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INTRODUCTION

Cosmic inflation is a theory within the field of cosmology that proposes a
rapid and exponential expansion of the universe during the earliest moments
of its existence. This period of inflation is believed to have occurred just
fractions of a second after the Big Bang, leading to the vast and homoge-
neous cosmos we observe today.

The idea of cosmic inflation was first proposed in the early 1980s to
address several outstanding problems in the standard Big Bang model of
cosmology. One of the key issues it seeks to resolve is known as the horizon
problem. This problem arises from the observation that distant regions of the
universe, which are separated by vast distances, exhibit remarkably similar
properties. According to the standard model, these regions should not have
had enough time to interact and reach thermal equilibrium, yet they appear
to have the same temperature and density. Cosmic inflation provides a solu-
tion to this problem by postulating a period of rapid expansion that would
have rendered the entire observable universe causally connected, allowing for
thermal equilibrium to be established before the onset of inflation.

In addition to addressing the horizon problem, cosmic inflation offers so-
lutions to other cosmological puzzles, such as the flatness problem and the
origin of structure in the universe. The flatness problem refers to the ob-
servation that the universe appears to be geometrically flat on large scales,
which is unexpected given the dynamics of the expanding universe. Infla-
tionary theory predicts that the universe would have been driven towards
flatness during the inflationary epoch, providing a natural explanation for
this observed flatness.
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INTRODUCTION v

Furthermore, cosmic inflation provides a mechanism for the generation of
primordial density fluctuations, which are thought to be the seeds of large-
scale structure formation in the universe. Quantum fluctuations during the
inflationary period are stretched to cosmological scales, leaving imprints in
the cosmic microwave background radiation and leading to the formation of
galaxies and galaxy clusters.

In summary, cosmic inflation plays a central role in the standard cosmo-
logical model by providing solutions to fundamental problems and offering a
mechanism for the origin of large-scale structure in the universe. Its theoret-
ical predictions are supported by a wealth of observational evidence, making
it a cornerstone of modern cosmology.



CHAPTER

1

STANDARD COSMOLOGY

The universe exhibits a remarkable degree of homogeneity on large scales [9],
meaning that its properties appear to be uniform when observed over vast
distances. However, this uniformity is not absolute, as evidenced by small-
scale anisotropies observed in the cosmic microwave background (CMB) ra-
diation, which provide valuable insights into the early universe. Additionally,
the distribution of matter throughout the cosmos is not perfectly uniform,
with regions of higher and lower density giving rise to structures such as
galaxies, galaxy clusters, and cosmic voids.

Despite these small-scale variations, the universe adheres to the cosmo-
logical principle, which posits isotropy and homogeneity on sufficiently large
scales. This principle serves as the foundation of the Friedmann-Robertson-
Walker (FRW) metric, which describes the large-scale dynamics of the ex-
panding universe. By assuming homogeneity and isotropy on cosmological
scales, the FRW metric provides a framework for understanding the overall
structure and evolution of the universe.

In this context, it is natural to attribute the small inhomogeneities ob-
served in the distribution of matter and radiation to small deviations of the
metric from the homogeneous background metric. From this point on, the

1



CHAPTER 1. STANDARD COSMOLOGY 2

background metric will be denoted as:

ds2 = gµνdx
µdxν =

= −dt2 + a2(t)

[
dr2

1− kr2
+ r2dθ2 + r2 sin2 θdϕ2

]
(1.1)

where (t, r, θ, ϕ) are comoving coordinates, a(t) is the scale factor and k is
a constant, strictly related to the curvature of the universe. The dynam-
ics of the universe in entirely enclosed in the scale factor a(t), whose time
dependence is found by inserting it into the Einstein equations

Gµν
def
= Rµν −

1

2
gµνR = 8πGTµν − Λgµν (1.2)

together with the conservation laws associated with the energy-momentum
tensor

∇µT
µν = 0 (1.3)

In order to comply with the symmetry proprieties of the metric, the
stress-energy tensor must also be diagonal. The most effective realization
of such a stress-energy tensor is that of a perfect fluid, characterized by a
time-dependent energy density ρ(t) and pressure P (t):

T µν = diag (−ρ, P, P, P ) (1.4)

As a result of this operation the Friedmann equations are obtained:

H2 +
k

a2
=

8πG

3
ρ+

Λ

3
(1.5)

ä

a
= −4πG

3
(ρ+ 3P ) +

Λ

3
(1.6)

with the conservation law

ρ̇+ 3H (ρ+ P ) = 0 (1.7)

where H = ȧ/a is the Hubble parameter.
It is necessary to supplement this set of equations with an equation of

state. It is normally assumed that all the matter contained in the universe
complies with a linear relationship

P = ωρ (1.8)
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This arises from the most known types of fluid: non-relativistic fluids have
ωNR = 0, while relativistic matter have ωR = 1/3.

The general solution of the continuity equation 1.7 for a fluid with equa-
tion of state 1.8 is

ρa3(1+ω) = constant (1.9)

which, in terms of the previous cases, results in

ρNRa
3 = constant

ρRa
4 = constant

(1.10)

The particular case of ωΛ = −1 corresponds to a constant energy density,
called vacuum energy:

ρΛ = constant (1.11)

It is useful to recast the Friedmann equation 1.5 as

Ω− 1 =
k

a2H2
(1.12)

where

Ω =
ρ

ρc
ρc =

3H2

8πG
(critical density)

Since a2H2 > 0, there is a correspondence between k and Ω− 1:

k = +1 =⇒ Ω > 1 CLOSED

k = 0 =⇒ Ω = 1 FLAT

k = −1 =⇒ Ω < 1 OPEN

1.1 Cosmological scales

In cosmology, various scales are used to describe the size and properties of
the universe. Three important scales are the curvature radius of the universe,
the Hubble radius, and the particle horizon. For the rest of this paper, the
subscript “0” under a cosmological parameter refers to the value of that
parameter measured in the present days (e.g. H0 is the Hubble parameter
today).

1.1.1 Curvature Radius of the Universe

The curvature radius of the universe refers to the radius of curvature of
the spatial sections of the universe. In a homogeneous and isotropic universe
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described by the Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric, the
spatial geometry can be open, flat, or closed, depending on the curvature
parameter, Ωk. The curvature radius, denoted as Rcurv, is related to the
curvature parameter as follows:

Rcurv =
H−1√
|Ωk|

=
H−1

|Ω− 1|1/2
(1.13)

where Ωk represents the curvature density parameter.

1.1.2 Hubble Radius

The Hubble radius, denoted as RH, is a measure of the distance at which
the recession velocity of objects due to the expansion of the universe equals
the speed of light. Mathematically, it is defined as the inverse of the Hubble
parameter:

RH =
1

H
(1.14)

Objects beyond the Hubble radius are receding from us faster than the
speed of light and are therefore beyond our observable universe. Two particle
separated by a distance larger than the Hubble radius at a certain moment
of time cannot be causally connected at that instant.

1.1.3 Particle Horizon

The particle horizon represents the maximum distance from which light or
any other form of radiation could have reached us since the beginning of the
universe. It is determined by the finite age of the universe and the speed of
light:

dH(t) = a(t)

∫ t

0

dt′

a(t′)
(1.15)

As time progresses, the particle horizon increases, allowing us to observe
more of the universe. Two particles separated by a distance larger than dH
have never been able to communicate since the origin of the universe.
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To conclude this section, it is rather important to highlight some aspects
of these scales:

• When |Ωk| ≪ 1 the curvature radius turns out to be much larger than
the Hubble radius and it is possible to safely neglect the effect of cur-
vature in the universe;

• If RH is finite, it sets the boundary between the visible universe and
the part of the universe from which light signals couldn’t have reached
us;

• In Standard Cosmology the distance to the horizon is finite, and up to
numerical factors, equal to the Hubble radius, H−1, but during infla-
tion, they are drastically different.

1.2 The shortcomings of the Standard Cos-

mological Model

Most issues related to the Standard Cosmological Model concern the quest
for initial conditions to be imposed on the equations governing the evolution
of the universe, aiming to provide a coherent description of the universe
as observed today. Naturally, the search tends to derive assumptions and
conditions for the primordial universe that are both simple and general. As
will be seen in the following sections, the SCM fails to lead to such conditions
or derive general information about the primordial universe.

1.2.1 The flatness problem

In the Standard Cosmological Model, one of the key challenges is known
as the flatness problem. This problem arises from the observation that the
universe appears to be geometrically flat on large scales, which is unexpected
given the dynamics of the expanding universe. Particularly, the issue emerges
from the fine-tuning required for the universe to have Ω very close to 1 at
early times. Even a small deviation from Ω = 1 in the early universe would
lead to a significantly different fate for the universe at late times.

Mathematically, the evolution of the density parameter Ω with time is
given by the Friedmann equation 1.12:

Ωk(t) ∝
Ωk,0

H2a2
(1.16)
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During the MD period of the universe, since the matter-radiation equality,
we have H2 ∝ ρR ∝ a−3. Consequently

Ωk(teq) ∝ Ωk,0 aeq (1.17)

At earlier times, the universe was dominated by radiation, soH2 ∝ ρR ∝ a−4,
then

Ωk(t) ∝ Ωk(teq) a
2(t) ∝ Ωk,0 a

2(t) (1.18)

As mentioned before, we know from CMB observation that |Ωk,0| < 0.005
[2]. Evaluating the curvature density parameter at the the time of BBN
(zBBN ≃ 4× 108), the result is

Ωk(tBBN) < 10−16

At even earlier times, the curvature parameter is constrained to be even
smaller.

In addition to that, it is possible to correlate the curvature of a region in
space with the sum of the potential and kinetic energies of the fluid in that
region. Thus, the problem of specifying the initial value for the curvature
parameter is strictly related to the task of assigning an initial velocity to
the fluid in every point in space. For this reason the flatness problem is
often referred as the initial velocities problem. Going back to the Planckian
epoch, an error in the initial velocities exceeding 10−54% [9] has a dramatic
consequence: the universe either recollapses or becomes “empty” too early.

The fine-tuning of the initial velocities is made even more dramatic by
considering it in combination with the horizon problem, which will be dis-
cussed in the next section, since the fluid velocities need to be fine-tuned
across causally-disconnected regions of space.

1.2.2 The horizon problem

The horizon problem arises from the observation that widely separated re-
gions of the universe have nearly identical properties, despite the fact that
they have not had sufficient time to interact or exchange information since
the beginning of the universe. This poses a challenge to the understanding
of how these regions came to possess similar characteristics.

One of the most effective ways to visualize this mechanism is through
the comparison of the horizon scale between the present days and the last-
scattering surface. The region of space where matter and radiation are ho-
mogeneous and isotropic is at least as large as the present horizon scale



CHAPTER 1. STANDARD COSMOLOGY 7

λ0(t0) ≡ dH(t0) (which corresponds to the present Hubble radius RH(t0)).
The corresponding scale at the time of the last-scattering was smaller by the
ratio of the corresponding scale factors:

λ0(tls) = RH(t0)

(
als
a0

)
= RH(t0)

(
T0
Tls

)
(1.19)

On the other hand, during the MD period, the Hubble length has de-
creased with a different law

H2 ∝ ρNR ∝ a−3 ∝ T 3

thus resulting in a radius

RH(tls) = H−1(tls) = RH(t0)

(
T0
Tls

)3/2

≪ RH(t0) (1.20)

The length corresponding to our present Hubble radius is much larger than
the causality radius at last-scattering. This can be shown comparing the
volumes corresponding to these two scales

λ30(tls)

R3
H(tls)

=
λ30(tls)

H−3(tls)
=

(
T0
Tls

)−3/2

≃ 106 (1.21)

There were roughly 106 causally disconnected regions within the volume that
now corresponds to our horizon. This means that the energy density was
finely distributed with a fractional variation not exceeding 10−2%, despite
the fact that particles had never been able to interact with each other since
the origin of the universe.

Figure 1.1 shows a useful illustration of the horizon problem.

The above considerations clearly show that the initial conditions which
led to the observed universe are very unnatural and non-generic. It seems
quite unreasonable and forced to accept that the realization of such a precise
and uniform energy distribution is not the result of a single causal physi-
cal process. One could imagine that among the various assumptions that
can be made about the initial conditions, that of the perfect homogeneity
and flatness of the universe is the most symmetric and natural, suitable to
be postulated for a theory about the origin of the universe. However, this
consideration encounters strong challenges when considering the observed
correlation between the fluctuations present in causally disconnected regions
of space.
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Figure 1.1: Illustration
of the horizon problem in
the conventional cosmol-
ogycal model taken from
ref. [2]. Past light-cones
of two points separated by
more than 2° do not over-
lap.

1.2.3 Fluctuation correlations

Before getting into the specifics of inflation, it is important to describe an
additional problem of the SCM.

Fluctuations around the homogeneous and isotropic background not only
exist, but appear to be correlated to each other across different regions of
space. This poses an additional puzzle to the question of initial conditions.
If complete homogeneity is assumed as primordial state of the universe, how
could such fluctuations have arisen?

