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Abstract

General relativity (GR), formulated by Albert Einstein in 1916 [1], remains a corner-
stone of modern physics, excelling in describing large-scale structures and passing
numerous precision tests at intermediate energy scales.
However, GR encounters limitations at the quantum scale and in explaining certain
cosmological phenomena, such as the accelerated expansion of the universe and
the presence of dark matter.
For this reason, physicists are exploring the possibility of modifying gravity in a
way that allows us to account for all of these problems.
This thesis explores possible modifications to GR, focusing on Scalar-Tensor the-
ories [2] and the possibility of building the most general solution possible to the
inverse problem of gravity. In other words, there is the possibility of verifying if
a given metric is a solution for a specific theory starting directly from the metric.
We will investigate potential modifications to General Relativity, particularly em-
phasising Scalar-Tensor theories [2, 3, 4, 5]. It aims to construct the most general
solution possible to the inverse problem of gravity. Specifically, it explores the
feasibility of verifying if a given metric is a solution for a specific theory by starting
directly from the metric[6]

After this, we will verify the sanity of the theory computing the Quadrupole
Formula and the Radiated Power of the pulsar PSR J0737-3039[7].

In summary, this thesis advances the understanding of extended theories of gravity
and set the foundation to build a general algorithm that will allow, given a metric,
to verify if it’s the solution of a theory and then compute Gravitational Waves.
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Sommario

La relatività generale (GR), formulata da Albert Einstein nel 1916, rimane un
pilastro della fisica moderna, eccellendo nella descrizione delle strutture su larga
scala e superando numerosi test di precisione a scale energetiche intermedie.
Tuttavia, la GR presenta limitazioni a livello quantistico e nella spiegazione di certi
fenomeni cosmologici, come l’espansione accelerata dell’universo e la presenza di
materia oscura.
Per questo motivo, i fisici stanno esplorando la possibilità di modificare la gravità
in modo da affrontare tutti questi problemi.
Questa tesi esplora possibili modifiche alla GR, concentrandosi sulle teorie scalari-
tensoriali e sulla possibilità di costruire la soluzione più generale possibile al
problema inverso della gravità. In altre parole, la possibilità di verificare se una
data metrica è una soluzione per una specifica teoria partendo direttamente dalla
metrica.

Successivamente, verificheremo la validità della teoria calcolando la formula
del quadrupolo e la potenza radiata del pulsar PSR J0737-3039.

In sintesi, questa tesi avanza la comprensione delle teorie estese della gravità
e pone le basi per costruire un algoritmo generale che permetterà, data una metrica,
di verificare se essa è la soluzione di una teoria e successivamente calcolare le onde
gravitazionali.
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Why do we need an extended
theory of gravity?

General Relativity, along with quantum mechanics, is one of the pillars of modern
physics. This theory was formulated by Albert Einstein in 1916, and it was a
groundbreaking way to describe gravity in a completely different way when con-
fronted to Newton’s law of universal gravitation formulated in the 17th century.
Einstein’s theory has passed all the precision tests [8, 9, 10, 11, 12], most of which
are probes of weak field gravity, which means that they probe gravity at intermedi-
ate length (1µm ≲ l ≲ 1011m), and therefore intermediate energy scales.
Despite its successes, GR is not without limitations, particularly when addressing
phenomena at the quantum scale, cosmological observations, and the unification
of fundamental forces.[13, 5].

A primary motivation for extending General Relativity (GR) stems from the pursuit
of unifying gravity with the other fundamental forces—electromagnetic, weak,
and strong interactions—into a single theoretical framework. While GR excels at
describing large-scale structures, it is incompatible with quantum mechanics, the
theory governing the subatomic world [14]. This incompatibility indicates that
GR may be an incomplete description of gravity, necessitating extensions that can
bridge the gap between quantum mechanics and gravity
Moreover, several astrophysical and cosmological observations challenge the com-
pleteness of GR [15, 16]. The accelerated expansion of the universe, inferred from
supernova observations and the cosmic microwave background radiation, implies
the existence of dark energy—a form of energy that GR cannot adequately explain.
Additionally, the behavior of galaxies and galaxy clusters suggests the presence
of dark matter, which, differently from ordinary matter, only interacts gravita-
tionally and not electromagnetically. These phenomena indicate that our current
understanding of gravity may be missing key components.
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How do we modify gravity?

There are countless distinct ways to modify GR, many of which lead to theories that
can be designed to agree with current observations. Cosmological observations
and fundamental physics considerations suggest that GR must be modified at very
low and/or very high energies.

• f(R) gravity
One of the simplest ways to modify GR is to change the Lagrangian of the
Hilbert Einstein Action [17, 18]. In GR, the action is

S = k

∫
d4x

√
−gR + Sm, (1)

where Sm represents the action of matter field, g is the determinant of the
metric tensor gµν and R is the Ricci scalar. We can modify it with a generic
function of R:

S = k

∫
d4x

√
−gf (R) + Sm. (2)

This modification leads to field equations that differ from Einstein’s, and
contain some additional terms that can account for the accelerated expansion
of the universe without introducing Dark Energy.

• Scalar-Tensor theories
This class of theories introduces a scalar field φ coupled with gravity. A
known example that we will analyze further in this work is the Brans-Dicke
theory [19], where the action has the following expression

S = k

∫
d4x

√
−gf

(
ϕR− 1

ϕ
∇αϕ∇αϕ

)
(3)

• Higher dimensional theories
Another possible approach to modifying gravity is to assume a higher number
of dimensions to our universe [20, 21]. This, of course, leads to a change in
the Hilbert-Einstein action, but instead of changing the Lagrangian density,
we change the number of variables of integration∫

d4x→
∫
dnx. (4)

Gravitational theory’s built-in dimensions other than four have a strong
theoretical interest for several reasons, including the formulation of consistent
String Theories, like the Bosonic String Theory [21] and Superstring theory
[22], that both assume the space-time to have a higher number of dimensions.
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About this thesis work

This thesis will be divided into three main parts. In the first one, we will review
the Article "A family of solutions to the inverse problem in gravitation: building
a theory around a metric" written by Arthur G. Suvorov, we will understand the
criticalities and the possible ways to improve it.
In the second part, we will derive the quadrupole formula both in General Relativ-
ity and for f(R) theories. After this, we will compute the Radiated Power for the
Pulsar PSR J0737-3039.
In the third part, we will find new numerical and analytical solutions to the inverse
problem of gravity, using different sets of theories and metrics, after this, we will
try to compute the quadrupole formula.
The final goal will be to have a method to be able, given a metric, to build a theory
that is suitable for that metric, and then compute the quadrupole formula, in the
most general way.
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In this chapter, We’ll provide an algorithm to solve the inverse problem of gravity
for a special class of theories, and build a general background to study Gravitational
Waves.

1.1 The Inverse Problem, a review of Suvorov’s pa-
per

In this first section, we will review the article called "A family of solutions to the
inverse problem in gravitation: building a theory around a metric" [6]. The idea presented
in this article by Arthur G. Suvorov is to build an algorithm which allows to take a
parametric metric and build an algorithm to find a scalar-tensor theory of gravity
for which the given metric is a solution

Gµν → δS → L. (1.1)

This is particularly useful when studying a parametric metric built via an
experimental observation. This method can identify a class of theories that satisfy
this metric.
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1.1.1 Action and equations of motion
We will study the following Scalar-Tensor theory

A = k

∫
d4x

√
−gf (F (ϕ)R + V (ϕ)− ω (ϕ)∇αϕ∇αϕ) = k

∫
d4x

√
−gf (X) . (1.2)

Where k = (16πG)−1, G is the Newton’s constant, R is the scalar curvature for
metric tensor g, and F, V and ω are potential functions of the scalar field ϕ. The
f(R) theory of gravity is also recovered for constant scalar fields and vanishing
potential V. Here, we consider only vacuum solutions for this theory. However, it’s
still possible to study a system with matter fields.

The first that we need to do is find the equations of motion. To do this, we have
to calculate the variation with respect to the metric δgµν and the scalar field ϕ

• Variation with respect to gµν

δA = k

∫
d4x

[
f(X)δ

(√
−g
)
+
√
−gδ (f(X))

]
(1.3)

= k

∫
d4x

[
−f(X)

2

√
−ggµνδgµν +

√
−gf ′(X)δX

]
.

Let’s focus on the second term of the integration:

δX = δ
[
F (ϕ) gµνRµν + V (ϕ)− ω (ϕ) gαβ∇αϕ∇βϕ

]
= F (ϕ)Rµνδg

µν + F (ϕ)δRµνg
µν − ω(ϕ)∇µϕ∇νϕδg

µν .
(1.4)

We can rewrite the variation as follows:

δA = k

∫
d4x

√
−g
[
f ′(X)F (ϕ)Rµν − f ′(X)ω(ϕ)∇µϕ∇νϕ− f(X)

2
gµν

]
δgµν

+k

∫
d4x

√
−gf ′(X)F (ϕ)gµνδRµν .

(1.5)

It can be shown that gµνδRµν can be written as as:

gµνδRµν = gµν∂σ
[
δΓσ

µν

]
− gµσ∂σ

[
δΓν

µν

]
= ∂σW

σ → ...→
W σ = ∂σ [gµνδg

µν ]− ∂µ [gµνδg
νσ] ,

(1.6)

so the second integral of (1.5) become:

k

∫
d4x

√
−gf ′(X)F (ϕ)∂σ [∂

σ (gµνδg
µν)− ∂µ (gµνδg

νσ)] . (1.7)
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Making an integration by parts and discarding the total divergences we have

k

∫
d4x∂σ

[√
−gf ′(X)F (ϕ)

]
[∂µ (gµνδg

νσ)− ∂σ (gµνδg
µν)] . (1.8)

we will now perform another part of the integration

k

∫
d4x∂σ∂

σ
[√

−gf ′(X)F (ϕ)
]
gµνδg

µν − k

∫
d4x∂σ∂

µ
[√

−gf ′(X)F (ϕ)
]
gµνδg

νσ

= k

∫
d4x∂σ∂

σ
[√

−gf ′(X)F (ϕ)
]
gµνδg

µν − k

∫
d4x∂µ∂ν

[√
−gf ′(X)F (ϕ)

]
δgµν

(1.9)

If we put together all the terms of δA we obtain:

δA = k

∫
d4x

√
−g
[
f ′(X)F (ϕ)Rµν − f ′(X)ω(ϕ)∇µϕ∇νϕ− f(X)

2
gµν

+gµν∂σ∂
σ [f ′(X)F (ϕ)]− ∂µ∂ν [f

′(X)F (ϕ)]

]
δgµν .

(1.10)

The variation with respect to the metric is

F (ϕ)f ′(X)Rµν −
f(X)

2
gµν + gµν□ [F (ϕ)f ′(X)]−∇µ∇ν [F (ϕ)f

′(X)] (1.11)

−ω(ϕ)f ′(X)∇µ∇νϕ = 0.

• Variation with respect to ϕ
Similarly, it’s possible to calculate the variation with respect to the scalar field

f ′(X)

[
2ω(ϕ)□ϕ+

dω(ϕ)

dϕ
∇αϕ∇αϕ+R

dF (ϕ)

dϕ
+
dV (ϕ)

dϕ

]
(1.12)

+2ω (ϕ)∇αϕ∇αf ′(X) = 0.

1.1.2 Physical conditions and Brans-Dicke choice
We can impose several conditions on these equations:

1. Demanding that the graviton carries a positive energy

2. Demanding that the kinetic energy of the scalar field is non-negative →the
coefficient of □ϕ in equation (1.13) must be non-negative

After applying all the conditions, we are left with the following request:

1. F (ϕ) > 0,



2. 2F (ϕ)ω(ϕ) + 3

(
dF (ϕ)

dϕ

)2

≥ 0.

The Brans-Dicke choices, F (ϕ) = ϕ, ω(ϕ) =
1

ϕ
satisfy these conditions:

1. ϕ > 0,

2. 2 + 3

(
dϕ

dϕ

)2

≥ 0.

1.1.3 How do we build a solution to the inverse problem?

Now that we know what conditions we need to impose on the theory,we can start
understanding how to build the solution.
Starting from the two equations of motion, we see that they are both satisfied when
the function f(X) has a zero for X0 that is also a critical point for the function,

f ′(X0) = f(X0) = 0. (1.13)

What we need to do at this point is solve the equation X = X0 starting from
a specific gµν metric, and finding an expression of ϕ that counterbalances the
curvature, allowing the function f and f ′ to vanish. Starting from our f(X) in (1.2),
if the scalar field counterbalance the Ricci curvature in a precise way, the function
f(X) can vanish at a local extremum:

X = F (ϕ)R + V (ϕ)− ω (ϕ)∇αϕ∇αϕ = X0. (1.14)

1.1.4 Example

To make an example, let’s suppose that through astrophysical data we can describe
a black hole metric with a generalized Kerr metric:

ds2 =
a2 sin2 (θ)−∆

Σ
dt2 − 2a sin2 (θ) (a2 + r2 −∆)

Σ
dtdφ

+
Σ

∆
dr2 + Σdθ2 +

(a2 + r2)
2 − a2 sin2 (θ)∆

csc (θ) Σ
dφ2, (1.15)

with ∆ = r2 + 2Mr + a2 + ϵ
M3

r
, and Σ = r2 + a2 cos2 θ

M and a are the mass and spin of the BH, while ϵ in an extra hair. This metric
admits an outer event horizon at the largest positive root of ∆ = 0 This metric is a
generalization of the Kerr metric and presents some notable properties, like the
fact that it’s asymptotically flat.
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The mixed scalar theory we will study is

f(X) = X1+δ, (1.16)

the function in analytical for δ ∈ Z.As we said before, we need to find a value
of X0 : f(X0) = f ′(X0) = 0. In the case of the theory we choose, this is true for
X0 = 0, if a scalar field ϕ that satisfy this condition exists, then the metric we find
is a solution for this f(X) theory:

0 = F (ϕ)R + V (ϕ)− ω (ϕ)∇αϕ∇αϕ. (1.17)

With the Brans-Dicke choices, F (ϕ) = ϕ, ω(ϕ) =
1

ϕ
,V (ϕ) = 0, the equation

becomes
0 = Rϕ− 1

ϕ
∇αϕ∇αϕ. (1.18)

Let’s assume that the scalar field ϕ is time and azimuth independent

ϕ = ϕ(r, θ). (1.19)

If we want to calculate ∇αϕ∇αϕ, we will only need to consider the metric elements
grr and gθθ

∇αϕ∇αϕ = gµα∇µϕ∇αϕ

= gtt(∂tϕ)
2 + grr(∂rϕ)

2 + gθθ(∂θϕ)
2 + gφφ(∂φϕ)

2 + 2gtφ∂φϕ∂tϕ

= grr(∂rϕ)
2 + gθθ(∂θϕ)

2 =
∆

Σ
(∂rϕ)

2 +
1

Σ
(∂θϕ)

2. (1.20)

The scalar curvature is

R = −2M3ϵ

r3Σ
, (1.21)

so equation 1.17 become:

0 = −2M3ϵ

r3Σ
ϕ− 1

ϕ

(
∆

Σ
(∂rϕ)

2 +
1

Σ
(∂θϕ)

2

)
. (1.22)

Let’s try solving the equation separating the variables

2M3ϵ

r3Σ
+

1

R2(r)Θ2(θ)

[
∆

Σ
Θ2(θ) (∂rR)

2 +
1

Σ
R(r)2 (∂θΘ)2

]
= 0 → (1.23)

→ 2M3ϵ

r3
+∆

(∂rR)
2

R2(r)
= −(∂θΘ)2

Θ2(θ)
,

so we have 
2M3ϵ

r3
+∆

(∂rR)
2

R2(r)
= c2,

(∂θΘ)2 = −c2Θ2(θ).

