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Introduction

Quantum Utility is the ultimate goal of modern quantum research: it consists in successfully building
high-fidelity and large-scale quantum processors capable of running quantum algorithms that outperform
classical computers in terms of computational power [1][2][3]. Quantum algorithms can be applied in
many fields, including cryptography [4], quantum many-body and large molecules systems simulations
[5][6]. One of the most advanced quantum computers is based on solid state systems and, in particular, on
superconducting qubits which are able to encode and process the quantum information [7]. The building
blocks of these devices are the tunnel Josephson junctions [8], which allow to artificially implement an
atom-like system. Companies like Google [10], IBM [11], Rigetti [12] are currently laying the founda-
tion for the near future quantum computing and communication in superconducting quantum platforms,
tackling two fundamental roadmaps: increasing the number of qubits in quantum processors, while en-
hancing the coherence times and fidelity of superconducting qubits. Although fundamental milestones
have been reached, e.g. Quantum Advantage and Utility in platforms from 50 to 1000 of superconduct-
ing qubits [10][11], today’s platforms are still strongly affected by noise, resulting in deleterious effects
on the information processing. We are still not in the Fault-tolerant Quantum Computing era, but in the
so called NISQ (Noise Intermediate-Scale Quantum) era [13]. The more the Quantum Processing Unit
(QPU) grows in size, the larger is the number of parameters that can influence qubit operative fidelity
including, but not limited to:

(i) the qubit-qubit connectivity, which plays a fundamental role in scalable quantum devices [14];

(ii) the larger number of lines on the QPU, required to implement WRITE and READ operations, which
may cause crosstalk, and unavoidably introduce interactions with the external environment, thus
limiting the coherence;

(iii) the largest number of degrees of freedom required to design simultaneous optimal and low-error
readout and control signals.

This thesis work has been carried out in the context of the Quantum Computing Napoli (QCN) laboratory
research activities, at the University of Napoli "Federico II". The main goal is to provide an open-
source and scalable quantum computing node, where researchers can build and test their own quantum
algorithms with reasonable advantage. The QCN infrastructure includes at the time of writing a 25-
qubits processor. However, this system will be soon upgraded with a QPU including >40 qubits, thus
increasing the computational capabilities of this unique superconducting quantum computing node. In
this work we focus specifically on coherence properties and single-qubit gate fidelity evaluation in the
25-qubits QPU, in view of running quantum algorithms. Moreover, we provide a systematic study of
the device’s circuital parameters. The comparative approach presented here allows to understand the
fundamental relation between circuit engineering and superconducting quantum technologies physics.
The work is composed of four chapters.
In the first chapter we report the theoretical principles of the superconducting quantum platform. First,
we briefly describe the superconductivity phenomena and the Josephson effect which are the basis of
superconducting qubit devices. Then we focus on a particular qubit design exploited in this work, namely
the Transmon qubit. This has been designed to offer special features such as: the possibility to tune in-situ
the energy levels of isolated superconducting qubits through and external flux, to implement two-qubit
gates operations by setting on resonance two or more qubits thanks to flux tunability, and to interface
properly with the qubit for an efficient control and non-demolition readout of its quantum state [7][9].
In the second chapter we focus on the coherence properties of the superconducting qubit. We classify the
several noise sources that may occur in these systems, specifically in terms of how they couple with the
qubit system, and the deleterious effect they cause, primarily state relaxation and dephasing. Then we
introduce the concept of Universal Quantum Computing, namely a set of single- and two-qubit quantum
logic operations hardware agnostic, which allow for performing quantum algorithms.
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Finally, the scientific community has introduced mathematical and physical methods to quantify
the quality of the qubit performances by means of the state, readout and gate fidelity [15]. Here, we
introduce the concept of fidelity, focusing on the gate fidelity and its evaluation through the Randomized
Benchmarking method [16].
In the third chapter we describe the experimental setup exploited in this thesis work. We report the
quantum processing unit design, i.e. the 25-qubit processor we have characterized. Then we report
the hardware and software framework used to carry out the measurements, starting from the dilution
refrigerator and the cryogenic electronics, and then the room temperature electronics with the acquisition
software. In the last part we describe all the protocols necessary to characterize the qubit and to optimize
the control hardware parameters. Finally, we describe the measurement protocols used to measure the
coherence times and gate fidelity of qubits.
In the final chapter we collect, and discuss, the experimental results showing a detailed description of
the protocols used to characterize and optimize the control pulses for one qubit, and then reporting all
the measured parameters for each qubit we analyzed. We focus on coherence properties of the QPU, and
then on the single qubit fidelity we reached after the optimization procedures. A detailed comparison
of the coherence and fidelity performances of the QPU is finally reported. In the last paragraph, we
give preliminary results on two-qubit characterization, in view of future implementation of quantum
algorithms.
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1 Superconducting Qubits

