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Introduction

The concept of Quantum Advantage represents an ambitious goal in the field of quan-
tum computation. It is related to scientific and technological achievements for which
quantum computers overcome the computational capabilities of classical computers [1].
Quantum computation is expected to offer great potential in solving hard problems, such
as simulating complex molecules [2][3], optimizing neural networks [4], or cryptogra-
phy [5], with unprecedented speed and efficiency. In order to harness the full potential of
quantum computing, the quantum hardware needs to scale to a large numbers of qubits
and the development of efficient quantum algorithms is required [6][7].
This thesis aims at exploring the protocols used for optimizing sequences of quantum
gates, referred to as quantum circuits. Their optimization is a crucial aspect of quan-
tum algorithm design, which allows for the reduction of resource requirements, while
maintaining the accuracy and efficiency of quantum computation, in terms of gate fi-
delities and mitigation of quantum errors. As quantum circuits grow in complexity with
an increasing number of qubits and gates, optimization techniques become essential to
overcome the challenges in large-scale quantum computing. Specifically, the main goal
of this work is to contribute to characterize multi-qubit superconducting devices by re-
alizing specific state-of-the-art protocols for the implementation of quantum circuits.
The work is composed of four Chapters. The first one describes the theoretical prin-
ciples of superconducting quantum platforms. We discuss how a superconducting cir-
cuit encompassing Josephson junctions behaves as a macroscopic quantum system and
can be used as a qubit. Hence, we focus on a specific qubit design, namely the trans-
mon, the possibility to tune the electrodynamical parameters of the device through flux-
biasing, and to exploit this property for the implementation of two-qubit gates, which
can guarantee logical operations in quantum computation. The Chapter also describes
the readout of qubit states in a quantum non-demolitive way, and introduces the concept
of qubit drive. The computing potential in superconducting devices is affected by noise
and decoherence, which are analyzed to better understand their effects on qubit stability.
Finally, we describe the possible ways to engineer the coupling between two supercon-
ducting qubits, providing an insight into the interactions that allow for entanglement
and complex quantum operations.
The second Chapter is focused on the techniques employed for the implementation of
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algorithms in quantum devices. We first describe single-qubit gates, with particular em-
phasis on the Hadamard gate, extensively used in the experimental work. Then, the
protocols used for optimizing the single-qubit gates are described, as well as those used
to estimate decoherence times. In addition, there is a description of two-qubit gates, like
the CNOT gate, which is another gate used in the experiments. Finally, quantum non-
demolition readout techniques are discussed, focusing on the requirements to achieve
high-fidelity single-shot readout.
The experimental details of the cryogenic and room-temperature electronics setup used
in this work, as well as an overview on the architecture, design principles and func-
tionalities of the device analyzed in this work, i.e. a 5-qubit superconducting quantum
processor, are reported in Chapter 3.
The last Chapter is focused on the experimental results and the analysis on one qubit pair
of the 5-qubit system, i.e., on a two qubit register, both in terms of single-qubit perfor-
mances, coupling mechanisms, gate pulse optimization and fidelity of different single-
and two-qubit quantum circuits. Through Quantum State Tomography (QST), the at-
tainment of Bell states has been demonstrated, which is the maximum manifestation of
the quantum entangled nature of the system.
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Chapter 1

Superconducting quantum bits

Quantum computers have been proposed as efficient platforms for solving hard prob-
lems, as for instance the factorization of large numbers [6], modelization of complex
systems [3], molecule’s simulations [2]. The main difference between quantum and
classical computers relies on how the information is encoded. In classical computers,
the information is encoded in two logical states, “0” and “1”. Quantum computers use
the quantum bit, or qubit. A qubit obeys to the following laws of quantum mechanics:

• Quantum superposition, i.e., a qubit state can be represented as:

|Ψ⟩ = α |0⟩+ β |1⟩ , with |α|2 + |β|2 = 1, (1.1)

where |0⟩ and |1⟩ are the qubit basis eigenstates. A qubit state can be also repre-
sented as a vector on the Bloch sphere, as shown in figure 1.1.

Figure 1.1: Representation of a generic qubit state (green arrow) |Ψ⟩ on the Bloch
sphere. The blue and red arrows represent the ground state and the excited state re-
spectively. The angles θ and φ describe the precession and the rotation around z-axis,
respectively.
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The z-axis connects the north and the south pole, which represent state |0⟩ and
state |1⟩, respectively. It is possible to represent the quantum state using the an-
gles θ and φ as:

|Ψ⟩ = cos
θ

2
|0⟩+ eiφ sin

θ

2
|1⟩ . (1.2)

• Quantum entanglement: coupled qubits will influence each other. If we know the
state of one of the two qubits, the state of the other one is automatically known as
well. This property can be used in computation and algorithm designs.

Quantum computation is significantly efficient in solving a large variety of problems
[2][4][3], which cannot be solved by a classical computer. The physical realization of
quantum computers must fulfill precise requirements, known as Di Vincenzo’s criteria
[8].

• Scalable physical system with well characterized qubits: a quantum computer
must be made up of many quantum bits, whose parameters are accurately known
(energy of the states, coupling to other qubits, coupling to the environment).

• Ability to initialize the state of the qubits to a simple fiducial state: it must be
possible to initialize the qubits in a well defined state. As a matter of fact, any
algorithm would require the computational register to be in some known state
before any specific algorithm.

• A ‘universal’ set of quantum gates: any quantum algorithm is a set of unitary
instructions that involve some number of qubits. Instead of implementing a series
of arbitrary Hamiltonians, it is more convenient to break them down into some set
of constituent parts. There are many possible sets of “universal” gates, that will
be discussed in Section 2.6.

• A qubit-specific measurement capability: it must be possible to read the state of
the quantum system, typically via readout of individual qubits.

• Long relevant coherence times, much longer than the gate operation time: a large
number of single and 2-qubit gate operations must be performed within the co-
herence time of the qubit. During this mean time the qubit should not randomly
go into another state. This loss of information, known as decoherence, may be
due to unintentional coupling to the environment and noise in control and readout
signals.

In literature, there are several hardware platforms to realize qubits according to the
Di Vincenzo’s criteria. In this thesis, we will focus on superconducting qubits. In this
Chapter, basic notions on superconductivity, superconducting circuit and superconduct-
ing qubits will be introduced, with a particular focus on a specific qubit, called transmon
[9][10].
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1.1 Superconductivity and the Josephson Effect
Superconductivity is a peculiar state of the matter that occurs below a critical tempera-
ture Tc. A superconductor is characterized by:

• Perfect conductivity, i.e., the resistivity of the material drops to zero below the
critical temperature Tc (Figure 1.2a));

• Meissner effect: superconductors expel external magnetic fields up to a critical
field Hc below Tc (Figure 1.2b)). The superconductor is capable of expelling the
external magnetic fields, expect for a superficial region of thickness λ, called Lon-
don penetration depth [11].

Figure 1.2: In a) resistivity as a function of the temperature measured by Kamerlingh
Onnes when he discovered superconductivity in Leiden in 1911 [12]; b) Meissner effect:
if T > TC the magnetic field B penetrates the metallic material, while for T < TC it is
expelled from the superconductor [13].

The Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity states that below Tc,
a condensate of Cooper-pairs, pairs of electrons in a singlet state, originates [13]. Such
condensate can be represented as a quantum wavefunction, with a macroscopic quan-
tum phase. Therefore, one can build circuits made of superconducting capacitors and
inductors by using intrinsic dissipationless materials, including LC-circuits. They will
exhibit quantum behavior with energy levels set by their electrodynamical parameters.
The Hamiltonian is the Quantum Harmonic Oscillator (QHO) Hamiltonian [14], with
energy spectrum shown in figure 1.3.
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Figure 1.3: In a) the energy potential for the linear Quantum Harmonic Oscillator (QHO)
as a function of the superconducting phase. The energy levels are equally spaced by ℏωr,
where ωr is the characteristic oscillation frequency of the LC circuit [15]; b) energy
potential for the quantum oscillator with non-linear Josephson inductance, which yields
non-equidistant energy levels [15].

The Hamiltonian for the circuit is:

H = 4ECn
2 +

1

2
ELϕ

2, (1.3)

where EC = e2/(2C) is the charging energy of a single electron stored on the capac-
itance C and EL = (Φ0/2π)

2/L is the inductive energy. Here Φ0 is the magnetic flux
quantum Φ0 = h/(2e), n is the number of Cooper pairs and ϕ is the superconducting
phase. The two operators n̂ and ϕ̂ form a canonical conjugate pair, obeying the commu-
tation relation

[
ϕ̂, n̂

]
= i. However, the parabolic potential energy of the QHO is not

suitable to implement a qubit. It is necessary to define a computational subspace con-
sisting of only two energy states, where transitions can be driven without exciting other
energy levels in the system. Anharmonicity can be introduced by replacing the linear
inductor of the QHO with a Josephson junction (JJ), that plays the role of a nonlinear
inductor [15][11].
A JJ is composed of two superconductors separated by a non superconductor layer, as
shown in figure 1.4.
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Figure 1.4: Schematic representation of a Josephson junction. The grey parts indicate the
superconductors and the light blue represents the barrier between the superconducting
layers. It is also shown the penetration of the macroscopic wave functions ψ1 and ψ2

into the right (blue line) and left (red line) superconducting electrodes, respectively.
The |ψi|2 with i = 1, 2 is the Cooper pair density and φi is the wave function phase.

If the barrier is thin enough, of the order of 1nm for insulating layers, tunneling of
Cooper pairs from a superconductor to the other will occur due to a phase difference
ϕ = φ1 −φ2 between the macroscopic wave functions of the two superconductors [16].
The tunneling supercurrent IS is described by the first Josephson equation [16]:

IS = IC sinϕ, (1.4)

where IC is the critical current, i.e., the maximum supercurrent that flows through the
junction and it is set by several junction parameters, like the materials and the geometry
of the device [11].
The time evolution of the phase ϕ is described by the second Josephson equation [16]:

V =
ℏ
2e

dϕ

dt
, (1.5)

where V (t) is the voltage across the JJ.
By combining the Josephson equations, it is possible to demonstrate that the JJ behaves
as a non-linear inductor, with inductance defined as:

LJ =
ℏ

2eIC cosϕ
. (1.6)

Therefore, using the equations (1.4) and (1.5), the Hamiltonian of the JJ is given by
[11]:

H = 4ECn
2 − EJ cosϕ , (1.7)

where EJ = ICΦ0/2π is the Josephson energy, with IC the critical current of the junc-
tion. The cosinusoidal potential energy of the circuits allows to get different energy
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transitions among the quantized levels, thus providing the possibility to isolate an artifi-
cial quantum two-level state, if properly engineered.
The system dynamics is governed by theEJ/EC ratio [15]. IfEJ ≤ EC , we have the so-
called Cooper pair box (CPB), the first successful superconducting qubit, also know as
charge qubit, since the quantum variable is the charge [17] [18]. If EJ ≫ EC , we have
the flux or the phase qubit, since the quantum variable is the phase difference across the
JJ [15][19].

1.2 From the Cooper Pair Box to the transmon qubit
The first successful superconducting qubit was the Cooper Pair Box (CPB), whose cir-
cuit is shown in figure 1.5 [17].

Figure 1.5: Circuit diagram of a Cooper Pair Box, with EJ the Josephson energy, Cg the
coupling capacitance and Vg the signal generated by the external electronics.

The CPB is composed of a superconducting island coupled by a Josephson junction to
a superconducting reservoir. The Hamiltonian of the CPB is:

H = 4EC(n− ng)
2 − EJ cosϕ, (1.8)

where ng is the effective offset charge of the device, which is here the quantum observ-
able. It is controlled by a gate electrode capacitively coupled to the island, such that:

ng =
Qr

2e
+
CgVg
2e

, (1.9)

where Qr is the environment-induced offset charge, while Vg and Cg denote the gate
voltage and capacitance, respectively.
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The equation (1.8) can be solved exactly in the phase basis in terms of Mathieu func-
tions. The eigenenergies are given by [9]:

Em(ng) = ECa2[ng+k(m.ng)](−EJ/2EC), (1.10)

where aν(q) denotes Mathieu’s characteristic value, and k(m,ng) is a function sorting
the eigenvalues. Typical EJ/EC ratios of the CPB are well below 1 [9]. An example of
the energy transition levels of a CPB is reported in figure 1.6 a) in the limit of EJ/EC =
1.

Figure 1.6: Eigenenergies Em for m = 0 (lower blue line), 1 (red line), 2 (brown line),
3 (black line), 4 (upper blue line) of the qubit Hamiltonian as a function of the effective
offset charge ng for different values of EJ/EC [20].

There are two fundamental quantities for the operation of a CPB: anharmonicity and
charge dispersion of the energy levels [9]. A sufficiently large anharmonicity is needed
to prevent qubit operations from exciting other transitions in the system. Typical energy
scales for the anharmonicities are related to the charging energy: the larger, the higher
the separation between the first two computational levels state and the other transition
levels. The charge dispersion describes the variation of the energy levels with respect
to environmental offset charge and gate voltage, and determines the sensitivity of the
CPB to charge noise: the smaller the charge dispersion, the less the qubit frequency
will change in response to charge fluctuations. These two quantities are both related to
the ratio EJ/EC : increasing this ratio the charge dispersion, and thus the sensitivity to
charge noise, decreases, as shown in figure 1.6 for EJ/EC = 5 (1.6 b)), EJ/EC = 10
(1.6 c)) and EJ/EC = 50 (1.6 d)). The coherence times of the CPB are too small
for scalable quantum computation because of the charge noise sensitivity far from the
so-called “sweet-spots”, i.e., where dE/dng = 0 [21]. By increasing the EJ/EC ratio
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around 50, we can efficiently suppress charge noise fluctuations, thus leading to the
implementation of a transmon qubit, whose circuit schematic is shown in figure 1.7.

Figure 1.7: Effective circuit diagram of the transmon qubit. The two Josephson junc-
tions in a superconducting ring (also known as DC-SQUID) with capacitance CJ and
Josephson energy EJ are shunted by an additional large capacitance CB, matched by a
comparably large gate capacitance Cg. The transmon is connected to a readout resonator
(in red) [9].

The crucial difference between the transmon and the CPB is the addition of a large
capacitance CB and of a readout resonator, which allows for the so-called Quantum Non
Demolition (QND) measurement, i.e., to readout the qubit state without destroying it.
It is important to note that charge dispersion reduces exponentially by increasing the
values of EJ/EC , while anharmonicity tends to decrease polynomially with EJ/EC .
In figure 1.8, it is shown the behavior of the absolute and relative anharmonicity as a
function of EJ/EC , defined as:

α = E12 − E01 (1.11)

αr =
α

E01

. (1.12)

More specifically, αr changes sign for EJ/EC > 9, which means that for larger energy
ratios than those of the CPB, the transition energy E12 becomes smaller than E01 and
there is a local minimum forEJ/EC ≈ 17.5 [9]. It is possible to find approximate forms
of the anharmonicities in the EJ/EC ≈ ∞ limit, i.e., in the transmon limit[9], which
are:

α ≃ −EC αr ≃ −
(8EJ

EC

)− 1
2
. (1.13)

It is, therefore, possible to notice that for the transmon it is possible to find a suitable
region of EJ/EC for which we can efficiently suppress charge noise, without critically
affect the anharmonicity.
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Figure 1.8: In a) relative anharmonicity of the trasmon qubit at the degeneracy point
as a function of the ratio EJ/EC ; b) absolute anharmonicity at the degeneracy point as
a function of the ratio EJ/EC . The solid curves show the exact results from equation
1.10, and the dashed curves depict the perturbative result from equation 1.13. Figure
adapted from [9].

1.3 Flux tunability of the transmon qubit
In the transmon qubit circuit in figure 1.7 there is a superconducting loop, interrupted by
two Josephson junctions. This is a superconducting quantum interference device, also
known as dc-SQUID. Although it is not a mandatory element in a transmon circuit, it is
beneficial because it allows for the tuning of the effective EJ by changing the external
magnetic flux ϕext threading the loop [11]. The qubit frequency becomes a function of
the external flux ϕext:

ωq(ϕext) =
√

8EJ(ϕext)Ec −
Ec

2
, (1.14)

where

EJ(ϕext) = EJΣ cos
πϕext

ϕ0

√
1 + d2 tan

(πϕext

ϕ0

)2

(1.15)

and
d =

EJ1 − EJ2

EJ1 + EJ2

. (1.16)
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The d factor is an asymmetry parameter, that takes into account the possibility of having
a SQUID with two different JJs: the bigger the asymmetry parameter d, the smoother is
the variation of the qubit frequency as a function of the flux, as shown in figure 1.9.