(1.24)



We can solve the second one analytically

Θ(θ) = A
[
eicθ + e−icθ

]
= 2A cos[cθ]. (1.25)

On this solution, we can impose the following boundary condition

Θ(0) = Θ(π), (1.26)

this leads to
2A cos(c ∗ 0) = 2A cos(cπ) → c = 0. (1.27)

We have demonstrated that Θ(θ) = 0, and that scalar field ϕ is independent
from the variable θ.

We are left with a function in the sole variable r:

0 = 2M3ϵϕ(r)2 + r3∆(r)

(
dϕ(r)

dr

)2

. (1.28)

We can now calculate a numerical solution for this equation 1.15:

Figure 1.1: Radial ϕ solution for M = 1, a = 0.9, ϵ = −0.2

In all cases considered, the scalar field ϕ is short ranged, well behaved, and
asymptotes to the Newtonian value ϕinf = 1, as expected of physical black hole
geometries.

1.1.5 Limitations of the approach
This approach has several limitations. We will go through them, making a distinc-
tion between f(R) theories and scalar tensor f(X) theories.

In the case of f(R) theories, it’s easier to verify this. For any f(R) theory, the
equation of motion is:

δS

δgµν
= −1

2
gµνf(R) +Rµνf

′(R) + gµν□f
′(R)−∇µ∇νf

′(R). (1.29)
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In this case, the solution is trivial. If we can find an R0 : f(R0) = f ′(R0) the
equation of motion is automatically satisfied.
But this is only possible for theories like

f(R) = (R−R0)
2, (1.30)

or
f(R) = R + αR2 +

1

3
α2R3, (1.31)

while this does not work on theories like

f(R) = R + αR2, (1.32)

because in this last case, it’s impossible to find a common zero for the function f
and its first derivative. For Scalar-Tensor theories, the situation is pretty similar,
for example, we can’t work on theories like

f(X) = X, (1.33)

this can be easily proved substituting f(X) = X and f ′(X) = 1 in the equations of
motion (1.12),(1.13) calculated before.

When doing this, it’s impossible to find a specific X0 that solves both equations.
Like in the case of f(R) theories, this does not work for all the theories that do not
allow X0 to be both a zero and a local extremum for f(X), like f(X) = X + αX2.

1.2 Gravitational Waves in General Relativity

In this section, we will write a short summary of the theory of Gravitational Waves
in General Relativity[23, 24, 25]. This will be useful in studying gravitational waves
in modified theories. The gravitational interaction can often be considered weak
when confronted to others fundamental interactions. So it can be useful to develop
a perturbative theory to describe the metric gµν as a perturbation of the Minkowski
metric ηµν .

gµν ∼ ηµν + hµν , (1.34)

where
∥hµν∥ ≪ 1. (1.35)

This condition requires both the gravitational field to be weak and the coordi-
nate system to be approximately Cartesian.
As we will see later, this approximation has the advantage of linearizing gravity,
since all the quadratic terms of the Scalar Tensor are negligible.

Linearized gravity can be interpreted as a field theory where the tensor field
hµν “lives” in the Minkowski space.



This theory is Lorentz invariant, the tensor ηµν is invariant, while hµν trans"forms
as:

hµ′ν′ = Λµ
µ′Λ

ν
ν′hµν . (1.36)

Now, we can derive all the elements needed to describe a theory of gravitation:

Γρ
µν ∼ 1

2
ηρλ [∂µhνλ + ∂νhλµ − ∂λhµν ] , (1.37)

Rµ
νρσ ∼ ∂ρΓ

µ
νσ − ∂σΓ

µ
ρν =

1

2
ηµλ [∂ρ∂νhλσ − ∂ρ∂λhσν − ∂σ∂νhλρ + ∂σ∂λhρν ] , (1.38)

Rνσ ∼ 1

2
ηµλ [∂µ∂νhλσ − ∂µ∂λhσν − ∂σ∂νhλµ + ∂σ∂λhµν ] , (1.39)

R = ∂µ∂νh
µν −□h. (1.40)

With these elements, we can build the Einstein tensorGµν and write the Einstein
equation:

1

2
[∂µ∂νh

µ
σ + ∂µ∂σhµν −□hσν − ∂σ∂νh− ηνσ∂µ∂

αhµα + ηνσ□h] = 8πGTνσ. (1.41)

It is possible to clean up this expression with a few changes rather than working
with hµν we can use the trace reversed perturbation [26]

h̄µν = hµν −
1

2
ηµνh. (1.42)

Replacing hµν with h̄µν +
1

2
ηµνh.

With this substitution, the Einstein equation becomes:

1

2

[
∂ρ∂ν h̄

ρ
µ + ∂ρ∂µh̄ρν −□h̄µν − ηµν∂ρ∂

σh̄ρσ
]
= 8πGTµν , (1.43)

this expression can be further simplified by choosing an appropriate coordinate
system, or Gauge.

1.2.1 Linearized gravity Gauge
Einstein’s equations are solved by a metric tensor defined up to diffeomorphism
that specifies its coordinates. For this reason, there is not a single decomposition of
the metric tensor. We will start by considering an infinitesimal coordinate change:

x′µ = xµ − ξµ. (1.44)
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If we apply the transformation to the metric tensor with (1.36) we obtain:

gα′β′(x′) =
∂xµ

∂x′α
∂xν

∂x′β
gµν(x) = (δµα + ∂αξ

µ)
(
δνβ + ∂βξ

ν
)
gµν(x)

= gαβ(x) + ∂αξ
µgµβ(x) + ∂βξ

νgαν(x).
(1.45)

We can expand

gµν(x) = gµν(x
′ + ξ) ∼ gµν(x

′) + ∂σgµν(x
′)ξσ, (1.46)

gα′β′(x′) ∼ gαβ(x
′) + ∂σgµν(x

′)ξσ + ∂αξ
µgµβ(x

′) + ∂βξ
νgαν(x

′). (1.47)

At this point, we can explicit gµν = ηµν + hµν and then disregard the the terms
like ξµhµν , since both hµν and ξ are small:

hα′β′ = hαβ + ∂αξβ + ∂βξα. (1.48)

This is similar to the Gauge transformation of the four-potential, that leaves unal-
tered the physical quantities. In the same way, (1.48) leaves the Riemann tensor
unaltered.
We will apply the following Gauge condition called Lorentz Gauge to the trace
reversed perturbation:

∂µh̄µν = 0. (1.49)

We want to verify that this Gauge does not alter the physical observables of the
theory. To verify this, we start with writing (1.48) in terms of h̄µν :

h̄µν → h̄µ′ν′ = h̄µν + ∂µξν + ξµ − ηµν∂ρξ
ρ, (1.50)

applying the condition (1.49) we obtain:

∂µh̄µν → ∂µ
′
h̄µ′ν′ = ∂µh̄µν +□ξν . (1.51)

Therefore, if the initial configuration hµνis such that ∂ν h̄µν = fµ(x), to obtain
∂ν

′
h̄µ′ν′ = 0, we must choose ξµ(x) so that

□ξµ = fµ(x). (1.52)

When imposing the condition (1.49) to the Einstein tensor, we obtain:

Gµν = −1

2
□h̄µν . (1.53)

So the linearized Einstein equation is:

□h̄µν = −16πTµν . (1.54)



1.2.2 The transverse-traceless gauge
To study the propagation of gravitational waves, we are interested in studying the
Einstein equation outside the source, where Tµν = 0:

□h̄µν = 0 (1.55)

For such space-times, one can, along with choosing the Lorentz gauge, further
specialize the gauge to make the metric perturbation purely spatial:

htt = hti = 0 (1.56)

and traceless
hii = 0. (1.57)

From the traceless condition, we obtain

h̄µν = hµν

and the Lorentz condition becomes:

∂ihij = 0 (1.59)

This is called the transverse traceless gauge (TT gauge). A metric The perturba-
tion put into TT gauge will be written hTT

µν .
It’s important to note that the TT gauge cannot be chosen inside the source, since
in this case □h̄µν ̸= 0. Inside the source, once gaugeve chosen the Lorentz gauge,
we still have the freedom to perform a transformation with □ξµ = 0. Equation
(1.55) has plane waves solution:

hTT
ij (x) = Cij(k)e

ikx, (1.60)

with kµ =
(
ω, k⃗

)
.

The tensorCij is called the polarization tensor and, given the condition imposed
on hTT

ij , it has to be symmetric and traceless. Given a single plane wave with a

given vector k⃗, we define n̂ =
k⃗∣∣∣⃗k∣∣∣ we choose n̂ along the z axis, and imposing that

hTT
ij be symmetric and traceless, we have:

hTT
ij =

h+ hx 0
hx −h+ 0
0 0 0


ij

cos [ω (t− z)] . (1.61)

The elements h+ and hx are called the amplitudes of the “plus” and “cross”
polarization of the wave.
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Given a plane wave solution hµν(x) propagating in the direction n̂, outside the
sources, already in the Lorentz gauge but not in the TT gauge, we can find the
form of the wave in the TT gauge as follows. First, we introduce the tensor

Pij (n̂) = δij − ninj. (1.62)

Pij is transverse, a projector and its trace is Pii = 2. With this tensor, we can
build

Λij,kl (n̂) = PikPjl −
1

2
PijPkl (1.63)

With this tensor, it is possible to show that, given a plane wave hµν in the
Lorentz gauge, it is possible to obtain the GW in the TT gauge with

hTT
ij = Λij,klhkl (1.64)

1.2.3 Deriving the quadrupole formula
We start with the linearized Einstein equation with a source matter:

□h̄µν = −16πTµν . (1.65)

This equation can be solved by using a Green’s function:

□G(t, x, t′, x′) = δ(3)(x− x′)δ(t− t′), (1.66)

h̄µν = −16π

∫
dt′d3x′G(t, x, t′, x′)Tµν . (1.67)

The Green function associated with the wave operator is:

G(t, x, t′, x′) = −δ (t
′ − [t− |x− x′|])

|x− x′|
. (1.68)

The quantity t− |x− x′| is the retarded time, it take into consideration that the
metric h̄µν that we observe at (t, x) is generator by the source Tµν that is located at
a distance |x− x′| and in a precedent instant of time t− |x− x′|.
We can now compute the convolution between the Green function and the source:

h̄µν(t, x) = 4

∫
d3x′

Tµν (t− |x− x′|, x′)
|x− x′|

. (1.69)

We can start considering only the spacial element of the tensor:

h̄ij(t, x) = 4

∫
d3x′

Tij (t− |x− x′|, x′)
|x− x′|

, (1.70)



we will now evaluate this integral at large distance from the source |x| ≫ |x′| →
|x| = r so we can write:

Tij (t− |x− x′|, x′) ≈ Tij (t− r, x′) , (1.71)

h̄ij(t, x) =
4

r

∫
d3x′Tij (t− r, x′) . (1.72)

We can split the stress-energy tensor using the property ∂µT
µν = 0. We can

break up this condition into time and space components:

∂tT
tt + ∂iT

it = 0,

∂tT
it + ∂jT

ij = 0.
(1.73)

We can now derive the first equation in t equation in i and subtract them:

∂2t T
tt + ∂t∂iT

it − ∂i∂tT
it − ∂i∂jT

ij = 0. (1.74)

From this, it follows that

∂2t T
tt = ∂i∂jT

ij, (1.75)

we can now multiply both sides of the equation by xkxl and manipulate them:[
∂2t T

tt
]
xkxl = ∂2t

[
T ttxkxl

]
. (1.76)

For the right side of the equation, we can start with:

∂i∂j
[
T ijxkxl

]
= ∂i

[
xkxl∂jT

ij + T ij∂j
(
xkxl

)]
(1.77)

= ∂i
(
xkxl

)
∂jT

ij + xkxl∂i∂jT
ij + ∂iT

ij∂j
(
xkxl

)
+ T ij∂i∂j

(
xkxl

)
= 2∂i

(
xkxl

)
∂jT

ij + xkxl∂i∂jT
ij + T ij∂i∂j

(
xkxl

)
=⇒

=⇒ xkxl∂i∂jT
ij = ∂i∂j

[
T ijxkxl

]
− 2∂i

(
xkxl

)
∂jT

ij − T ij∂i∂j
(
xkxl

)
.