Since the first demonstration of emerging quantum phenomena in superconducting qubits [17], coher-
ence times have been improved up to the millisecond [18], and it has been demonstrated high control and
readout fidelity in quantum processing units with up to thousands of qubits [19]. Therefore, supercon-
ducting qubits have gained an increasing interest for practical Quantum Computing applications.
In Sec. 1.1, we will report on how the information is encoded in superconducting qubits, and the main
concepts behind the building blocks of superconducting qubits, the Josephson junctions in Sec. 1.2.
After that, we will focus on a specific circuit design exploited in this work, the transmon qubit, and its
implementation in quantum processors from Sec. 1.3 to Sec. 1.5.

1.1 Introductory notes on qubits

Among the many platforms proposed to implement qubits, superconducting qubits are macroscopic in
size and lithographically defined. They feature energy-level spectra governed by circuit element param-
eters, and thus remarkably configurable.
While in classical computing the information is encoded in two logical states 0 and 1, in quantum com-
puting the information is encoded in terms of {|0⟩, |1⟩}, namely two energy states of a quantum two-level
system, or "qubit".
In Bloch Sphere representation, the qubit state is figured as a Bloch vector: |ψ⟩ = α|0⟩+ β|1⟩, where α
and β are coefficients such that |α|2 + |β|2 = 1 [7]. According to a common convention, the north pole
is the ground state |0⟩, and the south pole is the excited state |1⟩.
The z-axis, which connects the poles, is called longitudinal axis, since it represents the qubit quantization
axis for the states |0⟩ and |1⟩ in the qubit eigenbasis. In turn, the x− y plane is the transverse plane with
transverse axes x and y. Alternatively, the unit Bloch vector (Fig. 1) can be represented in terms of the
polar angle 0 ≤ θ ≤ π and the azimuthal angle 0 ≤ φ ≤ 2π:

|ψ⟩ = α|0⟩+ β|1⟩ = cos
θ

2
|0⟩+ eiφsin

θ

2
|1⟩. (1)

If state |1⟩ has a higher energy than state |0⟩ in a stationary frame, the Bloch vector would precess
around the z-axis at the qubit frequency (E1 − E0)/ℏ. For this reason it is common choice to represent
the Bloch sphere in a reference frame, i.e. the rotating frame, where the x and y-axes also rotate around
the z-axis at the qubit frequency, in which the Bloch vector appears stationary.

Figure 1: Unit vector on Bloch sphere.
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The physical realization of quantum information processing needs to fulfill the Di Vincenzo criteria
[20]:

I. A scalable physical system with well characterized qubits.

II. The ability to initialize the state of the qubits to a simple fiducial state.

III. Long relevant coherence times, much longer than the gate operation time.

IV. A “universal” set of quantum gates.

V. A qubit-specific measurement capability.

Superconducting qubits answer well to these criteria at the hardware level, since they rely on the circuital
engineering of macroscopic artificial atoms, known as Josephson junctions. Josephson junctions are
the main circuital elements in superconducting electronics, and exploit the intrinsic quantum nature of
superconductors. In the following, we will provide the main concepts behind superconductivity and the
Josephson effect, to better understand the operating principle of superconducting qubits.

1.2 Superconductivity and Josephson effect

The superconductivity is a thermodynamical state of matter that occurs in some materials below a critical
temperature TC . Example of superconducting material are Mercury, Aluminum, Cuprates and many
other metals [21]. Peculiar properties of the superconductive state are [22]:

• Perfect conductivity, i.e the resistivity drops to zero leading to dissipationless current flow;

• Meissner effect: a superconductor manifests perfect diamagnetism expelling magnetic field up to
a critical value Hc. For this reason, supercurrent flows only on the material surface within a region
of λ thickness, called London penetration depth.
The consideration set out above apply to I-Type superconductors. Different behavior emerges in
II-Type superconductors: after a first critical magnetic field value Hc1 the material is still super-
conducting but it lets himself be pierced by external magnetic field lines up to a second critical
value Hc2 . This condition is called Abrikosov-Shubinikov phase.

