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Introduction

Since Feynmann’s �rst statement on the potential of a quantum computer in 1981 [1], sig-
ni�cant advancements have been made towards simulating physical phenomena through
manageable quantum systems [2][3]. However, the journey towards large-scale quantum
computing requires reconciling the dichotomy between the non-quantum macroscopic
observer and the quantum microscopic information.

Superconducting circuits have emerged as a promising platform, leveraging well-
established knowledge of superconducting nanofabrication processes [4]. These macro-
scopic systems harness the quantum properties of superconducting matter through the
Josephson e�ect. This enables the creation of arti�cial macroscopic quantum systems, or
qubits, to encode and process quantum information.

Over the past two decades, research has not only built isolated superconducting qubits
but has also made progress towards multi-qubit architectures [5]. In this context, the
dynamic control of qubit-qubit interaction is pivotal, addressing critical issues related to
scalability, such as frequency crowding and parasitic coupling between adjacent qubits
[6]. Within this evolving landscape, this thesis aims to explore and analyze the physics
of an innovative coupling design based on tunable interaction, a crucial component for
realizing large-scale quantum architectures.

This design, �rst proposed by the MIT researchers [7], is now attracting noticeable
interest by leading companies in the �eld, like Google [8] and Rigetti [9]. Indeed, the
tunable coupling scheme is well suited for modularity and scalability [9]. In this work, I
describe a similar prototype consisting of two qubits coupled by a third qubit, serving as
a mediator of the interaction. This work plays a signi�cant role in the European project
Eurostars SFQ4QPU, which involves two small- and medium-enterprises, the digital
quantum computing company Seeqc [10] and the quantum foundry Quantware [11], and
the University of Naples Federico II (UniNa) [12] as academic partner, responsible for
conducting the measurements and characterization of the devices. My contribution to
this project encompassed the implementation of experiments and analysis of the coupling
between two qubits, aiming to push the boundaries of our understanding of quantum
interaction in superconducting devices.

Speci�cally, in this thesis, the comparison with a standard coupling scheme based on
non-tunable high-frequency superconducting bus resonators established a benchmark,
crucial for validating a novel method for data analysis. In order to extract informa-
tion on the coupling strengths in superconducting multi-qubit devices characterized by
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di�erent coupling schemes, we propose a comparative approach between theoretical
non-perturbative energy spectra simulations and experimental data, aiming to extract
fundamental design parameters of the devices and to provide a physical picture of the
coupling mechanisms in a complex arti�cial two-level system.

In Chapter 1, we set the basics on superconducting qubits. We discuss the principles
of superconductivity and the importance of the Josephson e�ect (Sec. 1.2.1). Here, we
delve into the quantum harmonic oscillator (Sec. 1.2.2), and the transmon regime (Sec.
1.2.3), and explore the phenomena of decoherence and dephasing (Sec. 1.2.4). We also
introduce the control and readout mechanisms of superconducting qubits (Sections 1.3
and 1.4).

Chapter 2 describes the experimental set-up used in this work. We begin with an
overview of the dilution refrigerator and cryogenic electronics (Sections 2.1 and 2.2),
followed by a description of the devices under test (Section 2.3). This chapter also outlines
the methodologies for single-qubit characterization, including spectroscopy experiments
and time-domain protocols (Section 2.6.2).

In Chapter 3, we introduce the two-qubit coupling schemes, emphasizing coupling
mechanisms for the implementation of two-qubit gates. This chapter provides insights
into a comparative study of designs of non-direct qubit-qubit coupling through �xed (Sec.
3.1) and tunable couplers (Sec. 3.2), and a discussion on the implementation of the i-SWAP
gate in both con�gurations, highlighting advantages and disadvantages (Sec. 3.3).

In Chapter 4 we show our experimental results and we discuss their validity with
respect to the theoretical expectations and results in literature. Speci�cally, we focus on
the study of the avoided level crossings for di�erent pairs in the two devices (Sec. 4.4.1).
Finally, we report our initial results on the SWAP experiment conducted on the prototype
device with the tunable coupling scheme (Sec. 4.4.4).
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Introduction to superconducting

qubits

Contents: 1.1 Qubits: An Overview. 1.2 Introduction to superconducting circuits. 1.2.1 Josephson
e�ect – 1.2.2 Quantum harmonic oscillator – 1.2.3 Transmon regime for superconducting qubits – 1.2.4 Deco-
herence and dephasing. 1.3 Superconducting qubit control. 1.3.1 Capacitive coupling for X,Y operation
– 1.3.2 Flux-tunable transmon: physical Z control. 1.4 Qubit readout: the Jaynes-Cummings model.
1.4.1 Quantum non-demolition readout.

1.1 �bits: An Overview
In this chapter, we want to introduce the key elements to understand the implementation
of superconducting circuits into the frame of quantum computing.

Traditional computing systems operate on classical bits, which encode information as
either a zero or a one. In a quantum computer, the laws of quantum physics allow phe-
nomena like superposition and entanglement [13]. The fundamental unit for a quantum
computer is a two-level quantum system with a ground |0〉 and an excited state |1〉. We
refer to such a system as a quantum bit or qubit.

The superposition of |0〉 and |1〉 states can be represented as points on the surface of
the Bloch sphere, as depicted in Figure 1.1b [14]. As a consequence, in quantum computing
is possible to encode any information in a quantum state vector:

|Ψ〉 = α |0〉 + β |1〉 = cos θ2 |0〉 + e
iϕ sin θ2 |1〉 , (1.1)

where |α |2 + |β |2 = 1, due to the unitarity of the Bloch sphere. To map an arbitrary
superposition of |0〉 and |1〉 to a point on the sphere, we use the parametrization in terms
of the polar angle θ and the azimuthal angle ϕ, as shown in Eq. 1.1.

A two-level quantum system can be realized through various approaches, such as
using the two spin states of a 1/2 spin particle, or exploiting the vertical and horizontal
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Figure 1.1: Visualization on the Bloch sphere of a qubit state.

polarization states of a single photon [15]. In this context, Di Vincenzo has outlined a
set of criteria for constructing a system capable of executing quantum computational
processes [16]:

1. A scalable physical system with well-characterized qubits. It is essential for the system
to clearly manifest the quantum properties of the two-level system. Additionally,
it should be accurately known the dynamics of interactions with other qubits or
external �elds employed for control purposes.

2. The ability to initialize the state of the qubits to a simple �ducial state.

3. Long relevant decoherence times. As we will see later, decoherence times characterize
the dynamics of a qubit in contact with its environment.

4. A "universal" set of quantum gates.

5. A qubit-speci�c measurement capability. The result of a computation must be read
out, and this requires the ability to measure the state of speci�c qubits.

Superconducting circuits are currently one of the leading approaches for realizing
quantum logic elements and quantum coherent interactions with su�ciently high control-
lability and low noise. Therefore, they are viable candidates for implementing medium-
and large-scale quantum computation [17].

In particular, they have shown great versatility in the design possibilities, which
means a control on di�erent parameters, such as the qubit energy level and the coupling
force. As we will see further, this can be achieved by adjusting the parameters of super-
conducting circuits, which embed unique key structures able to provide fundamental
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Figure 1.2: In a), plot of the resistance (measured in Ohms) of mercury as a function of temperature
(expressed in Kelvin). Here, the superconducting transition Occurs at TC = 4.2K . Figure from [21]. In b),
pictorical representation of the Meissner e�ect. Within a superconducting material, as it is cooled below its
critical temperature TC , magnetic �eld lines are actively expelled.

non-linearity in the system, namely the Josephson junctions. As a result, the Hamiltonian
of superconducting qubits can be precisely engineered.

The fabrication of superconducting qubits is based on the existing microfabrication
processes. High-quality devices can be prepared by leveraging advanced chip-making
technologies, which is advantageous for both production and scalability. The operation
and measurement of superconducting qubits are compatible with microwave control and
operability. Thus, commercial microwave also equipment can be used in superconducting
quantum computing experiments. Additionally, the architecture of superconducting qubit
circuits facilitates the coupling of multiple qubits [18].

In this thesis, we will focus on qubits based on superconducting Transmon circuits, a
Charge qubit [19] characterized by a large shunt capacitance that makes it insensitive to
charging noise. This design has demonstrated its applicability in quantum computing,
a claim substantiated in 2019 by the Google AI Quantum group’s work on the Sycamore
processor [8] and the recent advancements by the IBM Quantum group with the IBM
Eagle processor [20].

1.2 Introduction to superconducting circuits

We begin our discussion with an overview of superconducting circuits, providing some
insights into the phenomenon of superconductivity. A material is classi�ed as super-
conducting when it exhibits two simultaneous behaviors below a speci�c temperature:
perfect conductivity and perfect diamagnetism.

In 1908 H. Kammerlingh Onnes succeeded in liquefying helium, being able to cool down
di�erent materials at around 4.2K. Building on this achievement, in 1911, he experimentally



observed the �rst evidence of superconductivity [21]. As shown in Fig. 1.2, at temperatures
below a critical value denoted as TC , a mercury sample displayed zero resistance [22].

The phenomenon of perfect diamagnetism, which is the second fundamental character-
istic of superconductivity, was unveiled by Meissner and Ochsenfeld in 1933 [23]. Their
observation revealed that magnetic �eld lines within a normal material were expelled from
the sample once it was cooled belowTC , and a critical magnetic �eld HC . This observation
provided conclusive evidence that superconductivity is a distinct thermodynamic state
[24].

In this thesis, the main focus is on quantum superconducting circuits, which mainly
use Niobium (Nb, TC = 9.3 K) and Aluminum (Al, TC = 1.2 K), two low-temperature
superconductors that o�er a good balance of superconducting properties (such as critical
temperature and superconducting gap), fabrication reliability, and cost [25][26].

The foundational framework of microscopic superconductivity theory was �rst for-
mulated in 1957 by Bardeen, Cooper, and Schrie�er (BCS theory) [27] and well applies
to all so-called traditional low critical temperature superconductors, as in the case of Nb
and Al [28]. The superconducting state is a macroscopic quantum state [29], characterized
by the unique property of an electric current density with a charge e*, twice that of the
elementary electronic charge e. This behavior emerges due to a weak residual attraction
between pairs of electrons—known as Cooper pairs—resulting from their interaction with
lattice oscillations [30].

Using the language of second quantization we de�ne the creation operator a+
↑,k

which
creates an electron of momentum k and spin up, as well the annihilation operator a↑,k
which destroys the corresponding state [24]. Under the assumption of a pairing Hamilto-
nian (refer to, for instance, Tinkham, 1996, Chapter 3) [24], we introduce the ground state
of a superconductor as:

|BCS〉 =
∏
k

(
|uk | + |vk | e

iϕa+
↑,ka
+
↓,−k

)
|0〉 . (1.2)

Here, |0〉 denotes the vacuum state. The coe�cients uk and vk , are the coherence factors
[30] and satisfy the normalization condition |uk |2 + |vk |2 = 1. From Eq. 1.2, we can see
that |uk |2 and |vk |2 are respectively related to the probability that the pair (k ↑,−k ↓) is
occupied, and unoccupied.

Notably, the phase ϕ corresponds to the phase of a macroscopic condensate wave
function for the Cooper pair, denoted as Ψs(r) [29] [31]. Indeed, we can introduce the
order parameter of the superconductor [30], ∆(r), that describe the quantum coherent
behavior of the electrons in the system:

∆(r) ∝ Ψs(r) =
√
ns(r)/2eiϕ(r). (1.3)

It is important to note that this parameter is normalized to the density of Cooper pairs
(half of the electron density within the condensate, ns [30]).

The behavior of the macroscopic wave function can be observed within a �nite
length. For example, at an interface between a superconductor and a normal metal where
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Figure 1.3: Schematic of a Josephson Junction and behavior of the macroscopic condensate wave function
Ψ1,2(r) of the two superconductors. Figure adapted from [29].

superconductivity is suppressed, the order parameter regains its bulk value within a
characteristic scale called coherence length ξ0 = ~vF/π |∆|, where vF is the Fermi velocity
[32]. Typically this length is of the order 10-100 nm [29].

1.2.1 Josephson e�ect
Consider two superconductors S1 and S2 separated by a non-superconducting material
such as a normal metal or an insulator, depicted schematically in Fig.1.3. If this barrier
is an insulator and does not exceed the coherence length, typically 1-2 nm, we observe
an overlap of the macroscopic wave functions of the two superconductors. In 1962, B.
Josephson predicted a current �ow inside the barrier [33], with a consequent �ow of
Cooper pairs in the absence of a potential drop, which reads as:

I = IC sinϕ, (1.4)

where ϕ = ϕ1 −ϕ2 is the di�erence in the macroscopic phases of the two superconductors
and IC is the maximum current allowed for the Cooper pairs �ow. The Eq. 1.4 describes
the dc Josephson e�ect, which is characterized by a coherent and non-dissipative electric
current �owing through the barrier. In the presence of a voltage V , Josephson predicted
that the phase di�erence would evolve according to:

dϕ

dt
=

2πV
Φ0
. (1.5)

Here Φ0 =
hc
2e represents the �ux quantum [29]. Eq. 1.4 together with Eq. 1.5 are the

constitutive relations of the Josephson e�ect [29]. Using the two Josephson equations
together with the general de�nition of inductance, V = L ÛI/c2, we see that the Josephson
junction, when operated below the critical current for typical superconductors in quantum
circuits [34], behaves like a nonlinear inductance L J :

L J (ϕ) =
~c2

2eIc cosϕ
. (1.6)



1.2.2 �antum harmonic oscillator
An important property of the Josephson junction is its nonlinear contribution to the
system’s equivalent inductance. To explore this feature, we consider a linear element in
the form of a simple lumped-element circuit, known as the quantum LC oscillator [35].
An LC oscillator is characterized by a capacitance (C) and an inductance (L), as shown in
Figure 1.4a. For this circuit, the stored energy can be described by the following expression
[36]: ∫ t

−∞

I (t ′)V (t ′)dt ′. (1.7)

We de�ne at this point as degrees of freedom of the system the �ux and the charge,
respectively [36]:

Φ(t) =

∫ t

−∞

V (t ′)dt ′, (1.8)

Q(t) =

∫ t

−∞

I (t ′)dt ′, (1.9)

where the circuit is supposed to be at rest at time t = −∞ for zero voltages and currents.
From Eq. 1.7, we can de�ne the total energy of the oscillator as the sum of its charging

and inductive energy [34][35][14]:

HLC =
Q2

2C +
Φ2

2L . (1.10)

Here, we recognize the analogy to a mechanical harmonic oscillator, where the capacitance
plays the role of the mass, and the resonant frequency is given by ωr = 1/

√
LC . However,

this Hamiltonian is classical, and to proceed with a quantum-mechanical description of the
system, we need to consider the charge and �ux variables as non-commuting observables
satisfying the commutation relation [30][14][37]:[

Φ̂, Q̂
]
= i~. (1.11)

Following the analogy with the harmonic oscillator [34], we can now introduce the
standard annihilation â and creation â+ operators:

Φ̂ = Φzp f
(
â+ + â

)
, Q̂ = iQzp f

(
â+ − â

)
. (1.12)

Here Qzp f =
√
~ωrC/2 and Φzp f =

√
~/2ωrC represent the magnitudes of the zero-point

�uctuations of charge and �ux, respectively. Thus, we can proceed to the quantization of
the LC oscillator [35][34]:

HLC =

(
â+â +

1
2

)
, (1.13)
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Figure 1.4: a) Lumped-element representation of a parallel LC-oscillator. In b), the quadratic potential
(black curve) of a harmonic system with the equidistant energy level separation. In c) schematic of the
Josephson qubit circuit with the non-linear inductance L J highlighted in the orange box, in parallel with
the self-capacitance C J . In d), we can observe the reshaping into the cosine potential characteristic of a
Josephson junction, resulting in non-equidistant energy level spacing. Figure adapted from [13].

where the operator â+ is responsible for creating a photon of frequency ωr/2π in the
circuit, as well the destruction by the annihilation operator â.

1.2.3 Transmon regime for superconducting qubits
A degree of non-linearity is essential to codify and manipulate quantum information
[38]. Fortunately, superconductivity allows non-linearity to be introduced into quantum
electrical circuits without losses [34]. Here we take advantage of the Josephson junction
(JJ), as seen in Eq. 1.6.

Replacing the geometric inductance L by a JJ, see Fig. 1.4b, we obtain an anharmonic
behavior, which provides a non-equidistant separation of energy levels, see Fig. 1.4d,
as occurring in an arti�cial atom [39]. This allows us to identify a computational basis
associated with the �rst two energy levels, separated by ~ω01. Using Eq. 1.7 together with
the Josephson equations 1.4 and 1.5, we get the energy energy stored in the JJ:

Ic

∫
sin ϕ̂dϕ = −E J cos ϕ̂, (1.14)

where E J = IcΦ0/2π is the Josephson energy.
Consider biasing the circuit in Fig. 1.5a, also known by the name of Cooper Pair Box

(CPB), using an external voltage source Vд. As a result, the quantized Hamiltonian of the
capacitively shunted Josephson junction takes the form [14]:

H =
(Q̂ −Qд)

2

2C − E J cos ϕ̂ = 4EC(n̂ − nд)2 − E J cos ϕ̂, (1.15)



Figure 1.5: a) Schematic of charge qubit or Cooper pair box (CPB). The Josephson junction is coupled to
an external voltage source Vд through Cд . The possible presence of �uctuations and, consequently, charge
variations are represented by δV . The o�set charge nд is highlighted in green on the coupling capacitance
Cд . b) The eigenenergies from the numerical diagonalization of Eq. 1.15 are plotted as a function of the
o�set charge for E J /EC = 1. The charge energy EC = e2/2C is expressed in terms of the total capacitance
C = Cд +C J +CS , where we take into account the junction capacitance (C J ), gate capacitance (Cд), and
shunt capacitance (CS ). The latter is highlighted in c), where the nonlinear inductance L J is shunted by a
capacitanceCS , through which it is possible to increase the ratio E J /EC . For simplicity, the self-capacitance
of the junction C J has been integrated into the notation of the JJ. As shown in d), at high E J /EC ratios the
dependence of the charge dispersion ϵm by charge �uctuations decreases drastically, see Eq. 1.16. Figures
adapted from [40][13].

where n̂ = Q̂/2e is the operator number of Cooper pairs. Due to the external gate voltage,
the charge energy is a�ected by an o�set charge nд = Qд/2e . This model allows us to
describe the circuit’s coupling with the environment, which can be imagined as a battery
with a �uctuating voltage, represented by δV , due to the inevitable presence of spurious
and unwanted charges in the circuit environment [34].

The Eq.1.15 can be solved exactly in the phase basis to obtain the eigenenergies Em
[34][40]. In Fig. 1.5b-d, the eigenenergies are plotted as a function of nд, emphasizing the
dependence of the spectrum of Eq. 1.15 on the ratio E J/EC . For E J/EC ∼ 1, the spectrum
strongly depends on the o�set charge. This implies that even when biasing the circuit at
the sweet spots, i.e. where dH

dnд
= 0 (see Fig. 1.5b), the circuit operations can be limited by

higher-order e�ects of the 1/f charge noise [34][40]. To overcome this limitation, the
ratio E J/EC is increased signi�cantly, leading to the transmon regime [40]. The crucial
modi�cation distinguishing the transmon from the CPB is a shunting connection of the
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Josephson junction via a large capacitance CS , accompanied by a similar increase in the
gate capacitance Cд (Fig. 1.5c) [14]. The sensitivity of the system to charge noise is
quanti�ed by the peak-to-peak value for the charge dispersion of themth energy level [40],
as shown in Fig. 1.5b:

ϵm = Em(nд =
1
2 ) − Em(nд = 0). (1.16)

In Fig. 1.6a is depicted the charge dispersion as a function of E J/EC . Studying the spectrum
of Eq. 1.15 in the transmon regime, where E J/EC ∼ 10 − 100, we observe:

ϵm ' e
−
√
8E J /EC . (1.17)

This exponential dependence ensures that the transmon qubit is well-protected against
low-frequency charging noise [34][40]. However, as shown in Fig. 1.5d, the anharmonicity
of the energy levels diminishes in the transmon regime. We de�ne the absolute and relative
anharmonicity as:

α = E12 − E01, αr =
α

E01
. (1.18)

Investigating the anharmonicity evaluated at the charge degeneracy point nд = 1/2, we
obtain the following asymptotic expressions [40]:

α ' −EC, αr ' −
1√

8E J/EC
. (1.19)

This result ensures that while the charge dispersion diminishes exponentially with in-
creasing E J/EC , the reduction in anharmonicity exhibits a much weaker dependence on
this ratio. This characteristic allows to engineer an e�ective two-level system within the
transmon regime, typically at E J/EC = 10− 100 (refer to Fig. 1.6b), leading to a signi�cant
enhancement in relaxation and dephasing times [40][41].

In Eq. 1.15 the operator n̂ together with the gauge-invariant phase introduced in 1.2
form a canonical conjugate pair, obeying the commutation relation [eiϕ̂,n] = eiϕ̂ [30][42].
The variance of the charge degree of freedom is large when E J/EC � 1, and the variance
of its conjugate variable ϕ̂ is correspondingly small [34], so the commutation relation
above, not taking in account the fact that ϕ̂ is periodic (see Ref. e.g. [30][42]), reads as:[

ϕ̂, n̂
]
= i . (1.20)

This means that in the transmon regime, we can neglect the o�set charge, since now the
system is insensitive to this parameter [34], and expand the cosine in Eq. 1.15 to the 4th
order:

H = 4ECn̂2 − E J cos ϕ̂ ' 4ECn̂2 +
1
2E Jϕ

2 −
1
4!E Jϕ

4. (1.21)



Figure 1.6: Figure a) shows the plot of charge dispersion |ϵm | normalized to the E01 transition as a function
of the ratio E J /EC for the lowest four levels. The solid line represents the exact solution obtained from
Eq. 1.15, while the dashed curve depicts the relative asymptotic solution given by Eq. 1.17. b) displays
the relative anharmonicity obtained at the degeneracy point as a function of the ratio E J /EC . The solid
curves show the exact results obtained from Eq. 1.15, while the dashed curves represent the asymptotic
behavior as given by Eq. 1.19. In orange, the region of weak negative anharmonicity is highlighted, where
the transmon circuit is operated. These �gures have been adapted from Ref. [40].