Let’s focus on the last two terms

2∂i
(
xkxl

)
∂jT

ij = 2
[
xkδli + xlδki

]
∂jT

ij + T ij
[
δki δ

l
j + δkj δ

l
i

]
(1.78)

= 2
[
xk∂jT

lj + xl∂jT
kj
]
+ 2T kl

= 2
[
∂j
(
xkT lj

)
− δkj T

lj + ∂j
(
xlT kj

)
− δljT

kj
]

= 2∂j
(
xkT lj + xlT kj

)
− 4T kl,

T ij∂i∂j
(
xkxl

)
= T ij

[
δki δ

l
j + δkj δ

l
i

]
= T kl + T lk = 2T kl. (1.79)

Putting everything together, we obtain

xkxl∂i∂jT
ij = ∂i∂j

[
T ijxkxl

]
− 2∂j

(
xkT lj + xlT kj

)
+ 2T kl (1.80)
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We can substitute everything in the equation 1.75:

∂2t
[
T ttxkxl

]
= ∂i∂j

[
T ijxkxl

]
− 2∂i

[
T ikxl + T ilxk

]
+ 2T kl. (1.81)

So equation (1.72) becomes:

4

r

∫
d3x′Tkl (t− r, x′) (1.82)

=
4

r

∫
d3x′

[
1

2
∂2t
(
T ttxkxl

)
+ ∂i

(
T ikxl + T ilxk

)
− 1

2
∂i∂j

(
T ijxkxl

)]
=

2

r

∫
d3x′∂2t

(
T ttxkxl

)
.

We used that the second and third terms under the integral are divergences.
Using Gauss’s Theorem, they can be transformed into surface integrals. Taking the
integral outside the source, their contribution is 0.

2

r

∫
d3x′∂2t

(
T ttxkxl

)
=

2

r
∂2t

∫
d3x′ρxkxl. (1.83)

We define the integral:

Iij(t) =

∫
d3x′ρxkxl, (1.84)

so equation (1.72) becomes:

h̄ij(t, x) =
2

r

d2Iij
dt2

. (1.85)

From equation (1.64) we obtain

hTT
ij (t, x) = Λij,klh̄ij(t, x) =

2

r
Λij,kl

d2Iij
dt2

. (1.86)

1.2.4 The energy of Gravitational Waves
The next step is to understand the energy carried by gravitational waves [27].
To understand whether GWs curve the background space-time, we need to change
the framework in which we study them. Until now, we have studied the metric
tensor hµν as a tensor that lives in the flat Minkowski space ηµν and it cause the
space-time curvature. However, we cannot continue with the same background,
because, otherwise, we exclude from the beginning the possibility that GWs curve
the background space-time. For this reason, we must allow the background space-
time to be dynamical:

gµν(x) = ḡµν(x) + hµν(x), (1.87)



where |hµν | ≪ 1.
The next problem that arises is to decide which part of gµν is the background, which
is the fluctuation. As we will see, this analysis will allow us to understand some
critical properties of GWs, such as their energy-momentum tensor.
A natural splitting between background and GWs arises when there is a clear
separation of scales. For example, the separation occurs if ḡµν has frequencies up
to fB while hµν is peaked around a frequency f such that:

f ≫ fB. (1.88)

In this case hµν is a high frequency perturbation of a slowly varying background.

Figure 1.2: A situation that allows us to separate the metric into a low-frequency
background and a small high-frequency perturbation.

To study how GWs curve the background, we start by expanding the Einstein
equations around the background metric ḡµν . In this expansion, we have two small

parameters: one is the amplitude h, and the second is
fB
f

.

It is convenient to cast the Einstein equations in the form

Rµν = 8π

[
Tµν −

1

2
gµνT

]
, (1.89)

now we can expand the Ricci tensor to O (h2),

Rµν = R̄µν +R(1)
µν +R(2)

µν + ...., (1.90)

where R̄µν depends only on ḡµν , R(1)
µν is linear in hµν and R

(2)
µν is quadratic in

hµν . The quantity R̄µν contains only low frequency modes. R(1)
µν contains only

high frequency modes, while R(2)
µν contains both high and low frequencies mode.

Therefore, we can split the Einstein equations into two equations for high and low
frequencies:

R̄µν = −
[
R(2)

µν

]Low
+ 8π

[
Tµν −

1

2
gµνT

]Low
(1.91)
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R(1)
µν = −

[
R(2)

µν

]High
+ 8π

[
Tµν −

1

2
gµνT

]High

(1.92)

The explicit expression of R(1)
µν is:

R(1)
µν =

1

2

[
D̄αD̄µhνα + D̄αD̄νhνα − D̄αD̄αhµν − D̄νD̄µh

]
, (1.93)

while R(2)
µν is:

R(2)
µν =

1

2
ḡρσḡαβ

[
1

2
D̄µhραD̄νhσβ +

(
D̄ρhνα

) (
D̄σhµβ − D̄βhµσ

)
+hρα

(
D̄νD̄µhσβ + D̄βD̄σhµν − D̄βD̄νhµσ − D̄βD̄µhνσ

)
+

(
1

2
D̄αhρσ − D̄ρhασ

)(
D̄νhµβ + D̄µhνβ − D̄βhµν

)]
.

(1.94)

To continue this analysis, we will go from using the scale of frequencies to the
one of amplitudes. For the background, the length scale is LB, while for the GWs
it’s λ, where LB ≫ λ.
We introduce a scale l̄ that is an intermediate scale:

λ≪ l̄ ≪ LB. (1.95)

We can average the elements of R̄µν over a spatial volume with side l̄. In this
way, modes with wavelength LB remain unaffected because they are constant over
l̄, while modes with the wavelength λ are oscillating very fast and their average is
0. We can, therefore, write

R̄µν = −
〈
R(2)

µν

〉
+ 8π

〈
Tµν −

1

2
gµνT

〉
. (1.96)

Now, we define an effective energy-momentum tensor〈
Tµν −

1

2
gµνT

〉
= T̄µν −

1

2
ḡµνT̄ , (1.97)

By definition, T̄µν is purely low frequency. We also define the quantity tµνas

tµν = − 1

8π

〈
R(2)

µν − 1

2
ḡµνR

(2)

〉
, (1.98)

where R(2) = ḡµνR
(2)
µν , and we define the trace as

t = ḡµνtµν = − 1

8π
ḡµν
〈
R(2)

µν − 1

2
ḡµνR

(2)

〉
(1.99)

= − 1

8π

〈
ḡµνR(2)

µν − 1

2
ḡµν ḡµνR

(2)

〉
=

1

8π

〈
R(2)

〉
,



we used the property of ḡµν that ḡµν
〈
R

(2)
µν

〉
=
〈
ḡµνR

(2)
µν

〉
because ḡµν is a purely

low frequency quantity. We can now put everything together in (1.98):

tµν = − 1

8π

〈
R(2)

µν − 1

2
ḡµνR

(2)

〉
= − 1

8π

〈
R(2)

µν

〉
+

1

2
ḡµνt, (1.100)

From this, we obtain the following:

−
〈
R(2)

µν

〉
= 8π

[
tµν −

1

2
ḡµνt

]
. (1.101)

Now, we can rewrite (1.96) as

R̄µν = 8π

[
tµν −

1

2
ḡµνt

]
+ 8π

[
Tµν −

1

2
ḡµνT

]
, (1.102)

or equivalently,

R̄µν −
1

2
ḡµνR̄ = 8π

[
T̄µν + tµν

]
. (1.103)

1.2.5 The energy-momentum tensor of Gravitational Waves
We want to compute the tensor tµν using equation (1.100). To do this, we also need
the expression of R(2)

µν (1.94). Since we are interested in the energy and momentum
carried by the GWs at large distances from the source, we can approximate the
background as flat so that we can substitute all covariant derivatives with simple
derivatives in the expression of R(2)

µν . This expression can be drastically simplified
with some considerations. The right hand of equation (1.103) is the Einstein tensor
of the background metric. This is a coordinate dependent quantity that is composed
of both physical degrees of freedom and coordinate ones. We can get rid of the
coordinate degree of freedom with the TT Gauge condition, and this implies that
∂µhµν = 0. Imposing this condition in R(2)

µν we have:

R(2)
µν =

1

2

[
1

2
∂µhαβ∂νh

αβ + hαβ∂µ∂νhαβ − hαβ∂ν∂βhαµ − hαβ∂µ∂βhαν

+hαβ∂α∂βhαν + ∂βhαν∂βhαµ − ∂βhαν∂αhβµ − ∂βh
αβ∂νhαµ

+�������
∂βh

αβ∂αhµν −�������
∂βh

αβ∂µhαν −
���

���1

2
∂αh∂αhµν +

��
����1

2
∂αh∂νhαµ

+
�
���

��1

2
∂αh∂µhαν

]
.

(1.104)

Some element have been cancelled using the two conditions ∂µhµν = 0 and h = 0.
From equation (1.98), we see that we need the average

〈
R

(2)
µν

〉
. While calculating

the average, we can integrate by part and discard the boundary terms. In this way,
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all the remaining elements of R(2)
µν , except the first, depends on either ∂µhµν , h or

□hµν , that are all zero in the TT gauge. So, we are left with〈
R(2)

µν

〉
= −1

4

〈
∂µhαβ∂νh

αβ
〉
, (1.105)

while
〈
R(2)

〉
vanishes upon integration by parts. So we finally obtain an expres-

sion for tµν

tµν =
1

32

〈
∂µhαβ∂νh

αβ
〉
. (1.106)

Where the tensor hµν is the Transverse traceless tensor hTT
µν . The element t00is:

t00 =
1

32

〈
∂0h

TT
ij ∂0h

TT
ij

〉
=

1

32

〈
ḣTT
ij ḣ

TT
ij

〉
=

1

16

〈
ḣ2+ + ḣ2x

〉
. (1.107)

1.2.6 Energy Flux
Having calculated the Energy-Momentum tensor carried by Gravitational Waves,
we can now compute the energy flux. Starting from the conservation of the Energy-
Momentum tensor ∂µtµν = 0 , we can write∫

V

d3x
[
∂0t

00 + ∂it
0i
]
= 0. (1.108)

The GW energy inside the volume V is:

EV =

∫
V

d3xt00, (1.109)

we can calculate the time derivative

dEV

dt
= ∂0

∫
V

d3xt00 =

∫
V

d3x∂0t
00 (1.110)

From equation (1.108) we can see that
∫
V
d3x∂0t

00 = −
∫
V
d3x∂it

0i, so we have

dEV

dt
= −

∫
V

d3x∂it
0i = −

∫
S

dAnit
0i. (1.111)

Let’s consider a spherical surface at a large distance r from the source. Its
surface element is dA = r2dΩ, the normal n̂is the radial direction r̂ and the element
t0i becomes

t0i = t0r =
1

32

〈
∂0hTT

ij ∂
rhTT

ij

〉
. (1.112)

dEV

dt
= −

∫
dΩr2t0r. (1.113)



A GW propagating radially at large distances from the source has the form

hTT
ij (t, r) =

1

r
fij (t− r) , (1.114)

where (t− r) is the retarded time tret. Therefore

∂rh
TT
ij (t, r) = − 1

r2
fij (t− r) +

1

r
∂rfij (t− r) . (1.115)

Since the function f depends on t− r, we can write

∂rfij (t− r) = −∂tfij (t− r) , (1.116)

∂rh
TT
ij (t, r) = − 1

r2
fij (t− r)− 1

r
∂tfij (t− r) = − 1

r2
fij (t− r)− ∂t

1

r
fij (t− r)

= − 1

r2
fij (t− r)− ∂th

TT
ij (t, r) =⇒ (1.117)

=⇒ ∂rh
TT
ij (t, r) = −∂thTT

ij (t, r) +O

(
1

r2

)
= ∂thTT

ij (t, r) +O

(
1

r2

)
. (1.118)

At large distances, ∂rhTT
ij (t, r) = ∂thTT

ij (t, r), so, from equation (1.112) we see
that t0r = t00.

So, we can write the energy inside a volume as

dEV

dt
=

∫
S

dAt00 =
r2

32

∫
dΩ
〈
ḣTT
ij ḣ

TT
ij

〉
=
r2

16

∫
dΩ
〈
ḣ2+ + ḣ2x

〉
. (1.119)

We can also compute the total energy flow through dA between t = −∞ and
t = ∞

dEV

dA
=

1

16

∫
dt
〈
ḣ2+ + ḣ2x

〉
. (1.120)

1.2.7 Explicit expression of the matrix elements

To compute the energy flux, we need to find the expressions of ḣ+ and ḣx. To do
this, we start with equation (1.86)

hTT
ij (t, x) =

2

r

[
Pik(n̂)Pij(n̂)−

1

2
Pkl(n̂)Pij(n̂)

]
d2Iij
dt2

, (1.121)
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To continue, we need to understand how the tensor (1.63) works. When the
direction of propagation of the GWs is equal to ẑ, the tensor Pij = δij − ninj

becomes the projector on the (x, y) plane.

P =

1 0 0
0 1 0
0 0 0

 . (1.122)

On an arbitrary matrix Akl we have

Λij,klAkl =

[
PikPjl −

1

2
PijPkl

]
Akl = (PAP )ij −

1

2
PijTr (PA) . (1.123)

Where

PAP =

A11 A12 0
A21 A22 0
0 0 0

 , (1.124)

while Tr (PA) = A11 + A22. Therefore

Λij,klAkl =

A11 A12 0
A21 A22 0
0 0 0


ij

− A11 + A22

2

1 0 0
0 1 0
0 0 0


ij

=

(A11 − A22) /2 A12 0
A21 − (A11 − A22) /2 0
0 0 0


ij

.

