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Introduction

Over the past two decades, quantum technologies have made significant progress
in strategical areas such as sensing, cryptography, telecommunications, and com-
puting [1][2][3]. For what concerns quantum computation, superconducting qubits
are one of the leading platforms to build a quantum computer capable of perform-
ing computation tasks beyond modern supercomputers. Prototype algorithms,
including Google’s pioneering experiment, have been demonstrated on supercon-
ducting qubits in the noisy intermediate-scale quantum (NISQ) technology era
[4]. However, despite these exciting achievements, going beyond the current size
of today’s quantum processor consisting of few hundreds qubits to a scalable
quantum processor with thousands of qubits is far from a trivial challenge. For
istance, although the transmon [5] is the most widely adopted superconducting
qubit design, it still suffers from architectural issues that need to be addressed.
Transmon qubit frequency can be tuned using magnetic flux threading a loop
geometry in a d.c. SQUID (Superconducting Quantum Interference Device),
that allows faster gate operations, but introduces a sensitivity to random flux
fluctuations (flux noise), thus leading to dephasing times of the order of tens
of µs. Moreover, the milliamper currents that are used for flux tunability also
cause crosstalk between qubits and heating. So far, superconducting quantum
circuits have almost exclusively relied on aluminum-aluminum oxide-aluminum
(Al/AlOx/Al) tunnel Josephson junctions (JJs) [6][7]. Hybrid superconductor-
semiconductor structures, such as two-dimensional electron gas (2DEG), van der
Wals materials and semiconducting nanowires[8][9], have provided an alterna-
tive tuning of the qubit frequency without introducing flux-noise by exploiting
a gate voltage in the so-called gatemon architecture. The gatemon qubits set
an important milestone by demonstrating that hybrid Josephson devices can be
integrated into qubits to gain new frequency qubit knobs. Among unconven-
tional Josephson devices, in the last decades the physics of magnetic Josephson
Junctions have been widely investigated. However, the use of such junctions
has been limited to phase shifters and spintronic applications [10][11][12], plac-
ing little emphasis on their role in quantum computing due to their inherent
high quasiparticle dissipation, which can affect the qubit performance. Recent
advances in coupling ferromagnetic layers with insulating barriers inside the JJ
(Superconductor-Insulator-superconductor-Ferromagnet-superconductor: SIsFS)
and leveraging intrinsic insulating ferromagnetic materials have led to magnetic
JJs with high quality factors and low quasiparticle dissipation [13][14]. Therefore,
in our group we have proposed to integrate a tunnel magnetic Josephson Junc-
tion into a trasmon circuit to allow a tuning of the qubit frequency by means of
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magnetic field pulses, in the so-called ferrotrasmon architecture [7]. Most impor-
tantly, in principle a single magnetic Josephson junction can replace the SQUID
set-up, thereby improving the scalability of the entire quantum circuit. Finally,
this research activity goes beyond a mere search for the best qubit candidate; it
also promotes an advancement toward a better understanding and control of the
phenomena occuring at S/F interface in magnetic Josephson Junctions, such as
the inverse proximity effect [15].
In this thesis, we have focused on two fundamental steps towards the experimen-
tal validation of the ferro-transmon: the design of flux lines for an on-chip control
of this hybrid qubit and the characterization of tunnel SIsFS JJs suitable for the
final layout. The first chapter presents the basic principles of superconductivity
and the Josephson effect and then introduces standard superconducting qubits
with a special focus on the transmon design. The second chapter will present an
overview of the properties and functionalities of Magnetic Josephson Junctions
(MJJs), beginning with an examination of the fundamental concepts of ferromag-
netism and subsequently elucidating the operational principles of SIsFS JJs. As
it will be discussed in more detail at the end of the second chapter, these SIsFS
JJs possess the capability to combine the memory properties of standard SFS
JJs with the tunnel behaviour of SIS JJs. As mentioned above, this unique com-
bination offers a promising alternative for the control of qubit frequency in the
ferrotransmon architecture. The third chapter is devoted to the description of
the experimental apparatus employed to characterize the junctions under investi-
gation, including the dilution cryostat. The experimental results are discussed in
the fourth chapter. We first discuss the transport properties of SIsFS junctions
with a ferromagnetic layer of Permalloy (Ni80Fe20) and compare with standard
SIS tunnel JJs. In order to optimise the magnetic properties of the junction, we
then characterize SIsFS junctions with a ferromagnetic layer of Ni77Fe11Gd3Nb9.
In contrast to standard flux-tunable transmons, which feature flux-bias lines in-
ductively coupled to d.c. SQUID loops, SIsFS JJs require in-plane magnetic field
to be switched. At the end of the chapter, we thus propose three designs of flux
lines to provide an in-plane magnetic field. The simulations show the range of
magnetic fields that can be actually applied for a on-chip control of the SIsFS
JJs and thus provide a benchmark for optimizing the ferromagnetic barrier in the
SIsFS JJs. By studying both the ferromagnetic barrier in the SIsFS JJs and the
flux line layouts, we have thus carried fundamental steps toward the optimization
of the overall design of the ferrotransmon and its scalability.

3



Chapter 1

Conventional Josephson junctions

In this chapter, the principles and notions of the Josephson Effect for conven-
tional tunnel junctions will be introduced, in order to better understand the
peculiarities of hybrid ferromagnetic Josephson junctions reported in the follow-
ing Chapters. After a brief recall of the general aspects of superconductivity,
the phenomenology of the Josephson effect will be introduced, focusing on the
transport properties and on the electrodynamics of Josephson junctions as a func-
tion of temperature and magnetic field. Moreover, the key role of the Josephson
junctions in superconducting quantum circuits will be discussed at the end of the
chapter.

1.1 Recalls on Superconductivity

Superconductivity occurs when certain materials, brought below a specific criti-
cal temperature TC , present zero resistivity and perfect diamagnetism. Its first
observation dates back to 1911 to the experiment of Kamerlingh Onnes, who ob-
served that the electrical resistance of various metals such as mercury disappears
below a critical temperature textitTC , which is characteristic of the material, as
shown in Figure 1.1[16].
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Figure 1.1: Dependence of the resistance on the temperature of a mercury sample:
example of transition to zero resistance. The sample is in the superconducting state
up to the critical temperature of TC = 4.2K. Above TC , the sample is in the normal
state and the resistance takes a leap increasing almost linearly with temperature.[17]

The perfect diamagnetism behavoir, known as Meissner effect, was observed in
1933 by Oschenfeld and Meissner [18]: when a weak magnetic field B⃗ is applied,
the magnetic field lines are fully expelled, i.e., the magnetic susceptibility χ = −1.
The ejection of the magnetic field is due to the generation of surface screening
currents, which in turn induce a magnetic field that balances the external mag-
netic field. The Meissner effect is schematized in figure 1.2 and it is described by
the second London equation [16][19]:

∇2B⃗ =
1

λ2L
B⃗. (1.1)

Figure 1.2: a) Above the critical temperature TC , the superconductor is in the normal
state and the magnetic field B⃗ penetrates the sample. b) For T < TC , the sample
enters the superconducting state and the magnetic field lines are expelled.
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In the equation 1.1 λL is the London penetration depth that determines the
length scale over which the magnetic fields are exponentially screened from the
surface of the superconductor [20]:

λ2L =
ns4πe

∗2

m∗c2
, (1.2)

where ns is the superfluid density and e∗ and m∗ are the charge and the mass of
the superconducting carriers involved in the conduction mechanism, respectively.
The London penetration depth depends on the material, as ns the superfluid den-
sity of the superconductor. It is experimentally found the following temperature
dependence of the London penetration depth [16]:

λL(T ) = λL(0)

[
1−

(
T

Tc

)4](−1/2)

. (1.3)

It increases slowly at low temperatures and diverges as it approaches the transi-
tion temperature TC . It’s a fundamental quantity for the sizing of superconduct-
ing materials and their applications [18].
Another characteristic property of superconductors is the quantization of the flux
in a topologically non-connected superconductor: the flux of the magnetic field
can assume only integer values of the quantity Φ0 = h/2e. The presence of the
factor 2 suggested that the charge carriers of the supercurrent were two electrons
and this later gave rise to the idea of Cooper pairs [18]. However, the decisive
step in understanding the microscopic mechanism of superconductivity is due to
Bardeen-Cooper-Schrieffer (BCS) theory. In the BCS theory at low tempera-
tures, it was shown that a weak phonon-mediated attractive interaction between
electrons causes the formation of bound pairs, the so-called Cooper pairs. In a
conventional bulk superconductor (s-wave superconductor), they consist of two
electrons with opposite spin and momentum close to Fermi momentum. The to-
tal spin of a Cooper pair is zero, which means that it represents a Bose particle
(that is, obeys Bose-Einstein statistics). Therefore, the pairs of electrons can be
described by a single macroscopic wave-function, thus supporting the previous
phenomenological theories [16].
The Ginzburg-Landau theory (GL) provides a general approach to describe second-
order phase transitions involving spontaneous symmetry breaking [16] [19]. Ac-
cording to this theory, a phase transition of the second order occurs when the
order parameter changes discontinuously at the transition temperature TC . By
decreasing the temperature below T < TC , the system performs a phase tran-
sition and passes from a highly disordered and symmetric state to an ordered
one, a spontaneous symmetry breaking therefore occurs, for which the system
chooses to place itself in a state of minimum energy. The GL theory introduced
quantum mechanics into the description of superconductors. It assigned to the
entire number of superconducting electrons a wavefunction depending on a single
spatial coordinate ψ(r). By expressing the free energy density in a series expan-
sion of |ψ|2 and solving a variational problem, the order parameter satisfies the
Ginzburg-Landau equations [19]:

αΨ+ β(Ψ)|Ψ|2 + 1

2m
(−ih̄∇− 2eA⃗)2Ψ = 0, (1.4)
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J⃗ =
e

m

(
Ψ∗(−ih̄∇− 2eA⃗)Ψ + .c.

)
, (1.5)

where A⃗ is the vector potential, m is the mass of the electron and e is its charge.
The current density J is related to the vector potential and to the superfluid
density. The parameter β is a constant, while α(T ) = 1 − (T/Tc)[16]. The
Ginzburg–Landau theory also introduces another characteristic length ξ, the so-
called coherence length, which indicates the average distance at which the elec-
trons of the Cooper pair are located:

ξ =

√
h̄2

2m ∗ |α|
, (1.6)

where α is one of the phenomenological constants of the Ginzburg–Landau the-
ory. From the GL equations it appears that it is the length along which variations
in the |ψ| are appreciated.
By considering the temperature dependence, it’s possible to distinguish two regimes:

ξ =
h̄2

2m|α0|


(

T
Tc

− 1

)1/2

T > Tc(
1− T

Tc

)1/2

T < Tc.

(1.7)

By comparing the coherence length and the London penetration length with the
ratio κ = λL/ξ, we can classify two different types of superconductors when an
external magnetic field is applied: type-I and type-II superconductors.

• if κ < 1√
2
, the superconductor is type-I: it has a linear magnetization M⃗ as

a function of H⃗ up to a certain critical field value HC , beyond which the
superconducting state is destroyed and the material returns to the normal
state.

• if κ > 1√
2
the superconductor is type-II. These superconductors exhibit

diamagnetic behavior up to a certain critical field H⃗C1; above H⃗C1 they have
a mixed superconducting/normal behavior, whereby the field lines ”pierce”
the superconductor and vortices are created carrying a flux quantum Φ0 =
h
2e
, known as Abrikosov vortices [20]. When H⃗ is also larger than H⃗C2,

there is complete penetration of the field, again resulting in the destruction
of the superconducting state.
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Figure 1.3: In panel a) it is reported the behavior of M⃗ as a function of H⃗ for a type-I
superconductor, for λL < ξ; in panel b) it is reported the behavior of M⃗ as a function
of H⃗ in a type-II superconductor, λL > ξ

1.2 The Josephson effect

The Josephson effect, predicted by Bryan Josephson in 1962 [21] and experimen-
tally observed in 1963[22], is a macroscopic quantum phenomenon in a device
known as Josephson Junction (JJ). In the simplest case, this device is made up
by two superconducting electrodes, with associated wave functions Ψ1 = |Ψ1|eiϕ1

and Ψ2 = |Ψ2|eiϕ2 , separated by a thin insulating barrier, with thickness of the
order of 1 nm, as schematized in figure 1.4.

Figure 1.4: Sketch of a Josephson junction and of the macroscopic wave-functions of
the two electrodes Ψ1 = |Ψ1|eiϕ1 and Ψ2 = |Ψ2|eiϕ2 and ρ1/2 = |Ψ1/2|2 is the density
of Cooper pairs. The two wave-functions overlap in the barrier region.

The Josephson effect is a direct manifestation of the macroscopic quantum co-
herence of the superconducting state and describes the flow of a supercurrent,
carried by Cooper pairs, through a nanometric barrier that separates two super-
conductors, without a voltage drop, as shown in Figure 1.4. The effect exists
as long as the tails of the wave functions overlap. The JJs can thus differ in
layout, geometry and materials of the barriers. In this thesis work, the physical
principles regarding junctions with an insulating barrier (SIS) and ferromagnetic
barrier (SIsFS) will be outlined. The Josephson effect is governed by two equa-
tions, which relates the supercurrente Is and the voltage V to phase drop V across
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the junction ϕ = ϕ1 − ϕ2 [18]:

IS = ICsinϕ (1.8)

∂ϕ

∂t
=

2eV

h̄
, (1.9)

where h̄ is the reduced Planck constant. IC is the critical current and repre-
sents the maximum supercurrent that the junction can sustain and depends on
the temperature, the magnetic field and the structure of the junction [23]. The
first Josephson equation defines the current-phase relation of the device, which
determines its fundamental properties. When the junction is current biased with
a value below IC , the junction is in the supercurrent branch, as shown in 1.5, the
supercurrent depends only the phase difference between the two superconductors
ϕ. For Is > IC , the junction transits to the resistive state and a finite voltage is
observed so that the phase difference evolves with time.

Figure 1.5: Current-voltage Characteristic of a Josephson junction: when a current
bias at a junction is below the critical value, the junction is in the superconducting
branch. For currents I > IC , the junction transitions to a resistive state [24].

