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Abstract

General relativity (GR), formulated by Albert Einstein in 1916 [1], remains a corner-
stone of modern physics, excelling in describing large-scale structures and passing
numerous precision tests at intermediate energy scales.
However, GR encounters limitations at the quantum scale and in explaining certain
cosmological phenomena, such as the accelerated expansion of the universe and
the presence of dark matter.
For this reason, physicists are exploring the possibility of modifying gravity in a
way that allows us to account for all of these problems.
This thesis explores possible modifications to GR, focusing on Scalar-Tensor the-
ories [2] and the possibility of building the most general solution possible to the
inverse problem of gravity. In other words, there is the possibility of verifying if
a given metric is a solution for a specific theory starting directly from the metric.
We will investigate potential modifications to General Relativity, particularly em-
phasising Scalar-Tensor theories [2, 3, 4, 5]. It aims to construct the most general
solution possible to the inverse problem of gravity. Specifically, it explores the
feasibility of verifying if a given metric is a solution for a specific theory by starting
directly from the metric[6]

After this, we will verify the sanity of the theory computing the Quadrupole
Formula and the Radiated Power of the pulsar PSR J0737-3039[7].

In summary, this thesis advances the understanding of extended theories of gravity

and set the foundation to build a general algorithm that will allow, given a metric,
to verify if it’s the solution of a theory and then compute Gravitational Waves.
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Sommario

La relativita generale (GR), formulata da Albert Einstein nel 1916, rimane un
pilastro della fisica moderna, eccellendo nella descrizione delle strutture su larga
scala e superando numerosi test di precisione a scale energetiche intermedie.
Tuttavia, la GR presenta limitazioni a livello quantistico e nella spiegazione di certi
fenomeni cosmologici, come 'espansione accelerata dell'universo e la presenza di
materia oscura.
Per questo motivo, i fisici stanno esplorando la possibilita di modificare la gravita
in modo da affrontare tutti questi problemi.
Questa tesi esplora possibili modifiche alla GR, concentrandosi sulle teorie scalari-
tensoriali e sulla possibilita di costruire la soluzione piu1 generale possibile al
problema inverso della gravita. In altre parole, la possibilita di verificare se una
data metrica & una soluzione per una specifica teoria partendo direttamente dalla
metrica.

Successivamente, verificheremo la validita della teoria calcolando la formula
del quadrupolo e la potenza radiata del pulsar PSR J0737-3039.

In sintesi, questa tesi avanza la comprensione delle teorie estese della gravita
e pone le basi per costruire un algoritmo generale che permettera, data una metrica,
di verificare se essa e la soluzione di una teoria e successivamente calcolare le onde
gravitazionali.
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Why do we need an extended
theory of gravity?

General Relativity, along with quantum mechanics, is one of the pillars of modern
physics. This theory was formulated by Albert Einstein in 1916, and it was a
groundbreaking way to describe gravity in a completely different way when con-
fronted to Newton’s law of universal gravitation formulated in the 17th century.
Einstein’s theory has passed all the precision tests [8, 9, 10, 11, 12], most of which
are probes of weak field gravity, which means that they probe gravity at intermedi-
ate length (1um <1 < 10Mm), and therefore intermediate energy scales.

Despite its successes, GR is not without limitations, particularly when addressing
phenomena at the quantum scale, cosmological observations, and the unification
of fundamental forces.[13, 5].

A primary motivation for extending General Relativity (GR) stems from the pursuit
of unifying gravity with the other fundamental forces—electromagnetic, weak,
and strong interactions—into a single theoretical framework. While GR excels at
describing large-scale structures, it is incompatible with quantum mechanics, the
theory governing the subatomic world [14]. This incompatibility indicates that
GR may be an incomplete description of gravity, necessitating extensions that can
bridge the gap between quantum mechanics and gravity

Moreover, several astrophysical and cosmological observations challenge the com-
pleteness of GR [15, 16]. The accelerated expansion of the universe, inferred from
supernova observations and the cosmic microwave background radiation, implies
the existence of dark energy—a form of energy that GR cannot adequately explain.
Additionally, the behavior of galaxies and galaxy clusters suggests the presence
of dark matter, which, differently from ordinary matter, only interacts gravita-
tionally and not electromagnetically. These phenomena indicate that our current
understanding of gravity may be missing key components.



How do we modify gravity?

There are countless distinct ways to modify GR, many of which lead to theories that
can be designed to agree with current observations. Cosmological observations
and fundamental physics considerations suggest that GR must be modified at very
low and/or very high energies.

e f(R) gravity
One of the simplest ways to modify GR is to change the Lagrangian of the
Hilbert Einstein Action [17, 18]. In GR, the action is

S = k/d“x\/—gR + S, (1)

where S, represents the action of matter field, g is the determinant of the
metric tensor g, and R is the Ricci scalar. We can modify it with a generic
function of R:

S = k:/d"‘x\/—_gf (R) + Sin. )

This modification leads to field equations that differ from Einstein’s, and
contain some additional terms that can account for the accelerated expansion
of the universe without introducing Dark Energy.

* Scalar-Tensor theories
This class of theories introduces a scalar field ¢ coupled with gravity. A
known example that we will analyze further in this work is the Brans-Dicke
theory [19], where the action has the following expression

S = k/d4x\/—_gf <¢>R - %Vagbvagb) 3)
* Higher dimensional theories
Another possible approach to modifying gravity is to assume a higher number
of dimensions to our universe [20, 21]. This, of course, leads to a change in
the Hilbert-Einstein action, but instead of changing the Lagrangian density,
we change the number of variables of integration

/ d'z — / d"z. (4)

Gravitational theory’s built-in dimensions other than four have a strong
theoretical interest for several reasons, including the formulation of consistent
String Theories, like the Bosonic String Theory [21] and Superstring theory
[22], that both assume the space-time to have a higher number of dimensions.
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About this thesis work

This thesis will be divided into three main parts. In the first one, we will review
the Article "A family of solutions to the inverse problem in gravitation: building
a theory around a metric" written by Arthur G. Suvorov, we will understand the
criticalities and the possible ways to improve it.

In the second part, we will derive the quadrupole formula both in General Relativ-
ity and for f(R) theories. After this, we will compute the Radiated Power for the
Pulsar PSR J0737-3039.

In the third part, we will find new numerical and analytical solutions to the inverse
problem of gravity, using different sets of theories and metrics, after this, we will
try to compute the quadrupole formula.

The final goal will be to have a method to be able, given a metric, to build a theory
that is suitable for that metric, and then compute the quadrupole formula, in the
most general way.
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Introduction

CONTENTS: 1.1 The Inverse Problem, a review of Suvorov’s paper. 1.1.1 Action and equations
of motion — 1.1.2 Physical conditions and Brans-Dicke choice — 1.1.3 How do we build a solution
to the inverse problem? —1.1.4 Example —1.1.5 Limitations of the approach. 1.2 Gravitational
Waves in General Relativity. 1.2.1 Linearized gravity Gauge — 1.2.2 The transverse-traceless gauge
— 1.2.3 Deriving the quadrupole formula — 1.2.4 The energy of Gravitational Waves — 1.2.5 The
energy-momentum tensor of Gravitational Waves — 1.2.6 Energy Flux — 1.2.7 Explicit expression of
the matrix elements — 1.2.8 Radiated Energy — 1.2.9 Radiated Power for a binary system. 1.3 Gravi-
tation Waves in f(R) theories. 1.3.1 The expansion coefficients — 1.3.2 Gravitational Radiation —
1.3.3 Energy-Momentum complex.

In this chapter, We’ll provide an algorithm to solve the inverse problem of gravity
for a special class of theories, and build a general background to study Gravitational
Waves.

1.1 The Inverse Problem, a review of Suvorov’s pa-
per

In this first section, we will review the article called "A family of solutions to the
inverse problem in gravitation: building a theory around a metric" [6]. The idea presented
in this article by Arthur G. Suvorov is to build an algorithm which allows to take a
parametric metric and build an algorithm to find a scalar-tensor theory of gravity
for which the given metric is a solution

G — 0S8 — L. (1.1)

This is particularly useful when studying a parametric metric built via an
experimental observation. This method can identify a class of theories that satisfy
this metric.



1.1.1 Action and equations of motion
We will study the following Scalar-Tensor theory

A=tk / d'ay/=gf (F (6) R+ V () — w (§) VadV*0) = k / d'zv/~gf (X). (12)

Where k = (167G) ", G is the Newton’s constant, R is the scalar curvature for
metric tensor g, and F, V and w are potential functions of the scalar field ¢. The
f(R) theory of gravity is also recovered for constant scalar fields and vanishing
potential V. Here, we consider only vacuum solutions for this theory. However, it’s
still possible to study a system with matter fields.

The first that we need to do is find the equations of motion. To do this, we have
to calculate the variation with respect to the metric 6g,, and the scalar field ¢

e Variation with respect to g,
54 =k [ d [£(0)5 (V=) + V=95 (F(X))] (1)

= i [t | L g+ arconx |

Let’s focus on the second term of the integration:

0X =6 [F(6) g Ry +V () — w (9) g*° VoV 9]

— F()Ryuig™ + F(0)5Rug™ — (@), 6V,059%. O

We can rewrite the variation as follows:

5=t [ dtay=g | FOOF )Ry ~ FO0w(0)7,600 - L0 60

s [ a5 COF(0)9" 5,
(1.5)

It can be shown that g"”dR,,, can be written as as:

G SRy = g0, [515,] — g"°0, [0T%,] = 0,07 — ... =

, . , o (1.6)
W? =20 [g;w(sgu ] — o [glw(sg ] ’

so the second integral of (1.5) become:

b [ dtaev=as (OF(@)0, [0 (9.,80™) = 9 (909)). (17)
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Making an integration by parts and discarding the total divergences we have
b [ dted, [V=55 COF(0)] 0 (9000°) - O (9089™)). (18)

we will now perform another part of the integration

b [ d50,07 [V (X)F (@) b ~ k [ 50,0 [V=3 (OF(6)] 989"

— b [ @057 [V=35 COF (@) gube — k [ d'a0,0, [V=ar (X)F(0)] 69"

(1.9)
If we put together all the terms of A we obtain:
SA =k / d'z/—g { S (X)F($)Ryu — ['(X)w($) VoV, — @g,w
(1.10)
+w 0,07 [['(X)F(9)] = 8,0, [/ (X)F(9)] | 69"
The variation with respect to the metric is
PO ()R~ L0 g 4 0D [P0 (X)] = V.0, [F)F(X)] (110

—w(e) f/(X)V Vo = 0,

* Variation with respect to ¢
Similarly, it’s possible to calculate the variation with respect to the scalar field

: dw(¢) o dF (o) dV(¢)
f(X) 2w(¢)D¢+anq§V o+ R a6 + )

20 (6) Vag Ve f/(X) = 0,

(1.12)

1.1.2 Physical conditions and Brans-Dicke choice

We can impose several conditions on these equations:
1. Demanding that the graviton carries a positive energy

2. Demanding that the kinetic energy of the scalar field is non-negative —the
coefficient of [J¢ in equation (1.13) must be non-negative

After applying all the conditions, we are left with the following request:
1. F(¢) >0,



2. 2F(¢)w () + 3 (%?) > 0.