(1.125)

We can apply this to the tensor
d2I

dt2
,

Λij,klÏkl =


(
Ï11 − Ï22

)
/2 Ï12 0

Ï21 −
(
Ï11 − Ï22

)
/2 0

0 0 0


ij

. (1.126)

We can use this expression, along with (1.86), to obtain an expression for h+and
hx, 

h+ =
1

r

(
Ï11 − Ï22

)
hx =

2

r
Ï21

(1.127)

These expressions are valid only for a GW propagating in the ẑ direction. To
obtain a formula for a Wave that propagates in a general n̂ direction, we can start
defining a second orthogonal coordinate system (û, v̂, n̂)



Figure 1.3: Relation between the (x̂, ŷ, ẑ) system and the (û, v̂, n̂)

In the system (û, v̂, n̂), the elements h+and hx are
h+ =

1

r

(
Ï ′11 − Ï ′22

)
hx =

2

r
Ï ′21

(1.128)

The vector n̂, in the (x̂, ŷ, ẑ) frame has coordinates

n̂ = (sin (θ) sin (ϕ) , sin (θ) cos (ϕ) , cos (θ)) . (1.129)

While in the (û, v̂, n̂) it has components (0, 0, 1). A rotation matrix relates these
two R such that

(sin (θ) sin (ϕ) , sin (θ) cos (ϕ) , cos (θ)) = R (0, 0, 1) . (1.130)

The explicit expression of R is

R =

 cos (ϕ) sin (ϕ) 0
− sin (ϕ) cos (ϕ) 0

0 0 1

1 0 0
0 cos (θ) sin (θ)
0 − sin (θ) cos (θ)

 . (1.131)

Similarly, the tensor I has components Iij in the (x̂, ŷ, ẑ) and M ′
ij in the (û, v̂, n̂)

frame, related by
Iij = RikRjlI

′
kl. (1.132)

Using this, we can compute

h+ (t, θ, ϕ) =
1

r

[
Ï11
(
cos2 (ϕ)− sin2 (ϕ) cos2 (θ)

)
+ Ï22

(
sin2 (ϕ)

− cos2 (ϕ) cos2 (θ)− Ï33 sin
2 (θ)− Ï12 sin (2ϕ)

(
1 + cos2 (θ)

)
+Ï13 sin (ϕ) sin (2θ) + Ï23 cos (ϕ) sin (2θ)

]
,

(1.133)
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hx (t, θ, ϕ) =
1

r

[(
Ï11 − Ï22

)
sin (2ϕ) cos (θ) + 2Ï12 cos (2ϕ) cos (θ)−

−2Ï13 cos (ϕ) cos (θ) + 2Ï23 sin (ϕ) sin (θ)

]
.

(1.134)

This allows us to compute the angular distribution of the quadrupole radiation,
once Mij is given.

1.2.8 Radiated Energy

In this section, we want to derive an expression for the radiated energy and apply
it to the system PSR J0737-3039.

We start with the expression of the energy inside a volume 1.119

dE

dt
=
r2

32

∫
dΩ
〈
ḣTT
ij ḣ

TT
ij

〉
, (1.135)

from this, we can derive the power radiated per unit solid angle in the quadrupole
approximation (

dP

dΩ

)
quad

=
r2

32

〈
ḣTT
ij ḣ

TT
ij

〉
. (1.136)

We can substitute ḣTT
ij with their explicit expression

ḣTT
ij =

2

r
Λij,kl(n̂)

...
I ij (1.137)

, (
dP

dΩ

)
quad

=
1

8
Λij,kl(n̂)Λij,kl(n̂)

〈 ...
I ij

...
I ij

〉
. (1.138)

We can now use a property of Λij,kl,

Λij,klΛkl,nm = Λij,mn. (1.139)

And we obtain (
dP

dΩ

)
quad

=
1

8
Λij,kl(n̂)

〈 ...
I ij

...
I kl

〉
. (1.140)

We can perform the angular integral, observing that the dependence on n̂ is only
in Λij,kl ∫

dΩ

[
(δik − nink) (δjl − njnl)−

1

2
(δij − ninj) (δkl − nknl)

]
(1.141)



We use the following properties∫
dΩ

4π
ninj =

1

3
δij, (1.142)

∫
dΩ

4π
ninjnknl =

1

15
[δijδkl + δikδjl − δilδjk] . (1.143)

Using them we obtain∫
dΩΛij,kl =

2π

15
[11δikδjl − 4δijδkl + δijδjk] . (1.144)

We can now substitute everything in 1.140 and obtain

Pquad =
1

5

〈 ...
I ij

...
I kl

〉
. (1.145)

Another formulation for the Radiated Power can be done by subtracting the
trace from the tensor Iij

Iij =Mij −
1

3
MijMkk, (1.146)

Pquad =
1

5

〈 ...
M ij

...
M ij −

1

3

( ...
Mkk

)2〉
(1.147)

1.2.9 Radiated Power for a binary system
In this section, we will apply the formalism that we developed to a binary system
made of two compact stars with masses m1 and m2 and positions r1 and r2. We
can simplify this in a one-body problem in the center of mass frame and with mass
equal to the reduced mass µ =

m1m2

m1 +m2

subject to an acceleration r̈ = −m
r2
r̂, where

m = m1 +m2.
The conservation of the angular momentum L implies that the orbit lies on a

plane. We can introduce polar coordinates (r, ψ) on the plane of the orbit, with the
origin in the center of mass. In terms of r and ψ the angular momentum is

L = µr2ψ̇, (1.148)

The energy is

E =
1

2
µ
[
ṙ2 + r2ψ̇2

]
− µm

r
=

1

2
µṙ2 +

L2

2µr2
− µm

r
. (1.149)

From the two conservation laws, we obtain the equation of the orbit

1

r
=

1

R
(1 + e cosψ). (1.150)
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Where R is the length scale and is a constant of motion

R =
L2

mµ2
. (1.151)

In this frame, the matrix M is

M = µr2
(

cos2 sinψ cosψ
sinψ cosψ sin2

)
. (1.152)

We can write M as a function of ψ, using a relation between ψ and r

r =
a(1− e2)

1 + e cosψ
, (1.153)

M = µ

(
a(1− e2)

1 + e cosψ

)2(
cos2 sinψ cosψ

sinψ cosψ sin2

)
. (1.154)

When computing the second derivative of the matrix elements, we obtain

...
M11 = β (1 + e cosψ)2

[
2 sin 2ψ + 3e sinψ cos2 ψ

]
, (1.155)

...
M22 = β (1 + e cosψ)2

[
−2 sin 2ψ − e sinψ

(
1 + 3 cos2 ψ

)]
, (1.156)

...
M12 = β (1 + e cosψ)2

[
−2 cos 2ψ + e cosψ

(
1− 3 cos2 ψ

)]
. (1.157)

We can put these expressions in equation 1.147



P (ψ) =
1

5

[ ...
M

2

11 +
...
M

2

22 +
...
M

2

12 −
1

3

( ...
M11 +

...
M11

)2]
(1.158)

=
2

5

[ ...
M

2

11 +
...
M

2

22 + 3
...
M

2

12 −
...
M11

...
M22

]
=

8

15

µ2m3

a5 (1− e2)5
(1 + e cosψ)4

[
12 (1 + e cosψ)2 + e2 sin2 ψ

]
.

We can now perform a time average over a period T

P =
1

T

∫ T

0

dtP (ψ), (1.159)

when evaluating this integral, we obtain

P =
32µ2m3

5a5
f(e), (1.160)

where

f(e) =
1

(1− e2)7/2

[
1 +

73

24
e2 +

37

96
e4
]
. (1.161)

We can compute this formula with the data from PSR J0737-3039. The numerical
values are the following [28]

m1 1.337M⊙
m2 1.250M⊙
e 0.0878

a 1.26R⊙

Where M⊙ and R⊙ are respectively the mass and radius of the sun.
M⊙ = 1, 989x1030kg

R⊙ = 6, 96x108m

(1.162)

The value for the radiated power we obtain is 2.44x1025W .
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1.3 Gravitation Waves in f (R) theories

The goal of this section is to study the gravitational radiation for an f(R) theory.
We start from the action

S =
c3

16πG

∫
d4x

√
−gf(R) + SM , (1.163)

where SM is the standard matter action.
The first thing to do is to compute the variation of the action with respect to the

metric gµν ,

δS =
c3

16πG

∫
d4xδ

[√
−gf(R)

]
+ δSM (1.164)

=
c3

16πG

∫
d4x

−1

2
gµνf(R)δg

µν +
√
−gf ′(R)δR︸ ︷︷ ︸

∗

+ δSM ,

∗ =
c3

16πG

∫
d4x

√
−gf ′(R)δ [Rµνg

µν ] (1.165)

=
c3

16πG

∫
d4x

√
−gf ′(R)Rµνδg

µν +
c3

16πG

∫
d4x

√
−gf ′(R)gµνδRµν︸ ︷︷ ︸
#

,

# =
c3

16πG

∫
d4x

√
−gf ′(R) [gµνδRµν ] (1.166)

=
c3

16πG

∫
d4x

√
−gf ′(R)∂σ [∂

σ (gµνδg
µν)− ∂µ (gµνδg

νσ)]

=
c3

16πG

∫
d4x

√
−g∂σ (f ′(R)) .

Putting everything together, we obtain

δS =
c3

16πG

∫
d4x

√
−g

[
− 1

2
gµνf(R) + f ′(R)Rµν (1.167)

+ gµν∂σ∂
σf ′(R)− ∂µ∂νf

′(R)

]
δgµν + δSM .

So, we obtain the following equation of motion

f ′(R)Rµν −
1

2
gµνf(R)− ∂µ∂νf

′(R) + gµν□f
′(R) =

8πG

c4
Tµν , (1.168)



taking the trace, we obtain

3□gf
′(R) +Rf ′(R)− 2f(R) =

8πG

c4
T. (1.169)

We assume the theory
f(R) = R + aR2, (1.170)

with [α] = [R]−1. We define the first derivative ϕ = f ′(R) and the scalar field φ
by ϕ = 1 + 2aφ.We can substitute everything in equation 1.168

8πG

c4
Tµν = (1 + 2aφ)Rµν −

1

2
gµν
[
R + aR2

]
−∇µ∇ν (1 + 2aφ) + gµν□g (1 + 2aφ)(1.171)

= (1 + 2aφ)Rµν −
1

2
Rgµν [1 + 2aR] +

1

2
R2agµν − 2a∇µ∇νφ+ 2agµν□gφ

=⇒ (1 + 2aφ)

[
Rµν −

1

2
gµνR

]
=

8πG

c4
Tµν + a

(
2∇µ∇νφ− 2gµν□gφ− 1

2
gµνR

2

)
=⇒ Rµν −

1

2
gµνR =

1

(1 + 2aφ)

[
8πG

c4
Tµν + a

(
2∇µ∇νφ− 2gµν□gφ− 1

2
gµνφ

2

)]
.

3□g (1 + 2aφ) +R (1 + 2aφ)− 2
(
R + aR2

)
=

8πG

c4
T

=⇒ 6a□gφ+ φ+ 2aφ2 − 2φ (1 + aφ) =
8πG

c4
T

=⇒ 6a□gφ =
8πG

c4
T + φ =⇒ □gφ =

4πG

3ac4
T +

1

6a
φ.

(1.172)

We consider a weak perturbation of the Minkowski space-time metric

gµν = ηµν + hµν . (1.173)

1.3.1 The expansion coefficients

We define an expansion over
1

c
for the various elements of the theory[29]:

h00 = (2)h00 +
(4)h00 +O(c−6), (1.174)

h0i = (3)h0i +O(c−5),

hij = (2)hij +O(c−4),

φ = (2)φ+ (4)φ+O(c−6), (1.175)

T 00 = (−2)T 00 + (0)T 00 +O(c−2), (1.176)
T 0i = (−1)T 0i +O(c−1),

T ij = (0)T ij +O(c−2).
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The metric tensor, in the weak field limit is gµν = ηµν + hµν ,

gµν ≈


−1 +(2) htt +

(4)htt 0 0 (3)htϕ
0 1 +(2) hrr

1 +(2) hθθ
(3)htϕ 1 +(2) hϕϕ

 . (1.177)

We can now find the approximations of the two functions
□gφ =

4πG

3ac4
T +

1

6a
φ

Rµν −
1

2
gµνR =

1

(1 + 2aφ)

[
8πG

c4
Tµν + a

(
2∇µ∇νφ− 2gµν□gφ− 1

2
gµνφ

2

)]
(1.178)

We want to approximate the first equation in leading order. We define α =
1√
6a

.

We can go from □gφ to ∇2φ because we want to stop to leading order in
1

c
, since

every time derivative has a
1

c
factor, we can suppress the time derivative. For the

same reason, we can approximate φ to the first order φ = (2)φ .

∇2(2)φ− α2(2)φ =
8πGα2

c4
T. (1.179)

The last thing to do is to approximate the trace of the Energy-Momentum tensor

T = gµνTµν , (1.180)

using the approximations of gµν and Tµν written above, and stopping the ex-
pansion to c2 we obtain

T ≈ −(−2)T 00. (1.181)

So the equation is

∇2(2)φ− α2(2)φ = −8πGα2

c4
(−2)T 00. (1.182)

We can now solve this equation with the Green function:[
∇2 − α2

]
G(r⃗ − r⃗′) = δ(3) (r⃗ − r⃗′) , (1.183)

where we indicate with r the vector (r, θ, ϕ).
Let’s rewrite the equation as[

∇2 − α2
]
G(r) = δ(3) (r) , (1.184)



where, for simplification we wrote r⃗′ = 0.
The Laplacian operator in spherical coordinates reduces to the r component:

∇2G(r) =
1

r2
d

dr

(
r2
dG

dr

)
. (1.185)

So, when considering the homogeneous solution, equation 1.184 becomes

1

r2
d

dr

(
r2
dG

dr

)
− α2G(r) = 0

=⇒ d

dr

(
r2
dG

dr

)
− r2α2G(r) = 0 (1.186)

d2G

dr2
+

2

r

dG

dr
− α2G(r) = 0.

The general solution to this differential equation is

G(r) = A
eαr

r
+B

e−αr

r
. (1.187)

To find the constant A and B, we will study the function for r → 0 and r → ∞.
For r → ∞, we want the solution not to diverge, so A = 0.
Now, we need to normalize the function∫

R3

[
∇2 − α2

]
G(r)dr =

∫
R3

δ(3) (r) dr = 1, (1.188)

from this, it is possible to show that

B =
1

4π
, (1.189)

So, the Green function is

G =
e−αr

4πr
=

e−α|x−x′|

4π |x− x′|
. (1.190)

We can now find (2)φ as the convolution of the Green function with the source

(2)φ = −8πGα2

c4

∫
d3x′

e−α|x−x′|

4π |x− x′|
(−2)T 00 = (1.191)

= −Gα
2

c4

∫
d3x′

e−α|x−x′|

|x− x′|
(−2)T 00 =

1

c2
V (x, t).