For unconventional systems, the equation 1.8 should be generalized in order to
take into account also higher harmonics [25][26]:

I(ϕ) =
∑
n≥1

Insin(nϕ). (1.10)

In presence of a voltage drop VDC at the sides of the junction, it follows by
integration of 1.9 that the phase varies linearly in time [25]:

ϕ =
2π

Φ0

∫ t

0

dt′VDC =
2π

Φ0

VDCt+ ϕ0 = ωjt+ ϕ0. (1.11)

The Josephson current thus oscillates sinusoidally in time, at the Josephson fre-
quency νj in the regime of microwaves (109− 1013Hz) ranging V tipically 10−6 to
10−2 :

IS = ICsin(ωjt+ ϕ0). (1.12)
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In presence of microwave irradiation of a junction biased with a d.c. current, the
interaction between the microwave signal and the a.c. Josephson current leads to
the appearence of current steps at constant voltages:

Vn = n
Φ0

2π
ωj, (1.13)

where n is an integer number. Such steps have been observed for the first time
by Shapiro in 1963 and are thus called Shapiro steps [27].
A Josephson junction is able to store energy in the superconducting state, the
so-called Josephson energy, that can be considered as the binding energy due to
finite overlapping of the two wave functions:

EJ = Ic
h̄

2e
. (1.14)

This expression can be derived on the basis of simple thermodynamical arguments
[21] or of microscopic theory [28]. In the thermodynamic approach, the free
energy change due to the work done by the current generators is: dF1 = IV1dt
and dF2 = IV2dt. So, the energy associated with the barrier will be given by
dF = dF2 − dF1 = I(V2 − V1)dt, substituting 1.8 and 1.9 and integrating:

F (ϕ) =
h̄

2e
Iccosϕ+ constant. (1.15)

By imposing F= 0 for ϕ = 2nπ, with n an integer, it is ensured that no current
flows into the junction. It can be seen that this leads to the conclusion that
F (ϕ) = EJ(1− cosϕ), which is consistent with the 1.14.
Moreover, the insulating layer of the JJ constitutes a capacitor with flat and
parallel faces with an associated charging energy EC = e2

2C
. Depending on the

ratio EJ/EC , we can distinguish two different regimes: phase regime and charge
regime, as it will be explored in details in the following sections.
The expression for the critical current and its temperature dependence can be de-
rived on the basis of the microscopic BCS theory in the tunnel limit, as first shown
by V. Ambegaokar and A.Baratoff [29]. The resulting Ambegaokar-Baratoff (AB)
relation for the critical current of the junction reads:

Ic(T ) =
π

2eRN

∆(T )tanh

(
∆(T )

2kBT

)
, (1.16)

where RN is the normal-state resistance and ∆ is the superconducting gap [29].
For T = 0, Eq. 1.16 takes the following simplifed form:

Ic(0) ≃
π∆

2eRN

. (1.17)

Finally, substituting into Eq. 1.8 dϕ/dt with V according to Eq. 1.9: dIs dt =
I0cosϕ

2π
Φ0
V . With dIs/dt proportional to V , this equation describes an in-

ductor. By defining a Josephson inductance LJ according to the conventional
definition V = LJdIs/dt, one finds LJ = Φ0

2πIccosϕ
. The 1/cosϕ term reveals that

this inductance is nonlinear. It becomes large as ϕ → π/2, and is negative for
π/2 < ϕ < 3π/2. The inductance at zero bias is LJ0 = Φ0/2πIc. An inductance
describes an energy-conserving circuit element[30].
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1.2.1 Magnetic field effect

By applying a magnetic field, different phenomena are observed in a Josephson
junction, all these effects are induced by the phase variation due to the external
magnetic field. Geometry of the junction, nature of the electrodes or of the barrier
and their possible inhomogeneities determine a distinctive spatial distribution of
the critical current density across the junction barrier, and are reflected in the
magnetic dependence of the I–V curves. To establish the relation between the
supercurrent passing through the junction and the applied magnetic field, we
consider a planar junction and a magnetic field H⃗, perpendicular to the direction
of the supercurrent, as sketched in figure 1.6.

Figure 1.6: Scheme of a JJ with the contours of integration to derive the magnetic field
dependence of the phase difference. The dashed areas indicate the regions where the
magnetic field penetrates into the superconducting electrodes from the side where they
face each other.

It is assumed that the thickness of the superconducting films is larger than λL
and we consider the integration paths CL and CR to calculate the gauge invariant
phase difference between two points of the barrier of coordinates x and x+dx. The
general expression correlating the phase, the electric current and the magnetic
field is:

∇ϕ =
2e

h̄

(
mJ

2e2ns

+A

)
, (1.18)

where ns is the density of Cooper pairs andA is the vector potential; the difference
in the phase drop across the junction between the positions x, x+ dx is given by
the following expression:

ϕ(x+∆x)− ϕ(x) =
2e

h̄

∮
Adl. (1.19)

We note that the effects of the bulk supercurrents J can be neglected since J
is perpendicular to the chosen integration path and takes on a very small value
inside the superconductors. By using the Stokes’ theorem, we obtain

∮
Adl =

Hy(t + λL,L + λL,R)∆x where t is the barrier thickness and λL,R, λL,L are the
London penetration depths in the two superconductors, respectively. For ∆x→ 0
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and assuming that the penetration length is the same for both sides λL, equation
1.19 leads to:

dϕ

dx
=

2e

h̄
(2λL + t)Hy. (1.20)

The phase difference ϕ thus assumes a spatial dependence:

ϕ(x) =
2πHydm

h̄
+ ϕ0, (1.21)

where dm = λL,R+λL,L+t is the magnetic thickness,i.e., the thickness penetrated
by the external magnetic field By, and ϕ0 is the phase difference for x = 0. So
the spatial dependence of the critical current density is:

Js = JCsin

(
2πHydx

h̄
+ ϕ0

)
. (1.22)

By integrating the equation 1.22 over the junction area, we obtain the analytical
expression of critical current Ic(H). It can be shown that a rectangular junction
with a lateral size L and a uniform zero-field tunneling current distribution ex-
hibits a dependence of the maximum supercurrent on the applied magnetic field
in the form of a Fraunhofer-like diffration pattern [18]:

Is(Φ) = JSWL

∣∣∣∣sin
(
π Φ

Φ0

)(
π Φ

Φ0

) ∣∣∣∣, (1.23)

where the product WL is the junction area [18]. Thus, for a rectangular JJ the
minima in the pattern occur at multiples integer of Φ0, as shown in Fig. 1.7. For
circular JJs with a uniform zero-field tunneling current distribution, the analytical
expression of the IC(H) follows an Airy pattern:

I1(K) = I1

∣∣∣∣J1(kR)1
2
(kR)

∣∣∣∣ (1.24)

where I1 = πR2J1, J1(x) is the Bessel function of the first kind, k = 2πdm
Φ0

and R
the radius of the junction [18][23].
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Figure 1.7: Dependence of the critical current on the external flux. The solid line
follows the Fraunhofer pattern for rectangular junctions, while the dotted line is the
Airy pattern for circular junctions [16].
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IC(H) measurements are an important tool for characterising the quality of the
junction. Deviations from the expected behaviour of IC(H), such as minima with
non-zero current, suppression of the amplitude of some lobes and asymmetries
of the pattern can be related to non-uniform current distribution, arbitrary ori-
entation of the applied in-plane magnetic fields or structural fluctuations and
inhomogeneities in the tunnel barrier [18].

1.2.2 Phase dynamics

Through the study of the I-V characteristics, we have a first analysis of the
transport properties of the junction and of its electrodynamics. A basic tool to
describe the I-V phenomenology of a large variety of weak links is the Resistively
and Capacitively Shunted Junction (RCSJ) model, first introduced by McCumber
and Stewart[31][32]. A Josephson junction can be schematized into an equivalent
circuit having in parallel a capacitor (C ), a resistor (R), and a nonlinear element
with a sinusoidal current-phase relation, as shown in the figure 1.8 [23].
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Figure 1.8: The equivalent circuit of a current biased Josephson junction according to
the RCSJ model: the parallel of a JJ, a capacitance C and a resistance R.

If the junction is current-biased, the circuit equation, neglecting the noise term,
is:

I = ICsinϕ+
V

R
+ C

dV

dt
= (1.25)

ICsinϕ+
1

R

h̄

2e

dϕ

dt
+ C

h̄

2e

d2ϕ

dt2
. (1.26)

By replacing the Josephson relation in equation 1.26, we can rewrite the equation
that describes the phase dynamics:

C

(
h̄

2e

)2
dϕ2

dt2
+

1

RN

(
h̄

2e

)2
dϕ

dt
+
dU(ϕ, I)

dt
= 0, (1.27)

where U (ϕ, I) is the washboard potential represented in figure 1.9 given by the
relation:

U(ϕ, I) = −EJ

(
cosϕ+

I

IC
ϕ

)
, (1.28)

with EJ the aforementioned Josephon energy. The washboard potential depends
on the bias current I : for I = 0, the potential is cosinusoidal; for I > 0, the profile
acquires a certain tilt determined by the value of ratio I/Ic.

Figure 1.9: The trend of potential U(ϕ)/EJ for different values of the constant α = I/Ic.
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The dynamics of the Josephson phase can be studied in analogy with the motion
of a particle of mass M = C(h/2e)2 subject to a damping η = 1/RN(h/2e)

2 and
moving in a tilted washboard potential U(ϕ, I):

• if the JJ is biased with a current I < IC , the Josephson phase is trapped
in one of the cosine minima, around which it oscillates locally with the

plasma frequency ωp =
√

2eIC
h̄C

. Since the average value of the phase in

time is constant, there is no voltage drop and the junction is thus in the
superconducting phase that corresponds to the supercurrent branch of the
I-V.

• increasing the bias current, I ≥ IC , the tilt of the potential is such as to
transform the minima into inflections; the phase particle rolls down along
the tilted potential and the phase thus, changes over time leading to a
voltage V across the JJ. The transition to the resistive state occurs at a
finite voltage Vsw which, in the ideal case, is the sum of the gaps of the two
electrodes Vg = |(∆1 +∆2)/e|.

• reducing the bias current, (I < IC), the phase remains in a non-ohmic
resistive state. This state corresponds to the subgap branch of the I-V
curve. The junction continues to stay in this state until the current reaches
a specific value known as the retrapping current, denoted as Ir.

To take into account the dissipative effects of a JJ, the Stewart-McCumber pa-
rameter is introduced [31][32]:

βC =
ω2
c

ω2
p

=
2eIC
h̄

CR2
N (1.29)

linked to the quality factor Q of the circuit: Q = ωc

ωp
=

√
βC . ωC = 1/τC ==

(2e/h̄)Vc is the frequency linked to the characteristic time τC of the circuit. De-
pending on the value of βC , the following regimes are distinguished:

• Overdamped junctions for βC << 1 . These are JJs with a small capaci-
tance, very dissipative and therefore not suitable for quantum devices, as
it will better clarified in the next chapter. An overdamped junction has a
small capacitance hence a small moment of inertia and is thus immediately
re-trapped in a minimum of the washboard (Ir ∼ IC), as shown in Figure
1.10 a. Overdamped behavior is characterized by the absence of hysteresis.

• Underdamped junctions for βC >> 1. These are JJs with a large capac-
itance, so the dissipation is low and the moment of inertia is large. The
particle rolls down the potential until the washboard tilt is reduced I → 0.
Figure 10.b shows an IV characteristic of JJ underdamped: the vertical
branch in red represents the passage of the supercurrent through the junc-
tion, with a maximum value of IC (or −IC). When the current flowing
through the junction exceeds the critical current value, a finite voltage
value is observed at the ends of the junction and the so-called quasi-particle
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branch (green line in Figure 10.b) is observed, the junction returns in the
zero-voltage state and the I(V) curve is hysteretic; the normal state branch
is shown in blue.

Figure 1.10: Current-voltage characteristics of (a) an overdamped and (b) under-
damped JJ.

The RCSJ model is more precise in describing overdamped junctions: the capac-
itance C is small and equation 1.26 can be solved analitycally[23]. The voltage
dependence of the subgap branch in tunnel junctions, characterized by strong
non-linearity, has hindered direct comparison between experimental and theo-
retical curves. Consequently, alternative models have been studied such as the
non linear-Resistive (RSJN) model and the Tunnel-Junction-Microscopic (TJM)
model [33][34]. Both of them aim at accounting for subgap leakage currents by in-
corporating more sophisticated dissipative effects. For the RSJN model, the term
IN = V/RN can be approximated in two ways: considering two linear resistances
depending on the voltage [25][35],

IN(V ) = V

{
1/RL, for |V | < Vg

1/RN , for|V | > Vg
(1.30)

or a dependence I on V that follows a power law:

IN(V ) =
V

RN

(V/Vg)
n

1 + (V/Vg)n
(1.31)

with n >> 1. Meanwhile, the TJM model replaces the simple sinusoidal current-
phase relation and external parallel resistance with a more general expression
derived from microscopic theory[25][35]:

I =
Φ0

2π
C
∂2ϕ

∂t2
+ IqpV (t) + IJ2V (t)cosϕ(t) + IJ1V (t)sinϕ(t). (1.32)

The quantities Iqp,IJ1 and IJ2 have explicit dependencies on voltage bias and
temperature. Specifically: IJ1sinϕ(t) and IJ2cosϕ(t) correspond to processes in-
volving phase-coherent tunneling of Cooper pairs, while Iqp represents the quasi-
particle current [18][23].
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In the discussion presented so far, the effects of fluctuations have been neglected.
However, at a finite temperature, the phase particle can escape from the po-
tential potential wells for a value of the current I < IC . The escape processes
can occur either by thermal activation (TA), Macroscopic Quantum Tunneling
(MQT)[36][37] and phase diffusion (PD). In the first case, thermal fluctuations
excite the phase particle above the energy barrier, causing the switch to the resis-
tive state. In case of quantum tunneling, at low temperature and for junctions in
the underdamped regime, the phase particle tunnels through the barrier and goes
into the resistive state. In overdamped and moderately damped junctions, the
phase particle can be retrapped in one of the following minima after an escape
event (phase diffusion). At low bias, escape and retrapping processes can occur
multiple times, leading to extensive phase diffusion [38][39]. When the tilt of the
potential increases due to a change in bias current, the particle’s velocity rises, al-
lowing the junction to switch to the running state. Analyzing phase diffusion has
broader implications, including understanding the motion of a Brownian particle
in a periodic potential. These escape processes therefore lead to a switch to a
resistive state as a function of the bias current, manifest a stochastic process and
they can be fully characterized by switching current distributions (SCDs) mea-
surements [23] [40]. Briefly these three processes can be distinguished based on
the thermal behaviour of width of the distribution σ: for MQT the σ is constant,
TA is increasing, PD is decreasing [41]. At first glance, it might be assumed
that with increasing temperature, fluctuations in switching current would widen
the distribution. However, in the PD regime, distributions become more sym-
metric. This occurs because there’s a current range where escape and retrapping
processes overlap, resulting in the truncation of the tail of the switching current
distribution (SCD) [37][42].
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Figure 1.11: Escape process : a) the phase particle overcomes the barrier in the wash-
board potential by Thermal Activation (TA) or by Macroscopic Quantum Tunneling
(MQT) and then rolls in the running state; b): retrapping processes may occur for
intermediate levels of dissipation, resulting in a phase diffusion (PD) regime [23]. c)
The temperature dependence of the standard deviation, σ, of the switching current
distributions. Three distinct regimes can be identified, namely: (I) MQT for T < Tcr,
with σ constant, (II) for Tcr < T < T ∗ TA with σ increasing and (III) PD for T > T ∗,
σ decreases [40].