Figure 1.9: Transmon qubit frequency tuning as a function of the external flux for differ-
ent values of the asymmetry parameter d. The dashed lines represent the slope dωq/dϕ
at some specific points. For a fixed flux value ϕ̄ the slope for d = 0.0 is smaller than for
d = 0.9. Therefore, when the junctions have different sizes the qubit is less sensitive to
flux changes. Figure adapted from [14].

This helps in reducing the sensitivity to flux noise, which can be quantified in terms of
the derivative of ωq as a function of the flux, dωq/dϕext [9]. The possibility to tune the
qubit frequency is fundamental for the implementation of single- and two-qubit gates,
as will be discussed in Section 2.1.
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1.4 Readout of Transmon Qubit
Coherent control and readout of the transmon qubits can be achieved by operating the
system in the dispersive limit, which allows for QND measurement [15]. Specifically,
the transmon uses a superconducting resonator, which is represented by a harmonic LC
oscillator in the limit of ℓ ≪ c/fν , where ℓ is the length of the resonator and ν are the
typical frequencies in the microwave regime.
The system composed of the transmon and the resonator is described by the Jaynes-
Cummings (JC) Hamiltonian, given by [15]:

HJC = ωr

(
a†a+

1

2

)
+
ωq

2
σz + g

(
σ+a+ σ−a

†), (1.17)

where ωr is the frequency of the resonator, ωq is the frequency of the qubit, g represents
the coupling between qubit and resonator, a† and a are the creation and annihilation op-
erators of the single excitation of the resonator, respectively, and σ+ and σ− represent the
excitation and the de-excitation of the qubit. Here, the qubit has been approximated as a
two-level system for simplicity. The third term of JC Hamiltonian describes the interac-
tion between the qubit and the resonator through the factor g, which is fundamental to
identify the working regime. Transmon qubits generally work in the dispersive regime,
which is reached when g ≪ ∆, where ∆ is the detuning ∆ = |ωq − ωr|. Developing a
second-order perturbation theory with respect to g/∆, it is possible to obtain:

Hdisp =
(
ω̃r + χσz

)(
a†a+

1

2

)
+
ω̃q

2
σz, (1.18)

where χ = g2/∆ is the dispersive shift, ω̃q = ωq + g2/∆ and ω̃r = ωr + χσz are the
renormalized frequencies.
In order to perform a QND measurement, a single-tone signal in the range of the res-
onator frequency interacts with the readout resonator. The response of the voltage mag-
nitude across the resonator indicates the adsorption of photons and it is possible to see
a dip corresponding to the resonance frequency of the readout resonator (see Figure
1.10). To identify the dispersive regime, readout resonator spectroscopy is performed
as a function of the power of the input signal. For sufficiently low input power, we can
enter the single-photon regime. Once this regime is reached, the resonance frequency of
the resonator will shift positively or negatively accordingly to the detuning sign and the
state of the qubit (Figure 1.10.)
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Figure 1.10: Quantum non demolitive readout of a transmon qubit. Reflected magnitude
|S11| and phase θ response of the resonator when the qubit is in its ground state |0⟩
(blue) and excited state |1⟩ (red), separated by the dispersive shift frequency 2χ. Figure
adapted from [15].

1.5 Qubit drive
In order to perform gate operations, it is necessary to drive the qubit along the Bloch
Sphere, through an RF signal which resonates with the qubit transition frequency.
In figure 1.11 it is shown the circuit diagram of microwave drive line capacitively cou-
pled to a transmon qubit.
The Hamiltonian of the system in equation 1.17 becomes:

H = HJC +Hd = HJC +
Cd

Cd,Σ

Vd(t)Q̂, (1.19)

where Cd is the coupling capacitance, Cd,Σ = C +Cd is the total capacitance to ground
and Q̂ is the charge operator [15]. It is possible to express the latter in terms of raising
and lowering operators:

Q̂ = −i
√

ℏ
2Z

(a− a†), (1.20)
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Figure 1.11: Circuit diagram of a microwave drive line capacitively coupled to a generic
transmon superconducting qubit [15].

where Z =
√
L/C is the impedance of the circuit to ground. Since (a − a†) ∝ σy, the

hamiltionian of the drive Hd becomes:

Hd =
Cd

Cd,Σ

Vd(t)

√
ℏ
2Z

σy. (1.21)

Using the rotating wave approximation (RWA), for which we move in the frame of
reference of the qubit [22], the form of Hd is:

Hd = ΩVd(t)[σy cosωqt− σx sinωqt], (1.22)

where Ω = Cd/Cd,Σ and ωq ≃ (E1 − E0)/ℏ.
We can generally assume that the drive voltage Vd(t) has the generic form:

Vd(t) = V0s(t)(cosϕ sinωdt+ sinϕ cosωdt), (1.23)

where s(t) is a dimensionless envelope function, so that the amplitude of the drive is set
by V0s(t) [15]. It is useful to define δω = ωd − ωq and the in phase and out of phase
components, respectively, as:

I = cosϕ (1.24)

Q = sinϕ. (1.25)

Using these definitions and the prosthaphaeresis formulae, the driving Hamiltonian
takes the form [15]:

Hd =
ΩV0s(t)

2

[
(Q sin δωt− I cos δωt)σx + (I sin δω −Q cos δωt)σy

]
. (1.26)
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The last equation is a powerful tool for understanding single-qubit gates in supercon-
ducting qubits. In fact, if we assume to apply a drive pulse resonant with the qubit
frequency, so that δω = 0, then:

Hd = −ΩV0s(t)

2
(Iσx +Qσy). (1.27)

This shows that an in-phase pulse performs rotations around the x-axis, while an out-of-
phase pulse performs rotations around the y-axis. In figure 1.12, an example of a gate
sequence is considered and the rotation around the x-axis on the Bloch sphere due to the
I component is highlighted.

Figure 1.12: In a) an example of a gate sequence, where the blue and orange lines
indicate I and Q components, respectively; b) the action of a X(π/2) pulse on |0⟩ on
Bloch sphere, which put the qubit on the equator, due to the I component. Figure adapter
from [15].

1.6 Noise and decoherence
Although the circuital nature of superconducting qubits allows for an easy way of im-
plementing readout, control and tunability of circuital parameters, which are mandatory
for the implementation of gates, several dissipation channels come into play, since the
control of the qubit or the measurement of its state involve some uncontrollable physical
processes that are sources of noise. This leads to decoherence, which affects the fidelity
of the qubits and the quantum gates operations [23].
The sources of noise can be divided into two principal categories: systematic noise, that
is traceable to a fixed control or readout error, thus it can be corrected through a calibra-
tion, and stochastic noise, that arises from random fluctuations of parameters that are
coupled to the qubit [15][24]. This leads to decoherence phenomena, that can be divided
into longitudinal relaxation, transverse relaxation and pure dephasing.
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1.6.1 Longitudinal relaxation
The longitudinal relaxation rate Γ1 is defined as:

Γ1 =
1

T1
, (1.28)

where T1 is the 1/e decay time and it is the characteristic time scale for qubit sponta-
neous exchange of energy with the environment, which leads the qubit to its ground
state. It describes depolarization along the qubit quantization axis (z-axis), also called
longitudinal axis [15].
The longitudinal relaxation is caused by transverse noise, via x or y axis, as shown in
figure 1.13.

Figure 1.13: Longitudinal relaxation results from energy exchange between the qubit
and its environment, due to transverse noise that couples to the qubit in the x-y plane
and drives transitions |0⟩ to |1⟩. The blue arrow represents the relaxation process from
|1⟩ to |0⟩, while the orange arrow represents the excitation process from |0⟩ to |1⟩ [15].

At the same time, spontaneous excitations from |0⟩ to |1⟩ may occur. If we define the
relaxation rate as Γ1↓ and the excitation rate as Γ1↑, the total decay rate is:

Γ1 = Γ1↑ + Γ1↓. (1.29)

However, since the excitation processes follow the Boltzmann statistics, for supercon-
ducting qubits the only significant contribution to longitudinal relaxation is given by Γ1↓
[25],

Γ1 = Γ1↓

(
e
− ℏωq

kBT + 1
)
≃ Γ1↓. (1.30)

For superconducting transmon qubits, typical T1 values are of the order of tens or low
hundreds of µs [15].
Some of the sources of stochastic noise that lead to relaxation are:
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• Spontaneous emission, due to the fact that the qubit is coupled with the electro-
magnetic field inside the transmission line resonator [9];

• Purcell effect, that is the enhancement of spontaneous emission rates of photons
when they are incorporated into the readout resonant cavity [25][26];

• Dielectric losses, due to the charge fluctuations in the defects or charge traps that
reside in interfacial dielectrics, in the junction tunnel barrier and in the substrate
of the qubit [9];

• Quasiparticle noise, due to thermal breaking of Cooper pairs [9][27][28];

• Flux coupling noise, due to the coupling of the transmon to an external magnetic
flux bias that opens up additional channels for energy relaxation if they are reso-
nant with the transition frequency of the qubit [9].

1.6.2 Pure dephasing
The pure dephasing rate Γϕ describes depolarization in the x-y plane of the Bloch
sphere. It is due to longitudinal noise, that couples to the qubit via z axis, as shown
in figure 1.14.

Figure 1.14: Pure dephasing in the transverse plane arises from longitudinal noise along
the z axis that induces fluctuations of the qubit frequency. A Bloch vector along the
x-axis will move in the equator plane due to stochastic frequency fluctuations, depolar-
izing the azimuthal phase with a rate Γϕ [15].

20



This leads to fluctuations of the qubit frequency ωq. Some of the sources of stochastic
noise that lead to pure dephasing are:

• Charge noise, which derives from fluctuations of the charge in the superconduct-
ing islands of a JJ [9];

• Flux noise, that arises from the external magnetic field coupled to the qubit [9][15];

• Critical current noise, which is generated by trapping and detrapping of charges
associated with spatial reconfigurations of ions inside the JJ [9].

It is important to notice that pure dephasing is not a resonant phenomenon, in contrast
to energy relaxation. Therefore, pure dephasing is in principle reversible, by applying
unitary operations. On the contrary, spontaneous energy relaxation is an irreversible pro-
cess: once the qubit emits energy to environment, the quantum information is essentially
lost [15].

1.6.3 Transverse relation
The transverse relaxation rate is: Γ2 =

1
T2

= Γ1

2
+ Γϕ. It describes the loss of coherence

of a superposition state and it is due to both longitudinal noise and transverse noise, as
shown in figure 1.15.

Figure 1.15: Transverse relaxation results in a loss of coherence due to a combination
of energy relaxation and pure dephasing. Pure dephasing leads to decoherence of the
quantum state 1/

√
2(|0⟩ + |1⟩), initially pointed along the x-axis. Additionally, the ex-

cited state component of the superposition state may relax to the ground state, a phase-
breaking process that induces the loss of the orientation of the vector in the x-y plane
[15].
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For superconducting transmon qubits, typical T2 values are of the order of tens or low
hundreds of µs [9]. In the ideal case, if Γϕ = 0, T2 = 2T1.

1.7 Coupling between two superconducting qubits
In order to exploit the true potential of quantum computing, two qubits gates become in-
dispensable. They are essential in quantum computing because they enable the manipu-
lation and entanglement of multiple qubits simultaneously, making quantum computing
potentially more powerful than classical computing for certain tasks.
While the implementation of single-qubit gates requires to properly design drive pulses
on one qubit, two-qubit gates rely on the engineering of a coupling between two qubits,
i.e., to establish an interaction between quantum two-level systems. If H1 and H2 are
the Hamiltonian describing two isolated qubits, the coupled system Hamiltonian H can
be written as:

H = H1 +H2 +Hint, (1.31)

where Hint is the interaction Hamiltonian. It can have different forms depending on the
type of circuital coupling [15]. Some of them are shown in figure 1.16, and include the
possibility to connect two qubits on a chip by direct capacitive or inductive coupling (a)
and c)), or through an additional circuital element, like a coupler resonator or a qubit
coupler (b) and d)).

Figure 1.16: The figure shows two qubits that are coupled: a) by a capacitance Cg, b)
via a resonator coupler, c) via mutual inductance M12, d) via mutual inductances M1C

and M2C to a frequency tunable coupler [15].
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In this thesis, I focused my attention on a quantum chip realized with high-frequency
bus resonator couplers, like those in figure 1.16b).
The effective Hamiltonian of such a system in the dispersive limit, where both qubits
are far detuned from resonator coupler, can be written as [29]:

Heff =
∑
i=1,2

(ℏωi

2
σz
i + ℏχiσ

z
i

)
+ ℏωra

†a+ ℏJ(σ−
1 σ

+
2 + σ−

2 σ
+
1 ), (1.32)

where J = g1g2
2
( 1
∆1

+ 1
∆2

). Here gi is the coupling strength of qubit i and ∆i = |ωi−ωr|
is the detuning. The interaction between the qubits is described by the last term of the
equation 1.32, also-called J-coupling or transverse exchange coupling [30].
The qubit-qubit interaction is a result of virtual exchange of photons with the cavity.
When the qubits are non-degenerate, i.e., δq = |ω1 − ω2| ≫ J , the interaction is ef-
fectively turned off. If the qubits are set on resonance, typically by an external flux as
discussed in Section 1.3, i.e., ∆1 = ∆2 = ∆, an avoided level crossing of the excited
qubit states occurs, with an opening of a gap in the energy spectra [30]. The size of the
splitting is J = ℏg1g2/∆ and the new eigenstates of the coupled system are:

|ψs⟩ =
(|01⟩+ |10⟩)√

2
|ψa⟩ =

(|01⟩ − |10⟩)√
2

.

More generally, for δq ̸= 0 the eigenstates can be written as [30]:

|ψs⟩ = sin θn |01⟩+ cos θn |10⟩ , (1.33)

|ψa⟩ = cos θn |01⟩ − sin θn |10⟩ , (1.34)

where θn is defined by cos 2θn = −δq/
√

4J2 + δ2q and sin 2θn = 2J/
√

4J2 + δ2q [30].
It is easy to see that asymptotically (δq → ∞) it turns out that |ψs⟩ → |01⟩ and |ψa⟩ →
|10⟩. In figure 1.17 it is shown an example of a spectroscopy measurement of the avoided
level crossing [30] in two coupled superconducting qubits.
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Figure 1.17: Spectroscopic measurement of the avoided level crossing as a function of
normalized external flux Φ/Φ0. The solid lines indicate energy levels calculated from
the diagonalization of the two-qubit Jaynes-Cummings Hamiltonian. The orange dashed
lines represent the asymptotic behavior of |ψs⟩ and |ψa⟩. Figure adapted from [30].

In order to observe the avoided level crossing, the first qubit is kept at a fixed frequency,
while the second qubit frequency is swept across the avoided crossing by changing its
flux bias. If the power of the drive is high enough, it is also possible to see a spec-
troscopic line centered between the upper and the lower branch. This line represents a
two-photon transition from the ground state |00⟩ to the doubly excited state |11⟩. The
possibility to establish an avoided level crossing between two qubits is fundamental for
the implementation of multi-qubit gates, like the iSWAP or the CZ gates.
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Chapter 2

Algorithms with superconducting
qubits

Among the several superconducting platforms available in literature [31][32][33], trans-
mon qubits have been successfully used to build gate-based processors, i.e., devices able
to perform quantum algorithms. Google, IBM and Rigetti provide processors available
on the cloud, offering users the possibility to construct sequences of gates or quantum
circuits [34]. A quantum algorithm is defined as a sequence of gate operations able to
solve a specific problem. Such operations are typically decomposed in a finite sequence
of basic gates, or quantum circuits [35]. The gates are part of what are known as uni-
versal gate sets, which are mandatory for any quantum processor [8] (Chapter 1). In this
Chapter, we will discuss how it is possible to implement single and two qubits gates on
superconducting hardware, with a focus on Hadamard, CZ and CNOT gates.