To delve deeper into this topic, it is very helpful to introduce the con-
formal time defined as

dη =
dt

a
(1.22)

With this definition, it is possible to rewrite the FRW metric as

ds2 = a2(η)
[
−dη2 + dx2

]
(1.23)

and the comoving particle horizon dH/a as
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Figure 1.2:
CMB anisotropy
as function of
multipole mo-
ment l, as
result of several
observations.

dH(η)/a =

∫ t

0

dt′

a(t′)
=

∫ η

0

dη′ = η (1.24)

Note

From now on the derivative with respect to conformal time will be de-
noted with a prime

f ′(η) ≡ df

dη
= aḟ(t) H ≡ a′

a

It is now possible to calculate the comoving distance between the present
time and the last-scattering surface:

d0(ηls) =

∫ ηls

η0

dη′ = η0 − ηls (1.25)

The angle subtended today by the horizon at recombination is then

θ =
2ηls

η0 − ηls
≃ 2

ηls
η0

≃ 2

(
T0
Tls

)1/2

∼ 2° (1.26)
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This shows that two photons separated by an angle greater than 2 degrees
were not in causal contact when they were emitted. For this reason, no
correlation should be measured between fluctuations above this separation
angle. Expanding the two point correlation function in spherical harmonics,
this means that no correlations should be observed for multipole moments
l < 100. Figure 1.2 shows that small anisotropies are present even at l ≪ 100,
thus proving the existence of super-horizon correlations.



CHAPTER

2

INFLATION: THE BACKGROUND

The previous chapter clearly shows that a common element in all the short-
comings of the conventional cosmology is the growing comoving Hubble ra-
dius. It plays a fundamental role in determining the number of causally
disconnected regions in space and defines the necessary accuracy of the ini-
tial velocities. The insertion of an inflationary stage, in compliance with some
constraints that will be discussed in the following paragraphs, intervenes pre-
cisely on the dynamic of the Hubble sphere, simultaneously addressing all the
problems related to it.

2.1 Standard inflationary dynamics

The definition of the inflation is straightforward: the inflation is a phase of
decreasing Hubble radius in the early universe.

d

dt
(aH)−1 < 0 (2.1)

It will now be important to distinguish clearly between the particle hori-
zon and the Hubble radius, since the inflation mechanism is intended to make
the particle horizon much larger than the Hubble radius. In this way, parti-

11
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cles that cannot interact at a certain point in time may have interacted early
on.

By using aH = ȧ, it is easy to see that the definition 2.1 is equivalent to
the condition

ä > 0 (2.2)

so that the inflation can be equivalently defined as a stage in the early uni-
verse of accelerated expansion. Constraints on its onset and duration can
be posed in order to the horizon and flatness problems to be avoided.

2.2 General constraints

In order to further develop the inflationary cosmology there is the necessity
to identify the general features of this stage.

First, inflation should start and end sufficiently early in order not to com-
promise the successful results of the standard model, such as nucleosynthesis.
Furthermore, a smooth transition into the decelerated Friedmann expansion
must occur. Finally, the universe has to undergo the so called reheating
phase, in which particles have to reacquire the heat lost during the rapid
expansion.

2.2.1 Duration of inflation

A first estimate about the extent of expansion can be made taking into
consideration the requirements on the dynamics of the causality horizon. At
the very least, all observed fluctuations must have been inside the particle
horizon until a certain time in the early universe. Since the particle horizon
depends on the history of the scale factor even before inflation (which is not
even well determined at this stage), it is very difficult to calculate. For this
reason, the stronger assumption is made that our entire observable universe
was inside the Hubble radius at the beginning of inflation.

Denoting with the subscript “i” the time of inflation onset and with the
subscript “f” the time of its end, we have:

(a0H0)
−1 < (aiHi)

−1 (2.3)

The duration of inflation is often expressed in terms of the number of
e-folds:
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N ≡ ln

(
af
ai

)
(2.4)

Making the further simplification that the universe is radiation dominated
up to the present epoch, that is H ∝ a−2

H−1
0

ai
af

af
a0

∼ H−1
0 e−N

T0
Tf

≲ H−1
i (2.5)

we obtain

N ≳ ln

(
T0
H0

)
+ ln

(
Hi

Tf

)
≃ 67 + ln

(
Hi

Tf

)
(2.6)

The conclusion is therefore that in order to address the horizon problem,
inflation must last at least 70 Hubble times (e-folds).

2.2.2 SEC violation and quasi-de Sitter stage

Another characteristic of the inflation concerns the type of fluid that domi-
nates the universe during this stage. Directly from the definition of inflation
and from Friedmann equation 1.6 it follows that

ä > 0 ⇐⇒ (ρ+ 3P ) < 0 (2.7)

In other words, the fluid that fills the space must violate the so called Strong
Energy Condition, namely (ρ+ 3P ) > 0. Therefore, an acceleration in the
expansion is obtainable only if the pressure of the fluid is negative. Even if
counterintuitive, such a kind of fluid has already been encountered in cos-
mology. Dark energy (cosmological constant) has an equation of state

P = −ρ (2.8)

The dynamics of a universe dominated by this fluid is time invariant
(H = const.) and the metric solution takes the name of de Sitter spacetime:

ds2 = −dt2 + e2Htdx2 (2.9)

so that the scale factor grows exponentially. Clearly, this solution does not
allow a graceful exit into the radiation dominated phase, so time invariance
must be broken, and the Hubble parameter must vary in time. The de Sitter
spacetime, however, still remains a good approximation for the inflationary
dynamics, which is why inflation is often described as a quasi-de Sitter stage.

Taking the time derivative of the comoving Hubble radius we obtain
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d

dt
(aH)−1 = − ȧH + aḢ

(aH)2
= −1

a
(1− ε) (2.10)

where ε is the first slow-roll parameter, defined as:

ε ≡ − Ḣ

H2
= −d (lnH)

dN
(2.11)

The condition of the shrinking Hubble sphere requires ε < 1. This relation
has to be satisfied for the whole duration of the inflation, so the second
slow-roll parameter1 is defined specifically to verify this requirement:

η ≡ d (ln ε)

dN
=

ε̇

Hε
< 1 (2.12)

2.3 Scalar field model

The scalar field has emerged as the leading candidate for realizing the nec-
essary equation of state during the inflationary epoch in cosmology. This
preference stems from its versatility and ability to accommodate the key re-
quirements for inflation. Unlike other fields with more complex dynamics,
such as vector or tensor fields, scalar fields possess a single degree of freedom,
making them more amenable to theoretical analysis and model building. Ad-
ditionally, scalar fields can exhibit a wide range of behaviors, allowing for the
implementation of various inflationary scenarios that can reproduce observed
cosmological features. Moreover, scalar fields naturally lend themselves to
the generation of the required energy density fluctuations responsible for
seeding the large-scale structures observed in the universe today.

Such a scalar field, indicated with ϕ (t,x), is called inflaton. Associated
with each value of the field is a potential energy density V (ϕ). The purpose
is to find the features of the inflaton necessary to drive inflation. Beginning
with the action in a generic spacetime metric:

S =

∫
d4x

√
−gL =

∫
d4x

√
−g
[
−1

2
∂µϕ∂

µϕ− V (ϕ)

]
(2.13)

1Explicit distinction will be made with conformal time if some ambiguity is left by the
context.
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Using the FRW metric2 (
√
−g = a3) and considering the variation ϕ →

ϕ+ δϕ, the Klein-Gordon equation is obtained:

ϕ̈+ 3Hϕ̇− ∇2ϕ

a2
+
∂V

∂ϕ
= 0 (2.14)

The term associated with the expansion rate is called friction term, showing
that the inflaton encounters a resistance due to the spacetime expansion.

Next, it is important to write the energy-momentum tensor in order to
calculate the corresponding energy density and pressure density:

Tµν = ∂µϕ∂νϕ+ gµνL (2.15)

ρ = T00 =
1

2
ϕ̇2 + V (ϕ) +

(∇ϕ)2

2a2
(2.16)

P =
T ii
3

=
1

2
ϕ̇2 − V (ϕ)− (∇ϕ)2

6a2
(2.17)

Since the field is assumed to be nearly homogeneous, the spatial derivative
can be temporarily neglected.

2.3.1 Slow-roll conditions

It is now possible to quantify the conditions under which the scalar field
must adhere to in order to give rise to a period of inflation. In the inflaton
model, the dynamics is described by the coupled system of Klein-Gordon and
Friedmann equations.

H2 =
1

3M2
Pl

[
1

2
ϕ̇2 + V

]
(2.18)

ϕ̈+ 3Hϕ̇ = −dV
dϕ

(2.19)

These equations can be combined for the calculation of the slow-roll pa-
rameters. In fact, substituting the second one into the time derivative of the
first one we get

2The use of FRW metric should also determine homogeneity of the field (ϕ = ϕ(t)). For
now the spatial derivatives will be left (even if negligible), in order to allow slight fluctu-
ations of the scalar field, which will be essential to describe the origin of inhomogeneities.
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Ḣ = −1

2

ϕ̇2

M2
Pl

(2.20)

and then

ε = − Ḣ

H2
=

3
2
ϕ̇2

1
2
ϕ̇2 + V

(2.21)

The condition ε ≪ 1 is satisfied only if the kinetic energy density 1
2
ϕ̇2 is

small compared to the potential energy density V . In other words, the field
is slowly rolling down its potential. In this regime, the pressure 2.17 and
energy 2.16 densities can be combined to the nominal equation of state for
the quasi-de Sitter spacetime (P = −ρ).

Now

η =
ε̇

Hε
= 2

ϕ̈

Hϕ̇
− 2

Ḣ

H2
(2.22)

and, if ε, η < 1, then

δ ≡ η − ε = − ϕ̈

Hϕ̇
≪ 1 (2.23)

These considerations allow to simplify the Klein-Gordon and Friedmann
equations:

H2 ≃ V

3M2
Pl

(2.24)

3Hϕ̇ ≃ −V,ϕ (2.25)

where V,ϕ = dV/dϕ. Slow-roll parameters now purely depend on the potential
energy density:

ε ≃ M2
Pl

2

(
V,ϕ
V

)2

(2.26)

η ≃M2
Pl

V,ϕϕ
V

(2.27)

In order for these parameters to be smaller than unity, limits on the choice
of the potential must be posed so that its slope does not exceed certain values.

It is useful for the following to define some new slow-roll parameters
(εV , ηV ) that depend solely on the potential, exactly in the manner defined
by equations 2.26 and 2.27, so that they coincide with the usual Hubble
slow-roll parameters when the slow-roll approximation is valid.
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2.3.2 Chaotic inflationary potential

As an example, a very simple inflation model will now be presented. Al-
though excluded by CMB observations [2], this model remains useful for a
quantitative analysis of slow-roll conditions. Thus, single-field inflation will
be driven by a mass term in the potential:

V (ϕ) =
1

2
m2ϕ2 (2.28)

The slow-roll parameters for this potential are:

εV = ηV = 2

(
MPl

ϕ

)2

(2.29)

The value of the field at the end of inflation can be found by imposing the
slow-roll condition εV < 1:

ϕ >
√
2MPl ≡ ϕe (2.30)

and, using equation 2.21 together with the condition N > 70, one can trace
back the field value at the beginning of inflation:

N =

∫ ae

ai

d ln a =

∫ te

ti

H(t)dt =

∫ ϕe

ϕi

H

ϕ̇
dϕ ≃

∫ ϕe

ϕi

dϕ

MPl

1√
2εV

=

=
ϕ2

4M2
Pl

∣∣∣∣ϕi
ϕe

=
ϕ2
i

4M2
Pl

− 1

2
> 70 =⇒ ϕi > 2

√
70MPl ≃ 15MPl (2.31)

It is worth noting that all these field values are super-Planckian.
From equations 2.24 and 2.25 it is also possible to infer an initial value

for the field derivative:

ϕ̇i = −V,ϕ(ϕi)
V (ϕi)

(2.32)

Given all this preliminary information, a numerical calculation can be
carried out, in order to solve equations 2.18 and 2.19 in the domain where the
slow-roll approximation holds. This has been performed with the software
Wolfram Mathematica, using equations 2.18 and 2.19 as functions of N ,
supposing a scalar field mass m = 7 × 10−6 (MPl units, that is roughly
1013GeV) and using the initial point ϕi = 16.5 (MPl units).

The calculation revealed that the slow-roll condition, under the afore-
mentioned assumptions, is valid up to the value N = 68. Figure 2.1 clearly
shows the slowly varying field as it approaches the point of minimum po-
tential in ϕ = 0. Figure 2.2 shows the effective shrinking of the comoving
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Figure 2.1: Plot of the
scalar field ϕ as function
of N in the quadratic po-
tential scalar field infla-
tion.

Hubble sphere RH = 1/aH as long as the slow-roll condition holds, as shown
in figure 2.3. Finally, in figure 2.4, it can be observed that the Hubble rate
remains almost constant (slightly decreasing, as required by the graceful exit)
throughout the entire evolution of inflation.

It is possible to verify that an inflation model of this type possesses a
smooth graceful exit towards the Friedmann universe. For the sake of brevity
the complete calculation will be omitted here, but can be retrieved in the
reference [9].

ϕ̈+ 3Hϕ̇ = −m2ϕ (2.33)

As the scalar field drops below the Planckian value, it begins to oscillate
(equation 2.33)3, giving birth to a stage where the universe begins to expand
similarly to the matter-dominated phase. This condensate of massive scalar
particles must eventually be converted into the particles of the Standard
Model, transferring all the acquired kinetic energy. Such process is called
reheating.