1.3 Josephson junctions for quantum device: the

transmon qubit

In the previous paragraphs the basic concepts of the Josephson effect and the
physics of Josephson junctions have been presented; through a Josephson junc-
tion we can manipulate and measure the macroscopic quantum phase difference
between two superconducting electrodes. This unique feature can be used to
transfer on a circuit the quantum mechanics laws commonly applied to micro-
scopic entities [43]. In particular, the study and use of JJs is being widely inves-
tigated in superconducting qubits: in fact their fabrication appears to be more
advantageous compared to qubits based on atoms or ions and their manipulation
is simpler [44]. In fact superconducting qubits, acting as artificial atoms, have
configurable energy-level spectra determined by circuit element parameters. This
parameter space allows predictable performance in terms of transition frequen-
cies, anharmonicity, and complexity [6].
The theory for the quantized Josephson junction is defined by assuming that ϕ
and the number of Cooper pairs n are operators that satisfy the commutation
relation[6]:

[ϕ̂, n̂] = i. (1.33)

The mechanical analogue of the tilted washboard potential thus turns into an
analogue of a quantum-mechanical description of a particle in a periodic potential,
following the correspondence described in table 1.1[45] :
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Particle Josephson junction

H = p2

2m
− Ucos(x

a
)− Fx H = (Q−Qg)2

2C
− EJcos(ϕ)− h̄

2e
Ibϕ

Cordinate x phase ϕ

momentum p=− h̄
i
∂x ∝ charge h̄Q

2e
= −2ei∂ϕ

velocity v=dx
dt

= p
m

∝ voltage 2eV
h̄

= ∂ϕ
∂t

= (2e
h̄
)2 1

C
h̄Q
2e

massa m ∝ capacitance (2e
h̄
)2C

force F ∝ bias current h̄
2e
Ib

Table 1.1: Analogy between the quantities of the quantum theory of a particle in a
periodic potential and the quantum theory of a Josephson junction [45].

Therefore in absence of dissipation, the behavior of a JJ can be described by an
Hamilatonian H, which is a function of the phase difference ϕ and of the charge
Q transferred between the electrodes:

H =
(Q−Qg)

2

2C
− EJcos(ϕ)−

h̄

2e
Ibϕ, (1.34)

where Ib is the bias current and Qg is the gate charge [45]. As already introduced,
the state of the junction is characterized by a macroscopic wave function Ψ. In
the time-independent case it satisfies the Schrödinger equation:

4EC(−i∂ϕ−Qg/e)
2Ψn − EJcos(ϕ)Ψn = EnΨn. (1.35)

This is called the Mathieu differential equation, its eigenfunctions Ψn are Mathieu
functions and EJ is the Josephson energy [45]. Depending on the ratio EJ/EC ,
we can distinguish two different regimes: phase regime and charge regime.

• for EJ >> EC , the JJ operates in phase regime or ‘tight-binding limit’[45].
In this regime ϕ is well defined and and Q has large quantum fluctuations;

• for EJ << EC , the JJ operates in charge regime or ’nearly free-electron
limit’[45]. It occurs when there are few Cooper pairs: n is well defined,
and ϕ has large quantum fluctuations; therefore, the charging nature of
the capacitor is dominating. In this situation the junction is known as a
Cooper-pair box (CPB).

As we will show in the following, the Josephson junction is the element that
provides the nonlinearity needed to turn a superconducting circuit into a qubit.
There are different approaches for incorporating a Josephson junction into circuits
to create a qubit.
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Figure 1.12: a) Circuit for a parallel LC-oscillator (quantum harmonic oscillator QHO),
with inductance L in parallel with capacitance, C. The superconducting phase on the
island is denoted as ϕ, referencing the ground as zero. b) Energy potential for the
QHO, the energy levels, in red, are equally spaced. Therefore ωj,j+1 = ω01 where ωjk

is the transition frequency between levels j and k. c) Josephson qubit circuit, where
the nonlinear inductance LJ (represented by the Josephson subcircuit in the dashed
orange box) is shunted by a capacitance, Cs. d) The Josephson junction introduces a
cosinusoidal potential, which consequently defines non-equally spaced levels and thus
categorises the system as an anharmonic oscillator, ω01 ̸= ω12[23][6].

By considering EL = ϕ2
0/L, the inductive energy due to an inductance L shunting

the junction, there are three relevant energies which identify the operation of a
qubit and we can distinguish three basic designs for superconducting qubits:
charge qubit, flux qubit and phase qubit. The circuit engineering and subsequent
qubit type differentiation occurs by modification of the energy scales identified
by the ratios EL/(EJ −EL) and EJ/EC . In the table 1.2 some configurations are
reported [46]:

EL/(EJ − EL)
0 << 1 ∼ 1 >> 1

<< 1 Cooper-pair box
∼ 1 quantronium fluxonium

EJ/EC >> 1 transmon flux qubit
>> 1 phase qubit

Table 1.2: The table shows the different configurations corresponding to the chosen
ratios. The ratio EJ/EC indicates how much the non-linearity of the system affects the
charge energy; the ratio EL/(EJ − EL) indicates how important the inductive part of
the circuit is compared to the nonlinear superconducting part.

When the ratio EJ ≤ EC holds, the qubit becomes highly sensitive to charge
noise, which is more challenging to mitigate than flux noise. Achieving high
coherence under these conditions is very difficult. Moreover, current technolo-
gies offer greater flexibility in engineering the inductive (or potential) part of the
Hamiltonian. Consequently, working within the EJ ≤ EC limit enhances the
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system’s sensitivity to changes in the potential Hamiltonian [47]. This discus-
sion will focus on the state-of-the-art superconducting qubits that fall into the
regime where EJ >> EC . One common approach is to shunt the junction with a
large capacitor (CB >> CJ), effectively reducing the qubit’s sensitivity to charge
noise. This circuit is commonly known as the transmon qubit (”transmission-line
shunted plasma oscillation qubit”) that is a modification of the CPB [48]. The
circuit diagram of this qubit is shown in the figure 1.13.

Figure 1.13: Circuit diagram of a transmon qubit[5].

The boxes indicate the two Josephson junctions of capacity CJ and energy EJ .
CB is the capacitance that is added to increase the EJ/EC ratio and Cg is a Cg

coupling capacitance for the LC resonant circuit, which is used to read the qubit
state [48]; the entire system is coupled to the external electronics Vg through
a capacitance Cin. All the capacitances of the circuit are involved in the total
charging energy of the system. Adding extra capacitance over CPB reduces the
charging energy EC , bringing the ratio EJ/EC from ∼ 10−1 to EJ/EC ∼ 102

[23]. Introducing the effective offset charge ng = Qr/2e+CgVg/2e, where Vg and
Cg denote the gate voltage and capacitance and Qr represents the environment-
induced offset charge, the effective Hamiltonian can be reduced to a form identical
to that of the CPB system [5]:

H = 4EC(ñ− ng)
2 − EJcos(ϕ̃). (1.36)

ñ and ϕ̃ represent the number of Cooper pairs transferred between the islands and
the gauge-invariant phase difference between the superconductors, respectively.
The resulting energy levels are largely insensitive to fluctuations in ng.
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Figure 1.14: Energy levels for different values of EJ/EC as a function of the number
of Cooper pairs ng. The level of anharmonicity depends on the ratio of EJ/EC . Fur-
thermore, the total charge dispersion diminishes exponentially with increasing values
EJ/EC , resulting in an attenuation of charge noise.[5].

As show in the figure 1.14, the sensitivity to charge noise decays exponentially
with the root of EJ/EC , while the anharmonicity decays with a power law: a
typical ratio for the trasmon is EJ/EC ∼ 102 [49] and the main operating fre-
quencies of transmons range from a few GHz to 10 GHz, with anharmonicities
of ≈ 100 to 300 MHz [48]. For these EJ/EC ratios, the low-energy eigenstates
are approximately localized states in the potential well. We can gain insight by
expanding the potential term EJ(cosϕ) into a power series since ϕ is small [6]:

EJ(cosϕ) =
1

2
EJcosϕ

2 − 1

24
EJcosϕ

4 +O(ϕ6) (1.37)

The leading quadratic term results in a quantum harmonic oscillator (QHO).
However, the second quartic term modifies the eigensolution, disrupting the oth-
erwise purely harmonic energy structure.
To tune the frequency of the qubit other degrees of freedom are necessary, so
as to be able to perform gate operations between the qubits, putting them into
resonance with each other or not [5]. Replacing the single Josephson junction in
a qubit with a loop interrupted by two identical junctions, forming a DC-SQUID,
a tunable Josephson energy can be achieved, which means that qubit frequency
can be tuned during an experiment. The SQUID works as a single junction with
an effective Josephson energy that is a function of the external magnetic flux
through the SQUID loop [23]. Due to interference between the SQUID arms, the
effective critical current of the parallel junctions can be adjusted by applying an
external magnetic flux through the loop. This flux quantization condition ensures
that the sum of branch fluxes and the applied flux equals an integer multiple of
superconducting flux quanta: ϕ1 − ϕ2 + 2ϕe = 2πk, where ϕe = πΦext/Φ0. By
controlling the external flux Φe, we modify the effective Josephson energy of the
split transmon.
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Figure 1.15: In orange box is reported the modular qubit circuit representations for
capacitively shunted transmon qubit and the corresponding qubit transition frequencies
for the two lowest energy states as a function of the applied magnetic flux in units of
Φ0. (a) and (b) Symmetric transmon qubit, with Josephson energy EJ shunted with a
capacitor yielding a charging energy EC (c) and (d) asymmetric transmon qubit, with
junction asymmetry γ = EJ2/EJ1 = 2.5 [6].

The Hamiltonian for this system includes a term related to the cosine of the
external flux [6]:

H = 4ECn
2 − 2E

′
(ϕe)J |cosϕ|, (1.38)

where E
′
(ϕe)J = 2EJ |cosϕe| is the effective Josephson energy that depends on

ϕe = πΦext/Φ0. Therefore, the qubit frequency can be tuned periodically with
Φext. Split transmons are sensitive to random flux fluctuations (flux noise). The
slope of the qubit spectrum (∂ωq/∂Φext) indicates how strongly flux noise af-
fects the qubit frequency. Sensitivity is nonzero except at multiples of the flux
quantum (Φext = kΦ0, where k is an integer) as shown in Figure 1.15. Recent de-
velopments focus on reducing flux noise sensitivity while maintaining tunability
[4][50]. Asymmetric split transmons achieve this by varying the junction area in
the SQUID [51]. The resulting Hamiltonian introduces a small frequency-tuning
range, compensating for fabrication variations without sacrificing coherence:

H = 4ECn
2 − 2EJσ

√
cos2(ϕe) + d2sin2(ϕe)cosϕ, (1.39)

with EJσ = EJ1 +EJ2, d = (1− γ)/(γ +1) is the junction asymmetry parameter
and γ = EJ2/EJ1. Again, we can treat the two junctions as a single-junction
transmon, with an effective Josephson energy corresponding to the second term
of the equation 1.39. The tuning of the qubit frequency by means of a d.c.
SQUID threaded with magnetic flux allows for the implementation of faster gate
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operations. However, this approach also introduces a sensitivity to random flux
fluctuations, which are known as flux noise. This results in dephasing times of
approximately tens of microseconds [4][50]. Furthermore, the milliamper currents
that control the dc and rf lines, inductively coupled to the SQUID, allows for flux
tunabilitu, but gives rise to crosstalk between qubits and heating, thus limiting
integration. To date, superconducting quantum circuits have almost exclusively
relied on aluminium-aluminium oxide-aluminium (Al/AlOx/Al) tunnel Joseph-
son junctions (JJs). However, recent advances have been made in the coupling
of ferromagnetic layers with insulating barriers within the JJ (superconductor-
insulator-superconductor-ferromagnet-superconductor). The utilisation of intrin-
sic insulating ferromagnetic materials (SIsFS) has resulted in the development of
magnetic JJs with high quality factors and low quasiparticle dissipation [13][14].
As will be explored in the thesis, the integration of ferromagnetic tunnel junc-
tions enables an alternative tuning of the qubit frequency, which, in principle,
can reduce the flow noise due to the presence of the squid.
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Chapter 2

Magnetic Josephson junctions

This chapter will explore the properties and functionalities of Magnetic Josephson
Junctions (MJJs). In the first section, we give a brief introduction on the ferro-
magnetism, focused on the type and appearance it takes in our devices. Then,
taking into account the metallic nature of standard ferromagnetic barrier, we in-
troduce the proximity effect as the fundamental mechanism related to transport
through a S/ Normal metal (N) interface. At the end, we examine the specific
features of MJJs in terms of transport properties and magnetic response to an
applied field, with a special focus on Superconductor-Insulator-Superconductor-
Ferromagnet-Superconductor (SIsFS) JJs. As it will be addressed at the end of
the chapter, such SIsFS JJs can combine the memory properties of standard SFS
JJs and the tunnel behavior of SIS JJS, thus providing an alternative control of
the qubit frequency in hybrid quantum architectures, the so-called ferro-trasmon.

2.1 Ferromagnetic materials

Ferromagnetic materials are characterized by a second-order phase transition
below the Curie temperature TCurie. In the absence of an externally applied
magnetic field, the spin system exhibits spontaneous symmetry breaking which
manifests in a sharp phase transition between the ordered ferromagnetic and the
disordered paramagnetic phases. For T > TCurie, the spins do not interact with
each other pointing in any direction and therefore the system is disordered and
possesses complete rotational symmetry. Below TCurie, the system exhibits a
spontaneous alignment of all spins in a single direction, resulting in the emer-
gence of macroscopic magnetization. In ferromagnets, the magnetization is thus
the order parameter associated to the phase transition.
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Near the Curie temperature, magnetization is proportional to (T − TCurie)
1/2

according to Landau’s approach to second-order phase transition [52]. In real
systems, magnetization behaves as (T −TCurie)

β, where β is not necessarily equal
to 1/2 [53]. At low temperatures, the spontaneous magnetization follows the
Bloch law T 3/2: the Landau approach offers a phenomenological view of second-
order phase transitions, whereas the Bloch thermal behaviour can be derived from
the thermal fluctuations of the magnons [54].
In this thesis, we focus on so-called band ferromagnets, which are found in alloys of
3d-transition metals, e.g., Fe, Co, and Ni, and are characterized by spin splitting
of bands.

Figure 2.1: Density of states showing spontaneous splitting of energy hands without
an applied magnetic field.