2.1 Single-qubit gates
Qubits can assume arbitrary positions on the Bloch Sphere and each state can be written
as |ψ⟩ = α |0⟩ + β |1⟩. Single-qubit gates allow to move from a point on the Block
Sphere to another through rotations around a particular axis, as mentioned in Section
1.5. In figure 2.1 a comprehensive list of single-qubit gates is shown.
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Figure 2.1: For each single-qubit gate, it is shown the circuit representation, the matrix
representation, the truth table and the rotation’s representation on the Bloch Sphere.
Matrices are defined in the z-basis {|0⟩ , |1⟩}. Figure adapted from [15].
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This includes:

• I identity gate: it performs no rotation on the state of the qubit.

• X/Y/Z gate: it performs a rotation of an angle π around the x/y/z-axis.

• S gate: it performs a rotation of an angle π/2 around z-axis.

• T gate: it performs a rotation of an angle π/4 around z-axis.

• H Hadamard gate: generates a superposition of |0⟩ and |1⟩ state, i.e., it brings the
qubit in the equator rotating it around an axis diagonal on the x-z plane.

2.1.1 Hadamard gate
The Hadamard gate is very important in quantum computing, since it allows to generate
the superposition of the two basis states. If the qubit state is initialised in a computation
state |0⟩ or |1⟩, the Hadamard gate puts the qubit into a superposition of |0⟩ and |1⟩
states. If a Hadamard gate is applied on the |0⟩ state several times and the output is
measured on the basis {|0⟩ , |1⟩}, it should be observed a probability of 50% to be in the
|0⟩ state and of 50% to be in the |1⟩ state, unless statistical errors [36]. It is fundamental
to note that in this case each measurement is independent, i.e., the qubit has to be reset
to |0⟩ before the application of the Hadamard gate. In fact, the state of the qubit is
obtained through a classical projective measurement, which erases the quantum nature
of the qubit. After the measurement, the qubit is no longer in a superposition but in a
well-defined state, |0⟩ or |1⟩.
The Hadamard gate can be obtain from native gates as:

H = Phπ
2
Yπ

2
Zπ = i

1√
2

[
1 −1
1 1

] [
−i 0
0 i

]
=

1√
2

[
1 1
1 −1

]
(2.1)

where Phπ/2 = ei
π
2 1 applies an overall phase π/2 to the qubit, Yπ/2 and Zπ perform a

rotation of π/2 around y-axis and π aroun z-axis, respectively [15]. This pulse sequence
is shown in figure 2.2.

Figure 2.2: Pulse sequence to perform a Hadamard gate. A Phπ/2-pulse is applied, fol-
lowed by a Yπ/2-pulse. Finally, a Zπ is applied. .

In figure 2.3, the pulse sequence to perform a Hadamard gate on the Bloch sphere is
shown, compared to the action of the undecomposed Hadamard gate.

27



Figure 2.3: In a) the action Phπ/2 gate; b) the action Y (π/2) gate; c) the action Z(π); d)
the action of the Hadamard gate. The red arrows represent the final state, while the green
lines are the gate trajectories. The panels a), b) and c) together constitute the Hadamard
gate, shown in panel d).

2.2 Single-qubit gates optimization protocols
In order to implement accurate gates [41], it is necessary to calibrate the pulse drive
and to address decoherence effects. Single-qubit gate optimization protocols, like Rabi
oscillations, Ramsey interferometry, AllXY are required [14].

2.2.1 Rabi oscillations
One of the fundamental measurements is the observation of Rabi oscillations, which
allows us to estimate the so-called π-pulse duration, which is the duration of the drive
pulse needed to excite the qubit from |0⟩ to |1⟩. In this experiment, a microwave tone
resonant with the qubit frequency is applied to the qubit, resulting in a rotation by some
angle around the x or y-axis of the Bloch sphere. As a function of that angle, the Z-
Projective measurement of the qubit state will oscillate, so as the probability of being in
the excited state after the pulse [42]:

P =
ω2
d

ω2
d +∆2

sin2 (tΩR), (2.2)

where ωd is the frequency of the drive tone, ∆ is the detuning between the drive tone
frequency and the qubit frequency, ∆ = |ωd − ωq|, and ΩR =

√
∆2 + ω2

d/2 is the Rabi
frequency [42]. The pulse sequence of a Rabi experiment is shown in figure 2.4.
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Figure 2.4: Pulse sequence used to measure Rabi oscillations.

In order to measure the Rabi oscillations, the drive signal is followed by a readout signal
sent to the readout resonator. The readout and digitalization of the output must occur si-
multaneously. Indeed, we construct a sequence in which the digitizing pulse falls within
the readout excitation pulse. It is fundamental to carefully choose the trigger so that all
these signals are aligned. Typically, the power of the drive tone (i.e. the amplitude) is
fixed, while its duration, called plateau, is variable. The oscillatory behavior of a Rabi
measurement, shown in figure 2.5, is obtained by varying the duration of the drive pulse
and has an half period which represents the π-pulse.

Figure 2.5: Rabi oscillations. It is highlighted the π-pulse, defined as the half period of
Rabi oscillations [43].
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Additionally, by changing the frequency of the drive pulse tone and therefore the detun-
ing ∆, the Rabi oscillations change both the periodicity and the amplitude. This behavior
is visible in the so-called Chevron plots in figure 2.6.

Figure 2.6: In a) the Chevron plot of the excited state population as a function of time
and detuning ∆; b) three cuts from the Chevron plot at different detuning values [44].

More in detail, in figure 2.6a) it is shown the excited state population as a function of
the time and detuning ∆. It is clear that if the detuning increases, the amplitude of the
Rabi oscillations decreases and their frequency increases. This is more evident in figure
2.6b), where there are three cuts from the Chevron plot, showing the Rabi oscillations
as a function of the drive pulse time for fixed values of the detuning. Therefore, the fre-
quency of the drive signal must be chosen to have the maximum population probability.
Furthermore, the power of the drive RF signal influences the π-pulse duration, which
should be as short as possible to have the largest number of gates implemented within
the coherence time of the qubit [45]. If the power increases, the Rabi oscillations be-
come faster and consequently the π-pulse is shorter [44]. However, large drive powers
can lead to higher-order transitions, affecting the quality of the gate [46]. Therefore we
must find a compromise in the choice of the π-pulse power.

2.2.2 Ramsey Interferometry
Another typical time-domain protocol used for the study of the quality of a qubit is
Ramsey interferometry [15]. The measurement consists in preparing the qubit on the
equator sending a π/2-pulse, i.e., with half π-pulse amplitude. Then, we wait for a
variable amount of time before another π/2-pulse is used to bring the qubit in the excited
state. This pulse sequence is shown in figure 2.7.
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Figure 2.7: Pulse sequence used to measure the dephasing time T ∗
2 .

The Ramsey output signal is proportional to cos (δωt)eΓ
∗
2t [15]. Therefore, if we are

off-resonance with the qubit frequency we expect to observe damped oscillations in the
demodulated voltage that decay with a characteristic time T ∗

2 , as shown in figure 2.8.

Figure 2.8: Measured exponential cosinusoidal convolution of the demodulated signal
magnitude in a Ramsey experiment [43].

The ∗ stands for the fact that the Ramsey experiment is sensitive to inhomogeneous
broadening, i.e. it is highly sensitive to quasistatic, low-frequency fluctuations [15]. The
period of these oscillations corresponds to the detuning δω. These oscillations reduce to
a pure exponential decay if δω = 0. Indeed, Ramsey interferometry is used to calibrate
the drive frequency, in order to resonate with the qubit frequency [47]. The on-resonance
qubit frequency is determined as the center of the Ramsey fringes, as shown by an
example in figure 2.9 in terms of the qubit population.
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Figure 2.9: An example of Ramsey fringes from interferometry experiment, fundamen-
tal for the optimization of qubit drive frequency signal [47]. The plot shows the popu-
lation of the ground state as a function of the qubit drive frequency and the sequence
duration.

2.3 Optimization of the drive pulse shape: the DRAG
scheme

In Section 1.5 we have implicitly assumed that it is possible to ignore the higher en-
ergy level of the transmon qubit. However, the difference between ω01 and ω12 is the
anharmonicity α (equation 1.11), which is negative and typically around 200MHz to
300MHz for transmon qubit [15]. Such a low value of anharmonicity leads to leakage
errors, which take the qubit out of the computational subspace, and phase errors. The
first effect occurs when the qubit is excited to |2⟩ by applying a π pulse to |1⟩ state or
directly from |0⟩ state. The second effect occurs because of the repulsion between |1⟩
and |2⟩ levels, due to the presence of the drive pulse. This leads to the accumulation
of a relative phase between |0⟩ and |1⟩. In order to address these issues, it is possible
to implement the so-called DRAG scheme (Derivative Reduction by Adiabatic Gate).
According to this procedure, it is applied an extra signal in the Q component. The wave-
form s(t) in equation 1.23 is modified as:

s(t) → s′(t) =

{
s(t) on I

λ
˙s(t)
α

on Q
(2.3)

where λ is a dimensionless scaling parameter and ˙s(t) is the time derivative of s(t)
[15]. Theoretically, the best choice to reduce dephasing errors is λ = 0.5, while the
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best choice to reduce leakage errors is λ = 1 [37] [38]. In practice there can be a
deviation from these two optimal values, often due to pulse distortions in the lines which
control the qubits. The λ = 0.5, 1 tradeoff was unambiguously demonstrated in [39]
[40]. Therefore, by improving the DRAG scheme it is possible to reduce both errors
simultaneously.
The effect of the DRAG procedure can be seen on the Bloch sphere. The waveform of
an X(π)-pulse without DRAG modulation is shown in Figure 2.10a).

Figure 2.10: In a) waveform of a X(π) pulse without DRAG (Derivative Reduction by
Adiabatic Gate) modulation; b) effect of the waveform from a) on a qubit initialized
in the |0⟩ state. The dephasing error is visible as a deviation from the |1⟩ after the
pulse; c) waveform of a X(π) pulse with DRAG modulation for λ = 0.5 to cancel
dephasing errors; d) effect of the waveform from c) on the same qubit as b). Figure
adapted from [15].

Due to the dephasing error, there will be a deviation from the |1⟩ state after the pulse
(Figure 2.10b)). Improving the DRAG scheme for λ = 0.5, the Q component of the
X(π) pulse assumes the shape shown in Figure 2.10c). As a result, the dephasing error
is corrected, as shown in Figure 2.10d).
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2.3.1 AllXY
Rabi and Ramsey calibrations are adequate tune-ups for most basic single-qubit ex-
periments. However, higher-quality rotations are often desirable for applications where
achieving a high fidelity value is the goal, such as for algorithms [48] and state tomog-
raphy [49].
In order to calibrate gate operations more accurately the AllXY protocol is used [14].
This protocol involves different combinations of one or two single-qubit gates, i.e., ro-
tations around x or y-axis by an angle of π/2 or π. Each pulse combination is sensitive
to a different type of error, resulting in a deviation from the ideal response. These devi-
ations are captured in the error syndrome [14].
By analyzing the error syndrome, it is possible to identify the nature and characteristics
of the errors affecting the system [14]. In figure 2.11 there are 21 different pulse com-
binations with their error syndrome.

Figure 2.11: AllXY pulse sequences. The first and second pulse are listed and ordered
according to where the qubit should ideally end up (on the north pole, equator, or south
pole of the Bloch sphere, as shown in the first column). The analytically calculated
leading-order power and detuning error dependences of the qubit z-projection are re-
ported in the last two columns, respectively. [14].
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The pairs of gates are ordered according to the expected final position of the qubit on
the Bloch sphere. First, the pulses that should return the qubit to the ground state are
considered (Ideal ⟨z⟩ = 1), followed by those that should place it on the equator (Ideal
⟨z⟩ = 0), and finally those that should end up on the excited state (Ideal ⟨z⟩ = -1). Since
pulses ending on the north or the south pole of the Bloch sphere are relatively insensitive
to errors, the most significant information is given by pulses that end up on the equa-
tor [14]. The latter are ordered by their sensitivity to over-rotations, starting from being
second-order sensitive to the rotation angle to being several times as sensitive as normal
π/2 rotation. For example, a X(π/2) followed by a X(π) rotation is three times more
sensitive to over-rotations compared to a single X(π/2) rotation. Instead, the combina-
tion of a X(π/2) and a Y (π) is only as sensitive as X(π/2) pulse, because the Y pulse
will not rotate the qubit since it will be in an eigenstate of that operation. Rotations
that end up on the north or south pole of the Bloch sphere are second-order sensitive
because the expected value of z is proportional to the cosine of the angle. By ordering
the pulses according to sensitivity to over-rotations, too much or too little power yields
a characteristic “step” pattern, shown in figure 2.12.

Figure 2.12: Simulated syndromes for amplitude. A calculation using unitary matrix
evolution for each type of error is shown. Each error signature is distinct, making it
possible to detect several error syndromes simultaneously [14].

The remaining order is given by first X rotations then Y rotations in the first pulse posi-
tion. This is helpful because the two axes feel the opposite effect of detuning, giving a
zig-zag pattern to detuning and the X scale factor, used to compensate for phase errors
due to the presence of higher excited-state levels [50]. These phase errors are mainly due
to two more sources of mixer imperfections, such as amplitude imbalance and skewness.
These trends are shown in figure 2.13a) and 2.13b), respectively.
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Figure 2.13: Simulated syndromes for a) detuning and b) skew-type error [14].

Syndromes are related to several physical phenomena (e.g. reflections) and, since they
are linearly independent, single-qubit pulse errors can be quickly identified. In addition
to the syndromes shown in figure 2.12 and 2.13, another syndrome not easily calculated
but nevertheless crucial to tuning up pulses is associated with DRAG [50][51]. The
lowest-order correction involves either continuously detuning the pulse as a function of
its instantaneous amplitude or adding a copy of the derivative of the primary pulse to
its orthogonal quadrature. In both cases, there is a scale factor for this correction. It is
tuned up as a free parameter based on the observation of its syndrome in AllXY, shown
in figure 2.14.

Figure 2.14: The error syndromes associated with DRAG (Derivative Reduction by Adi-
abatic Gate) coefficient [14].
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In order to efficiently tune-up the DRAG parameter, we take two of the AllXY pulses
which exhibit the opposite sign of error and we implement them on the hardware as a
function of the DRAG coefficient. This yields two lines that cross at the point where the
parameter is optimal. In figure 2.15 this procedure is implemented for the combinations
Y (π)X(π/2) and X(π)Y (π/2).

Figure 2.15: Intersection of the two lines obtained by varying the DRAG (Derivative
Reduction by Adiabatic Gate) coefficient of gates combination with opposite syndrome
sign. This intersection represents the optimal DRAG coefficient value [14].

2.4 Fidelity and decoherence time evolution
The evaluation of the performance of the single-qubit gates is a key study in the imple-
mentation of superconducting quantum processors. Therefore, the scientific community
introduced the state and the gate fidelity to quantify the quality of the qubit perfor-
mances [41]. The state fidelity measures the distinguishability of two quantum states, ρ
and σ, where ρ is the experimental quantum state density matrix and σ is its theoretical
expectation.
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The fidelity is defined as [52]:

F(ρ, σ) = Tr
[√√

ρσ
√
ρ
]2
, (2.4)

i.e. it measures the deviation of an experimental quantum state from the theoretical ex-
pectation. If ρ = |ψ⟩ ⟨ψ| and σ = |φ⟩ ⟨φ| are both pure states, then F = | ⟨ψ|φ⟩ |2
becomes the standard definition of quantum probability. Specifically, if the state |φ⟩ ex-
actly corresponds to |ψ⟩, the fidelity approaches the limit value of 1, i.e. the probability
of measuring |φ⟩ after its preparation is equal to 100%. In addition to state fidelity, we
can define the gate fidelity as [53]:

F(Û , Λ̂U) =

∫
dρF (UρU †, Λ̂U(ρ)), (2.5)

where U represents an ideal unitary gate, U † its Hermitian adjoint and ΛU(ρ) the imper-
fect realization of the gate. It measures how closely the actual gate operation performed
on the qubit matches the ideal or desired gate operation. The gate fidelity is intrinsically
limited by the coherence time of superconducting qubits, which is characteristic of the
processor employed, and this influences the choice of the universal gate set. In general,
one wants to keep the overall number of time steps in which gates are applied as low as
possible, as well as the number of total gates [15]. This means that in order to minimize
the synthetization time, i.e. the time required to decompose an operation, the set is cho-
sen so to maximize the overall calculation efficiency. Some universal quantum gate sets
include [15]:

• G0 = {Xθ, Yθ, Zθ, Phθ, CNOT} where Phθ = eiθ1.