In analogy with Eq. 1.12 we can introduce creation and annihilation operators b̂ and
b̂+ for the de-excitations and excitations of the system, respectively [34]:

ϕ̂ =

(
2EC
E J

)1/4 (
b̂+ + b̂

)
, n̂ =

i

2

(
E J

2EC

)1/4 (
b̂+ − b̂

)
. (1.22)

Substituting these into Eq. 1.15, we obtain:

H =
√
8E JECb̂+b̂ −

EC
12

(
b̂+ + b̂

)4
' ~ωqb̂

+b̂ −
EC
2 b̂+b̂+b̂b̂ (1.23)

Here
~ωq =

√
8E JEC − EC (1.24)

represents the transition frequency between the ground and the �rst excited state, as
shown in Fig. 1.7a. In Eq. 1.23 is employed the Rotating Wave Approximation (RWA). This
approximation neglects interactions that do not preserve the photon number, and thus the
not-conserving energy terms [30]. This RWA remains valid within the transmon regime,
where ~ωq � EC/4 [34]. From this, we can observe that the behavior of the transmon
circuit is essentially that of a weakly anharmonic oscillator (AHO) [14]. For quantum
information processing, even in the presence of this weak nonlinearity, it is then possible
to consider only the ground and �rst excited states preventing undesired transitions to
other states [34]. In this scenario, the transmon operates as a two-level system, or a qubit
[14]. Thus, introducing the Pauli-z operator σ̂z , we can simplify the Hamiltonian above
to:

H =
~ωq

2 σ̂z . (1.25)
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Figure 1.7: a) Two-level system con�guration, where the computational basis and the weak anharmonicity
of the system are highlighted. b) The Bloch sphere o�ers a visualization of the quantum state |Ψ〉 =
α |0〉 + β |1〉. In this representation, the qubit’s quantization axis – the z axis – aligns longitudinally
within the qubit frame, corresponding to the σz term in the qubit Hamiltonian 1.25. The x-y plane resides
transversely within the qubit frame [14].

In terms of the eigenvector of the Pauli matrix σz , we can de�ne the ground state |0〉 and
an excited state |1〉 of the two-level quantum system [43], see Fig. 1.7a:

|0〉 =
(
1
0

)
, |1〉 =

(
0
1

)
. (1.26)

1.2.4 Decoherence and dephasing
As discussed in the previous section, the transmon circuit behaves as a two-level system.
A two-level quantum system is described by Eq. 1.1, where the ground and excited
states of a qubit, are metaphorically referred to as the north pole |0〉 and south pole |1〉,
respectively [30][14]. The qubit quantization axis is described by the longitudinal axis
(z-axis), connecting the north and south poles. Meanwhile, the x-y plane constitutes the
transverse plane [14], as shown in Figure 1.7b. In this spherical coordinate system, the
qubit frequency can be visualized on the Bloch sphere as a precession around the z-axis
of the unit Bloch vector ®a = (sinθ cosϕ, sinθ sinϕ, cosθ ). We represent the Bloch sphere
in a reference frame where the x and y-axes also rotate around the z-axis at the qubit
frequency. As we will see in Sec. 1.3.1, this is called rotating frame [14]. In the rotating
frame picture, the Bloch vector is stationary on the Bloch sphere. Being |Ψ〉 a pure state,
we can introduce the density matrix:

ρ = |Ψ〉 〈Ψ| =
1
2 (I + ®a · ®σ ) =

(
cos2 θ2 e−iϕ cos θ2 sin

θ
2

eiϕ cos θ2 sin
θ
2 sin2 θ2

)
=

(
|α |2 αβ∗

α∗β |β |2

)
. (1.27)

More generally, the surface of the unit sphere represents pure states, and its interior
mixed states [14].



Figure 1.8: a) Longitudinal relaxation processes due to transverse noise that couples to the qubit in the x-y
plane and drives transitions. In blue, the emission process of energy to the environment is highlighted. In b)
the pure dephasing due to the longitudinal noise along the z-axis causes �uctuations of the qubit frequency.
c) The e�ect of energy relaxation and pure dephasing due to transverse relaxation with a loss-rate Γ2.
Figures adapted from [14].

We can introduce at this point the problem of noise sources weakly coupled to the
qubits. The idealized systems described above, in fact, when realized in any physical
implementation, will inevitably be coupled to external degrees of freedom, either inten-
tionally via external lines to address the circuits, or unintentionally due to couplings to
parasitic systems or thermal baths. These additional degrees of freedom lead to loss of
the quantum information stored in the qubit [44].

In the hypothesis that these noise sources have correlation times shorter than the
system dynamics, such as white noise [14][45], and assuming at t = 0 the initial state is
described by Eq. 1.1, the impact of noise on the qubit can be modeled with the Bloch-
Red�eld density matrix ρBR [14][45]:

ρBR =

(
1 + (|α |2 − 1)e−Γ1t αβ∗eiδωte−Γ2t

α∗βe−iδωte−Γ2t |β |2e−Γ1t

)
, (1.28)

where the phase eiδω , with δω = ωq − ωd , accounts for the possibility that the frame is
driven to rotate with a frequency ωd di�erent from ωq .

In the Bloch-Red�eld picture, the impact of noise on the qubit accounts for three main
processes [14].

Longitudinal relaxation accounts for depolarization along the qubit quantization
axis of the qubit. As shown in Fig. 1.8a, it is caused by transverse noise, via the x- or y-axis,
due to energy exchange with the environment. A qubit in state |1〉 relaxes to |0〉 with
a relaxation rate Γ1↓. Similarly, in the exciting process the qubit in the state |0〉 absorbs
energy from the environment, exciting it to |1〉, with a rate Γ1↑. The latter process in typical
operative condition, ~ωq � kBT , is suppressed [14], and only the down-rate contributes
signi�cantly, so Γ1 = Γ1↓ + Γ1↑ ≈ Γ1↓. This process is described by the longitudinal decay
function e−Γ1t , with a decay time T1 and a decay rate:

Γ1 ≡
1
T1
. (1.29)
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Figure 1.9: Circuit diagram illustrating the capacitive coupling between a microwave drive line character-
ized by a time-dependent voltage Vd (t) and a generic transmon-like superconducting qubit [14].

Pure dephasing is an elastic process that occurs in the x-y plane, see Fig. 1.8b,
characterized by the rate Γϕ . This depolarization is caused by longitudinal noise that
couples to the qubit via the z-axis. Such longitudinal noise causes the qubit frequency ωq

to �uctuate, such that it is no longer equal to the rotating frame frequency ωd .
Transverse relaxation describes the loss of coherence of a superposition state. This

process is characterized by the rate:

Γ2 ≡
1
Γ1
+ Γϕ . (1.30)

As shown in Fig. 1.8c, it is caused in part by longitudinal noise, which �uctuates the qubit
frequency and leads to pure dephasing Γϕ , and by transverse noise, which leads to energy
relaxation of the excited state component of the superposition state at a rate Γ1.

1.3 Superconducting qubit control
In this section, we discuss methods for controlling a superconducting transmon circuit.
Typically, a transmon qubit—such as those investigated in this thesis and shown in Sec.
2.3—is engineered to have capacitive couplings with both a resonator and a drive line.
Additionally, it may feature inductive coupling with a local magnetic �eld, as is the case
of the split-transmon, which will be introduced in Sec. 1.3.2.

1.3.1 Capacitive coupling for X,Y operation
In this section, we discuss how we can control the state of a superconducting transmon
qubit. This is typically achieved by capacitively coupling a superconducting transmon
qubit to a microwave source as shown in Fig. 1.9. We start considering a time-dependent



driving voltage, denoted as Vd(t), coupled through a capacitor Cd . The e�ect of the
microwave control is to couple the drive signal to the momentum Q of the circuit in Fig.
1.9 [14][46]. Taking advantage of Eq. 1.12 and Eq. 1.13 in Sec. 1.2.2, we obtain:

H = Htransmon − i
Cd

CΣ
Vd(t)Qzp f (â − â

+), (1.31)

where CΣ = C +Cd . In the two-level approximation, see the discussion of Sec. 1.2.3, we
make the replacement (â − â+) → iσy , and obtain the following Hamiltonian:

H =
~ωq

2 σ̂z + ΩVd(t)σ̂y, (1.32)

where Ω = (Cd/CΣ)Qzp f . To explain the role of the drive, it is advantageous to move into
a frame rotating with the qubit at frequency ωq , denoted rotating frame [14], so the form
of the drive interaction reads as:

H̃d = ΩVd(t)
(
cos(ωqt)σ̂y − sin(ωqt)σ̂x

)
. (1.33)

We can assume that the time-dependent part of the voltageVd(t) = V0v(t), is proportional
to:

v(t) = s(t) sin(ωdt + ϕ) = s(t)
(
cos(ϕ) sin(ωdt) + sin(ϕ) cos(ωdt)

)
, (1.34)

where s(t) is a dimensionless envelope function, and the amplitude of the drive is set by
V0s(t) [14]. We adopt at this point the following notations:

I = cos(ϕ) In-phase component
Q = sin(ϕ) Out-of-phase component,

(1.35)

so the Eq. 1.33 reduces to:

H̃d = ΩV0s(t)
(
I sin(ωqt) −Q cos(ωqt)

) (
cos(ωqt)σ̂y − sin(ωqt)σ̂x

)
. (1.36)

In the condition |ωq − ωd | � |ωq + ωd |, the terms oscillating with frequency ωq + ωd

average out to zero, and we can perform the Rotating wave approximation (RWA) as seen
in the Sec. 1.2.3 [14][30]:

H̃d =
1
2ΩV0s(t)

[ (
− I cos(δωt) +Q sin(δωt)

)
σ̂x +

(
I sin(δωt) −Q cos(δωt)

)
σ̂y

]
, (1.37)

whereδω = ωq−ωd . Finally reintroducing the notation of Eq. 1.34, the driving Hamiltonian
in the rotating frame using the RWA can be written as:

H̃d = −ΩV0s(t)

(
0 ei(δωt+ϕ)

e−i(δωt+ϕ) 0

)
. (1.38)

This formulation helps us to demonstrate that through the selection of the drive’s phase,
direct rotations of the Bloch vector around any axis within the x-y plane become feasible.
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Figure 1.10: The four principal quantum single-qubit gates. For each gate, their input/output e�ects,
corresponding circuit notations, and their relative representations on the Bloch sphere. Figure adapted
from [14].

Indeed, suppose to apply a drive pulse at the qubit frequency, δω = ωq −ωd = 0, the drive
Hamiltonian in 1.37 reads as:

H̃d = −
1
2ΩV0s(t)(I σ̂x +Qσ̂y). (1.39)

Here we see that for a drive with ϕ = 0 (Q = 0)we maintain only the in-phase component,
which corresponds to rotations around the x-axis, while an out-of-phase pulse with
ϕ = π/2 (I = 0) corresponds to rotations around the y-axis. In practical scenarios, the
execution of these rotations can achieve a remarkable level of �delity through meticulous
calibration and precise shaping of the pulses [47].

Within this framework, we now introduce single-qubit gates, which enable controlled
manipulation of the quantum state of a qubit and serve as the building blocks for more
complex quantum algorithms [14].

Single-qubit quantum operations are de�ned within the qubit computational basis
introduced in Section 1.1, as shown in Equation 1.26. Focusing on the main four single-
qubit gates depicted in Figure 1.10, we have [14]:

I =
(
1 0
0 1

)
X =

(
0 1
1 0

)
Y =

(
0 −i
i 0

)
Z =

(
1 0
0 −1

)
. (1.40)

Here, the gate I corresponds to the identity, essentially maintaining the initial state of
the qubit. The X-gate induces a rotation of π around the x-axis. Similarly, the Y-gate and
Z-gate enact π rotations around the y-axis and z-axis, respectively. While microwave
pulses of arbitrary amplitude and phase, on resonance with the qubit, produce rotations in
the x - y plane, rotations around the remaining axis (z-axis), i.e., Z-gates, correspond to a
change in the relative phase between the |0〉 and |1〉 states. A Z-gate can be implemented
by either a composition of X and Y gates, known as a virtual Z-gate [48] or by detuning
the frequency of the qubit with respect to the drive �eld for some �nite amount of time,
physical Z control [49]. One way to achieve this goal is to use �ux-tunable transmon qubits,
also named split-transmon [14].



Figure 1.11: a)-b) Symmetric SQUID con�guration, and corresponding qubit transition frequencies for
the two lowest energy states as a function of applied magnetic �ux in units of Φ0. c)-d) Asymmetric
con�guration with γ = E J 2/E J 1 = 2.5. Here it is evident that an asymmetric fabrication returns a smaller
range of tunability of the �ux frequency. Figures adapted from [14].

1.3.2 Flux-tunable transmon: physical Z control
The necessity for achieving high-�delity gate operations stimulated the use of qubits with
tunable frequencies [14]. One approach is to introduce an additional degree of freedom in
the circuit. This involves replacing the single Josephson junction (refer to Fig. 1.4b) with
two parallel junctions, which form a DC-Superconducting QUantum Interference Device
(dc-SQUID) (see Fig. 1.11a) [34]. As a result of the interference between the two arms
of the SQUID, the e�ective critical current of the two parallel junctions can be tuned by
applying an external magnetic �ux Φext through the loop (as shown in Fig. 1.11) [14].
Consequently, the Josephson energy of the circuit depends on the external �ux applied
Φext , and in terms of the individual Josephson energies of the two junctions, reads as:

E J (Φext ) = E J ,Σ cos
(
πΦext

Φ0

)√
1 + d2 tan2

(
πΦext

Φ0

)
, (1.41)

with E J ,Σ = E J ,2 + E J ,1 and d =
(
E J ,1 − E J ,2

)
/
(
E J ,1 + E J ,2

)
the junction asymmetry. Accord-

ing to Eq. 1.24, replacing the single junction with a SQUID loop yields to the �ux-tunable
transmon frequency, see Fig. 1.11b:

ωq (Φext ) =
√
8EC |E J (Φext ) | − EC . (1.42)
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1.4 �bit readout: the Jaynes-Cummings model
An essential circuital component of the transmon design is a microwave resonator, capaci-
tively coupled to the qubit. Within the domain of the circuit quantum electrodynamics
(cQED) device, superconducting resonators are elements that work as harmonic oscillators
(red circuit in Fig. 1.12a), where the electromagnetic �eld is con�ned either in a planar
two-dimensional structure, or in a 3D cavity [34]. In the �rst proposal of the transmon by
Koch et al. (Ref. [40]), such resonator is a λ/2 coplanar waveguide resonator (Figure 1.12b).
This con�guration allows for an interaction between a two-level atom and one mode of
the electromagnetic �eld, a scenario often approximated as the single mode approximation
[34] [50]. From Eq. 1.13 and 1.25, the Hamiltonian of the circuit is [30][50]:

H =

[
~ωq

2 σ̂z

]
qubit

+

[
~ωr

2 â+â

]
cavity

+ ~д(â + â+)(σ̂− + σ̂+). (1.43)

In the interaction terms of the Hamiltonian, two energy-conserving processes can be
identi�ed: âσ̂+, where a photon is emitted and the atom transitions from state |0〉 to state
|1〉, and â+σ̂−, indicating the adsorption of a photon and de-excitation of the atom. On
the other hand, the processes âσ̂− and â+σ̂+ do not conserve energy. When the �eld mode
is nearly resonant with the qubit, such that |ωq − ωr | � ω, д, the RWA can be invoked.
This allows to disregard the âσ̂− and â+σ̂+ terms [30]:

H =
~ωq

2 σ̂z +
~ωr

2 â+â + ~д(âσ̂+ + â+σ̂−). (1.44)

The equation above is known as the Jaynes-Cummings Hamiltonian, describing the coher-
ent exchange of a single quantum between light and matter.

The Jaynes-Cummings Hamiltonian is an exactly solvable model that accurately
describes scenarios in which an atom, either natural or arti�cial, can be treated as a
two-level system interacting with a single mode of the electromagnetic �eld [34]. In the
absence of the coupling constant g, the eigenstates of the unperturbed Hamiltonian, often
referred to as bare states [34], are denoted as |σ ,n〉 = |σ 〉qubit⊗ |n〉�eld. Here, σ = {|0〉 , |1〉}
represents the �rst two levels of the transmon, and |n〉 (where n = 0, 1, ...) corresponds to
the Fock states of the resonator �eld.

From Equation 1.44, we observe that only transitions between the states |0,n + 1〉 and
|1,n〉 are permitted. Thus, the Hamiltonian 1.44 can be diagonalized within the subspace
|0,n + 1〉 , |1,n〉 with eigenvalues [30][34][37]:

E |0,n+1〉 =~ωr

(
n +

1
2

)
−
~

2

√
∆2 + ΩR,n,

E |1,n〉 =~ωr

(
n +

1
2

)
+
~

2

√
∆2 + ΩR,n,

(1.45)

and the corresponding eigenstates:
|0,n + 1〉 = cos (θn/2) |0,n + 1〉 − sin (θn/2) |1,n〉 ,
|1,n〉 = cos (θn/2) |0,n + 1〉 + sin (θn/2) |1,n〉 ,

(1.46)



Figure 1.12: a) E�ective circuit diagram of the �ux-tunable transmon qubit (dark blue), resonator (red),
�ux-biasing circuit (brown), and the voltage biasing circuit (cyan). b) Simpli�ed schematic of the device
design showing large interdigitated capacitors designed to achieve the transmon regime E J /EC � 1. In this
scheme, the transmon is coupled to the second harmonic, l = 2, of the cavity [47]. Figures adapted from
[40].
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Figure 1.13: Transmission spectrum of the cavity (left), and corresponding phase shifts (right) depending
on the state of the qubit (red for the excited state, black for the ground state).

with the angle θn = arctan(ΩR,n/∆). The eigenstates of Eq. 1.46 are called dressed states,
and are the solutions of the Jaynes–Cummings model to the problem of a qubit interacting
with the �eld mode. In the presence of the coupling, the two-level system can no longer
stay in a given state |0〉 and |1〉 since the states are now the linear combinations of the
dressed states. Consequently, the probability of �nding, for instance, the qubit in its
ground state will oscillate with a frequency

√
∆2 + ΩR,n, referred to as the generalized

Rabi frequency. Here ΩR,n = Ω0
√
n + 1 is n-photon Rabi frequency on resonance, i.e. when

the qubit-resonator detuning ∆ = ωq − ωr = 0. We see that even the vacuum �eld (n = 0)
can couple the two states, leading to the vacuum Rabi frequency Ω0 [37].

1.4.1 �antum non-demolition readout
In case of detuning ∆ = 0 we have the maximal entanglement between qubit-resonator
states implying that the qubit is, by itself, never in a well-de�ned state [34]. For quantum
non-demolition (QND) readout, where the quantum measurement outcome doesn’t a�ect
the system during reading, working in the dispersive regime is more practical [14]. In
this regime, the interaction between the �eld mode and the qubit does not lead to Rabi
oscillations but to a mutual frequency shift of the qubit and the resonator [30]. To achieve
this outcome, a canonical transformation of the �eld-qubit Hamiltonian 1.25 is performed,
referred to as the Schrie�er and Wol� transformation (SWT) [30]. Assuming the system to
operate far enough from resonance, with ωq,ωr � |ωr −ωq | � д, and using second-order
perturbation theory in terms of д/∆, we have [30][34][40]:

Hdisp =
~ω′q

2 σ̂z + ~(ω
′
r + χσ̂z)â

+â. (1.47)

Here, χ is the qubit state-dependent frequency shift, commonly known as a dispersive
shift. As shown in Fig. 1.13 the mode frequency is shifted by ∓д2/∆ depending on the
state of the qubit, see Fig. 1.13:

χ =
д2

∆
, ω′r ' ωr , ω′q = ωq +

д2

∆
. (1.48)



The qubit frequency acquires a Lamb shift, induced by the vacuum �uctuations in the
resonator [14]. Notably, the expression above remains valid when considering only the
ground and �rst excited states. However, when accounting for the second excited state, a
dependence on the anharmonicity emerges [34]:

χ =
д2

∆

(
1

1 − ∆
Ec/~

)
ω′r = ωr +

1
1 − ∆

Ec/~

. (1.49)

Finally, we note that the second-order perturbative results of Eq. 1.47, provide a good
approximation when the number of photons in the oscillator is signi�cantly smaller than
the critical photon number nc ≡ ∆2/(4д2) [40].
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Contents: 2.1 Dilution refrigerator. 2.2 Cryogenic Electronics. 2.3 Devices under test. 2.4 Contin-
uous wave measurement setup. 2.5 Time-domain measurements. 2.6 Protocols for single-qubit
characterization. 2.6.1 Spectroscopy experiments – 2.6.2 Time-domain protocols.

2.1 Dilution refrigerator

As mentioned at the beginning of chapter 1, advancements in cooling technology are
pivotal for progress in superconductivity. In particular, the study of superconducting
qubits can not be separated from the use of modern dilution refrigerators that allow to
reach temperatures below 10mK [51].

This operating temperature holds crucial signi�cance, as it stands precisely for an
order of magnitude lower than the thermal equivalent of the energy gap between the
ground and excited states in conventional superconducting qubits (Sec. 1.1). The typical
frequency of a qubit is, in fact, of the order f01 ≈ 4 − 6 GHz, and in terms of the Boltzman
constant kB corresponds to a temperature around 100 − 200mK .

In Fig. 2.2c we show the dilution refrigerator employed in this work, the Triton 400 of
the Oxford Intrument. It is a dilution fridge called dry, which di�ers from those of the wet
type because of the absence of an external 4He bath. The dilution refrigerator is based on
the thermodynamic properties of the mixture of two Helium isotopes, 3He and 4He . The
mixture is �rst cooled down to the pre-cool temperature (of the order of 10 K) by the use
of a compressor, namely the Pulse Tube Refrigerator (PTR), connected to the Precool unit
(PU) (Fig. 2.2c). Using a series of heat exchangers and pressure impedance in the lines,
we can reach temperatures of the order of 2 K by exploiting the Joule-Thomson e�ect
[52]. As shown in Figure 2.1a, when the mixture is cooled below approximately 800 mK,
it spontaneously undergoes a phase separation.