The majority spin-band contains more electrons, with the number density of
spin-up n↑ = 1

2
(n + N(EF )∂E; while the minority band has fewer electrons

spin-down, with the number density n↓ = 1
2
(n − N(EF )∂E with n = n↑ + n↓

and N(EF ) the density of states (DOS) at the Fermi energy EF . Magnetization
M = µB(n

↑ − n↓), with Bohr magneton µB, depends on the difference between
spin-up and spin-down densities. The resulting potential energy change ∆EP ac-
counts for exchange correlation. The system depicted in Figure 2.1, exhibits an
increase in kinetic energy as a consequence of the transition of electrons from a
momentum state below the Fermi momentum, k < kF , to a momentum state
above the Fermi momentum, k > kF . Spontaneuous spin-splitting occurs if po-
tential energy is larger than the kinetic energy increase. This occurs as a result
of a reduction in the number of doubly occupied degenerate states, which con-
sequently leads to a decrease in Coulomb repulsion. The Stoner criterion thus
requires strong Coulomb effects and a large density of states at the Fermi energy
[55].
The alignment of the spins in the same direction is due to the exchange energy.
Considering two atoms i and j having spin angular momentum S⃗i, S⃗j, the ex-
change energy is:

Eex = −2JexS⃗i · S⃗jcosϕ. (2.1)

Jex is the exchange integral, a constant that arises in calculating the exchange
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effect. It quantifies the interaction between spins. ϕ is the angle between the
spins. If Jex is positive, Eex is a minimum when the spins are parallel (cosϕ = 1)
and a maximum when they are antiparallel (cosϕ = −1). If Jex is negative, the
lowest energy state results from antiparallel spins. In ferromagnets, the exchange
energy tends to align the spins in the same direction, as introduced above with
theStoner criterion [55].

2.1.1 Domains and magnetization process

A ferromagnet at a temperature below its Curie temperature thus shows spon-
taneous magnetization. However, the magnetization is not necessarily homo-
geneous. Energetically there is a strong preference to keep the magnetization
inside the material, and this typically leads to the formation of domains. In this
small regions, all the magnetic dipoles are aligned parallel to each other. When
a ferromagnetic material is demagnetized, the magnetization vectors in different
domains exhibit varying orientations, resulting in an average total magnetiza-
tion of zero. In domains, the local magnetization reaches the saturation value
and each domains are separated by domain walls. Domains wall is a boundary
between adjacent domains in which the magnetization vector rotates from the
direction of the domain on one side to the direction of the domain on the other
side. The appearence of the domain configuration is the result of minimizing
the energy associated with dipolar fields: at the edges of a sample, the magnetic
field diverges, creating demagnetizing fields, these fields fill space and cost energy
B2/2µ0 per cubic meter. The energy associated with the demagnetizing field is
called dipolar energy:

Edip = −µ0

2

∫
V

M ·Hd, dτ, (2.2)

where Hd is the demagnetizing field, when this field is outside the sample it is
called stray field. The integral is taken over the sample volume. For an ellip-
soidally shaped sample magnetized along a principal axis: Edip = µ0

2
NdM

2V ,
where Nd is the demagnetizing factor, and V is the sample volume. This dipo-
lar energy can be saved by breaking the sample into domains, but each domain
created costs energy because of the cost of the domain walls. Dipolar energy
determines the type of domain wall that can form.
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Figure 2.2: The division of a crystal into domains results from a minimization of the
magnetostatic energy of the overall sample.

In the bulk, Bloch walls, in which the magnetisation rotates in a plane parallel
to the plane of the wall, are favoured; conversely, Neel walls, in which the mag-
netisation rotates in a plane perpendicular to the plane of the wall, tend to be
favoured in thin films, where there is an energy saving for keeping the magneti-
sation in the plane of the film. Other, more complex types of rotation do exist,
but they are always a combination of the Bloch and Néel types [53].
Additionally, the magnetocrystalline anisotropy energy Eanis plays a role in the
formation of the domain. When an external field tries to align an electron’s spin,
the orbit of the electron is strongly coupled to the lattice and thus resists the
attempt to rotate the spin axis. Eanis is the energy needed to overcome this
spin-orbit coupling and for a uniaxial anisotrop, Eanis can be described by:

Eanis = K0 +K1 sin
2 θ +K2 sin

4 θ + . . . . (2.3)

Positive K1 and K2 values lead to an easy axis of magnetization (minimized
energy at θ = 0), negative K1 and K2 values result in an easy plane of mag-
netization perpendicular to the axis (minimized energy at θ = 90·). There are
preferred directions for the spin directions, so the domain walls have an energy
cost, and so the final configuration of a multidomain ferromagnet is a trade-off
between dipolar energy, which tends to create more domains, and the cost of
crystalline anisotropy, so the formation of domains is a balance between the cost
of a demagnetizing field and the cost of a domain wall.
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The application of an external magnetic field H results in a modification of the
magnetic configuration within the ferromagnetic material, which in turn gives
rise to a change in the average magnetisation vector M. The relationship between
H, and the magnetic flux density, represented by the symbol B, in a ferromag-
netic material is represented by a hysteresis loop in Figure 2.3.a. During the
process of magnetisation, a specimen from a multi-domain state is converted into
a single-domain state along the direction of the applied field H, this process can
be schematized in the Figure 2.3.b. The arrangement of magnetic vectors Ms

within the domains is represented by a set of vectors originating from a common
point of origin.

Figure 2.3: a)the hysteresis loop: the curvature of the hysteresis loop varies based on
the type of material observed and can be narrow or wide. The graph identifies: the
coercive Field (HC), the field strength required to bring the material back to zero mag-
netization; the saturation Magnetization (MS), the maximum magnetization achievable
in the material; the saturation Field (Hs), the field value at which the magnetization
reaches its saturation value. b) Distribution of domains for different magnetization
states.

The point O in Figure 2.3.b represents the demagnetized State in which the
domain vectors are randomly oriented. The application of a positive magnetic
field results in the flipping of domains aligned in the opposite direction through
the movement of the domain wall by 180 (point B). The ease of this process is
contingent upon the material properties. The movement of domains can be hin-
dered by the presence of impurities and defects. An increase in the magnetic field
causes the spins within the domains to align with it, resulting in saturation (point
C). When the field is removed, the domains return to their preferred orientation
according to the anisotropy term, thereby generating a residual magnetisation,
Mr. The application of a negative field results in the reversal of domains aligned
in the positive direction, thereby producing the coercive field, Hc, at which the
magnetisation becomes zero (point E). The motion of domain walls through a
magnetic material depends in detail upon the metallurgical properties of the ma-
terial. Domain walls can be pinned by strains in the material, by surfaces and
impurities because of the magnetoelastic coupling. Domain wall pinning there-
fore increases coercivity. The magnetization of a ferromagnet also changes by a
series of discontinuous steps due to domain boundary motion, so that very small
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steps are sometimes seen on the magnetization curves. This is known as the
Barkhausen effect[54].

2.1.2 Proximity effect at S/N interface.

When a superconductor (S) is in contact with a normal metal (N), Cooper pairs
can penetrate the normal metal, thus inducing superconducting correlations in
N. This phenomenon is known as the proximity effect.

Figure 2.4: The order parameter Ψ smoothly transitions from the superconducting
phase (S) to the normal state (N) without abrupt changes. In more general cases, at
the interface, there can be a jump in the superconducting order parameter due to the
different properties of the superconductor and the normal metal. Understanding this
behavior is crucial for designing and analyzing S/N hybrid structures.

The results obtained through rigorous calculations based on the microscopic
theory, are covered in detail in [19]. The GL theory offers a phenomenological
account of the proximity effect, delineating the transition between the super-
conducting and normal phases. In the absence of a vector potential, the order
parameter, which depends solely on spatial variables, reaches its maximum value
(1) well inside the superconductor and vanishes well inside the normal metal. A
continuous change in the order parameter is observed at the S/N interface as a
function of distance x from the interface. Consequently, the initial GL equation
(Equation 1.4) is simplified to the following form:

ξN(c)
2d

2Ψ

dz2
+Ψ = 0, (2.4)

where ξN represents the coherence length in the normal metal [57]. Solving this
equation with the condition Ψ −→ 0 well inside the normal metal, the solution
is:

Ψ = Ψ0exp(−|x|/ξN). (2.5)

Here, Ψ0 represents the initial value of the order parameter in N at the S/N
interface. The coherence length ξN characterizes how Ψ decays within the normal
metal. It depends on temperature T and follows ξ2N ∝ 1/(1− t), where t = T/Tc.
By comparing the ξN with the mean free path lN , rigorous calculations gives two
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different expression of the ξN . When the normal metal is clean, i.e., the mean
free path lN >> ξN , the coherence length is given by:

ξN(c) =
h̄vN

2πkBT
, (2.6)

where vN is the Fermi velocity, and T is the temperature. In the dirty limit (lN is
smaller than ξN), the leakage of Cooper pairs is controlled by diffusive processes.
Introducing the diffusion coefficient DN = 1

3
lNvN , the coherence length becomes:

ξN(d) =

√
h̄DN

2πkBT
=

√
lN
3
ξN(c) (2.7)

In the general case of a superconductor in contact with a true normal metal, the
GL equations are not applicable to the normal region. Nevertheless, the qualita-
tive nature of the phenomenon remains unchanged, namely, the order parameter
penetrates the normal region to a certain depth, denoted by ξN , shown in the
Figure 2.4. The proximity effect in a bilayer sandwich was treated theoretically
by Kupriyanov and Lukichev [56]: they derived boundary conditions for the nor-
mal and anomalous Green’s functions G(E,x) and F (E,x) at the SN interface
introducing two parameters to characterize the S/N interface:

γ =
ρSξS
ρNξN

γB =
RB

ρNξN
,

(2.8)

where RB is the resistance for unit area of the S/N interface, and ρS,N are the
normal state resistivity of S and N materials, respectively. The first one quantifies
proximity strength, the second reflects interface transparency. As shown in Figure
2.5, γB determines the step in F (x) at the S/N interface, while γ represents the
suppression of F (x) in the superconductor near the interface.
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Figure 2.5: Schematic illustration of the spatial dependence of the Cooper pair density
F (x), Green’s function, for a representative, fixed energy E = E0 at an SN boundary.

At the S/N interface Andreev reflection occurs, a scattering process that ex-
plains at a microscopic level how single-electron states of the normal metal are
converted into Cooper pairs, thus transforming dissipative electrical current into
a supercurrent [57]. When an electron excitation in N is slightly above the Fermi
level, but below the gap of the superconductor, it is reflected as a hole excitation
slightly below the Fermi level. The missing charge of 2e is removed as a Cooper
pair. Andreev reflection is accompanied by the injection of a Cooper pair into S:
it converts electrons into holes and vice versa, altering the net charge distribution
of excitations, as shown in Figure 2.6.a. In a SNS JJ, the Andreev reflection is
the primary mechanism for Cooper pairs to be transferred across the N barrier.
It occurs as follows: an electron approaching one of the interfaces is converted
into a hole moving in the opposite direction. This process creates a Cooper pair
in the superconductor. The hole is then reflected at the second interface and
converted back into an electron, leading to the destruction of a Cooper pair (see
Figure 2.6.b).
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Figure 2.6: a) Andreev reflection at the S/N interface: an electron from the normal
metal with an energy ϵ < ∆ reaches the interface and pulls an electron of energy −ϵ
with opposite momentum and spin from the valence band into the superconductor,
forming a Cooper pair. This second electron is taken from the valence band, leaving
a hole. b) Andreev reflection in a SNS JJ. The electron obtains an extra phase of
ϕL − ϕR + π in each period.[23]

As a result of this cycle, a pair of correlated electrons is transferred from one
superconductor to an other, creating a supercurrent flow across a junction [58].
Due to the electron-hole intereference in the quantum well, formed by the pairing
potentials of the superconducting electrodes, standing waves with quantized en-
ergy EAB appear in the weak-link region. The corresponding quantum states are
referred to as Andreev bound states [58]. The spectrum of the elementary exci-
tations of a N layer in contact with S on both sides is quantized for E < ∆. The
Josephson current in each channel will result from two Andreev bound states with
specific phase dependent energies, lying inside the gap region −∆,+∆. The en-
ergy of the Andreev ground state will govern the Josephson coupling energy. The
imbalance in the populations of the two Andreev bound levels finally determines
the contribution to the net supercurrent flowing in each channel.[23].
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The temperature dependence of the I-V curves is a crucial factor in understand-
ing the nature of a junction. Accurate predictions allow us to assess deviations in
the IcRn vs. T dependence from the tunnel limit represented by the Ambegaokar-
Baratoff (AB) regime, which is valid for the SIS configuration. The temperature
trend also depends on the ratio between the mean free path l and ξN for which two
limits are distinguished based on the theory of Kulik and Omelianchuk [59] [60]:
the dirty limit, Kulik Omelianchuk 1 (KO1) for l << Leff < ξs, where Leff is the
effective length, and clean limit, Kulik Omelianchuk 2 (K02) for Leff << l, ξs.
These limits apply to point-contact Josephson Junctions and SNS junctions. In
point contacts, both in the dirty and clean limits, the values of IC at T = 0K
exceed the AB value, as shown in Figure 2.7. Despite this difference, the tem-
perature dependence exhibits a downward concavity. In SNS JJs, varying the
thickness of the barrier length with respect to ξN allows to pass from the short
(L << ξN) to the long regime (L >> ξN). At the lowest temperatures, IC
saturates, while at high temperatures (near Tc), IC exhibits a characteristic ex-
ponential dependence for large values of the ratio L/ξN . These two regions are
connected by a curve with upward concavity at intermediate temperatures. The
tail in the exponential growth and the width of the intermediate region primarily
depend on L/ξN [61].

Figure 2.7: a) The critical current-normal resistance product as function of the tem-
perature T, ICRn(T ) is shown for the AB (dashed red line), KO1 (grey dashed line),
and KO2 (blue continuous line) limits. b) ICRn is reported in units normalized to the
gap value ∆ as a function of temperature (T), considering various values of the ratio
between the barrier length (L) and the coherence length ξn [61].