• G1 = {H,S, T, CNOT} known as “Clifford + T” set.

The single-qubit gate fidelity affected by uncorrelated energy relaxation with rate T−1
1 ,

and pure dephasing with rate T−1
ϕ = T ∗−1

2 − (2T1)
−1, reads as [47][54]:

F = 1− 1

3
τ
(
T−1
1 − T−1

ϕ

)
, (2.6)

where τ is the mean gate sequence duration. Thus, it is fundamental for qubit control to
estimate the characteristic decoherence times of the qubit, discussed in Section 1.6.

2.4.1 T1 measurement
Once the π-pulse has been calibrated with Rabi oscillations measurement, it is possible
to measure the relaxation time T1 of the qubit (Section 1.6.1). This experiment consists
in preparing the qubit in the excited state sending a π-pulse, and then measuring the
readout of the qubit state through the readout resonator pulse, changing the so-called
sequence duration, which is the delay between the preparation of the qubit in the excited
state and the acquisition. The pulse sequence of this experiment is shown in figure 2.16.
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Figure 2.16: Pulse sequence used to measure the relaxation time T1.

The longer the sequence duration, the higher the probability to decay to the fundamental
state. As a consequence, an exponential decay is observed in the demodulated voltage
measured as a function of the sequence duration, as shown in figure 2.17.

Figure 2.17: Exponential decay in the demodulated voltage measured as a function of
the sequence duration [43].
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The relaxation time T1 can be obtained from experimental data through a fitting process,
using the function ae−x/T1 + c.

2.4.2 Spin Echo protocol
Another common procedure used to characterize qubits is the Hahn echo protocol [15],
which allows us to determine the coherence time T2, described in Section 1.6.3. This
experiment is performed using a pulse sequence that is almost the same sequence of
Ramsey interferometry, except for an additional π-pulse in the middle of the two π/2-
pulses, as shown in figure 2.18.

Figure 2.18: Pulse sequence of Spin Echo protocol used to measure T2.

The π-pulse in the middle is also known as refocusing pulse. Basically, according to the
pulse scheme, the qubit is prepared on the equator, then a rotation of π is performed, and
finally it is excited to |1⟩ state. By doing so, the quasi-static contributions to dephasing
can be suppressed, leaving an estimate of T2 that is less sensitive to inhomogeneous
broadening mechanisms than the T ∗

2 obtained through the Ramsey protocol [15]. In
figure 2.19 it is shown the characteristic exponential decay obtained from the Hanh
Echo protocol.
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Figure 2.19: Exponential decay measured with a Hanh Echo pulse sequence to estimate
T2 [43].

The coherence time TEcho
2 can be obtained from experimental data through a fitting

process, using the function ae−x/TEcho
2 + c. It has been demonstrated that the inclusion

of multiple π-pulses in the middle of the Hahn-echo sequence allows to approach the
theoretical limit in the absence of dephasing for a qubit, i.e., T2 = 2T1, in agreement
with what has been discussed in Section 1.6.3 [55].

2.5 Two-qubit gates
In gate-based quantum computing, two-qubit gates are generally conditional gates [15].
They take two qubits as inputs; the first is typically called control qubit and the second
is called target. The latter is the one on which the gate is applied, whose action depends
on the state of the control qubit. In table 2.1 fundamental two-qubit gates are reported:

• CNOT gate: it flips the state of the target qubit when the control qubit is in the
excited state.

• CZ gate: it applies a Z gate on the target qubit when the control qubit is in the
excited state. It can also be noticed that CZ is a symmetric gate, since it basically
applies an overall phase.

• iSWAP gate: it swaps an excitation between the two qubits.

41



GATE
CIRCUIT MATRIX

TRUTH TABLE
REPRESENTATION REPRESENTATION

Input Output

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


|00⟩ |00⟩

CNOT |01⟩ |01⟩
|10⟩ |11⟩
|11⟩ |10⟩

Input Output

CZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1


|00⟩ |00⟩

CZ |01⟩ |01⟩
|10⟩ |10⟩
|11⟩ -|11⟩

Input Output

iSWAP =


1 0 0 0
0 0 −i 0
0 −i 0 0
0 0 0 1


|00⟩ |00⟩

iSWAP |01⟩ -i|10⟩
|10⟩ -i|01⟩
|11⟩ |11⟩

Table 2.1: For each two-qubit gate, it is shown the circuit representation, the matrix rep-
resentation and the truth table. Matrices are defined in the basis {|00⟩ , |01⟩ , |10⟩ , |11⟩},
where the first qubit is the control qubit and the second qubit is the target qubit.

2.6 The iSWAP and the CZ gate
The interaction HamiltonianHint in the total HamiltonianH = H1+H2+Hint (equation
1.31) can also be written as [15]:

Hint = Jσy1 ⊗ σy2. (2.7)

By means of external flux and the frequency tunability described in Section 1.3, we can
tune a qubit to bring it on resonance with the coupled qubit, and equation 2.7 can be
rewritten as:

Hint =
J

2
(σx1σx2 + σy1σy2). (2.8)
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This equation shows that if two qubits are set on resonance there will be a swap of
excitations between them. The unitary matrix that corresponds to this interaction is:

U(t) =


1 0 0 0
0 cos(Jt) −i sin(Jt) 0
0 −i sin(Jt) cos(Jt) 0
0 0 0 1

 . (2.9)

If the qubits are tuned on resonance for a time t = π/2J , the coupling allows to imple-
ment the iSWAP shown in table 2.1:

U(t = π/2J) =


1 0 0 0
0 0 −i 0
0 −i 0 0
0 0 0 1

 = iSWAP, (2.10)

which simultaneously swaps an excitation between the two qubits, and adds a phase of
i = eiπ/2 [15].
First of all, in order to perform an iSWAP experiment it is necessary to excite one of the
qubit, so that the state of the system is |10⟩. Then we fix the qubit with lower frequency
in its sweet spot, while the higher frequency qubit can be tuned, till the two are on
resonance. In figure 2.20 it is shown the pulse sequence of the iSWAP experiment.

Figure 2.20: Pulse sequence of iSWAP experiment. An X-pulse is applied on qubit 1,
so that the system is in |10⟩ state. Then qubit 2 is tuned with a flux pulse for different
values of amplitude A and duration of the pulse τ . Finally, a measurement on the qubit
state is performed.
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The probability to be in the |01⟩ state for different values of the amplitude A and dura-
tion of the flux pulse τ on the higher frequency qubit is shown in figure 2.21.

Figure 2.21: Starting from |10⟩ state, it is shown the probability of swapping into the
|01⟩ state as a function of the duration and the amplitude of the flux pulse applied. The
inspected region is the one for which an avoided level crossing between the |01⟩ state
and the |10⟩ state is typically observed [15].

For the iSWAP gate, we assumed that the higher energy levels of the qubit could be
neglected. Actually, for a transmon qubit they can be used to implement a CZ gate.
Specifically, in order to implement a CZ gate the avoided level crossing must occurr
between the |11⟩ and the |20⟩ states [15]. This is easier to understand if we consider the
spectrum for two coupled transmon qubits, including levels with higher order excita-
tions, shown in figure 2.22.
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Figure 2.22: (a) Spectrum of two coupled transmon qubits as a function of the local
magnetic flux for higher frequency qubit. The two lower branches corresponding to |01⟩
and |10⟩ are involved in the iSWAP gate operation. The avoided crossing indicated in
the black rectangle is used to implement the CZ gate. Black line with arrows indicates
a typical trajectory used to implement a CPHASE gate (starting at the black circle and
ending at the gray circle). (b) Zoom in of the |20⟩ ↔ |11⟩ avoided crossing highlighted
in the black box in (a) at Φ = ΦCZ . The parameter ζ quantifies the difference in energy
between |11⟩ and |01⟩+ |10⟩ and ℓ is the trajectory in (Φ, t)-space [15]
.
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The Hamiltonian of the system in the {|00⟩ , |01⟩ , |10⟩ , |11⟩ , |02⟩ , |20⟩}-basis is given
by:

H =



E00 0 0 0 0 0
0 E01 J 0 0 0
0 g E10 0 0 0

0 0 0 E11

√
2J

√
2J

0 0 0
√
2J E02 0

0 0 0
√
2J 0 E20

 (2.11)

where the {|02⟩ , |20⟩ ↔ |11⟩} transitions are scaled by a factor
√
2 due to the higher

photon number [15]. By preparing the system in the state |11⟩ and moving towards the
avoided crossing, the resulting unitary operator in the computational basis is given by:

Uad =


1 0 0 0
0 eiθ01(ℓ) 0 0
0 0 eiθ10(ℓ) 0
0 0 0 eiθ11(ℓ)

 , (2.12)

where θij(ℓ(τ)) is the phase acquired by the state |ij⟩ along the trajectory ℓ. In figure
2.22 the movement should be adiabatic, which means that it should occur slowly on the
time-scale determined by J. It is possible to define the parameter ζ , also shown in figure
2.22, and the conditional phase as:

ζ = ω11 − ω01 − ω10, (2.13)

θ2Q = θ11 − θ01 − θ10, (2.14)

where the ζ parameter represents the repulsion of the |11⟩ due to the |20⟩ state.
After the adiabatic process, it is possible to apply flux pulses to compensate the phase
of single excitation states, so that θ10(ℓ) = θ01(ℓ) = 0. If it is chosen a trajectory ℓπ so
that θ11 = π, the matrix 2.12 becomes:

UCZ =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 . (2.15)

The form of the matrix suggests that the CZ applies an overall phase to the qubits when
both are in the excited state.
In order to perform a CZ experiment it is necessary to excite both the qubits, so that the
system is in |11⟩ state. As for the iSWAP, we fix the qubit at lower frequency in its flux
sweet spot and we tune the higher frequency one, till they are on resonance. The pulse
sequence of this experiment is shown in figure 2.23.
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Figure 2.23: Pulse sequence of CZ experiment. An X-pulse is applied both on qubit 1
and qubit 2, so that the state of system is |11〉. Then qubit 2 is tuned with a flux pulse for
differente values of amplitude A and duration of the pulse τ . Finally, a measurement on
the qubit state is performed.

In order to tune up the CZ gate, it is possible to perform the conditional oscillation
experiment. It can be used to measure the single-qubit phases θ01 and θ10, the condi-
tional phase θ2Q acquired during an uncalibrated CZ gate, and to estimate the leakage
L, defined as the average probability that a random computational state leaks out of the
computational subspace [56]. In the conditional oscillation experiment, two variants of
the same experiment are performed [57]. In the first variant (Off), a π/2-pulse is applied
on the target qubit, while the control qubit is left in the ground state. After that, the CZ
flux pulse is applied. Finally, another π/2-pulse is applied on the target before measur-
ing the state of both qubits simultaneously. In the second variant (On), the control qubit
is rotated into the excited state before applying the CZ gate. Then, the control qubit
is pulsed back to the ground state before measuring both qubits. The pulses scheme is
shown in figure 2.24.

Figure 2.24: Pulse scheme for the conditional oscillation experiment. For the Off variant
(solid line), the target is prepared on the equator by a π/2-pulse, then a CZ gate is per-
formed, followed by another π/2-pulse. Finally, the states of both qubits are measured
simultaneously. For the On variant (dashed line), the pulses on the target are the same as
the Off variant, but on the control a π-pulse is applied each time a π/2-pulse is applied
on the target.
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The single-qubit phase can be measured by interchanging the roles of the target and
control. The difference in phase acquired by the target in the On and Off variants yields
θ2Q, as shown in figure 2.25a).

Figure 2.25: Conditional oscillation experiment. In figure a), the population of the state
for the target qubit as a function of the phase is shown. The conditional phase θ2Q is
also highlighted. In figure b) it is shown the population of the state for the control qubit
as a function of the phase. The m represents the missing fraction, used to estimate the
leakage [57].

In figure 2.25b) it is shown the population difference on the control between both the
variants of the experiment, defined as the missing fractionm. It allows us to estimate the
leakage as L = m/2. In order to optimize θ2Q, i.e. to have it equal to π, and to minimize
the leakage, the flux pulse amplitude and duration are changed, so as the shape of the
pulse [58].
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2.7 The CNOT gate
The CNOT can be implemented by using both CZ and iSWAP gates [15]. By including
two Hadamard gates the CNOT unitary matrix reads as:

UCNOT = (1⊗H)UCZ(1⊗H), (2.16)

since UCNOT = |0⟩ ⟨0|⊗1+ |1⟩ ⟨1|⊗X, UCZ = |0⟩ ⟨0|⊗1+ |1⟩ ⟨1|⊗Z and HZH = X.
In figure 2.26 it is shown the circuit diagram of the CNOT in terms of a CZ.

Figure 2.26: Circuit diagram of the CNOT in terms of CZ. The pulse sequence is com-
posed of a Hadamard on target, a CZ, which is simmetric, and finally another Hadarmad
on target. Figure adapted from [15].

The CNOT gate can also be implemented by stringing together two iSWAPs and several
single-qubit gates, as shown in figure 2.27.

Figure 2.27: Circuit diagram of the CNOT in terms of iSWAP. The pulse sequence is
composed of a X(π/2) on target, a Z(π/2) on target and simultaneously a Z(−π/2) on
control, an iSWAP, a X(π/2) on control, another iSWAP, and finally a Z(π/2) on target
[15].

However, for this thesis, the first implementation with the CZ gate has been employed.
The CNOT gate is called entangling gate, because its output state can be entangled even
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if the input is a separable state [15]. For example, consider two qubits A and B in the
state:

|ψ⟩ = 1√
2
(|0⟩+ |1⟩)A |1⟩B . (2.17)

If a CNOT gate is applied to |ψ⟩, the resulting state is (table 2.1):

UCNOT =
1√
2
(|0⟩A |1⟩B + |1⟩A |0⟩B) ̸= (...)A(...)B. (2.18)

This state is called Bell state and represents the simplest and maximal example of quan-
tum entanglement [59]. Therefore, theCNOT gate plays a fundamental role in quantum
computation. It is important not only for creating entangled states but also for construct-
ing quantum circuits, as it will be shown in Chapter 4. Furthermore, multiple CNOT
gates can be combined to perform universal quantum computation, enabling the imple-
mentation of a wide range of quantum algorithms and protocols [60].

2.8 Multiplexed single-shot readout
The last part of each protocol is the measurement of the qubit state, which is an essential
feature of any quantum computer. Specifically, high-fidelity single-shot measurements
are needed for determining the result of quantum computation [61], observing error syn-
dromes in quantum error correction [62][63] and for achieving high channel capacity in
quantum communication protocols such as quantum teleportation [64][65]. Moreover,
quantum non-demolition measurements are used for conditioning quantum state initial-
ization [66][67][68].
Recent progress in scaling up quantum processors based on superconducting qubits has
stimulated research toward multiplexed readout architectures with the goal of reducing
device complexity and enhancing resource efficiency [69][70][71]. Extensions of dis-
persive readout to multiple qubits can be realized by either coupling multiple qubits to
a single readout resonator [72][73] or by probing several readout resonators coupled to
a single feedline with a multifrequency pulse [69]. The latter approach allows for selec-
tive readout of any subset of qubits by choosing the corresponding readout frequency
components in the measurement operation.
Frequency multiplexing can be used to measure the quantum states of several qubits
in a single shot. Simultaneous readout of the multiple qubits provides probability dis-
tributions of multiple qubit systems, i.e., |00⟩, |01⟩, |10⟩ and |11⟩ for two-qubit states,
by repeating the single-shot measurements. We quantify the performance of single-shot
readout for each qubit by preparing the qubit in either the ground or the excited state and
later applying a readout pulse at the corresponding readout resonator frequency. These
measurements result in two Gaussian distributions, as shown in figure 2.28.
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Figure 2.28: Frequency-multiplexed single-shot readout data on the IQ plane. Blue and
orange dots are measured when the qubit is prepared in the ground and in the excited
state, respectively. The black solid line represents the discriminator that allows for the
maximum readout fidelity. Figure adapted from [74].