Another interesting property, consequence of the two presented above, and useful for many application
is:

• Flux quantization: in superconducting devices with a ring geometry the magnetic flux field is
quantized, Φ = n h

2e = nΦ0, where Φ0 =
h
2e is the flux quantum.

5



(a)

(b)

Figure 2: Superconductivity manifestations: perfect diamagnetism in (a) and zero resistivity in (b).

All the phenomenology of conventional superconductors can be fully explained by means of the
Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity [23]: below a critical temperature TC ,
virtual electron-phonon interactions allow to couple two electrons with opposite spin and momentum
into a Cooper pair [24]. Being Cooper-pairs boson-like particles, they can condensate in one macro-
scopic quantum wavefunction state, Ψ(r, t) = ψ0(r, t)e

iθ(r,t), and hence coherently flow in the material
without any dissipation. This is the key for building macroscopic artificial atoms. Indeed by coupling
two superconducting materials through a non-superconducting barrier, it is possible to establish a coher-
ent flow of Cooper pairs. This is called Josephson effect, and arises in what are known as Josephson
junctions [8].
A Josephson Junction (JJ) is composed of an insulating material layer interposed between two supercon-
ductors (Fig. 3a). In case the insulator is thin enough, the wave functions of the two superconductors
overlap, resulting in a transfer of Cooper pair from one island to the other as a function of their phase
difference φ = φ1 − φ2. The two fundamental equations of the Josephson effect are:

Is = Ic sinφ, (2)
∂φ

∂t
=

2e

ℏ
V. (3)

The first equation (Eq. (2)) describes the tunneling supercurrent Is as a function of the phase differ-
ence φ, and states that this is limited by the critical current Ic, the maximum current that can flow through
the junction before it switches to the resistive state with non-zero voltage. This depends on parameters
like geometry and materials [7].
The second one (Eq. (3)) describes the time evolution of phase difference as a function of the voltage
V across the junction with e and ℏ the electron charge and the reduced Planck constant, respectively.
Moreover the JJ is characterized by a non linear I − V characteristic shown in Fig. 3b.
The JJ acts as a non linear inductor [25] whose inductance is:

LJ =
ℏ

2eIc cosφ
. (4)

This means that the potential energy of a JJ is also non-linear: by combining the first and second Joseph-
son equations, we derive the phase dependence of the energy stored in the JJ as:

Us =

∫ t

0
Is(t)V (t)dt =

ℏ
2e
Ic

∫ φ

0
sinϕdϕ =

ℏIc
2e

(1− cosφ), (5)

where EJ = ℏIc
2e = IcΦ0

2π is the Josephson energy.
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(a) (b)

Figure 3: In (a) the circuital schematics of a JJ showing a Cooper pair tunneling through the insulating
barrier between two superconductor, due to the macroscopic wavefunctions superposition in the barrier.
In (b), non-linear I − V characteristic of a JJ when it is current-biased by and external DC current.

1.3 From CPB to Transmon

The starting point to describe the dynamics of a superconducting qubit circuit is the classical description
of a linear LC resonant circuit (Fig. 4a), a system in which the energy oscillates between electrical en-
ergy in the capacitor C and magnetic energy in the inductor L [7].
The Hamiltonian of LC circuit is analogous to that of harmonic oscillators with frequency ω =

√
LC

and mass m = C,

H =
Q2

2C
+

Φ2

2L
. (6)

Defining the reduced flux ϕ = 2πΦ/Φ0 and the reduced charge n = Q/2e, and promoting them to
quantum operators, it is possible to write down the quantum-mechanical Hamiltonian:

H = 4ECn
2 +

1

2
ELϕ

2, (7)

where EC = e2/(2C) is the charging energy required to add each electron of the Cooper-pair to the
island and EL = (Φ0/2π)

2/L is the inductive energy. The quantum operator n is the excess number of
Cooper-pairs on the island, and ϕ is the “gauge-invariant phase” across the inductor.
The Hamiltonian in Eq. (7) is identical to that of a quantum harmonic oscillator (QHO) with ϕ as the
generalized position coordinate, where the first term corresponds to the kinetic energy and the second
term is the potential energy. The solution to this eigenvalue problem gives an infinite series of eigenstates
|k⟩ with k ∈ N , whose corresponding eigenenergies Ek are all equidistantly spaced, Ek+1−Ek = ℏωr.
Here, ωr =