2.1.3 Proximity effect at S/F interface

When superconducting correlations are induced into a ferromagnet, they exhibit
distinct characteristics compared to S/N proximity systems. The proximity effect
involves the penetration of Cooper pair amplitudes into a non-superconducting
material. Electrons and holes with opposite spins and momenta become cor-
related through Andreev reflection, extending superconductivity into the non-
superconducting region. In an S/N bilayer, these correlations decay exponen-
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tially with distance from the interface to the normal metal (N) due to dephasing
between electron and hole wave functions as explained in the previous paragraph
2.1.2. When the interface with a superconductor consists of a ferromagnet, the
up-spin electron, defined the spin orientation along the exchange field, decreases
its energy by the exchange energy Eex, while the down−spin electron energy
increases by the same value. To compensate this energy variation, the up-spin
electron increases its kinetic energy, while the down-spin electron decreases its
kinetic energy. As a result the Cooper pair acquires a center-of-mass momentum
2δkF = 2Eex/vF [57]. The direction of the modulation wave vector must be per-
pendicular to the interface, because only this orientation provides for a uniform
order parameter in the superconductor. The induced superconductivity is weak
and to describe it we use the linearized equation for the order parameter derived
from the generalized Ginzburg-Landau functional. The solutions in ferromagnet
are given by Ψ = Ψ0exp(kx) with a complex wave vector k = k1 + ik2 [57]:

k21 =
|γ|
2η

(√
1 +

TTci
Tci − Tcu

− 1

)
,

k22 =
|γ|
2η

(
1 +

√
1 +

Tci
Tci − Tcu

) (2.9)

where Tcu is the transition temperature of the system into the uniform super-
conducting state and Tci is the transition temperature of the system into the
non-uniform superconducting state. If we choose the gauge with the real or-
der parameter in the superconductor, then the solution for the decaying order
parameter in the ferromagnet is also real:

Ψ(x) = Ψiexp(−k1x)cos(k2x), (2.10)

with the condition k1 > 0 [57].
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Figure 2.8: Proximity effect at S/F interface. The exchange field causes an oscillation
of the order parameter

The system is thus characterized by the oscillation of the order parameter. In
real ferromagnets, the exchange energy, Eex is much larger than the energy scales
for the superconductivity. Consequently, the gradients of the superconducting
order parameter variations become significant, necessitating a microscopic ap-
proach. The Bogoliubov–de Gennes equations or Green’s functions, such as the
quasiclassical Eilenberger or Usadel equations, are commonly used for this pur-
pose. In the clean limit, it can be shown that the coherence length ξF is given by
[57]:

ξF (c) =
h̄vF

2(πkBT + iEex)
. (2.11)

In the dirty limit, the coherence length becomes:

ξF (d) =

√
h̄DF

2(πkBT + iEex)
=

√
3lF

ξF (c)
. (2.12)

Here, DF represents the diffusion coefficient of the ferromagnet, and lF is the
mean-free path of the F layer. In the dirty case, ξF1(d) and ξF2(d) are approx-
imately 1 - 10 nm [57]. In contrast, in the clean case, ξF1 is long as ξN (the
coherence length in the normal state), while ξF is short, determined by the ex-
change energy Eex [62][63].
In ferromagnetic junctions the damped oscillatory behavior of the order parame-
ter is responsible for many interesting effects, such as 0−π transitions depending
on the F layer thickness. A π junction is a Josephson junction in which the phase
difference of the electrodes in the ground state is π instead of 0. This effect was
experimentally demonstrated in early 2000s in the F thickness dependence of the
critical current Ic and superconducting critical temperature Tc [64] [66] [65]. Ad-
ditionally, a dominant second harmonic in the current-phase relation has been
observed as half-integer Shapiro steps [67] and magnetic interference patterns
with half the expected period [68]. Furthermore, spin-triplet pairing can occur
by introducing magnetic non-collinearity at the S/F interface, such as spin-mixer
layers [66][10]. The phenomenology of ferromagnetic junctions is very rich and
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they have been proposed for numerous applications from superconducting spin-
tronics for the spin-triplet current generation [11] and to phase shifters [69][70].
These applications are based on the long-range proximity effect, which is one
of the unconventional phenomena that occurs when a ferromagnet with a non-
homogeneous magnetization is employed. The non-homogeneous magnetization
gives rise to a spin-mixing and spin-rotation process that generate a triplet com-
ponent (S = 1, SZ = 0,±1).This component is not destroyed by the exchange
field in the ferromagnet; rather, it can propagate inside the barrier over distances
comparable to the coherence length in normal metals[71].

In this thesis work, the focus is centered in exploiting the memory properties
of these junctions for the development of a quantum hybrid circuit. Therefore,
it is of fundamental importance understanding their behavior in the presence of
a magnetic field. In JJs containing a F barrier, to evaluate the total magnetic
flux through the junction Φ, the flux ΦF due to the F magnetizationMF must be
considered: ΦF = µ0MFLdF , where L is the cross-section width of the JJ and dF is
the F thickness [72]. The total flux is thus given by ΦF = µ0HLdm + µ0MFLdF ,
where dm = 2λL + dF represents the thickness of the material penetrated by
the applied field. Due to the magnetic hysteresis of the F layer, the critical
current (IC) versus magnetic field (H⃗) curves exhibit an hysteresis, depending

on the sweeping direction of H⃗. When sweeping H⃗ from positive to negative
fields (down curve), the Fraunhofer-like pattern shifts to a negative field due
to the positive remanence of the ferromagnet. Conversely, when sweeping from
positive to negative fields (up curve), the pattern shifts to a positive field. In the
simplest case of a homogeneous F barrier in a single-domain state, we assume
that µ0MF = µ0Ms ≈ µ0Mr (where Ms is the saturation magnetization and Mr

is the remanent magnetization). The Fraunhofer pattern thus shows simply an
offset [73]:

±µ0Hshift =
∓µ0MsdF

dm
. (2.13)
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Figure 2.9: a) Hysteretic magnetization loop and corresponding b) IC(H) curve for an
SFS JJ: for down curve (black curve) the Fraunhofer-like pattern shifts to a negative
field due to positive remanence of the ferromagnet. For the up curve (red curve), the
pattern shifts to a positive field.

Analyzing IC(H) curves reveals information about the F barrier’s magnetization
process [72]. For example, in the case of a rectangular junction, in which the
IC(H) curve shows a Fraunhofer pattern described by equation 1.23, the critical
current exhibits minima at specific Φ values:{

Φmin = Φ0m,
Φmax = Φ0(n+ 1/2),

(2.14)

where m and n are integers. Using these relations it is possible to transform
IC(H) into Φ(H) dependence, and then into M(H). This method is known as
Josephson magnetometry [72].
Due to magnetic hysteresis of the Ic(H) curves, ferromagnetic junctions have been
proposed as memory elements for superconducting electronics[74]: by setting a
magnetic field, ferromagnetic junctions can realize two states, one with a higher
critical current IHigh

c , corresponding to logical ‘0’, and the other with a lower
critical current state I lowc , corresponding to logical ‘1’. If the initial state is ‘0’, a
positive magnetic field pulse can switch the memory to the ‘1’ state. Along the
rising edge of the pulse, the critical current moves along the up-curve, for the
falling edge of the pulse, the critical current follows the down curves. Along the
falling edge of the pulse, the opposite holds [71][72][75]. In the next sections, we
will show that the memory properties of MJJs can provide an alternative tuning
of the qubit.
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2.2 SIsFS JJs

A SIsFS junction consists of two superconducting electrodes separated by a com-
plex multilayer including a tunnel barrier I, an intermediate superconducting s
and ferromagnetic F film [75], as schematized in figure 2.10. A standard SFS junc-
tion operates in an overdamped regime due to the ferromagnetic nature of the
F barrier. By a careful choice of materials and thicknesses, the SIsFS geometry
allows to engineer ferromagnetic JJs characterized by high quality factors and
underdamped behavior, while preserving the memory properties of a standard
SFS. Indeed, the SIsFS structures have been introduced in order to obtain mem-
ory elements compatible with IcRN product [76][77] of standard superconducting
electronics [13][74].

Figure 2.10: SIsFS junction. The red line shows the distribution of pair potential
across the structure: it reaches bulk values in both S-electrodes, it is suppressed in
the superconducting interlayer s and vanishes in the ferromagnetic layer. The London
penetration length λL and the coherence length of the superconductor ξS are reported.

The Josephson effect in SIsFS junctions in the dirt limit can be described by
solving the Usadel equations and by applying the Kupriyanov-Lukichev boundary
conditions at Is, sF, and FS interfaces [75]. Similarly to what was done for the
S/N interfaces, parameters are defined for the characterization of the interfaces:
γBI =

RBIAB

ρsξs
, where RBI and AB are the resistance and area of the SI interface.
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Figure 2.11: Characteristic voltage (ICRN ) behavior in SIsFS structures as a function
of the ferromagnetic layer thickness dF for different superconducting interlayer thick-
nesses ds at a temperature of T=0.5Tc. Both thicknesses ds and dF are normalized
with respect to their coherence length ξs and ξF , respectively. The dashed black line
represents the behavior of the ICRN product for a conventional tunnel SIS JJ. At the
sF and FS interfaces: γBI = 1000,γBFS = 0.3, γ = 1 [75]

Figure 2.11 illustrates how the ICRN product varies with the ratio of ds and
dF with respect to their respective coherence lengths. Different operating modes
emerge based on material choices and layer thicknesses. By comparing ds with
the critical thickness dsc, which represents the minimal s-layer thickness in an sF
bilayer above which superconductivity persists at a given temperature, distinct
transport regimes arise [78]:

• Mode 1 (ds > dsc): The SIsFS structure acts as a series connection of
a tunnel SIs JJ and a ferromagnetic sFS junction. (a) For small dF and
IC,SIs > IC,sFS, the characteristic voltage resembles a standard SIS junction.
The ground state phase difference φ is controlled by the sFS part, allowing
for 0- or π− ground states. (b) At high dF , the structure behaves as a
standard SFS junction.

• Mode 2 (ds < dsc): Absence of superconductivity in the s-electrode leads
to a complex -InF- weak junction region and value of the critical current
of the order of SIFS JJs [78][79]. The dependence on ds is weak due to the
large decay length in the n-region with suppressed superconductivity.

• Mode 3(ds ≈ dsc ∼ 3ξs): the structure’s properties are highly sensitive
to the ferromagnetic layer’s thickness and exchange field, which control
superconductivity suppression in the sF bilayer. The latter tune the effec-
tive transition temperature T ∗, which is the transition temperature of the
bilayer sF, causing the appearance of the proximity-like tail observed in
temperature dependence of the IcRN as shown in Figure 2.12.
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Figure 2.12: Temperature dependence of the characteristic voltage of SIsFS structures
at different exchange field values in the F-layer. The short-dashed line represents the
behavior typical of a conventional tunnel SIS junction. Notably, the exchange field shifts
the effective critical temperature, corresponding to the transition of the sF bilayer into
the normal state. Experimental measurements inNb−Al/AlOx−Nb−Pd0.99Fe0.01−Nb
junctions confirm the existence of this effective critical temperature in these samples
[82].

Moreover, ds < λL, the whole structure still behaves as a single junction with
respect to an external magnetic field H, since ds is too thin to screen the magnetic
field. When the SIsFS junction is in mode (1a) and far from the 0 - π transition,
the current-phase relation has a standard sinusoidal form (Equation 1.8). Thus,
in a rectangular JJs we still observe a Fraunhofer-like dependence of the Ic(H)
curves. In this case, the total magnetic flux through the junction becomes [75][78]:

Φ = µ0MFLdF + µ0HLdm, (2.15)

where the thickness of the material penetrated by the applied field is dm = 2λL+
ds + dF + dI . This layout with ds > dsc and for ds < λL allows for the creation of
switchable elements with high quality factors and low dissipation for digital and
quantum electronics [13][80][81].
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2.3 Ferrotransmon

Superconducting quantum circuits have almost exclusively relied on aluminum-
aluminum oxide-aluminum (Al/AlOx/Al) tunnel superconductor superconductor
(SIS) Josephson junctions (JJs) [6] [83]. Exciting phenomena and functionalities
can be accessed by exploiting unconventional superconducting systems. This goes
beyond merely searching for the best qubit candidate; it’s also an advancement
toward a better understanding and control of Josephson-based quantum circuits.
These devices enhance the capabilities of superconducting electronics and deepen
our understanding of exotic phenomena that can arise in hybrid unconventional
superconducting devices. For instance, in the specific case of tunable transmon
qubits, which typically use external flux fields to change the qubit frequency,
hybrid superconductor-semiconductor structures have been employed to enable
voltage-tunable transmons (also known as gatemons [84][85]). For what concerns
magnetic Josephson junctions, so far they have been used as phase shifters in
digital and quantum superconducting circuits [66][10][86]. However, they haven’t
been considered as active elements for quantum circuits due to their inherent
high quasiparticle dissipation. This dissipation arises from the metallic nature
of standard ferromagnetic barriers, which negatively impacts the qubit perfor-
mance. Recent advancements have changed this landscape. By coupling ferro-
magnetic layers with insulating barriers inside the JJ (SIsFS or SIFS JJs [14])
and leveraging intrinsic insulating ferromagnetic materials (SIFS JJs), it’s possi-
ble to engineer ferromagnetic JJs with high quality factors and low quasiparticle
dissipation.
These tunnel-SFS JJs thus offer additional functionalities not only in supercon-
ducting classical circuits but also in quantum architectures. Recently, it has been
proposed to integrate a tunnel magnetic Josephson Junction into a transmon cir-
cuit to allow a tuning of the qubit frequency by means of magnetic field pulses,
in the so-called ferrotransmon architecture [7].
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Figure 2.13: In (a), ferro-transmon circuit design: the readout (RO) resonator is capac-
itively coupled to the qubit through Cg. The qubit is schematized as a hybrid SQUID
in parallel with a bias capacitor Cb. In the SQUID, there are a standard tunnel SIS
JJ and a tunnel ferromagnetic SFS JJ. Blue and red arrows indicate magnetic fields
applied along the z-axis and the x-axis, respectively. In (b), Ic (H) modulation in a
tunnel SIfS JJ. Blue and red curves in (b) refer to the down and up magnetic field
pattern, respectively. We highlight in each plot the low- and high-Ic level states (LO
and HI) and the working point (dashed black line).

The main idea behind the ferrotransmon, schematized in the figure 2.13, is to
achieve digital tuning of the qubit by exploiting the memory properties of a
tunnel-SFS JJ into the SQUID loop of a transmon circuit. The SQUID set-up
allows a tuning of the qubit frequency as previosly illustrated by applying a flux
Φz along the z-axis as shown in Fig. 1.15.a. Additionally, as shown in the previous
sections, pulsed magnetic fields allow switching between discrete critical current
values (LO and HI states) 2.13, thus allowing the tuning of the Josephson energy
between discrete values, by applying a magnetic field along the x-axis. Before the
pulse, the IC is in the high-level (HI) state. At the end of the pulse, IC transitions
to the low-level (LO) state.
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Figure 2.14: Calculated total Josephson energy EJ of a hybrid SQUID composed of a
SIS JJ with ESIS J = 10 GHz, i.e., ISISc ∼ 30nA, and a SIfS JJ with GdN barrier.
ISFSc is the critical current of the SFS JJ in the hybrid SQUID,which is fixed here to
350 nA. The 3D-plot shows the dependence of EJ on an external flux ΦZ (in units of
the quantum magnetic flux Φ0 and the magnetic field pulsed sequence Hp(t) in (c),
with time t normalized to τ .