In order to assign a binary value corresponding to the outcome of the qubit measure-
ment, we choose an assignment threshold, which best separates the prepared states of
the qubit [74]. We quantify the fidelity of the readout by the correct assignment proba-
bility Pc = [P (g|0) + P (e|π)]/2, where π and 0 marks the state preparation with and
without a π-pulse, respectively, while e and g stands for the qubit assigned as in excited
and ground state, respectively. The single-shot histogram in figure 2.28 provides infor-
mation on the sources of readout error [75]. First of all, due to finite SNR (Signal to
Noise Ratio), the two states cannot be fully distinguished because of the overlap of the
two Gaussians. Furthermore, when prepared in the excited state, the qubit may decay
before or during the readout, which accounts for the remainder of the observed errors.
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Chapter 3

Experimental set-up

3.1 Cryogenic system
In order to characterize and analyse superconducting quantum devices it is fundamental
to thermalise them to values well below its critical temperature Tc, that for standard su-
percondutors in quantum devices is of the order of a few Kelvins [12]. Therefore, cryo-
genic systems are required in order to achieve the superconducting regime. Moreover, it
is also necessary to minimise the effects of thermal noise during the measurements. In
fact, thermal energy can lead to undesired transitions between energy levels separated
by an energy below kBT , where kB is the Boltzmann constant and T is the electronic
temperature. Specifically for superconducting qubits, if they are sufficiently below the
temperature T = ℏω01/kB, transitions between the two computational levels |0⟩ and |1⟩
due thermal fluctuations can be safely neglected.
The dilution fridge is a device capable of reaching temperature near absolute zero
through cold temperature technology based on the thermodynamic properties of a mix-
ture of 3He−4He [76]. Below 800mK, the separation of the mixture in a concentrated
phase of 3He and a diluted phase of 3He allows to reach temperatures of about 10mK,
according to the phase diagram shown in figure 3.1.
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Figure 3.1: Phase diagram of 3He and 4He in terms of temperature and 3He concentra-
tion of the mixture.

The feature that allows to distinguish dilution cryostats from one to another is the way
they reach the mixture temperature of around 4−10K, i.e., at the precooling stage. From
this point of view, cryostats can be divided into two main categories: wet cryostats and
dry cryostats. The wet type exploits an 4He bath to reach the pre-cool temperature of
the order of 4.2K. The dry cryostats, instead, make use of a compressor, called pulse
tube refrigerator, which cools down the mixture through a sequence of compressions
that brings the system to a temperature of 10K. Later, the mixture is passed through a
sequence of pressure impedances that exploits the Joule-Thompson effect to lower the
temperature of the mixture to values of the order of 1K.
The dilution fridge employed in this thesis work is the dry Triton 400 of the Oxford
Instruments. Its structure is shown in figure 3.2.
It is composed of two units: pre-cool unit and dilution unit. The pre-cool unit is placed
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Figure 3.2: Core structure of the Triton. The labels indicate the different plates with
the minimum temperature they can reach, the orange and red rectangles indicate the
pre-cool unit and the dilution unit, respectively, which are the fundamental units of the
Triton cooling procedure. At the bottom, anchored to the mixing chamber there is a
copper extension to which the sample is anchored, and a tin shield, which screens the
sample from external magnetic fields.

between the first two plates, i.e., PT1 and PT2, that work at 70K and 4K, respectively.
The dilution unit shares the still plate, cold plate and mixing chamber. The first plate
reaches a temperature of 800mK. From the mixing chamber to the still plate, the mix-
ture passes through a sequence of heat exchangers. The diluted phase in the mixing
chamber, heavier than the concentrated phase, remains at the bottom of the mixing
chamber and the gas of 3He is pumped from the still chamber, thanks to a pumping
system. This process is repeated till the mixture reaches 10mK. In order to maintain the
base temperature, the overall process made of condensation, dilution and evaporation is
repeated in a closed cycle.
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The stage containing the sample is thermally anchored to the mixing chamber through a
copper extension, as shown in figure 3.2. The whole stage is then enclosed in a magnetic
tin screen and a copper-coated cryoperm box (not shown) that screen from the environ-
mental magnetic fields and are thermally anchored to the mixing chamber. The upper
plates are also screened from the environment through a copper shield, for infrared
radiation screening, anchored at the still plate, and two aluminum screens, anchored re-
spectively at the 4K-plate and the 70K-plate.
In order to characterize superconducting qubits, coaxial cables are used, which allow
operation within the microwave frequency range. The cryostat features four types of
lines: input and output lines for the readout, drive lines for qubit control and flux lines
for frequency tuning with an external magnetic flux. Specifically, in our case, there are
12 input lines and 2 output lines. The input lines are made of stainless steel, while the
output lines are made of CuNi from room temperature to 4K and NbTi from 4K to
10mK. The input lines are equipped with cryogenic attenuators, as shown in figure 3.3.

Figure 3.3: Cryogenic setup scheme, including the attenuation scheme for the input,
drive and flux lines. On the output line, there are two isolators and an HEMT amplifier.
Each line has a low-pass filter.
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Specifically, on the feedline and drive lines, there is an overall attenuation of −50dB
and a low-pass filter with cutoff of about 10GHz and 8.4GHz, respectively. On the flux
lines, there are −30dB of attenuation and two low-pass filters of 8.4GHz and 1GHz.
Finally, on the output lines, there is a 10GHz low-pass filter and two isolators, which are
electronic devices that enable signal transmission in a preferred direction. Signals from
the output towards the sample and reflections at the input port are attenuated nominally
by a total of 40dB. Since the output signals of the qubits are single-photon signals,
amplifiers are required. However, amplifiers are noisy devices. Based on the device’s
properties, such as the noise temperature, it is fundamental to place them on a specific
temperature plate. In our system, there are two amplification stages. There is an High
Electron Mobility Transistor (HEMT) with nominal amplification of 40dB on the 4K
plate, which cannot be placed on a cooler plate due to its noise temperature of 1.5K,
and three amplifiers at room temperature with nominal 16dB amplification each.

3.2 Room temperature electronics
The electronic set-up employed to measure and analyze the superconducting quantum
processor is composed of a large variety of instruments at room temperature that play
different roles, which will be described in this Section.

3.2.1 Vector Network Analyzer
To perform spectroscopy measurements we use the VNA, an instrument with two termi-
nals (input and output) used for studying continuous signals. Mathematically, a two-port
network is described by a 2× 2 matrix of complex numbers that establish relations be-
tween the voltage and current across the ports, as shown in figure 3.4.

Figure 3.4: Schematic of a two-port network characterized by its scattering matrix.
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The elements in the scattering matrix are called scattering parameters, each of which
is a complex number. The S11 and S22 parameters represent the reflection coefficients
from port 1 and port 2, while S21 and S12 are the transmission coefficients from port 1
to port 2 and vice versa. The real and imaginary parts of the transmission parameter S21

are the key quantities for qubit characterization, since they allow to extract the readout
resonator characteristics and qubit transition frequencies.
The VNA that has been employed in this thesis is the Rohde&Schwarz Vector Network
Analyzer ZVL6 (R&S ZVL) [77], which is a two port VNA. It presents a physical inter-
face that allows setting different features related to the measurements and a display that
shows the acquired data, but it is also possible to remotely control it through an ethernet
LAN connection.

3.2.2 Time domain measurements
If we want to go beyond spectroscopy measurement, it is necessary to perform time-
domain measurement. In time-domain experiments readout and drive tone signals are
replaced by microwave pulses sequences. The microwave pulses are generated with I-Q
mixers, Arbitrary Waveform Generators (AWGs) and RF signal generators. The AWG
used in the experimental setup is able to generate microwave signals with frequencies up
to 400MHz [78]. Since qubits and readout resonators operate typically in the 4−8GHz
range, we need faster signals, so we combine the AWG signal (ωIF ) with an RF signal,
called Local Oscillator (LO) through an I-Q Mixer. This process is called up-conversion
and is shown in figure 3.5a).

Figure 3.5: In a) up conversion scheme. The I-Q mixer combines the I and Q components
of the Arbitrary Waveform Generator (AWG) signal with the Local Oscillator (LO) and
gives ωRF as output; b) down conversion scheme. The I-Q mixer combines the qubit
output signal with the LO and gives ωIF as output.
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The I-Q Mixer output frequency is the input signal for the qubit and is given by:

ωRF = ωLO ± ωIF . (3.1)

We can select one of these outputs thanks to single-sideband calibration [15].
Since the output signal is of the order of several GHz, it would be very difficult for the
electronics to read it properly. For this reason demodulation and down-conversion are
necessary. The output signal goes in a mixer, which has only 3 ports compared to the
I-Q mixer which has 4 ports, as shown in figure 3.5b). It combines with the LO signal
and the resulting signal has the following frequency:

ωIF = ωRF ∓ ωLO. (3.2)

Then a digitizer converts the signal in the required frequency range of the order of 0-500
MHz [79]. Finally, a Fast Fourier Transform is performed by the integrated software of
the digitizer in order to extract the original form of the readout signal (RO) coming from
the resonators coupled to the qubits. The results are displayed and stored through the
Labber software [80]. The whole process is shown in figure 3.6.

Figure 3.6: Simplified schematic of the experimental setup used for dispersive qubit
readout and control. In blue it is shown the up-conversion of the drive signal, in yellow
the up-conversion of the readout signal, in green the flux line and in red the down-
conversion of the output signal, which is measured with the digitizer and then is stored,
manipulated and visualized with Labber. Each line is connected to the cryogenic setup,
whose details are shown in figure 3.3. Figure adapted from [43]

All these instruments are grouped in a PXI chassis, i.e., a multi-slot system produced by
Keysight Technologies [81], shown in figure 3.7.
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Figure 3.7: PXI chassis used to generate pulsed signals. In yellow it is highlighted the
digitizer, in green the Arbitrary Waveform Generators (AWGs), in blue the local oscil-
lators at high frequency (HF), in orange the local oscillators at low frequency (LF) and
in pink the attenuators.

The slots are occupied by:

• Two Arbitrary Waveform Generators (AWGs), that generates I and Q component
of the readout and control signals at frequencies (ωIF ), respectively;

• Digitizer, that acquires data with a sampling rate of 500MSa/s;

• 3-channels attenuator, with an attenuation range from 0dB to 30dB;

• Local Oscillators (LO), that generate a continuous signal up to 6GHz (LF) for
the drive of the low and medium frequency qubits and up to 20GHz (HF) for the
readout (ωLO).

An additional RF generator from R&S (SMA 100B) with maximum 12.75 GHz has
been used as LO for the drive of high frequency qubits [82].
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In order to implement algorithms, a major control of the sequence of pulses is needed.
For this reason, we have used a different instrument fully interfaceable with Python,
thanks to the open source package Quantify [83]. This instrument is the Qblox cluster,
shown in figure 3.8 [84].

Figure 3.8: Qblox cluster [84].

The main advantage is that the modules of the Qblox rack have an up and down conver-
sion system integrated directly into the cards. This allows for better signals calibration.
The modules used for the measurements of this thesis are:

• Qubit Readout Module RF (QRM-RF), which allows output and input signals up
to 18.5GHz;

• Qubit Control Module RF (QCM-RF), which allows output signals up to 18.5GHz;

• Qubit Control Module (QCM) for flux pulses, which generates output signals up
to 400MHz.
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3.3 5-qubit quantum device
The superconducting quantum device analyzed in this thesis is a five transmon qubit
chip, realized by QuantWare, spin-off company of the University of Delft [85].

Figure 3.9: In a) chip package and microwave lines connected to the cryogenic elec-
tronic setup; b) Layout of the QuantWare chip. The chip consists of five coupled qubits
with their readout resonators (from cavity 0 to cavity 5), a drive line and a flux line. Each
readout resonator is coupled to the common feedline. The qubit-qubit coupling through
qubit 2 is realized through high frequency coupling resonator. In the bottom right corner
of the chip design, there is a single qubit for diagnostic.

The chip is composed of six qubits: one isolated qubit for test, and 5 coupled qubits.
More specifically, all the qubits are connected and coupled between them through the
qubit 2 in the middle. Qubit 0 and qubit 1 have the lowest resonance frequency on
the chip, qubit 3 and qubit 4 have the highest resonance frequency and qubit 2 has an
intermediate resonance frequency. This design is suitable for advanced quantum error
detection and correction [86][87][88]. All the qubits are flux-tunable, i.e., they include
a DC-squid, where the Josephson junctions are composed of aluminum electrodes and
AlOx barrier. Each of the qubits has its own flux line for qubit frequency tunability, drive
line for control and a readout resonant cavity. All of them are in NbTiN . The latter and
the readout resonators are all coupled to a common feed line. This configuration allows
for multiplexing, i.e., to address multiple resonators with the single feedline by sending
readout tones with different frequencies. In figure 3.9a) it is shown the sample holder
of the chip and all the connections to the cryogenic electronic setup. In figure 3.9b) it is
shown the design of the chip inside the sample holder.
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The qubits and resonators design parameters are reported in table 3.1.

Qubit
Qubit frequency Resonator

EC (GHz) EJ (GHz) EJ/ECat flux SS (GHz) frequency (GHz)
0 4.7 7.2 0.27 11.4 42.2
1 4.7 7.4 0.27 11.4 42.2
2 5.6 7.6 0.27 16.0 59.3
3 6.5 7.8 0.27 21.2 78.5
4 6.5 8.0 0.27 21.2 78.5
5 4.7 7.0 0.27 11.4 42.2

Table 3.1: For each qubit, it is reported the resonance frequency at the flux sweet spot
(SS), the frequency of the coupled resonator, EC , EJ and their ratio.

The cavity coupled to each transmon qubit is a coplanar waveguide (CPW ) quarter
wavelenght (λ/4) transmission line. It consists of a center strip of width W , separated
by a gap of width G from the ground planes on each side, as shown in figure 3.10.

Figure 3.10: A cross section cut of a coplanar waveguide cavity. It has a center conductor
strip with a width W and gaps of width G, while the thickness of the metal and of the
dielectric are denoted T and H, respectively [89].

The cavity resonator is characterized by the resonance frequency f0 and the quality
factor Q, defined respectively as:

f0 =
c

4l
√
εeff

(3.3)

Q =
Stored energy

Dissipated energy/radian
, (3.4)

62



where c is the speed of light in vacuum, l is the length of the λ/4 resonator and εeff is
the effective dielectric constant.
It is possible to distinguish between the intrinsic quality factor QI , that accounts for
the energy dissipated into the substrate and the resonators materials, and the coupling
quality factor QC , that accounts for the energy lost to the external circuit connected to
the resonator [89]. Thus, the total Ql-value can now be expressed in terms of these two
contributions:

1

Ql

=
1

QI

+
1

QC

. (3.5)
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Chapter 4

Experimental results and discussion

In this Chapter, we report the experimental results on single qubits and two coupled
qubits, which are part of a 5-qubit processor. The data have been acquired by using the
techniques described in Chapter 2 on the pair composed of qubit 0 and qubit 2. The
aim of the analysis is to assess the ability of the processor to give high fidelity output
of different single- and two-qubit quantum circuits. Therefore, the ultimate outcome of
the analysis will be the estimation of the so-called Hellinger fidelity. Its measurement
allows us to estimate how similar two classical expectation values probability distribu-
tions are: the output of the real NISQ (Noise Intermediate Scale Quantum) processor
and the ideal expected output of the implemented quantum circuits. The estimation of
the Hellinger fidelity requires a systematic single- and two-qubit characterization of the
device. Single-qubit characterization is carried out to estimate the resonant frequencies
of readout resonators and qubits, as well as the coherence times described in Section
1.6. Moreover, Hellinger fidelity calculation relies on fundamental optimization proto-
cols such as Rabi oscillation, Ramsey interferometry, AllXY and Motzoi calibration,
which have been employed for the calibration of single-qubit pulses. The pulse calibra-
tion has also been performed on the two-qubit CZ gate, within the conditional oscillation
experiment. Finally, quantum circuits were implemented after calibrating the pulses, in-
volving both single-qubit and two-qubit gates. Once optimal conditions for single- and
two-qubit gates have been realized, we have compared the ideal output of these circuits
and the measured output, and we have quantified the quality of the quantum circuits out-
put using the Hellinger fidelity. We will demonstrate that high-fidelity quantum circuits
strongly rely on the quality of the single- and two-qubit gates in the sequences.