The Brans-Dicke choices, F'(¢) = ¢, w(¢) = % satisfy these conditions:

1. >0,

do\?
2. 2+3<%) > 0.

1.1.3 How do we build a solution to the inverse problem?

Now that we know what conditions we need to impose on the theory,we can start
understanding how to build the solution.

Starting from the two equations of motion, we see that they are both satisfied when
the function f(X) has a zero for X that is also a critical point for the function,

J'(Xo) = f(Xo) =0. (1.13)

What we need to do at this point is solve the equation X = X starting from
a specific g, metric, and finding an expression of ¢ that counterbalances the
curvature, allowing the function f and f’ to vanish. Starting from our f(X) in (1.2),
if the scalar field counterbalance the Ricci curvature in a precise way, the function
f(X) can vanish at a local extremum:

X =F () R+V (9) — w () VadV0 = X,. (1.14)

1.1.4 Example

To make an example, let’s suppose that through astrophysical data we can describe
a black hole metric with a generalized Kerr metric:

a’sin’ (0) = A, 2asin®(9) (¢® +1° - A)

ds* = > dt? > dtdy
Yo, , (@ +r2)?—a2sin?(0)A |,
— by 1.1
+ S+ S + s s, (1.15)

M3
with A =2 4+ 2Mr +a®> 4+ e—,and ¥ = r? + a? cos? 0
r
M and a are the mass and spin of the BH, while ¢ in an extra hair. This metric
admits an outer event horizon at the largest positive root of A = 0 This metricis a
generalization of the Kerr metric and presents some notable properties, like the
fact that it’s asymptotically flat.
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The mixed scalar theory we will study is
FX) = X", (1.16)

the function in analytical for § € Z.As we said before, we need to find a value
of Xy : f(Xo) = f'(Xo) = 0. In the case of the theory we choose, this is true for
Xo = 0, if a scalar field ¢ that satisfy this condition exists, then the metric we find
is a solution for this f(X) theory:

0=F(§) R+V (¢) —w(¢) VadV". (1.17)
With the Brans-Dicke choices, F(¢) = ¢, w(¢) = %,V(gb) = 0, the equation
becomes )
0=R¢— gvawagﬂ (1.18)
Let’s assume that the scalar field ¢ is time and azimuth independent
¢ = o(r,0). (1.19)

If we want to calculate V,¢pV*¢, we will only need to consider the metric elements
Grr and Jee

VoV = V0V
= 9"(80)* + g7 (0:0)" + 9" (960)* + g7 (9,0)* + 29'70,00,0
A
= (0,6 + 9"(000)? = 5 (00 + 5 (000)” (1.20)

The scalar curvature is

2M3e
R=-—5 (1.21)
so equation 1.17 become:
2M3e 1 /A 5 1 )
0=~ e ¢ — 5 (E(ar(b) + i(ae(b) ) . (1.22)
Let’s try solving the equation separating the variables
2M3¢ 1 A , 1 ) )
3 = = 1.2
3% +R2(7a)@2(0) {Z@ (0) (0-R)” + ER(T) (990) } 0— (1.23)
3 2 2
_ 2M°e + A(&«R) _ (89@) ’
73 R2(r) ©2(0)

so we have , )
2M?e (0, R)

A =2

r3 + R2(r) s

(1.24)
(090)* = —c20%(h).



We can solve the second one analytically
O(0) = A [ + ™| = 2A cos|cl]. (1.25)
On this solution, we can impose the following boundary condition
©(0) = O(m), (1.26)

this leads to
2Acos(c*0) =2Acos(cr) — ¢ = 0. (1.27)

We have demonstrated that ©(f) = 0, and that scalar field ¢ is independent
from the variable 6.
We are left with a function in the sole variable 7:

0 =2M3cq(r)* +r*A(r) (%ﬁjﬂ)) . (1.28)

We can now calculate a numerical solution for this equation 1.15:

20

5 10 50 100 500 1000

Figure 1.1: Radial ¢ solution for M =1,a = 0.9, ¢ = —0.2

In all cases considered, the scalar field ¢ is short ranged, well behaved, and
asymptotes to the Newtonian value ¢;,; = 1, as expected of physical black hole
geometries.

1.1.5 Limitations of the approach

This approach has several limitations. We will go through them, making a distinc-
tion between f(R) theories and scalar tensor f(X) theories.

In the case of f(R) theories, it’s easier to verify this. For any f(R) theory, the
equation of motion is:

59
g —%gwf (R) + R f'(R) + 9 0f (R) — V.V, f'(R). (1.29)
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In this case, the solution is trivial. If we can find an R, : f(Ry) = f/'(Ro) the
equation of motion is automatically satisfied.
But this is only possible for theories like

f(R) = (R — Ro)*, (130)

or
1, .
f(R) = R+ aR*+ 50‘233’ (1.31)

while this does not work on theories like
f(R) = R+ aR?, (1.32)

because in this last case, it’s impossible to find a common zero for the function f
and its first derivative. For Scalar-Tensor theories, the situation is pretty similar,
for example, we can’t work on theories like

F(X) =X, (1.33)

this can be easily proved substituting f(X) = X and f'(X) = 1 in the equations of
motion (1.12),(1.13) calculated before.

When doing this, it’s impossible to find a specific X, that solves both equations.
Like in the case of f(R) theories, this does not work for all the theories that do not
allow X to be both a zero and a local extremum for f(X), like f(X) = X + aX>.

1.2 Gravitational Waves in General Relativity

In this section, we will write a short summary of the theory of Gravitational Waves
in General Relativity[23, 24, 25]. This will be useful in studying gravitational waves
in modified theories. The gravitational interaction can often be considered weak
when confronted to others fundamental interactions. So it can be useful to develop
a perturbative theory to describe the metric g, as a perturbation of the Minkowski
metric 7,

Guv ™~ Nuw + h,u,w (134)

where
Il < 1. (1.35)

This condition requires both the gravitational field to be weak and the coordi-
nate system to be approximately Cartesian.
As we will see later, this approximation has the advantage of linearizing gravity,
since all the quadratic terms of the Scalar Tensor are negligible.

Linearized gravity can be interpreted as a field theory where the tensor field
h, “lives” in the Minkowski space.



This theory is Lorentz invariant, the tensor 7, is invariant, while 4, trans"forms
as:
By = AZ,AZ,hW. (1.36)

Now, we can derive all the elements needed to describe a theory of gravitation:

1
Fzy ~ 577'0/\ [8/Lhu)\ + al/h)\u - a)\h/j,u] y (137)

1
R, ~ 0Tt — 9,I = §W [0,0,h50 — 0,00\hgy — 0s0,hx, + 0s0\h,],  (1.38)

1
RVO' ~ énMA [aual/h)\a - a,ua)\hm/ - aUth)\M + 80'8)\h’l“/] ) (139)

R = 0,0,h" — Oh. (1.40)
With these elements, we can build the Einstein tensor GG, and write the Einstein

equation:

1
(0,0 + 00 by — Ohoy — 0500k — Nyedu 0B + nyoTOh] = 87G Ty (141)
2 12 o 1 I (63

It is possible to clean up this expression with a few changes rather than working
with h,,, we can use the trace reversed perturbation [26]

- 1
Py = by — 577,“,h. (1.42)

. 1
Replacing h,,, with h, + 577Wh.

With this substitution, the Einstein equation becomes:
1 _ _ _ _
3 10,000, + 070,y — Ohyyy — 1, 0,07 | = 877G Ty, (1.43)

this expression can be further simplified by choosing an appropriate coordinate
system, or Gauge.

1.2.1 Linearized gravity Gauge

Einstein’s equations are solved by a metric tensor defined up to diffeomorphism
that specifies its coordinates. For this reason, there is not a single decomposition of
the metric tensor. We will start by considering an infinitesimal coordinate change:

o't =gt — &M, (1.44)
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If we apply the transformation to the metric tensor with (1.36) we obtain:

() = 2L O8  () = (08 + 0uE") (5% + 05€”) gy ()
g\ ) = e I\ ¥) = a7 Ga&T) (05 T C887) G (1.45)
= gaﬁ('r) + aaguguﬁ(x) + aﬁfygow(x)-
We can expand
gul/(x) = g;u/(x/ + 6) ~ gul/(x/) + aaguu(x/>faa (1-46)
ga’ﬂ’(x/) ~ ga,@(x/) + aag,uu(x/)ga + aozfuguﬁ(x/) + aﬁgygau(l'/)- (147)

At this point, we can explicit g, = 7, + h,, and then disregard the the terms
like ¢#h,,,, , since both h,,, and £ are small:

hargr = hap + 0as + O5&a. (1.48)

This is similar to the Gauge transformation of the four-potential, that leaves unal-
tered the physical quantities. In the same way, (1.48) leaves the Riemann tensor
unaltered.
We will apply the following Gauge condition called Lorentz Gauge to the trace
reversed perturbation:

O"hy = 0. (1.49)

We want to verify that this Gauge does not alter the physical observables of the
theory. To verify this, we start with writing (1.48) in terms of h,,:

BMV — Eu’u’ = }_l;w -+ ﬁufy -+ gli — 77,“,((995”, (150)
applying the condition (1.49) we obtain:
Ny — O By = 0Phy, + O, (1.51)

‘Therefore, if the initial configuration h,,is such that 0”BW = fu(z), to obtain
9",y = 0, we must choose &,(z) so that

0¢, = fu(z) (1.52)
When imposing the condition (1.49) to the Einstein tensor, we obtain:

1 -
G = =50y (1.53)

So the linearized Einstein equation is:

Ohyy = —167T,,. (1.54)



1.2.2 The transverse-traceless gauge
To study the propagation of gravitational waves, we are interested in studying the
Einstein equation outside the source, where 7, = 0:

Ohy =0 (1.55)

For such space-times, one can, along with choosing the Lorentz gauge, further
specialize the gauge to make the metric perturbation purely spatial:

htt = hti - O (156)

and traceless '
h; = 0. (1.57)

From the traceless condition, we obtain
B = hy,
and the Lorentz condition becomes:
O'hy; =0 (1.59)

This is called the transverse traceless gauge (TT gauge). A metric The perturba-

tion put into TT gauge will be written /.
It's important to note that the TT gauge cannot be chosen inside the source, since

in this case Oh,,, # 0. Inside the source, once gaugeve chosen the Lorentz gauge,
we still have the freedom to perform a transformation with [J¢, = 0. Equation

(1.55) has plane waves solution:

hi' (x) = Cyj(k)e’™, (1.60)

with k# = (w, E) .
The tensor Cj; is called the polarization tensor and, given the condition imposed

on h};", it has to be symmetric and traceless. Given a single plane wave with a

given vector k, we define i = ‘T we choose 7 along the 2 axis, and imposing that
i

hj;" be symmetric and traceless, we have:

he hy 0
hi = ha —hy 0] coslw(t—2)]. (1.61)
0 0

ij
The elements A, and h, are called the amplitudes of the “plus” and “cross”
polarization of the wave.
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Given a plane wave solution &, (z) propagating in the direction n, outside the
sources, already in the Lorentz gauge but not in the TT gauge, we can find the
form of the wave in the TT gauge as follows. First, we introduce the tensor

P;; is transverse, a projector and its trace is P; = 2. With this tensor, we can
build

. 1
Nij (7) = PPy — iﬂjpkl (1.63)

With this tensor, it is possible to show that, given a plane wave b, in the
Lorentz gauge, it is possible to obtain the GW in the TT gauge with

hii' = Nij il (1.64)

1.2.3 Deriving the quadrupole formula

We start with the linearized Einstein equation with a source matter:
Ohyw = —167T),,. (1.65)
This equation can be solved by using a Green’s function:

OG(t,z,t',2') = 6@ (x — 2/)d(t — 1), (1.66)

By, = —167 / dt' P2’ G(t,x, ', 2" ) T (1.67)
The Green function associated with the wave operator is:

5t~ [t—lw— )

G(t,x,t',2") = —
(wra 7$) |J}—$/’

(1.68)

The quantity ¢t — |z — 2'| is the retarded time, it take into consideration that the
metric h,, that we observe at (¢, z) is generator by the source T}, that is located at
a distance |z — 2’| and in a precedent instant of time ¢ — |z — 2|.

We can now compute the convolution between the Green function and the source:

B T,, (t — _ /’ /
hw(t,x)_zl/d?’x’ p (t = |2 — 2], &) (1.69)

|z — |

We can start considering only the spacial element of the tensor:

; Ty (t— |z —a'|,a
hij(t, ) :4/d3x' i ( |$‘f x,f‘ ) (1.70)




we will now evaluate this integral at large distance from the source |z| > |2/| —
|z| = r so we can write:

Tij (t — |z —2'|,2") = Ty (t — 1, 27) (1.71)

_ 4
hij(t.x) = — / 2Ty (t —r,a'). (1.72)

We can split the stress-energy tensor using the property 9,7"" = 0. We can
break up this condition into time and space components:

O,T" + 0,T" = 0, 173
O,T" + 0,T" = 0. '

We can now derive the first equation in ¢ equation in ¢ and subtract them:
T + 0,0, T" — 9;0,T" — 0,0,T" = 0. (1.74)
From this, it follows that
Q?Ttt = (ZﬁjT”, (175)
we can now multiply both sides of the equation by z*2! and manipulate them:
[GET“} rFrt = 92 [T“:ck:cl]. (1.76)
For the right side of the equation, we can start with:

0,0, [Tijxkxl] = 0 [wkmlﬁjTij +T"9; (mkxl)} (1.77)
= 0 (2"') 9,7V + 2*2'9,0,T" + 0,17 9; («*") + T70;0; (a*")
= 261 (.Cljkl'l) 8]'Tij + xkxl(?i@jTij + T”@l(?] (xkxl) —

— xkxl(()i(()jTij = 8183 [Tijxkxl} - 281 (ZL‘kZL‘l) @T’j - T”@Z@ (ZL‘kZEl) .
Let’s focus on the last two terms

[0 + 2'6F] 0,77 + T 870" + 67 0] (1.78)

[250,TY + 2'0;,T" ] + 21"

= 2[0; (a"TV) = 65TV + 9; (2'T) — 6:T"]

= 20; («"T" + x‘TkJ) AT™,

20; (xkxl) @-TU = 2
= 2
2

TY9;0; (") = T [6F6% + 6F0l] = T + T = 2T*. (1.79)
Putting everything together, we obtain
"2 0,0,T = 0;0; [TV a*a'] — 20; (a*TY + 2'T™) + 2™ (1.80)
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We can substitute everything in the equation 1.75:
07 [T”xkxl} = 0;0; [Tija:kxl] — 20; [T““:cl + T”:ck] + 27", (1.81)
So equation (1.72) becomes:

4
- / &' Ty (t — 7, 2") (1.82)
,

= Z—l/d3x' Bé’f (Tttxkxl) + 0; (Tikxl + T“xk) — %&-ﬁj (Tijxkxl)

r

= g/d%’af (Tttxkxl) )

r

We used that the second and third terms under the integral are divergences.
Using Gauss’s Theorem, they can be transformed into surface integrals. Taking the
integral outside the source, their contribution is 0.

2 2
;/d%’@f (T"2*2') = ;af/d?’x'pxkxl. (1.83)
We define the integral:
I;(t) = / 32 prFal, (1.84)

so equation (1.72) becomes:

. 2 d%I;;
hij(t, @) = - dt;' (1.85)
From equation (1.64) we obtain
. 2 d*I;
hz;‘T(tvx) = Aijwihii(t, x) = ;Aij,kzﬁ. (1.86)

1.2.4 The energy of Gravitational Waves

The next step is to understand the energy carried by gravitational waves [27].

To understand whether GWs curve the background space-time, we need to change
the framework in which we study them. Until now, we have studied the metric
tensor h,, as a tensor that lives in the flat Minkowski space 7),,, and it cause the
space-time curvature. However, we cannot continue with the same background,
because, otherwise, we exclude from the beginning the possibility that GWs curve
the background space-time. For this reason, we must allow the background space-
time to be dynamical:

G (%) = G () + hy (), (1.87)



where |h,, | < 1.
The next problem that arises is to decide which part of g, is the background, which
is the fluctuation. As we will see, this analysis will allow us to understand some
critical properties of GWs, such as their energy-momentum tensor.
A natural splitting between background and GWs arises when there is a clear
separation of scales. For example, the separation occurs if g, has frequencies up
to fp while h,,, is peaked around a frequency f such that:

> fs. (1.88)

In this case h,,, is a high frequency perturbation of a slowly varying background.

Amplitude

AN

fy f f

Figure 1.2: A situation that allows us to separate the metric into a low-frequency
background and a small high-frequency perturbation.

To study how GWs curve the background, we start by expanding the Einstein
equations around the background metric g,,. In this expansion, we have two small

I

parameters: one is the amplitude h, and the second is

It is convenient to cast the Einstein equations in the form

1
R, =8m {TW — éng} , (1.89)

now we can expand the Ricci tensor to O (h?),
Ry =Ry + R+ RY) + .., (1.90)

where RW depends only on g,,, R,(},,) is linear in A, and Rg,) is quadratic in
h,,. The quantity R, contains only low frequency modes. R,(}V) contains only
high frequency modes, while R{) contains both high and low frequencies mode.
Therefore, we can split the Einstein equations into two equations for high and low

frequencies:

w 9

B ow 1 Low
R = — [R]™" + 8n {TW - —gWT] (1.91)
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Hioh 1 High
The explicit expression of R,(}V) is:
1 .- - _ _ _
R() = 5 (DDl + D°Dyhye — D*Dohy, — D, DR (1.93)

while RELQV) is:

| 1 ) ) ]
R = 375" [5 DyhpaDyhos + (Dphya) (Dohys — Dshyo)

—|—h,pa (DyDuhoﬂ + DﬁDahw, — DgDthU — DgDuh,/g) (194)
1_ _ _ _ _
+ (ipahp(, — Dphag) (Dyhyus + Dyhyg — Dghyy)

To continue this analysis, we will go from using the scale of frequencies to the
one of amplitudes. For the background, the length scale is L, while for the GWs
it’'s A, where L > \.