2.4 Reheating

With the accelerated expansion stage having ended, no mechanisms can am-
plify the microscopic, high energy effects of the inflaton decay up to cosmolog-
ical scales, thus making the impact of the reheating era hardly accessible by

3The equation is exact when using the mass potential, but any potential can be ap-
proximated by the mass potential around its minimum.
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Figure 2.2: Plot of the
comoving Hubble radius
RH as function of N
in the quadratic potential
scalar field inflation.

Figure 2.3: Plot of the
potential slow-roll param-
eter ε as function of N
in the quadratic potential
scalar field inflation.

Figure 2.4: Plot of the
Hubble rate as function of
N in the quadratic poten-
tial scalar field inflation.
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our observation possibilities. Furthermore, inflaton decay crucially depends
on the choice of the particle physics theory beyond Standard Model. Never-
theless, general features of the reheating process can be outlined, providing
us with some selection criteria among the multiple possibilities.

First of all, the continuity equation for the inflaton’s energy density can
be modified in order to include a parameter accounting for the inflaton decay
rate:

ρ̇ϕ + 3Hρϕ = −Γϕρϕ (2.34)

After that, one can consider the simplest coupling between the inflaton and
some general scalar χ or spinor ψ field:

∆Lint = −gϕχ2 − hϕψ̄ψ (2.35)

The decaying rates of the inflaton field into χχ and ψψ̄ pairs are determined
by the coupling constants g and h:

Γχ =
g2

8πm
Γψ =

h2m

8π
(2.36)

It is possible to show [9] that, for m ≪ MPl, the maximum value for Γχ is
much higher than the highest possible value for Γψ. Therefore, bosons are
created earlier than fermions, well ahead than thermal equilibrium. For this
reason, this fast decay is called preheating.

Eventually, final particles will thermalize at a new temperature deter-
mined by [2]:

ρR =
π2

30
g∗(TR)T

4
R (2.37)

where ρR is the energy density at the end of the reheating epoch. At least,
this temperature must be larger than 1MeV, in order to allow BBN.



CHAPTER

3

INFLATION: PERTURBATIONS

Up to this point in this thesis work, the universe has been treated as per-
fectly homogeneous. However, even a cursory visual observation of the space
around us reveals that this is not entirely true. The presence of large-scale
structures such as galaxies and clusters interspersed with cosmic voids rep-
resents a significant deviation from perfect homogeneity. Moreover, suffi-
ciently precise observations of the CMB indicate that such inhomogeneities
were present, albeit to a lesser extent, even in the primordial universe. This
does not invalidate the work done so far, as the properties of homogeneity
and isotropy of the universe are still preserved on sufficiently large spatial
scales. Consequently, the approach cosmologists have used to describe the
formation and evolution of such inhomogeneities is to apply perturbation
theory around the Friedmann metric. For fluctuations on scales smaller than
the Hubble radius, a Newtonian treatment of perturbations is more than
sufficient, whereas for the study of perturbations on larger scales, or for rel-
ativistic fluids, it becomes necessary to use perturbation theory in general
relativity.

Gravitational instability is a mechanism that excellently describes the for-
mation and evolution of the large-scale structures observed today, although
it requires a fundamental contribution from dark matter. The advantage re-
mains that the macroscopic behavior of the dark matter fluid depends little

21
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on its microscopic properties, which are currently unknown. Whatever the
approach used to study the fluctuations, the problem concerning their origin,
namely the problem of initial conditions, remains open. Assuming that the
observed perturbations originated from a perfectly homogeneous background,
no classical theory can describe such a spontaneous breaking of homogeneity.
A quantum theory is necessary.

At this point, inflation plays a fundamental role. One of the most notable
aspects of inflation is that it provides a natural mechanism for the creation
of primordial density fluctuations, which constitute the initial conditions for
subsequent perturbative evolution. It is worth emphasizing that the theory
of inflation was not initially devised to produce such fluctuations, but their
origin was instead a natural consequence of the quantum-mechanical treat-
ment carried out by Professor V. Mukhanov and Professor G. Chibisov in
1980.

In this chapter, the theory of perturbations in general relativity will be
outlined, followed by its application to inflation. Subsequently, the inflaton
field will be quantized, thus allowing the spectrum of quantum fluctuations
to be recovered.

3.1 Linear perturbations

Perturbation theory on GR is conceptually straightforward. We write the
metric and the energy-momentum tensor as:

gµν(η,x) = ḡµν + δgµν(η,x) (3.1)

Tµν(η,x) = T̄µν + δTµν(η,x) (3.2)

where the bar denotes the homogeneous background value. The conceptual
part is the only one simple in this theory. From this point, calculations can
become lengthy and involved. For the purpose of this thesis, I won’t repro-
duce them all, and I will refer to the literature for the unreported mathe-
matical steps. The purpose is to expand the energy conservation equations
and Einstein equations to linear order.

3.1.1 Metric perturbations

Here, ḡµν is the flat FRW metric. It is possible to perform a scalar-vector-
tensor decomposition to the perturbed spacetime:
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ds2 = a2(η)
[
−(1 + 2A)dη2 + 2Bidx

idη + (δij + 2Eij) dx
i dxj

]
(3.3)

where A, Bi and Eij are function of space and conformal time. These func-
tions can be further decomposed:

Bi = ∂iB︸︷︷︸
scalar

+ B̂i︸︷︷︸
vector

(3.4)

Eij = Cδij + ∂⟨i∂j⟩E︸ ︷︷ ︸
scalar

+ ∂(iÊj)︸ ︷︷ ︸
vector

+ Êij︸︷︷︸
tensor

(3.5)

where

∂⟨i∂j⟩E ≡
(
∂i∂j −

1

3
δij∇2

)
E

∂(iÊj) ≡
1

2

(
∂iÊj + ∂jÊi

)
These hatted quantities are all divergenceless and traceless, i.e. ∂iB̂i = 0,
∂iÊi = 0, ∂iÊij = 0 and Êi

i = 0.
The SVT decomposition is useful because, to the linear order in pertur-

bations, Einstein and conservation equations don’t mix scalar, vectors and
tensors, so they can be treated independently.

Gauge freedom

In the description of the homogeneous and isotropic background, the choice of
the preferred reference frame is fixed by the symmetry properties of the uni-
verse. In contrast, in the analysis of perturbations, there is no obvious choice
of a preferred coordinate system. This additional degree of freedom leads to
the appearance of fictitious perturbative modes. These fictitious modes do
not describe actual metric fluctuations but solely reflect the properties of the
chosen reference frame.

As example, consider a homogeneous FRW spacetime and make the fol-
lowing spatial coordinate change xi → x̃i = xi + ξi(η,x). Assuming ξi being
small, one can expand xi → x̃i = xi + ξi(η,x), so that the line element
becomes

ds2 = a2(η)
[
−dη2 − 2ξ′idx̃

idη +
(
δij − 2∂(iξj)

)
dx̃idx̃j

]
(3.6)
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This corresponds to a perturbation Bi = −ξ′i and Êi = −ξi. Similarly,
consider the time translation η → η̃ = η + ξo(η,x). This induces the density
perturbation δρ = −ρ̄′ξ0. Of course these are not real fluctuations, but
rather fictitious gauge modes. Conversely a real perturbation can be hidden
by choosing an appropriate coordinates change.

The above considerations determine the necessity to either fix the gauge or
find some quantities that don’t change under change of coordinates, namely
gauge invariant variables.

Gauge-invariant variables

Consider the following coordinate transformation:

xµ → x̃µ = xµ + ξµ where
ξ0 = T

ξi = Li = ∂iL+ L̂i
(3.7)

where ξµ is small. At a given point of spacetime the metric undergoes the
following variation:

gµν(x) =
∂x̃α

∂xµ
∂x̃β

∂xν
g̃αβ(x̃) (3.8)

Given the specific transformation 3.7:

∂x̃α

∂xµ
=

(
∂η̃/∂η ∂η̃/∂xi

∂x̃i/∂η ∂x̃i/∂xj

)
=

(
1 + T ′ ∂iT
(Li)′ 12 + ∂jL

i

)
(3.9)

It is possible to show [2] that in terms of the SVT decomposition this
transformation becomes:

A→ A− T ′ −HT
B → B + T − L′

C → C −HT − 1
3
∇2L

E → E − L

B̂i → B̂i − L̂′
i

Êi → Êi − L̂i
Êij → Êij (3.10)

It is immediately apparent that the tensor component is not affected by
the change of coordinates. By defining particular combinations of the metric
perturbations, the following variables are found that do not transform under
coordinate changes:

Ψ ≡ A+H(B − E ′) + (B + E ′)′

Φ ≡ −C + 1
3
∇2E −H(B − E ′)

Φ̂i = B̂i − Ê ′
i Êij (3.11)
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Gauge fixing

An alternative solution to the gauge problem is to impose some gauge con-
ditions on the metric perturbations, thus removing the additional degrees of
freedom introduced by T , L and L̂i in 3.7. Here are reported some convenient
and popular gauges:

Newtonian gauge This gauge is defined by the choice:

B = E = 0 (3.12)

The line element 3.3 becomes:

ds2 = a2(η)
[
−(1 + 2Ψ)dη2 + (1− 2Φ)δijdx

idxj
]

(3.13)

where A = Ψ and C = −Φ. The advantage of this choice is that
the metric is diagonal, thereby simplifying the calculations, and resem-
bles the weak field limit in GR, with Ψ representing the gravitational
potential.

Spatially flat gauge In this gauge we set:

C = E = 0 (3.14)

This will be particularly convenient when studying inflationary pertur-
bations.

Synchronous gauge Here
A = B = 0 (3.15)

This choice doesn’t fix the gauge completely: there exists a class of
synchronous coordinate systems. This leads to the appearance of non-
physical gauge modes.

3.1.2 Matter perturbations

We consider now the perturbations of the energy-momentum tensor:

T 0
0 ≡ − (ρ̄+ δρ)

T 0
i ≡

(
ρ̄+ P̄

)
vi ≡ qi

T ij ≡
(
P̄ + δP

)
δij +Πi

j Πi
i = 0

(3.16)

where vi is called bulk velocity and Πi
j anisotropic stress.
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In analogy with the metric, a SVT decomposition is applied to these
perturbations: δρ and δP are already scalar quantities, then:

vi = ∂iv + v̂i

qi = ∂iq + q̂i
(3.17)

and eventually
Πij = ∂⟨i∂ j⟩Π+ ∂(iΠ̂j) + Π̂ij (3.18)

As with the metric, matter perturbations depend on the choice of the coor-
dinate system.

Gauge-invariant variables

Performing the generic change of coordinates 3.7 leads to the following trans-
formation to the energy-momentum tensor perturbations:

δρ→ δρ− ρ̄′T

δP → δP − P̄ ′T

qi → qi +
(
ρ̄+ P̄

)
L′
i

vi → vi + L′
i

Πij → Πij

(3.19)

As before, specific combinations of the matter perturbations can be defined
in order to be independent of the chosen coordinate system:

ρ̄∆ ≡ δρ+ ρ̄′ (v +B) (3.20)

ζ ≡ −C +
1

3
∇2E +Hδρ

ρ̄′
(3.21)

R ≡ −C +
1

3
∇2E −H (v +B) (3.22)

The quantity ∆ is called comoving density contrast and the quantities ζ
and R are called curvature perturbations.They are not independent, but
obey the following relation:

ζ = R− H
ρ̄′
ρ̄∆ (3.23)

Gauge fixing

As before, it is possible to eliminate the extra degrees of freedom by setting
some of the perturbations to zero:
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Uniform density gauge In this gauge the total density perturbation van-
ishes:

δρ = 0 (3.24)

Comoving gauge Similarly, the scalar momentum density can be set to
zero:

q = 0 (3.25)

3.1.3 Conservation and Einstein equations

The task is now to obtain the evolution equations for the previously defined
perturbations. The metric is governed by Einstein equations while the matter
follows the the conservation of the energy-momentum tensor. They need to
be expanded to give the linearized equations of motion of perturbations.
Many details of this calculation will be omitted, skipping directly to the
result, but they can be found in the reference [2].

The most convenient method for performing this analysis is in the fixed
Newtonian gauge. Because this gauge involves the invariant quantities Φ and
Ψ one can easily recast all equations for any reference frame.

Conservation equations

Here the equation ∇µTµν = 0 will be linearized. Considering that

∇µT
µ
ν = ∂µT

µ
ν + ΓµµαT

α
ν − ΓαµνT

µ
α (3.26)

we need the following perturbed connection coefficient:

Γ0
00 = H +Ψ′

Γ0
i0 = ∂iΨ

Γi00 = δij∂jΨ

Γ0
ij = Hδij − [Φ′ + 2H(Φ + Ψ)] δij

Γij0 = [H− Φ′] δij

Γijk = −2δi(j∂k)Φ + δjkδ
il∂lΦ

(3.27)

After long work, the linearized continuity (ν = 0) and Euler (ν = i) are
obtained:

δ′ = −
(
1 +

P̄

ρ̄

)
(θ − 3Φ′)− 3H

(
δP

δρ
− P̄

ρ̄

)
δ

θ′ = −
(
H +

P̄ ′

ρ̄+ P̄

)
θ − 1

ρ̄+ P̄

(
∇2δP − 2

3
∇4Π

)
−∇2Ψ

(3.28)
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where δ ≡ δρ/ρ̄ is called density contrast and θ ≡ ∂iv
i is the velocity

divergence.