4.1 Resonators characterization
As a first step for the single qubit characterization, the readout resonators coupled to
the qubits must be fully characterized. A single-tone signal in the range of the resonator

64



frequencies is sent through the feedline. When the resonator absorbs photons, it is pos-
sible to measure a dip in the S21 signal, corresponding to the resonance frequency of
the readout resonator (Section 1.4). Once the frequencies of the resonators have been
identified, sweep in power of the feedline input signal is performed in order to reach
the single-photon regime. These measurements were performed using the VNA for res-
onator 0, coupled to qubit 0, and resonator 2, coupled to qubit 2 (figure 3.9b)). In both
cases, there was an additional attenuation of −30dB at the input and 3 × 16dB at the
output given by three amplifiers at room temperature (Section 3.1). The outcomes are
shown in figure 4.1.

Figure 4.1: Dispersive shift colormap for a) resonator 0 and b) resonator 2. On the y-
axis, Vector Network Analyzer (VNA) input power in dBm, on the x-axis readout tone
frequency. The color scale identifies the magnitude of the S21 parameter.

In figure 4.2a),we identify the bare state (-3.5 dBm) and the single-photon state (-
35dBm) for resonator 0 at zero external magnetic field. The low-photons shift for res-

Figure 4.2: Dispersive shift for a) resonator 0 and b) resonator 2. The blue line represents
the bare state, while the orange line the low-photon state.
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onator 0 is χ = 649 ± 19kHz. For resonator 2, shown in figure 4.2b), it is χ =
342±95kHz. This experiment allows to identify the readout resonator frequency in the
low-photon regime, which is 7.249±0.001GHz for resonator 0, and 7.635±0.001GHz
for resonator 2. The same measurements were repeated with the Qblox instrument in
time domain, which allows to apply larger voltages across the qubit dedicated flux lines
compared with the Keysight electronics. Indeed, the Keysight AWGs apply DC offset
ranging from −1.5 to 1.5V , while QuBlox allows to generate up to 2V, which guaran-
tees to increase the flux modulation bandwidth of the qubits frequency.
In order to estimate the resonators parameters, we perform a fit of S21 using the Python
package resonator_tools [90][26], as shown in figure 4.3.

Figure 4.3: Spectroscopy measurement for a) resonator 0 and for b) resonator 2. The
blue line represents the measured magnitude of the S21 parameter, while the red line
represents the fit used to estimate the resonator parameters, such as internal quality
factor QI , the external quality factor QC and the resonant frequency fres in the legends.
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The intrinsic quality factorQI , the coupling quality factorQC and the total quality qual-
ity factor Ql are related by the relation in equation 3.5. In our case, the internal quality
factor QI is larger than the coupling quality factor QC , so the resonator is not limited
by internal losses. In the case of niobium compounds superconducting resonators, these
numbers comply with the literature [91] and allow to perform the readout of the qubit
state.

4.2 Qubit spectroscopy and avoided level crossings
For the single qubit characterization, it is necessary to set the parameters of the readout
resonators, i.e. the frequency and the power, in order to be in the low-photon regime
(Section 4.1). We first provide a measurement of the qubit frequency through two-tone
spectroscopy. The two-tone signal is composed of an RF signal that is close to the fre-
quency of the readout resonator resonance in the dispersive regime and is sent through
the feedline to excite the resonator (readout tone), and an RF signal that sweeps in fre-
quency, which excites the qubit (drive tone). The latter is sent through the dedicated
qubit drive line. By applying an external flux field through the dedicated flux lines,
spectroscopy is performed on qubit 0 and qubit 2. The results are shown in figure 4.4a)
and 4.4b), respectively.

Figure 4.4: Flux modulation of the resonance frequency of a) qubit 0, coupled to res-
onator 0, and b) qubit 2, coupled to resonator 2. The x-axis is the current applied across
the flux line, the y-axis is the qubit frequency, and the color scale identifies the output
magnitude.
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On the x-axis, we show the current passing through the dedicated flux bias lines of the
two qubits. For each of these values, two-tone spectroscopy provides a measure of the
magnitude of the readout voltage signal acquired at fixed readout resonator frequency
as a function of the microwave drive tone, sent through the dedicated control line of the
two qubits. When this tone enters on resonance with the qubit transition frequency, a
peak in the readout voltage occurs (yellow in the colorbar scale). This peak follows a
cosinusoidal modulation as a function of the flux, as predicted in Section 1.3. There-
fore, by fitting the qubit frequencies as a function of the flux we identify the required
flux value to bring the qubit to the sweet spot (SS).
In Figure 4.5, we report the magnitude of the demodulated readout output voltage as
a function of the qubit drive frequency and the qubit drive power across the dedicated
drive line for qubit 0 and qubit 2, in panels a) and b).

Figure 4.5: In a) qubit 0 spectroscopy; b) qubit 2 spectroscopy. On the x-axis, the qubit
drive frequency, on the y-axis the attenuation of the qubit drive signal, which has to be
combined with the attenuation along the line. The color scale identifies the demodulated
voltage magnitude in µV of the readout resonator.

In both cases, the two coupled qubits were set in frequency far from each other: specifi-
cally, qubit 0 spectroscopy has been performed by setting qubit 2 in its flux modulation
minimum, and qubit 0 at 88% of the SS. The frequency of the fundamental transition
|0⟩ → |1⟩ for qubit 0 at this flux point is ω01 = 4.498±0.001GHz, while for qubit 2 we
expect from the design specifications a frequency of the order of 5.7GHz, i.e. above ω01

for qubit 0. Therefore, we performed the spectroscopy measurement for qubit 2, setting
qubit 0 and qubit 2 at 88% and 89% of their maximum flux modulation, respectively.
This guaranteed that the qubits were detuned of at least 1GHz, thus complying with the
single-qubit regime. For qubit 2, ω01 = 5.620 ± 0.001GHz. Here the errors are maxi-
mum errors given by the resolution bandwidth of the drive tone.
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In figure 4.5, there is more than one peak. This indicates that, for sufficiently high power
levels, we can also observe higher order energy levels. Specifically, due to the negative
anharmonicity of the transmon, the highest frequency peak corresponds to ω01. By in-
creasing the power, the first peak occurring at lower drive frequencies is the 2-photon as-
sisted |0⟩ → |2⟩ transition at ω02/2 energy level, and the |1⟩ → |2⟩ transition ω12 energy
[9]. If we take into account the expression of the anharmonicity discussed in Section 1.2,
we can compute it by using the measured ω01 and ω02 as α = 2(ω01−ω02/2). Given for
qubit 0 ω02 = 4.375± 0.001GHz, the anharmonicity is α = 246± 2MHz. For qubit 2,
ω02 = 5.455± 0.001GHz, hence the anharmonicity is α = 330± 2MHz. These values
are in agreement with what is typically expected in the transmon regime [9].
Finally, since one of the final goals of this thesis is to implement two-qubit gate circuits,
it is necessary to establish the flux range for which the qubits coherently couple one to
each other, as described in Section 1.7. More specifically, the implementation of the CZ
gate requires identifying the avoided level crossing between the 2-qubit states |11⟩ and
|02⟩. For this reason, a spectroscopy measurement is performed on qubit 0, while tuning
the flux on qubit 2, in a range of drive frequencies able to excite both the ω01 and the
ω02/2 of qubit 0, and it is shown in Figure 4.6.
In this experiment, the qubit 0 is set to its SS. The avoided level crossing between the
|01⟩ and |10⟩ levels is highlighted in orange, while the avoided level crossing between
the |11⟩ and |02⟩ levels in yellow. Because of the high power applied to observe the
|11⟩ − |02⟩ transition, the |01⟩ − |10⟩ transition becomes significantly broadened. It is
possible to verify that in this measurement the |01⟩ transition has a full width at half
maximum consistent with the one estimated from the spectroscopy measurements in
Figure 4.5, which is about 16.62MHz. Moreover, a rough estimation of the coupling
strength of the |11⟩ − |02⟩ transition yields a value of g|11⟩−|02⟩ in the range of tens of
MHz. Consequently, the ratio of g/α is approximately 0.05. This value is reasonable,
given that to achieve a high fidelity CZ gate, the parameter regime for direct qubit-qubit
coupling requires g/α < 0.24 [92].
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Figure 4.6: Avoided level crossing for qubits 0 and 2: on the x-axis the applied flux on
qubit 2, on the y-axis the qubit frequency of qubit 0 and the color scale is the normalized
voltage measured on the readout resonator 0. The orange box highlights the avoided
level crossing between the |01⟩ and |10⟩ levels, while the yellow one highlights the
avoided level crossing between the |11⟩ and |20⟩ levels.

4.3 Decoherence times
In order to fully characterize the qubits, it is necessary to estimate the relaxation time
T1 and the coherence time T2, by using the protocols reported in Section 2.4.1 and
2.4.2, respectively. For the latter, we employed both the Hahn-Echo [15] and the Ramsey
Interferometry protocols [15] (Section 2.4.2 and 2.2.2, respectively).
In order to apply the pulses involved in these protocols, it is mandatory to define the π-
pulse. Using the Rabi oscillation protocol described in Section 2.2.1, we estimated the
π-pulse duration. The measured outputs of this Rabi protocol for qubit 0 and qubit 2 are
shown in figure 4.7. The function used for the fit of Rabi oscillation is a sin (bx+ c)+d.
The π-pulse plateaus are π-pulseQ0 = (55± 1) ns for qubit 0 and π-pulseQ2 = (17± 1)
ns for qubit 2. The faster π-pulse measured for qubit 2 than for qubit 0 is consistent
with the larger drive power strenght sent through the qubit 2 dedicated drive line: the
attenuation on qubit 0 is 18dB, while on qubit 2 is 15dB.
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Figure 4.7: The Rabi oscillation for a) qubit 0 and b) qubit 2 by changing the plateau
duration. The red line represents the fit used to estimate the π-pulse plateau. For the
measurement in figure a), the drive frequency is 4.454GHz, along with an 18dB atten-
uation on the drive line and 1.5V applied by the dedicated flux line for qubit 0. In figure
b), the measurement employs a drive frequency of 5.700GHz, an attenuation of 15dB
on the drive line, and 1.5V and −1.5V applied by the dedicated flux lines for qubit 0
and qubit 2, respectively.

For the π-pulses, we have optimized the amplitude of pulse, while keeping 20 ns as
the π-pulse duration both the qubits. An example of the π-pulse amplitude estimation
through Rabi oscillation fitting is reported in figure 4.8.

Figure 4.8: The Rabi oscillations for a) qubit 0 and b) qubit 2 by changing the π-pulse
amplitude. The red line represents the fit used to estimate the π-pulse amplitude.
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Once the π-pulse is obtained, it is possible to estimate the decoherence times of the two
qubits. We show in figure 4.9 a comparison between the demodulated voltage output as
a function of the sequence duration in the T1 (blue) and TEcho

2 (black) protocols for both
the qubits.

Figure 4.9: T1 and TEcho
2 measurements for a) qubit 0 and b) qubit 2: the x-axis repre-

sents the sequence duration, while the y-axis represents the demodulated voltage out-
put. The black dots and solid red line correspond to the measured values and the fit
for TEcho

2 , respectively. Similarly, the blue dots and solid orange line correspond to the
measured values and the fit for T1. For the measurement in figure a), a drive frequency
of 4.56164GHz is used, along with an 18dB attenuation on the drive line and 1.5V
applied by the dedicated flux line for qubit 0. In figure b), the measurement employs
a drive frequency of 5.59331GHz, an attenuation of 15dB on the drive line, and 1.5V
and −1.5V applied by the dedicated flux lines for qubit 0 and qubit 2, respectively. The
legends shows the results of T1 and TEcho

2 estimated from the fitting procedure.

Using the Python package lmfit, we fit the measured results and estimate T1 and TEcho
2

for both qubits. The function used for fits is ae−x/b + c, where b is the relaxation time
T1 or the decoherence time TEcho

2 , according to the implemented protocol. One-shot
relaxation and Hahn-Echo times are T1 = (16± 2)µs and TEcho

2 = (10± 2)µs for qubit
0, while T1 = (8±2)µs and TEcho

2 = (9±2)µs for qubit 2. A more physical estimation
of these values must be derived from a statistical measurement of the relaxation and
decoherence times. Hence, we performed repeated measurements of T1 and TEcho

2 , for
a time period of 12 hours, in order to obtain their statistical values. In figure 4.10a),
the results of the T1 measurements on qubit 0 as a function of time are shown, while in
figure 4.10b), the counts of T1 have been collected in a count distribution with binning
of 20.

72



Figure 4.10: In a) T1 measurements repeated in 12 hours for qubit 0; in b) counts of T1
values obtained from the a) measurement. The distribution used for fitting is a Gaussian
distribution, which is represented by the red line.

The same analysis has been done for qubit 2, and it is reported in figure 4.11.

Figure 4.11: In a) T1 measurements repeated in 12 hours for qubit 2; in b) counts of T1
values obtained from the a) measurement. The distribution used for fitting is a Gaussian
distribution, which is represented by the red line.

According to Section 1.6, the relaxation time T1 and the coherence time T2 are affected
by stochastic noise as a result of relaxation and pure dephasing phenomena. Therefore,
in order to estimate T1 and T2, the normal distribution was employed [15], whose mean
value is defined as µ = 1

N

∑N
i=1 xi, where xi are the individual values sampled from

the distribution and N is the number of samples, and the error is given by the stan-
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dard deviation, defined as σ =
√

1
N

∑N
i=1(xi − µ)2. The statistical values of T1 are

T1 = (16 ± 2)µs for qubit 0 and T1 = (8 ± 1)µs for qubit 2. The same procedure has
been repeated for TEcho

2 and the results are shown in figure 4.12.

Figure 4.12: In a) T2 measurements repeated in 12 hours for qubit 0; in b) counts of T2
values obtained from the data in a); c) T2 measurements repeated in 12 hours for qubit
2; d) counts of T2 values obtained from the data in c). The distribution used for fitting is
a Gaussian distribution, which is represented by the red line.

The statistical values of T2 obtained are T2 = (10±2)µs for qubit 0 and T2 = (9±2)µs
for qubit 2. From the comparison between T1 and T2 for both qubits, it is evident that
is not verified the condition T2 ≃ 2T1 (Section 1.6.3). This indicates that the longitu-
dinal decay is determined by the dephasing time. Moreover, when comparing T1 and
TEcho
2 between the two qubits, it is possible to notice that the relaxation and coherence

times of qubit 0 are higher than those of qubit 2. This is due to the fact that qubit 2 is
connected to all the other four qubits, which open dissipation channels, while qubit 0 is
only connected to qubit 2.
Additionally, using the Ramsey Interferometry protocol (Section 2.2.2), we estimated
T ∗
2 . The experimental results of this protocol is shown in figure 4.13.
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Figure 4.13: Ramsey oscillation for a) qubit 0 at 0.88 MHz of detuning and b) qubit 2 a
423 kHz of detuning. The red line is the fit of the measured data, used to estimate T ∗

2 .

More in detail, in figure 4.13a) it is shown the off-resonance Ramsey oscillations for
qubit 0 at 0.88MHz of detuning. According to Section 2.2.2, the oscillations are those
of a damped oscillator that decay over time with a characteristic time T ∗

2 . In Figure
4.13b), the on-resonance Ramsey oscillation for qubit 2 is shown. Since the drive pulse
frequency is close to the qubit resonance frequency, an exponential decay is observed.
The function used for the fit is (a sin(bx+ d)2 + c)e(−x/e) + f . The T ∗

2 values estimated
from the two measurements are T ∗

2−Q0 = (2.6± 0.5)µs for qubit 0 and T ∗
2−Q2 = (1.3±

0.3)µs for qubit 2.
Finally, repeating the same procedure used for T1 and TEcho

2 , the statistical value of T ∗
2

for both qubit has been calculated, as shown in figure 4.14.

Figure 4.14: Counts of T ∗
2 values obtained for a time period of 6 hours, in a) for qubit

0 and b) qubit 2. The distribution used for fitting is a Gaussian distribution, which is
represented by the red line
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Also in this case, the Ramsey decoherence time for qubit 0 appears to be larger than for
qubit 2. This is also explained by the larger connectivity of qubit 2 compared to qubit 0.
A summary of the decoherence times analysis is reported in table 4.1.

T1(µs) TEcho
2 (µs) T ∗

2 (µs)
Stastistic Stastistic Statistic
T1(µs) TEcho

2 (µs) T ∗
2 (µs)

Qubit 0 16± 2 10± 2 2.6± 0.5 29± 5 10± 3 1.3± 0.3
Qubit 2 8± 1 9± 2 1.3± 0.3 8± 2 6± 1 0.6± 0.2

Table 4.1: Relaxation time T1, Hanh echo T2 time, T ∗
2 time and their statistical values

for both qubit. The errors in this table are of the statistical type.