We introduce a scale [ that is an intermediate scale:

A<l < L. (1.95)

We can average the elements of R, over a spatial volume with side (. In this
way, modes with wavelength Ly remain unaffected because they are constant over
[, while modes with the wavelength ) are oscillating very fast and their average is
0. We can, therefore, write

Ry, =—(RZ)) + 8 <Tu,, - %gWT> : (1.96)
Now, we define an effective energy-momentum tensor
<TW - %guyT> =T~ 50T, (1.97)
By definition, 7}, is purely low frequency. We also define the quantity ¢, as
tu = —% <R§f) — %gWR<2>> , (1.98)

where R®?) = g’“’Rfﬁ,), and we define the trace as

M 1, 1_
b= gt = -3 <Rff) - §gw,R(2)> (1.99)

1 1 1
- _ | gwR® _ Zawg p@\ _ = /p®
- <g R 59 guw R > - <R >,



we used the property of g* that g <R,(fl,)> = < g“”RLQ,,)> because g is a purely
low frequency quantity. We can now put everything together in (1.98):

1 1 1 1
- <R§3} _ 5gwj_q<z>> =~ (B + 5gut. (1.100)

From this, we obtain the following:
2)\ — 1
—(R7)) = 87 |ty — §9uvt : (1.101)

Now, we can rewrite (1.96) as

1 1
R = 8 [tw -3 gﬂyt} + 87 {TW - 5%4 , (1.102)

or equivalently,

1 _ _
R;,LV - §gij = 8w [Tuy + tuy] . (1103)

1.2.5 The energy-momentum tensor of Gravitational Waves

We want to compute the tensor ¢,,, using equation (1.100). To do this, we also need

the expression of R(?) (1.94). Since we are interested in the energy and momentum
carried by the GWs at large distances from the source, we can approximate the
background as flat so that we can substitute all covariant derivatives with simple

derivatives in the expression of R(). This expression can be drastically simplified
with some considerations. The right hand of equation (1.103) is the Einstein tensor
of the background metric. This is a coordinate dependent quantity that is composed
of both physical degrees of freedom and coordinate ones. We can get rid of the
coordinate degree of freedom with the TT Gauge condition, and this implies that

0"h,,, = 0. Imposing this condition in R,(f,,) we have:
1[1
R = 3 §auhaﬂayhaﬁ + h*0,0,has — h*0,05hay — h*?0,05h 0y
+h*?0,08h ey + 0°hE0gha, — 0P hE0uhs, — 0sh*P 0y hay,
1 1 (1.104)
+ 050 PO Ty — 0gh® 2Oy — ~0%hIhy + =0%hT, hay
1 (0%
ey h} |

Some element have been cancelled using the two conditions 9*h,, = 0 and h = 0.
From equation (1.98), we see that we need the average <R,S2,,)> While calculating
the average, we can integrate by part and discard the boundary terms. In this way,
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all the remaining elements of Rffl,), except the first, depends on either 6*h,,, h or
Oh,., that are all zero in the TT gauge. So, we are left with

|
(R) = —7 (Ouhasd,h™) (1.105)

while ( R®) vanishes upon integration by parts. So we finally obtain an expres-
sion for t,,
1
by = = (0,hapd, ) . (1.106)
Where the tensor h,,, is the Transverse traceless tensor /. The element #"is:
1

1 s
0 = = (Dohf ") = o (TR

1

- = <i{i n h§> . (1.107)

1.2.6 Energy Flux

Having calculated the Energy-Momentum tensor carried by Gravitational Waves,
we can now compute the energy flux. Starting from the conservation of the Energy-
Momentum tensor 9,t"” = 0, we can write

\%4

The GW energy inside the volume V is:

Ey = / a3t (1.109)
v
we can calculate the time derivative
E
dBv _ Ao / Bt = / Pzt (1.110)
From equation (1.108) we can see that f,, d®z0,t” = — [, d*z0;t”, so we have
E } .
dEy = —/ dPro;t" = —/dAnitOZ. (1.111)
dt v S

Let’s consider a spherical surface at a large distance r from the source. Its
surface element is dA = r2df), the normal nis the radial direction 7 and the element
t% becomes

‘ 1
0i _ 40r __ 01 TT qar1.TT
=" = o5 (0°h"oT R (1.112)

% = / A2 (1.113)



A GW propagating radially at large distances from the source has the form
1
hig' (t.7) = ~fi =), (1.114)
where (¢t — r) is the retarded time t,.;. Therefore
(9rhij (t, 7') = _ﬁflj (t — 7") + ;@fij (t — 7”) . (1115)

Since the function f depends on ¢ — r, we can write

O fij(t—r)=—=0fi; (t — 1), (1.116)
o 1 | 1 1
Ohij (t,r) = —5fiy(t=r) = —0ufi (t =r) = =5 fi (t = 1) = O fis (t = 7)
1
= 5l —r) = OhlT (t,r) = (1.117)
1 1
— (()Thz;T (t,r) = —(()thz;T (t,r)+ O (ﬁ) = 3thiTjT (t,r)+ O (7“_2) . (1.118)

At large distances, 0,h[;"
that 1% = ¢,

So, we can write the energy inside a volume as

(t,r) = d'h}" (t,r), so, from equation (1.112) we see

dEy 00_742 i TTjTT _rz 2, 72
= /SdAt - E/dﬁ (WP = = [ o (B2 +R2). (1.119)
We can also compute the total energy flow through dA between ¢t = —oo and
t =00
dEy 1 e
L = 16/dt<h++hx>. (1.120)

1.2.7 Explicit expression of the matrix elements

To compute the energy flux, we need to find the expressions of /1, and h,. To do
this, we start with equation (1.86)

&1,

Pali) Py () — 3,

Py () Pij (1)

it (t o) = (1.121)

SN
DO | —
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To continue, we need to understand how the tensor (1.63) works. When the
direction of propagation of the GWs is equal to Z, the tensor P;; = 6;; — nn;
becomes the projector on the (z,y) plane.

100
P=10 10 (1.122)
000
On an arbitrary matrix Ay we have
1 1
Where
A A 0
PAP = | Ayy Ay 0], (1.124)
0 0 0
while T'r (PA) = Ay; + Ags. Therefore
Ay A O 100
A A
NijriAp = | Aar Agp 0 — % 010
0 0 0 y 000 y ( )
‘ ‘ 1.125
(A — Ag) /2 Al 0
= A — (A —Ap)/2 0 .
0 0 0/
ij
d2
We can apply this to the tensor Pl
(fn—fm) /2 I 0
Aijriln = T - ( i — j’22) /2 0| - (1.126)
0 0 0

ij
We can use this expression, along with (1.86), to obtain an expression for h;and
B,
1 /. .
h+ = ; <Ill - [22>
(1.127)
2.
hy = =1
r
These expressions are valid only for a GW propagating in the 2 direction. To

obtain a formula for a Wave that propagates in a general 7 direction, we can start
defining a second orthogonal coordinate system (4, 0, n)



/X
Figure 1.3: Relation between the (z, y, 2) system and the (4, 0, n)

In the system (4, 0, 72), the elements i, and h, are

1 /. .
hy=- (1,1 - [’22>

. (1.128)
h:p = §],21
r
The vector 7, in the (z, 9, 2) frame has coordinates
n = (sin (0) sin (¢) , sin (6) cos (¢) , cos (6)) . (1.129)

While in the (4, 0, 7) it has components (0,0, 1). A rotation matrix relates these
two R such that

(sin (@) sin (¢) , sin (0) cos (¢) ,cos (6)) = R (0,0,1). (1.130)
The explicit expression of R is
cos(¢) sin(p) 0 1 0 0
R=|—sin(¢) cos(¢) 0| [0 cos(f) sin(d)|]. (1.131)
0 0 1 0 —sin(#) cos(6)
Similarly, the tensor / has components [;; in the (2,9, 2) and M;; in the (4, 7,7)

frame, related by

Using this, we can compute
1] .
hy(t,0,¢) = . Iy (cos® (¢) — sin® (¢) cos® (6)) + Iz (sin® (@)

— cos? (¢) cos? () — Isgsin® (A) — I15sin (26) (14 cos® (6)) (1.133)

+ 115 sin (¢) sin (26) + g cos (¢) sin (26) |,
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hy (t,0,¢) = ! [ (fn - f22> sin (2¢) cos (A) + 215 cos (2¢) cos (6) —
" ) ) (1.134)
—21I13 cos (¢) cos (6) + 253 sin (¢) sin (9) |.

This allows us to compute the angular distribution of the quadrupole radiation,
once M;; is given.

1.2.8 Radiated Energy

In this section, we want to derive an expression for the radiated energy and apply
it to the system PSR J0737-3039.
We start with the expression of the energy inside a volume 1.119

dE  r? | TTj TT
= [ A (TR, (1.135)

from this, we can derive the power radiated per unit solid angle in the quadrupole

approximation
dP r?
i —  (RITHITN 1.1
(dQ)quad 32< R > (1.136)

We can substitute 17 with their explicit expression

: P o
hit = —Aijw(R) L (1.137)
' dP) |
) = 2 Dijm () A (R) CLij L i) - (1.138)
(dQ quad 8 ! ! < / ]>

We can now use a property of A;; ki,
Aij,klAkl,nm - Aij,mn- (1139)
And we obtain

dP 1 R
quad

We can perform the angular integral, observing that the dependence on 7 is only
in Aide

/dQ |:(5zk — nmk) (5] — njnl) — % (513 — nmj) ((5kl — nknl) (1141)



We use the following properties

s 1
/ S = <0y, (1.142)
a2 1
/Eninjnknl = E [6ij5kl -+ 6ik5jl — 5il5jk] . (1143)
Using them we obtain
2m
/dQAmm = 1—5 [115Zk)5jl — 45ij5kl + 51](5];@] . (1144)

We can now substitute everything in 1.140 and obtain
|
Pquad = g < I” [ kl> . (1145)

Another formulation for the Radiated Power can be done by subtracting the
trace from the tensor J;

1
1 /.. .. 1 /... 2
Pouaa = 5 <MijMij 3 (Mkk> > (1.147)

1.2.9 Radiated Power for a binary system

In this section, we will apply the formalism that we developed to a binary system
made of two compact stars with masses m; and ms and positions ; and r,. We
can simplify this in a one-body problem in the center of mass frame and with mass

mymes . . . m .
equal to the reduced mass 1 = ————— subject to an acceleration 7" = -7 where
my + meo T
m = mj + Mas.