In this configuration, the Josephson energy can be thus tuned exploiting the
dependence on ΦZ and ΦL:

EJ(ΦZ ,ΦL) = EJΣ(ΦZ)cos(πΦZΦ0)×
√

1 + d2(ΦL)tan2(πΦZΦ0) (2.16)

where we set EJΣ(ΦZ) = ESIS
J + ESFS

J (ΦL) and we denote as d(ΦL) the asym-
metry parameter:

d(ΦL) =
ESIS

J − ESFS
J (ΦL)

ESIS
J + ESFS

J (ΦL)
. (2.17)

The asymmetry of the SQUID (parameter d) plays a crucial role. In the sim-
ulation in Figure 2.14, the SQUID’s JJs have critical currents with a 10-fold
difference: ICSFS ∼ 350nA (dilution temperatures) and ICSIS ∼ 30nA. Far from
the sweet spots, multiple semi-integers of Φ0, the flux-noise sensitivity of the
transmon qubit is significantly reduced. The preference for working with SIsFS
junctions over those utilising insulating ferromagnets [66][87] is based on the the
larger availability of metallic ferromagnets, which can allow for the engineering
of ad hoc hysteresis cycles. The critical current ISFS of the tunnel-SFS junction,
along with its tuning via a local pulsed magnetic field ϕL, determines the ratio
EJ/EC and the qubit frequency Ω01. Specifically, Ω01(ϕZϕL) is given by:

Ω01(ϕZϕL) =
8EC

EJ(ϕZϕL)− C
, (2.18)

where C is the total transmon capacitance. To assess the feasibility of the ferro-
transmon and define its circuit design, its electromagnetic response in the two
states: HI and LO of the tunnel-SFS JJ has to be characterized. The qubit-
readout coupling g for the first two energy levels of the transmon is given by:

g = g01 =
e

h̄

√
Cg

C

√
h̄ωbare,RO

8Ec

, (2.19)
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where Cg represents the coupling capacitance and Ωbare,RO is the bare-resonator
frequency. In conventional transmon circuits based on Al or Nb technology, the
qubit frequency ω01 typically remains below 10 GHz [48]. This frequency range
allows easy detection using standard qubit measurement equipment. Charging
energies exceeding approximately 200 MHz ensure significant anharmonicity, ef-
fectively isolating a quantum two-level system[51][88][89]. In [7], a comprehensive
analysis of the aforementioned parameters is conducted, by considering two lay-
outs one with a hybrid DC-SQUID and one with a single tunnel-SFS JJ. The
analysis suggests the following ranges of values for the tunnel SFS critical cur-
rent in order to guarantee the transmon read-out, and suitable frequency and
anharmonicity values:

• For the hybrid DC-SQUID configuration, ISFSc ranges from 40 to 65 nA,
by settimg EC is set at 260 MHz (with Cg = 4fF and the bias capacitor
Cb = 70fF ) and ISISc at 30 nA.

• For the single tunnel-SFS JJ layout ISFSc ranges from 25 to 80 nA, by
assuming EC =200 MHz (with Cg = 4fF and Cb = 90fF ).

In the hybrid DC-SQUID configuration, similar to typical flux-tunable transmons,
the tuning extends up to 1 GHz. For a single tunnel-SFS JJ, the frequency shift
(∆ω01) is approximately 0.8 GHz. For a single tunnel-SFS JJ the tuning of the
qubit frequency is dependent on the magnetic pulsed field alone and this tunabil-
ity corresponds to a current variation (∆I) of around 30%, achievable even by
by engineering the F-barrier. Most importantly, by employing asymmetric minor
loops or rectangular MJJs [90], it is possible to engineer MJJs with finite ∆Ic at
zero field, thus avoiding the application of a static field that can be detrimental
for qubit operations. This means that instead of a hybrid SQUID in the qubit, it
may be worth to explore the layout in wihich a single tunnel-SFS JJ is used, thus
completely removing the effect of additional flux-noise fluctuations and improving
the scalability of the entire quantum circuit.
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Chapter 3

Experimental set-up

In this chapter the measurement setup employed to study transport properties of
tunnel ferromagnetic Josepshon junctions down to a temperature of about 10 mK
will be described. In particular, the cooling system and the electronic setup will
be illustrated. In particular, we will give an overview of the techniques used to
perform DC- measurements, a brief description of the fabrication procedure and
the ANSYS HFSS software used to carry out the electromagnetic simulations of
more advanced superconducting circuits.

3.1 Cooling system

The realization of cryogenic systems that presente 3He-4He mixtures were first
suggested by H.London in 1951[91]. The operation of dilution cryostats is based
on the behavior of the 3He-4He mixture in the liquid phase, whose phase diagram
is shown in the figure 3.1.

Figure 3.1: Phase diagram of the 3He/4He mixture. x = n3/(n3 + n4) is the molar
concentration of 3He.
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Above the coexistence curve (T > 0.86K), the mixture appears in the form of
a homogeneous mixture of 3He dissolved in 4He. The latter can be either in the
normal or superfluid state, depending on the molar concentration of 3He. When,
at a given concentration, the temperature is lowered below the coexistence curve
(T,x −→ T ′,x), the mixture spontaneously separates into two phases: one rich
in 3He (T ′,xc′) lighter and the denser one, rich in 4He (T ′,x). The lighter 3He
”floats” on the 3He-4He mixture; in order to cool the diluted 3He it is necessary
to subtract it from the 3He region, by using an external pumping rack. The 4He
has a vapor pressure that is too low to be aspirated and therefore only the 3He
evaporates. This process causes the 3He to cool, decreasing the temperature of
the entire system. The process by which a richer and a poorer region of 3He
is obtained differs in the two types of dilution cryostats: wet and dry. In this
thesis work, a dry cryostat, the Triton, was used for the characterization of the
measurement samples. Dry dilution fridges do not require cryogenic liquids. A
sketch of the cryogneic apparatus is schematized in the figure 3.2.
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Figure 3.2: Triton inner view where the different components are indicated:

• the RT-plate, at room temperature;

• the PT1, at ∼ 70 K;

• the PT2, at ∼ 4.2 K;

• the still-plate, at ∼ 0.7 K ;

• the IAP-plate, or cold-plate, at ∼ 0.1 K;

• the MC-plate, at ∼ 10 mK, which has a mixing chamber where the 3He
dilution process takes place.
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To isolate the cryostat, an outer vacuum chamber (OVC) is present and the vac-
uum is achieved, by means of an external pump, at a pressure of about 10−3mbar.
The mixing chamber is connected to the still chamber. In the latter the 3He is
distilled from the mixing chamber and flows towards the pumping lines. More-
over, the cool−down process is automatic and regulated by softwares. On the
still chamber plate there is a heater to regulate the temperature: in fact, if this
dropped rapidly the vapor pressure would be so low as to interrupt circulation.
It is also necessary to maintain the temperature of the heater in a given range:
an excessive power of the heater would lead to an increase in the vapor pressure
of the isotope 4He which would decrease the dilution efficiency. An optimal tem-
perature is estimated between 0.7-0.8K. The compressor that replaces the helium
bath generates a large amount of mechanical vibrations; to attenuate them, cop-
per braids were added which decouple the compressor from the plates, a detail of
which is shown in the figure 3.3:

Figure 3.3: Combination of braids and a very rigid support allows vibrations to be
reduced, down to the order of the micron.

3.2 Noise Filtering Systems

The study of the transport properties of junctions can be affected by noise sources
due to mechanical vibrations, caused by cryostat pumping systems, and by both
thermal and electromagnetic noise caused by electronic instrumentation. The
attenuation of noise sources due to mechanical vibrations is obtained thanks to
the copper braids described in the previous paragraph. As for electromagnetic
noise, it is necessary to appropriately filter the dc lines employed for transport
measurements of the superconducting samples. The filtering system to reduce
the electromagnetic noise is made up of two stages of filters, both for voltage
and current lines. The first stage is represented by low-pass RC filters with a
cutoff frequency of approximately 1MHz. Such filters lose attenuation at higher
frequencies, especially above a few GHz, so another filtering stage is required. The
second stage is composed of copper powder (CP) filters which filter the signal by
exploiting the oxidation of the copper grains present inside them. In the Triton
the CPs are located on the cold palet, at about 100 mK. Furthermore, there is
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also a system of shields that protect the samples from the external magnetic field
and is made up of two screens: an external one, the 1 mm thick cryoperm screen;
an internal one of lead 1 mm thick.

3.3 Electronic setup

The measurement setup is designed for four-contact measurements, using one pair
of electrodes for the current bias of the junction and the other pair for reading the
voltage. It is an advantageous technique compared to a two-contact measurement,
in fact it excludes the voltage drop due to the impedance of the filters which
would add to the voltage drop across the junction. The two voltage lines V−and
V+ are connected to a differential amplifier, with gain varying between 10 and
500, whose output signal is monitored through an oscilloscope. The study of the
transport properties of a superconducting device takes place using voltage-current
(I-V) characteristics at various temperatures. A low-frequency triangular signal,
∼ 11Hz connected to a variable resistor Rshunt, allows the superconducting device
to be current-biased. The bias current Imis is given by the relation:

Ibias =
Vpp

Rshunt +Rline +Rjunction

∼ Vpp
Rshunt

, (3.1)

with a peak-to-peak Vpp amplitude that falls on the variable shunt resistance
Rshunt, which is much higher than the resistance of the lines (Rline) and the
resistance of the junction (Rjunction). The error on the generated voltage is at
least of the order of 0.1−0.5%. The block diagram of the experimental apparatus
is shown in figure 3.4.

Figure 3.4: Scheme of the measurement setup; the junction is current biased; the current
Ipol is generated by Vpol/Rshunt, where Vpol is a triangular waveform(∼ 11Hz); voltage
and current amplifiers are connected to the junction and their outputs are connected
to the oscilloscope.

To attenuate the noise due to the electrical network, the amplifiers and the
electronic instruments are decoupled from the common ground. The first are
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powered by batteries, the second are connected to an isolator. The temperature
is read on a diode thermometer having low temperature sensitivity of about 1×
10−4K; the temperature error is difficult to estimate and varies depending on the
interval considered. However, it is possible to obtain good thermalization of the
system through the efficiency of the filtering system and the thermal angles placed
at the various stages of the cryostat. The I-V characteristic curves associated
with the junction transport measurements present a noise band of thermal and
electromagnetic origin. The Figure 3.5 shows a zoom of the noise band at zero
voltage measured on a superconducting nanostructure taken as reference.

Figure 3.5: Zoom of the I-V characteristic for the Al nanowire to 0.3K: noise band of
the zero voltage state

The width ∆V = 7µV . Having called V the measurement interval of the po-
tential, we can give an estimate of the relative error in percentage from the ratio
∆V/V = 1%. This relative error is associated with the measurement of Ic.

3.3.1 Measurements in presence of an external magnetic
field

For measurements in presence of an external magnetic field, it is used the Source
Meter Keithley 2400 as a current generator. It’s connected to a superconducting
coil made of NbTi. The coil is mechanically anchored to the mixing chamber of
the Triton dilution fridge. The current through the coil has a current-to-magnetic
field conversion factor of 0.1 T/A. The error on the generated current is specified
as 0, 5% of the coil current. Initially, a magnetic field is applied from zero to
an upper value (virgin curve), then the field is applied from a positive value to a
negative value (down curves) and back again (up curves). For each magnetic field
value, IV characteristics are acquired. The step size for the coil current (∆Icoil)
and the waiting time between acquisitions, tw are chosen for accurate measure-
ments, tw = 1s. The average of 20 sweeps is taken. The Source Meter Keithley
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2400 is remotely connected to a PC via a GPIB (General Purpose Interface Bus)
interface. Measurements can be initiated using LabVIEW programs.

3.4 Fabrication of SIsFS Josephson junctions

This work investigates hybrid aluminium-based tunnel ferromagnetic Jospeshson
junctions (SIsFS). The samples were fabricated at the CNR-ISASI in Pozzuoli
and at the Physics Department of the University of Naples. These junctions are
composed by a multilayer barrier comprising a thin insulating layer (Al/AlOx)
and a strong ferromagnetic layer (Permalloy, Ni80Fe20). Permalloy is a strong
ferromagnet, commonly employed in the fabrication of small-area JJs, in our
case facilitating the realisation of circular SIsFS JJs with a diameter of approx-
imately 4µm. In contrast to other superconducting materials, such as niobium,
aluminium is not a non-refractory material. Aluminium was selected for these
JJs due to its utilisation in contemporary qubit fabrication. Moreover, it is un-
able to withstand strong magnetic fields and possesses a relatively low critical
temperature. The fabrication of aluminium-based JJs employs a process previ-
ously optimised for niobium tunnel junctions, which involves anodisation of the
aluminium top layer and the addition of an additional silicon dioxide insulating
layer. This process reliably produces high-quality JJs with aluminium electrodes
of a size down to 12µm2, using standard optical lithography. The resulting JJs
exhibit Josephson energy values (EJ values) that are suitable for integration into
transmon quantum architectures. Furthermore, the process enables the deposi-
tion of additional layers, including a ferromagnetic (F) layer, subsequent to the
definition of the junction. The magnetic properties of Py (permalloy) remain sta-
ble, thereby enabling a further reduction in JJ cross-sections to micrometric and
sub-micrometric dimensions. In the course of this thesis work, junctions in which
the Permalloy was doped with niobium (Nb) and the soft ferromagnet gadolin-
ium (Gd) were characterised, in order to develop tunnel-ferromagnetic JJs with
diluted properties of the F layer.

Figure 3.6: Optical microscope image of a set of circular SIsFS with a diameter D
ranging from 2 to 10 µm. The inset illustrates the magnication of a circular junction
with D = µm.
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3.4.1 Codeposition system

For this thesis work, I witnessed part of the sample manufacturing process, in
particular that related to thin films deposition process. We primarily employ
sputtering to deposit uniform metallic thin films. Sputtering is a kinetic phe-
nomenon where energetic particles − specifically, ionized argon (Ar) atoms −
collide with a metallic target material. As a result, a vapor of metallic atoms
is ejected onto a nearby substrate. To enhance the deposition rate, we confine
the Ar ions using magnetrons, which generate strong magnetic and electric fields.
These ions follow helical cyclotron motion along the magnetic field lines, lead-
ing to a cascade of ionization events with the surrounding gas. At moderately
low pressures (typically below 10−2 Torr), sustained plasma forms. Importantly,
sputtering maintains the composition of the target material. Whether we sput-
ter a pure element or a compound, the vapor phase remains consistent with the
target during deposition. For ferromagnetic materials, the deposition system is
composed by three vacuum chambers, each connected by a valve:

• the first chamber is for the etching process; for codeposition, a new tech-
nique was adopted which involves the direct passage from the ion etching
system to the ferromagnet deposition system, without breaking the vacuum
using a load lock;

• the second chamber is equipped with two magnetron sources, one of which
is an active source. By regulating the power of the magnetrons, it is possible
to obtain alloys with a different stoichiometry.;

• the last one contains a single magnetron source for depositing the ferromag-
netic materials, in our case the Permalloy (Py). The distance between the
target and the sample holder is adjustable, but it has been fixed at 15 cm
and the target is placed in front of the substrate to avoid inhomogeneity on
the film. As an example, the application of a power of 220 watts resulted
in the formation of a layer of Permalloy comprising 10% Niobium;

• the system features a turbomolecular pump (assisted by a rotary pump) to
achieve a base pressure of approximately 10−7 Torr.
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Figure 3.7: Vacuum chamber for the Py deposition and for the ion etching.