Once condensation of the mixture in the Mixing Chamber (MC) is obtained and the
critical phase separation temperature is reached, the mixture in the MC will separate
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Figure 2.1: Phase diagram of the 3He −4 He mixture in terms of the temperature and 3He concentration.
Below the threshold of 0.8 K, we observe a phase separation of the mixture into a dilute and a concentrated
phase of 3He , the endothermic process required to reach temperatures below 10 mK.

into two phases: a lighter 3He-rich phase positioned above and a denser 4He-rich phase
below. By exploiting the endothermic nature of the evaporation process of 3He from
the mixture, it is possible to reach the base temperature in the MC at 10mK. In Figure
2.2b, the Dilution unit is shown, where this process is repeated cyclically so that the 3He
concentration is continuously restored (see Figure 2.2a) and the base temperature remains
stable. Moreover, the mixture during the closed cycle passes through a trap containing
activated charcoals cooled with liquid nitrogen. This sponge-like material has the function
of absorbing any contaminants in the mixture.

As shown in Figure 2.2c, the cryostat consists of �ve plates which are characterized
by di�erent operating temperatures. The sample is thermally anchored on the bottom of
the MC plate. Before starting the cooling procedure, the system is isolated with several
shields. The sample is closed within a �rst stage ECCOSORB-plated tin screen, and then in
a copper-plated Cryoperm screen to protect it from external magnetic �elds and radiations,
both of them thermally anchored to the MC. Additional radiative screening is placed at
the Still plate, the 4K plate, and the 70K plate, while an Outer Vacuum Chamber (OVC)
is placed at the RT plate, which provides the vacuum insulation in which dry-cryostats
operate.
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Figure 2.2: a) Schematics for the 3He −4 He mixture circle in the Dilution unit (DU). In b) an example of
DU is presented, with the mixing chamber located at the bottom and the still chamber at the top. The heat
exchangers are highlighted in the center. c) The Triton 400 of the Oxford Intrument employed in this work.
The cryostat is shown without the screens that ensure the vacuum and the isolation of the sample from
radiation and external electromagnetic �elds. The �ve plates, each denoting a speci�c temperature, are
highlighted. Figure a) and b) adapted from [51]



Figure 2.3: Schematic for the cryogenic lines. The input lines for the readout (green), drive (brown), and
�ux (blue) pass through several stages of cryogenic attenuation thermally anchored on the plates of the
cryostat: the 4 K plate, the Cold plate, and the Mixing chamber (MC). An additional level of attenuation is
applied at RT. In the output (red) from the sample, there are two circulators and two stages of ampli�cation.
At the 4K plate, a High Electron Mobility Transistor (HEMT) ampli�er from Low Noise Factory, which can
provide 40 dB of ampli�cation within the 4-8 GHz band. At room temperature (RT), three RT ampli�ers
that individually provide a gain of 16 dB. Both input and output lines are connected to the input/output
ports on the Device Under Test (DUT) through low-pass �lters.

2.2 Cryogenic Electronics

The frequency band within which we interface with superconducting circuits falls within
the GHz range, typically ranging from 2 to 8 GHz. To carry these microwave signals,
the cryostat is equipped with dedicated coaxial cables called RF lines. These RF lines are
divided into: a pair of 6 input RF-lines, made of stainless steel, and 2 output lines, made of
Cu-Ni from room temperature (RT) to the 4 K plate and a superconducting alloy of Nb-Ti
from 4 K to the mixing chamber (MC) plate.

In the measurements made, one of the input lines is used to convey the readout signal.
The signal passes through several stages of cryogenic attenuation thermally anchored
on the plates of the cryostat as shown in Fig. 2.3: the 4 K plate, the Cold plate, and
the Mixing chamber (MC), up to a cryogenic attenuation level of 50 dB. As shown in
Fig. 2.2, the sample is thermally anchored to the MC by a copper Cold �nger. Both
input and output lines are connected to the input/output ports on the sample holder
through cryogenic cables and low-pass �lters. These �lters are designed as RF �lters with
a functional frequency range up to 8 GHz, except for the input and output of the feedline,
where their operational range extends up to 10 GHz. In the output from the sample,
there are two circulators that act as isolators. An isolator is a device that isolates an
electromagnetic device from spurious re�ections and transmission of an electromagnetic
wave, e�ectively mitigating backaction phenomena [53].
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Figure 2.4: Sample holder anchored to the mixing chamber through the Copper extension and microwave
lines connected to the external electronics.

The attenuated signal after interacting with the sample is ampli�ed through two
stages. The �rst cryogenic stage consists of a High Electron Mobility Transistor (HEMT)
ampli�er from Low Noise Factory, which can provide 40 dB of ampli�cation within the
4-8 GHz band. This ampli�cation stage is thermally anchored to the 4 K plate because the
HEMT is an active ampli�cation element that produces thermal noise on the same order
of magnitude as the 4 K plate temperature. At room temperature (RT), the �nal stage of
ampli�cation consists of three RT ampli�ers that individually provide a gain of 16 dB.
In the cryostat, components such as ampli�ers, attenuators, and isolators are thermally
anchored to the plates to enhance e�ciency and accelerate the process of thermalization
during the cool-down process.

2.3 Devices under test

In this work, we studied two sample chips by QuantWare, a foundry of superconducting
quantum processors located in the Delft area, in the Netherlands [11]: a 5 qubits chip
and a two-qubit chip, from now on named as Soprano and Soprano_TunC (an acronym
for Tunable Coupler). The schematics of the devices are reported in Fig. 2.5a and 2.5b,
respectively. Despite sharing similarities, they possess di�erent design characteristics.
Both chips are based on transmon qubits, characterized by Josephson junctions composed
of aluminum electrodes and aluminum oxide barriers (AlOx ), with a grounding of niobium-
titanium nitride (NbTiN). A detail of the transmon qubit and the Josephson junctions is
reported in 2.5 c) and d), respectively. The Soprano device consists of 6 �oating transmon
qubits: 5 computational coupled qubits and 1 isolated qubit. The �ve computational qubits
are split-transmon labeled Q0 to Q4. Q0 and Q1 have the lowest frequencies, while Q3
and Q4 have the highest frequencies. This chip design is a standard proposal for a 5-qubit
multi-qubit processor [54]. In this design, Q2 is coupled to the other 4 computational



Figure 2.5: Two superconducting chips embedded in a printed circuit board (PCB) via wire bonds. The
PCB provides the structures for grounding and microwave interconnects. In a) is shown the Quantware
5-qubit chip Soprano, with the drive and �ux lines in brown and blue, respectively. The chip features a
single multiplexing feedline that capacitively couples with the readout resonators associated with the
5 computational qubits, as well as the sixth isolated qubit. In this con�guration, qubit 2 is designed to
be capacitively coupled to the other 4 qubits through the high-frequency bus resonators. b) Design of
the Soprano_Tunc chip from the collaboration between Quantware, UniNA and Seeqc in the frame of the
SFQ4QPU project, which features 4 pairs of qubits coupled via tunable couplers. For each qubit transmon,
there are 10 cavities for QND readout, numbered according to their frequency. C0 is the lowest-frequency
cavity and C10 is the highest-frequency cavity. In c), the layout for the split transmon is displayed, a design
shared by both con�gurations. The capacitive coupling lines for the drive (brown) are highlighted along
with the line for �ux control (blue) inductively coupled with the DC-SQUID ring shown in d).
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qubits via high-frequency bus resonators.
The Soprano_Tunc is a prototype device, that includes 4 pairs of transmon qubits for

diagnostic and research purposes in the frame of a collaboration between Quantware, the
University of Napoli "Federico II" and the Digital Quantum Computing company Seeqc
(SFQ4QPU - Eurostars project). Each pair consists of a �xed transmon and a split transmon.
The coupling between the two transmons in each pair is mediated by a third qubit, which
is a DC-SQUID. This design allows for tunable coupling between the two transmons. The
junctions in the DC-SQUID of the split-transmon of both the chips are designed to be
symmetrical, which allows for wide variation in qubit frequencies, as detailed in the Sec
1.3.2.

The designs of both chips involve computational qubits coupled with readout res-
onators to operate within the dispersive regime as discussed in Sec. 1.4.1. Notably, the
Soprano_Tunc design incorporates four coupler pairs: two of them, TC34 and TC78, are
equipped with a readout resonator. While providing the couplers of readout resonators
isn’t required for computational tasks, it is useful for study and characterization purposes.

Both the devices use a single feedline to allow for multiplexing measurements, in which
multiple qubit states can be read at the same time by exploiting the di�erent frequencies
of the readout resonators [55]. The feedline, like the other input lines, is coupled to the
50 Ω RF electronics via pads mounted on the sample holder, which in turn couples the RF
lines to the RT electronics, as discussed in the previous section (see Fig. 2.4).

The devices under test employed in this study are based on Coplanar Waveguide (CPW)
RF lines that use transverse electromagnetic modes (TEM) of microwave radiations. CPWs
can be engineered in such a way that we can maximize the magnetic or electric �eld of
the TEM signal. This is useful because in some cases we need to maximize the microwave
electric �eld (for qubit drive or readout), and in other cases, we need to maximize magnetic
�elds (for �ux biasing of the DC SQUID) [56]. In Fig. 2.5, both chips are depicted along
with their respective drive and �ux lines.

Fig.2.5 displays the layout of the devices, which includes the drive line capacitively
coupled to the qubit through elbow couplings [64], intentionally designed to maximize
the electric �eld of the TEM modes needed for qubit drive on the Bloch sphere, as seen in
Sec. 1.1. Resonators are also capacitively coupled to the qubit and feedline via interdigited
capacitive coupling. Finally, �ux lines are inductively coupled to the DC-SQUID to allow
for control through the applied magnetic �eld and frequency tunability, as discussed in
Sec. 1.3.2. Notably, in the Soprano_Tunc design, the transmon-couplers are also connected
with �ux lines that allow tunability.

2.4 Continuous wave measurement setup

Spectroscopy measurements are fundamental for the study and characterization of su-
perconducting circuits. Employing a two-port Vector Network Analyzer (VNA), see Fig.
2.6a, it becomes possible to generate signals within a speci�c frequency range while
simultaneously measuring both the amplitude and phase of the re�ected and transmitted



Figure 2.6: In a) front view of the Rohde&Schwarz Vector Network Analyzer ZVL13. This device is a
two-port VNA, which is able to generate and measure from 9 KHz up to 13.6 GHz with a resolution of
1 Hz, and a signal attenuation range of up to 30 dB [57]. b) Keysight rack with instruments used for
characterization of qubits in time-domain, equipped with: two Arbitrary Waveform Generator (AWG), from
Keysight [58] (blue), able to generate waveforms in the band up to 400 MHz, and DC bias, for �ux tuning.
The system is also equipped with two Local Oscillators (LO) by Signal Core, with di�erent generation
bandwidths: up to 6 GHz [59] (slot 7) and up to 20 GHz [60] (slot 5). The digitizer from Keysight (slot 2) is
used in time-domain measurements and is characterized by a sampling rate of 500 MSample/s [61]. The
rack is connected to the measuring computer via slot 1. The proprietary software Labber [62] is employed
for time-domain measurements. Spectroscopy measurements are commonly performed via the Python
environment QCoDeS interface [63].

Figure 2.7: Schematic equivalent for a two-port network characterized by the four scattering parameters.
Figure adapted from [65].

signals.
Given a high-frequency signal, such as the microwave range with which we work, it is

more accurate to express the measurement in terms of power and energy variables. Thus,
the relationship between the incident (a1,a2) and re�ected (b1,b2) waves, see Fig. 2.7, is
described by the following scattering matrix in terms of the scattering parameters S:(

b1
b2

)
=

(
S11 S12
S21 S22

) (
a1
a2

)
, (2.1)

where S11 and S22 are de�ned as re�ection coe�cients at ports 1 and 2, respectively, while
S21 and S12 correspond to the transmission from port 1 to port 2 and vice versa. The
conditions S21 = S12 identify a network with two ports that is reciprocal, and if the input
and output impedance are the same, we speak of a two-port network that is symmetric
S11 = S22 [65].
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Figure 2.8: Schematic for the experimental set-up for spectroscopic measurements. In a resonator
spectroscopy measurement, only the VNA signal-source (port-1) is employed. In the qubit spectroscopy, we
use also an AWG (slot 3 and 4, see Fig. 2.6b) as a DC source for �ux bias and the LO (slot 7) as drive signal
source (Sec. 1.3.1). The Device Under Test (DUT), anchored at the MC, shows the detail of the pair Q1 and
Q2 of the Soprano_Tunc, as an example. We stress though that the measurement setup is totally analogous
to the Soprano chip.



The VNA provides fast and reliable information about the samples allowing the
study of the components both in transmission and re�ection. In a typical setup for the
resonator spectroscopy measurement, a transmission experiment is performed, where
an RF signal is sent through port 1 to the input line of the sample feedline. In this kind
of measurement, the input signal is a continuous excitation of the resonator, commonly
referred to as continuous wave measurement. The output signal is then recorded by port-2
as a complex EM signal, and the VNA can measure both the real and the imaginary parts in
the form of a magnitude (in dBm) and a phase [66]. From them, we can extract the readout
resonator characteristics such as resonance frequency, dispersive shift, and quality factors.
Similarly, qubit spectroscopy can be performed by using continuous wave readout
signals in a frequency range of a few kHz around the readout frequency in the dispersive
regime. A typical spectroscopy setup is shown in Fig. 2.8. In a qubit spectroscopy,
a continuous wave signal is added on the dedicated drive line, by employing a Local
Oscillator (LO) see Fig. 2.6b. This setup allows us to obtain the transition frequencies
of the qubit (such as |0〉 → |1〉 , |0〉 → |2〉), ..). Additionally, the use of a waveform
generator (AWG), also allows to bias the dedicated �ux line to perform measurements of
the frequency tunability. Continuous wave measurements are �nally acquired through
the QCodes Python environment [67], which allows to connect with each instrument,
develop experiment routines, store the data and show the outcome of the experiments.

2.5 Time-domain measurements
For the study of computational operations, it is necessary to move in time-domain, i.e.,
from continuous-wave (CW) signals to pulsed tones. Fig. 2.9 shows an experimental
scheme for time-domain characterization, which includes: Arbitrary Waveform Genera-
tors (AWGs), LOs, IQ and three-ports mixers, and an analog to digital converter, namely
the Digitizer. The AWG can generate pulsed waves but is limited in the frequency band
up to 400 MHz [58]. For higher frequencies, alternatives include employing AWGs op-
erating in the GHz range. However, their use is restrained by the associated costs and
the noise they generate in this frequency regime. An alternative approach involves the
UP conversion process, which combines the shape generated by the AWG with a pure
tone at high frequency (GHz), called carrier wave, generated by an LO. In this setup is
employed an IQ mixer which behaves like a multiplier of signals in the time domain [68].
As shown in Figure 2.9, the carrier tone from the LO is combined with the in-phase (I)
and quadrature-phase (Q) components of the intermediate frequency (IF) signal ωAWG−IF .
The mixing between the AWG and the LO produces two separate RF frequencies:

ωRF = ωAWG−IF ± ωLO, (2.2)

where one of the two sidebands can be suppressed with an appropriate calibration using
single sideband modulation [68]. As shown in Fig. 2.9, in this setup the up-conversion
is carried out both for the drive signal, with frequency ωD , on the dedicated drive line
(brown), and for the readout signal, with frequencyωRO , on the input feedline port (green).
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What changes is the choice of the proper LO, see Fig. 2.6b. For the RO it is necessary to
operate within the 6-8 GHz band range, therefore we use an RF generator with a maximum
output frequency of 20 GHz. For the drive, we are limited to a frequency range from 4 to
6 GHz, hence we use a LO with a maximum output frequency of 6 GHz.

Finally, the acquisition of the output signal by the digitizer, see Fig. 2.6b, requires
demodulation and down-conversion. Using a 3-port mixer, the output signal and the same
LO of the input signal are combined and down-converted to the following frequency:

ωIF = |ωout ∓ ωLO−RO |. (2.3)

This down-converted signal is then acquired by the digitizer for a time tacq = Nm
νs

, where
Nm is the number of samples and νs is the digitizer sampling rate, i.e. 500 MSample/s .
The choice of the acquisition time requires a balance between the need for a su�cient
number of samples during the RO pulse and the requirement to remain within the duration
of the RO pulse signal. This is to avoid bad triggering and asynchronous acquisitions
while acquiring enough data points [66]. After the acquisition of time-domain signals,
a Fast Fourier Transform (FFT) is applied by the digitizer’s demodulator. The Labber
environment incorporates a specialized software component known as the Multi-qubit
Pulse Generator [62], which enables the extraction of the magnitude and phase (or real
and imaginary components) of the RO signal. The results of these measurements are
ultimately stored and graphically accessed through dedicated software within the Labber
framework [62].

2.6 Protocols for single-qubit characterization

Before employing a circuit quantum electrodynamics (cQED) device as a quantum pro-
cessor, is essential to characterize the system through speci�c measurement protocols.
For clarity, Fig. 2.10 shows a dependency scheme, highlighting the main parameters
and their interrelationships during the characterization experiments. In this section, we
will speci�cally focus on the aspects of spectroscopy and qubit coherence. We initiate our
discussion by outlining the procedure for a �ux-tunable transmon coupled to a readout
resonator.

2.6.1 Spectroscopy experiments
The �rst step in characterizing a device is usually a spectroscopy experiment. Spectroscopy
refers to the measurement of intensity as a function of frequency and it is used to determine
resonance frequencies of resonators and qubits.

Let us consider, as in this thesis work, the case of λ/4 CPW resonators capacitively
coupled to a common microwave feedline. The initial step in the characterization process
involves resonator-readout (RR) spectroscopy to detect the presence of RR cavity and
identify their frequencies. This type of measurement is performed using single-tone
spectroscopy (Sec. 2.4). The transmitted measurement data S21 enable the extraction of



Figure 2.9: Summary diagram of the experimental setup for time-domain measurements. The input signals
of the drive (brown) and RO (green) are up-converted, while the output signal of RO (red) is down-converted.
To perform single and multi-qubit measurements in the time-domain, modulations in �ux are employed by
sending pulsed waveforms generated from the AWG through the dedicated �ux lines (blue).
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Figure 2.10: Dependency graph for the typical experiments on superconducting qubits. The arrows
represent dependency relationships between the di�erent types of measurements, progressing from the
readout frequency at the starting point to the gate �delity at the endpoint. Figure adapted from [69].



information about both the amplitude and phase of the signal. The measured S21 of each
resonator in response to a readout tone atω is described by a Lorentzian line shape, which
can be written as [70]:

S21 = A

[
1 + αω − ωr

ωr

] [
1 −

|κc |
κ

1 + 2i ω−ωrκ

]
ei(τvω+ϕ0), (2.4)

where A represents the transmission amplitude away from resonance and ωr is the qubit
state-dependent resonance frequency of the cavity introduced in Sec. 1.4.1. The parameter
α is indicative of how much the amplitude varies as a function of the detuning from the
resonant frequency ωr , and τv and ϕ0 are related to propagation delays to and from the
sample. Finally, κ is the total linewidth (full width at half maximum) of the resonance. It
encompasses both the external coupling rate κc and the internal loss rate κi , such that
κ = κc + κi . Here κc is related to how strongly the resonator is coupled to the external
readout or transmission line. The internal loss rate κi is determined by the material quality
and device layout.

In cQED systems, understanding each of these parameters is crucial for various tasks:
from the basic characterization of the resonator to more advanced operations like the
readout of qubits. They help describe not just the ideal resonator behavior, but also any
deviations from this ideal case due to real-world imperfections and complexities [69].

Typically, initial spectroscopy experiments are conducted in the high-power regime to
enhance the signal-to-noise ratio (SNR). Operating at high power means that the system
is outside the few-photon limit and, consequently, beyond the dispersive regime. In this
context, we identify the bare frequency of the reading mode, as discussed in Sec. 1.4.1. By
performing spectroscopy at varying power levels, shown in Fig.2.11a, we can determine
the dressed frequency of the resonator, as de�ned by Eq. 1.47.

The power sweep experiment serves as a prerequisite for following characterizations,
(Fig. 2.10). It tells us whether the qubit is dispersively coupled to the resonator. Moreover,
this experiment enables the readout optimization of the power settings required for
all following measurements, ensuring that the signal remains su�ciently strong while
avoiding nonlinear distortions or broadening of the resonator response [71].

In the case of �ux-tunable qubits, another valuable experiment involves conducting
resonator spectroscopy in the low-power regime while varying the current applied to
the �ux-bias line of the coupled qubit. From Eq. 1.42 and Eq. 1.47 we expect that the
resonator, when dispersively coupled to the �ux-tunable qubit, will vary its frequency
according to:

ωR (Φext ) = ωR +
д2

|ωq (Φext ) − ωR |
. (2.5)

This measurement o�ers dual advantages: it estimates both the dispersive shift and the
coupling strength д, while identifying the �ux point where ωr reaches its maximum value,
corresponding to the sweet spot of the qubit, see Sec. 1.2.3.

The technique for measuring the resonance frequency of the qubit is a protocol based
on two-tone continuous wave spectroscopy, also called qubit spectroscopy. In this
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Figure 2.11: Example of a Power Sweep Spectroscopy Experiment. In a), the resonator-readout (RR)
spectroscopy measurements is shown, and repeated for di�erent power levels of the readout tone signal.
At high power levels, a high-power transmission peak (A) becomes apparent. Upon reducing the power,
both the qubit and the cavity enter the dispersive regime, as discussed in Section 1.4.1. A low-power peak
then emerges at a di�erent frequency due to the dispersive shift, χ , which typically occurs in the range of a
few megahertz. A third peak (C) illustrates the impact of some residual thermal population. In b), cut plots
are displayed at three distinct power levels. These plots reveal the typical behavior of cavity transmission
versus frequency under varying power conditions. Figure adapted from [69].