The conservation of the angular momentum L implies that the orbit lies on a
plane. We can introduce polar coordinates (7, 1) on the plane of the orbit, with the
origin in the center of mass. In terms of r and ) the angular momentum is

L = pur?y, (1.148)
The energy is
1 . - um 1 L?*  um
E=_pl|r?+rX? —— = i+ — ——. 1.14
2 [T Y ] r i * 2pur? r (1.149)

From the two conservation laws, we obtain the equation of the orbit

1 1
o= E(l + ecos ). (1.150)
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Where R is the length scale and is a constant of motion

L2
R=—:. (1.151)
mu
In this frame, the matrix M is
2 .
o coS sin v cos Y
M = pur <sinw cos sin? > ' (1.152)
We can write M as a function of ¢, using a relation between ) and r
a(l —e?)
= "7 1.1
1+ecost)’ (1.153)
B a(l —e?) \° cos? sin ) cos ¢
M=y (1 + 60081/1) sin 1) cos 1) sin? ' (1.154)
When computing the second derivative of the matrix elements, we obtain
My =B (14 ecost)? [2 sin 21 + 3e sin ¢ cos® M , (1.155)
My =8 (1+ ecostp)’ [—2 sin 21 — esin (1 + 3 cos? @/J)} , (1.156)
My =8 (1+ ecosv)? [—2 cos 21) + e cos Y (1 — 3cos? w)} . (1.157)

We can put these expressions in equation 1.147



11 -...2 ) ) 1 /... 2
Py) = _{M11+M22+M12—§<M11+M11>} (1.158)

ot

252 | s2 2 e
"5 [M“ + My +3My, — M11M22}

° M2m3 4 2 2 i 2
— Bm(l—l—ecosw) [12(1—1—60081/)) + e2sin w]‘

We can now perform a time average over a period 7'

1 T
P=z /0 dtP (), (1.159)

when evaluating this integral, we obtain

321%m?
pP= gw,) fe), (1.160)
where
1 73, 37,

We can compute this formula with the data from PSR J0737-3039. The numerical
values are the following [28]

Where Mq) and R are respectively the mass and radius of the sun.

Mg = 1,989210%%kg
(1.162)
Re = 6,96210%m

The value for the radiated power we obtain is 2.44z10*W.
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1.3 Gravitation Waves in f(R) theories

The goal of this section is to study the gravitational radiation for an f(R) theory.
We start from the action

03 4
- / d'v/=gf(R) + Sur, (1.163)

where S)/is the standard matter action.
The first thing to do is to compute the variation of the action with respect to the
metric ¢,,,

55 = 16C; e / d'e8 [V =gf(R)] + 65u (1.164)
_ (g | ] R)Sg" +/—gf' (R)OR| + 465
- 167TG/ x _§g;wf( )g —9g ( ) M,
© = T * o [ R R (1.165)
= i I R g [ e R R,
¥
C3
¥ = T / dhey/ =g (R) 9" R) (1.166)
= 16 G ) [ (glwég ) 3u (guuégya)]
- = / dhey/=50, (f'(R)).

Putting everything together, we obtain

C3

55 = 16WG/ a:\/_[ 39 [ (B) + ['(R) Ry, (1.167)

+ 0,07 f'(R) — 0,0, f'(R) | 6" + 6Su.

So, we obtain the following equation of motion

PRI R = S0 f (R) = 8,0 (R) + 9D (R) = 50T, (1168)



taking the trace, we obtain

GG

ct

30,/ (R) + Rf'(R) — 2f(R) = ——T. (1.169)

We assume the theory
f(R) =R+ aR? (1.170)

with [a] = [R]™". We define the first derivative ¢ = f/(R) and the scalar field ¢
by ¢ = 1 + 2a¢.We can substitute everything in equation 1.168

811G 1
?Tm/ =  (1+2ap)R, — 39w [R+aR?*| = V.V, (14 2ap) + g,y (1 + 2a9)1.171)
1 1
=  (142ap)R, — §Rguy 1+ 2aR] + §R2agw —2aV,V, 0+ 2ag,,0gp
1 81 1
— (1 + 2&90) |:R,w — §gWR} = 7TMV +a (Qvuva - QQMVDQSO - Eg,uuRz)
1 1 8 1
= R, —-guR= T, 2V, V., —2¢,,000 — =gue® | | .
u 29M (1—}-2&90) |: A e +a( Vuv ¥ JuwHgp 29u 2 )]
81G
9 8t
= 6al,p + ¢ + 2a9” — 20 (1 +ap) = —T (1.172)
c
811G 4rG 1
— 60, = "I T e = Op=—"T+ 0.
¥ ct T 997 34 +6a90

We consider a weak perturbation of the Minkowski space-time metric
v = N + M. (1.173)

1.3.1 The expansion coefficients
1
We define an expansion over - for the various elements of the theory[29]:

hoo = &) hoo + (4)h00 + O(Ciﬁ), (1174)
hoi = Pho+0(c™),

hy = @hy+0(c™),
o= @yt Wit O, (1.175)
T = (2700 4 Op0 4 (2, (1.176)
T = GO0 oY),

T = OTi 4 O(c?).
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The metric tensor, in the weak field limit is g, = 1, + Ry,

—14+@ p, + @, 0 0 S
0 1+ h,,
G & 14O 1y, (1.177)
3 by 1+@ hgy
We can now find the approximations of the two functions
e 1
Oy = T+ —
Y7 3408 T 6a”
1 1 8rG 1
Ry — zguwR = T 2 w0 — 29,050 — =g p?
w5 9u (1+2acp){c4 u+a(Vquo Gu—=g® 29“90)]
(1.178)
We want to approximate the first equation in leading order. We define o = Toa
a

1
We can go from U, to VZp because we want to stop to leading order in —, since
c

1
every time derivative has a — factor, we can suppress the time derivative. For the
c

same reason, we can approximate ¢ to the first order p = @y .

STGa?

V2 — o2y = T2

T (1.179)

Cc

The last thing to do is to approximate the trace of the Energy-Momentum tensor

T =g"T,, (1.180)

using the approximations of g,, and 7}, written above, and stopping the ex-
pansion to ¢? we obtain

T ~ —2700, (1.181)
So the equation is
2
V20l — 2@ = TG o0, (1.182)
C

We can now solve this equation with the Green function:

(V2 — a?] G(7 — )

— 53
where we indicate with r the vector (r, 6, ¢).
Let’s rewrite the equation as

(F—7), (1.183)

(V2 —a?] G(r) =69 (r), (1.184)



where, for simplification we wrote i = 0.
The Laplacian operator in spherical coordinates reduces to the » component:

V3G(r) = 1d (r2dG) : (1.185)

r2dr dr
So, when considering the homogeneous solution, equation 1.184 becomes

1d [ ,dG\ B
<7" dr)—aG(r) =0

r2 dr
d ([ ,dG 9 9 B
- - <7’ dr) rea*G(r) = 0 (1.186)
d’G  2dG 9
W—F;W—QG(T) = O

The general solution to this differential equation is

ar —Qar

+BS (1.187)
T T

e

G(r)=A

To find the constant A and B, we will study the function for » — 0 and r — oc.
For » — oo, we want the solution not to diverge, so A = 0.
Now, we need to normalize the function

/ (V2 —a?] G(r)dr = / 63 (r)dr =1, (1.188)
R3 R3
from this, it is possible to show that

1

B=—, (1.189)

4

So, the Green function is
e—ar e—a|w—zc’|

G= (1.190)

drr  dr|z — x|

We can now find ?¢ as the convolution of the Green function with the source

2 —a|z—a'
@, - 8Tt / e o0 _ (1.191)
ct A | — @/
Ga?

4

/d3x’ﬂ(—2)T00 = iV(ZL‘,t).

c

Where we define the potential

2 —ale—x
Vi t) = — 20 / e a— ) 1) (1.192)

c?
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Now, we can work on the (¢, ¢) element of the second equation of (1.178). The
tirst thing to do is rewrite the equation in a form that will be proved to be useful

o= gt = gy | T+ o (2000 2 (T4 50) = g )
= 4 +12as0) _SZFTHV - %FQWT - %gww +a (QVNV%O — %QWSOQ)]

= T +12a90) 8;@ (TW - %%J) - %gm/%@ +a <2VuVu<p - %9@02)}
= R, = a +12a90) [8:4(; (TW - %QWT) - %gwp +a <2Vuvu90 - %QWSOQ)

1
59 (14 2a9) R}

1 887G 1 1 1
= T, — =gu,T — G 2V,V, —guwe’ )|,
(1_’_2(1%0) |: C4 ( )22 39# >+69u S0+a/< 17 ¢+29,LL gp >:|

Where in the last steps, we use the fact that ¢ = R. The ¢, element of this
equation is

1 8t 1 1 1
Ry = (1 + 2ap) [ o (Ttt - ggttT) + 5In¥ ta (QVtvtSO + 59&902)} . (1.193)

To perform this approximation, we have to derive some elements. The first
one is Ry. Using the approximation written at the beginning of the section to the
second order in ¢, it is

1
Ry ~ —§V2(2)htt. (1.194)
Then, we have to find the second covariant derivative.
ViVip =V, (Owp) = af@ - FZ\W-

The Christoffel Symbol can be computed with the same approximations. Putting
everything together, we obtain

T+ 5P, (1.195)

We can solve this equation, too, with the Green function.
The Green function for the Laplacian is

1

(1.196)



When convoluting with the source, we obtain

8G (=2)00 1 V(2 t)
&) - B! - S ——
hoo(x,y,z,t) - @/d z ’.’1}—:13/’ 127T02/d X |:1:—:1:/|

— vy - we ), (1.197)

02
where we define

4G 5, (—2)TOO

= — 1.1
Ul(z,t) " d’x P (1.198)
1 V(' t)
t) = — | &2’ ———=. 1.199
W(z,t) 127?/ v |z — /| ( )

So, to summarize, the three potential are

Ga? —alz—x’|
V(.I',t) = —C—(;/dgl',Tm_—a”(_Q)Too (1200)
4G (72)T00
t) = — [ &2 1.201
UGwt) = 33 [ =g (1.201)
1 V(a',t)
t) = — [ s ———. 1.202
W) = = [t (1202)

1.3.2 Gravitational Radiation

With the potentials we derived, we are now able to find an expression for (.