Einstein equations

Following the same approach, the equations Gµ = 8πGTµν are perturbed.
The process involves the Einstein tensor Gµν ≡ Rµν − 1

2
Rgµν and as a conse-

quence the Ricci tensor and scalar:

Rµν = ∂λΓ
λ
µν − ∂νΓ

λ
µλ + ΓλλρΓ

ρ
µν − ΓρµλΓ

λ
νρ

R = gµνRµν

(3.29)

which won’t be calculated here. The result are the linearized equations for
the metric evolution:

∇2Φ− 3H (Φ′ +HΨ) = 4πGa2δρ

− (Φ′ +HΨ) = 4πGa2q

Φ−Ψ = 8πGa2Π

Φ′′ +HΨ′ + 2HΦ′ +
1

3
∇2(Ψ− Φ) +

(
2H′ +H2

)
Ψ = 4πGa2δP

(3.30)

The Einstein equations, together with the Euler and continuity equations,
form a closed system that needs to be specialized for each fluid component
of the universe (photons, baryons, neutrinos, cold dark matter, inflaton) and
completed with the equation of state and the speed of sound for each of them.
Naturally, the complete resolution of this system requires the specification of
initial conditions for the perturbations, a task comprehensively accomplished
by the quantization of the inflationary scalar field, which will be addressed
in the following sections. The problem of initial conditions is, however, sim-
plified by the fact that all scales of interest for current observations were
outside the Hubble radius. In the superhorizon limit of the conservation and
Einstein equations, the fluctuations of the various components are related by
a very simple relation:

δγ = δν =
4

3
δc =

4

3
δb = −2Φi (3.31)

where all quantities are functions of k.
Consequently, the initial conditions are determined by providing the ini-

tial value for the gravitational potential, which, in the radiation-dominated
era, is in turn related to the curvature perturbation by the relation:
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Φi(k) =
2

3
Ri(k) (3.32)

so that the amplitude of all fluctuations is completely determined byRi. This
quantity is commonly specified through the ”primordial power spectrum,”
which is assumed to have the following form:

PR(k, ti) = Akn (3.33)

where A and n are constants.
In the next section, the details of the quantum mechanical treatment of

the inflaton field will be shown, and it will be demonstrated that inflation
naturally predicts a scale-invariant spectrum with n ≈ 1.

3.2 Quantum initial conditions

Recall from the previous chapter that the inflaton field dominates the en-
ergy density of the universe during inflation and consequently controls its
temporal evolution. In other words, the value of the field ϕ indicates the
remaining time before inflation ends. For this reason, ϕ is often referred
to as the ”clock” of inflation. However, in quantum mechanics, arbitrarily
precise timing is rendered impossible by the non-commutativity between the
field and its momentum ϕ̇ (Heisenberg uncertainty principle). The inflaton
will therefore have position-dependent fluctuations δϕ(t,x), such that some
regions of space will end their inflationary phase earlier than others. These
regions will begin their Friedmann expansion sooner and will dilute, resulting
in areas of lower density. The portions of space that inflate longer will thus
have higher densities. Figure 3.1, taken from reference [2], beautifully and
intuitively illustrates the mechanism of fluctuation production.

3.2.1 Classical equations

The dynamics of the inflaton field is determined by the action

S =

∫
d4x

√
−g
(
−1

2
gµν∂µϕ∂νϕ− V (ϕ)

)
(3.34)

The equation of motion associated with this action will couple the inflaton
fluctuations δϕ with the metric fluctuations δgµν in a gauge dependent man-
ner. It will be convenient to perform this analysis in the spatially flat gauge,
where the line element (with only scalar perturbations) is:

ds2 = a2(η)
[
− (1 + 2A) dη2 + 2∂iBdx

idη + δijdx
idxj

]
(3.35)
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Figure 3.1: Quantum
fluctuations around the
background field ϕ.

Varying of the action 3.34 leads to the Klein-Gordon equation

1√
−g

∂µ
(√

−ggµν∂νϕ
)
= V,ϕ (3.36)

At first order the inverse perturbed metric is:

g00 = −a−2 (1− 2A)

g0i = a−2∂iB

gij = a−2δij

(3.37)

and
√
−g = a4 (1 + A). Inserting this metric and the perturbed scalar field

ϕ = ϕ̄+ δϕ into 3.36, the result is:

δϕ′′ + 2Hδϕ′ −∇2δϕ =
(
A′ +∇2B

)
ϕ̄′ − 2a2V,ϕA− a2V,ϕϕδϕ (3.38)

Now, Einstein equations are necessary to close the system. First of
all, a variation of action 3.34 with respect to the metric gives the energy-
momentum tensor for inflaton:

Tµν = ∂µϕ∂νϕ− gµν

(
1

2
gαβ∂αϕ∂βϕ+ V (ϕ)

)
(3.39)

Subsequently, its perturbation is ready to be calculated:

δT 0
0 = −

[
a−2

(
ϕ̄′δϕ′ −

(
ϕ̄′)2A)+ V,ϕδϕ

]
δT 0

i = − ϕ̄′

a2
∂iδϕ

(3.40)
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Next we move to the perturbed Einstein tensor:

δG0
i = −2H

a2
∂iA

δG0
0 =

2H
a2
(
3HA+∇2B

) (3.41)

It is now possible to compute the 0i and 00 Einstein equations. From the
former one, A can be eliminated in favour of δϕ:

δG0
i = −2H

a2
∂iA = 8πGδT 0

i = −8πG
ϕ̄′

a2
∂iδϕ (3.42)

from which

A = 4πG
ϕ̄′

H
δϕ = ε

H
ϕ̄′ δϕ (3.43)

From the latter, we can eliminate B:

δG0
0 =

2H
a2
(
3HA+∇2B

)
= 8πGδT 0

0

= −8πG
[
a−2

(
ϕ̄′δϕ′ −

(
ϕ̄′)2A)+ V,ϕδϕ

]
(3.44)

with the help of the background equation

ϕ̄′′ + 2Hϕ̄′ + a2V,ϕ (3.45)

we get

∇2B = −εH
ϕ̄′ (δϕ

′ + (δ − ε)Hδϕ) (3.46)

The substitution of 3.43 and 3.46 into 3.38 gives the following closed form
equation for inflation fluctuations:

δϕ′′ + 2Hδϕ′ −∇2δϕ =

[
(3 + 2ε− δ) (ε− δ)− δ′

H

]
H2δϕ (3.47)

This equation can be greatly simplified by defining the variable:

f ≡ aδϕ (3.48)

The result is the so called Mukhanov-Sasaki equation:

f ′′ +

(
k2 − z′′

z

)
f = 0 where z ≡ aϕ̄′

H
(3.49)
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Despite the appearance of the slow-roll parameters, we have not made
any slow-roll approximation. Therefore, this equation doesn’t contain any
approximations and is valid on all scales.

For the quantization procedure that will be treated in the next sections,
we well make also use of the action from which 3.49 arises:

S2 =
1

2

∫
dηd3x

[
(f ′)

2 − (∇f)2 + z′′

z
f 2

]
(3.50)

3.2.2 Classical solutions

Equation 3.49 is the equation of a harmonic oscillator with time dependent
frequency:

ω2(η, k) = k2 − z′′

z
(3.51)

In slow roll conditions H and dϕ̄/dt are almost constants so that

z′′

z
≈ a′′

a
≈ 2H2 (3.52)

and the inverse of z′′/z is a measure of the Hubble radius.
Solutions to the Mukhanov-Sasaki equation will be reported here in two

cases:

• At early times, all modes were inside the horizon. Taking the limit
k2 ≫ |z′′/z| equation 3.49 becomes:

f ′′ + k2f = 0 (3.53)

This equation has solutions

f ∝ e±ikη (3.54)

The amplitude of these oscillations will be determined in the quantum
treatment of fluctuations.

• As microscopical scales are inflated outside the physical Hubble radius
H−1 (i.e. the comoving Hubble radius H−1 shrinks), the evolution
changes. In the limit k2 ≪ |z′′/z|, equation 3.49 reads:

f ′′ − z′′

z
f = 0 (3.55)

which has a decaying solution f ∝ z−2 and a growing solution f ∝ z.
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It is possible to show that

R = −H
ϕ̄′ δϕ = −f

z

k≪H−→ const (3.56)

so we infer that the growing solution on large scales represents a frozen
perturbation.

3.2.3 Quantum fluctuations

The Fourier modes of the scalar field perturbations satisfy the equation of
a harmonic oscillator. With this in mind, an EFT treatment of inflation
seems natural. It will be most convenient to perform this quantization us-
ing Heisenberg picture, where operators vary in time, while states are time
independent. An operator Ô satisfies the evolution equation

dÔ

dt
=
i

ℏ

[
Ĥ, Ô

]
(3.57)

where Ĥ is the Hamiltonian

Ĥ =
1

2
p̂2 +

1

2
ω2q̂2 (3.58)

with
[q̂, p̂] = iℏ (3.59)

We write the position operator as:

q̂(t) = q(t)â(ti) + q∗(t)â†(ti) (3.60)

where the complex mode function q(t) satisfies

q̈ + ω2(t)q = 0 (3.61)

The annihilation operator â(ti) and its associated vacuum state |0⟩ depend
on the choice of initial time ti. We will see that this choice determines a
series of conceptual problems.

Inserting 3.60 into 3.59, we get:

[q̂, p̂] = (qq̇∗ − q̇q∗)
[
â, â†

]
= iℏ (3.62)

Being
[
â, â†

]
= 1, we obtain the mode function normalization

qq̇∗ − q̇q∗ = iℏ (3.63)



CHAPTER 3. INFLATION: PERTURBATIONS 34

To completely fix the mode function q(t), it is necessary to impose a sec-
ond condition. We take the initial condition to be the ground state of the
fixed-frequency oscillator and then use the equation of motion with a time-
dependent frequency to evolve these fluctuations forward in time. We write
a general ground state as:

q(t) = r(t)eis(t) (3.64)

equation 3.63 implies:

ṡ = − ℏ
2r2

(3.65)

In order to find the solution, we have to minimize the vacuum expectation
value:

⟨0| Ĥ |0⟩ = 1

2

(
|q̇|2 + ω2 |q|2

)
=

1

2

(
ṙ2 + r2ṡ2 + ω2r2

)
=

1

2

(
ṙ2 +

ℏ
4r2

+ ω2r2
) (3.66)

which has a minimum in:

ṙ = 0 and 0 =
d

dr2

(
ℏ
4r2

+ ω2r2
)

= − ℏ
4 (r2)2

+ ω2 =⇒ r =

√
ℏ
2ω
(3.67)

Inserting back this solution back in 3.65 we get:

q(t) =

√
ℏ
2ω
e−iωt (ω = const) (3.68)

Using this solution as initial condition for equation 3.61 uniquely fixes
the expression for the position operator. The explicit solution depends on
the form of ω(t), which for inflation is determined by the evolution of the
background.

Field quantization

We will now apply the quantization procedure to the scalar field fluctuations
during inflation. Slow-roll approximation will be considered for simplicity so
that the Mukhanov-Sasaki equation 3.49 takes the form:

f ′′
k +

(
k2 − 2

η2

)
fk = 0 (3.69)
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The field f(η,x) and its conjugate momentum π(η,x) are now promoted
to operators, with commutation rule:[

f̂(η,x), π̂(η,x′)
]
= iδ(x− x′) (3.70)

where ℏ = 1. In the Fourier space, the commutation rule becomes:[
f̂k(η), π̂k′(η)

]
=

∫
d3x

∫
d3x′

[
f̂(η,x), π̂(η,x′)

]
e−ik·xe−ik

′·x′

= i

∫
d3xe−i(k+k′)·x

= i(2π)3δ(k+ k′)

(3.71)

As before, we can write the field Fourier components as:

f̂k(η) = fk(η)âk + f ∗
k (η)â

†
−k (3.72)

where the −k accounts for the hermiticity of the field operator, and the
complex mode function fk(η) solves the classical equation 3.69. Equation
3.63 here becomes:

fkf
′∗
k − f ′

kf
∗
k = i (3.73)

and inserting 3.72 into 3.71 we get[
âk, â

†
k′

]
= (2π)3δ(k+ k′) (3.74)

Choice of vacuum

As before, an initial condition has to be imposed in order to uniquely deter-
mine the field operator. A common choice is to define the vacuum as the
ground state of the Hamiltonian at η → −∞, when all modes where inside
the horizon and satisfied the equation of a harmonic oscillator with fixed fre-
quency ωk → k. This state as been already calculated (3.68) and the initial
condition becomes:

lim
kη→−∞

fk(η) =
1√
2k
e−ikη (3.75)

The solution of the Mukhanov-Sasaki equation 3.69 with this initial condition
is the following:

fk(η) =
1√
2k

(
1− i

kη

)
e−ikη (3.76)

which is called the Bunch-Davies mode function, and the corresponding
state is the Bunch-Davies vacuum.
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Vacuum fluctuations

It is now time to calculate the statistic fluctuations of the scalar field. The
expectation value of the operator f̂ vanishes, but its variance determines
zero-point fluctuations:〈∣∣∣f̂ ∣∣∣2〉 = ⟨0| f̂(η, 0)f̂(η, 0) |0⟩

=

∫
d3k

(2π)3

∫
d3k′

(2π)3
⟨0|
(
f ∗
k (η)âk + fk(η)â

†
−k

)(
fk′(η)âk′ + f ∗

k′(η)â
†
−k′

)
|0⟩

=

∫
d3k

(2π)3

∫
d3k′

(2π)3
fk(η)f

∗
k′(η) ⟨0|

[
â−k, â

†
−k′

]
|0⟩

=

∫
d3k

(2π)3
|fk(η)|2

=

∫
d ln k

k3

2π2
|fk(η)|2 =

∫
d ln k∆2

f (k, η)

(3.77)
Substituting the Bunch-Davies mode function for f = aδϕ, we obtain the
power spectrum:

∆2
δϕ(k, η) =

∆2
f (k, η)

a2(η)
=

(
H

2π

)2 [
1 + (kη)2

] kη→0−→
(
H

2π

)2

(3.78)

Primordial power spectrum

The final task is to calculate the observable density fluctuations produced just
after inflation. The field perturbation δϕ has no longer meaning, having the
inflaton converted into the Standard Model particles. The gauge-invariant
quantities, however, remain well defined. Therefore, it is convenient to re-
late the field fluctuation spectrum to these quantities to allow the connection
between inflation and the late universe. In particular, the curvature pertur-
bation spectrum R is used. Recalling relation 3.56 the power spectrum of R
can be written as:

∆2
R =

(
H
˙̄ϕ

)2

∆δϕ =

(
H2

2π ˙̄ϕ2

)2
∣∣∣∣∣∣
k=aH

=
1

8π2ε

H2

M2
Pl

∣∣∣∣
k=aH

(3.79)

where the spectrum has been evaluated at horizon crossing k = aH to intro-
duce a slight scale dependence.

