

renormalization scale M drops at the fixed point, as expected from conformal

invariance.

4.3 Conclusions and Outlooks
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