Let’s start with the introduction of the tensor B,w,

Py = by — %hn,w — 2a1,,0, (1.203)
and impose the following gauge conditions
VYh,, = 0. (1.204)
Up to linear order in /,, and ¢, equation 1.172 becomes
Ophw = 1677, (1.205)
We can solve this with the green function
OG (t,z,t',2') = 6% (x — )6 (t — ). (1.206)
The Green function associated with the wave operator is

5(¢ [t = |z — )

Gtz t,2)=
(2, ¢,2) |z — |

(1.207)
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So, the solution is the convolution of the Green function and the source

T, ('t —|x—2|)

B = 167T/d4.73G (t,z,t', 2") T, = 4/d3x/ rY (1.208)

| — |

We are interested in studying the spacial elements of h
the spacial elements of 7", from equation

., to do this we study

2T = OF [T"x'2] — 0,0, [T 2 2'] + 20, [«'T™ + 27T™] (1.209)
when performing the three-dimensional spatial integration, we obtain
/d3x2T” = / dx [Tooximj} — /d?’xakal [Tijxkxl] (1.210)
+ 2 / PPz [T + 27T
we can drop the surface terms and are left with
/d?’xT” = %8§/d3x [T%2"27] . (1.211)

If we assume |z| > |2/|,from equation 1.208, when studying the spacial elements
we obtain

1 2 -
hig = d— | Ty (2t = o) = —5 / d*a/ [T(’%“xﬂ] : (1.212)

|z] i
The first equation of 1.178 can be approximated as

8rGa?
1

0,0 — a®p = S, (1.213)

C

Where S in the source 7' is extended to the quadratic terms in the perturbations.
These are expressed in terms of the Newtonian and Post Newtonian Potentials U,
vV, W

B 1 2 1 1 )
S—T{1+C—2(3W+@V)]+%[Q(VV) FUVAHVI|.  (1.214)

Equation 1.213 can be solved with the Green function for the Klein-Gordon
equation
(O, - a®) G =6W (z—a). (1.215)

We start considering the equation without the mass term

0,Go = 6W (z — &), (1.216)



The solution is known

1 —
Golt, ) = — =2 12l/e) (1.217)
e ||
Here, we have considered = > «/.
For the solution with the mass term, we start with
(O, — a?) Gy = 6W (z — ) (1.218)
and we write the Fourier transformation of G
1
G = / d*kG(p)e™, (1.219)
(4m)*

. 1 .
/d4kG(k) (Dn — az) et = I /d%em (1.220)
—
— —k*— 2

. o _/ d3k‘ /d_k‘() eikz
") @) ) 2w K-k —a?

We can solve the integral in dk, with the Residue theorem

dk’o e—ikot

PR e = ko= E£VE’+a? = tw, (1.221)
efik:ot efiwt

Res, = lolglw [ko — w] (o =) (oo - ) =55 (1.222)
eikot eiwt

Res. = lim ot G e va) ~ 2w (1.223)

This means that we will have both a retarded and advanced Green function. We
will only consider the retarded Green function for the causality of the theory

dgk eik:a: i
Gretzg(t)/ (27r)3%6 t. (1224:)

We can now perform a coordinate change to use polar coordinates d*k = k? sin (#) dkdfd¢.
We can start performing the integration in ¢

2 T o . k
/ d¢/ ekreos® gin (0) d§ = 27 [2/ ekreos® (cos ()| = 47T81nk—(rr)' (1.225)
0 0 0
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So, the whole integral becomes

(21)2 / h dksmikr) (1.226)

We will now use the relation v/k? + o> = w and do a change of variables

= Vol — a2 — dk = %. (1.227)

Putting everything in the Green function, we obtain

Gret =

(1.228)

o(t) /Ood we sin(m/ﬂ).

(27)? Vw2 —a?  rvw? —a?
We can use the Bessel function of first order J;to rewrite

sin (r\/wz — 042)

2

7 (m/ﬂ) - , (1.229)

rvw? — a2

) [ we "t - -
Gret = @T)Q/a dw\/ﬁjl <7’vw -« ) : (1.230)

This can be solved analytically by obtaining

o(t —r/c) ady <a\/t2 — 7"2/02)
47 \/m

We can write r = |&| and sum this result with G, obtaining
aJy (a\/tQ — |x|? /02)

V2= el /e

Now we can find a solution of 1.213 as the convolution of the source with the
Green’s function

2 ! !
o(x,t) = —%(ia /dt’/d3x’ [W [z — /)
C

2]

CYJl <Oé\/(t — t,)Q — ’m — 33’|2 /02) (1233)
S, x")
V=7 — o — ' fe2

Gret = (1.231)

(1.232)

Ot — |z —x'| /c)



We can define a retarded time and change the variable of integration

W, 2
- t—w\/lJrS— (1.234)
|

a? e — |
s

2
At = ds, (1.235)

2 |x — o &2
IR -
a2|a:—a:’|2

. S(t—M 1+%,w’>
o(x,t) = — [ ds[Ji(s)0(s) — 5(3)]/ d*x’ :

3ac4 R R3 6@82
e —x’| |1+

|z — o'l
(1.236)
Let’s focus on the second integrand and compute it far away from the source.

We can write
! 6 2
5 (t_u HL,‘@)

c e — x
— (1.237)
e — x| 1+|wasw,|
! 6 2
S(t_kc—cwl 1+ﬁ’m/>
"N 73
=/3 - 6(y —a')d%y
& |m_m/| 1_‘_&
|z — 2|

— [ sle,a )i — 2y
R

x’ lies within the near zone, so we can treat it as a small vector and express g as
a Taylor expansion around the origin in the variable o’ [30]

99 ,; 1 g i 1j
g(z,x’,y) = g(x,0,y) + ax,ia/ + 55 a4 (1.238)

All the derivatives are evaluated at '’ = 0 and since g depends on «’ only
through the combination |z — x| we can swap the derivatives in 2" with deriva-

tives in z*

dg Oy

e (1.239)
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g , 1 0?
9L 09
oz’ 2 0xt0x7

S|t— [z — ' 1+ as* ,x
3~ Dy ‘ z — =
= T L .
I

gz, x',y) = g(x,0,y) — "z (1.240)

=0

e —a'| |1+ y
|z — |

Since all the derivatives are evaluated in ’ = 0, we can substitute |z — o’| =
x| =r

2
- Wy S(t—g 1+6is,:c’>
gz, x’',y) = Z (=1) 2o, . (1.241)

|
—o [! . /1 . 6as?
r

Putting everything together in equation (1.236) we have

2
G = (1) S<t_f 1+6a875",>
-1 c r
- = _ 3,/ 1L
Plont) = o [ dslhes)o) = o) [ @S Skt —
(=0 ryf 1+
r
(1.242)
L is a multi-index L = j7>....7;.
We can define the following functions
( 6as?\ '/?
p(s) = (1+ > > :
" (1.243)
p(s)e
La(s) = p(s) [11(s)0(s) — o(s)].
_ G q(s) 3, - (=1 ., S(r2)
o(x,t) = Sacd Rdsp(s) /R3d x ZZ; T or, . p(s). (1.244)
Up to the second order, we have
R DS Jme (1.245)

1o p(s) ’ i 1j
+§8x738xi (—S (1,2 )) "



for example, the first derivative can be calculated as

9 (p(s) n, DP(s) O p
o ( . ) S(r,x")+ " axis (r,2"), (1.246)
the derivative of S in * is
0 , oS ot 0S 0 r
: - = - 1.247
8x15 (7, @) ot Oxi Ot O < p(s)c) ( )

Going up to the hexadecapole moments, we have

G
t) =~ d Az’
o(x, 1) SOLCLIT/R sq(s) /RS T

1~|>Fi(s):15/i+ﬂj(8) 17 /] +ka( )x/zx/]'r/k:

+  Fiju(s )x”x’ﬂx’kx’l]S(T, x'), (1.248)
where
Fi(s) = n, {@ + ]@%] : (1.249)
it = ni [ 25552%2;525“—;+p3ii>5—;}
il { Z; (3> + 2r<2c) ot " c2 (‘%2]
o) = mamun | S+ RS+ e e T + ik o
i |4+ S G+ et o T ]
~ouou |G R 5+ g

Now, we will drop the quadratic post-Newtonian terms in the perturbation
tields. This lead to 7}, being the main contribution to the source

S = 1, TH. (1.250)

If we consider a perfect non-viscous fluid with mass density p pressure Pand
velocity field v = (v1, v2, v3), we have

T (t,x) =2 [p(t,x) + O (c7?)],
T (t,x) =cp(t,z) v (t,z) + O (c7?)]

, (1.251)
T (t,x) = p(t,z)v" (t, ) v (t, ) + P (t,x)d;; + O (c?).
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We can now define the following quantities, which are the momenta of the
Energy-Momentum tensor

1
Lo+ 3,700 I
M™ =2 Jus @ 2wt @) (1.252)
Sl = [o T (t, x)x"
And then the quantities
o™
M (8) = fods a(s) 2 O pgtn ),
) A (1.253)
St (1) = fds o) 5L L gon ()

We can rewrite equation 1.248 with these quantities. For example, if we take in
exam only the first non-identical element

o(, 1) G /R dsq(s) / &z’ [1+ni (pQ(s) +]@%) x} S (r,2')

Q

3actr

R3 r
_ G 3/ ’ G 2(3)
= 3 /Rds q(s) /Rgd ' S(r,x')+ et /Rds q(s)n; .
+ / ds q(s) nl@gl / x2S (1,2). (1.254)
R c Ot R3
Using the quantities 1.253 we have no
G i
p(x,t) = Sachr [M<t) + 1y (Mmo( )+ M101( ))] (1.255)
G i
= o [M(t) + n, D ()] .

1.3.3 Energy-Momentum complex

The last step we want to discuss is the computation of the energy flux, similarly to
what we did in GWs so that we can later confront the two results. The total power
of the source is [31]

3c 3

The system we will study is again PSR J0737-3039. We have to make some
approximations to understand the energy loss by the emission of gravitational
radiation. First, we consider the total mass to change on a time scale much larger
than the orbital period. Hence, the monopole contribution M = 0. So we are left
with

P= G <M2 + DzDﬂ> (1.256)

P gGC<DZDJ> gc<7jiz>'j> (1.257)



We now need to calculate the exact expression of Difor a two-body system.

We choose coordinates such that the motion is restricted to the (z;, z2)plane,

The mass density can be written as

p(x) = 6(xs) [m15 (931 - gcos (wt)) ) (352 — gsin (wt)) +
+ mad (9:1 + gcos (wt)) d (IEQ + %lsin (wt)) ] (1.258)

We can now calculate M;(t) and M(t), Ms(t) is zero because we are on the
(21, x2) plane.