Where we define the potential

V (x, t) = −Gα
2

c2

∫
d3x′

e−α|x−x′|

|x− x′|
(−2)T 00. (1.192)
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Now, we can work on the (t, t) element of the second equation of (1.178). The
first thing to do is rewrite the equation in a form that will be proved to be useful

Rµν −
1

2
gµνR =

1

(1 + 2aφ)

[
8πG

c4
Tµν + a

(
2∂µ∂νφ− 2gµν

(
4π

3a
T +

1

6a
φ

)
− 1

2
gµνφ

2

)]
=

1

(1 + 2aφ)

[
8πG

c4
Tµν −

8π

3
gµνT − 1

3
gµνφ+ a

(
2∇µ∇νφ− 1

2
gµνφ

2

)]
=

1

(1 + 2aφ)

[
8πG

c4

(
Tµν −

1

3
gµνT

)
− 1

3
gµνφ+ a

(
2∇µ∇νφ− 1

2
gµνφ

2

)]
=⇒ Rµν =

1

(1 + 2aφ)

[8πG
c4

(
Tµν −

1

3
gµνT

)
− 1

3
gµνφ+ a

(
2∇µ∇νφ− 1

2
gµνφ

2

)
+
1

2
gµν (1 + 2aφ)R

]
=

1

(1 + 2aφ)

[
8πG

c4

(
Tµν −

1

3
gµνT

)
+

1

6
gµνφ+ a

(
2∇µ∇νφ+

1

2
gµνφ

2

)]
,

Where in the last steps, we use the fact that φ = R. The t, t element of this
equation is

Rtt =
1

(1 + 2aφ)

[
8πG

c4

(
Ttt −

1

3
gttT

)
+

1

6
gttφ+ a

(
2∇t∇tφ+

1

2
gttφ

2

)]
. (1.193)

To perform this approximation, we have to derive some elements. The first
one is Rtt. Using the approximation written at the beginning of the section to the
second order in c, it is

Rtt ≈ −1

2
∇2(2)htt. (1.194)

Then, we have to find the second covariant derivative.

∇t∇tφ = ∇t (∂tφ) = ∂2t φ− Γλ
ttφ.

The Christoffel Symbol can be computed with the same approximations. Putting
everything together, we obtain

∇2(2)htt = −32πG

3c4
(−2)T 00 +

1

3
(−2)φ. (1.195)

We can solve this equation, too, with the Green function.
The Green function for the Laplacian is

G (x − x′) = − 1

4π |x− x′|
. (1.196)



When convoluting with the source, we obtain

(2)h00(x, y, z, t) =
8G

3c4

∫
d3x′

(−2)T 00

|x− x′|
− 1

12πc2

∫
d3x′

V (x′, t)

|x− x′|

=
1

c2
[2U(x, t)−W (x, t)] , (1.197)

where we define

U(x, t) =
4G

3c2

∫
d3x′

(−2)T 00

|x− x′|
, (1.198)

W (x, t) =
1

12π

∫
d3x′

V (x′, t)

|x− x′|
. (1.199)

So, to summarize, the three potential are

V (x, t) = −Gα
2

c2

∫
d3x′

e−α|x−x′|

|x− x′|
(−2)T 00 (1.200)

U(x, t) =
4G

3c2

∫
d3x′

(−2)T 00

|x− x′|
, (1.201)

W (x, t) =
1

12π

∫
d3x′

V (x′, t)

|x− x′|
. (1.202)

1.3.2 Gravitational Radiation
With the potentials we derived, we are now able to find an expression for φ.
Let’s start with the introduction of the tensor h̄µν ,

h̄µν = hµν −
1

2
hηµν − 2aηµνφ, (1.203)

and impose the following gauge conditions

∇ν h̄µν = 0. (1.204)

Up to linear order in hµν and φ, equation 1.172 becomes

□ηh̄µν = 16πTµν . (1.205)

We can solve this with the green function

□G (t, x, t′, x′) = δ(3) (x− x′) δ (t− t′) . (1.206)

The Green function associated with the wave operator is

G (t, x, t′, x′) =
δ (t′ − [t− |x− x′|])

|x− x′|
. (1.207)
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So, the solution is the convolution of the Green function and the source

h̄µν = 16π

∫
d4xG (t, x, t′, x′)Tµν = 4

∫
d3x′

Tµν (x
′, t− |x− x′|)
|x− x′|

. (1.208)

We are interested in studying the spacial elements of h̄µν , to do this we study
the spacial elements of T µν , from equation

2T ij = ∂20
[
T 00xixj

]
− ∂k∂l

[
T ijxkxl

]
+ 2∂k

[
xiT kj + xjT ik

]
, (1.209)

when performing the three-dimensional spatial integration, we obtain∫
d3x2T ij = ∂20

∫
d3x

[
T 00xixj

]
−
∫
d3x∂k∂l

[
T ijxkxl

]
(1.210)

+ 2

∫
d3x∂k

[
xiT kj + xjT ik

]
,

we can drop the surface terms and are left with∫
d3xT ij =

1

2
∂20

∫
d3x

[
T 00xixj

]
. (1.211)

If we assume |x| ≫ |x′|,from equation 1.208, when studying the spacial elements
we obtain

h̄ij = 4
1

|x|

∫
d3xTij (x

′, t− |x|) = 2

|x|
∂20

∫
d3x′

[
T 00x′ix

′j
]
. (1.212)

The first equation of 1.178 can be approximated as

□ηφ− α2φ =
8πGα2

c4
S, (1.213)

Where S in the source T is extended to the quadratic terms in the perturbations.
These are expressed in terms of the Newtonian and Post Newtonian Potentials U ,
V , W

S = T

[
1 +

1

c2

(
3W +

2

3α2
V

)]
+

1

8πG

[
1

3α4
(∇V )2 + UV + VW

]
. (1.214)

Equation 1.213 can be solved with the Green function for the Klein-Gordon
equation (

□η − α2
)
G = δ(4) (x− x′) . (1.215)

We start considering the equation without the mass term

□ηG0 = δ(4) (x− x′) , (1.216)



The solution is known

G0(t, x) = − 1

4π

δ (t− |x| /c)
|x|

, (1.217)

Here, we have considered x≫ x′.
For the solution with the mass term, we start with(

□η − α2
)
Gm = δ(4) (x− x′) (1.218)

and we write the Fourier transformation of G

Gm =
1

(4π)4

∫
d4kG̃(p)eikx, (1.219)

1

(2π)4

∫
d4kG̃(k)

(
□η − α2

)
eikx =

1

(2π)4

∫
d4keikx (1.220)

=⇒ G̃(k)
(
k20 − k2 − α2

)
= 1

=⇒ G̃(k) =
1

k20 − k2 − α2

=⇒ Gm =

∫
d3k

(2π)3

∫
dk0
2π

eikx

k20 − k2 − α2
.

We can solve the integral in dk0 with the Residue theorem∫
dk0
2π

e−ik0t

k20 − k2 − α2
=⇒ k0 = ±

√
k2 + α2 = ±ω, (1.221)

Resω = lim
k0→ω

[k0 − ω]
e−ik0t

(k0 − ω) (k0 + ω)
=
e−iωt

2ω
, (1.222)

Resω = lim
k0→−ω

[k0 + ω]
eik0t

(k0 − ω) (k0 + ω)
= −e

iωt

2ω
. (1.223)

This means that we will have both a retarded and advanced Green function. We
will only consider the retarded Green function for the causality of the theory

Gret = θ(t)

∫
d3k

(2π)3
eikx

2ω
e−iωt. (1.224)

We can now perform a coordinate change to use polar coordinates d3k = k2 sin (θ) dkdθdϕ.
We can start performing the integration in θ∫ 2π

0

dϕ

∫ π

0

eikr cos(θ) sin (θ) dθ = 2π

[
2

∫ 1

0

eikr cos(θ)d (cos (θ))

]
= 4π

sin (kr)

kr
. (1.225)
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So, the whole integral becomes

1

(2π)2

∫ ∞

0

dk
sin (kr)

r
(1.226)

We will now use the relation
√
k2 + α2 = ω and do a change of variables

k2 =
√
ω2 − α2 =⇒ dk =

ωdω√
ω2 − α2

. (1.227)

Putting everything in the Green function, we obtain

Gret =
θ(t)

(2π)2

∫ ∞

α

dω
ωe−iωt

√
ω2 − α2

sin
(
r
√
ω2 − α2

)
r
√
ω2 − α2

. (1.228)

We can use the Bessel function of first order J1to rewrite

J1

(
r
√
ω2 − α2

)
=

sin
(
r
√
ω2 − α2

)
r
√
ω2 − α2

, (1.229)

Gret =
θ(t)

(2π)2

∫ ∞

α

dω
ωe−iωt

√
ω2 − α2

J1

(
r
√
ω2 − α2

)
. (1.230)

This can be solved analytically by obtaining

Gret =
θ(t− r/c)

4π

αJ1

(
α
√
t2 − r2/c2

)
√
t2 − r2/c2

(1.231)

We can write r = |x| and sum this result with G0 obtaining

G(t,x) = − 1

4π

δ (t− |x| /c)
|x|

− θ(t− |x| /c)
αJ1

(
α
√
t2 − |x|2 /c2

)
√
t2 − |x|2 /c2

 . (1.232)

Now we can find a solution of 1.213 as the convolution of the source with the
Green’s function

φ(x, t) = −2πGα2

c4

∫
dt′
∫
d3x′

[
δ (t′ − |x − x′| /c)

|x′|
−

θ(t′ − |x − x′| /c)
αJ1

(
α
√
(t− t′)2 − |x − x′|2 /c2

)
√

(t− t′)2 − |x − x′|2 /c2
S(t′,x′)

(1.233)



We can define a retarded time and change the variable of integration

t′ = t− |x − x′|
c

√
1 +

s2

α2 |x − x′|2
, (1.234)

dt′ = − 1

α2 |x − x′|
s√

1 +
s2

α2 |x − x′|2

ds, (1.235)

φ(x, t) =
G

3ac4

∫
R
ds [J1(s)θ(s)− δ(s)]

∫
R3

d3x′
S

(
t− |x − x′|

c

√
1 +

6as2

|x − x′|
,x′

)

|x − x′|

√
1 +

6as2

|x − x′|

.

(1.236)
Let’s focus on the second integrand and compute it far away from the source.

We can write

S

(
t− |x − x′|

c

√
1 +

6as2

|x − x′|
,x′

)

|x − x′|

√
1 +

6as2

|x − x′|

(1.237)

=

∫
R3

S

(
t− |x − x′|

c

√
1 +

6as2

|x − x′|
,x′

)

|x − x′|

√
1 +

6as2

|x − x′|

δ (y − x′) d3y

=

∫
R3

g(x, x′, y)δ (y − x′) d3y

x′ lies within the near zone, so we can treat it as a small vector and express g as
a Taylor expansion around the origin in the variable x′ [30]

g(x, x′, y) = g(x,0, y) +
∂g

∂x′i
x′i +

1

2

∂2g

∂x′i∂x′j
x′ix′j + .... . (1.238)

All the derivatives are evaluated at x′ = 0 and since g depends on x′ only
through the combination |x − x′| we can swap the derivatives in x′i with deriva-
tives in xi

∂g

∂x′i
= − ∂g

∂xi
, (1.239)
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g(x, x′, y) = g(x,0, y)− ∂g

∂xi
x′i +

1

2

∂2g

∂xi∂xj
x′ix′j + .... (1.240)

=
∞∑
l=0

(−1)l

l!
x′L∂L

S

(
t− |x − x′|

c

√
1 +

6as2

|x − x′|
,x′

)

|x − x′|

√
1 +

6as2

|x − x′|

.

Since all the derivatives are evaluated in x′ = 0, we can substitute |x − x′| =
|x| ≡ r

g(x, x′, y) =
∞∑
l=0

(−1)l

l!
x′L∂L

S

(
t− r

c

√
1 +

6as2

r
,x′

)

r

√
1 +

6as2

r

. (1.241)

Putting everything together in equation (1.236) we have

φ(x, t) =
G

3ac4

∫
R
ds [J1(s)θ(s)− δ(s)]

∫
R3

d3x′
∞∑
l=0

(−1)l

l!
x′L∂L

S

(
t− r

c

√
1 +

6as2

r
,x′

)

r

√
1 +

6as2

r

,

(1.242)
L is a multi-index L = j1j2....jl.
We can define the following functions

p(s) =

(
1 +

6as2

r2

)−1/2

,

τ = t− r

p(s)c

q(s) = p(s) [J1(s)θ(s)− δ(s)] .

(1.243)

φ(x, t) =
G

3ac4

∫
R
ds
q(s)

p(s)

∫
R3

d3x′
∞∑
l=0

(−1)l

l!
x′L∂L

S (τ,x′)

r
p(s). (1.244)

Up to the second order, we have

φ(x, t) =
G

3ac4

∫
R
ds
q(s)

p(s)

∫
R3

d3x

[
p(s)

r
S (τ,x′)− ∂

∂xi

(
p(s)

r
S (τ,x′)

)
x′i

+
1

2

∂2

∂xi∂xj

(
p(s)

r
S (τ,x′)

)
x′ix′j,

(1.245)



for example, the first derivative can be calculated as

∂

∂xi

(
p(s)

r

)
S (τ,x′) +

p(s)

r

∂

∂xi
S (τ,x′) , (1.246)

the derivative of S in xi is
∂

∂xi
S (τ,x′) =

∂S

∂t

∂t

∂xi
=
∂S

∂t

∂

∂xi

(
τ +

r

p(s)c

)
. (1.247)

Going up to the hexadecapole moments, we have

φ(x, t) ≈ G

3ac4r

∫
R
dsq(s)

∫
R3

d3x′

[
1 + Fi(s)x

′i + Fij(s)x
′ix′j + Fijk(s)x

′ix′jx′k

+ Fijkl(s)x
′ix′jx′kx′l

]
S (τ,x′) , (1.248)

where

Fi(s) := ni

[
p2(s)

r
+
p(s)

c

∂

∂t

]
, (1.249)

Fij(s) := ninj

[
3p4(s)

2r2
+
p3(s)

rc

∂

∂t
+
p2(s)

2c2
∂2

∂t2

]
− δij

[
p2(s)

2r2
+
p(s)

2rc

∂

∂t

]
,

Fijk(s) := ninjnk

[
5p6(s)

2r3
+
p5(s)

2r2c

∂

∂t
+
p4(s)

2rc2
∂2

∂t2
+
p3(s)

6c3
∂3

∂t3

]
− niδjk

[
3p4(s)

2r3
+
p3(s)

2r2c

∂

∂t
+
p2(s)

rc2
∂2

∂t2

]
,

Fijkl(s) := ninjnknl

[
35p8(s)

8r4
+

35p7(s)

8r3c

∂

∂t
+

15p6(s)

8r2c2
∂2

∂t2
− p5(s)

12rc3
∂3

∂t3
+
p4(s)

24c4
∂4

∂t4

]
− ninjδkl

[
15p6(s)

4r4
+

15p5(s)

4r3c

∂

∂t
+

3p4(s)

2r2c2
∂2

∂t2
− p3(s)

12rc3
∂3

∂t3

]
− δijδkl

[
3p4(s)

8r4
+

3p3(s)

8r3c

∂

∂t
+
p2(s)

8r2c2
∂2

∂t2

]
.