We introduce the spectral index:

ns − 1 ≡ d ln∆2
R(k)

d ln k
(3.80)
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so that the primordial spectrum takes the form:

∆2
R(k) = As

(
k

k∗

)ns−1

(3.81)

Tensor fluctuations

Up to this point, exclusively scalar fluctuations have been considered. Being
completely independent, tensor perturbations to the metric can be analyzed
separately:

ds2 = a2(η)
[
−dη2 + (δij + hij) dx

idxj
]

(3.82)

Following the same steps of the scalar perturbations, it is possible to show
that tensor perturbations satisfy the following equation:

h′′ij + 2Hh′ij −∇2hij = 0 (3.83)

which comes from the same action of a scalar field, taken once for each
polarization mode:

S2 =
1

2

∑
λ=+,×

∫
dηd3x

[
(f ′
λ)

2 − (∇fλ)2 +
a′′

a
f 2
λ

]
(3.84)

The resulting power spectrum will be therefore a rescaling of the scalar spec-
trum:

∆2
h(k) =

2

π2

(
H

MPl

)2
∣∣∣∣∣
k=aH

(3.85)

These tensor perturbations correspond to the production of primordial
gravitational waves. Their amplitude can be estimated through the tensor
to scalar ratio

r =
At
As

= 16ε (3.86)

since the the amplitude of scalar fluctuations has been measured.

3.2.4 Evidences and open problems

Most observations related to inflation are comprised of CMB measurements.
Increasingly detailed analyses of this radiation can provide a growing number
of clues about the details of this primordial phase of the universe’s evolution.
A very significant piece of evidence supporting inflation is the fact that a
nearly featureless spectrum of initial fluctuations evolves, via perturbation
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theory in GR, into the peaks and valleys of the CMB spectrum. Since the
dynamics of these fluctuations are well known and established, constraints on
the primordial power spectrum can be set from CMB observations. A very
important prediction of inflation is that of a nearly scale-invariant spectrum
of perturbations, which is strongly compatible with current measurements,
attributing a value of [1]

ns = 0.9665± 0.0038 (3.87)

to the spectral index.
Experimental research is currently focused on investigating the aspects

of inflation more deeply, including comparing results from different types
of measurements. For instance, the detection of the tensor component of
primordial fluctuations can provide very direct evidence, such as the energy
scale of inflation, since the universe has always been transparent to primordial
gravitational waves from their production onwards.

Theoretical research, at the same time, is concentrated on a wide range of
fundamental issues raised by inflation, as it provides a window into physics
at energy scales much higher than those of standard models. Quantum grav-
itational effects or the presence of conditions different from those predicted
by single-field slow-roll inflation can be considered, along with a necessary
analysis of the reheating phase. Following this, we will address a particular
open problem of inflation, which has been the fundamental motivation for
this thesis work.

3.2.5 The trans-Planckian problem

Regardless of who we are or where we come from,
we were all once super-Planckian fluctuations.

In section 3.2.3 we have seen that one of the most accepted choices for
the initial condition for inflation fluctuations is the Bunch-Davies vacuum.
It minimizes the Hamiltonian, in consistence with the uncertainty principle,
and leads to a scale-invariant spectrum. However, one could argue [4] that
an initial condition taken at η → −∞ is a too strong condition. Moreover,
this choice leads to consider perturbation modes with k → 0, that is modes
with infinite energy. This means that modes evolution goes through a trans-
Planckian regime, about which there is no robust theoretical foundation.

A typical way to overcome this problem is by introducing an initial time
τ̄k such that the mode evolution begins only once its energy has dropped to
a safe value where GR can be reliably used. This corresponds to introducing
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a cut-off scale Λ, with H < Λ ≤MPl, such that

η̄k ≃ − Λ

kH
(3.88)

This choice leads to a different prescription on annihilation operators and
vacuum state, now defined as:

âk(η̄k) |0, η̄k⟩ = 0 (3.89)

Vacuum states defined in this way are called α-vacua.
Using α-vacua leads to a different expression for the primordial tensor

spectrum [3]:

Ph(k) =
16H2

πM2
Pl

[
1 +

H

Λ
sin

(
2Λ

H

)
+ . . .

]
(3.90)

A slight departure from the standard spectrum has been induced, with an
oscillating feature that is subdominant since Λ ≫ H.

Despite this approach, still the question remains unanswered of what are
the dynamics of the fluctuations in the trans-Planckian regime.
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4

INITIAL CONDITIONS: A
STOCHASTIC MODEL

The general purpose of this thesis is to study the impact that different models
for the inflation can have on the primordial spectrum, on the CMB spectrum
and on the cosmological observables.

A particular focus is aimed at a model for the description of the evolution
of inflation fluctuations in the trans-Planckian regime, developed by doctor
Mattia Cielo and professors Gianpiero Mangano and Ofelia Pisanti in the
reference [4]. In this paper, the authors suggest that the evolution of tensor
perturbations in the high energy regime above some energy scale Λ can be
effectively described by adding a stochastic source term with zero mean to
the evolution equations, which is due to the interaction of modes with the
underlying background of fluctuations due to quantum gravity nonlinear ef-
fects. They also propose a scenario to model this background source term,
which will be presented in the following sections.

4.1 Limits of the perturbation theory

We have not yet a full theory of gravity in its quantum regime. Neverthe-
less, inflation involves energies somehow close to the Planck scale: recall

40



CHAPTER 4. INITIAL CONDITIONS: A STOCHASTIC MODEL 41

from section 2.3.2 that during inflation the Hubble rate is just five orders
of magnitude below the Planck mass while the initial field value can reach
up 15 times the Planck energy. Moreover, inflation will produce fluctuations
the size of which can be smaller than the Planck length. As a consequence,
some considerations [4] must be made in order to make assumptions on the
dynamics of such fluctuations:

• we expect linear approximation to be not an appropriate one when
modes experience the high energy scale Λ regime since nonlinear effects
are crucial;

• once the perturbation wave number become sub–Planckian we can trust
the standard linear evolution. Yet, this evolution will keep the memory
of the initial condition at the matching point given by k/a = Λ

• at energies larger than Λ fluctuations may give rise to trapped surfaces,
which is to say they can produce a black hole environment. As gravita-
tional interactions are nonlinear, tensor fluctuations with a high k will
interact with this environment so that the evolution can be effectively
described in terms of a non-homogeneous differential equation with a
source term.

4.2 Tensor perturbation evolution

Given these points, the model proposed is the following. We introduce a
non-vanishing anisotropic stress tensor that will encode information about
the chaotic environment from which each mode has to go through when it
starts evolving. We generalize equation 3.83, by adding a source term acting
on modes inside the horizon satisfying the condition k/a > Λ, or η < η̄k.
This translates into a two-stage evolution:

h′′k + 2Hh′k + k2hk = 16πGa2Πk η < η̄k (4.1)

h′′k + 2Hh′k + k2hk = 0 η > η̄k (4.2)

with the matching conditions:

lim
η→η̄−k

hk(η) = lim
η→η̄+k

hk(η)

lim
η→η̄−k

h′k(η) = lim
η→η̄+k

h′k(η)
(4.3)

An initial condition can be imposed, as in the Bunch-Davies case, so that for
η → −∞ the fluctuation has the lowest energy allowed by the uncertainty
principle.
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Differently than the approach described in section 3.2.5, here η̄k is the
time where the source term switches off and the evolution of the (now
sub–Planckian) mode is the usual one. Πk is supposed to be a stochastic
incoherent source that satisfies the conditions of the Brownian motion:

⟨Πk(η)⟩ = 0

⟨Πk(η)Π
∗
k(η

′)⟩ = Λ6δ(η − η′)

∣∣∣∣F ( k

aΛ
,

Λ

MPl

)∣∣∣∣2 (4.4)

where ⟨. . . ⟩ denotes average over the probability function. The prefactor
has been placed to comply with the dimensionality of Πk while F takes into
account the dependence of the source on k and the relative value of Λ with
respect to the Planck mass. The shear source has to be quantized as with
metric fluctuations:

Π̂r
k(η) = Πk(η)â

r
k +Π∗

k(η)â
r†
−k (4.5)

Equation 4.2 has solution:

hk(η) =
Ak
a(η)

e−ikη√
2k

(
1− i

kη

)
+

Bk

a(η)

eikη√
2k

(
1 +

i

kη

)
(4.6)

while equation 4.1 has solution:

hk(η) =
16πG

a(η)

∫ η

−∞
dη′a(η′)Gk(η, η

′)Πk(η
′) (4.7)

in terms of the Green function:

Gk(η, η
′) =

e−ik(η+η
′)

2k3η′2

[
e2ikη(1− ikη)(−i+ kη′)

+e2ikη
′
(1 + ikη)(i+ kη′)

]
Θ(η − η′) (4.8)

Using the matching conditions 4.3, and making the average as in the Langevin
approach to Brownian motion, the coefficients Ak and Bk are calculated:

Ak
a (η̄k)

= eikη̄k
[
h (η̄k)

(
−1 + ikη̄k + k2η̄2k

)
−h′k (η̄k)

(
η̄k − ikη̄2k

)] (√
2k3/2η̄2k

)−1

Bk

a (η̄k)
= e−ikη̄k

[
h (η̄k)

(
−1− ikη̄k + k2η̄2k

)
−h′k (η̄k)

(
η̄k + ikη̄2k

)] (√
2k3/2η̄2k

)−1

(4.9)
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From 4.6 we see that hk ∼ k−1/2, therefore these coefficient depend on the
adimensional quantity kη̄k = −Λ/H, so that the predicted power spectrum
is still scale invariant:

Ph(k) = PBD
h (k)

[
1 +

∣∣∣Bk

∣∣∣2(2 + 2kη̄k + i

i
e2ikη̄k − 2kη̄k − i

i
e−2ikη̄k

)]
(4.10)

where PBD
h is the standard power spectrum from BD vacuum.

4.3 The shear source model

The authors of the paper [4] also propose a model to describe the source term
in 4.1 by the specification of the adimensional function F . The scenario is
named the “BH gas” model.

As mentioned before, in the trans-Planckian regime, modes with k >
aΛ experience quantum gravity effects, which determine the interaction of
the fluctuations with the background. This means that perturbations form
an open system. The background can be effectively described as a black
hole gas which is formed when trapped surfaces create. The gas produces
particles, in particular gravitational wave, through Hawking radiation, which
act as a source for h(η). Given a probability distribution of the BH’s as a
function of their mass M , ξ(M), and approximating the Hawking emission
spectrum with a Boltzmann shape we have

F

(
k

aΛ
,

Λ

MPl

)
=

∫ ∞

0

ξ(M) exp

(
−k
a

8πM

M2
Pl

)
dM (4.11)

The parameter Λ represents, in terms of the distribution ξ(M), a natural
cut-off scale for the black hole mass distribution. Using a simple form for
ξ(M):

ξ(M)dM =
1

Λ
e−M/ΛdM (4.12)

the result is

F

(
k

aΛ
,

Λ

MPl

)
=

(
1 +

k

aΛ

8πΛ2

M2
Pl

)−1

(4.13)

4.4 Results

Authors have numerically solved equations 4.1 and 4.2 with 4.13. The most
remarkable feature of this model is that it still predicts a scale invariant
spectrum. Figure 4.1 show the ratio Ph/PBD

h as function of the ratio Λ/MPl.
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Figure 4.1: The ob-
tained power spectrum
(here called P t) normal-
ized to the standard BD
spectrum versus the ratio
Λ/MPl. A zoom-in plot
is provided for a smaller
range of the ratio Λ/MPl.

Two features are worth to be underlined: a very rapid oscillatory behaviour
of the ratio and its wide span (from 10−6 to 106) in the Λ definition range.
The former feature is due of the trigonometric dependence of Ph on Λ while
the latter is due to the interference term in 4.10 and to the source scale Λ3

which weights its amplitude.
The value of Λ for which the predicted spectrum is of the same order than

the standard PBD
h is roughly 10−2MPl.