Figure 2.12: In a) is shown the qubit spectroscopy measurement at low power drive. The background
of the output signal under o�-resonance conditions, ωs , ω01, corresponds to the dispersive state of the
resonator. However, when the drive tone is on-resonance with the qubit, a notable peak arises, marking the
transition frequency ω01 of the qubit. b) Increasing the power of the drive also the transition |0〉 → |2〉
occurs. Figures adapted from [4].

methodology a constant microwave tone is applied at dressed frequency ωr to resonate
with the RR, while a second drive tone ωs is employed to probe the state of the qubit.
The latter can be either sent through the feedline or the dedicated qubit drive line. As
shown in Fig. 2.12a, when the drive tone approximates the qubit’s resonance frequency
(ωs ≈ ωq = ω01), the frequency of the resonator changes due to the dispersive coupling,
see Eq. 1.47 and Fig. 2.12a.

The qubit spectroscopy measurement is highly dependent on the power level of the
drive tone applied to the qubit. If the power is too low, the qubit won’t be excited,
even when the drive frequency is near its resonance, resulting in no observable changes.
Conversely, applying excessive power will broaden the resonance line, making the peak
indistinguishable from the background noise. Since the strength of the coupling between
the qubit and the drive line is not known prior to characterization, a practical approach in-
volves iteratively performing the spectroscopy at various power levels until the resonance
is identi�able. We can con�rm that it is indeed the qubit mode of interest by verifying the
�ux dependence of its resonance frequency [69].

Performing a power sweep also reveals a second dip at a slightly lower frequency.
This dip corresponds to the process by which two photons of drive excited the qubit from
the ground state to the second excited state, |0〉 → |2〉, as depicted in Fig. 2.12b. The
location of this second transition indicates the anharmonicity of the transmon, see Eq.
1.18, which can be an important consideration for the design and calibration of subsequent
single-qubit operations [69].

2.6.2 Time-domain protocols
Once we measure the qubit frequency from spectroscopy, the �rst experiment in the
time domain is to the Rabi oscillation, since this experiment doesn’t require any pulse
calibration. It consists of applying a resonant microwave qubit-drive (QD) pulse to the
qubit. In the rotating frame, which rotates at the microwave frequency around the Z axis,
such a pulse is equivalent to a static magnetic �eld lying in the x-y plane, as discussed
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Figure 2.13: a) Schematic of the protocol sequence for the Rabi oscillation measurement in the time-
domain. b) Rabi oscillation experiment, where is depicted the π duration to take qubit state from |1〉 to |0〉.
c) Rabi oscillation measurement, repeated for di�erent drive signal frequencies, consisting in a chevron plot.
Figure adapted from [4].

in Sec. 1.3.1. The probability of being in state |1〉 oscillates with the pulse duration,
producing the Rabi oscillation [72] as depicted in Fig. 2.13a. Thus, it becomes possible
to determine the π -pulse, i.e. the duration of the QD pulse necessary to take the qubit
from its fundamental state to the excited state [66]. After each QD pulse, the RO sequence
starts and the readout signal is acquired via the digitizer.

As discussed in Sec. 2.5, in the time-domain measurements the setup allows the control
of the I-Q components of the drive signal (Eq. 1.36). In order to calibrate the π -pulse,
we �rst need to make sure that the qubit frequency is accurate and oscillations are on-
resonance with the qubit [4]. One way to check this is to sweep the drive frequency while
performing Rabi oscillation measurements. The resulting 3D color plot is called chevron
plot, see Fig. 2.13b.

As discussed in Sec.1.2.4, the coupling with the environment produces e�ects of
decoherence and dephasing. After tuning up a π pulse using Rabi oscillations, we need
to determine the coherence properties of the qubit, namely, the relaxation time T1, the
Ramsey time T ∗2 , and the echo dephasing time T echo

2 .
The �rst step is the initialization of the qubit in the ground state. Since the lifetime of

the system is typically for this design of the order of tens of microseconds, all we need to
do is leave the qubit for some amount of time (about 100 microseconds) to make sure it is
in the ground state [4].

To measure the relaxation time, the qubit is excited to |1〉 with a π -pulse calibrated
with the Rabi oscillations measurement. This is then followed by a variable delay time



Figure 2.14: Data plot for the energy relaxation measurement from [14]. The qubit is prepared in the
excited state using a π -pulse and measured after a waiting time τ . For each value τ , this procedure is
repeated and an exponential decay emerges. Employing Eq. 2.6, data �t yields a characteristic time T1 = 85
µs .

τ , called sequence duration. The RO resonator response is �rst read immediately as the
qubit has rotated in the excited state, and then the measurement is repeated changing the
sequence duration. As shown in Fig. 2.14, this results in an exponentially decaying signal,
given by:

S(t) = Ae−t/T1 + B, (2.6)

where S(t) is the readout signal as a function of wait time t, and A and B are scaling and
o�set factors, respectively [69].

The Ramsey Decoherence time T ∗2 can be obtained by initializing the qubit in
1√
2 (|0〉 + |1〉), applying a π /2 pulse, then we wait a certain delay time before another π /2

pulse is used to bring the qubit to the excited state. The RO is performed soon after the
last π /2-pulse. The Ramsey experiment will produce a decaying oscillation described by
[69]:

S(t) = Ae−t/T
∗
2 cos (2πδωt +C) + B, (2.7)

where A, B, and C are scaling, o�set factors, and an additional phase, respectively, and
δω = ωq − ωd is the detuning between the qubit frequency and the QD frequency. These
oscillations reduce to a pure exponential decay if the QD frequency is on resonance with
the qubit frequency [66]. When δω , 0, we are o�-resonance and we expect the system
to behave as a damped oscillator [14]. The period of these oscillations corresponds to the
detuning δω and the damping provides an estimate of T ∗2 (Fig. 2.15).

In general, a T1 measurement is related to all the loss channels in the system, and
provides an indication of the internal quality factors of the device. The Ramsey time
contains information on both energy relaxation and pure dephasing (Tϕ) in the qubit, i.e.,
1/T ∗2 = 1/(2T 1) + 1/Tϕ , which quanti�es e�ective qubit decoherence time scales [69].
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Figure 2.15: Ramsey measurement. The qubit is prepared on the equator using an π
2 -pulse, intentionally

detuned from the qubit frequency by δω. As a result, the Bloch vector precess around the z-axis at the rate
of δω in the rotating frame. After waiting for a time τ , another π

2 -pulse is applied, which brings the Bloch
vector back to the z-axis. This e�ectively translates its prior equatorial position to a new position along the
z-axis. Figure from [14].

The Hahn-Echo decoherence time T echo
2 can be measured by adding a single π -

pulse in the middle of a Ramsey experiment. The π -pulse in the middle is also known
as refocusing pulse, and allows to perform a rotation of π around the z-axis of the Bloch
sphere, after the qubit preparation in the equatorial plane. This protocol is also called
Hahn echo. As shown in Fig. 2.16, the resulting dynamics follows an exponential decay
given by [69]:

S(t) = Ae−t/T
ECHO
2 + B. (2.8)

The refocus pulse allows to cancel low-frequency dephasing e�ects. Therefore, the
coherence time measured with Hahn-Echo protocol is longer that that measured through
Ramsey interferometry [14].



Figure 2.16: Hahn echo experiment for measuring transverse relaxation or decoherence: the qubit is
initialized and assessed similarly to the Ramsey interferometry test. The key distinction is the inclusion of
a single π pulse at the midpoint of the free-evolution time τ . The resulting decay pattern is approximately
exponential, see Eq. 2.8, characterized by a time T echo

2 = 120 µs .



–3–
Introduction to two-qubit coupling

schemes

Contents: 3.1 Two-qubits coupled by a �xed resonator. 3.2 Two-qubits coupled by a tunable
coupler. 3.3 iSWAP two-qubit gate. 3.3.1 iSWAP gate with �xed coupler con�guration – 3.3.2 iSWAP
gate with tunable coupler con�guration – 3.3.3 Conclusion and analysis of ZZ interaction.

Qubit coupling is a fundamental aspect of quantum computer architectures [73]. Be-
yond the readout and control conditions discussed in previous sections, an understanding
of coupling mechanisms is essential for the implementation of two-qubit gates. Indeed, a
pivotal challenge in the advancement of large-scale quantum computing is the extensible
implementation of high-�delity entangling gates [7]. Over the past two decades, supercon-
ducting qubits have undergone substantial developments in gate �delities and scalability,
marking the era of noisy intermediate-scale quantum (NISQ) systems [74]. Despite these
signi�cant advancements, the two-qubit gate error still remains a major bottleneck for
realizing the full potential of NISQ hardware capabilities.

In this chapter, we explore the coupling mechanisms between two superconducting

Figure 3.1: Schematics of di�erent coupling techniques. The exchange interaction between adjacent
qubits can be realized through auxiliary elements, such as a bus resonator a). The qubits are detuned into
or out of resonance to either activate or deactivate the inter-qubit interaction, respectively. b) Parametric
geometries are implemented by modulating a variable tunable coupler system parameter. Figure from [34]
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Figure 3.2: Circuit diagram of two split-transmon qubits capacitive coupling via a coupler in the form of
a linear resonator.

qubits and their representation in the qubit eigenbasis [14]. Physically, either capacitive
or inductive couplings can accomplish this, but in this work, we only pay attention to
capacitive couplings. Capacitive coupling with superconducting qubits has been seen
to o�er advantages in terms of preserving coherence times and is compatible with 3D
integration [7, 75].

One of the key challenges in realizing two-qubit gates is the rapid modulation of
interactions. While for single-qubit gates this is done by simply turning on and o� a
microwave drive, two-qubit gates require turning on a coherent qubit-qubit interaction
for a �xed time [34]. Achieving high on/o� ratios presents a signi�cant challenge in
this context [34]. In this thesis, we have studied two designs that facilitate non-direct
qubit-qubit coupling through the use of a �xed coupler (see Fig. 3.1a) and a tunable
coupler (see Fig. 3.1b).

As follows, we will �rst dive into the formal representation of the interaction mech-
anisms in these two circuital designs. After that, we will discuss how it is possible
to implement, in both con�gurations, one of the most common two-qubit gates in su-
perconducting devices: the i-SWAP gate. Finally, we discuss the main advantages and
disadvantages of the two con�gurations.

3.1 Two-qubits coupled by a fixed resonator
As discussed in Sec. 1.4.1, generating entanglement between individual quantum systems
requires the engineering of an interaction Hamiltonian that links the degrees of freedom
within those systems [14]. A resonator can be used to mediate coupling between two or
more qubits. An example is provided in Fig. 3.2a, where two split-transmon qubits are
capacitively coupled to a central resonator. The Hamiltonian for this system is given by
[14][34]:

H =
∑
i=1,2

(
ωib
†
i bi −

ECi

2 b†i b
†
i bibi

)
+ ωra

†
rar + д1r

(
b†1ar + b1a

†
r

)
+ д2r

(
b†2ar + b2a

†
r

)
. (3.1)
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Here we identify two transmon qubits interacting with a resonator mode, each with
distinct interaction strengths д1r and д2r .

As in the case of the Soprano device (Sec. 2.3), the coupler is a high-frequency resonator
bus, and it is reasonable to assume that the resonator mode is only virtually populated
[76]. This is achieved by operating in the dispersive regime [14], where both qubits are
substantially detuned from the resonator, i.e. |∆i | = |ωi − ωr | � дir , i=1, 2. Under these
conditions, it can be demonstrated that an e�ective qubit-qubit interaction manifests, as
detailed in Ref. [34]:

H =
∑
i=1,2

(
ω̃ib
†
i bi −

ECi

2 b†i b
†
i bibi

)
+ ω̃ra

†
rar + J

(
b†1b2 + b1b

†
2

)
. (3.2)

The �rst term in the equation represents the transmon Hamiltonian with Lamb-
shifted transition frequencies ω̃i = ωi + д

2
ir/∆i . The second term includes the Lamb shift

a�ecting the resonator mode, denoted as ω̃r = ωr + д
2
1r/∆1 + д

2
2r/∆2. The third term gives

the e�ective qubit-qubit interaction, commonly referred to as J-coupling or transverse
exchange coupling [34] [76]:

J =
д1д2
2

(
1
∆1
+

1
∆2

)
. (3.3)

When both qubits are resonant with each other, the resonator becomes virtually populated
due to its dispersive interaction with the qubits, thereby serving as a quantum bus that
mediates interactions between them. In the frequency domain, an avoided level crossing
with a gap of magnitude 2J = 2д1д2/∆ is observed when the excited bare states |01〉 and
|10〉 are dressed due to the e�ective qubit-qubit interaction, as shown in Fig. 3.3.

3.2 Two-qubits coupled by a tunable coupler

One of the crucial challenges in quantum computation lies in constructing a large-scale
network of highly coherent, interconnected qubits [77]. As a consequence, research
on novel coupling mechanisms has become indispensable for enhancing gate operation
�delity and scalability of quantum computers. Particularly, coupling mechanisms that
enable high-coherence qubits with tunable inter-qubit coupling has emerged as a critical
architectural challenge. This allows for both coherent local operations and dynamically
adjustable qubit interactions [77].

In this section, we introduce an alternative coupling scheme that diverges from the
conventional resonator cavity approach. Here, the interaction occurs via a third qubit
serving as a coupler. This kind of coupling is implemented in the prototypal Soprano_TunC
(Sec. 2.3). The main feature of this design is the ability to modulate the coupler frequency
to control the qubit-qubit coupling strength. This approach was initially proposed by Yan
et al. in 2018 [7] and is an ideal solution for mitigating always-on qubit-qubit coupling
during idle periods between entangling gate operations [9].



Figure 3.3: a) Energy level diagram of the two coupled qubits, featuring both bare states (|01〉, |10〉) and
dressed states (Ψs = 1√

2 (|01〉 + |10〉), Ψa =
1√
2 (|01〉 − |10〉)) arising from interactions. b) The spectroscopic

measurement of the avoided level crossing as a function of normalized �ux Φ/Φ0 threading through the
loop of the qubit Qb , while the qubit Qa is maintained at a �xed frequency. The solid red lines represent
energy levels derived from the diagonalization of the two-qubit Jaynes-Cummings Hamiltonian. Figure
adapted from [55].

Figure 3.4: a) Sketch of a generic three-body system arranged in a chain geometry. Each of the two qubit
modes (ω1 and ω2) couples to the central mode of the tunable coupler (ωc ) with a coupling strength дj (j =
1, 2), and they also couple to each other with a coupling strength д12. b) Circuit schematic featuring two
split-transmon qubits, with the tunable coupler between them. Figures adapted from [7].
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Conceptually, this system can be viewed as a chain of three modes featuring exchange
coupling between nearest neighbors (N.N.) and next-nearest neighbors (N.N.N.), as shown
in Fig. 3.4a. The qubits with frequenciesω1 andω2 are coupled to a central tunable coupler
with frequency ωc with a coupling strength дj (where j = 1, 2), and they also couple to
each other with a coupling strength д12. Generally, the N.N. coupling is stronger than the
N.N.N. coupling, дj > д12 > 0, where j ∈ {1, 2}.

In terms of circuit implementation, this design may feature two split-transmon qubits
capacitively coupled to each other via C12, and to a central split-transmon via C1c and
C2c , as depicted in Fig. 3.4b. Upon canonical quantization and under the assumption of a
transmon regime E Ji � ECi , the system can be modeled as a set of three coupled Du�ng
oscillators, as detailed in Ref. [7]:

Ĥ =
∑

i=1,2,c
ωib̂
†
i b̂i −

ECi

2 b̂†i b̂
†
i b̂ib̂i (3.4)

+
∑
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+ д12(b̂
†
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†
2 − b̂1b̂2 − b̂

†
1b̂
†
2 )

The creation and annihilation operators for the corresponding modes are denoted by
b̂†i and b̂i , respectively. The frequency of each split-transmon, ωi , is governed by the term
reported in the �rst line of the formula 1.42, as discussed in Sec. 1.3.2. The terms reported
in the second and third line of formula 3.4, provide the qubit-coupler and qubit-qubit
interactions, respectively, with their strengths de�ned as follows:

дj =
1
2

Cjc√
CjCc

√
ωjωc, (3.5)

д12 =
1
2 (1 + η)

C12
√
C1C2

√
ω1ω2, (3.6)

and η = C1CC2C
C12CC

. The exchange interaction between modes is similar to the Jaynes-
Cummings interaction discussed in Sec. 1.4. However, counter-rotating terms are retained.
These terms gain signi�cance when the coupler frequency substantially exceeds the qubit
frequency, entering a strong dispersive regime [7].

The Hamiltonian is diagonalized through the application of a second-order Schrie�er-
Wol� transformation, as detailed in Refs. [7] and [9]:

H̃ =
∑
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ω̃ib̂
†
i b̂i −

ECi

2 b̂†i b̂
†
i b̂ib̂i + д̃(b̂

†
1b̂2 − b̂1b̂

†
2 ). (3.7)



The dressed eigenfrequencies of the qubits and the coupler are given by:

ω̃1,2 = ω1,2 +
д21,2
∆1,2
−
д21,2
Σ1,2
, (3.8)

ω̃c = ωc − д
2
1
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1
∆1
+

1
Σ1

)
− д22

(
1
∆2
+

1
Σ2

)
, (3.9)

where we introduce the detuning ∆j = ωj − ωc . The term Σj = ωj + ωc is associated with
the counter-rotating (CRW ) terms, which become signi�cant in the strong dispersive
regime, i.e., when ωc � ωj , where |∆j | ' |Σi |. The two computational qubits interact
through an e�ective interaction, with strength д̃ [7] [9]:

д̃ =
1
2

[
ωc

2∆η −
ωc

2Ση + η + 1
]

C12
√
C1C2

√
ω1ω2, (3.10)

with 1
∆ =

1
2 (

1
∆1
+ 1

∆2
) and 1

Σ =
1
2 (

1
Σ1
+ 1

Σ2
). Eq. 3.10 identi�es four interaction mechanisms re-

spectively [7] (labelling the bare eigenstates of Hamiltonian 3.4 as |Qubit1,Coupler ,Qubit2〉):
1. the virtual exchange interaction via the state |010〉;

2. the virtual exchange interaction via the state |111〉;

3. the capacitive coupling via the intermediate capacitance network (direct qubit-qubit
coupling, indirect connection);

4. the direct capacitive coupling (direct qubit-qubit coupling, direct capacitive connec-
tion).

The �rst two processes occur via the coupler, representing indirect coupling facilitated
by the virtual excitation of the coupler, while the last two do not depend on ωc , and are
respectively related to the indirect capacitive couplings through C1C and C2C , and the
direct capacitive coupling through C12. Typically, the N.N.N. capacitive connection is
considerably weaker than the N.N. coupling, i.e. (C12 � C1c,C2c). A distinctive feature of
this design is the negative detuning of the qubits from the coupler.

Fig.3.5a illustrates the dependence on ωc of this interaction mechanisms, leading to
the condition ωc

2∆ −
ωc
2Σ + 1 ≤ 0. As explored in Sec. 1.3.2, the frequency of the coupler

can be continuously tuned. Thus, employing this circuit geometry with superconducting
qubits inherently o�ers a solution for ωo f f

c , where the e�ective interaction is canceled, as
shown in Fig. 3.5a ([7] [9] [78]).

3.3 iSWAP two-qubit gate
Gates that operate on a single qubit, when combined with a two-qubit entangling gate,
form the essential gate set required for executing universal quantum computations [14].
In architectures based on transmon-like superconducting qubits, two-qubit gates can be
generally divided into two main categories [34]:
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Figure 3.5: In a) the dependence on the coupler frequency of the processes of virtual exchange interaction
is simulated. In blue the contribution via the state |010〉, given by ωc

2∆η. In orange the contribution via the
state |111〉, given by −ωc2Σ η. The latter contribution is related to the CRW terms, and is nearly constant
for small detuning. The direct qubit-qubit coupling through indirect connection (green) is independent of
ωc . The dashed line represents the cumulative behavior of the three processes, indicating that the process
via |010〉 becomes signi�cant near the o�-condition. In b) the ωc -dependence of the e�ective interaction
strenght 2д̃, simulated using Eq. 3.10. The switch-o� condition at 2д̃ = 0 occurs at a speci�c value of ωc [7].

1. the former category involves the use of localized magnetic �elds to adjust the qubits’
transition frequencies, as shown in Fig. 3.1a.

2. the latter category relies exclusively on microwave control for gate operation [34].

In this section, we focus on the iSWAP two-qubit gate, which belongs to the former
category.