Now, we will drop the quadratic post-Newtonian terms in the perturbation
fields. This lead to Tµν being the main contribution to the source

S = ηµνT
µν . (1.250)

If we consider a perfect non-viscous fluid with mass density ρ pressure Pand
velocity field v = (v1, v2, v3), we have

T 00 (t,x) = c2 [ρ (t,x) +O (c−2)] ,

T 0i (t,x) = c [ρ (t,x) vi (t,x) +O (c−2)] ,

T ij (t,x) = ρ (t,x) vi (t,x) vj (t,x) + P (t,x) δij +O (c−2) .

(1.251)
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We can now define the following quantities, which are the momenta of the
Energy-Momentum tensorM In =

1

c2
∫
R3 d

3xT 00(t,x)xIn ,

SijIn =
∫
R3 d

3xT ij(t,x)xIn ,
(1.252)

And then the quantities
MIn

klm(t) =
∫
R ds q(s)

pk(s)

rlcm
∂m

∂tm
M In(τ),

S ijIn
klm (t) =

∫
R ds q(s)

pk(s)

rlcm
∂m

∂tm
SijIn(τ).

(1.253)

We can rewrite equation 1.248 with these quantities. For example, if we take in
exam only the first non-identical element

φ(x, t) ≈ G

3ac4r

∫
R
dsq(s)

∫
R3

d3x′
[
1 + ni

(
p2(s)

r
+
p(s)

c

∂

∂t

)
x′i
]
S (τ,x′)

=
G

3ac4r

∫
R
ds q(s)

∫
R3

d3x′ S (τ,x′) +
G

3ac4r

[∫
R
ds q(s)ni

p2(s)

r

+

∫
R
ds q(s) ni

p(s)

c

∂

∂t

]∫
R3

d3x′ x′iS (τ,x′) . (1.254)

Using the quantities 1.253 we have no

φ(x, t) =
G

3ac4r

[
M(t) + ni

(
Mi

210(t) +Mi
101(t)

)]
(1.255)

=
G

3ac4r

[
M(t) + niDi(t)

]
.

1.3.3 Energy-Momentum complex
The last step we want to discuss is the computation of the energy flux, similarly to
what we did in GWs so that we can later confront the two results. The total power
of the source is [31]

P =
G

3c

〈
Ṁ2 +

1

3
ḊiDj

〉
. (1.256)

The system we will study is again PSR J0737-3039. We have to make some
approximations to understand the energy loss by the emission of gravitational
radiation. First, we consider the total mass to change on a time scale much larger
than the orbital period. Hence, the monopole contribution Ṁ = 0. So we are left
with

P =
G

9c

〈
ḊiDj

〉
=
G

9c

〈
ḊiḊj

〉
(1.257)



We now need to calculate the exact expression of Ḋifor a two-body system.

We choose coordinates such that the motion is restricted to the (x1, x2)plane,
with x3 = 0.

The mass density can be written as

ρ (x) = δ (x3)

[
m1δ

(
x1 −

d

2
cos (ωt)

)
δ

(
x2 −

d

2
sin (ωt)

)
+

+ m2δ

(
x1 +

d

2
cos (ωt)

)
δ

(
x2 +

d

2
sin (ωt)

)]
(1.258)

We can now calculate M1(t) and M2(t), M3(t) is zero because we are on the
(x1, x2) plane.

M1(t) =
1

c2

∫
R3

d3xT 00(t,x)x1 =

∫
R3

d3x

[
m1δ

(
x1 −

d

2
cos (ωt)

)
δ

(
x2 −

d

2
sin (ωt)

)
+m2δ

(
x1 +

d

2
cos (ωt)

)
δ

(
x2 +

d

2
sin (ωt)

)]
x1

=

∫
R
dx3δ (x3)

[
m1

∫
R
dx2δ

(
x2 −

d

2
sin (ωt)

)∫
R
dx1x1δ

(
x1 −

d

2
cos (ωt)

)
+m2

∫
R
dx2δ

(
x2 +

d

2
sin (ωt)

)∫
R
dx1x1δ

(
x1 +

d

2
cos (ωt)

)]
=
d

2
(m1 −m2) cos (ωt) . (1.259)

Similarly, we can calculate

M2(t) =
1

c2

∫
R3

d3xT 00(t,x)x2 =
d

2
(m1 −m2) sin (ωt) =

d

2
(m1 −m2) cos

[
ωt− π

2

]
= M1

(
t− π

2ω

)
. (1.260)

With these we can move to M1
klm(t) and M2

klm(t). For the dipole moment we
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only need Mi
210(t) and Mi

101(t)

M1
210(t) =

d

2
(m1 −m2)

∫
R ds q(s)

p2(s)

r
cos (ωt) ,

M1
101(t) =

d

2
(m1 −m2)

∫
R ds q(s)

p(s)

c

∂

∂t
cos (ωt) ,

M2
210(t) = M1

210(t−
π

2ω
) =

d

2
(m1 −m2)

∫
R ds q(s)

p2(s)

r
cos
[
ω
(
t− π

2ω

)]
,

M2
101(t) = M1

101(t−
π

2ω
) =

d

2
(m1 −m2)

∫
R ds q(s)

p(s)

c

∂

∂t
cos
[
ω
(
t− π

2ω

)]
.

(1.261)
To calculate equation 1.257 we need the time average of Ḋi over one period

T =
2π

ω
. This mean that the time average over Ḋ1(t) and Ḋ2(t) = Ḋ1

(
t− π

2ω

)
have the same contribution.

P =
Gω

9πc

∫ T

0

dt

[(
Ṁ1

210(t)
)2

+
(
Ṁ1

101(t)
)2

+ 2Ṁ1
210(t)Ṁ1

101(t)

]
. (1.262)
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CONTENTS: 2.1 Numerical solution. 2.1.1 f(X) = X + αX2 + α2X3

4 – 2.1.2 Johannsen Metric –
2.1.3 A1(r) – 2.1.4 A5(r). 2.2 Analytical solution. 2.2.1 Is it possible to compute the quadrupole
formula?. 2.3 Application to Finsler Gravity. 2.3.1 Inverse problem of gravity – 2.3.2 Quadrupole
formula.

In section (1.1.5), we have listed all the limitations of Arthur G. Suvurov’s
approach. Our next goal is to see if, with these limitations, we can find other results
for different metrics and theories.

2.1 Numerical solution

2.1.1 f(X) = X + αX2 + α2X3

4

We want to see if the metric 1.15 is also a solution for a different theory

f(X) = X + αX2 +
α2X3

4
. (2.1)

Let’s start by studying the first derivative of the function and looking for an X0

that is both a zero and a local extremum

f ′(X) = 1 + 2αX +
3α2X2

4
, (2.2)

the condition f(X0) = f ′(X0) = 0 is satisfied for X0 = − 2

α
.

We then need to calculate

F (ϕ)R + V (ϕ)− ω (ϕ)∇αϕ∇αϕ = X0 = − 2

α
. (2.3)

We start by using the Brans-Dicke condition F (ϕ) = ϕ, V (ϕ) = 0, ω(ϕ) = ϕ−1

45



ϕR− 1

ϕ
gµν∇µϕ∇νϕ = − 2

α
. (2.4)

As we did before, we can consider the scalar field time and azimuth indepen-
dent ϕ ≡ ϕ(r, θ).
So the only metric elements we need are grr and gθθ. Using equation 1.21 and 2.3
we have:

−2M3ϵ

r3Σ
ϕ(r, θ)− 1

ϕ(r, θ)

[
∆(r)

Σ
(∂rϕ)

2 +
1

Σ
(∂θϕ)

2

]
= − 2

α

=⇒ 2M3ϵ

r3
ϕ2(r, θ) + ∆(r)(∂rϕ)

2 + (∂θϕ)
2 − 2

α
Σϕ(r, θ) = 0. (2.5)

This partial differential equation is not analytical, but we can solve it numeri-
cally by imposing the boundary condition:

ϕ(r, 0) = ϕ(r, π). (2.6)

Figure 2.1: Radial ϕ(r, θ) solution for M = 1, a = 0.9, ϵ = −0.2,α = 0.1

2.1.2 Johannsen Metric
We want to understand if it is possible to use the same approach to verify if a
different metric is a solution for a specific theory.
In this case, we will use the generalized Kerr metric presented by Tim Johannsen
[32], and we want to understand if it is a solution for the scalar-tensor theory:

A = k

∫
d4x

√
−gf (F (ϕ)R + V (ϕ)− ω (ϕ)∇αϕ∇αϕ) = k

∫
d4x

√
−gf (X) , (2.7)
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Where
f(X) = X1+δ. (2.8)

The equations of motions with respect to the metric and the scalar field are:

δA

δϕ
= f ′(X)

[
2ω(ϕ)□ϕ+

dω(ϕ)

dϕ
∇αϕ∇αϕ+R

dF (ϕ)

dϕ
+
dV (ϕ)

dϕ

]
+2ω (ϕ)∇αϕ∇αf ′(X) = 0,

δA

δgµν
= F (ϕ)f ′(X)Rµν −

f(X)

2
gµν + gµν□ [F (ϕ)f ′(X)]−∇µ∇ν [F (ϕ)f

′(X)]

−ω(ϕ)f ′(X)∇µ∇νϕ = 0.
(2.9)

They are both satisfied for f(X0) = f ′(X0) = 0, that is true for X0 = 0.

F (ϕ)R + V (ϕ)− ω (ϕ)∇αϕ∇αϕ = 0. (2.10)

We will use the Brans-Dicke conditions F (ϕ) = ϕ, ω(ϕ) = ϕ−1, V (ϕ) = 0.

Rϕ− 1

ϕ
gµν∇µϕ∇νϕ = 0. (2.11)

Generalized Metric

The generalized metric presented by Tim Johannsen is obtained with four deviating
functions that modify the Kerr metric:

gtt = −
Σ̃
[
∆− a2A2(r)

2 sin2(θ)
][

(r2 + a2)A1(r)− a2A2(r) sin
2(θ)

]2 ,
gtϕ = −a [(r

2 + a2)A1(r)A2(r)−∆] Σ̃ sin2(θ)[
(r2 + a2)A1(r)− a2A2(r) sin

2(θ)
]2 ,

grr =
Σ̃

∆A5(r)
,

gθθ = Σ̃,

gϕϕ =

[
(r2 + a2)A2

1(r)− a2∆sin2(θ)
]
Σ̃ sin2(θ)[

(r2 + a2)A1(r)− a2A2(r) sin
2(θ)

]2 ,

(2.12)

where
∆ = r2 − 2Mr + a2, (2.13)



Σ̃ = Σ︸︷︷︸
r2+a2 cos2(θ)

+f(r), (2.14)

A1(r) = 1 +
∞∑
n=3

α1n

[
M

r

]n
, (2.15)

A2(r) = 1 +
∞∑
n=2

α2n

[
M

r

]n
, (2.16)

A5(r) = 1 +
∞∑
n=2

α5n

[
M

r

]n
. (2.17)

This metric is asymptotically flat and reduces to the Kerr metric when all the
deviating functions vanish.
At the lowest order of the deviation functions, the metric depends on four parame-
ters in addition to the massM and the spin a: α13,α22, α52, ϵ3.
However, for simplicity, we will consider two examples with a single deviation
function:

2.1.3 A1(r)

Metric elements

We consider the function A1(r) in this case. The condition is:
f(r) = g(θ) = 0,

Ai = 1 ∀i ̸= 1,

(2.18)

while

A1(r) = 1 +
∞∑
n=3

α1n

[
M

r

]n
. (2.19)

We will consider the firm terms of the series:

A1(r) = 1 +
α13M

3

r3
. (2.20)

The metric elements are the following:
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

gtt = −
Σ
[
∆− a2 sin2(θ)

][
(r2 + a2)A1(r)− a2 sin2(θ)

]2 ,
gtϕ = gϕt = −a [(r

2 + a2)A1(r)−∆]Σ sin2(θ)[
(r2 + a2)A1(r)− a2 sin2(θ)

]2 ,

grr =
Σ

∆
,

gθθ = Σ,

gϕϕ =

[
(r2 + a2)A2

1(r)− a2∆sin2(θ)
]
Σ sin2(θ)[

(r2 + a2)A1(r)− a2 sin2(θ)
]2 .

(2.21)

We can solve (2.11) assuming ϕ to be time and azimuth independent.
We will need the metric element grr and gθθ:


grr =

∆

Σ
,

gθθ =
1

Σ
.

(2.22)

So (2.11) becomes:

Rϕ− 1

ϕ

[
∆

Σ
(∂rϕ)

2 +
1

Σ
(∂θϕ)

2

]
= 0. (2.23)

The solution we obtain is



Figure 2.2: ϕ(r, θ) solution for M = 1,a = 0.9,α = .1

2.1.4 A5(r)

In this case, we have:


f(r) = g(θ) = 0,

Ai = 1 ∀i ̸= 5.

(2.24)

A1(r) = 1 +
∞∑
n=3

α1n

[
M

r

]n
. (2.25)

The metric is:
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

gtt = −
(
1− 2Mr

Σ

)
,

gtϕ = −2Mar sin2(θ)

Σ
,

grr =
Σ

∆A5(r)
,

gθθ =
Σ

∆
,

gϕϕ =

[
r2 + a2 +

2Ma2r sin2(θ)

Σ

]
sin2(θ).

(2.26)

The inverse metric elements are:

gtt = 4Σ
Mr cos(2θ)+7Mr−4Σ

,

gtφ = gφt = 2Σ
aMr cos(2θ)+7aMr−4aΣ

,

grr = A5(r)∆(r)
Σ

,

gθθ = ∆(r)
Σ
,

gφφ = Σcsc2(θ)(Σ−2Mr)

a2Mr(Mr sin2(θ)−4Mr+2Σ)
.