3.5 Electromagnetic simulations

Ansys Maxwell is an industry-leading electromagnetic field solver used for design-
ing and analyzing electric machines, transformers, actuators, sensors, and other
electromechanical devices. It accurately characterizes nonlinear, transient motion
in these components, helping engineers understand their impact on drive circuits
and control system design. Ansys Maxwell precisely provides solutions for param-
eters such as force, torque, capacitance, inductance, resistance, and impedance.
By seamlessly integrating with circuit and systems simulation technology, it al-
lows performance evaluation before creating hardware prototypes. Recent inno-
vations in Maxwell have also been developed such as, ECAD-MCAD Integration,
Shell Elements Modeling and Resistive Thin Layers Modeling. ECAD-MCAD
Integration enables NVH (noise, vibration, and harshness) analysis on complex
printed circuit boards (PCBs) by predicting electromagnetic forces and losses
for thermal and NVH assessments. Shell Elements Modeling improves the accu-
racy of electromagnetic field calculations for EMI/EMC (electromagnetic interfer-
ence/electromagnetic compatibility) and magnetic shielding, helping to optimise
designs. In addition, Resistive Thin Layers Modelling improves arcing simula-
tions.
The simulator Ansys HFSS (High-Frequency Structure Simulator) is specifically
designed for high-frequency electronic products. It’s commonly used for designing
antennas, antenna arrays, RF/microwave components, high-speed interconnects,
filters, connectors, IC packages, and printed circuit boards. HFSS employs a
3D full-wave solver for RF and high-speed design. While HFSS excels in model-
ing transmission lines, it cannot directly combine power electronic circuits with
geometry models. Additionally, it doesn’t directly model power electronics’ elec-
trical characteristics using lumped circuit elements or black box representations.
For this thesis, Ansys HFSS was employed to simulate the magnetic field and its
components generated by aluminium lines of different shapes in a given region
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of space. HFSS allowed the investigation of how different shapes and sizes of
aluminium lines affect the magnetic behaviour. The simulations are discussed in
the fourth chapter and were carried out to investigate the most promising designs
for maximising the in-plane field at the junction.
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Chapter 4

Experimental results and data
analysis

In this chapter, we discuss the key role of tunnel SIsFS JJs and the prerequisites
for their on-chip control for the actual implementation of the hybrid ferromag-
netic transmon, illustrated in the section 2.3. We first examine the transport
properties of a SIsFS JJ with Al electrodes and Permalloy (Py: Ni80Fe20) as F
layer. We show that these SIsFS JJs exhibit the underdamped behavior of a
standard tunnel junction and Josephson energy values suitable for the implemen-
tation in the ferrotransmon. However, to demonstrate their switching properties,
we have to apply magnetic fields larger than 40 mT, which is unfeasible for the
perspective of superconducting quantum architectures. In the second section, we
thus discuss our preliminary results on SIsFS JJs employing a diluted NiFe alloy
(Ni70Fe11Gd3Nb9) to reduce the coercive field of the ferromagnetic barrier. We
demonstrate that the doping with Gd and Nb enables a reduction of the fields
to switch the junction. In contrast to standard flux-tunable transmons, which
feature flux-bias lines inductively coupled to d.c. SQUID loops, standard SIsFS
JJs require in-plane magnetic field to be switched. Motivated by this issue, at the
end of the chapter, we will devote a special focus on the design and simulations of
flux line layouts to generate in-plane magnetic fields, fundamental for an on-chip
control of the qubit frequencies in the ferrotransmon.

4.1 Characterization of SIS and SIsFS junctions

In this section, we will carried out an analysis of the transport and magnetic
properties of SIS and SIsFS junctions.

4.1.1 I-V curves and temperature dependence

So far, SIsFS based on Nb technology have employed soft ferromagnets, such as
Pd99Fe01, to ensure very small coercive fields [81][92]. However, PdFe alloy are
not suitable for the realisation of nanoscale devices, due to the percolative nature
of the exchange interaction between iron atoms, which can result in frustrated
magnetic properties when reducing the dimensions [93]. As addressed in Ref.
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[13], the use of a strong ferromagnet such the permalloy (Py: Ni80Fe20) allows to
scale SIsFS JJs down to submicron dimensions. However, while Nb serves as the
base material for most of conventional superconducting digital circuits, quantum
coherence times of Nb-based qubits are significantly shorter than those of their
Al-based counterparts [94, 95, 96]. For these reasons, the starting point of our
discussion is the investigation of SIsFS JJs with Al electrodes and Py as F barrier.

a) b)

Figure 4.1: a) Current-voltage (I-V) characteristic at base temperature 10 mK for a
Al (200 nm)/AlOx/Al (400 nm) SIS junction (blue curve) and for a SIsFS (Al (200
nm)/AlOx (3 nm)/Al (30 nm)/Py (3 nm)/Al (400 nm)) junction (orange curve). Both
junctions have a diameter of 4µm. b) I–V curves for a SIsFS junction with a diameter
of 4µm as a function of the temperature T.

The analysis presented here aims at demonstrating that a SIsFS junction can
behave as a serial connection of a SIs tunnel junction and a ferromagnetic sFS
junction. Through the study of the I-V characteristics, we gain an insight into the
transport properties of the junction and of its electrodynamics. The I-V curves
of a SIS Al (200 nm)/AlOx /Al (400 nm) and SIsFS (Al (200 nm)/AlOx/Al (30
nm)/Py (3 nm)/Al (400 nm)) junction with a diameter of 4µm are presented in
Figure 4.1. The acquisition of I-V characteristics is divided into two datasets,
which are intuitively identified as ”short range” (Figure 4.1a) and ”long range”
(Figure 4.1b). The distinction between the two acquisitions lies in the current
range. In order to obtain a more precise estimation of the critical current, data
close to the expected Ic are recorded in the short range dataset. In the long range
dataset, we give a bias current up to the resistive branch to provide an estimation
of RN , as well as the gap voltage Vgap. As the switching event to resistive branch
is stochastic, we have acquired and averaged 100 I-V curves for each temperature.
By comparing the I-V characteristics of a standard SIS and a SIsFS at T = 10
mK in Figure 4.1a, it is evident that the presence of the Py interlayer does not
affect the transport properties of the measured junctions, since almost the same
values of I c and the shape of the subgap branch of a standard tunnel junctions
are observed [97, 98]. Fixing a criterion based on voltage threshold (Vth ∼ 50µV),
we have estimated the values of the critical current Ic. At T = 10 mK, the tunnel
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SIsS junction has a critical current density value Jc = (0.33± 0.07)A/cm2, while
the ferromagnetic one has Jc = (0.30 ± 0.06)A/cm2. We have calculated the
error bar by propating the errors on the area of the junctions due uncertainties
in fabrication process (∼ 10% )[99] and on Ic (∼ 1%), as discussed in section 3.3.
Measurements as function of temperature up to Tc (∼ 1.3 K) are reported in
in Figure 4.1b. From each curve, the gap voltage Vgap = 2∆/e (Figure 4.2a)
and the IcRN product (Figure 4.2b) have been extracted. We have numerically
differentiated the I-V curve and estimated the voltage V gap in correspondence
with the dI/dV peak voltage. With this method, we have determined a value of
Vgap of ∼ 400µV at T = 10 mK. For voltage values that far exceed those of the
Vgap, we have calculated the normal resistance RN with an associated error of
3%. We have fitted the experimental temperature dependence 2∆

e
(T ) in Figure

4.2a by considering the Bardeen-Cooper-Schrieffer (BCS) relation in the weak
coupling limit:

2∆

e
(T ) =

2∆0

e
tanh

(
1.74

√
1− TC

T

)
; (4.1)

while IcRN(T ) curves in Figure 4.2b follow the Ambegaokar-Baratoff relation:

IcRN =
Bπ

2

∆(T )

e
tanh

(
∆T

2kBT

)
. (4.2)

The equation 4.2 differs from the previous Ambegaokar-Baratoff relation 1.16 for
the factor B, which is a fitting coefficient that takes into account the suppression
with respect to the theoretical value. The observed suppression of Ic enables a
return to the transmon regime, with compatible values of EJ , as evidenced in
reference [100]. The fits are shown as blue line in Figure 4.2, while Table 4.1
summarises the estimated parameters from Figure 4.2.

a) b)

Figure 4.2: a) Behaviour of Vgap as a function of the temperature: experimental data
for a circular SIsS and for a SIsFS are shown as black and red dots, respectively. The
blu line is the fitting curve calculated by using the equation 4.1. b) Temperature
dependence of critical current Ic: black and red dots indicate the experimental data for
a circular SIsS and for a SIsFS, respectively. The blue line is the fitting curve calculated
by using the equation 4.2. In both the panel, the junction are circular with a diameter
of 4µm.

59



JJs D Jc RN IcRN RNA 2∆0 B Tc EJ

(µm) (A/cm2) (kΩ) (µV ) (kΩµm2) (µV ) K µeV
SIS 4 0.33 ± 0.07 1.7 68 21.5 388 ±5 0.33 ± 0.04 1.26 ± 0.05 90.0 ± 0.9

SISFS 4 0.30 ± 0.03 1.7 70 21.5 404 ±4 0.31 ± 0.02 1.25± 0.06 88.5± 0.9

Table 4.1: Parameters for the SIS and SIsFS junctions: D represents the diameter of the
junction, A denotes the area, Jc is the critical current density, and RN is the normal
resistance estimated at T=10mK. The energy gap at T = 0 K ∆0 and the critical
temperature Tc are estimated as fitting parameters from the analysis of the Vgap as a
function of temperature. The parameter B is introduced to account for the observed
suppression of the critical current-normal resistance product IcRN in comparison to
the Ambegaokar-Baratoff expected value.

From the parameters in Table 4.1, we can conclude that the developed multi-step
fabrication procedure allows building magnetic tunnel SIsFS JJs preserving all the
features of standard Al tunnel SIS JJs. Most importantly, the Josephson energy
value associated with the junction is suitable with the operational parameters of
the transmon qubit, as outlined in reference [6], within which the ferrotransmon
operates [43].

4.1.2 Josephson magnetic pattern for SIS and SIsFS

As explained in Section 1.2.1, the application of an external magnetic field leads
to a diffractive modulation of the critical current of a Josephson junction. An
external magnetic field H determines a phase variation in the macroscopic wave
function of bulk superconductors, with a thus direct impact on the critical current.
Magnetic field measurements are conducted using a current-polarized NbTi su-
perconducting coil, which generates a magnetic field H orthogonal to the junction
supercurrent. The I-V characteristics are acquired as a function of the magnetic
field, which varies in sweeping ranges of order of mT. The critical current is then
estimated for each I-V curve as a function of the applied field, thus reconstructing
the magnetic dependence of the critical current.
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a) b)

Figure 4.3: a) Plot of Ic versus magnetic field H at temperature of 10 mK for the
SIS junction exhibits the characteristic Airy diffraction pattern. b) The hysteretic
behaviour of the Ic/Ic,max vs. H curve was acquired by applying a magnetic field in
excess of 50 mT. The black and red curves illustrate the magnetic pattern in the down
and up direction of the magnet, respectively.

In order to guarantee that a SIsFS junction behaves as a serial connection of a
SIs and sFS JJ, but still shows memory properties, the s interlayer has to ful-
fill the condition ds < λL [75]. We can estimate the London penetration length
from the SIsS magnetic pattern shown in Figure 4.3a. For circular junctions
with the current flowing out-of-plane and the field applied in-plane, Ic follows an
Airy pattern in flux with its first minimum at Φ = 1.22Φ0, as shown in Figure
1.7. From the minimum of the pattern in Figure 4.3a, we can thus estimate the
magnetic thickness dm of the SIsS JJ. In this case, we have that dm = 2λL + dI
with dI ≈ 1nm, and the London penetration depth for our aluminium films is
thus approximately 35 nm. Therefore, we can conclude that the s interlayer in
the SIsFS JJ is smaller than λL and we expect that the SIsFS in presence of
an external magnetic field operates as a single junction with respect to an ex-
ternal magnetic field H with an hysteretic behaviour of the Ic(H) curves [75].
For circular junctions with the current flowing out-of-plane and the field applied
in-plane, Ic follows an Airy pattern in flux with its first minimum at Φ = 1.22Φ0,
as shown in Figure 1.7. From the minimum of the pattern in Figure 4.3a, we
can thus estimate the magnetic thickness dm of the SIsS JJ. In this case, we have
that dm = 2λL + dI with dI ≈ 1nm, and the London penetration depth for our
aluminium films is thus approximately 35 nm. Therefore, we can conclude that
the s interlayer in the SIsFS JJ is smaller than λL and we expect that the SIsFS in
presence of an external magnetic field operates as a single junction with respect
to an external magnetic field H with an hysteretic behaviour of the Ic(H) curves
[75].
Upon applying a field of 50 mT, the ferromagnet acquires a remanent magneti-
zation and a shift described by equation 2.13 in the pattern is observed for the
SIsFS junction in Figure 4.3b. In order to ensure that the superconductor did not
trap flow in the aluminium, we took great care to rise the temperature above the
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Tc of the superconductor up to T = 4 K, and then lowered the temperature to T
= 10 mK again to perform the measurements. [53]. The measurements acquired
for SIsFS demonstrate that such junctions can be utilised as switching magnetic
elements, as evidenced by the cited literature [13][80][82][90]. These findings con-
firm that the SIsFS JJs can preserve the tunnel behavior of a standard SFS and
the memory properties of a SFS, thus suggesting the advantage of integrating
these MJJs into quantum architectures.
However, in order to observe a discernible shift in the Fraunhofer pattern, a mag-
netic field of 50 mT was required. However, this value is extremely hard to handle
for the implementation in a quantum circuit, as the requisite current is generated
by a coil. In a transmon, this current is typically provided by a bias line induc-
tively coupled. It is also essential to reduce the fields, as the aluminium traps
magnetic flux. The following section will examine how optimising the barrier can
result in shifts with smaller fields, before presenting alternative flux line designs
3.5.

4.2 Barrier optimization: Permalloy dilution

In the preceding paragraph, the data for a SIsFS with a Permalloy (Ni80 Fe20) fer-
romagnetic layer were presented. Permalloy is a strong ferromagnet that exhibits
a considerable exchange energy [101]. The optimization of the Permalloy barrier
for the samples presented was achieved through the doping of Permalloy with
gadolinium, which couples antiferromagnetically to the ferro-nickel, thus reduc-
ing the magnetization. On the other side, the doping of Permalloy with niobium
introduces non-magnetic inclusions, thus inducing domains walls motion mecha-
nisms that need smaller fields to be activated [66][102]. These properties reflect in
the Fraunhofer patterns. In this section, we present the data for a SIsFS JJs with
a ferromagnetic layer with the composition: Ni77Fe11Gd3Nb9. The same type of
analysis illustrated previously was carried out on these ferromagnetic junctions
to estimate their transport properties, which are shown in Table 4.2 with the
corresponding relative errors.