3.3.1 iSWAP gate with fixed coupler configuration

In previous sections, we explored two di�erent mechanisms for coupling a pair of qubits.
Consider the straightforward case of two transmon qubits that are directly capacitively
coupled. The Hamiltonian for this system results in two Du�ng oscillators coupled
through an interaction strength д:

H =
∑
i=1,2

(
ωib
†
i bi −

ECi

2 b†i b
†
i bibi

)
+ д(b1 − b

†
1 )(b2 − b

†
2 ). (3.11)

As discussed in Sec. 1.2.3, under the assumptions of su�cient anharmonicity and drive
control, higher-level excitations can be neglected [14], allowing us to truncate the Hamil-
tonian to a two-level system:

H =
∑
i=1,2

ωi

2 σz,i + дσy,1σy,2 =
∑
i=1,2

ωi

2 σz,i − д(σ
+ − σ−)1(σ

+ − σ−)2. (3.12)



Here we focus on the interaction term of Eq. 3.12 and employ the RWA, thereby neglecting
the rapidly oscillating components:

Hqq = д
(
eiδω12tσ+σ− + e−iδω12tσ−σ+

)
, (3.13)

where δω12 = ωq1 − ωq2 de�nes the detuning between the transition frequency of the
two qubits, which can be modi�ed employing the qubit frequencies �ux-modulation
of split-transmons, as discussed in Sec. 1.3.2. When we tune one of the two qubits on
resonance with the other, such that δω12 = 0, the Hamiltonian becomes [14]:

Hqq = д (σ+σ− + σ−σ+) (3.14)

=
д

2
(
σxσx + σyσy

)
. (3.15)

Without delving into the speci�cs of д, we recognize the excitation exchange behavior
observed in Eqs. 3.2 and 3.7, which gives rise to the swap of energy between the two
qubits, required to implement the iSWAP gate [14]. Given Eq. 3.15, this is often referred
to as an XY interaction. The unitary operator describing the time evolution of an XY (or
swap) interaction in a two-qubit system reads as follows [14]:

Uqq(t) = exp
(
−i
д

2 (σxσx + σyσy)t
)
=

©­­­«
1 0 0 0
0 cos(дt) −i sin(дt) 0
0 −i sin(дt) cos(дt) 0
0 0 0 1

ª®®®¬ . (3.16)

When we tune the qubits on resonance for a time duration t ′ = π
2д , the system reduces to

the iSWAP gate, represented by the unitary operator:

Uqq

(
π

2д

)
=

©­­­«
1 0 0 0
0 0 −i 0
0 −i 0 0
0 0 0 1

ª®®®¬ ≡ iSWAP. (3.17)

This gate swaps excitations between the two qubits while introducing a phase of i = eiπ/2

[14].
The initial step in the implementation of the iSWAP gate involves spectroscopic

measurement of the avoided level crossing between the states |01〉 and |10〉 (as indicated
by the red line in Fig. 3.6a). Once identi�ed the �ux region around the ALC, we set qubit
1 (QB1) to the state |1〉, while keeping qubit 2 (QB2) at its sweet spot to minimize �ux
noise. A �ux pulse is then applied to QB1 to align both qubits on resonance for a time τ ,
as depicted in the pulse sequence inset of Fig. 3.6b. During this time frame, the excitations
oscillate between the two qubits, a phenomenon shown in Figs. 3.6b and 3.6c. Speci�cally
Fig. 3.6c shows that as QB1 transitions from |1〉 to |0〉, QB2 transition from |0〉 to |1〉, in
a time t ′ = π

2д . Therefore, the SWAP experiment can be considered as a complementary
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Figure 3.6: a) The spectrum of the |0, 1〉 and |1, 0〉 frequency transition of two transmon qubits as a
function of the �ux applied to qubit 1 (expressed in the two-qubit basis |QB1,QB2〉). A typical �ux trajectory
is indicated by black/dashed arrows to show how the iSWAP gate operates. b) Colorplot of the probability
to be in the state |10〉 as a function of �ux duration τ and amplitude in terms of ϕ0. The pulse pattern
corresponds to setting up |10〉 and the application of a �ux pulse in the avoided level crossing region. The
maximum oscillation occurs at Φ = ΦiSWAP (white dashed line ). c) As more time is spent at the operational
point (τ ), the probabilities of |01〉 (black) and |10〉 (gray) at Φ = ΦiSWAP coherently oscillate. Figure from
[14].

tool to estimate the coupling strength д, which adds to the analysis of the gap opening in
the ALC spectra.

Let us also note that in order to implement an e�cient iSWAP gate, it must be suf-
�ciently fast. This requires a strong coupling д between the qubits. A weak coupling
would make the gate too slow for practical applications. Therefore, it is of immeasurable
importance to identify an analysis protocol able to determine the coupling strength of the
devices prior to the implementation of a two-qubit gate.

3.3.2 iSWAP gate with tunable coupler configuration
In this section, we describe the implementation of the iSwap gate with tunable couplers.
From Eq. 3.7 we observe an e�ective interaction leading to an exchange of energy between
the two qubits.

We employ the notation |Q1,Coupler ,Q2〉 to represent the eigenstates of Eq. 3.4 in
the idling con�guration, where the Coupler is placed at a frequency such that the e�ective
Q1-Q2 coupling is nearly zero. Assuming high detuning of the qubits from the coupler,
this state symbolizes the bare state of Q1 and Q2, as indicated by dashed lines in Fig. 3.7b.
Beyond the o�-point condition, the actual interaction between Q1 and Q2 is non-zero,
resulting in the manifestation of avoided crossings, as depicted by the solid curve in
Fig.3.7b.

The implementation of the iSWAP gate is characterized by non-adiabatic transitions
between |100〉 and |001〉. The regulation of energy exchange through these transitions is
achieved by modulating the Coupler frequency ωc , which e�ectively tunes the coupling
strengths 2д̃iSWAP (Eq. 3.10), between the |100〉 and |001〉. The energy exchange between
these states is quanti�ed by preparing |100〉 and measuring the state population transferred
to |001〉, varying τ and ωc , as shown by the color plot in Fig. 3.7c.



Figure 3.7: a) Schematic of the protocol for the iSWAP gate with the tunable coupler. τ represents the
duration of the Z-pulse on the coupler, which switches on the interaction. b) Representation of the energy
level crossing between Q1 and Q2, in the case of o�-interaction (dashed line) and in the case of on-interaction
(solid line). c) Color plot of the swap between Q1 and Q2 as function of the coupler frequency ωc and
the pulse sequences τ shown in a). In d), the e�ective coupling strengths 2д̃ as a function of the Coupler
frequency ωc obtained by the �tting of c). Figure adapted from [78].
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For the execution of the iSWAP gate, the states |100〉 and |001〉 are abruptly brought
into resonance at their bare energy degeneracy point, with the coupler maintained at the
o�-point frequency. After that, the interaction is switched on by applying a Z-pulse to
the coupler, with a duration that induces half of an oscillation, thus achieving a full swap
of the two states. A schematic protocol is reported in Fig. 3.7a.

3.3.3 Conclusion and analysis of ZZ interaction

A fundamental bottleneck of the iSWAP gate is the presence of longitudinal interactions,
also know as ZZ-crosstalk. Even when the qubits are dispersively detuned and excitation
exchange between them is strongly suppressed [78], longitudinal ZZ couplings describe
the dispersive shifts of the qubit energies resulting from the hybridization of the qubit
wave functions due to the coupling capacitances, and can be quanti�ed as [79]:

ζ = E |101〉 − E |100〉 − E |001〉 + E |000〉, (3.18)

where E |α,β,γ 〉 denotes the energy eigenvalue of the state |α, β,γ 〉 of the Hamiltonian 3.4.
Since ZZ-crosstalk induces phase errors [80], substantial e�orts have been directed

towards mitigating such unwanted interactions. In a �xed bus con�guration, ZZ-crosstalk
can be suppressed by signi�cantly detuning the qubits from each other at the idle point.
However, to facilitate the execution of two-qubit gates using this approach, the qubit
transition frequencies would need to be tuned over extensive ranges, thereby elevating
the risk of coupling to two-level system defects [81].

The tunable coupler allows for the precise control and elimination of unwanted ZZ
interactions, thereby ensuring the high-�delity execution of the iSWAP gate [9].

In order to understand this statement, an approximate expression of the ZZ coupling
is considered, derived using a perturbation expansion of the Hamiltonian 3.4. We here
assume thatQ1, Q2, and Coupler are dispersively coupled to each other, withдij/|ωi−ωj | �

1 (where i, j = 1, 2, c, and i < j). Hence the static ZZ interaction ζ as a function of the
Coupler frequency ωc , can be approximated up to the fourth order as [9][78][79]:
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where ∆ij = ωi − ωj, (with i, j ∈ 1, 2, c , and i < j), α1,2,c is the anharmonicity and дij
are the strengths of the interaction from Eq. 3.4. Here the second-order expansion of
the Hamiltonian yields the leading term in ZZ coupling ζ (2), and the coupler frequency-
dependent contribution to ZZ is represented solely by the third- and fourth-order terms
ζ (3,4)(ωc):

ζ (ωc) ≈ ζ
(2) + ζ (3,4)(ωc). (3.24)

Hence in a tunable coupler con�guration, the control over the coupler frequency enables
the suppression of the ZZ interaction, as shown in Fig. 3.8 and thoroughly discussed in
Ref. [9]. The second-order zeta coupling, in dark blue, does not depend on the coupler
frequency, while the ζ (3,4)(ωc) term induces an overall dependence on the tunable coupler
frequency in the zeta interaction.

Conversely, in design where it is not possible to modulate the interaction, the ZZ
coupling is intrinsic and always active, as in the two-qubit system coupled by a bus
resonator discussed in Sec. 3.1. From the Eq. 3.2 the always-on ZZ interaction reads as
[82]:

ζ = J 2
(

1
∆12 − α2

+
1

∆21 − α1

)
, (3.25)

where ∆ij = ωi − ωj (i, j ∈ 1, 2, and i < j) is the detuning of the two qubits, α1,2 is the
corrisponding anharmonicity and J is the strength of the e�ective interaction in Eq. 3.2.
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Figure 3.8: The strength of the ZZ interaction (cyan) is depicted as a function of the coupler frequency ωc .
The contribution ζ (2) (black) remains constant, whereas the contribution from the higher-order perturbative
terms ζ (3,4) (yellow) varies with the frequency of the coupler and is crucial for achieving the condition of
ζ = 0. The black dots represent experimental data points from Ref. [9].
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During the last decades, several coupling mechanisms between arti�cial superconducting
quantum systems have been proposed ([78],[9],[79]), and have constantly evolved in
order to guarantee better and better performances in scalable superconducting quantum
processors ([8],[6]). This has automatically implied an increasing complexity of the de-
vices, thus making fundamental the search for feasible self-consistent approaches for
the analysis and the diagnostic of the coupling mechanisms. In this work, we propose
to exploit the circuit Quantum Electrodynamics (cQED) to extract information on the
coupling strengths in two superconducting multi-qubit transmon devices characterized
by di�erent coupling schemes (Sec. 3.1, 3.2). By calculating the energy spectra of coupled
transmons beyond the perturbative approach, i.e. by exactly solving the eigenergies of the
two-qubits Hamiltonian with the open-source Python package SCqubits (Appendix A.2),
I’ve developed a comparative approach between simulations and experimental data, in
order to extract fundamental design parameters of the devices, thus providing a physical
picture of the coupling mechanisms in complex arti�cial two-level systems. Speci�cally
for the case of tunable coupling schemes, this method allows us to explicitly take into
account the mutual coupling between the computational qubits and the tunable coupler,
and is proposed as a complementary tool for the estimation of the coupling strengths
together with state-of-the-art time-domain experiments, like the XY-SWAP interaction
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experiment (Sec. 3.3.2). In order to validate this approach, the electrodynamics parameters
of the devices are required, such as the qubit frequencies and the Josephson energies, as
well as their behavior as a function of �ux in tunable split-transmons, and the charge
energy.

In Sec. 4.1, we report a spectroscopy characterization of readout resonators, and qubits
(4.2). For diagnostic purposes, we also report information on the coherence and relaxation
times of the devices under analysis (Sec. 4.3). In Sec. 4.4 we discuss the avoided level
crossings (ALC) for di�erent pairs in the two devices studied in this work, and we discuss
the advantages and limitations of the analysis method proposed. Finally, we report our
initial results on the SWAP experiment conducted on the prototype device with tunable
coupling scheme (Sec. 4.4.4).

4.1 Resonators spectroscopy characterization

Figure 4.1: a) Spectroscopy measurement for the Soprano sample in the 7.3 GHz to 8.5 GHz frequency
range on the feedline. It enables the qualitative identi�cation of the cavities by comparing the results with
design values. Measurements are performed at 0 dBm and -35 dBm levels to acquire initial estimates of the
cavities’ power behavior. In b), the same protocol is applied to the Soprano TunC sample.

In this section, we �rst present the results of the basic spectroscopy characterization
measurements on the Soprano and Soprano TunC devices. Figure 4.1 shows the feedline
spectroscopy measurements for both samples. In panel a), the feedline transmission of
the Soprano device shows six resonant frequencies in the range 7.1 GHz to 8.1 GHz. As
discussed in Sec. 2.3, in this sample there are �ve readout resonators coupled to each qubit
of the �ve-qubit matrix (C0 to C5), and one readout resonator coupled to the isolated qubit
(C6). In panel b), the feedline transmission of the Soprano TunC device shows ten resonant
frequencies in a similar frequency range of 7.3 GHz to 8.5 GHz, corresponding to each
cavity resonator in the device (Fig. 2.5b). Speci�cally, the �rst eight cavities correspond
to the readout resonators of the 4 qubits pairs, while the last two resonances correspond
to the test resonators coupled to the Tunable Couplers between Qubit 3 and Qubit 4, and
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Table 4.2: Comparison between the expected values by design and the actual values(*) for the Soprano
device (top) and for the Soprano TunC device (bottom). For each sample, the labels of readout cavities with
the relative labeled qubits. For the Soprano we focused on the pairs Qubit 0 and Qubit 2 (red). For the
Soprano TunC device, measurements included the Qubit 7 and Qubit 8 pair with its relative coupler TC78
(green), and the Q5 and Q6 pair (blue), whose coupling qubit does not have a readout cavity.

between Qubit 7 and Qubit 8. For both the devices a comparison between high and low
power through the input feedline (0 dBm and -35 dBm, respectively) is also reported.

As follows, we will focus our attention on the spectroscopic characterization of one
pair of the Soprano device, Qubit 0 and Qubit 2, which here plays the role of reference.
Then, for statistical purposes, we benchmark the design properties of two pairs of the
prototypal Soprano TunC device: Qubit 7 (Q7) and Qubit 8 (Q8), which are equipped with
a readout resonator for the tunable coupler of Q7 and Q8 (TC78), and the pair Qubit 5
(Q5) and Qubit 6 (Q6), which instead follows a more standard design, with no additional
readout resonator on the tunable coupler (TC56).

4.1.1 Soprano
Resonators spectroscopy as a function of power
As outlined in Sec. 2.6.1, the �rst single-qubit characterization step involves the measure-
ment of the feedline transmission magnitude S21, with a typical 10 MHz span around the
expected readout resonator frequencies. A dip in the trace is observed when the readout
tone resonates with the cavity, as discussed in Sec. 2.6. The measurement is repeated for
di�erent input powers, and the results are presented in a colormap plot, as shown in Fig.
4.3a for the readout resonator coupled to Qubit 0. At large powers of the input signal, the
bare state is observed (see blue line in Fig. 4.3b), at 0 dBm VNA output. By decreasing
the input power, we reach the low-photon regime, observing a positive shift of the cavity



Figure 4.3: a) Power sweep colormap for Cavity 0 coupled to qubit 0: the VNA input power in dBm
(y-axis) is reported as a function of the VNA tone frequency (x-axis). The color scale reports the readout
magnitude of the S21 output. b) Two plot cuts for comparison, at 0 dBm and - 35 dBm, from which we
estimate the low-photon shift χ . As described in the scheme of Fig. 2.8, this measurement setup provides
an additional 50 dBm attenuation at the cryogenic stages, which add to the VNA input power.

Figure 4.4: a) Power sweep colormap for Cavity 2 coupled to qubit 2: the VNA input power in dBm
(y-axis) is reported as a function of the VNA tone frequency (x-axis). The color scale reports the readout
magnitude of the S21 output. b) Two plot cuts for comparison, at 0 dBm and - 35 dBm, from which we
estimate the low-photon shift χ . As described in the scheme of Fig. 2.8, this measurement setup provides
an additional 50 dBm attenuation at the cryogenic stages, which add to the VNA input power.
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Figure 4.5: a) Flux sweep colormap for Cavity 0 for the readout magnitude of the S21 output as a function
of both the VNA tone frequency (y-axis) and the voltage bias applied to qubit 0 via the dedicated �ux line.
The �t (red curve) is based on Eq. A.1 (see Appendix A.1). The dotted line indicates the estimated value for
the upper sweet spot and the maximum modulation value of ωr (orange spot) obtained from the �t. b) A
similar measurement is repeated for Cavity 2.

frequency (see the orange curve in Fig. 4.3b)). This provides a measure of the low-photon
shift χ . The resonance frequencies in the two states with the relative maximum error
are ωbare

r = (7.2479 ± 0.0005) GHz and ωlp
r = (7.2485 ± 0.0005) GHz. From these data,

we evaluate a low-photon shift χ , and results (0.6 ± 0.1) MHz, using maximum error
propagation.

Similar investigations are performed on Cavity 2, which is coupled to qubit 2. Figure
4.4a displays the resonator spectroscopy measurement as a function of the VNA input
signal power, while in panel 4.4b we show the cross-section at the highest and lowest
input power signals. The resonance frequencies for the bare and low-photon regime
are ωbare

r = (7.6344 ± 0.0005) GHz and ωlp
r = (7.6347 ± 0.0005) GHz, with the relative

maximum error. From these data, we obtain a low-photon shift χ = (0.3 ± 0.1) MHz.
Resonators spectroscopy as a function of �ux
In the Soprano, Qubits 0 and Qubit 2 are both split-transmon (Sec. 2.3). As discussed in Sec.
2.6.1, the readout frequency for the cavity coupled to a split-transmon in the low-photon
regime becomes dependent on the �ux applied on the qubit (see Eq. 2.5).

In Fig. 4.15a, the �ux bias behavior of cavity 0 coupled to Qubit 0, shows half modula-
tion in a voltage range of 3 V across the dedicated �ux line for Qubit 0. We observe that
the maximum modulation does not occur at zero voltage (or zero �ux, refer to Appendix
A.1), a common occurrence in superconducting circuits due to residual magnetization
from �ux trapping phenomena [4]. From these measurements, we can identify the �ux
sweet spot, a crucial point for qubit measurements, as discussed in Sec. 1.3.2.

To interpret the observed behavior, we used a Non-Linear Least Squares �t, employing
Python’s SciPy library [83]. We refer to Appendix A.1 for details. The �t yields a sweet spot
value of (1.4±0.2) V, and the frequency at the sweet spot,ωss

r = (7.2502±0.0005) GHz. This
approach allows to �t the coupling strength g= (110±50) MHz. Errors are determined by



Figure 4.6: a) Power sweep colormap for Cavity 3 coupled to Q5: the VNA input power in dBm (y-axis) is
reported as a function of the VNA tone frequency (x-axis). The color scale reports the readout magnitude
of the S21 output. b) Two plot cuts for comparison, at 0 dBm and - 35 dBm, from which we estimate the
low-photon shift χ . As described in the scheme of Fig. 2.8, this measurement setup provides an additional
50 dBm attenuation at the cryogenic stages, which add to the VNA input power.

Non-Linear Least-Squares Minimization, with the exception of the sweet spot frequency,
where the maximum error is applied. Corresponding measurements for Cavity 2 coupled
to Qubit 2 are shown in Fig. 4.5b, yielding a sweet spot value of (−1.52 ± 0.04) V and a
frequency at the sweet spot, ωss

r of (7.6372 ± 0.0005) GHz. The coupling strength g is
(90 ± 10)MHz. Standard error from the �t is used, except for the frequency, where the
maximum error is applied.

4.1.2 Soprano TunC

Resonators spectroscopy as a function of power
Following the same experimental procedure for readout resonator spectroscopy of the
Soprano device, we �rst report in Fig. 4.6a the measure of low-photon shift on Cavity 3,
coupled to Q5. In panel b), we show two line-cuts in the high- and low-power regime,
which identi�es the bare and low-photon states. The resonance frequencies in the two
states with the relative maximum error are ωbare

r = (7.6318 ± 0.0005) GHz and ωlp
r =

(7.6365 ± 0.0005) GHz. From these data, we evaluate a low-photon shift χ = (4.7 ±
0.1) MHz, using maximum error propagation.

Similar investigations were performed for Cavity 7, which is coupled to Q6. Figure
4.7a displays the resonator spectroscopy measurement, as a function of the VNA input
signal power, where Cavity 7 manifests the usual low-photon shift. The resonance
frequencies for the bare and low-photon regimes are ωbare

r = (8.0247 ± 0.0005) GHz

and ωlp
r = (8.0279 ± 0.0005) GHz, with maximum error. From these data, we obtain a

low-photon shift χ = (3.2 ± 0.1) MHz, where we use maximum error propagation.
On pair of Q7 and Q8, the same procedure was followed. The low-photon shift on



Chapter 4 - Experimental results and data analysis 63

Figure 4.7: a) Power sweep colormap for Cavity 7 coupled to Q6: the VNA input power in dBm (y-axis) is
reported as a function of the VNA tone frequency (x-axis). The color scale reports the readout magnitude
of the S21 output. b) Two plot cuts for comparison, at 0 dBm and - 35 dBm, from which we estimate the
low-photon shift χ . As described in the scheme of Fig. 2.8, this measurement setup provides an additional
50 dBm attenuation at the cryogenic stages, which add to the VNA input power.

Figure 4.8: a) Power sweep colormap for Cavity 4 coupled to Q7: the VNA input power in dBm (y-axis) is
reported as a function of the VNA tone frequency (x-axis). The color scale reports the readout magnitude
of the S21 output. b) Two plot cuts for comparison, at 0 dBm and - 35 dBm, from which we estimate the
low-photon shift χ . As described in the scheme of Fig. 2.8, this measurement setup provides an additional
50 dBm attenuation at the cryogenic stages, which add to the VNA input power.



Figure 4.9: a) Power sweep colormap for Cavity 8 coupled to Q8: the VNA input power in dBm (y-axis) is
reported as a function of the VNA tone frequency (x-axis). The color scale reports the readout magnitude
of the S21 output. b) Two plot cuts for comparison, at 0 dBm and - 35 dBm, from which we estimate the
low-photon shift χ . As described in the scheme of Fig. 2.8, this measurement setup provides an additional
50 dBm attenuation at the cryogenic stages, which add to the VNA input power.

Cavity 4, which is coupled to Q7 is shown in Figure 4.7. Panel a) displays the resonator
spectroscopy measurement, as a function of the VNA input signal power, where Cavity
4 manifests the usual low-photon shift. The resonance frequencies for the bare and
low-photon regimes are ωbare

r = (7.7088± 0.0005) GHz and ωlp
r = (7.7124± 0.0005) GHz,

with the maximum error. From these data, we evaluate a low-photon shift of χ = (3.7 ±
0.1) MHz, where we use a maximum error propagation.

The measurement of low-photon shift on Cavity 3, coupled to Q5, is shown in Fig. 4.6a.
In panel b), we show two line-cuts in the high- and low-power regimes, which identi�es
the bare and low-photon states. The resonance frequencies in the two states with the
corresponding maximum errors are ωbare

r = (8.1064 ± 0.0005) GHz and ωlp
r = (8.1078 ±

0.0005) GHz. From these data, we evaluate a low-photon shift of χ = (1.4 ± 0.1) MHz,
where we use maximum error propagation.