4.4 Towards quantum circuits: single-qubit gate calibra-
tion

In order to perform single-qubit gates with high fidelity, it is necessary to:

1. calibrate the π-pulse,

2. calibrate the qubit frequency,

3. calibrate the shape of the control pulses.

For what concerns the calibration of the π-pulse, we exploit the Rabi protocol in Section
2.2.1. This can be achieved by both fixing the amplitude and the power of the control
signal, and changing its duration, as reported in Section 4.3, or by fixing the control
pulse duration and changing the pulse amplitude. Once the π-pulse has been calculated
through Rabi oscillations fitting, we use the Ramsey protocol (Section 4.3), which is
sensitive to the detuning between the drive and the qubit frequency in order to opti-
mize the drive frequency. This is more evident in Figures 4.15a) and 4.15c), where the
Ramsey fringes for qubit 0 and qubit 2 are shown, respectively. The red lines highlight
on-resonance Ramsey interferometry, while the orange lines represent examples of off-
resonance. In Figures 4.15b) and 4.15d), it is possible to observe the cross-section of
the measurements highlighted in red and orange in panels a) and c).
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Figure 4.15: In a) Ramsey fringes for qubit 0; b) cross sections at the frequencies high-
lighted in panel a); c) Ramsey fringes for qubit 2; d) cross sections at the frequencies
highlighted in panel c). In panels a) and c), the red lines represent the on-resonance
Ramsey interferometry, while the orange lines are examples of off-resonance Ramsey
interferometry. In panel b), the black and blue lines represent the measured voltage of
the on and off resonance cross-sections highlighted in panel a), respectively. In panel
d), the black and blue lines represent the measured voltage of the on and off resonance
cross-sections highlighted in panel c), respectively. In panels b) and d), the red and or-
ange lines represent the fit of the on and off resonance cross sections, respectively. The
blue y-axis on the right represents the demodulated magnitude for the off-resonance
cross section, while the black y-axis on the left represents the on-resonance cross sec-
tion.

Finally, the last protocol used for pulse calibration is the AllXY. This protocol involves
applying different combinations of one or two single-qubit gates. By analyzing the error
syndrome, i.e. the deviation from the ideal response, it is possible to identify the nature
and characteristics of the errors affecting the system, as discussed in Section 2.3.1. The
AllXY performed on qubit 0 and qubit 2 are shown in figure 4.16a) and 4.16b), respec-
tively.
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Figure 4.16: AllXY protocol for a) qubit 0 and b) qubit 2. On the x-axis, there are the
gates combinations, while on the y-axis there is the population of the first excited state.
The blue line is the measured output and the orange line the ideal output. Please note
that we use uppercase letters for control pulses with rotation angles of π, and lowercase
letters for π/2 rotations.

According to Section 2.3.1, the zig-zag-like behavior arising in the center of the plot
indicates a detuning-related error syndrom [14], which occurs when the qubit frequency
fluctuates due to external noise. This error is consistent with the fact that during these
measurements external flux was applied on qubit 0 and qubit 2, respectively. The cryo-
stat’s flux lines are not superconducting, resulting in an increase in its base temperature
and leading to frequency fluctuations. This phenomenon is demonstrated by the fre-
quency distribution in Figure 4.17, which shows how the resonance frequency changes
over time under identical experimental conditions.

Figure 4.17: Statistical distribution of the detuning for a) qubit 0 and b) qubit 2 for a
time period of 6-8 hours, under the same experimental conditions.
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Using the AllXY protocol, it is also possible to estimate the DRAG coefficient, known as
the Motzoi coefficient. For this measurement, it is necessary to identify two gate combi-
nations with different syndrome signs. Considering the two combinations X(π)Y (π/2)
and Y (π)X(π/2) with different detuning syndrome signs, according to table 2.11 in
Section 2.3.1, the optimal Motzoi coefficient is given by the intersection between the
slopes of the readout voltage magnitude measured for the two pulses sequences (blue
and red in Figure 4.18, respectively), as a function of the DRAG scaling factor.

Figure 4.18: Example of Motzoi coefficient calibration. Intersection of the two lines
obtained by varying the DRAG (Derivative Reduction by Adiabatic Gate) coefficient of
gates combination X(π)Y (π/2) and Y (π)X(π/2) with opposite syndrome sign for a)
qubit 0 and b) qubit 2. The intersections represent the optimal DRAG coefficient values.

All the described protocols have been iteratively implemented at least 2 or 3 times, as it
is tipically done also in literature [14], and the finals Motzoi values are are −0.0746·1/s
for qubit 0 and −0.0409 · 1/s for qubit 2.

4.5 Two-qubit gates calibration: the CZ gate
Once the single-qubit gate pulses have been properly calibrated, we performed the pulse
calibration of the CZ gate. The CZ experiment requires to excite both the qubits, so that
the system is in |11⟩. We fix the qubit 0 in its flux SS and we change the flux pulse
amplitude and duration on qubit 2. The results of this experiment measuring the qubit 0
and qubit 2 are shown in panels a) and b) of figure 4.19.
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Figure 4.19: Chevron plots for the CZ experiment. On the x-axis the duration of the
flux pulse on qubit 2, on the y-axis the magnitude flux applied and the color scale is
the demodulated magnitude of the readout resonators of a) qubit 0 and b) qubit 2. We
perform a simultaneous measurement of both qubits.

The measurements are conducted simultaneously on both qubits by sending a two-tone
signal into the feedline. The first tone is tuned to resonate with resonator 0, and the
second tone with resonator 2. We extrapolate the oscillations at a fixed flux voltage
pulse amplitude, as shown in figure 4.20a).

Figure 4.20: In a) the Chevron plot for the CZ experiment measured on qubit 2. The
red line identifies the line-cut corresponding to 1.355V ; b) line-cut plot, which is fitted
with a Rabi-like function in order to get an estimation of the CZ gate duration time.
The resolution of experimental data in b) is limited by the room-temperature electronics
time-grid signal generation of 4ns.
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We use the approach of Rabi oscillations to find an estimation of the CZ gate duration
time. Hence, we fit with a sin (bx+ c) + d and results are reported in figure 4.20b). The
oscillations between the |11⟩ and |02⟩ states happen approximately in (16 ± 4)ns. The
oscillations shown in figure 4.19 are actually corrected from distortions, using an hard-
ware solution called Cryoscope [93], which employs a series of filters. The distortions
can be due to many factors. A very common problem is the shape of the signal that we
use for the flux biasing. The pulse used to implement the CZ gate is an unipolar pulse
[57], which has a finite rise time. Moreover, the electronics generates signals which are
not exactly square pulses and this can cause deviations in the measured response. This
behaviour becomes particularly important when the CZ duration is short.
Finally, in order to optimize the CZ pulse parameters, we perform a conditional os-
cillation experiment. According to Section 2.6, the conditional oscillation experiment
consists in two variants of the same experiment. For the Off variant, the target qubit,
i.e. qubit 0, is prepared on the equator by a π/2-pulse, while the control qubit is left
in the ground state. Then the CZ flux pulse is applied, followed by another π/2-pulse.
Finally, the states of both qubits are measured simultaneously. For the On variant, the
pulses on the qubit 0 are the same as the Off variant, but on the control, i.e. qubit 2, is
applied a π-pulse each time a π/2-pulse is applied on qubit 0 (Section 2.6). If the phase
difference between the readout signals measured on the target in the two configurations
is not 180 degrees, the parameters of the CZ gate are iteratively changed until this value
is achieved. At the same time, the measurement on the control allows us to estimate the
leakage, i.e. the probability that a random computational state leaks out of the compu-
tational subspace. The optimal amplitude and duration parameters of the CZ pulse are
the ones for which the phase difference is as close as possible to 180 degrees, while
at the same time minimizing the leakages. The result of the best measurement for the
conditional oscillation experiment is shown in figure 4.21.
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Figure 4.21: The measured voltage as a function of the phase on the qubit 0 on the left
and on qubit 2 on the right. The blue lines represent the measured values for the On
variant, while the orange lines the measured values for the Off variant.

The phase difference θ2Q ≃ 191◦ and the leakage L ≃ 9.66mV .

4.6 Readout of qubit state
Before analyzing quantum circuits, it is necessary to read out the qubit states. The states
|0⟩ and |1⟩ can be measured in the I-Q plane for both qubits. According to Section 2.8, in
order to assign a binary value corresponding to the outcome of the qubit measurement,
we choose an assignment threshold, which best separates the prepared states of the qubit.
To choose the threshold, we prepare the qubit in the |0⟩ state and then in the |1⟩ state.
The outputs obtained are two blobs, in blue and orange in Figure 4.22, respectively.
The midpoint of the line connecting the centers of the two blobs allows to define a
discrimination line (dashed line in Figure 4.22), which identifies a threshold.
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Figure 4.22: In figure the measurement and threshold choosing process is shown for a)
qubit 0 with qubit 2 in the ground state, b) qubit 2 with qubit 0 in the ground state, c)
qubit 0 with qubit 2 in the excited state, d) qubit 2 with qubit 0 in the excited state. The
blue and the orange dots correspond to the measurements of the qubit prepared in the
ground and excited states, respectively. The black dashed line represents the threshold.

For single qubit initialization, each qubit is first prepared in the ground state and then
in the excited state, keeping the coupled qubit in the ground or excited states. In both
cases, the output state is measured simultaneously on the two qubits. This experiment
and all the following ones were conducted with 760 shots. The single-qubit readout
measurements when preparing the coupled qubit in either the ground or excited states
should be equal, as the preparation of one qubit in a state should not affect the other.
This approximate equality is demonstrated in Figure 4.23a) and b), and c) and d) for
qubit 0 and qubit 2, respectively.
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Figure 4.23: Probability matrices for single qubit initialization. At the top of the figure,
qubit 0 is initialized with qubit 2 in a) the ground state and b) the excited state, while at
the bottom, qubit 2 is initialized with qubit 0 in c) the ground state and d) the excited
state.

More in detail, in Figure 4.23a), it is possible to see that if qubit 0 is prepared in the
ground state, the probability of measuring the ground state as the output is 83%, while
the probability of measuring the excited state is 17%. This is in agreement with litera-
ture, where the typical values of readout fidelity range from ∼ 70% to ∼ 99% [94][95].
However, if qubit 0 is prepared in the excited state, the probability of measuring the
ground state as the output is 43%, and the excited state is 57%. As a result, the readout
fidelity is sufficiently high when the qubit is prepared in the ground state, but it is lower
when it is prepared in the excited state. This result is confirmed in Figure 4.23b). At the
time of this work, the dependence of the readout fidelity on the initial state preparation
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of qubit 0 is unclear. Further studies must be done in order to outline the motivations
behind this effect. For qubit 2, as shown in Figures 4.23c) and 4.23d), the probability
of measuring the prepared state is ∼ 80% for both the ground and the excited states,
regardless of the preparation of qubit 0. Therefore, the fidelity for qubit 2 is in agree-
ment with literature [97]. Finally, for what concerns two-qubit initialization, reported
in Figure 4.24, the states in which the system can be prepared are |00⟩ , |01⟩ , |10⟩ and
|11⟩, where the first label refers to qubit 0 and the second to qubit 2. In this case as

Figure 4.24: The probability matrix for two-qubit initialization. The first label is referred
to qubit 0, while the second to qubit 2.

well, we can observe that as long as qubit 0 is prepared in the ground state, we have a
readout fidelity that is roughly in agreement with the results reported in the literature
[97]. Indeed, if we prepare the system in the state |00⟩, we have a 70% probability of
measuring the state |00⟩, while if we prepare the state |01⟩, we have a 67% probability
of measuring the state |01⟩. On the other hand, if we prepare qubit 0 in the excited state,
the readout fidelity drops even below 50%. As we will see in Section 4.7.2, this will
influence the efficiency of the quantum circuits that we will implement.
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4.7 Quantum circuits and Hellinger fidelity
After qubit characterization and pulses calibration, the final aim is to estimate the Hellinger
fidelity [96] for the quantum circuits implemented, which is analogous to the fidelity for
classical probability distributions. The Hellinger fidelity is defined as [96]:

H(p, q) =

[
n∑

i=1

√
piqi

]
, (4.1)

where p and q are the two probability distributions, and can be written in terms of the
Hellinger distance HD as [96]:

H(p, q) = (1−HD2)2, (4.2)

where HD is defined as:

HD =
1√
2

√√√√ n∑
i=1

(
√
pi −

√
qi)2. (4.3)

According to literature, typical values of Helliger distance range between 0.1 and 0.4,
which leads to an Hellinger fidelity between ∼ 98% and ∼ 70% [97]. Specifically, the
Hellinger fidelity is calculated in terms of the experimental probability readout state
vector output of a quantum circuit for the device and the expected theoretical proba-
bility readout state vector for the same quantum circuit. The probability readout state
vector is measured following the technique reported in Section 4.6. First, we will show
the results on the quantum circuits with single-qubit gates and two-qubit gates. Then,
the results will be discussed and compared.

CNOT circuit
The first quantum circuit implemented is the CNOT circuit, whose pulse scheme is
shown in figure 4.25. This pulse sequence is repeated initializing the system in each of
the four possible states of the computational basis {|00⟩ , |01⟩ , |10⟩ , |11⟩}. It is crucial
to note that the states of the system are represented as |CT ⟩, where C stands for control
and T for target. Specifically, qubit 0 works as the target qubit, and qubit 2 as the control
qubit. This choice explicitely takes into account the coherence times of the two qubits
analyzed (Section 4.3). The control qubit in the CNOT gate defines the final outcomes
of the gate: if prepared in |0⟩, indipendently on the target state, the output is ideally
unchanged; however, if prepared in |1⟩, it induces a bit-flip in the target state. There-
fore, the probability of success of the gate strongly depends on the coherence stability
of the target qubit, which must not uncoherently change its state during the gate time.

86



Figure 4.25: The CNOT circuit pulse scheme. An Y (π/2) is applied on qubit 0, followed
by a X(π). Then, a CZ gate is performed. Once again, Y (π/2) and X(π) are applied
on qubit 0. Finally, the state of both qubits is simultaneously measured. The CZ pulse is
represented by the orange square pulse.

In the two-qubit register here analyzed, qubit 0 has longer coherence times than qubit 2
(Section 4.3). The ideal probability matrix for the CNOT circuit for each initial state is
shown in Figure 4.26a), while in panel b), the measured probability matrix for the same
experiment is shown.

Figure 4.26: In a) the ideal probability matrix and b) the measured probability matrix
for the CNOT experiment. The color bar represents the probability distribution. The first
label of the states refers to qubit 2, while the second to qubit 0.

According to Figure 4.26a), if we prepare the system in |00⟩, the probability of mea-
suring the same state is 100%. However, this state is measured with a 53% probability,
as shown in Figure 4.26b). Moreover, as expected from readout fidelity (Section 4.6),
when the qubit 0 is prepared in the excited state, the probability of measuring the ex-
pected states drops to ∼ 30% (Figure 4.26b)). Fidelities of this order of magnitude
suggest that we have incorrect results in almost the majority of cases.
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CNOT+H circuit
Another circuit implemented is the CNOT+H circuit, whose pulse scheme is shown in
figure 4.27.

Figure 4.27: The CNOT+H circuit pulse scheme. The CNOT pulse scheme is composed
of Y (π/2) and an X(π), applied on qubit 0, then a CZ gate is performed, and once
again, Y (π/2) and X(π) applied on qubit 0. The Hadamard gate, applied on qubit 2, is
composed of an Y (π/2), followed by X(π). The CZ pulse is represented by the orange
square pulse.

The ideal and the measured probability matrix for the CNOT+H experiment performed
on each state of the system are shown in figure 4.28.

Figure 4.28: In a) the ideal probability matrix and b) the measured probability matrix
for the CNOT+H experiment. The color bar represents the probability distribution. The
first label of the states refers to qubit 2 and the second to qubit 0.