M (t) = c%/Rg PxT(t, @)z, = /Rs d*x [m15 (x1 - gcos (m)) ) (:c2 - gsin (wt))
+mad (;cl + gcos (wt)) 5 (xg + gsin (wt))] 1
- /R dz36 (3) [ml /[R dz26 (xz - %lsin (wt)) /R dz1216 (a:l - gcos (wt))

—i—mg/ dxo6 (.1'2 + @ sin (wt)) / dxi710 (xl + C—Zcos (wt))}
R 2 R 2
d

=3 (mq — mg) cos (wt) . (1.259)

Similarly, we can calculate

1 d ) d 7
My(t) = = /R3 dPxT(t, x)zy = B (mq — my) sin (wt) = B (my — my) cos [u)t - 5]
T

— M, <t . 5) . (1.260)

With these we can move to M}, (t) and M3, (). For the dipole moment we
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only need M., (t) and M, (¢)

/ d 2
Mi(t) = 5 (my —my) [5 ds Q(S)p (s) cos (wt) ,
d p(s) 0
Mg (t) = 3 (my —ma) [ ds q<8)7§ cos (wt),
Miaft) = Mot — ) = & sy — ) fy s ()2 cos [ (1= )]
210 210 % 5 2) Jr . 5 )]
2 (1) = My, (t— =) = & (m,y — p(s) 0 T
\M101(t) = M101(t 2w) D) (ml mQ) fR ds q(S) . D1 cos [w <t 2w>] .
. (1.261)
To calculate equation 1.257 we need the time average of D! over one period
T = 2—7T This mean that the time average over Zjl(t) and 152(15) = Dt (t — 21)
W w
have the same contribution.
Gw [T . 2 . 2 . .
P= ore J, dt {(Mélo(t» + (Mim(t)) + 2/\/1;10(0/\/1101(75)] . (1.262)
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Results

CONTENTS: 2.1 Numerical solution. 2.1.1 f(X) = X + aX? + % —2.1.2 Johannsen Metric —
2.1.3 Ay(r) —2.1.4 A5(r). 2.2 Analytical solution. 2.2.1 Is it possible to compute the quadrupole
formula?. 2.3 Application to Finsler Gravity. 2.3.1 Inverse problem of gravity —2.3.2 Quadrupole

formula.

In section (1.1.5), we have listed all the limitations of Arthur G. Suvurov’s
approach. Our next goal is to see if, with these limitations, we can find other results
for different metrics and theories.

2.1 Numerical solution

211 f(X)=X +ax?+eX
We want to see if the metric 1.15 is also a solution for a different theory
a? X3

T

Let’s start by studying the first derivative of the function and looking for an X
that is both a zero and a local extremum

f(X)=X+aX*+ (2.1)

2X2
F(X) =1+ 20X + 2 — 2.2)

2
the condition f(Xy) = f'(Xo) = 0 is satisfied for Xy = ——.
(0%

We then need to calculate
2
F(9)R+V(9) —w(9) VapVd = Xo = ——. (2.3)
We start by using the Brans-Dicke condition F(¢) = ¢, V(¢) =0, w(¢) = ¢~

45



1 2
OR — gV, 0V0 =~ (24)

As we did before, we can consider the scalar field time and azimuth indepen-
dent ¢ = ¢(r,0).
So the only metric elements we need are ¢ and ¢%. Using equation 1.21 and 2.3
we have:

2M3e 1 A(r) o 1 o 2
a5y o(r,0) — o0r.0) 5 (0:0)" + £ (969)"| = ——
3
TS0 + AR@0P + 006 — ST6(r0) =0 (29)

This partial differential equation is not analytical, but we can solve it numeri-
cally by imposing the boundary condition:

o(r,0) = o(r,m). (2.6)

Figure 2.1: Radial ¢(r, §) solution for M =1,a =0.9,e = —0.2,a = 0.1

2.1.2 Johannsen Metric

We want to understand if it is possible to use the same approach to verify if a
different metric is a solution for a specific theory.

In this case, we will use the generalized Kerr metric presented by Tim Johannsen
[32], and we want to understand if it is a solution for the scalar-tensor theory:

A=k / 0o/ gf (F(6) R4V () — w (6) VadV0) = k / dey =g (X), 27)
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Where
f(X) = X9, (2.8)
The equations of motions with respect to the metric and the scalar field are:
(oA _ dw(¢) o dF(¢)  dV(¢)
5 = f'(X) |2w(¢)O¢ + o VooV + R a0 + o
+2w (¢) Vap Ve f'(X) =0,
JA X
o = PO 0 R — L g 4 0,01F@) 100 - V9, (76 £ 00)
[ —w(®) f(X)V,.V,0 =0.
(2.9)

They are both satisfied for f(X,) = f'(Xo) = 0, that is true for X, = 0.
F(@)R+V(¢) —w(9) VapV¢ = 0. (2.10)

We will use the Brans-Dicke conditions F(¢) = ¢, w(¢) = ¢, V(¢) = 0.
1
Rp — 59“”VM¢VV¢ = 0. (2.11)

Generalized Metric

The generalized metric presented by Tim Johannsen is obtained with four deviating
functions that modify the Kerr metric:

(gtt = — ) [A — GQAz(T)2 SmQ(H)]
(2 + 02) Ay(r) — @ Ay(r) sin?(6)]”
s — 007 40 () Aa(r) = A] S (0)
(7 + a) As(r) — a2 Ag(r) sin*(6)]
. (2.12)
Grr = AAs(r)’
Joo = i»
g, — L4 @) AL — @ Asin(0)] £ 5in (0
[+ ) A1) — @ Aar) sin?(8)]”

\

where
A =71 —2Mr+d? (2.13)



> = o+, (2.14)

r2+4a2 cos?(0)

S
=1, (2.15)
.

7 (2.16)

e
r

(2.17)

e
|

This metric is asymptotically flat and reduces to the Kerr metric when all the
deviating functions vanish.
At the lowest order of the deviation functions, the metric depends on four parame-
ters in addition to the massM and the spin a: 3,009, Ci5, €3.
However, for simplicity, we will consider two examples with a single deviation
function:

2.1.3 A1 (7”)

Metric elements

We consider the function A;(r) in this case. The condition is:

f(r)=g(0) =0,
(2.18)
Ai=1 Vi # 1,
while
x M n
Ai(r) =1+ nzzg . [7] . (2.19)
We will consider the firm terms of the series:
0413M3
Ay(r) =1+ ) (2.20)

r3

The metric elements are the following:
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( 2 [A = a?sin®(0)]
g = — )
" [(7‘2 + a?) Ay (r) — a? sin2(9)} 2
al(r* +a%) Ai(r) — Al Ssin®(0)
Gt = Gt = — 5 5 s
[(7’2 + a?) Ay (r) — a®sin (9)]
oz (2.21)
Grr = Za
Goo = 2,
[(r? + a?) A2(r) — a®Asin®(0)] X sin®(6)
Jos = .
L o [(r? + a?) Ai(r) — a? sin2(9)}2
We can solve (2.11) assuming ¢ to be time and azimuth independent.
We will need the metric element ¢'" and ¢%:
rro__ é
g - 27
(2.22)
1
0o _ *
9" =5
So (2.11) becomes:
1A , 1 )]
R — bS] (0-9)" + 5 (Gp9)”| = 0. (2.23)

The solution we obtain is
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Figure 2.2: ¢(r,0) solution for M = 1,a =0.9,a = .1

21.4 As(r)

In this case, we have:

f(r)=yg(0) =0,
(2.24)
A=1 Vi # 5.
A(r) =14 o [%] " (2.25)
n=3

The metric is:
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( 2Mr
g = — | 1 — N )
2Mar sin’(0)
Gt = Ty
p
= , 2.26
I = AN (r) (2.26)
X
909 - A?
2Ma’r sin?(6
Gop = |T* +a*+ 2Ma’rsin’(5) sin?(6).
\ ¥
The inverse metric elements are:
( 43
gtt = Mt cos(20)+7Mr—4%>
_ _ 25
gtw - gwt T aMrcos(20)+7aMr—4a¥’
g = Al (2.27)
00 _  A(r)
& = =
o _ ¥ csc(0)(X—2Mr)
& azMr(Mr sin2(9)f4Mr+2E) )

\

We will again understand if the metric (2.26) is a solution for the theory (2.8).
The condition f(Xy) = f'(X,) = 0 is satisfied for X, =0

We suppose that the field ¢ time and azimuth is independent. ¢ = ¢(r,0).
Using the Brans-Dicke condition, we are left with:

0 = ¢rOR+ 2 [(0:0)* 9 + (959)” ¢”] (2.28)
= srOr+ oo | P e S |

Ricci Scalar

The Ricci Scalar obtained with Mathematica is:



—2M?
R= a % {3a*M + 4a® (2M — 3r)1°

3 (a2 + 212 + a2 cos [26 (2.29)
+8 (3M —r)r* + 4a*[a®M + r*(2M + r)] cos[26] + a* M cos[46]},
We can write the denominator as:
a® + 2r? + a® cos [20] = a* + 2r* + 2a® cos® [0] — a* = 2%, (2.30)
So the Scalar Curvature is:
R=— Mo {3a*M + 4a® (2M — 3r)r* + 8 (3M —r) r
4333 (2.31)
+4a°[a®M + r*(2M + r)] cos[20] + a* M cos[46]} .
At this point, we can now solve numerically (2.29):
10 | 53 00 Ts00 1000
Figure 2.3: ¢(r, #) solution for M = 1,a = 0.9, = —0.1
2.2 Analytical solution
In this section, we will derive an analytical solution for the metric
2602 (0) — A 94 sin? 2,2 A
g2 — 4 8in (0) g2 2asin 0) (a* +r >dtd<,0
by by
by (a® +12)° — a2sin® () A
Zdr? + Ydb? dp? 2.32
LN * csc (0) 2 7o 232)

with the theory
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2X3
FX) =X +ax?+ 20

(2.33)

As we have seen before, we want to try to resolve equation 2.3. The difference is
that we will try with a set of conditions slightly different than the Brans-Dicke