4.5 Outlooks

This research has revealed that introducing a stochastic source term in the
evolution of tensor perturbations with energy above a cut-off scale Λ produces
a scale invariant tensor power spectrum with an amplitude that agrees with
the BD result for Λ ∼ 10−2MPl. This approach can be in principle also
extended to scalar perturbations, with similar results. Scalar perturbations
however are more sensitive to the details of the considered inflationary model,
while tensor modes only depend upon initial conditions, possible quantum
effects and the value of the almost constant Hubble scale during inflation.
At first glance, scalar perturbations should experience the same behaviour in
the trans-Planckian regime described here. Therefore we expect the tensor
to scalar ratio to be independent from Λ.

In addition to that, recall that in the standard case scalar perturbations
amplitude depends only on the Hubble parameter and the features of the
inflaton potential (i.e. the slow-roll parameter). Adding the parameter Λ
in the dynamics of fluctuations in the high energy regime may provide dif-
ferent results for what we know about the inflation dynamics, as we expect
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Figure 4.2: The de-
generacy induced by Λ

some extra degeneracies among the slow-roll parameters and Λ, once the
perturbation amplitude at large CMB scale is fixed by data.

4.6 The main idea

All the above considerations lead us to the idea that lies at the basis of this
thesis work. Numerous models for inflation dynamics are currently ruled out
because of the constraints on the slow roll parameter ε imposed by the CMB
data on the standard BD model. What if ε can have some extra degrees of
freedom?
Performing a likelihood analysis of primordial spectrum parameters (includ-
ing the feature Λ) can return new allowed values for the slow-roll parameter,
opening the path for new inflationary models and providing us with some
vital information about the inflation dynamics (i.e. the inflaton potential).
Figure 4.2 highlights the extra degeneracy induced by the addition of Λ in
the primordial spectrum.

In the following chapters, all details will be presented about the mathe-
matical and technical tools needed to perform this likelihood analysis.



CHAPTER

5

BAYESIAN METHODS

All scientific questions in cutting-edge research involve increasingly complex
models aimed at explaining subtle effects observed through complex and
highly multidimensional datasets. Consequently, statistical tools must keep
pace with the growing complexity of the analyses to be performed. Statis-
tical inference is a fundamental part of research as it allows for the analysis
and interpretation of data, as well as the verification and comparison of mod-
els, while simultaneously providing estimates for their parameters. Bayesian
statistics offers an approach to parameter estimation based on Bayes’ the-
orem. In the following sections, the conceptual, analytical, and numerical
elements necessary to tackle the most common inference problems in cosmol-
ogy and physics in general will be provided.

5.1 Basic Notions

Let A,B,C, . . . denote propositions and let Ω denote the sample space. The
probability (in the classical “frequentist” approach) of an event is the num-
ber of times it occurs divided by the total number of possible events in
the limit of an infinite series of equiprobable trials. This definition has the
advantage of being an operational definition, thus providing a method for
calculation. However, it presents the following problematic aspects:
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• from a formal standpoint, it is a circular definition, as it requires that
cases have equal probability, which is precisely what it aims to define;

• it does not define probability in the case of non-equiprobable events;

• in many situations, it is rather presumptuous to assume that one can
know all possible cases (e.g., all theories that could explain a particular
phenomenon, in order to calculate which is the most probable).

The Bayesian outlook is that probability expresses a degree of belief in a
proposition, based on the available knowledge of the experimenter. First of
all, two essential quantities are defined in the following way.

The joint probability of A and B is the probability of A and B hap-
pening together, and is denoted by P (A,B).

The conditional probability of A given B is the probability of A hap-
pening given that B has happened, and is denoted by P (A|B).
They obey the product rule

P (A,B) = P (A|B)P (B) (5.1)

Inverting A and B:
P (B,A) = P (B|A)P (A) (5.2)

and, because P (A,B) = P (B,A), we obtain the Bayes theorem:

P (A|B) =
P (B|A)P (A)

P (B)
(5.3)

5.2 Inference and likelihood

The problem of inference concerns establishing the properties of the probabil-
ity distribution underlying a statistical process, given a collection of samples
{x̂1, x̂2, . . . , x̂N}.

Given a random variable X with its probability density function (pdf)
p(X|θ), where θ is a collection of parameters, and a dataset x̂ = {x̂1, x̂2, . . . , x̂N},
the likelihood function L is defined as

L (θ) = P (x̂|θ) (5.4)

namely, the probability of observing the data that have been obtained as a
function of the parameters θ. Note that the likelihood is not a pdf in θ. In
the search for the best values of θ, the best choice should therefore be the one
that maximises the likelihood, as this maximises the probability of obtaining
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the taken data. Notice that this is not necessarily the same as maximising
the probability of θ. As will be seen, doing so requires the use of Bayes
theorem. This choice is known as the maximum likelihood principle:

θML ≡ max
θ

L (θ) (5.5)

The conventional procedure to find the maximum consists in the requirement
that the first derivative of the logarithm of the likelihood vanishes and that
its second derivative is negative:

∂ lnL (θ)

∂θ

∣∣∣∣
θML

= 0
∂2 lnL (θ)

∂θ2

∣∣∣∣
θML

< 0 (5.6)

5.3 Bayesian inference

In this section the Bayesian approach to the probability will be introduced.
This simple application of the Bayes theorem encapsulates the notion of
probability as degree of belief.

5.3.1 Bayes theorem

As a mathematical result, Bayes Theorem is elementary and uncontroversial.
It becomes interesting for the purpose of inference when we replace in Bayes
theorem, equation 5.3 , A → θ (the parameters) and B → d (the observed
data, or samples), obtaining:

P (θ|d) = P (d|θ)P (θ)
P (d)

(5.7)

On the left hand side, P (θ|d) is the posterior probability for θ and it
represents our degree of belief about the value of θ after we have seen the
data d.

On the right hand side, P (d|θ) = L (θ) is the likelihood we already
encountered. It is the probability of the data given a certain value of the
parameters.

The quantity P (θ) is the prior probability distribution. It represents our
degree of belief in the value of θ before we see the data. The choice of the prior
is at the researcher’s discretion. We will discuss about this later. Eventually,
however formulated is the prior, the posterior distribution usually converges
to a prior-independent regime for sufficiently large data sets.
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Figure 5.1:
Converg-
ing views in
Bayesian in-
ference. Image
taken from
reference [12]

In the denominator, P (d) is a normalizing constant, calledBayesian evi-
dence or “marginal likelihood”, than ensures that the posterior is normalized
to unity:

P (d) =

∫
dθP (d|θ)P (θ) (5.8)

Bayesian inference works by updating our state of knowledge about a
parameter (or hypothesis) as new data flow in. The posterior from a previous
cycle of observations becomes the prior for the next.

5.3.2 Choice of the prior

Bayesian inference requires the specification of an initial prior, which is not
determined by the theory, but needs to be given by the user. The prior
should represent fairly the state of knowledge of the user about the quantity
of interest. Eventually, the posterior will converge to a unique (objective)
result even if different scientists start from different priors (provided their
priors are non-zero in regions of parameter space where the likelihood is
large, see image 5.1).

In many situations prior information is highly relevant and omitting it
would result in seriously wrong inferences. The simplest case is when the
parameters of interest have a physical meaning that restricts their possible
values: masses, count rates, power and light intensity are examples of quan-
tities that must be positive. There is a vast literature about how to select
a prior in an appropriate way. Some aspects are fairly obvious: if your pa-
rameter θ describes a quantity that has to be strictly positive (such as the
number of photons in a detector, or an amplitude), then the prior will be 0
for values θ < 0.

A very common choice is the “flat prior”:

P (θ) =

{
1

(θmax−θmin)
θmin ≤ θ ≤ θmax

0 otherwise
(5.9)

It expresses the minimum knowledge about the parameter. For a Gaus-
sian likelihood it has, in fact, the maximum entropy for the mean parameter.
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5.3.3 Model selection

In the most common case, Bayesian inference is used when a chosen model M0

is assumed true and we want to learn about its parameters θ0. Sometimes, one
has also a series of alternative models (M1,M2, . . . ) and wants to determine
which one is in best agreement with the data. In case there is no clear
best model, one can still make inferences on parameters that account for
this model uncertainty.The frequentist approach to model criticism is in the
form of hypothesis testing. One ends up rejecting (or not) a null hypothesis
H0 based on the p-value, i.e., the probability of getting data as extreme or
more extreme than what has been observed if one assumes that H0 is true.
Notice that this is not the probability for the hypothesis! Classical hypothesis
testing assumes the hypothesis to be true and determines how unlikely are
our observations given this assumption. One might be interested in the
probability of the hypothesis itself given the observations in hand.

The Bayesian approach does not reject a model unless there are specific
alternatives available: it takes therefore the form of model comparison. The
key quantity for model comparison is the Bayesian evidence. Bayesian model
comparison automatically implements a quantitative version of Occam’s ra-
zor, namely, the notion that simpler models ought to be preferred if they can
explain the data sufficiently well.

Recalling the Bayesian evidence from equation 5.7, conditioning explicitly
on the model under consideration M with parameter space ΩM :

p(d|M ) ≡
∫
ΩM

p(d|θ,M )p(θ|M )dθ (5.10)

the model posterior probability given the data is obtained by using Bayes
theorem to invert the order of conditioning:

p(M |d) ∝ p(M )p(d|M ) (5.11)

When comparing two models M0 and M1, the quantity of interest is the
ratio of the posterior probabilities, given by:

p(M0|d)
p(M1|d)

= B01
p(M0)

p(M1)
(5.12)

where

B01 ≡
p(d|M0)

p(d|M1)
(5.13)

is calledBayes factor. A value B01 > (<) 1 represents an increase (decrease)
of the support in favour of model 0 versus model 1 given the observed data.
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5.4 Numerical applications

In this section I will introduce the most widely used algorithms constructed
with the task of calculating the quantities of greatest interest in Bayesian
statistics, i.e. the posterior distribution and the Bayesian evidence.

5.4.1 Markov chain Monte Carlo (MCMC)

General theory

The purpose of a Markov chain Monte Carlo algorithm is to construct a
sequence of points in parameter space, called a chain. The crucial property
of the chain is that the density of samples is proportional to the posterior
pdf. This allows to construct a map of the posterior distribution.

A chain is defined as a sequence of random points {θ(0), θ(1), . . . , θ(M)}
such that the probability of the (t+1)-th element in the chain only depends
on the value of the t-th element. It is possible to show [12] that a chain
converges to a stationary point. The generation of the elements of a chain is
governed by a transition probability T (θ(t), θ(t+1)) that satisfies the detailed
balance condition:

p(θ(t)|d)T (θ(t), θ(t+1)) = p(θ(t+1)|d)T (θ(t+1), θ(t)) (5.14)

Once the chain has converged and the points have been gathered, any
expectation value can be calculated with the following approximation:

E[f(θ)] =

∫
P (θ|d)f(θ)dθ ≈ 1

M

M∑
t=0

f(θ(t)) (5.15)

It is often interesting to provide the marginal posterior for each of the
parameters θj:

P (θj|d) =
∫
P (θ|d)dθ1 . . . dθj−1dθj+1 . . . dθn (5.16)

This integration can be numerically complicated, but since the density of
the MCMC points reflects the full posterior P (θ|d), it is sufficient to divide
the range of θj in bins and count the number of points in each bin, simply
ignoring all other parameters.

The Metropolis-Hastings algorithm

The most used algorithm for MCMC computation is the followingMetropolis-
Hastings algorithm:
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1. Start from a random point θ(0), with associated posterior probability
p0 ≡ (θ(0)|d);

2. Propose a candidate point θ(c) by drawing from a proposal distribution
q(θ(0), θ(c));

3. Evaluate the posterior at the candidate point, pc = p(θ(c)|d) and accept
the candidate point with probability

α = min

(
pcq(θ

(c), θ(0))

p0q(θ(0), θ(c))
, 1

)
(5.17)

(this can be performed by generating a random number u from the
uniform distribution [0, 1) and accepting the candidate sample if u < a
and rejecting it otherwise);

4. If the candidate point is accepted, add it to the chain and move there.
Otherwise stay at the old point (which is thus counted twice in the
chain). Go back to point 2.

For the Metropolis algorithm, the distribution q satisfies the symmetry con-
dition q(x, y) = q(y, x) and the quantity α simplifies to

α = min

(
pc
p0
, 1

)
(5.18)

It can be shown that the Metropolis algorithm satisfies the detailed balance
condition 5.14, with the transition probability given by

T (θ(t), θ(t+1)) = q(θ(t), θ(t+1))α(θ(t), θ(t+1)) (5.19)

The choice of proposal distribution q is crucial for the efficient exploration
of the posterior. If the scale of q is too small compared to the scale of the
target distribution, exploration will be poor as the algorithm spends too
much time locally. If instead the scale of q is too large, the chain gets stuck
as it does not jump very frequently.

5.4.2 Nested sampling

An alternative to classical MCMC methods is the so-called “nested sam-
pling” algorithm. Although the original motivation for nested sampling was
to compute the evidence integral of equation 5.10, the development of the
multi–modal nested sampling technique provides a powerful and versatile
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algorithm that can sample efficiently from complex, multi-modal likelihood
surfaces [12].