The results obtained for cavities C4 and C7 are in line with Eq. 1.48, whereas C3 shows
the largest low-photon shift. In the hypothesis of similar coupling factors g, which holds
if we consider that the resonators are fabricated within the same conditions, this result is
expected, being the detuning ∆ = ωr − ω

Q5
01 smaller than for the other cavities. Cavity 8

has a low-photon shift smaller than expected: this behavior is compatible with the fact
that the tunable qubit Q8 coupled to Cavity 8 has trapped some �ux, and therefore the
cavity is closer to its lower sweet-spot, as we will see in the next section.
Resonators spectroscopy as a function of �ux

We now focus our attention on the �ux dependence of the resonance frequencies. In the
Soprano TunC, Q5 and Q8 and their couplers TC56 and TC78, are split-transmon (Sec. 2.3).
Only the tunable coupler of pair 78 is coupled to a readout resonator, enabling us to study
the �ux dependence on the corresponding C10 (Table 4.2).



Chapter 4 - Experimental results and data analysis 65

Figure 4.10: a) Flux sweep colormap for Cavity 3 of the readout magnitude of the S21 output as a function
of both the VNA tone frequency (y-axis) and the voltage bias applied to Q5 dedicated �ux line. The �t
(red curve) is based on Eq. A.1 (see Appendix A.1). The dotted line indicates the estimated value for the
upper sweet spot and the maximum modulation value of ωr (orange spot) obtained from the �t. b) A
similar measurement is done for Cavity 8. c) The corresponding measurement for Cavity 10, demonstrating
observable lower frequency modulation related to the lower value of the coupling strength, д. d) Plot of
Eq.1.41 for ω01 = 8.1 GHz, ωbare

r = 8.44 GHz, d = 0.1, comparing trends for g values of 100 MHz and 50
MHz and association of smaller coupling force with reduced frequency modulation amplitude.



To interpret the observed behavior, we use a Non-Linear Least Squares �t, employing
Python’s SciPy library [83]. We refer to Appendix A.1 for details. We start with the �ux
dependence of Cavity 3 coupled to Q5, where, in Fig. 4.10b, a complete modulation in the
voltage range of 3 V is observed. From the �t we obtain a sweet spot value of (−144 ± 1)
mV with the frequency value at the sweet spot, ωlp

r , being (7.6369 ± 0.0005) GHz. The
coupling strength g is (130 ± 10) MHz. Errors are given by Non-Linear Least-Squares
Minimization, except for the sweet spot frequency, where the maximum error is used.
Identical measurements were conducted for Cavity 8 coupled to Q8, and Cavity 10 coupled
to Tunable Coupler 78, with the results summarized in Table 4.11.

Table 4.11: Comparative table of the tunable frequencies for the readout cavities for the Soprano TunC,
with the corresponding tunable qubits labeled. The ωss

r values obtained by the �t are highlighted in bold
font, as detailed in Appendix A.1. For each cavity, the value of the coupling force g and the voltage at the
sweet spot are derived from the �t.

When comparing the derived coupling values, the coupling force of Cavity 10 to
the tunable coupler is an order of magnitude smaller than those obtained for Cavities
8 and 3. This design choice complies with the requirement to avoid excessive coupling
between a non-computational element, like a tunable coupler, and its readout resonator.
The reduced coupling value also induces a reduced frequency modulation in �ux, as
evident from the modulation of Cavity 10 in Fig.4.10c. This result is in agreement with
the trend predicted by Eq. A.1, where a decrease in coupling strength results in a reduced
modulation amplitude, as shown in Fig.4.10d. The standard errors of the �t are on the
order of the millivolt (mV) unit, while the acquired points exhibit a step of tens of mV.
Consequently, a variation up to the order of tens of mV in the �t values compared to the
real values is expected. This limitation represents a compromise between capturing the
complete �ux modulation behavior of resonators coupled with qubits over a large voltage
range with adequate resolution and the constraints of experimental measurement times.
More accurate measurements of the sweet spot points for the qubit can be achieved by
acquiring more points in the qubit �ux spectroscopy measurements (Sec. 4.2). Additionally,
Eq. 2.5 neglects higher-order approximation terms, indicating an intrinsic limitation to
our modeling approach.
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Table 4.12: Summary of values obtained for both the devices Soprano and Soprano Tunc. For each qubit, it
shows the values obtained from the �t (Appendix A.1) for the readout resonator frequency at sweet spot
(ωss

01 ), the low-photon shift (χ ), with the error given by the maximum error and the propagation on the
maximum error, respectively. Additionally, the sweet spot value and the coupling strength (g) between the
qubits and their associated cavities, along with the standard errors from the �t. For the �xed qubits Q6 and
Q7, values from the spectroscopy measurement (underlined) are reported, with the respective maximum
errors.

4.1.3 Summary of readout electrodynamics parameters
A comparison with the results obtained for the two analyzed devices is in order: �rst
of all, the cavities measured in the Soprano sample reveal a lower low-photon shift (see
Table 4.12), potentially related to a larger detuning between readout and qubit frequencies.
Indeed, power shift experiments have been performed at zero external �ux �eld, where
qubit 0 and qubit 2 pairs were far from the sweet-spot (Fig. 4.5). Moreover, the �ux
modulation periodicity occurs on a wider voltage range for Soprano TunC. In these
experiments, the �ux cryogenic lines were equipped with an attenuation of -20dB, while
for the Soprano experiment, the attenuation was of -30 dB. This induces an increase
in the resistance of the cryogenic lines. Hence, within the same voltage applied, the
�ux threading the split-transmons in the Soprano TunC is e�ectively larger than for the
Soprano experiment. Reducing the attenuation on the �ux lines presents a trade-o�: while
it increases the �ux modulation range, attenuation stages are crucial for isolating the
sample from the external environment [14].

Finally, the coupling g between the readout resonators and �ux-tunable computational
qubits of the prototypal Soprano TunC design complies within the errors with the readout-
qubit coupling in the benchmark Soprano device, while the g-factor for the tunable coupler
in the Soprano TunC is one order of magnitude lower. This complies with the design
choice to avoid excessive coupling with non-computational elements on chip.

4.2 �bit spectroscopy

As detailed in Sec. 2.6.1, the two-tone spectroscopy measurement provides information
on the qubit frequency and its anharmonicity.



Figure 4.13: Qubit 2 spectroscopy: in a), the attenuation of the qubit drive signal (y-axis), on the x-axis
the qubit drive Q2 frequency, the color scale identi�es the real part of the demodulated voltage signal in µV
of the readout resonator. In b) linecuts at -30 dBm (blue) and -6 dBm (orange). The half anharmonicity is
also reported (dashed green line).

4.2.1 Soprano

Qubit spectroscopy as a function of power
In Fig. 4.13a we show the real part of the demodulated readout voltage output as a function
of the qubit drive frequency and the qubit drive power applied across the dedicated drive
line for qubit 2, where qubit 2 is at 0.25 Φ/Φ0, the value nearest to the upper sweet spot
reachable by the experimental set-up.

As shown in Fig.4.13b at low power (-30dBm attenuation on the drive signal), we can
distinguish the transition |0〉 → |1〉 at the highest frequency. By increasing the power (-6
dBm attenuation on the drive line), the transition |0〉 → |2〉 appears at lower frequencies,
given the typical negative anharmonicity in the transmon regime (Sec. 1.2.3), and the peak
|0〉 → |1〉 broadens. This is related to the increasing number of photons in the system,
which increases loss mechanisms [84]. The transition |0〉 → |1〉 occurs at frequency
(5.614± 0.002) GHz. We can extrapolate the anharmonicity as α = (f01− f02)/2 obtaining
α = (−326 ± 4) MHz, with the maximum error.

The same investigation was conducted for Qubit 0, and is shown in Fig. 4.14a. The
readout magnitude of the S21 output is shown as a function of the qubit drive frequency
and the qubit drive power applied across the dedicated drive line for qubit 0. The qubit
frequency f01 is (4.509±0.002)GHz and the anharmonicity is α = (−268±4)MHz., where
the errors are maximum errors.
Qubit spectroscopy as a function of �ux
Additionally, in Fig. 4.15 we report Qubit 0 spectroscopy measurement as a function of
an external �ux �eld, in order to highlight the �ux dependence of the |01〉 transition
frequency (Sec. 4.1.2). The experimental curves have been �tted using the same approach
followed for the readout resonators, as discussed in Appendix A.1. Speci�cally, we used Eq.
A.2 to model the �ux modulation of f01 frequency. The theoretical �t yields a sweet spot
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Figure 4.14: Qubit 0 spectroscopy: in a) the attenuation of the qubit drive signal (y-axis), on the x-axis
the qubit drive Q0 frequency, the color scale identi�es the real part of the demodulated voltage signal in µV
of the readout resonator. In b) linecuts at -17.4 dBm (orange) and -9 dBm (blue). The half anharmonicity is
also reported (dashed green line).

Figure 4.15: Flux spectroscopy of qubit 0. a) Colorplot with the �ux on Q0 in voltage (x-axis), the Q0
drive frequency signal (y-axis), and the color scale of the magnitude of the readout resonator. The �t (red
curve) is based on Eq. A.2. The dotted line indicates the estimated value for the upper sweet spot and the
maximum modulation value of ωuss

01 (orange spot) obtained from the �t. b) Extrapolated behavior from the
�t, of the qubit frequency ω01 of qubit 0 versus the drive �ux in voltage.



Figure 4.16: Flux spectroscopy of qubit 2. a) Colorplot with the �ux on Q2 in voltage (x-axis), the Q2 drive
frequency signal (y-axis), and the color scale of the magnitude of the readout resonator. The �t (red curve)
is based on Eq. A.2. The dotted line indicates the estimated value for the sweet spot and the maximum
modulation value of ωss

01 (orange spot) obtained from the �t. b) Extrapolated behavior from the �t of the
qubit frequency ω01 of qubit 2 vs the drive �ux in voltage.

value of (1.307±0.004V ) and a frequency at the sweet spot,ωss
01, of (4.545±0.005) GHz. The

error on the voltage represents the standard error from the �t, while the maximum error
is applied to the qubit frequency. Fig. 4.15b shows the theoretical complete modulation
based on the �t data for both resonators and qubit spectroscopy.

A similar investigation was performed for qubit 2, as depicted in Fig. 4.16a. The results
yield a sweet spot value of (−1.702 ± 0.003) V and a frequency at the maximum of the
modulation, ωss

01, of (5.650 ± 0.005) GHz. The error on the voltage is the standard error
from the �t, and the maximum error is applied to the qubit frequency.

4.2.2 Soprano TunC

Qubit spectroscopy as a function of power

Following the same experimental approach for qubit frequency estimation on the
Soprano device, in Fig. 4.17a we show the imaginary part of the demodulated readout
voltage output as a function of the qubit drive frequency and the qubit drive power applied
across the dedicated drive line for Q5, where the Q5 is at the sweet spot. We can observe
both the transition |0〉 → |1〉 and |0〉 → |2〉. The qubit frequency obtained through qubit
spectroscopy is f01 = (5.566 ± 0.002) GHz, where the errors are maximum errors. We
extrapolate the anharmonicity α = (−296 ± 4)MHz, where the error is a maximum error.

The same investigation was conducted for Q6, and is shown in Fig. 4.18a. The readout
magnitude of the S21 output is shown as a function of the qubit drive frequency and the
qubit drive power applied across the dedicated drive line for Q6. The qubit frequency f01
is (4.992 ± 0.002) GHz and the anharmonicity is α = (−325 ± 4)MHz., where the errors
are the maximum errors.
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Figure 4.17: Q5 spectroscopy: in a), the attenuation of the qubit drive signal (y-axis), on the x-axis the
qubit drive Q5 frequency, the color scale identi�es the imaginary part of the demodulated voltage signal in
µV of the readout resonator. In b) linecuts at -30 dBm (orange) and -10 dBm (blue). The half anharmonicity
is also reported (dashed green line).

Figure 4.18: Q6 spectroscopy: in a), the readout magnitude of the S21 output as a function of qubit drive
frequency and the qubit drive power applied across a dedicated drive line for Q6. In b) linecuts at -30 dBm
(orange) and -10 dBm (blue). The half anharmonicity is also reported (dashed green line).



Figure 4.19: Q7 spectroscopy: in a), the readout magnitude of the S21 output as a function of qubit drive
frequency and the qubit drive power applied across a dedicated drive line for Q7. In b) linecuts at -50 dBm
(orange) and -10 dBm (blue). The half anharmonicity is also reported (dashed green line).

The color map of qubit spectroscopy for Q7 is reported in Fig. 4.19a. The qubit
frequency f01 is (5.116±0.002)GHz and the anharmonicity is α = (−330±4)MHz, where
the errors are the maximum errors.

Finally, we show the same investigation for Q8, at the sweet spot in Fig. 4.20a. The
|0〉 → |1〉 qubit frequency is (5.298 ± 0.002) GHz, and the anharmonicity is α = (−306 ±
4) MHz, with maximum errors.

The extrapolated anharmonicities are consistent with each other, in agreement with
expectations for qubits fabricated in the same manufacturing process. This consistency
also supports the observation of similar power behavior for the pair Q7 and Q8, and pair
Q5 and Q6.
Qubit spectroscopy as a function of �ux
The study in �ux of tunable qubits Q5 and Q8 is reported in Fig. 4.21 and Fig. 4.22,
respectively. The experimental curves were �tted using Eq. A.2 in Appendix A.1. From
the theoretical �t we obtain a sweet spot value of (−141± 3) mV for Q5 with the frequency
value at the sweet spot, ωss

01=(5.566 ± 0.002) GHz, where the error on the voltage is the
standard error from the �t, and on the qubit frequency we apply the maximum error. In
Fig. 4.21b we show the theoretical complete modulation based on the �t data of both �ux
modulation of the resonator and the qubit. For Q8 in Fig. 4.22a, we obtain a sweet spot
value of (819 ± 1) mV with the frequency value at the sweet spot ωss

01=(5.329 ± 0.002)
GHz, where the error on the voltage is the standard error from the �t, and on the qubit
frequency, we apply the maximum error.
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Figure 4.20: Q8 spectroscopy: in a), the readout magnitude of the S21 output as a function of qubit drive
frequency and the qubit drive power applied across a dedicated drive line for Q8. In b) linecuts at -30 dBm
(orange) and -10 dBm (blue). The half anharmonicity is also reported (dashed green line).

Figure 4.21: Flux spectroscopy of Q5. a) Colorplot with �ux on Q2 in voltage (x-axis), the Q2 drive
frequency signal (y-axis), and the color scale the magnitude of the readout resonator. The �t (red curve)
is based on Eq. A.2. The dotted line indicates the estimated value for the sweet spot and the maximum
modulation value of ωss

01 (orange spot) obtained from the �t. b) Extrapolated behavior from the �t, of the
qubit frequency ω01 of Q5 vs the drive �ux in voltage.



Figure 4.22: Flux spectroscopy of Q8. a) Colorplot with the �ux on Q2 in voltage (x-axis), the Q2 drive
frequency signal (y-axis), and the color scale the magnitude of the readout resonator. The �t (red curve)
is based on Eq. A.2. The dotted line indicates the estimated value for the sweet spot and the maximum
modulation value of ωss

01 (orange spot) obtained from the �t. b) Extrapolated behavior from the �t, of the
qubit frequency ω01 of Q8 vs the drive �ux in voltage.

4.2.3 Summary and comparison of qubits electrodynamics param-
eters

Based on the presented experimental results, we can extract fundamental electrodynamics
parameters that have been used for the study and the analysis of two-qubit coupling
processes, as well as the �tting of the experimental data for the two devices. In Table 4.23
we compare the characteristics of the two samples obtained by spectroscopy measurements.
To calculate the charge energy, we use the approximation EC ≈ −α (Eq. 1.19). The charge
energy for the qubits in the two samples analyzed is of the same order of magnitude.
Moreover, we calculate E J from f01 by applying Eq. 1.24. From this we are able to calculate
the ratio E J/EC with a maximum error of ±1, and determine if we are in the low charge
noise regime [40]. We observe that all the pairs in the two devices operate within a
comparable transmon regime, where the tunable qubits exhibit higher values. This can
be justi�ed as, in tunable qubits, E J will modulate to lower values, and maintaining an
adequate E J/EC ratio is crucial to protect the qubit against charging noise (Sec. 1.2.3).

4.3 Time domain measurements

As outlined in Sec. 2.5 and 2.6.2, time-domain measurements yield extensive insights
into the performance of individual and coupled qubits. In this section, we speci�cally
focus on Rabi oscillations, T1 and T2 measurements, with Ramsey interferometry and
Hahn echo for both the Soprano (Sec. 4.3.1) and the Soprano TunC (Sec. 4.3.2) devices.
These measurements enable the determination of the π -pulse, T1, T ∗2 , and T2. The π -
pulse is pivotal, being it the pulse able to excite the qubit from the ground to the excited
state. Therefore, it is a fundamental component for the implementation of the most basic
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Table 4.23: Summary of values obtained for both the devices Soprano and Soprano TunC. For each qubit, it
shows the values obtained from the �t (see Appendix A.1) for the frequency |0〉 → |1〉 transition at sweet
spot (f ss01 ) and the value of the sweet spot, with the error given by the maximum error and the standard
error from the �t, respectively. For the �xed qubits Q6 and Q7, values from the spectroscopy measurement
(underlined) are reported. The charge energy (EC ) obtained from the spectroscopy measurements in power,
Josephson energies calculated by the Eq. 1.24 and the corresponding ratio E J /EC are also reported, with the
errors given by the maximum errors.

characterization sequences. The relaxation and coherence times are instead crucial to
evaluate the maximum coherence of the qubits [69]. Speci�cally, the relaxation time
is here the main comparison parameter for the two designs. Indeed, on one hand, the
coherence time depends on the intrinsic noise sources related to the circuital design (e.g.
�ux noise). On the other, it is sensitive to room-temperature electronics �uctuations
and the quality of the pulses in the characterization sequences [14]. The relaxation
time, instead, is mostly in�uenced by materials into play (e.g. dielectric losses, defects,
quasiparticles) and the coupling with readout resonators and �ux/control lines on chip
(e.g. Purcell e�ect, spontaneous radiation emission) [34]. The two devices have been
fabricated within the same materials and fabrication conditions, as well as with similar
readout and lines couplings. Therefore, relaxation times can be compared in order to
extract information on the quality of the materials and the design. Coherence times,
instead, have been measured in di�erent experimental conditions (di�erent cooldowns),
thus preventing a direct comparison.

4.3.1 Soprano

Rabi oscillation. Following the procedure discussed in Sec. 2.6.2, we study the Rabi
oscillation for the pair qubit 0 and qubit 2 of the Soprano device. The Chevron plot in Fig.
4.24 shows that the Rabi oscillation frequency for qubit 2 increases, while the amplitude
decreases, when we change the frequency of the qubit drive (QD) pulse. This measurement



Figure 4.24: Chevron plot for qubit 0: colorplot with the Qubit Drive frequency on the x-axis , and the
pulse time on the y-axis. The color scale is the imaginary part of the readout resonator signal. A 107 MHz
sideband should be added to the frequency values shown due to up-conversion processes (Sec. 2.5).

allows us to �nd the frequency of the QD resonant with the qubit as the center of the
Chevron plot, and it is (4.562 ± 0.001) GHz. The same investigation was performed for
qubit 2 and the frequency resonant with the qubit is (5.593 ± 0.001) GHz. These frequency
values are consistent with the f01 frequency peaks observed in spectroscopy experiments
(Table 4.23).

As discussed in Sec. 2.6.2, once the resonant frequency has been detected, we change
the attenuation on the drive to estimate the π -pulse. In order to perform gates, we want a
π -pulse that is as fast as possible. In Fig. 4.25a is shown the result of the Rabi oscillation
measurement for qubit 0, with an attenuation on the drive line of 18 dB. For the estimation
of π -pulse we �t the data with a sine function [4] and the duration of the QD pulse for
the transition |0〉 → |1〉 is (55 ± 1) ns, where the error is the maximum error. We have
performed the same measurements for qubit 2, and the results are shown in Fig. 4.25b. An
attenuation on the drive line of 15 dB was employed and the π -pulse duration from the
�t result (20 ± 1) ns, where the error is the maximum error. We observe that the π -pulse
duration for qubit 2 is shorter than that for qubit 0, a result consistent with expectations,
as the Rabi oscillation frequency is known to increase with increased power according to
[69]:

Ωr =
√
A2 + δω, (4.1)

where A is the amplitude of the RF signal and δω is the detuning between the drive and
the qubit frequency.
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Figure 4.25: π -pulse �tting, for qubit 0a) and qubit 2 b), respectively.

Relaxation time. The protocol for T1 measurements, discussed in Sec. 2.6.2, was
implemented for qubits 0 and 2. T1 quanti�es the relaxation time from the excited state to
the ground state (Sec 1.2.4). For qubit 0, we obtain the result in Fig. 4.26a. We �t the data
(blue dots in Fig. 4.26a) with Eq. 2.6 and obtain the characteristic decay time T1 = (16 ± 2)
µs , where the error is the standard error from the �t.

In Fig. 4.26b is shown the same measurement for qubit 2. From the exponential �t, we
are able to extract T1 = (7.6 ± 0.8) µs , where the error is the standard error from the �t.
These results are in agreement with T1 times typically found in literature [14].

Decoherence time. As discussed in Sec. 2.6.2, the Ramsey protocol allows to estimate
the decoherence timeT2 and is also sensitive to the detuning δω between the drive and the
qubit frequency, so it can be used to evaluate the frequency of the qubit. According to Eq.
2.7, when the frequency of the drive is on resonance with the qubit frequency, i.e. δω = 0,
the expected behavior is an exponential. In order to �nd the qubit frequency, we perform
the Ramsey protocol as a function of the QD frequency. This results in the Ramsey fringes
in Fig. 4.27a for qubit 0. In Fig. 4.27b the Ramsey fringes on and o�-resonance are shown.
In order to determine the frequency of qubit 0 we select the frequency with the longer
oscillation period, resulting inωQ0 = (4.5618 ± 0.0001)GHz, where the error is maximum.