A(r)
Y

0.0 + (@0 | = > (239

F<¢>R+v<¢>—w<¢>[

2M3e

> —
TB

FO)+ |24V 0) 5= 0(0) [80)007 + 0] =0

Let’s try imposing again F(¢) = ¢ and w(¢) = ¢!, but leaving V(¢) # 0:

M3 2 1
e |24V o) B 2 18007 + @)
r o )
5 (2.35)
=B 2V @) 2 - S 80007 + @] =0
s e T ¢ @? " ’ o
We can now impose the following condition on the potential 1/ (¢)
2
V(gp) = o (k¢ —1). (2.36)
Where:
k. dim [E] =0. (2.37)
o}
We are left with:
3 2 2 ¥ o1
—2]\{) ¥ [— + — (ko — 1)} — — — [A()(0:0)? + (0s0)?]
r a o« o @ (2.38)
o 2MBe 22 212 1 ) o '
=——5 T [a + a/ﬂb - a] P [A(r)(8:0)° + (999)?] = 0.
This equation can be solved by separation of variables:
¢(r,0) = R(r)©(0), (2.39)

2M3¢

2 Y
T MO psetr

5 [A(r)O(0)(0,R)* + R(r)(9,0)*] =0
(2.40)

[R(r)©(0)]



Using the relation ¥ = r? + a? cos?(#), we can solve them individually

2M3€ 2k 9 A(T) 2 9
s ol * R2(r) OB =
(2.41)
2k o o [89@]2 _ 2
@ cos (0) CHORR C?.
We can solve analytically the second equation. For C' = 0,we have:
050)° 2k
070) o a® cos?(0). (2.42)

We can use the ansatz:

©(#) = exp [a\/ 2k sin[@]] : (2.43)
a
the first derivative is

e'(0) = —a\/ — cos | exp

So equation (2.42) is satisfied.
This also satisfied the boundary condition ©(0) = O(7). Now, we can work on

] . (2.44)

the radial part. Let’s call E =0

2M3 A(r) 5
i 28r? + 0 [0,R]* = 0, (2.45)
o-R
o = 0, In(R), (2.46)
2];4336 —26r% + [rQ +2Mr + a® + GMTT [0, In(R)]* =0, (2.47)
{73 +2M7r + a® + EMTT 0, In(R)]> = 28r% — 2%3 (2.48)

1
— ! (7% + 2M7? + a®r + eM?] [0, In(R))* = = [26r° — 2M°¢]

”
1 28715 — 2M 3¢
r2r3 4+ 2Mr2 + a?r + eM3

d 1 206r
— - In(R) =
n(R) \/r3+2Mr2+a2r+eM3

/ 2615 — 2MPe
et .
r3 + 2Mr2 + a?r + eM?

[0, In(R)]” =

!
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Up to leading order, we can solve this integral away from the source

In(R) = / dr| 25; ' (2.49)

From this, we obtain an analytical expression of R(r)

R(r) = AeV?, (2.50)

25000 —
20000 —
15000 —
10000 —

5000 -

2 4 [ 8 10

Figure 2.4: Radial ¢ solution for A =1,5=1/0.8

As we can see, the scalar field we obtain diverges when r goes to infinity, and
this tells us that the metric (2.32) is not a solution for the theory (2.33)

2.2.1 Is it possible to compute the quadrupole formula?

We can try to linearize the equations of motion of the theory and then try to
compute the quadrupole formula. The equations of motion are

0 = PO )R~ T 1 0,0 1F0) /(X)) - 9,9, [F(6) /()

— w(@)f(X)V,.oV.0, (2.51)

d, d d
0 = ) [pu@06 + L0 570+ I L )

+ 2w (0) VadVOf(X). (2.52)




We will study the case with a source 7}, and instead of the tensor element, it’s
easier to study the trace

TG — F(6)f/(X)R — 4F(X) + 30 [F(&)£/(X)] — w(d)f'(X)VadVé.  (2.53)

C

The next step is to impose the Brans-Dicke conditions

%GT = ¢f'(X)R — Af(X) +30[6f(X)] - %f’(X)VagbV“gb. (2.54)

To linearize we need to take the first order of the theory f(X') and the derivative

f'(X)

f(X) =1+ 20X, (2.55)
f(X) = X. (2.56)
So we obtain
8:—4GT:¢(1+2aX)R—4X—|—3D[¢+2a¢X]_w[1+QQX]’ (2.57)
where X is ) .
X=0R+—(k¢—1) - 5VQ¢V"¢, (2.58)

The linearization of this theory leads to some problems, in particular when
substituting ¢ = ¢¢ + d¢, with d¢ = const, we obtain a problem that is not possible
to solve with the Green function. Possible solutions to this problem can be studied
in the future.

2.3 Application to Finsler Gravity

Finsler geometry is a straightforward generalization of Riemannian geometry[33,
34]. Instead of deriving the geometry of a manifold from a Riemannian metric g,
its Levi-Civita connection and the corresponding induced length measure F,(X) =
V 9(X, X) for vectors X, the geometry is derived from a general 1-homogeneous
length measure called the Finsler function and its Cartan non-linear connection.

ds® = f (a:i, dﬂ) . (2.59)

In this theory, the Ricci curvature is described as the Riemann Curvature’s trace
on each tangent space.

The Finsler structure on a manifold M is defined as the function 7 : TM —
[0, 00|, which satisfies the below properties

1. F is a smooth function on the TM/{0}
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2. F(z,cy) = cF(z,y) forallc >0
3. Strong Convexity

For the Finsler manifold, the geodesic equation is [35]

Az
2G7 = 2.
T +20"(2,y) =0, (2.60)
where
, 1o [ 2P . OF?
o= 17 {&Ek’@xwy a 8m“] (2.61)

The geometric invariant in the Finsler geometry is the Ricci scalar, and has the
following form

(2.62)

1 [agu ) G G ag“ag”}

— Rt — _— |9 _ —
k=R, F2 | Ox+ Y rndry oyYoyr*  Jy» Oyt

For our example, we will assume R to be constant and opposite to the cosmo-
logical constant A

R=—A. (2.63)

2.3.1 Inverse problem of gravity

We want to see if a Finsler metric with the Ricci Scalar R = —A is a solution for the
theory f(X) = X?

S = / drz/—g X2, (2.64)
where X is always
X =F(@)R+ V() = w(@)VapV¢. (2.65)
As we have seen, the equations of motion are

1. F(¢)f(X)R,, — @gﬁw + 9O [F(8) f'(X)]
= V.V, [F(0) f'(X)] = w(9) [(X)V, Vo =0,
2. 7100 2000000 + v, 0w 4 RUO 4 T

+ 2w (¢) VooV f/(X) = 0.




For a theory like f(X) = X? these are satisfied when X = 0

F(o)R+V(¢) —w(@)VapVe9 =0, (2.66)
with the Brans-Dicke conditions, it becomes
1
oR — avaw% = 0. (2.67)

In our previous examples, we asked the scalar field ¢ to counterbalance the
scalar curvature.
Here, we have both a trivial and a non-trivial solution.

Since the scalar field R is constant, if we ask ¢ to be constant too, we have

dA = 0. (2.68)

That is true when ¢ = 0. Otherwise, we have

1 1
0= 6%+ T VadV"0 = 6" + 29" Va6V 30, (269)
We will assume the field ¢ to be time and azimuth independent
6= 0(r,0). (2.70)
The metric is spherically symmetric and has the following expression
B(r) 0 0 0
0 —A(r) ©0 0
o= o 00 (2.71)
0 0 0 —r2sin®(0)
B~(r) 0 0 0
0 A (r) 0 0
v 1
g = 0 0 —= 0 : (2.72)
! 1
0 0 -
! r2sin? ()
Where )
A, 2GMY\~
A(r) = <)\ 3T T o ) : (2.73)
aN , 2GM
= - —7r‘— . 2.74
B(r,t) = a(t) (a)\ 37 v ) (2.74)

Where a is an integral constant, A is the flag curvature while we will put
a(t) = 1, in this way the metric will be time independent.
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We can explicit equation 2.69 as
1 1 1
0=¢"+ 5 [97(0:0)" + ¢ (0p0)"] =0=¢" — + {A(r) (0:0)" + 5 (900)"
2GM 1
-1 | (=37 0) @or+ @
S (a3 [CORC O @75)
we can rewrite the field ¢(r, ) as
¢(r,0) = R(r)O©(0), (2.76)
A, 2GMY (O,R\* (90
— A _ 2 _ 2 r — ==
o-a=r (=500 (i)~ (6 &
It is then possible to separate the variables
2
9O \" _ c
o(0)
(2.78)

A 20GM\ [ 6, R\>
2 .2 Ao T - _
\A’r’ r (/\ 37" e ) (R(T)) C.

Let’s start with the first one

o (0)

The boundary condition to impose is

0(0) = A= AV — C=0.

Now, we can study the radial part

R R N -
0 " T( 37’ anr

A, 26GM\ [ 9,R\’
— 2= (=570 (75)

_ (OR 2 A
R(r)) A, 26M

gr air

3 o) (o

(89—@)2:0 — 9In(0) =VC = In(0) = VCl+const = O(6) = AeV’.

(2.79)

(2.80)

(2.81)

(2.82)



So, the final equation we have is

R(r)\? A
= 2.
(R(r)) WU 253
—re+ - A
3 air

We can solve this problem numerically, and we can obtain

R(r)

14}
12F

10+
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Figure 2.5: Radial ¢ solution for G =1, M =1, A = 0.8,A = 0.19210~*,a = 397, 35

As we can see from this plot, the scalar field looks physically suitable, asymp-
totically, it goes to 1
lim R (r) =1, (2.84)

T—00

and it encounters a horizon for » = 353, 81m. This is in agreement with what is
written in the article “Black Hole Solutions with Constant Ricci Scalar in a Model
of Finsler Gravity” [35], it is important to notice that the horizon we found is not
an event horizon, but a cosmological horizon.

What is the Cosmological Horizon?

The cosmological horizon, also known as the particle horizon, is a concept in
cosmology that marks the maximum distance from which light has had time to
travel to the observer in the age of the universe[36].

It delineates the boundary of the observable universe. 