The idea is to recast the multi–dimensional evidence integral into a one–dimensional
integral, by defining the prior volume:

X(λ) =

∫
L (θ)>λ

p(θ|M )dθ (5.20)

where L (θ) ≡ p(d|θ,M ). Therefore X(λ) gives the volume of parameter
space above a certain level λ of the likelihood. The Bayesian evidence can
be written as

p(d|M ) =

∫ 1

0

L (X)dX (5.21)

where L (X) is the inverse of equation 5.20. Samples from L (X) can be
obtained by drawing uniformly samples from the likelihood volume defined
by λ. Finally, the 1–dimensional integral of equation 5.21 can be obtained
in the following approximation:

p(d|M ) ≈
∑
i

L (Xi)Wi (5.22)

where Wi ≡ 1
2
(Xi−1 −Xi+1).

Nested Sampling procedure

Here is a simple version of the nested sampling algorithm [10]:

1. Start with N points θ1, . . . , θN ;
Initialize Z = 0 and X0 = 1
For i = 1, . . . , j do the following:

(a) Record the lowest of the current likelihood values as Li,
Set Xi = exp(−i/N) or sample it to get uncertainty,
Set wi = Xi−1 −Xi,
Increment Z by Liwi,

(b) Update the point with least likelihood with some Markov chain
Monte Carlo steps according to the prior, accepting only steps
that keep the likelihood above Li.

At each iteration, Xi is an estimate of the amount of prior mass covered
by the volume in parameter space of all points with likelihood greater than
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θi. The weight factor wi is an estimate of the amount of prior mass that
lies between two surfaces p(d|θi−1,M ) and p(d|θi,M ). The update step
Z := Z + Liwi computes the sum over i of Liwi to numerically approximate
the integral p(d|M ).

Termination of the main loop could simply be after a preset number of
steps, or could be when even the largest current likelihood, taken over the
full current box, would not increase the current evidence by more than some
small fraction f .

5.5 The codes

In this section, I will present the numerical and statistical analysis codes
used to achieve the goals of this thesis work. The first code, CAMB, is a
numerical analysis tool that solves the complex system of equations governing
the evolution of the universe and each of its main components across all
epochs. Following this, the Cobaya code, a Bayesian analysis tool specialized
for cosmology, is introduced. Cobaya includes implementations of MCMC
(Markov Chain Monte Carlo) and a specific nested sampling algorithm called
PolyChord, which allow for the estimation of posterior distributions for all
the parameters of a model, given some preliminary input information.

5.5.1 CAMB

CAMB (Code for Anisotropies in the Microwave Background) is a numerical
code designed to compute theoretical predictions for cosmological observ-
ables, particularly the Cosmic Microwave Background (CMB) anisotropies,
matter power spectra, and other related quantities. The primary purpose
of CAMB is to solve the Einstein-Boltzmann equations that govern the evo-
lution of perturbations in the universe, considering the contributions from
various components such as dark matter, baryons, photons, neutrinos, and
dark energy.

CAMB takes as input a set of cosmological parameters, including the
Hubble constant, matter density, dark energy density, curvature, primordial
power spectrum parameters, and reionization history, among others. Addi-
tionally, it requires initial conditions for the perturbations, typically provided
by models of inflation.

The code operates by first solving the background evolution of the uni-
verse, followed by the computation of linear perturbations using the Einstein-
Boltzmann equations. These equations are integrated across different scales
and redshifts to produce power spectra for the CMB temperature and po-
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larization, as well as the matter power spectrum. CAMB can also account
for various effects such as lensing, non-standard recombination histories, and
neutrino masses. The results from CAMB are widely used in cosmological pa-
rameter estimation, enabling researchers to compare theoretical predictions
with observational data.

The code is structured into modules, each of which considers a specific
model for different cosmological phases (e.g., BBN, reionization, etc.) and
components of the universe (e.g., dark matter, baryons, etc.). The parame-
ters required for the execution of each of these modules are listed and speci-
fied in an additional file specifically for the initialization of these parameters.
For the purpose of this thesis, the only module that required modification is
the one dedicated to the primordial power spectrum, “InitialPower.f90”.
The advantage of this modularity is that, in the case of the InitialPower

module, all parameters are defined and evaluated within the module itself,
making it unnecessary to modify other parts of the code. The original code
implements a power spectrum described by the function 3.81. Modifications
to this function and the introduction of new parameters can impact pre-
dictions for cosmological observables such as the CMB spectrum or matter
power spectra.

As an example, two different choices for the primordial spectrum will be
presented here (figure 5.2): one is the standard scale-invariant spectrum de-
fined in equation 3.81, while the other is a modification of the first, consisting
of the addition of an oscillatory feature:

P(k) =

[
1 + Ae

− 1
µ

k
k0 sin

(
ν
k

k0

)]
Pstd(k) (5.23)

where Pstd(k) is the spectrum 3.81 and A = 2, µ = 0.5 and ν = −10.

5.5.2 Cobaya

Cobaya is a sophisticated Bayesian inference framework designed specifically
for cosmological analyses. Its primary purpose is to estimate the posterior
distributions of cosmological parameters by comparing theoretical models to
observational data. Cobaya is built to handle complex, high-dimensional
parameter spaces, making it an essential tool for modern cosmology, partic-
ularly in analyzing data from the Cosmic Microwave Background (CMB),
large-scale structure, and other cosmological probes.

Cobaya operates by implementing Markov Chain Monte Carlo (MCMC)
methods and nested sampling techniques, with a notable integration of the
PolyChord algorithm for efficient sampling in high-dimensional spaces. The
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Figure 5.2:
Two different
choices for the
initial power
spectrum pro-
duce different
CMB spectra
after CAMB
evaluation.
Notice that
the oscillatory
spectrum deter-
mines a lower
power at low
multipoles.

code is highly modular, allowing users to define cosmological models, likeli-
hoods, and priors in a flexible manner.

The input to Cobaya typically includes the cosmological parameters to
be estimated, their prior distributions, the theoretical models (often imple-
mented through CAMB or CLASS), and the likelihood functions correspond-
ing to the observational datasets. Additionally, users can specify settings
related to the MCMC chains, convergence criteria, and output formats.

Cobaya’s mechanism involves generating a large number of samples from
the posterior distribution by iteratively refining the parameter space based on
the likelihood of the models given the data. The output consists of posterior
distributions, evidence values, and other statistical summaries, which are
then used to constrain cosmological models and derive conclusions about the
underlying physics of the universe.

For each particular run, the input must describe the model and its pa-
rameter space in enough detail, and also specify the analysis tool that will
be used. Cobaya’s input takes the form of a Python dictionary, and can be
serialized in plain text in the YAML format.

The Bayesian Model consists of the Bayesian prior and likelihood (this
last one including theory and experimental likelihood components). It also
contains a parameterization layer that manages the flow of parameters to
and from the likelihood and prior, and computes the dynamically-defined
ones, and a provider that handles the exchange of parameters and computed
quantities between different theory and likelihood components. A model
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Figure 5.3: Simplified structure
of Cobaya’s source, showing classes
(squares) and parameters (ellipses).

instance can be passed as an argument to a sampler, or it can be integrated
by the user into an external pipeline.

On their way out of the model, parameters can play three different roles:

• Sampled parameters are the ones whose value is to be varied and ex-
plored by the sampler or the user defined pipeline. They are identified
in the input by having a defined prior;

• Fixed parameters are those whose value is not going to change, and are
needed as input by some piece of the Model.

• Derived parameters are arbitrary functions of the rest of the parameters
at every step, and are tracked and stored for the user’s convenience.
Functions defining them can be provided in the input file or can be
implicitly defined inside the code of a theory or likelihood.

The parameterization class processes the parameters to turn them into
input parameters for the likelihoods and theories, and requests from them
the output parameters that are needed to compute derived parameters that
cannot be computed directly from inputs. The parameterization layer also
manages other properties of the parameters, such as their labels (used for
plots). [11] Figure 5.3 gives a representation of this working mechanism.

Monte Carlo samplers in Cobaya take models and explore their sampled
parameters. Cobaya implements adaptive MCMC samplers [8], that include
a Metropolis-Hastings MCMC algorithm. In addition, it contains a wrapper
for the nested sampler PolyChord [5] [6], which can also estimate model
evidences and explore complicated multi-modal likelihood surfaces.
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At the end of its operation, Cobaya writes the samples to the hard drive,
storing them in plain text as parameter tables, including the corresponding
probabilities and sample weights. Both the sample objects and output files
can be easily loaded and analysed with the user’s tool of choice. The sug-
gested analysis package is GetDist4 [7], which can load Cobaya results trans-
parently. GetDist provides summary statistics including confidence intervals,
density estimates (via optimized kernel density estimation), and convergence
diagnostics, plotting tools, and a graphical user interface.

As an example, I will present an analysis conducted on cosmological pa-
rameters defined within an inflationary model that includes a generic oscil-
latory feature given by

P(k) =

1 + Ae
− 1

2

[
log10( k

kc )
w

]2

sin

(
2π
k

l

)Pstd(k) (5.24)

where Pstd(k) is again the standard spectrum 3.81 and (A, kc, w, l) are the
new parameters introduced by this inflationary scenario. In this analysis,
the theory provided to Cobaya is based on the CAMB code, excluding the
InitPower.f90module, and defining the primordial spectrum 5.24 within an
external Python script. The data used are from the Planck 2018 collaboration
[1], and the chosen priors for the parameters were all flat. The sampler
utilized was PolyChord. Figure 5.4 shows the YAML file provided as input
to Cobaya, while figure 5.5 presents a plot of the marginalized posterior
distributions over one and two parameters.
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theory: 
  theory_primordial_Pk.FeaturePrimordialPk: 
    python_path: . 
    k_pivot: 0.05 
    n_samples_wavelength: 20 
  camb: 
    external_primordial_pk: true 
    extra_args: {lens_potential_accuracy: 5, Accuracy.IntkAccuracyBoost: 1, Accuracy.lSampleBoost: 3, 
halofit_version: mead, bbn_predictor: PArthENoPE_880.2_standard.dat, num_massive_neutrinos: 1, nnu:
3.046, theta_H0_range:[20,100]} 
likelihood: 
  planck_2018_lowl.TT: null 
  planck_2018_lowl.EE: null 
  planck_2018_highl_plik.TTTEEE: null 
  planck_2018_lensing.clik: null 
 
params: 
  logamplitude: 
    prior: [-2,-0.6] 
    ref: {dist: norm, loc: -1.1, scale: 0.05} 
    proposal: 0.2 
    latex: \log_{10}A_\mathrm{feature} 
  amplitude: 
    value: ’lambda logamplitude: 10**logamplitude’ 
    latex: A_\mathrm{feature} 
  logwavelength: 
    prior: [-2.5,-1.8] 
    ref: {dist: norm, loc: -2.1, scale: 0.001} 
    proposal: 0.0005 
    latex: \log_{10}l_\mathrm{feature} 
  wavelength: 
    value: ’lambda logwavelength: 10**logwavelength’ 
    latex: l_\mathrm{feature} 
  logcentre: 
    prior: [-1.15,-0.3] 
    ref: {dist: norm, loc: -0.7, scale: 0.008} 
    proposal: 0.1 
    latex: \log_{10}k_{c,\mathrm{feature}} 
  centre: 
    value: ’lambda logcentre: 10**logcentre’ 
    latex: k_{c,\mathrm{feature}} 
  logwidth: 
    prior: [0.001,3] 
    ref: {dist: norm, loc: 0.1, scale: 0.02} 
    proposal: 0.05 
    latex: w_\mathrm{feature} 
 
sampler: 
  polychord: 
    nlive: d 
    num_repeats: d 
    precision_criterion: 0.001 
output: delensed 
timing: true 

Figure 5.4: Cobaya’s input in YAML format for the use case described in this section.
Baseline ΛCDM cosmological parameters definitions (prior, reference pdf, etc.) are omit-
ted here for brevity.
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Figure 5.5: 1- and 2-d marginalized posteriors for the feature parameters in the use case
described in this section.



CHAPTER

6

STOCHASTIC MODEL
PARAMETER ANALYSIS

Physics is about taking seriously a universe
that is merely playing tricks on us.

Having presented the analytical and technical tools necessary for per-
forming the likelihood analysis of the parameters, I will now outline the
steps followed in conducting this analysis, as previously mentioned in section
4.6. The primary challenge anticipated in approaching this type of problem
lies in the potential degeneracy of the parameters. In the current literature,
there are few studies that have utilized Bayesian analysis software on systems
with highly degenerate parameters. Moreover, the possible degeneracy of the
inflationary parameters is a key focus of this thesis, as it could potentially
open up broader possibilities for modeling the inflaton scalar field, partic-
ularly its potential. Given the novelty and technical difficulties associated
with this issue, the analysis was carried out through gradual advancements.
Specifically, two main intermediate steps were undertaken: first, an analysis
of the inflationary parameters was conducted by decomposing the amplitude
As of the primordial perturbation spectrum into the Hubble parameter and
the slow-roll parameter as described in equation 3.79; subsequently, the anal-
ysis was repeated with the addition of the parameter Λ as described in figure

61
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4.6, using the data obtained from the previous analysis to inform the priors
for the subsequent one. I will now proceed to describe these two steps in
more detail. The data used for the subsequent analyses were obtained from
the Planck 2018 survey [1] and employed the full set of spectra (TT, TE, EE,
and lensing).