(2.27)

We will again understand if the metric (2.26) is a solution for the theory (2.8).
The condition f(X0) = f ′(X0) = 0 is satisfied for X0 = 0

We suppose that the field ϕ time and azimuth is independent. ϕ ≡ ϕ(r, θ).
Using the Brans-Dicke condition, we are left with:

0 = ϕ(r, θ)R +
1

ϕ(r, θ)

[
(∂rϕ)

2 grr + (∂θϕ)
2 gθθ

]
(2.28)

= ϕ(r, θ)R +
1

ϕ(r, θ)

[
A5(r)∆(r)

Σ
(∂rϕ)

2 +
∆(r)

Σ
(∂θϕ)

2

]
.

Ricci Scalar

The Ricci Scalar obtained with Mathematica is:



R =
−2M2α

r3 (a2 + 2r2 + a2 cos [2θ])3
{
3a4M + 4a2 (2M − 3r) r2

+8 (3M − r) r4 + 4a2[a2M + r2(2M + r)] cos[2θ] + a4M cos[4θ]
}
,

(2.29)

We can write the denominator as:

a2 + 2r2 + a2 cos [2θ] = a2 + 2r2 + 2a2 cos2 [θ]− a2 = 2Σ, (2.30)

So the Scalar Curvature is:

R = − M2α

4r3Σ3

{
3a4M + 4a2 (2M − 3r) r2 + 8 (3M − r) r4

+4a2[a2M + r2(2M + r)] cos[2θ] + a4M cos[4θ]
}
.

(2.31)

At this point, we can now solve numerically (2.29):

Figure 2.3: ϕ(r, θ) solution for M = 1,a = 0.9,α = −0.1

2.2 Analytical solution

In this section, we will derive an analytical solution for the metric

ds2 =
a2 sin2 (θ)−∆

Σ
dt2 − 2a sin2 (θ) (a2 + r2 −∆)

Σ
dtdφ

+
Σ

∆
dr2 + Σdθ2 +

(a2 + r2)
2 − a2 sin2 (θ)∆

csc (θ) Σ
dφ2, (2.32)

with the theory
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f(X) = X + αX2 +
α2X3

4
. (2.33)

As we have seen before, we want to try to resolve equation 2.3. The difference is
that we will try with a set of conditions slightly different than the Brans-Dicke

F (ϕ)R + V (ϕ)− ω (ϕ)

[
∆(r)

Σ
(∂rϕ)

2 +
1

Σ
(∂θϕ)

2

]
= − 2

α
(2.34)

=⇒ −2M3ϵ

r3
F (ϕ) +

[
2

α
+ V (ϕ)

]
Σ− ω (ϕ)

[
∆(r)(∂rϕ)

2 + (∂θϕ)
2
]
= 0.

Let’s try imposing again F (ϕ) = ϕ and ω(ϕ) = ϕ−1, but leaving V (ϕ) ̸= 0:

−2M3ϵ

r3
ϕ+

[
2

α
+ V (ϕ)

]
Σ− 1

ϕ

[
∆(r)(∂rϕ)

2 + (∂θϕ)
2
]

= −2M3ϵ

r3
+

[
2

α
+ V (ϕ)

]
Σ

ϕ
− 1

ϕ2

[
∆(r)(∂rϕ)

2 + (∂θϕ)
2
]
= 0.

(2.35)

We can now impose the following condition on the potential V (ϕ)

V (ϕ) =
2

α
(kϕ− 1) . (2.36)

Where:

k : dim

[
k

α

]
= 0. (2.37)

We are left with:

−2M3ϵ

r3
+

[
2

α
+

2

α
(kϕ− 1)

]
Σ

ϕ
− 1

ϕ2

[
∆(r)(∂rϕ)

2 + (∂θϕ)
2
]

= −2M3ϵ

r3
+

[
2

α
+

2

α
kϕ− 2

α

]
Σ

ϕ
− 1

ϕ2

[
∆(r)(∂rϕ)

2 + (∂θϕ)
2
]
= 0.

(2.38)

This equation can be solved by separation of variables:

ϕ(r, θ) = R(r)Θ(θ), (2.39)

−2M3ϵ

r3
+

2

α
k�����
R(r)Θ(θ)

Σ

�����
R(r)Θ(θ)

− 1

[R(r)Θ(θ)]2
[
∆(r)Θ(θ)(∂rR)

2 +R(r)(∂θΘ)2
]
= 0

(2.40)



Using the relation Σ = r2 + a2 cos2(θ), we can solve them individually
2M3ϵ

r3
− 2k

α
r2 +

∆(r)

R2(r)
[∂rR]

2 = C2,

2k

α
a2 cos2(θ)− [∂θΘ]2

Θ2(θ)
= −C2.

(2.41)

We can solve analytically the second equation. For C = 0,we have:

[∂θΘ]2

Θ2(θ)
=

2k

α
a2 cos2(θ). (2.42)

We can use the ansatz:

Θ(θ) = exp

[
a

√
2k

α
sin[θ]

]
, (2.43)

the first derivative is

Θ′(θ) = −a
√

2k

α
cos[θ] exp

[
a

√
2k

α
sin[θ]

]
. (2.44)

So equation (2.42) is satisfied.
This also satisfied the boundary condition Θ(0) = Θ(π). Now, we can work on

the radial part. Let’s call
k

α
= β

2M3ϵ

r3
− 2βr2 +

∆(r)

R2(r)
[∂rR]

2 = 0, (2.45)

∂rR

R(r)
= ∂r ln(R), (2.46)

2M3ϵ

r3
− 2βr2 +

[
r2 + 2Mr + a2 + ϵ

M3

r

]
[∂r ln(R)]

2 = 0, (2.47)

[
r2 + 2Mr + a2 + ϵ

M3

r

]
[∂r ln(R)]

2 = 2βr2 − 2M3ϵ

r3
(2.48)

=⇒ 1

r

[
r3 + 2Mr2 + a2r + ϵM3

]
[∂r ln(R)]

2 =
1

r3
[
2βr5 − 2M3ϵ

]
=⇒ [∂r ln(R)]

2 =
1

r2
2βr5 − 2M3ϵ

r3 + 2Mr2 + a2r + ϵM3

=⇒ d

dr
ln(R) =

1

r

√
2βr5 − 2M3ϵ

r3 + 2Mr2 + a2r + ϵM3

=⇒ ln(R) =

∫
dr

1

r

√
2βr5 − 2M3ϵ

r3 + 2Mr2 + a2r + ϵM3
.
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Up to leading order, we can solve this integral away from the source

ln(R) =

∫
dr

√
2βr5

r5
. (2.49)

From this, we obtain an analytical expression of R(r)

R(r) = Ae
√
2βr. (2.50)

Figure 2.4: Radial ϕ solution for A = 1,β = 1/0.8

As we can see, the scalar field we obtain diverges when r goes to infinity, and
this tells us that the metric (2.32) is not a solution for the theory (2.33)

2.2.1 Is it possible to compute the quadrupole formula?
We can try to linearize the equations of motion of the theory and then try to
compute the quadrupole formula. The equations of motion are

0 = F (ϕ)f ′(X)Rµν −
f(X)

2
gµν + gµν□ [F (ϕ)f ′(X)]−∇µ∇ν [F (ϕ)f

′(X)]

− ω(ϕ)f ′(X)∇µϕ∇νϕ, (2.51)

0 = f ′(X)

[
2ω(ϕ)□ϕ+

dω(ϕ)

dϕ
∇αϕ∇αϕ+R

dF (ϕ)

dϕ
+
dV (ϕ)

dϕ

]
+ 2ω (ϕ)∇αϕ∇αf ′(X). (2.52)



We will study the case with a source Tµν , and instead of the tensor element, it’s
easier to study the trace

8πG

c4
T = F (ϕ)f ′(X)R− 4f(X) + 3□ [F (ϕ)f ′(X)]− ω(ϕ)f ′(X)∇αϕ∇αϕ. (2.53)

The next step is to impose the Brans-Dicke conditions

8πG

c4
T = ϕf ′(X)R− 4f(X) + 3□ [ϕf ′(X)]− 1

ϕ
f ′(X)∇αϕ∇αϕ. (2.54)

To linearize we need to take the first order of the theory f(X) and the derivative
f ′(X)

f ′(X) ≈ 1 + 2αX, (2.55)
f(X) ≈ X. (2.56)

So we obtain

8πG

c4
T = ϕ (1 + 2αX)R− 4X + 3□ [ϕ+ 2αϕX]− ∇αϕ∇αϕ

ϕ
[1 + 2αX] , (2.57)

where X is
X = ϕR +

2

α
(kϕ− 1)− 1

ϕ
∇αϕ∇αϕ, (2.58)

The linearization of this theory leads to some problems, in particular when
substituting ϕ = ϕ0 + δϕ, with δϕ = const, we obtain a problem that is not possible
to solve with the Green function. Possible solutions to this problem can be studied
in the future.

2.3 Application to Finsler Gravity

Finsler geometry is a straightforward generalization of Riemannian geometry[33,
34]. Instead of deriving the geometry of a manifold from a Riemannian metric g,
its Levi-Civita connection and the corresponding induced length measure Fg(X) =√
g(X,X) for vectors X , the geometry is derived from a general 1-homogeneous

length measure called the Finsler function and its Cartan non-linear connection.

ds2 = f
(
xi, dxi

)
. (2.59)

In this theory, the Ricci curvature is described as the Riemann Curvature’s trace
on each tangent space.

The Finsler structure on a manifold M is defined as the function F : TM →
[0,∞[, which satisfies the below properties

1. F is a smooth function on the TM/{0}
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2. F(x, cy) = cF(x, y) for all c > 0

3. Strong Convexity

For the Finsler manifold, the geodesic equation is [35]

d2xν

dτ 2
+ 2Gν(x, y) = 0, (2.60)

where

Gν =
1

4
gνω
[
∂2F2

∂xk∂xω
yk − ∂F2

∂xω

]
. (2.61)

The geometric invariant in the Finsler geometry is the Ricci scalar, and has the
following form

R = Rµ
µ =

1

F2

[
2
∂Gµ

∂xµ
− yν

∂2Gµ

∂xµ∂xν
+ 2Gν ∂2Gµ

∂yν∂yµ
− ∂Gµ

∂yν
∂Gν

∂yµ

]
. (2.62)

For our example, we will assume R to be constant and opposite to the cosmo-
logical constant Λ

R = −Λ. (2.63)

2.3.1 Inverse problem of gravity

We want to see if a Finsler metric with the Ricci Scalar R = −Λ is a solution for the
theory f(X) = X2

S =

∫
d4x

√
−gX2, (2.64)

where X is always

X = F (ϕ)R + V (ϕ)− ω(ϕ)∇αϕ∇αϕ. (2.65)

As we have seen, the equations of motion are

1. F (ϕ)f ′(X)Rµν −
f(X)

2
gµν + gµν□ [F (ϕ)f ′(X)]

−∇µ∇ν [F (ϕ)f
′(X)]− ω(ϕ)f ′(X)∇µ∇νϕ = 0,

2. f ′(X)

[
2ω(ϕ)□ϕ+

dω(ϕ)

dϕ
∇αϕ∇αϕ+R

dF (ϕ)

dϕ
+
dV (ϕ)

dϕ

]
+ 2ω (ϕ)∇αϕ∇αf ′(X) = 0.



For a theory like f(X) = X2 ,these are satisfied when X = 0

F (ϕ)R + V (ϕ)− ω(ϕ)∇αϕ∇αϕ = 0, (2.66)

with the Brans-Dicke conditions, it becomes

ϕR− 1

ϕ
∇αϕ∇αϕ = 0. (2.67)

In our previous examples, we asked the scalar field ϕ to counterbalance the
scalar curvature.
Here, we have both a trivial and a non-trivial solution.

Since the scalar field R is constant, if we ask ϕ to be constant too, we have

ϕΛ = 0. (2.68)

That is true when ϕ = 0. Otherwise, we have

0 = ϕ2 +
1

Λ
∇αϕ∇αϕ = ϕ2 +

1

Λ
gαβ∇αϕ∇βϕ. (2.69)

We will assume the field ϕ to be time and azimuth independent

ϕ ≡ ϕ(r, θ). (2.70)

The metric is spherically symmetric and has the following expression

gµν =


B(r) 0 0 0
0 −A(r) 0 0
0 0 −r2 0
0 0 0 −r2 sin2 (θ)

 , (2.71)

gµν =


B−1(r) 0 0 0

0 −A−1(r) 0 0

0 0 − 1

r2
0

0 0 0 − 1

r2 sin2 (θ)

 . (2.72)

Where

A(r) =

(
λ− Λ

3
r2 − 2GM

aλr

)−1

, (2.73)

B(r, t) = α(t)

(
aλ− aΛ

3
r2 − 2GM

λr

)
. (2.74)

Where a is an integral constant, λ is the flag curvature while we will put
α(t) = 1, in this way the metric will be time independent.
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We can explicit equation 2.69 as

0 =ϕ2 +
1

Λ

[
grr (∂rϕ)

2 + gθθ (∂θϕ)
2] = 0 = ϕ2 − 1

Λ

[
A(r) (∂rϕ)

2 +
1

r2
(∂θϕ)

2

]
=ϕ2 − 1

Λ

[(
λ− Λ

3
r2 − 2GM

aλr

)
(∂rϕ)

2 +
1

r2
(∂θϕ)

2

]
=Λ− 1

ϕ2

[
r2
(
λ− Λ

3
r2 − 2GM

aλr

)
(∂rϕ)

2 + (∂θϕ)
2

]
, (2.75)

we can rewrite the field ϕ(r, θ) as

ϕ(r, θ) = R(r)Θ(θ), (2.76)

0 = Λ− r2
(
λ− Λ

3
r2 − 2GM

aλr

)(
∂rR

R(r)

)2

−
(
∂θΘ

Θ(θ)

)2

. (2.77)

It is then possible to separate the variables

(
∂θΘ

Θ(θ)

)2

= C,

Λr2 − r2
(
λ− Λ

3
r2 − 2GM

aλr

)(
∂rR

R(r)

)2

= −C.

(2.78)

Let’s start with the first one(
∂θΘ

Θ(θ)

)2

= C =⇒ ∂θ ln (Θ) =
√
C =⇒ ln (Θ) =

√
Cθ+const =⇒ Θ(θ) = Ae

√
Cθ.