JJs D J c RN ICRN EJ

(µm) (A/cm2) (KΩ) (µV ) (µeV )
SISFS 21 C 4 0.30 ± 0.03 1.80 ± 0.05 95 ± 4 74 ± 2
SISFS 21 D 5 0.33 ± 0.03 2.57 ± 0.08 177 ± 7 119 ± 4

Table 4.2: Parameters of circular SISFS JJs with aluminum electrodes and
Ni77Fe11Gd3Nb9 as F layer a T = 10 mK.

The data indicate that the critical current density is comparable with that of
tunnel junctions, thereby demonstrating that the SIsFS junction with this dilu-
tion of the ferromagnetic barrier still behaves as a series and in the tunnel regime.
Furthermore, magnetic field measurements were conducted on these samples, as
illustrated in paragraph 4.1.2. We thus present the results of the measurements
conducted on a junction with a radius of R=2 µm and sweep ranges of (-25, 25)
mT (Figure 4.4a) and (-15, 15) mT (Figure 4.4b).
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a) b)

Figure 4.4: Hysteretic behaviour of Ic/Ic,max vs. H for a circular SIsFs junction with
aluminum electrodes and Ni77Fe11Gd3Nb9 as F layer a T = 10 mK. The curves were
obtained by applying a magnetic field of a) 25 mT and b) 15 mT. Red curves are
obtained by sweeping the magnetic field from positive to negative values, while black
curves are obtained by sweeping the field from negative to positive values.

Measurements in the magnetic field were carried out taking into account the
current generated to attenuate the electromagnetic noise, using a frequency of
5 Hz. For small currents, the switching is not estimated; the subgap branch is
the most sensitive to frequency resolution. A comparison of the Ic(H) presented
previously with the current data reveals an inverse hysteresis of the Ic(H) curves
in Figure 4.4. This behaviour may be attributed to the inverse proximity effect
[57][103], therefore further temperature analyses were conducted as presented in
Figure 4.5. The shifts of the magnetic field patterns in Figure 4.5 do not chage
by varying the temperature, indicating that the inversion of the up and down
curves has to be attributed to demagnetising field effects or to uncertainty on the
s layer thickness, which can be slightly larger than λL.
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Figure 4.5: Comparison of hysteretic behavior of Ic/Ic,max vs. H for a circular SIsFs
junction with aluminum electrodes and Ni77Fe11Gd3Nb9 as F layer a tT = 10 mK at
different temperatures.

The main result is that a shift in the Airy-like pattern is observed up to fields
of -15 to 15 mT, a factor of 3 reduction compared to the ferromagnetic junction
with undiluted Permalloy. This suggests that optimising the barrier by diluting
the permalloy with gadolinium and niobium is a promising way to achieve on-chip
control of the junction.

4.3 Comparative analysis of flux coil designs by

Maxwell3D HFSS Ansyss.

So far, the use of coils has not posed limitations in the experimental investigation
of our SIsFS JJs. However, in a superconducting quantum processor applying
a magnetic field with a coil would simultaneously affect all the qubits. There-
fore, each qubit must have a dedicated line for localized tunability. In current
qubit architectures, the field tunability is given by the presence of the SQUID,
with the bias current generated by a flux line that is inductively coupled to the
circuit. In the ferrotransmon, the ferromagnetic junction replaces the SQUID.
For implementation of this hybrid quantum circuit, it is essential to consider lo-
cal tunability on the chip and therefore seek solutions that provide an in-plane
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magnetic field. The challenge, therefore, is to determine the optimal method
for applying the magnetic field to the junction. To determine the extent of the
magnetic field that can be applied to the ferromagnetic layer, considering only
the in-plane components, we have performed Maxwell3D HFSS of the flux line
with a variety of designs. The objective was to achieve the desired magnetisation
while simultaneously minimising power dissipation within the chip. In collabo-
ration with Quantumware, a variety of design configurations were explored with
the objective of delivering a field pulse and tuning the ferromagnetic layer, with a
view to investigating the potential for integration into a quantum circuit. Three
distinct designs were subjected to investigation: a superconducting pillar, a CPW
(coplanar waveguide), and Helmholtz flux coil. This latter geometry is currently
under investigation by Quantware. In the analysis and modeling, a number of
factors were taken into account, both in terms of potential nanofabrication and
the constraints on the currents that can be employed in the context of circuit im-
plementation, with a view to avoiding thermal effects. All devices are assumed to
be made of aluminum, whose critical current density is of the order of 106A/cm2.
Furthermore, the dimensions of the analyzed designs were also considered in light
of this data.

Figure 4.6: Colour map of the magnitude of the magnetic field generated by a super-
conducting pillar as a function of the bias current and the distance from the surface of
the pillar: if the junction with a diameter of 4µm is placed at a distance of 3 µm from
the pillar, it can be seen that currents greater than 100 mA are required to obtain a
magnetic field of 5 mT in the middle of the junction.

For the superconducting pillar design, a preliminary color map of the magnitude
of the magnetic field generated as a function of bias current and distance 4.6,
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incorporating the aforementioned limits. The dimensional parameters of the pil-
lar and the distance between the pillar and the ferromagnetic layer were defined
according to the constraints imposed by the optical lithography fabrication tech-
nique. The ferromagnetic layer has circular symmetry with a radius of R = 2µm,
while the pillar has a radius of R = 5µm. The distance between the centres is
10µm. Figure 4.7 shows a sketch of the design.

Figure 4.7: Maxwell Ansys 3D design sketch: the ferromagnetic layer with radius
R = 2µm is placed at a distance of 3µm from the superconducting pillar with radius
R = 5µm. The distance between the centres is 10µm.

The graph below shows the evolution of the magnetic field as a function of
distance as the current varies. Since the simulations are assumed to have in-plane
control of the junction, only the y-component of the magnetic field is considered.
According to the preliminary analysis of the colour plot, it is possible to achieve
a field component of about 5 mT with currents of 200 mA. Although this current
is lower than the critical current for aluminium, there is a significant variation in
the y-component of the magnetic field along the diameter of the junction, so it
is not possible to obtain a homogeneous field. The pillar design, which has the
advantage of being dependent only on the radius of the pillar, does not appear
to be a promising design unless advanced lithography techniques are employed.
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Figure 4.8: The magnetic field trend as a function of distance is reported for a circular
junction with a radius of R = 2µm and a pillar with a radius of R = 5µm. The red
dotted line indicates the surface of the junction.

An additional design option under consideration is a superconducting CPW flux
line (SCPWF) situated beneath the junction. This configuration was employed
with the SIsFS junctions for the purpose of creating magnetic memories, with
the significant distinction that the CPW also served as the JJ electrode[90]. For
our purpose, we should consider to deposit at least a 100 nm insulating layer to
prevent galvanic contact between the flux line and the JJ.

Figure 4.9: Maxwell Ansys 3D design sketch of the SCPW: the ferromagnetic layer is
represented as a circular area with a radius of R = 2µm and a height of h = 400 nm
from the SCPW. The SCPW has a width of 12µm and a thickness of 1µm.

The ferromagnetic layer is consistently represented as a circular area with a
radius of R = 2µm and a height of h = 400 nm from the SCPW. This is done
to account for the additional layers that constitute the SIsFS junction. The
insulating layer, which constitutes the entirety of the junction, serves to preclude
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galvanic contact coupling. The line has a width of 12µm and a thickness of
1µm. The width of the SCPW is considerably larger than that of the JJ, and the
junction is placed in the centre of the line. This positioning and the proximity of
the layer to the line ensures that the magnetic field is uniform within the junction
area. Again, only the y-component of the magnetic field is examined.

Figure 4.10: The magnetic field trend as a function of distance, calculated for a circular
junction with a radius of R = 2µm, placed at a height of 400 nanometres from the line.
The line has a cross-sectional area of 12µm x1µm.

The resulting plots, 4.10, show that at a current of range of 100 to 110 mA a
magnetic field of about 5mT is reached, which aligns with the typical hysteresis
shift observed in SIsFS JJs. It can be observed that the magnetic field is uniform
across the entire area, and that proximity effects are not present.
The final design comprises two Helmholtz flux coils [104][105] with 3D spirals on
either side of the SIsFS junction (Figure 4.11). This configuration, also known
as the Air-Bridge, is currently undergoing analysis by Quantware. The two spi-
rals situated on either side of the junction are positioned in order to generate
a strong in-plane magnetic flux. The positioning of a superconducting strip in
close proximity to the SIsFS junction may facilitate the connection of the qubit
to a high-bandwidth environment, although this could potentially result in a loss
of coherence. Nevertheless, the coil design provides a safer alternative. The de-
sign is schematised in Figure 4.11, which depicts two connected coils separated
by a distance of 10µm. This distance is maintained in order to ensure electrical
continuity with the junction between the coils, which are connected under the
bridge. Electromagnetic simulations were conducted to examine the impact of
loop height on magnetic field generation. The dimensions of the flux lines were
fixed at 2.5µm width and 150 nm in thickness, while the dimensions of the loop
were set at 4µm and a height of 1µm.
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Figure 4.11: Top view of Maxwell Ansys 3D design Air Bridge sketch: the configuration
comprises two interconnected coils, with a distance of 10µm between them. The width
of the flux line is 2.5µm and it has a thickness of 150 nm; the loop presents a width of
4µm and a height of 1 micrometre. The radius of the ferromagnetic layer is R = 2.5µm.

Figure 4.12 shows the trend of the component y of the magnetic field along the
junction diameter of 5µm. It can be seen that the magnetic field is not uniform,
which is confirmed by the simulation of the vector trend of the B-field. This
indicates the presence of significant boundary effects due to the geometry of the
structure. Two of the bias lines connecting the lateral loops pass very close to the
junction, giving an additional contribution to the field. The design considered
still respects the manufacturing specifications in terms of the overall length of the
structures and the position of the joint relative to them. It should be noted that
this design makes it possible to obtain significant magnetic fields with a reduction
in bias currents compared to the other two designs studied. Indeed it is possible
to generate a field strength of 5 mT at the junction with a current of 50 mA.
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Figure 4.12: The trend of the y component of the magnetic field along the axis of the
coils is illustrated on the x-axis, with the region in which the circular junction with a
radius of R = 2.5µm being the sole consideration.

The simulations were conducted with the understanding that the current proof-
of-concept of the ferrotransmon is designed with the established fabrication of
micrometric junctions. In light of the aforementioned dimensionality of the junc-
tions, it can be posited that the line is more conducive to the ferrotrasmon archi-
tectural configuration. Furthermore, the fabrication of submicrometre junctions
is progressing in accordance with the advancement of quantum technology, with
the airbridge representing an optimal solution.
Finally, according to these simulations, we must further dilute the ferromagnetic
alloy in order to switch it in the ranges of fields supported by the flux lines men-
tioned above. We have thus conducted a simulation of the Fraunhofer pattern
(Figure 4.13) to estimate a plausible magnetization of the ferromagnetic layer
MF in order to observe a difference of the critical current at zero field of 30%
after the application of a magnetic field pulse. A 30% variation of the critical
current, as reported in reference 2.3, can lead to a tuning of the qubit frequency
of 0.8 GHz. For the diameter and thickness of the SIsFS JJs investigated in this
thesis, as shown in Figure 4.13 a magnetization of MF of approximately 0.1 T is
required.
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Figure 4.13: For SIsFS JJs with diameter of 4µm and thickness employed in this thesis
a magnetization MF of 0.1 T is required in order to provide a shift of the Fraunhofer
pattern in order to achieve a 30% reduction of the critical current at zero field.
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Conclusion

The ferrotransmon is an important proof of concept for superconducting quantum
architectures, in which the use of tunnel magnetic Josephson Junctions allows an
alternative tuning of the qubit frequency with important repercussions on the
scalability of the entire circuit. For the development of the ferrotransmon, it is
crucial to design a proper tunnel magnetic Josephson junction. We have thus
started our investigation with a comparative analysis of the transport proper-
ties of SIsFS junctions employing a Permalloy (Ni80Fe20) layer as F barrier with
a standard SIS tunnel junctions. We have observed that SIsFS junctions work
effectively within the tunnel regime, exhibiting low dissipation and Josephson
energy values compatible with the integration into this hybrid quantum circuit.
The magnetic field response of SIsFS junctions exhibited hysteretic behavior, thus
demonstrating that this layout can combine the memory properties of a magnetic
JJ and the tunnel behaviour of a standard SIS JJ. However, in SIsFS junctions
featuring a Permalloy layer a magnetic field of 50 mT is required to observe a
significant shift in the junction pattern. Such a field strength presents a signif-
icant challenge in terms of practical implementation in quantum circuits, where
the maintenance of low noise and high coherence times is of paramount impor-
tance. It is therefore evident that optimising the barrier represents a fundamental
aspect of the ongoing development of the ferrotransmon architecture. In order
to address this issue, we have conducted an investigation on the potential use
of a diluted Permalloy barrier (Ni70Fe11Gd3Nb9). This approach demonstrated
the ability to observe the required memory properties in a magnetic field range
of -15 to 15 mT, representing a significant reduction of a factor 3 compared to
the previous material. The successful demonstration of this dilution strategy
highlights the potential for customising magnetic properties to achieve on-chip
control of the junctions. By optimising the barrier, we can enhance the perfor-
mance and reliability of the ferrotransmon architecture, enabling it to meet the
stringent requirements of quantum computing applications. Looking forward, it
is necessary to reduce the requisite magnetic fields and to design flux lines in a
strategic way for this application. In contrast to standard flux-tunable transmons,
which feature flux-bias lines inductively coupled to d.c. SQUID loops, standard
SIsFS JJs require in-plane magnetic field to be switched. We have proposed three
distinct designs, each of which aims at providing a 5 mT magnetic field on the
ferromagnetic layer. In the case of micrometric Josephson junctions, the SCPW
(superconducting coplanar waveguide) design is identified as the optimal solution,
since it can provide more uniform magnetic fields. However, the SCPW, which is
also more standard from the fabrication point of view, may introduce additional
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challenges due to its capacitive coupling with the qubit and may contribute to
increased decoherence. The Helmholtz flux coil is expected to not significantly
impact decoherence. The fact that these lines generate less uniform magnetic
field can be mitigated by using submicrometric junctions, which are commonly
employed in trasmon architectures. Therefore, it is crucial to acknowledge that
junction optimization and flux line simulations complement each other in order
to improve the ferrotransmon architecture for on-chip control. In order to achieve
the ferrotransmon regime with a single SIsFS junction with a diameter of 4 µm,
it is necessary that the ferromagnet switches in the range of (-5,5) mT and has a
magnetization MF ∼0.1 T. In conclusion, the integration of advanced materials
and innovative designs shows great potential for improving qubit performance
and deepening our understanding of the physics behind hybrid Josephson junc-
tions. As we refine this architectural approach, we are poised to unlock new
possibilities in quantum information processing, leading to a scalable quantum
computing platform. Recognizing its strategic importance, the European Union
has recently supported and expanded research in this area through the Ferromon
project (Ferrotransmons and Ferrogatemons for Scalable Quantum Computers)
[106].
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