According to Figure 4.28a), if we prepare the system in |00⟩, we expect to measure
|00⟩ and |10⟩ states, both with a probability of 50%. The |00⟩ and |10⟩ states are mea-
sured with a probability of 37% and 31%, respectively, as shown in Figure 4.28b). Using
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equation 4.2, it is possible to obtain the Hellinger fidelity. Therefore, when the system
is prepared in |00⟩, |01⟩, |10⟩ and |11⟩, the Hellinger fidelietis are 68%, 62%, 52% and
57%, respectively. These values are fairly close to the ones typically found in literature
[97]. Even if the CNOT+H quantum circuit uses nominally the same CNOT gate as in
the CNOT circuit, its Hellinger fidelity is counterintuitevely larger. Indeed, one would
expect to accumulate control errors when increasing the number of gates in a quantum
circuit, thus reducing the quality of the output. Qualitatively, the relative improvement
of the Hellinger fidelity may be accounted for the introduction of the Hadamard gate
at the end of the sequence, which induces a superposition between |01⟩ and |11⟩ states
for the initial state |10⟩, and between |00⟩ and |10⟩ for the initial state |11⟩. The CNOT
experimental output in Figure 4.26b) suggests that the system naturally tends to reach
a superposition state, as the one predicted for the CNOT+H circuit in Figure 4.28b).
Further studies are required in order to understand the origin of this effect.

First random single-qubit gate circuit
The first random single-qubit gate circuit is composed of single-qubit gates generated
randomly from a set of Clifford single-qubit gates [98]. According to the pulse scheme,
shown in figure 4.29, Y (π/2) pulse is applied on qubit 0, followed by an X(π) pulse.
After that, a Y (π) pulse is applied on qubit 2.

Figure 4.29: First random single-qubit gate circuit pulse scheme. An Y (π/2) pulse is
applied on qubit 0, followed by an X(π) pulse. After that, on qubit 2 is applied an Y (π)
pulse. Finally, the state of both qubit is simultaneously measured.

The ideal and measured probability matrix for the random single-gate experiment per-
formed on each state of the system are shown in figure 4.30.
According to Figure 4.30a), if we prepare the system in |00⟩, we expect to measure |01⟩
and |11⟩ states, both with a probability of 50%. The |01⟩ and |11⟩ states are measured
with a probability of 36% and 34%, respectively, as shown in Figure 4.30b). The es-
timated Hellinger fidelities are 70%, 72%, 70% and 72% for |00⟩, |01⟩, |10⟩ and |11⟩,
respectively. These values are in agreement with the ones typically found in literature
[97].
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Figure 4.30: In a) the ideal probability matrix and b) the measured probability matrix for
random single-qubit gate circuit. The color bar represents the probability distribution.
The first label of the states refers to qubit 0 and the second to qubit 2.

Second random single-qubit gate circuit
The second random single-qubit gate circuit is also composed of single-qubit gates gen-
erated randomly from a set of Clifford single-qubit gates [98]. According to the pulse
scheme, shown in figure 4.31, a Hadamard gate is performed on qubit 0. After that, on
qubit 2 is applied an X(π/4) pulse, followed by X(π) pulse.

Figure 4.31: Second random single-qubit gate circuit pulse scheme. A Hadamard gate is
applied on qubit 0. After that, on qubit 2 is applied an X(π/4) pulse, followed by X(π)
pulse. Finally, the state of both qubit is simultaneously measured.

The ideal and measured probability matrix for the second random single-gate circuit
performed on each state of the system are shown in figure 4.32.
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Figure 4.32: In a) the ideal probability matrix and b) the measured probability matrix
for the second random single-qubit gate circuit. The color bar represents the probability
distribution. The first label of the states refers to qubit 0 and the second to qubit 2.

According to Figure 4.32a), if we prepare the system in |00⟩, we expect to measure |00⟩
and |10⟩ states, both with a probability of 7%, and |01⟩ and |11⟩, both with a probability
of 43%. The measured probability are 18%, 33%, 17% and 31% for |00⟩, |01⟩, |10⟩ and
|11⟩, respectively, as shown in Figure 4.32b). The corresponding Hellinger fidelities are
94%, 97%, 94% and 96%. Hellinger fidelities above 90% are indicative of high-quality
quantum circuits output [97].

4.7.1 Bell circuit
The last circuit implemented is the one used to create Bell states, which are four specific
maximally entangled quantum states of two qubits [100]. They are in a superposition of
|0⟩ and |1⟩. More specifically, the Bell states are [101]:∣∣Φ+

〉
=

1√
2
(|0⟩ ⊗ |0⟩+ |1⟩ ⊗ |1⟩), (4.4)

∣∣Φ−〉 =
1√
2
(|0⟩ ⊗ |0⟩ − |1⟩ ⊗ |1⟩), (4.5)

∣∣Ψ+
〉
=

1√
2
(|0⟩ ⊗ |1⟩+ |1⟩ ⊗ |0⟩), (4.6)

∣∣Ψ−〉 = 1√
2
(|0⟩ ⊗ |1⟩ − |1⟩ ⊗ |0⟩). (4.7)
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The circuit used to generate the Bell states is composed of a Hadamard gate applied on
the control qubit, followed by a CNOT gate, as shown in figure 4.33.

Figure 4.33: The pulse scheme of the Bell states circuit. A Hadamard gate is applied on
the control qubit, followed by a CNOT gate.

Specifically, the circuit used to reproduce Bell states is an equivalent circuit, whose
pulse sequence is shown in figure 4.34.

Figure 4.34: Pulse scheme of the equivalent circuit of the Bell state circuit. On qubit
2, an X(π/2) is applied. Then, a CNOT gate is performed, using an X(π/2) pulse on
qubit 0, CZ pulse and an X(3π/2) = X(−π) on qubit 0. The CZ pulse is represented
by the orange square pulse.

The Hadamard gate on the control qubit in the original Bell circuit is replaced by
X(π/2). Moreover, remembering that the CNOT is implemented using two Hadamard
gates and a CZ gate in the middle of them, it is fundamental to notice that the first
Hadamard in the CNOT has been replaced by a X(π/2) pulse, while the second by a
X(3π/2) = X(−π). This replacement is supported by other cloud platforms, such as
Quantum Inspire [102].
In order to obtain the Bell states, the Quantum State Tomography was carried out with
1024 shots. The pulse used to implement the CZ gate is the Sudden Net Zero (SNZ),
shown in figure 4.35.
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Figure 4.35: The Sudden Net Zero (SNZ) pulse consists of two back-to-back strong
half-pulses of duration tp/2 each (in blue), followed by weak bipolar pulses of total
duration t1Q to null single-qubit phases (in dark green). tϕ is the intermediate idling
period. The amplitude (±A) is jointly tuned to set the conditional phase θ2Q at minimal
leakage L. The amplitude ±B of the first and last sampling points in tϕ and the number
of intermediate zero-amplitude points provide fine and coarse control of this relative
phase, respectively. The amplitude ±C of the weak pulses is used to null the single-
qubit phase on the higher-frequency transmon. Adapted from [99].

It consists of two back-to-back strong half-pulses of duration tp/2 each, followed by
weak bipolar pulses of total duration t1Q to null single-qubit phases. Also, an interme-
diate idling period tϕ is added to accrue relative phase ϕ between |02⟩ and |11⟩.
The Bell experiment uses Quantum State Tomography [103][104], a process used to
determine the density matrix of the quantum state of an unknown quantum system. It
involves measuring a complete set of observables, whose expectation values determine
the quantum state [105][106]. In figure 4.36, the real parts of the measured density
matrices of the two-qubit system are shown, which provide information about the prob-
ability of finding the quantum system in a specific quantum state. More in detail, the
state tomography shows that if the system is prepared in |00⟩ and a Bell experiment is
performed, the output state is a combination of |00⟩ and |11⟩ (as shown in figure 4.36a)).
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Figure 4.36: Bell state tomography. On the left, the real parts of the measured density
matrices in 2D for Bell state a) Φ+, b) Ψ+, c) Φ− and d) Ψ−. On the right, the same
measurement in 3D.
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If the system is prepared in |10⟩, the output is composed of the same previous states,
but |00⟩ and |11⟩ have different signs, as shown in figure 4.36c). On the other hand,
if the system is prepared in |01⟩ or |11⟩, the output states in both cases are |01⟩ and
|10⟩. In the first case, the |01⟩ and |10⟩ have the same signs (figure 4.36b)), while in
the second they have opposite signs (figure 4.36d)). These results are in agreement with
the equation 4.4, 4.5, 4.6 and 4.7 when system is prepared in |00⟩ , |01⟩ , |10⟩ and |11⟩,
respectively. From the real part of the density matrix, it is possible to roughly estimate
the probability matrix for the Bell circuit and, consequently, the Hellinger fidelity. The
ideal and estimated probability matrix for the Bell circuit performed on each state of the
system are shown in figure 4.37.

Figure 4.37: In a) the ideal probability matrix and b) the estimated probability matrix
for the Bell circuit. The color bar represents the probability distribution. The first label
of the states refers to the control and the second to the target.
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4.7.2 Quantum circuits summary
In table 4.2, the results of the calculated Hellinger Fidelity for the quantum circuits are
reported.

Circuit
Prepared state

|00⟩ |01⟩ |10⟩ |11⟩
CNOT 53.43% 48.00% 31.63% 30.25%

Hellinger CNOT+H 67.62% 62.25% 51.70% 56.57%
fidelity 1st random single-qubit gate 70.25% 71.96% 69.52% 72.61%

for 2nd random single-qubit gate 94.09% 97.05% 93.56% 95.52%
Bell 89.31% 79.95% 83.84% 90.98%

Table 4.2: The Hellinger fidelity for CNOT, CNOT+H, 1st random single-qubit gate, 2nd

random single-qubit gate and Bell experiment.

According to literature, typical values of Hellinger fidelity range between ∼ 98% and
∼ 70% [97]. For the CNOT+H, random single-qubit gate and Bell circuits, the Hellinger
fidelity is fairly close to the ones typically found in literature, while for the CNOT cir-
cuit the Hellinger fidelity is slighlty above 30% when preparing the control in the excited
state, and around 50% when preparing the control qubit in the ground state. Fidelities
of this order of magnitude suggest that we have incorrect results in almost the majority
of cases. This can be related to different problems. First of all, the readout fidelity when
qubit 0 is excited is just of 50% (see figure 4.24). Secondly, the spread in the qubit fre-
quency in figure 4.17 due to frequency fluctuations and decoherence possibly cause an
insufficient quality of single-qubit gate circuits. This, together with the low coherence
times of qubit 2, makes the system sensitive to dissipation channels. However, for the
single-qubit gate circuits, the Hellinger fidelities are larger than the ones measured when
including CNOT gates. Remarkably, for the second random single-qubit gate circuit, the
fidelity reaches values above 95%. This suggests that the lower Hellinger fidelities for
two-qubit gate circuits is mostly related to the quality of the CNOT gate. Specifically, for
these circuits we have used unipolar CZ flux pulses. However, it has been demonstrated
that unipolar flux pulses are less efficient than other variants of the same gate, which
uses more complicated flux pulse shaping [57][99]. This becomes evident in the Bell
experiment, where the SNZ pulse was used instead of the unipolar pulse. The obtained
fidelity turns out to be even higher than that of the 1st random single-qubit gate circuit,
reaching a fidelity ranging between approximately 80% and 91%. This is an important
result, considering that for two-qubit circuits (CNOT and CNOT+H), the maximum fi-
delity is 67%. Therefore, one possible way to improve the efficiency of quantum circuits
can be to explore novel CZ flux pulses shaping and calibration in the near future.
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Conclusion

In this thesis, two coupled superconducting transmon qubits in a matrix of 5 coupled
qubits have been characterized. Low temperature microwave spectroscopy has been ex-
ploited in order to define the readout tone parameters for multiplexed readout on the
2-qubit register: the resonant frequency in the low-photon regime of the dedicated cou-
pled readout resonators, as well as the power needed to guarantee optimal signal to noise
ratio and dispersive quantum non demolitive coupling. Moreover, spectroscopy charac-
terization has identified the frequency spectrum of the two qubits when far detuned one
to each other (single-qubit regime), and when coupled. Qubit anharmonicities of the
order of 200-300MHz, and frequecies of the order of 4.5 GHz to 5.5 GHz, respectively
for the two qubits, ensure the typical transmon regime parameters [110]. Specifically,
these electrodynamics parameters have been estimated close to the flux-sweet spots, i.e.
where sensitivity to flux noise is suppressed.
Time-domain pulsed microwave experiments, instead, are fundamental for single- and
two-qubit gates implementation, as well as for the study of the coherence properties
of the device. For sufficiently fast single-qubit control gates (few tens of nanosec-
onds), state-of-the-art relaxation and coherence times range within tens to hundreds
of microseconds [111][112]. Rabi oscillation experiments have confirmed the possi-
bility to achieve in our device π-control pulses, i.e. able to excite the qubit from the
ground to the excited states, ranging from 20 to 50ns. For these pulses, we have per-
formed statistical and repeated measurements of the relaxation time T1, and the co-
herence times TEcho

2 and T ∗
2 , measured through spin Echo and Ramsey interferome-

try experiments, respectively. The statistical values estimated are T1 = (29 ± 5)µs,
TEcho
2 = (10 ± 3)µs and T ∗

2 = (1.3 ± 0.3)µs for the lowest frequency qubit, and
T1 = (8± 2)µs, TEcho

2 = (6± 1)µs and T ∗
2 = (0.6± 0.2)µs for the highest frequency

qubit. One important conclusion of this work is that the relaxation and coherence times
depend on the qubit connectivity: minimal connectivity ensures coherence and relax-
ation times larger than those measured for maximum connectivity. This is related to
the fact that multiple connections between qubits open additional dissipation channels,
which affects the coherence.
Control pulses optimization plays a fundamental role in the implementation of gate
sequences on a quantum register, which is the main goal of this work. The Ramsey in-
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terferometry has been used to optimize the drive frequency since it is more sensitive to
detuning between the drive and the qubit frequency compared to the Rabi protocol. The
shape of the control pulses has been optimized with state-of-the-art AllXY technique,
which involves applying different combinations of one or two single-qubit gates and
analyzing the error syndrome, i.e. the deviation from the ideal response. This allows
to identify the nature and characteristics of the errors affecting the system. As a result,
in our device we have identified a detuning-related error syndrome, which is consistent
with resonance frequency fluctuations caused by flux noise.
Once the single-qubit gate pulses have been properly calibrated, we performed the
pulse calibration of the CZ gate, one of the most used two-qubit gates in supercon-
ducting devices [113][114]. In order to optimize the CZ pulse parameters, we have
performed a conditional oscillation experiment, which allows to minimize leakages to
non-computational states due to spurious energy interactions between coupled super-
conducting transmon qubits. All these calibration procedures described above are fun-
damental to correctly execute quantum gates.
Several sequences of quantum gates, also called quantum circuits, have been imple-
mented on the 2-qubit register after calibrating the pulses, involving both single-qubit
and two-qubit gates. In order to evaluate the efficiency of our processor, the Hellinger
fidelity has been calculated for all the quantum circuits implemented. For single-qubit
circuits, fidelities of about 95%, guarantee optimal implementation of the quantum cir-
cuit [97]. However, quantum circuits including two-qubit CNOT gates, decomposed in
terms of Hadamard and CZ gates, have shown fidelities ranging from 30% to 67%,
mostly due to the quality of the CNOT gate. By using more efficient variants of CZ flux
pulses that use Sudden Net Zero (SNZ) pulses instead of standard unipolar flux pulses,
we have demonstrated through Quantum State Tomography (QST) that the processor
allows to reproduce Bell states. This is an important achievement as it’s not guaranteed
that a processor can generate highly entangled states. The Bell circuit has provided a
Hellinger fidelity ranging from 80% to 91%, i.e. it has been demonstrated that improv-
ing the quality of the CZ gate is possible to improve the output of two-qubit quantum
circuits. In conclusion, in order to guarantee optimal computing performances of super-
conducting quantum processors, single- and two-qubit gates calibration protocols are
mandatory.
Future perspectives include the possibility to address readout and control errors through
a comprehensive study of quantum gates and circuits. Indeed, the ability to improve both
control and readout techniques through active engineering of the gates sequences in a
quantum circuit [107][108] [109] competes with the intrinsic limitation on the number
of gates that can be realized in the coherence time of the hardware. A possible solution
is to study alternative designs of quantum algorithms schemes and potentially rework
the algorithms sequences already proposed in the literature to minimize the number of
applicable gates. Reducing the number of gates implies minimizing the overall error in
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the system, thus enhancing the efficiency of algorithms implementable on the quantum
processor.
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