6.1 Preliminary amplitude decomposition

Since the amplitude of scalar perturbations is a cosmological parameter di-
rectly measurable through CMB observations, it is analyzed individually,
without being decomposed into the Hubble and slow-roll parameters as per
equation 3.79. These two parameters are subsequently determined through
successive iterations. In an effort to alleviate the constraints imposed on the
value of ϵ, the initial part of the study focused on analyzing the inflationary
parameters by substituting the amplitude in expression 3.81 with its func-
tional dependence given by equation 3.79, treating the two parameters H
and ϵ as independent. This approach is theoretically feasible because, during
inflation, these two quantities remain nearly constant and can be effectively
treated as parameters. The analysis proceeded by inputting the CAMB code
into Cobaya, excluding the InitPower.f90 module, and providing the fol-
lowing expression

P(k) =
1

8π2ε

H2

M2
Pl

(
k

k∗

)ns−1

(6.1)

as the primordial spectrum. The sampler used was PolyChord, with both
flat and Gaussian priors applied in two different runs. Figures 6.1 and 6.2
show the configuration files used as input in Cobaya for these two runs and
figures 6.3 and 6.4 show their respective results.

First, it is important to note the expected appearance of degeneracies.
These result in the emergence of multimodalities in the parameter distri-
butions and the presence of multiple dark surfaces in the 2D marginalized
posterior plots. In figure 6.3, the appearance of a bimodal structure in the
distributions of H and ε is evident, while in the distribution of ns, there
is a hint of a secondary peak, not well resolved from the main one. In the
analysis conducted with Gaussian priors, shown in figure 6.4, the situation
appears more problematic, as the presence of multiple modes is observed in
all distributions. H and ε, in particular, seem to exhibit trimodality, while
ns appears largely degenerate, although it is worth noting the tendency of
the distribution to follow a unimodal envelope. A significant issue lies in the
partial incompatibility between the distributions resulting from flat priors
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and those from Gaussian priors. In both cases, however, the expected func-
tional relationship between H and ε, expressed by the relation 3.79, which
indicates that they should be proportional, is clearly respected.

I have not been able to identify a definitive reason for the issues in the
results of the analysis with Gaussian priors, but I would like to propose two
plausible hypotheses: a) Gaussian priors impose stronger constraints on the
parameter values than flat priors (unless given unreasonably large variances),
as flat priors represent the minimum degree of prior knowledge. This could
explain why certain values allowed by the flat-prior results are not equally
permitted in the other case, leading to more dispersed corner plots in the
latter scenario; b) technical limitations imposed by the available clusters
forced a reduction in the precision level required to the program (e.g., low
number of live points) to keep execution times within a timeframe compatible
with the thesis deadlines (a single execution, even when performed with MPI
parallelization across numerous cores, had an average duration of 170 hours).
This may have led to insufficient exploration of the parameter space, resulting
in incomplete posterior distributions. In any case, the results from both
analyses were used as the basis for the subsequent step of the investigation.

6.2 Analysis of Λ

We now study the case under examination within the model presented in this
work, specifically an inflationary spectrum given by the expression 3.81 with
the amplitude As replaced by a function of the parameters

As =
1

8π2ε

H2

M2
Pl

Λ (6.2)

Before presenting the result of the analysis, I find it necessary to explain
how the results obtained earlier were used to provide some guidance on the
priors to be employed in this case. As seen in section 4.5, the expected value
for the parameter Λ lies within the range of 10−2 Planck masses up to the
limiting value MPl. The value of H during inflation should not depend on
the specific inflationary model used, so it is reasonable to assume that the
influence of the parameter Λ entirely impacts the value of ε. Consequently,
it was decided to use flat priors for this investigation, extended over the
intervals where the posterior distributions shown in figure 6.3 are non-zero,
appropriately recalibrated to account for the parameter Λ of order 10−2MPl.

It has been observed that the range in which the parameter ε resides
extends from 0.0002 to 0.002. Denoting by ε′ the value of ε after the inclusion
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# theory and likelihood input 
params: 
  H: 
    prior: 
      min: 1.0e-06 
      max: 2.0e-05 
    ref: 
      dist: norm 
      loc: 1.28e-05 
      scale: 9.0e-07 
    latex: H 
  epsi: 
    prior: 
      min: 0.0001 
      max: 0.002 
    ref: 
      dist: norm 
      loc: 0.001 
      scale: 0.002 
    latex: \epsilon 
  ns: 
    prior: 
      min: 0.8 
      max: 1.2 
    ref: 
      dist: norm 
      loc: 0.965 
      scale: 0.004 
    proposal: 0.001 
    latex: n_\mathrm{s} 
sampler: 
  polychord: 
    nlive: 10d 
    num_repeats: d 
    precision_criterion: 0.1 
output: noas 
timing: true 

Figure 6.1: Cobaya’s input for the analysis described in section 6.1 with flat priors.
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# theory and likelihood input 
params: 
  H: 
    prior: 
      dist: norm 
      loc: 1.4e-05 
      scale: 4.0e-06 
    ref: 
      dist: norm 
      loc: 1.4e-05 
      scale: 1.0e-06 
    latex: H 
  epsi: 
    prior: 
      dist: norm 
      loc: 0.0012 
      scale: 0.0005 
    ref: 
      dist: norm 
      loc: 0.0012 
      scale: 0.0002 
    latex: \epsilon 
  ns: 
    prior: 
      dist: norm 
      loc: 0.965 
      scale: 0.009 
    ref: 
      dist: norm 
      loc: 0.965 
      scale: 0.004 
    proposal: 0.001 
    latex: n_\mathrm{s} 
sampler: 
  polychord: 
    nlive: 10d 
    num_repeats: d 
    precision_criterion: 0.1 
output: noas 
timing: true 

Figure 6.2: Cobaya’s input for the analysis described in section 6.1 with Gaussian priors.
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Figure 6.3: Contour plot of the resulted posteriors for the analysis described in section
6.1 with flat priors.

Figure 6.4: Contour plot of the resulted posteriors for the analysis described in section
6.1 with flat priors.
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of Λ, the following comparison is performed

As =
1

8π2ε
H2

M2
Pl

As =
1

8π2ε′
H2

M2
Pl
Λ

=⇒ ε′ = Λε (6.3)

Consequently, the minimum value for ε′ occurs for ε = 0.0002, while the
maximum value occurs for ε = 0.002. Therefore, the range for the new prior
is obtained as

ε′ ∈
[
2× 10−6, 2× 10−5

]
(6.4)

Taking into account that the introduction of an additional parameter may
lead to further degeneracies among all parameters, thereby complicating both
the computational process and the interpretative analysis, this study was
again conducted using two different approaches. Unlike the preliminary study
presented earlier, Gaussian priors were not used this time. Instead, a second
execution was performed without sampling the parameter H, assigning it a
fixed value. Thus, the role of the parameter H was changed from sampled to
fixed. In the first analysis, however, all parameters were sampled as described
in this section. As before, the sampler used was PolyChord.

Figures 6.5 and 6.6 show the configuration files for these two runs. Figure
6.7 shows the result of the analysis of the first run, with all parameters
sampled.

As expected, the resulting scenario is challenging to interpret, with most
of the contour plots being fragmented, making it difficult to identify regions of
higher likelihood. It is reasonable to assume that the computational precision
was compromised due to the strong parameter degeneracy, which is why the
decision was made to repeat the analysis by fixing the Hubble rate. Before
proceeding with observations from the second run, it is worth noting that,
unlike the other parameters, the posterior distribution of Λ is very regular
and shows a clear bimodality within the anticipated range for this parameter.

Figure 6.8 shows the results of the analysis where the value of H was
fixed. For clarity, Figure 6.9 presents the results of the same analysis after
removing the first 70% of the sampled points. This was done because, often,
the points that best describe the distribution are generated once the program
has reached a good level of convergence toward the target distribution. Con-
sequently, it can be helpful to study the shape of the plots generated by the
later sampled points. The emerging scenario is surprisingly more regular: the
plot for Λ exhibits a clear bimodality, consistent with that seen in Figure 6.7
and with the results of the previous studies [4]; the plot for ε shows a slight
bimodality, which remains unresolved even after cleaning, and also suggests
that the distribution might extend beyond the initially assumed value range;
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the posterior for ns is actually unimodal; finally, the marginal posteriors are
clear and display well-defined contours.

It is crucial to note that the most probable values for the parameter ε
differ from those typically used in standard slow-roll inflation models. This
is entirely expected and, as hoped when this thesis began and in line with the
motivations behind this work, it extends the domain within which different
inflation models can be considered plausible, opening up new possibilities for
research in this field. Before concluding this thesis, I must specify that many
of these analyses were initially conducted using the MCMC sampler, but were
not pursued further due to the method’s insufficient effectiveness in handling
high-dimensional parameter spaces and strong parameter degeneracies.
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# theory and likelihood input 
params 
  H: 
    prior: 
      min: 8.0e-06 
      max: 1.5e-05 
    ref: 
      dist: norm 
      loc: 1.0e-05 
      scale: 1.0e-06 
    latex: H 
  epsi: 
    prior: 
      min: 2.0e-06 
      max: 2.0e-05 
    ref: 
      dist: norm 
      loc: 7.0e-06 
      scale: 2.0e-06 
    latex: \varepsilon 
  ns: 
    prior: 
      dist: norm 
      loc: 0.965 
      scale: 0.009 
    ref: 
      dist: norm 
      loc: 0.965 
      scale: 0.004 
    proposal: 0.001 
    latex: n_\mathrm{s} 
  lamb: 
    prior: 
      min: 0.001 
      max: 0.03 
    ref: 
      dist: norm 
      loc: 0.009 
      scale: 0.009 
    latex: \Lambda 
sampler: 
  polychord: 
    nlive: 10d 
    num_repeats: d 
    precision_criterion: 0.1 
output: lamb 
timing: true 

Figure 6.5: Cobaya’s input for the analysis described in section 6.2 with all parameters
sampled.
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# theory and likelihood input 
params: 
  H: 1.0e-05 
  epsi: 
    prior: 
      min: 2.0e-06 
      max: 2.0e-05 
    ref: 
      dist: norm 
      loc: 7.0e-06 
      scale: 2.0e-06 
    latex: \varepsilon 
  ns: 
    prior: 
      dist: norm 
      loc: 0.965 
      scale: 0.009 
    ref: 
      dist: norm 
      loc: 0.965 
      scale: 0.004 
    proposal: 0.001 
    latex: n_\mathrm{s} 
  lamb: 
    prior: 
      min: 0.001 
      max: 0.03 
    ref: 
      dist: norm 
      loc: 0.009 
      scale: 0.009 
    latex: \Lambda 
sampler: 
  polychord: 
    nlive: 10d 
    num_repeats: d 
    precision_criterion: 0.1 
output: lamb 
timing: true 

Figure 6.6: Cobaya’s input for the analysis described in section 6.2 with H fixed.
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Figure 6.7: Contour plot of the resulted posteriors for the analysis described in section
6.2 with all parameters sampled.

Figure 6.8: Contour plot of the resulted posteriors for the analysis described in section
6.2 with H fixed.



CHAPTER 6. STOCHASTIC MODEL PARAMETER ANALYSIS 72

Figure 6.9: Contour plot of the resulted posteriors for the analysis described in section
6.2 with H fixed, after cleaning.



CONCLUSIONS

The theoretical framework for describing the formation of CMB anisotropies
and large-scale structures is both simple and effective. Its simplicity stems
from a distinctive feature of inflation: a quasi de Sitter expansion phase
during which the Hubble radius remains nearly constant. Its success is due
to the fact that this characteristic naturally leads to a scale-invariant spec-
trum, consistent with observations. This thesis focuses on the challenge of
describing the effects of perturbation dynamics during the primordial stages
of inflation, where fluctuations enter a trans-Planckian regime where quan-
tum gravitational effects may become non negligible, and linear approxima-
tion may fail. In other words, the study addresses the initial conditions for
perturbation modes when they transition to a “classical” regime from the
point of view of gravitational interactions. In this context, I considered the
model in reference [4], which traces these initial conditions to a preceding
stage where perturbations originate from a source term describing interac-
tions with a stochastic background of fluctuations due to gravity effects at
very high energies. Specifically, the authors identified this background as the
product of Hawking radiation generated by a “Black Hole gas”. The outcome
of this model is a scale-invariant spectrum with an amplitude dependent on
a scale Λ.

Building on this model, the parameter Λ was introduced into the dynam-
ics of the perturbations, and its impact on other inflationary parameters,
namely the Hubble parameter and the slow-roll parameter—which describes
the characteristics of the inflaton field’s potential in the single field slow-roll
model—was investigated. A likelihood analysis of the parameter set was per-
formed using advanced computational tools for perturbation dynamics and
Bayesian analysis, namely CAMB and Cobaya, with its PolyChord sampler.
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The analysis was conducted in successive stages to learn how to manage the
appearance of degeneracies in cosmological parameters and to make informed
choices for the priors used.

The results of the study show the emergence of degeneracies in all in-
flationary parameters. The parameter Λ was found to have a value con-
sistent with that estimated by the authors of the model, approximately
Λ ≃ 10−2MPl. The slow-roll parameter exhibits new degeneracies, providing
results that differ from established knowledge regarding inflation.

An interesting continuation of this study could involve incorporating os-
cillatory features into the Λ-dependent spectrum, as these may arise from
inflationary models that consider excited states. The emergence of oscilla-
tory features offers a significant technical advantage, as it mitigates some of
the parameter degeneracies and simplifies the computational process.
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