(2.79)
The boundary condition to impose is

Θ(0) = Θ(π), (2.80)

Θ(0) = A = Ae
√
Cπ =⇒ C = 0. (2.81)

Now, we can study the radial part

0 = Λr2 − r2
(
λ− Λ

3
r2 − 2GM

aλr

)(
∂rR

R(r)

)2

(2.82)

=⇒ Λ =

(
λ− Λ

3
r2 − 2GM

aλr

)(
∂rR

R(r)

)2

=⇒
(
∂rR

R(r)

)2

=
Λ

λ− Λ

3
r2 − 2GM

aλr



So, the final equation we have is(
R′(r)

R(r)

)2

+
Λ

Λ

3
r2 +

2GM

aλr
− λ

= 0 (2.83)

We can solve this problem numerically, and we can obtain

Figure 2.5: Radial ϕ solution for G = 1, M = 1, λ = 0.8,Λ = 0.19x10−4,a = 397, 35

As we can see from this plot, the scalar field looks physically suitable, asymp-
totically, it goes to 1

lim
r→∞

R (r) = 1, (2.84)

and it encounters a horizon for r = 353, 81m. This is in agreement with what is
written in the article “Black Hole Solutions with Constant Ricci Scalar in a Model
of Finsler Gravity” [35], it is important to notice that the horizon we found is not
an event horizon, but a cosmological horizon.

What is the Cosmological Horizon?

The cosmological horizon, also known as the particle horizon, is a concept in
cosmology that marks the maximum distance from which light has had time to
travel to the observer in the age of the universe[36].
It delineates the boundary of the observable universe. Anything beyond this hori-
zon is not observable because the light from such regions hasn’t had enough time
to reach us since the beginning of the universe.

To determine the cosmological horizon, one must consider the universe’s age
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and the speed of light. Mathematically, it can be derived by integrating the speed
of light over the universe’s age, taking into account the universe’s expansion. The
formula is given by:

dH = c

∫ t0

0

dt
1

a(t)
, (2.85)

where

• dH is the cosmological horizon distance,

• c is the speed of light,

• t0 is the current age of the universe,

• a(t) is the scale factor of the universe at time t.

2.3.2 Quadrupole formula
We will now linearize the equations of motion to compute the then quadrupole
formula. We will study the trace of the equations of motion, with the presence of a
source

8πG

c4
T =F (ϕ)f ′(X)R− 2f(X) + 3□g [F (ϕ)f

′(X)]− ω(ϕ)f ′(X)∇αϕ∇αϕ (2.86)

=2XϕR− 2X2 + 6□g [ϕX]− 2X

ϕ
∇α∇αϕ

=− 2Λϕ

[
−Λϕ− 1

ϕ
∇αϕ∇αϕ

]
− 2

[
−Λϕ− 1

ϕ
∇αϕ∇αϕ

]2
+ 6□g

[
−Λϕ2 −∇αϕ∇αϕ

]
− 2

[
−Λ− 1

ϕ2
∇αϕ∇αϕ

]
∇αϕ∇αϕ

=2Λ2ϕ2 + 2Λ∇αϕ∇αϕ− 2Λ2ϕ2 − 2

ϕ2
(∇αϕ∇αϕ)2 − 4Λ∇αϕ∇αϕ− 6□η

[
Λϕ2 +∇αϕ∇αϕ

]
+ 2Λ∇αϕ∇αϕ+

2

ϕ2
(∇αϕ∇αϕ)2 = −6□η

[
Λϕ2 +∇αϕ∇αϕ

]
So we have

□η

[
Λϕ2 +∇αϕ∇αϕ

]
= −4πG

3c4
T. (2.87)

Linearization

To obtain a quadrupole formula for this problem, we need to linearize this equation,
with the assumption

ϕ = ϕ0 + δϕ, (2.88)

where ϕ0 = const.



ϕ2 ∼ ϕ2
0 + 2ϕ0δϕ, (2.89)

∇αϕ = ∇αδϕ0. (2.90)

With this assumption, equation 2.87 becomes

□η

[
Λ
(
ϕ2
0 + 2ϕ0δϕ

)
+∇αδϕ0∇αδϕ0

]
= −4πG

3c4
T. (2.91)

We can discard the term ∇αδϕ0∇αδϕ0 because it’s of a higher order

−4πG

3c4
T = □η

[
Λϕ2

0 + 2Λϕ0δϕ
]
= 2Λϕ0□ηδϕ. (2.92)

We can then solve the following equation

□ηδϕ = − 1

Λϕ0

2πG

3c4
T. (2.93)

This is the same situation found in the derivation of the quadrupole formula in
f(R) theories, the solution is

δϕ =
G

6Λϕ0c4

∫
R3

d3x′
T (x′, t− |x− x′| /c)

|x− x′|
, (2.94)

let’s focus on
T (x′, t− |x− x′| /c)

|x− x′|
. This can be written as

∫
R3

d3y
T (x′, t− |x− x′| /c)

|x− x′|
δ(3)(y − x′) =

∫
R3

g(x, x′, y)δ(3)(y − x′). (2.95)

Similarly to what we did before, we can expand

g(x, x′, y) = g(x, 0, y) +
∂g

∂x′i
x′i +

1

2

∂2g

∂x′i∂x′j
x′ix′j + .... (2.96)

= g(x, 0, y)
∂g

∂xi
x′i +

1

2

∂2g

∂xi∂xj
x′ix′j + ....

=
∞∑
l=0

(−1)l

l!
x′L∂L

T (x′, t− |x− x′| /c)
|x− x′|

.

All the derivatives are evaluated at x′ = 0 so we can substitute |x| = r

g(x, x′, y) =
∞∑
l=0

(−1)l

l!
x′L∂L

T (x′, t− r/c)

r
, (2.97)
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so we can write δϕ as

δϕ =
G

6Λϕ0c4

∫
R3

d3x′
∞∑
l=0

(−1)l

l!
x′L∂L

T (x′, t− r/c)

r
(2.98)

we can rename
τ ≡ t− r/c, (2.99)

up to the second order, we have

δϕ =
G

6Λϕ0c4

∫
R3

d3x′
[
T (x′, τ)

r
− x′i

∂

∂xi
T (x′, τ)

r
+
x′ix′j

2

∂2

∂xi∂xj
T (x′, τ)

r

]
.

(2.100)

Let’s study the first derivative using the notation
∂

∂xi
= ∂i,

∂i
T (x′, τ)

r
= T (x′, τ) ∂i

1

r
+

1

r
∂iT (x′, τ) (2.101)

= −ni

r2
T (x′, τ) +

1

r
∂tT (x′, τ) ∂i (τ + r/c)︸ ︷︷ ︸

t

= −ni

r2
T (x′, τ) +

1

rc
∂tT (x′, τ) ∂tT (x′, τ) ∂ir

= −ni

r2
T (x′, τ) +

1

rc
∂tT (x′, τ)ni

=
ni

r

[
−T (x′, τ)

r
+

1

c
∂tT (x′, τ)

]
=
ni

r

[
1

c
∂t −

1

r

]
T (x′, τ) .

It’s now possible to express δϕ explicitly up to the first order

δϕ =
G

6Λϕ0c4

∫
R3

d3x′
[
1

r
− x′i

ni

r

[
1

c
∂t −

1

r

]]
T (x′, τ) (2.102)

=
G

6Λϕ0c4r

∫
R3

d3x′
[
1− ni

(
1

c
∂t −

1

r

)
x′i
]
T (x′, τ) .

We can define the momenta of the Energy-Momentum tensor

M In =
1

c2

∫
R3

d3xT 00(t, x)xIn , (2.103)

and the quantities

MIn
ij (t) =

1

ricj
∂j

∂tj
M In . (2.104)

We will define
M(t) ≡ M00(t). (2.105)



So when substituting into eq. (2.103) we obtain

δϕ =
G

6Λϕ0c2r

[
M(t)− ni

(
Mi

01(t)−Mi
10(t)

)]
=

G

6Λϕ0c2r

[
M(t)− niDi

]
. (2.106)

We can again study a two-body system fixed on the (x1, x2) plane. We can again
write the mass density as

ρ (x) = δ (x3)

[
m1δ

(
x1 −

d

2
cos (ωt)

)
δ

(
x2 −

d

2
sin (ωt)

)

+ m2δ

(
x1 +

d

2
cos (ωt)

)
δ

(
x2 +

d

2
sin (ωt)

)]
(2.107)

and compute the momenta

M1(t) =
d

2
(m1 −m2) cos (ωt) , (2.108)

M2(t) =M1

(
t− π

2ω

)
. (2.109)

Now we can compute Mij



M1
10(t) =

d
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M2
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π

2ω
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d

2r
(m1 −m2) cos
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ω
(
t− π

2ω
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,

M2
01(t) = M1

01(t−
π

2ω
) =

d

2c
(m1 −m2)

d

dt
cos
(
ω
(
t− π

2ω

))
.

(2.110)

With the same consideration made for the Radiated Power in f(R) theories, we
obtain the same results of equation 1.262

P =
Gω

9πc

∫ T

0

dt

[(
Ṁ1

10(t)
)2

+
(
Ṁ1

01(t)
)2

− 2Ṁ1
10(t)Ṁ1

01(t)

]
. (2.111)
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Discussion and future works

CONTENTS: 3.1 Inverse problem. 3.2 Radiated Power and Gravitational Waves . 3.3 Criticalities
and future perspectives..

In this thesis, we discussed the complete background to study an inverse
problem of gravity and test it with Gravitational Waves.
Now we will summarize what we have done, discuss the results obtained, the
criticalities and also possible future improvement

3.1 Inverse problem

The quest to extend general relativity (GR) arises from its limitations in describing
phenomena at the quantum scale and certain cosmological observations. While
GR has been extraordinarily successful in explaining large-scale structures and
passing numerous precision tests, its incompatibility with quantum mechanics and
the inability to fully account for dark energy and dark matter indicate the need for
a more comprehensive theory of gravity. This thesis has explored various modifi-
cations to GR, focusing mainly on Scalar Tensor f(X) theories and testing them
with Gravitational Waves trying to present a complete description of gravitational
phenomena.
From the Review of the article “A family of solution to the inverse problem: Build-
ing a theory around a metric” we were able to understand that it’s possible to solve
the inverse problem, this can be extremely useful, in particular when paired with
cosmological observation, because it gives us the possibility to build a parametric
metric with astrophysical data, and directly check if the metric we built is a solution
for a specific theory.
We have then presented new solutions to the inverse problem, both numerical and
analytical. Most of them are impossible to compute analytically, and we can only
plot them numerically using two variables. Studying these plot, we were able to
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understand what is the set of conditions to obtain a “good” scalar field ϕ, it has to
diverge near a metric singularity and has to satisfy the condition

lim
r→∞

ϕ = 1. (3.1)

3.2 Radiated Power and Gravitational Waves

A significant portion of this thesis is dedicated to deriving the quadrupole formula
and calculating the radiated power for the pulsar PSR J0737-3039 within both GR
and f(R) theories. GWs are ripples in the curvature of space-time that propagate
outward from their source. Predicted by Einstein’s theory of General Relativity,
these waves were first directly detected by the LIGO and Virgo collaborations in
2015

In GR, GWs are generated by the acceleration of massive objects, particularly
those in asymmetric configurations such as binary systems. The quadrupole for-
mula is essential for understanding the emission of gravitational waves from such
astrophysical sources. It is derived under the weak-field approximation, where
the gravitational field is considered a small perturbation on the flat Minkowski
space-time.

The quadrupole formula for the power radiated by gravitational waves is given
by:

Pquad =
1

5

〈 ...
M ij

...
M ij −

1

3

( ...
Mkk

)2〉
. (3.2)

The pulsar PSR J0737-3039 is a highly relativistic double neutron star system,
providing an excellent laboratory for testing gravitational theories. In GR, the total
power radiated by this system can be derived using the quadrupole formula.

For this system, the components of the quadrupole moment can be expressed in
terms of the masses of the stars and their separation. The total energy radiated over
time leads to a gradual inspiral of the binary components, which can be observed
as a decreasing orbital period.

On the other hand, to understand gravitational wave emission in f(R) theories,
we need to derive the equivalent of the quadrupole formula. This involves:

• Field Equations and Perturbations: The modified field equations are derived
by varying the action with respect to the metric. These equations include
additional terms involving f ´ ( R ) f ´ (R) and f ´ ´ ( R ) f ´´ (R), where
primes denote derivatives with respect to R R.

• Linearizing the Field Equations: Under the weak-field approximation, the
field equations are linearized around a background metric. This leads to a
wave equation for the perturbations, similar to the GR case but with addi-
tional terms from the f ( R ) f(R) function.
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• Modified Quadrupole Formula: The presence of the additional terms alters
the radiative properties of the gravitational waves.

By comparing the radiated power and the orbital decay rate of binary systems
like PSR J0737-3039 in both GR and f(R) theories, we can test the validity of
these modified theories. Precise measurements can reveal discrepancies that may
support or constrain f(R) models.

3.3 Criticalities and future perspectives.

The quest to extend general relativity (GR) arises from its limitations in describing
phenomena at the quantum scale and certain cosmological observations. While
GR has been extraordinarily successful in explaining large-scale structures and
passing numerous precision tests, its incompatibility with quantum mechanics and
inability to fully account for dark energy and dark matter indicate the need for a
more comprehensive theory of gravity. This thesis has explored various modifica-
tions to GR, including f(R) gravity, Scalar-Tensor theories, and higher-dimensional
theories, each offering potential pathways to a unified and complete description of
gravitational phenomena.
The main criticalities of this problem are two:
The first one is the strong limitation of the algorithm to the inverse problem. The
most prominent one is the class of theories that are eligible to be studied with this
method, which is very limited. A possible future implementation could be tuning
the algorithm to allow a higher class of theories to be tested.
The second prominent criticality is the possibility of linearizing the equation of
motion for scalar-tensor theories. In the cases presented in this thesis, we could
always analytically find a Green function suitable to describe the scalar field ϕ.
However, this is not a general solution since many theories present equations that
are too complex to be solved with this method.

Future steps in this field can be to further expand the class of theories that are
eligible for the inverse problem and trying to obtain a a general algorithm that,
given a metric, can find its theory and derive the quadrupole formula.
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