Moreover, as we introduced in the Sec. 2.6.2, the Ramsey interferometry allows to
estimate the Ramsey Decoherence time T ∗2 , which contains information on both energy
relaxation and pure dephasing [69]. To include a higher degree of dephasing it is typically
performed o�-resonance, and the the data is �tted using Eq. 2.7. The o�-resonance
measurement in Fig. 4.28a gives a T ∗2 = (1.9 ± 0.2) µs , where the error is the standard
error from the �t. The same investigation on qubit 2 is shown in Fig. 4.28b, and gives a
T ∗2 = (1.3 ± 0.2) µs , where the error is the standard error.

Hahn echo measure. To obtain T2, in which the e�ect of dephasing is mitigated, we
employ the Hahn echo protocol, as introduced in Sec. 2.6.2. This mitigation is achieved



Figure 4.26: T1 measurement for qubit 0 (blue dots in panel-a) and qubit 2 (blue dots in panel-b):
demodulated voltage output as a function of the sequence duration has been �tted with the Eq. 2.6 (green
line). Hahn echo measurement for T2 performed both for qubit 0 (black dots in panel-a) and qubit 2 (black
dots in panel-b). We plot the real part of the demodulated output voltage signal as a function of the sequence
duration. The red line is the �t given by Eq. 2.8.

Figure 4.27: In a) Ramsey fringes for qubit 0: colorplot with x-axis the pulse duration, y-axis the Qubit
Drive frequency and color scale the magnitude of the readout resonator. In b) line-cuts of the colorplot for
�xed Qubit Drive frequencies on-resonance (pink) and o�-resonance (green).
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Figure 4.28: Measure of the o�-resonance Ramsey oscillation to estimate T ∗2 both for qubit 0 (panel-a)
and qubit 2 (panel-b). The data are �tted using Eq. 2.7.

through a refocusing pulse, which counterbalances the dephasing on the equatorial plane.
In Fig. 4.26a and b the result of Hahn echo measurement (black dots) are shown for

qubit 0 and qubit 2 respectively. Employing the protocol detailed in Sec. 2.6.2, we estimate
T2 by �tting the data with Eq. 2.8. The acquired T2 value for qubit 0 is (10 ± 2)µs , and for
qubit 2, it is (9 ± 2)µs , with both errors being standard errors.

These values are lower than the ideal limit of zero dephasing, i.e. for aT2 approximately
twice T1 [14]. This type of measurement is mainly in�uenced by the accuracy of the
measurement and the experimental setup, while the T1 values are indicative of the design
and are in line with the expected values [4]. Nevertheless, T2 times are larger than T ∗2
values, thus con�rming that the Hahn-Echo protocol has been able to suppress low-
frequency dephasing e�ects.

4.3.2 Soprano TunC

Following the same experimental approach seen for the Soprano device, we now present
the results of time-domain measurements on the Soprano TunC device, for the pairs Q5-Q6
and Q7-Q8. In particular, we show the results for Q7, Q5 and Q6. The data are compared
with the results obtained for the Soprano, and summarized in Table 4.35.

Rabi oscillation. In Fig. 4.29a we show the Rabi oscillation for Q7 as a function of
the QD frequency. At zero detuning we expect the maximum of the period of the Rabi
oscillations [4]. This measurement allows us to �nd the QD frequency resonant with the
qubit frequency, as depicted in Fig. 4.29b, i.e. (5.117 ± 0.001) GHz.

The same investigation was performed for Q5 and is shown in Fig. 4.30a , where the
QD frequency resonant with the qubit is (5.567 ± 0.001) GHz (Fig. 4.30b). These values
are consistent within the errors with the frequency values obtained from spectroscopy
experiments (Table 4.23).

As discussed for the Soprano device, once the resonant frequency has been detected,
the attenuation on the drive has been varied to estimate the π -pulse. In Fig. 4.31a we set



Figure 4.29: In a) Chevron plot for Q7, with the Qubit Drive frequency (x-axis), the pulse time (y-
axis) and the color scale is the magnitude of the demodulated voltage output. In b) behavior of the Rabi
oscillation when changing the detuning between the Qubit Drive pulse and the Q7 frequency for selected
QD frequencies.

Figure 4.30: In a) Chevron plot for Q5, with the Qubit Drive frequency on the x-axis, the pulse time on
the y-axis. The color scale is the magnitude of the demodulated voltage output. In b) behavior of the Rabi
oscillation when changing the detuning between the Qubit Drive pulse and the Q5 frequency for selected
QD frequencies.
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Figure 4.31: Chevron plot for Q7 as a function of the QD power: the x-axis represents the Qubit Drive
attenuation, the y-axis the pulse time of the drive signal and the color scale the magnitude of the demodulated
voltage output. In b) the behavior of Rabi oscillation when changing the attenuation on the Qubit Drive
pulse for selected values.

QD frequency to the Chevron plot center in Fig. 4.29a and we vary the attenuation on the
QD. In agreement with Eq. 4.1 increasing the QD power leads to faster Rabi oscillations, as
shown in Fig. 4.31b. In Fig. 4.32a, we show the result of the Rabi oscillation measurement
for Q7, with attenuation on the drive line of 30 dB. As seen for the Soprano device, for the
estimation of π -pulse we �t the data with the sine function and result (143 ± 1) ns, where
the error is the standard error from the �t. We have performed the same measurements
for Q5 and the results are shown in Fig. 4.32b. An attenuation on the drive line of 30 dB
gives a π -pulse duration of (175 ± 1) ns, where the error is the standard error from the �t.

Relaxation time. For T1 measurements we implement the same protocol seen for
the Soprano device. For Q7 we obtain the result in Fig. 4.33a. We �t the data (blue dots in
Fig. 4.33a) with Eq. 2.6 and obtain the characteristic decay time T1 = (4.7 ± 0.4) µs , where
the error is the standard error from the �t. In Fig. 4.33b is shown the same measurement
for Q5. From the exponential �t, we are able to extract T1 = (9.9 ± 0.5) µs , where the error
is the standard error from the �t.

Decoherence time. As discussed for the Soprano device, an important result is the
Ramsey Decoherence time T ∗2 measurement. The result of the o�-resonance measurement
is shown in Fig. 4.34a for Q5, and from the �t we obtain T ∗2 = (12.6 ± 0.3) µs , where the
error is the standard error from the �t. As one can notice from Fig. 4.34a, the Ramsey
o�-resonance oscillation shows a positive drift increasing the sequence duration. This
must be related to the fact that drive pulses have not been optimized in these preliminary
experiments. This is also consistent with the presence of a Gaussian broadening of the
T ECHO
2 measurement for Q7 in Fig. 4.33a [4]. Therefore, we have not performed any

Ramsey experiment on Q7, being necessary to perform an optimization procedure on the
control pulses, which is not the main goal of this work.

Hahn echo measure. To obtain T2, we employ the Hahn echo protocol, as discussed
for the Soprano device. In Fig. 4.33a is shown the result (black dots) for Q7. Employing
the protocol detailed in Sec. 2.6.2, by �tting the data we estimateT2 = (2± 1)µs , where the



Figure 4.32: Measure of the Rabi oscillation to estimate the π -pulse using the sine function, for Q7
(panel-a) and Q5 (panel-b) respectively.

Figure 4.33: In a) the T1 and T ECHO
2 measurement (blue and black dots, respectively) for Q7. The

demodulated voltage output as a function of the sequence duration has been �tted with the Eq. 2.6 (green
curve) for T1 estimation, while Hahn echo T2 time has been �tted using Eq. 2.8 (red curve). In b) the T1
measurement (black dots) for Q5, �tted with the Eq. 2.6 (green curve).



Chapter 4 - Experimental results and data analysis 83

Figure 4.34: In a) measure of the o�-resonance Ramsey oscillation to estimate T ∗2 for Q5. The data
was �tted using Eq. 2.7. In b) Hahn echo measurement for T2 performed Q5. We plot the real part of the
demodulated output voltage signal as a function of the sequence duration. The red line is the �t given by
Eq. 2.8.

Table 4.35: Summary of values obtained for both the devices Soprano and Soprano TunC. For each qubit,
we report the Relaxation time (T1), Hahn-echo time (T2), the Ramsey Decoherence time (T ∗2 ) and the π -pulse.
For each value of the π -pulse we report the power to which it was measured.

error is the standard error. The same investigation was conducted for Q5 and is shown in
Fig. 4.34b. We obtain a T2 = (7 ± 1)µs , where the error is the standard error.

4.3.3 Summary for the relaxation times and design implications

Both designs exhibit values that are comparable and consistent with those available in
literature [14][4]. Speci�cally, the values ofT2 andT ∗2 are predominantly in�uenced by the
precision of the measurement and the experimental setup, and thus, are not indicative for
this comparison. The T1 values, however, are representative of the design quality and are
coherent across both designs. The Soprano device, characterized by a more stable design,
features relaxation times of the order of tens of microseconds. The relaxation time for
Q2 is lower than the relaxation time estimated for Q0. This is related to the fact that Q2
has the maximum connectivity on chip, being it connected through high-frequency bus
resonators to the other qubits of the matrix (Sec. 2.3). The relaxation times measured for
the Soprano TunC are also consistent with Qubit 2 relaxation time. Indeed, the presence



of an increased number of control and �ux lines, as well as readout resonators in this
prototypal device cause an increased coupling with the external environment, which in
turn induces spontaneous radiation emission and relaxation. At the same time, this a�ects
mostly Q7, rather than Q6. Since they are both �xed-transmon qubits, we can exclude
that relaxation is caused by the �ux lines. However, Q7 shares with Q8 a tunable coupler
with a test readout resonator. Reasonably, the low relaxation time must be related to the
spontaneous radiation emission/adsorption through TC78 readout resonator.

4.4 Experimental analysis and comparison of di�erent
coupling schemes

For the implementation of two-qubit gate operations discussed in Chapter 3, it is necessary
to couple at least two qubits by bringing them into resonance. For both the investigated
devices, Soprano and Soprano TunC, this was obtained by tuning in �ux the qubit at the
highest frequency in the pair, to the lowest one in frequency. At the resonance �ux
point, the presence of coupling interaction opens a gap in the energy spectrum of the
coupled qubits system, i.e. an avoided level-crossing occurs, as discussed in Sec 3.1. In this
section, we present the results of avoided level crossing (ALC) measurements performed
on both devices. In particular, these results have been achieved by simulating the energy
spectrum with an approach that aims at reproducing the physics of the system even
beyond the commonly used perturbative hypotheses (Refs. [85], [76], [86]). As detailed in
the Appendix A.2, this method employs a numerical diagonalization of the Hamiltonian,
allowing us to extract detailed information about the interaction strengths within the
system.

In order to benchmark the feasibility of this approach, we �rst study a simpler system,
such as the Soprano, in which two qubits are coupled through a resonator. Then, we focus
on the Soprano TunC device, which is a more complex system, consisting of three qubits,
with the third central acting as Coupler (Sec. 3.2).

4.4.1 Soprano: coupling through high-frequency bus resonators

In Fig. 4.36 the ALC measurement between qubit 0 and qubit 2 is shown. We perform a
spectroscopy on qubit 0 while sweeping the �ux on qubit 2 and we observe the spectrum
of the dressed eigenstates |01〉 and |10〉 at (0.278 ± 0.001) �ux quanta of the qubit 2 �ux.
Qubit 0 is kept at the �ux 0.086 Φ/Φ0 and a drive attenuation of 26 dBm on the drive tone
was used. The reason is that, in order to perform the spectroscopy measurement on qubit
0, we must make the |0〉 → |1〉 transition occur, by sending an appropriate QD pulse.

From this measurement, we can extract the �ux on qubit 2 that will allow to put on
resonance qubit 0 and qubit 2, and therefore implement two-qubit gates, like the iSWAP
described in Sec. 3.3. Further, in order to extract the strength of the coupling between
qubit 0 and qubit 2, we use two di�erent approaches and then compare the results.
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Figure 4.36: Avoided level crossing for Qubits 0 and 2: on the x-axis the applied �ux on qubit 2 in �ux
quanta, on the y-axis the qubit frequency of qubit 0 and the color scale is the normalized magnitude in
a.u. of the readout resonator. The orange curves represent the dressed states |01〉 and |10〉 of the two-qubit
system. They are obtained by �tting the avoided level crossing with Eq. 4.2. In dashed blue the f01 for the
bare state of qubit 2.

In the former, we used an established model in the literature that refers to Hamiltonian
3.2 obtained in the dispersive regime [76][86]. As reported in the reference [76], its
diagonalization leads to:

f01(ω1,ω2, J ) =
(ω1 + ω2) ±

√
(ω1 − ω2)2 + 4J 2
2 , (4.2)

where J is is the strength of the e�ective interaction in Eq. 3.2.
In Fig. 4.36, the best-�t result on the experimental data indicates an interaction strength

of J = (12 ± 2) MHz, where the errors are maximum errors. Since the Soprano device
follows a standard design as discussed in Sec. 2.3, this value aligns with the reference
value of 10 MHz found in the literature [87], making them compatible within the margin
of error.

We employ an innovative model that refers to Hamiltonian 3.1 to extract complete
information on the actual qubit resonator interactions, out of the dispersive regime
hypothesis. In order to simulate the complete Hamiltonian, we employ the Python package
for superconducting qubits scQubits [88], based on the characteristic parameters obtained
from the spectroscopy measurements summarized in Table 4.23 (refer to Appendix A.2
for details).

As we discussed in Sec. 3.2 for the Soprano device, qubit 0 and qubit 2 interact with
a resonator mode, each with distinct interaction strengths д1r and д2r . In Fig. 4.37a it
is shown the �t of the experimental curve with the simulated curve. The values of the
strength interaction are д1r = (407 ± 5)MHz for the qubit 2 and д2r = (514 ± 5)MHz
for the qubit 0, respectively, with the resonator mode, where the error is the maximum
error on the best �t. From Eq. 3.3, we obtain a value of the e�ective strength interaction
of J = (10 ± 2)MHz, where the error is the maximum error. The values we derived for



Figure 4.37: In a) avoided level crossing for Qubits 0 and 2: on the x-axis the applied �ux on Qubit 2 in
�ux quanta, on the y-axis the Qubit frequency of Qubit 2 and the color scale is the normalized magnitude
in a.u. of the readout resonator. The orange dots are the simulation plot for the state |010〉 (qubit 0) and in
purple the state |100〉 (qubit 2). Here the notation |Q2,Q0,Resonator 〉 is employed (see Appendix A.2) for
details. In b) the plot of the state |100〉 (qubit 2) on a larger �ux range.

the e�ective interaction, both from the conventional analytical perturbative model and
from the direct evaluation of the interaction strengths of the complete Hamiltonian, are
consistent within their error. This agreement highlights our ability to extract values for
the interaction terms of the non-perturbative Hamiltonian, further supporting the validity
of the model we’ve introduced.

4.4.2 Soprano TunC: tunable coupling scheme
In order to implement multi-qubit gate operations with tunable couplers such as the
Soprano TunC device described in Sec. 2.3, a spectroscopy study of the ALC measurements
is essential to understand the coupling behavior and �ux ranges of modulation for the
Coupler. Similar to the Soprano device, we perform the spectroscopy on Q7 with a drive
attenuation of 40 dBm, while sweeping the �ux on Coupler 78, keeping the Q8 far detuned
at 0.0406 Φ/Φ0 and we observe the ALC occurring at (0.360± 1) �ux quanta of the Coupler
78 �ux, see Fig. 4.38a.

In order to extract the strength of the coupling between qubit-Coupler (дi,r ) and
qubit-qubit (д12) we employ a model that refers to the Hamiltonian 3.4. The simulation is
based on the characteristic parameters summarized in Table 4.23, and employ the Python
package for superconducting qubits scQubits [88] (refer to Appendix A.2 for details).

In Fig. 4.38a it is shown the �t of the experimental curve with the simulated curve.
The values of the strength interaction are д1c = (42 ± 2) MHz for the Q7-Coupler,
д2r = (28 ± 2)MHz for the Q8-Coupler, and д12 = (15 ± 2)MHz for the Q7-Q8, where
the error is the maximum error.

The same investigation was conducted for the Q8 with a drive attenuation of 40
dBm while sweeping the �ux on Coupler 78 and keeping the Q8 at 0.0406 Φ/Φ0. In Fig.
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Figure 4.38: In a) avoided level crossing for Q7 and Coupler 78: on the x-axis the applied �ux on Coupler
78 in �ux quanta, on the y-axis the Q7 frequency and the color scale is the normalized magnitude in a.u.
of the readout resonator. The purple dots are the simulation of the state |100〉 (Q7) and in blue the state
|001〉 (Coupler 78). Here the notation |Q7,Q8,Coupler78〉 is employed (see Appendix A.2 for details). In b)
avoided level crossing for Q8 and Coupler 78: on the x-axis the applied �ux on Coupler 78 in �ux quanta, on
the y-axis the Q8 frequency and the color scale is the normalized magnitude in a.u. of the readout resonator.
The green dots are the simulation plot for the state |010〉 (Q8) and in blue the state |001〉 (Coupler 78). In
c) the plot of the state |001〉 (Coupler 78) on a larger �ux range. We see that the coupler �rst crosses at a
higher frequency the Q8 and at a lower frequency Q7. The color plots in panels a) and b) are also shown in
the �gure as a reference.



Figure 4.39: In a) avoided level crossing for Qubits 5 and Coupler 56: on the x-axis the applied �ux on
Coupler 56 in �ux quanta, on the y-axis the Q5 frequency and the color scale is the normalized magnitude in
a.u. of the readout resonator. The purple dots are the simulation plot for the state |010〉 (Q5) and in blue the
state |001〉 (Coupler 56). Here the notation |Q6,Q5,Coupler56〉 is employed (see Appendix A.2 for details).
In b) avoided level crossing for Qubits 6 and Coupler 56: on the x-axis the applied �ux on Coupler 56 in
�ux quanta, on the y-axis the Q6 frequency and the color scale is the normalized magnitude in a.u. of the
readout resonator. The green dots are the simulation plot for the state |100〉 (Q6) and in blue the state |001〉
(Coupler 56). In c) the plot of the state |001〉 (Coupler 56) on a larger �ux range. We see that the coupler
�rst crosses at higher frequency the Q5 and at lower frequency Q6. The color plots in panels a) and b) are
also shown in the �gure as a reference.

4.38b we observe the ALC occurring at (0.350 ± 0.001) �ux quanta of the Coupler 78
�ux. The values of the strength interaction are д1c = (35 ± 2)MHz for the Q7-Coupler,
д2r = (28 ± 2)MHz for the Q8-Coupler, and д12 = (15 ± 2)MHz for the Q7-Q8, where
the error is the maximum error. The frequency of Q8 shows a clear dependence on the
coupler �ux, i.e. it tends to linearly decrease in the range 0.4-0.6 Φ/Φ0. This suggests
possible crosstalk between the �ux lines of Q8 and TC78. This e�ect is not included in
the simulation, which explains the deviation between experiments and the simulation in
Fig. 4.38b.

Following the same experimental approach, we focus also on the pair Q5 and Q6. We
perform the spectroscopy on Q5 with a drive attenuation of 30 dBm while sweeping the
�ux on Coupler 56 and keeping the Q5 at the upper sweet spot, and we observe the ALC
occurring at (0.340± 0.001) �ux quanta of the Coupler 56 �ux, see Fig. 4.39a. The values of
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Table 4.40: Comparison table for the interaction strength values (д1c ,д2c ,д12) obtained from the �t. For
each pair, the table shows the values obtained from the individual measurements of Avoided Level Crossings
(ALC) with the coupler. The error on the values is ± 0.2 MHz and is the maximum error.

the strength interaction are д1c = (38 ± 2)MHz for the Q6-Coupler, д2r = (98 ± 2)MHz for
the Q5-Coupler, and д12 = (10 ± 2)MHz for the Q5-Q6, where the error is the maximum
error.

The same investigation was conducted for Q6 and is shown in Fig. 4.39b. We observe
that the ALC occurrs at (0.375± 0.001) �ux quanta of the Coupler 56 �ux. From the �t, the
strength interaction are д1c = (38 ± 2)MHz for the Q6-Coupler, д2r = (98 ± 2)MHz for
the Q5-Coupler, and д12 = (10 ± 2)MHz for the Q5-Q6, where the error is the maximum
error. The obtained values are compiled in Table 4.40 for comparative purposes.

The measurements of ALC for Q7-TC78 and ALC for Q8-TC78 reveal a 20% discrepancy
in the values of д1c , corroborating previous observations made regarding �ux crosstalk
between Q8 and TC78. From the strength interaction values obtained from the �t, we can
estimate the capacitances of the equivalent circuit, as described in Sec. 3.2 (see Fig. 3.4b).
From Eqs. 3.5 and 3.6 we get:

Cic = 2дic
√
CiCc

1
√
ωiωc

, (i = 1, 2) (4.3)

C12 = 2
√

C1C2
ω1ω2

д12 −
C1cC2c
Cc
. (4.4)

The values obtained are reported in Table 4.41a with an error of 0.2 fF given as propagation
of the maximum errors. For the pair Q7-Q8, д1c is given by the average of the values in
Table 4.40. The capacitance values extracted from the measurements are in remarkable
agreement with the values commonly reported in literature [7], both being of the same
order of magnitude.

From this result, we estimate the e�ective coupling strength д̃ for both pair Q5 and
Q6, and Q7 and Q8. In Fig. 4.41a is shown the behavior of д̃ (see Sec. 3.2), for the pair
Q5-Q6. We employ Eq. 3.10 using the capacitance values found from the �t, assuming Q5
on resonance with Q6. A modulation amplitude for the e�ective interaction of about 15
MHz results, together with an expected o�-point value of ωo f f

c = 5.15 GHz. The same
analysis was performed for the pair Q7 Q8 using the capacitance values in Table 4.41a
and, assuming Q8 on resonance on Q7, we obtain a modulation amplitude for the e�ective
interaction about 25 MHz and the o�-point value ωo f f

c = 5.18 GHz.
The values obtained from the �t of the ALC measurements between qubits and couplers

for both pairs are comparable and align with the order of magnitude found in existing



Figure 4.41: In a) comparison table for capacitance values. The capacitances of the individual qubits
(C1 ,C2 ,Cc ) were obtained from the charge energy, following the expression EC = e2/2C , where e is the
electron charge. The capacitances of the circuit (C1c ,C2c ,C12) are obtained from the �t. The error on
the values is ± 0.2 fF and is given by propagation from the maximum error. In panel b) simulation plot
comparison of the e�ective interaction д̃ from Eq. 3.10, with the capacitance values in c), for the pair Q5-Q6
assuming Q5 on resonance with Q6 and for the pair Q7-Q8 assuming Q8 on resonance with Q7 (panel c)).
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literature [9]. In particular, we have obtained for both the pairs that the condition of
N.N.N. capacitive connection is weaker than the N.N. coupling, i.e. (C12 � C1c,C2c) [7]
(Sec. 3.2).

The e�ective interaction strength values are comparable with those obtained from
the literature (see Ref. [78][79]). However, the literature values for the detuning between
ω
o f f
c and the qubit frequencies are around 1 GHz [7], which is an order of magnitude

larger than the detuning estimated from the capacitance in Table 4.41a.
It is crucial to note that the spectroscopy measurements are a�ected by an intrinsic

error. This is due to the necessary trade-o� in the power of the drive signal: if it’s too
weak, the spectroscopic lines are typically poorly resolved, and if it’s too strong, the
spectroscopy peaks tend to broaden. This trade-o� consequently increases the maximum
error on the frequency estimation [69].

Simulating the expected behavior o�ers a clear advantage. Extracting information on
the interaction terms of a three-qubit system and circuit values highlights the need to
optimize this trade-o� for more precise �t estimations. This optimization can be achieved
by �ne-tuning the input signal attenuation and enhancing the output ampli�cation, even
leveraging ampli�cation stages at cryogenic temperatures. Additionally, for experimen-
talists, having a simulated expected trend during data acquisition serves as a bene�cial
guide, enhancing the measurement process.

4.4.3 Preliminary study of the o�-point through ALC experiments
In order to observe the o�-point, an ALC spectroscopy measurement was performed on
Q7 and Q8 by varying the �ux on the Coupler. Speci�cally, we perform a spectroscopy
measurement on Q7 with a drive attenuation of 35 dBm, while sweeping the �ux on Q8,
in order to set it on resonance with Q7. The measurement was repeated by varying the
�ux on the Coupler from 0.305 Φ/Φ0 to 0.338 Φ/Φ0. In this �ux range, we performed �t
simulation on ALC data for four �ux points 0.306, 0.319, 0.329 and 0.334 (Φ/Φ0), shown
respectively in Fig.4.42a-b-c-d. We here observe that the ALC gap progressively reduces,
�nally closing at 0.320 �ux quanta on the Coupler, where the bare state of Q7 is the only
distinguishable peak (Fig. 4.43 b). By varying the �ux on the Coupler, the gap �nally
reopens as shown in Fig. 4.42c. These measurements have been �tted, and the coupling
strength values obtained are reported in Table 4.43.

From the results of the �t, obtained for the interaction strength values, we can estimate
the behavior of the e�ective coupling strenght д̃. Rewriting the Eq. 3.10 in terms of д1c ,
д2c and д12 we get:

д̃ ≈
д1д2
2

(
1

ω1 − ωc
+

1
ω2 − ωc

−
1

ω1 + ωc
−

1
ω2 + ωc

)
+ д12. (4.5)

The behavior of д̃ from the data �t is compared in Fig. 4.44a with the amplitude of the
gap measured in the spectroscopy data of Fig.4.42, shown in Table 4.44b. This measure
provides a rough but indicative estimate of the actual e�ective interaction between Q7
and Q8. From this comparison, we get an estimation of the o�-point value around 5.8



Figure 4.42: Spectroscopy on Q7 with a drive attenuation of 35 dBm while sweeping the �ux on Q8. The
measurement was repeated by varying the �ux on the Coupler from 0.305 Φ/Φ0 to 0.338 Φ/Φ0. On this
range we performed �t simulation on ALC data for four points 0.306, 0.319, 0.329 and 0.334 (Φ/Φ0), shown
respectively in Fig.4.42a-b-c-d. In e) the f01 of coupler 78 is plotted as a function of �ux. The measurement
points of the ALC (blue) are shown for comparison with the f01 of Q7 at the ALC with Q8 (black line).
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Table 4.43: Comparison table for coupling strength values obtained from the data �t. For each �ux value
applied on the Coupler 78 the f01 frequency of the Coupler is shown together with the values of д1c , д2c
and д12 obtained, where the errors are maximum errors.

Figure 4.44: In a) the e�ective interaction д̃ obtained for the frequency on the coupler 78 by the �t of
the ALC measurements between Q7 and Q8. These values are compared with those obtained by direct
measurement of the gap opening in spectroscopy measurements (blue dots). Error bars for the latter are
of the order of 5 MHz. As a reference, the e�ective interaction strength д̃ is plotted (brown dashed line),
obtained employing the Eq. 3.10 for ωof f

c at 5.8 GHz. In b) the comparison table shows the e�ective
interaction values obtained from the data �t together with the amplitude of the gap measured in the
spectroscopy data of Fig.4.42. For each value, the related frequency f01 of the Coupler is shown. The errors
are maximum errors.



GHz.
As already observed in the qubit-coupler direct ALC, this value is a�ected by an

intrinsic error due to spectroscopy measurements. In addition, Q7 frequency at the ALC
with Q8 negatively shifts as a function of the Coupler 78 frequency in Fig. 4.42. In
particular, the maximum shift measured with respect to the Q7 unperturbed frequency
is (11 ± 2) MHz at (0.334 ± 0.001) �ux quanta on the Coupler 78. Among the possible
motivations behind this e�ect, the variable detuning between Q7 and Q8 frequency related
to �ux crosstalk between the �ux lines of Q8 and TC78 is the most reasonable. Therefore,
the coupler frequency close to the o�-point automatically approaches Q7 computational
frequency. The similarity between the coupler o�-point frequency and Q7 frequency
suggests a design limitation for the Q7-Q8 pair [7].

Nevertheless, the e�ective interaction strength between two qubits in Fig. 4.42, reduces
close to the o�-point, and we can see a revival above the o�-point, as expected. Here,
we report a comparison between the e�ective coupling strength estimated from the
ALC �tting around the o�-point (red points), and the ones estimated from the ALC gap
amplitude (blue points). The dashed brown line is a guide for the eye and represents the
behavior of the e�ective interaction strength from the theory [7][79].

4.4.4 Study of the o�-point through SWAP experiment
Typically, in order to measure the o�-point in tunable coupling designs the most common
procedure proposed is the measurement in time-domain, of the SWAP of energy between
two qubits discussed in Sec. 3.3.2. This experiment has been performed on the pair Q5-Q6,
reported in Fig. 4.45a.

In this experiment, we drive the Q5 with the calibrated π − pulse and an attenuation
of 21 dBm, in order to prepare the state |10〉. Simultaneously we read the energy swap
through the demodulated imaginary signal of the Q6 readout resonator. The measurement
was repeated by varying the amplitude of the �ux on the Coupler from -375 mV to 0.375
mV, and its duration up to 300ns. The Numerical Fourier transform (FFT) is shown in Fig.
4.45b, where the frequency on the y-axis is a measure of the e�ective interaction strength,
as shown in Ref. [89], see Fig. 4.45c.

The e�ective interaction strength as a function of the Coupler 56 �ux amplitude
decreases from (36 ± 1) MHz at (−375 ± 10) mV to (6 ± 1) MHz at (−200 ± 10) mV, where
the errors are maximum errors. As a comparison, in Fig. 4.45c and d we show the SWAP
results and the interaction strength obtained from the same experiment reported in Ref.
[89]. The most important di�erence between the two datasets is the absence of a complete
o�-interaction condition.

Summary and concluding remarks

From the o�-point measurements conducted on pairs 78 and 56, using two distinct experi-
mental approaches, the e�ective qubit-qubit interaction depends on the coupler frequency,
i.e. it reduces until a speci�c coupler frequency, and then increases again, aligning with
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the model described in Sec. 3.2. However, as noted in the SWAP experiment for the pair
56, the interaction at the o�-point never reaches zero. Considering that the two pairs
have been designed to be equivalent in terms of their electrodynamics parameters, we
should expect that the same happens for the pair Q7-Q8 (see the summary of the electro-
dynamics parameters in Table 4.23 and the capacitances obtained from the �t of the ALC
for the two pairs in Table 4.41a). Indeed, the o�-point estimation for Q7-Q8 was based
on ALC spectroscopy measurements as a function of the coupler frequency, modulated
through �ux-biasing across the dedicated �ux-line. Typical spectroscopy measurements
are a�ected by the half-width at half-maximum of the transition peaks, which is of the
order of few MHz. It is reasonable to assume that such an error provides a limit for the
o�-point condition estimation [69].

Moreover, the crosstalk between the Q8 �ux lines and TC78 and low frequency
detuning between the coupler and the qubits, imposes constraints on the precision of
the derived values. The design is indeed the primary bottleneck for these measurements,
since the sample includes drive lines for 8 qubits, 4 �ux lines and 10 readout resonators on
the same chip. This inherently introduces crowding e�ects, which in turn cause crosstalk
[34].



Figure 4.45: SWAP exchange of energy between Q5 and Q6: in a), on the x-axis the amplitude �ux applied
on the Coupler 56 (in mV), on the y-axis the duration of the �ux pulse and the color scale is the demodulated
imaginary voltage of the readout resonators of Q6. The swap oscillation are faster in the region above
-300 mV of Coupler �ux amplitude, then up to 100 mV the swap rate decreases and remains constant. This
behavior is more clearly observable in b) where the Numerical Fourier transform (FFT) is employed. The
frequency on the y-axis is the value of the e�ective strength interaction [78], as de�ned in Sec. 3.3. In c)
a demonstration of the tunable coupling between two qubits, adapted from [89], where the energy swap
measurement between the two qubits is explored over the entire �ux modulation of the coupler. In d) the
e�ective interaction force modulation indicates the on-o� ratio for the two-qubit swap operation. Figure
adapted from [89].



Conclusions

In this thesis, I have performed a detailed characterization of two di�erent designs for
superconducting qubit coupling, exploring their functionalities to comprehend advantages
and disadvantages in the �eld of scalable quantum computing. Speci�cally, I worked on
two samples characterized by two coupling schemes: one uses �xed coupling strength
between two superconducting transmon qubits by means of a high-frequency bus res-
onator; the other uses a tunable coupling strength by means of a mediator �ux-tunable
qubit, or tunable coupler. This work is part of a collaboration between the two leading
companies Seeqc and Quantware, and the University of Naples Federico II.

The characterization of individual qubits for each device began with the use of both
continuous wave and time-domain protocols. These protocols estimated readout res-
onators and qubit frequencies, the charging energy of the qubits, and their relaxation and
coherence times through Ramsey and Hahn-Echo protocols. By comparing the electrody-
namics parameters of the devices with existing literature, the devices were validated in
the context of isolated qubits. Yet, in the prototype design incorporating the coupler, ex-
perimental values for coherence and relaxation times were signi�cantly in�uenced by an
increased number of control and �ux lines, and readout resonators, inducing spontaneous
radiation emission, therefore enhancing the relaxation decay rate.

From this comparative analysis, it became evident that the prototype design stands as
an ideal candidate for further research and development. I have particularly contributed to
data analysis of the experimental avoided level crossings in the energy spectra occurring
typically in coupled two-level systems, by implementing an innovative non-perturbative
method to study the coupling forces, validated on the standard design with a �xed coupler,
proving its e�cacy and reliability.

The exploration of the prototypal tunable coupling design has thus proven the fea-
sibility of the technique, allowing to extract pivotal information, such as the condition
of next-nearest neighbors (N.N.N.) capacitive connection being weaker than the nearest
neighbors (N.N.) coupling, i.e., C12 � C1c,C2c [7]. Avoided level crossing experiments
were conducted by modulating the coupler frequency through �ux-tuning. This analysis
technique was used to discern the dependence of the two-qubit interaction strength
on the coupler frequency, in order to measure the so-known o�-point, i.e. the coupler
frequency at which the interaction between the two qubits e�ectively switches o�. These
�ndings were compared with a more standard time-domain technique in literature, i.e. the
SWAP experiment. The results obtained from the o�-point and SWAP tests show that the
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e�ective interaction strength at the o�-point never reached zero. This can be ascribed to
a lower detuning between the coupler and the qubits in the o�-point condition, compared
with the values reported in the literature [7][79]. This limitation serves as a catalyst for
re�ning the design and the data analysis technique, a task that is inherently challenging,
given the complexity of a system involving three coupled qubits.

In conclusion, through innovative analysis approaches, we have highlighted the
potential and challenges of di�erent qubit coupling designs. The insights and challenges
encountered are stepping stones towards the realization of more robust and e�cient
quantum computing architectures, fostering optimism and determination for continual
exploration and enhancement in the �eld.



–A–
Appendix

A.1 Curve-fit for flux tunable cavity readout modula-
tion

In order to use Eq. 2.5 to �t the experimental results of readout frequency modulation as
a function of an external �ux, we employ a Non-Linear Least Squares �t using Python’s
SciPy library [83]. The �t was performed using a composite function that incorporates
several physical parameters. Speci�cally, from the Eq. 2.5, the �tting function ωr (x) is
de�ned as:

ωr (x,d,д,ω
ss
01, Ec,ω

bare
r , δ ) = ωbare

r +
д2��f01(ωss

01, Ec,d, x) − ω
bare
r

�� + δ , (A.1)

where f01(ω
ss
01, Ec,d, x) represents the qubit frequency as a function of the �ux x , see 1.42 .

Here ωbare
r is the bare cavity frequency, д is the coupling strength, and δ is an additional

correction, see Eq. 1.49. The function f01 is further de�ned as:

f01(ω
ss
01, Ec,d, x) =

(
ωss
01 + Ec/~

) √���cos(x · π )√1 + d2 tan2(x · π )
��� − Ec/~. (A.2)

The �t requires physical initial parameters estimates and bounded constraints to ensure
physical validity. We use the design values for ωss

01 and EC , which are then corrected once
they become available from the following experiments.

To generate the theoretical curve for comparison with the experimental data we
establish the linear correspondence between �ux and voltage. Therefore, the relation
between the voltage applied and the �ux satis�es: Φ = LV

R , where L is the inductance of the
DC-SQUID in the qubit. Using a specialized wrapper function, we establish a relationship
between voltage and the �ux, that enables us to normalize the x_data (in voltage) to the
�ux (ϕ/ϕ0 ). The wrapper function is de�ned as follows:
def wrapper_function(V, d, gi, o_bare, correction, V_max, V_min):

normalized_flux = -0.5 * (V - V_max) / (V_min - V_max)
return o_r(x, d, gi, o_uss, Ec, o_bare, correction).
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Here V represents the voltage data points. The normalized �ux ϕ/ϕ0 = x is then used
in the main �tting function to model the observed behavior and extract the optimized
parameters, including Vmax and Vmin, with their corresponding standard errors.

A.2 Python Code for �antum Simulations
In this appendix, we provide a description of the Python code used to perform the quantum
simulations presented in this thesis. The code is written in Python and uses the scQubits
library [88] for de�ning quantum objects and performing simulations, and qutip [90] for
quantum object manipulation and tensor calculations.

A.2.1 Two-qubits coupled by resonator bus
In Sec. 3.1 we have seen that the system of two transmon qubits capacitively coupled to
a resonator is described by Hamiltonian 3.1. Each term can be implemented using the
scqubits library in Python. The tunable transmon qubit’s Hamiltonian follows from Eq.
1.21 and is represented in the number basis:

H0 = 4EC(n̂ − nд)
2 −

EJ
2 (|n〉〈n + 1| + h.c.),

where EJ is the Josephson energy, EC is the charging energy, n̂ is the number operator,
and nд is the o�set charge.

qubitA = scq.TunableTransmon(
EJmax=EJ,
EC=EC,
d=0,
flux=0,
ng=0.0,
ncut=30,
truncated_dim=3,
id_str="tmon_tune"

).

The system is initialized with parameters ‘EJ‘ and ‘EC‘ that we can estimate from spec-
troscopy measurements, as described in Sec.2.6.1. To compute the energy spectrum of the
Transmon qubit, the code employs sparse diagonalization techniques [88].

The term ωra
†
rar in Eq. 3.1, describes the energy of the resonator. This is implemented

using the ‘Oscillator‘ class in scQubits:

resonator = scq.Oscillator(
E_osc=\omega_r,
truncated_dim=3

).
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In order to simulate the interaction between two qubits and a resonator, the interaction
is implemented using the scq.HilbertSpace class from the scqubits library. First we
initialize the Hilbert space as follows:

hilbertspace = scq.HilbertSpace([tmon_tune, tmon, resonator]).

Here, tmon_tune represents the Transmon qubit that we aim to study under �ux varia-
tions, while tmon denotes the reference Transmon qubit that will remain �xed, mirroring
the typical experimental approach. In the operatorial formalism, the interaction term can
be represented as:

Hint = дir
(
b†i ar + bia

†
r

)
,

where:

• b†i and bi are the creation and annihilation operators for the qubit, respectively.

• a†r and ar are the creation and annihilation operators for the resonator, respectively.

• дir is the coupling strength between the qubit and the resonator.

We proceed to de�ne the coupling strengths between the qubits and the resonator in the
code:

g1 = g1r # coupling strength between qubit 1 and resonator
g2 = g2r # coupling strength between qubit 2 and resonator

The interaction between (tmon_tune) and Resonator reads as:

hilbertspace.add_interaction(
g_strength=g1,
op1=tmon_tune.n_operator,
op2=resonator.creation_operator,
add_hc=True,
id_str="tmon_tune-resonator"

),

here n_operator represents the number operator for the qubit, and creation_operator
represents the creation operator for the resonator. The add_hc=True parameter ensures
that the Hermitian conjugate of the interaction is also added to the Hilbert space. Interac-
tion between tmon and Resonator reads as:

hilbertspace.add_interaction(
g_strength=g2,
op1=tmon.n_operator,
op2=resonator.creation_operator,
add_hc=True,
id_str="tmon-resonator"

).



Figure A.1: f01 spectrum in function of the �ux applied on qubitA, for qubitA at 5.6 GHz and qubitB at 4.8
GHz, interacting via a high-frequency bus at 25 GHz. In the simulation, д1r is 0.5 GHz, and д2r is 0.6 GHz.

Similarly, g2 represents the coupling strength between tmon and the resonator.
This setup allows us to simulate the dynamics and study the properties of a system

where two qubits, one tuned in �ux and one kept �xed, interact with a resonator. The
�exibility of the scqubits library enables the exploration of various parameters and
con�gurations to gain insights into the behavior of such coupled qubit-resonator systems.
In Fig. A.1 is shown an example of the simulation for: f01 spectrum for qubitA at 5.6 GHz
and qubitB at 4.8 GHz, in function of the �ux applied on qubitA. The two qubits interact
via a high-frequency bus at 25 GHz.

A.2.2 Two qubits coupled by a third tunable qubit
In the Sec. 3.2 we have seen that the system of two transmon qubits capacitively coupled
via a third qubit is described by the Hamiltonian 3.4. The interaction is implemented
using the scq.HilbertSpace class similarly to the two qubits coupled by the resonator.
We initialize the Hilbert space, including the two qubits and the coupler, as follows:

hilbertspace = scq.HilbertSpace([qubit1, qubit2, coupler])

In the Hamiltonian, the terms:∑
j=1,2

дj(b̂
†
j b̂c + b̂jb̂

†
c − b̂

†
j b̂
†
c − b̂jb̂c)

represent the interaction between qubit j and the coupler qubit c , where дj is the coupling
strength. Interaction between Qubit1 and Coupler reads as:

hilbertspace.add_interaction(
g_strength=G1c,
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op1=qubit1.n_operator,
op2=coupler.n_operator,
add_hc=True,
id_str="qubit1-coupler"

).

G1c represents the coupling strength between qubit1 and the coupler, and n_operator
represents the number operator for the respective qubit or coupler. The add_hc=True
parameter ensures that the Hermitian conjugate of the interaction is also added to the
Hilbert space. Interaction between Qubit2 and Coupler reads as:

hilbertspace.add_interaction(
g_strength=G2c,
op1=qubit2.n_operator,
op2=coupler.n_operator,
add_hc=True,
id_str="qubit2-coupler"

),

similarly, G2c represents the coupling strength between qubit2 and the coupler.
The term

д12(b̂
†
1b̂2 + b̂1b̂

†
2 − b̂1b̂2 − b̂

†
1b̂
†
2 )

describes the direct interaction between the two main qubits, with д12 being the coupling
strength. This interaction is implemented in Python as:

hilbertspace.add_interaction(
g_strength=G12,
op1=qubit1.n_operator,
op2=qubit2.n_operator,
add_hc=True,
id_str="qubit1-qubit2"

).

Where the n_operator represents the number operator for the respective qubit, and the
‘add_hc = True‘ parameter ensures that the Hermitian conjugate of the interaction is also
added, capturing both the creation and annihilation processes.

Through this implementation, we can simulate the dynamics of two qubits capacitively
coupled via a third qubit, o�ering insights into the behavior of such systems and their
potential applications in quantum computing.

In Fig. A.2 is shown an example of the simulation for: f01 spectrum for qubitA at 5.1
GHz and qubitB at 4.0 GHz, and the Tunable Coupler at 8 GHz, as a function of the �ux
applied on the tunable coupler.



Figure A.2: f01 spectrum for qubitA at 5.1GHz and qubitB at 4.0 GHz, and the Tunable Coupler at 8 GHz,
in function of the �ux applied on the tunable coupler. In the simulation, д1c is 0.05 GHz, д2c is 0.04 GHz and
д12 is 0.01 GHz.
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