√
8ELEC/ℏ = 1/

√
LC denotes the resonant frequency of the system (Fig. 4b). This linear

characteristic of the QHO makes the simple LC circuit inadequate for processing quantum information.
As matter of fact, a system can be used as a qubit only if it is possible to define a computational subspace
consisting of two well distinct and addressable energy states, in which transitions can be driven without
exciting higher order energy levels in the system [7]. In order to solve this problem it is necessary to
add some anharmonicity (or non-linearity) into the system, so to achieve different transition frequencies
ω0→1 and ω1→2.
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Figure 4: In (a) LC circuit schematics, with a potential energy that resembles a QHO energy levels in
(b). In (c) circuit schematics of a JJ with non-linear potential energy (d).

The introduction of the Josephson junction (in Fig. 4c), a nonlinear, dissipationless circuit element,
leads to the required conditions [7][8][9].
By replacing the linear inductor of the QHO with a Josephson junction, the Hamiltonian in Eq. (7) reads
as

H = 4ECn
2 − EJ cosφ, (8)

where EC = e2/(2CΣ), CΣ = Cs + CJ is the total capacitance, which includes the shunt capacitance
Cs and the self-capacitance of the junction CJ , and EJ the Josephson energy (Sec. 1.2).
The Hamiltonian in Eq. (8) shows a potential energy that no longer takes a parabolic shape, but rather
features a cosinusoidal form, which makes the energy spectrum non-degenerate and allows to identify a
uniquely addressable quantum two-level system (Fig. 4d).
The system dynamics is governed by two dominant energy scales, reflected in the EJ/EC ratio. This
parameter is fundamental in order to define the working regime of a superconducting qubit.
As an example, one of the first implementation of a superconducting qubit, the Cooper-pair box (CPB),
or charge qubit, is composed of a superconductive island linked to a charge reservoir by a Josephson
Junction (Fig. 5), and works in EJ ≤ EC regime (charge regime) [9].
The CPB Hamiltonian is:

Ĥ = 4EC(n̂− ng)
2 − EJ cos φ̂, (9)

where n̂ and ng denote the number of Cooper pairs transferred between the islands and the effective
offset charge of the device, measured in units of the Cooper pair charge 2e. The offset charge can be
externally controlled by a gate voltage Vg capacitively coupled to the island such that ng = Q

2e +
CgVg
2e

[17].
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Figure 5: Circuital diagram of a CPB with a single JJ.

The CPB Hamiltonian in Eq. (9) can be solved exactly in the phase basis in terms of Mathieu
functions [26] whose eigenenergies are:

Em(ng) = ECa2[ng+k(m,ng)](−EJ/2EC). (10)

Here aν(q) denotes Mathieu’s characteristic value, and k(m,ng) is a function sorting the eigenvalues.
As shown in Fig. 6, the eigenenergy spectrum of the CPB depends on the ratio EJ/EC . In case of
low EJ/EC , the energy levels strongly fluctuates as a function the gate offset charge. This induces a
high charge noise sensitivity far from the so-called “sweetspots”, i.e. where dE/dng = 0. This is the
main reason why CPBs had shown low coherence times, which made their use impractical in large-scale
quantum computing [17]. However, in Ref. [9], it is shown that, by increasing the EJ/EC ratio around
50, it is possible to efficiently suppress charge noise fluctuations, so that the energy levels become more
and more stable against charge noise.
In order to increase the ratio EJ/EC , the JJ in the CPB is shunted by a capacitor in parallel Cq (Fig. 7a).
In this way, the total capacitance of the circuit is increased, thus effectively reducing the charging energy
to around few hundreds of megahertz. This novel device is called transmon (transmission line shunted
plasma oscillation) qubit, and tipically uses Aluminum JJs with critical currents of the order of few tens
of nanoamperes [8]. This provides Josephson energies of few tens of gigahertz, that compared with EC
gives EJ/EC ≫ 1.

One of the fundamental quantities of a transmon qubit is the anharmonicity [9]:

α = E12 − E01, (11)

withEij the energy separation between levels i and j. A transmon qubit is basically a weakly anharmonic
oscillator with a negative anharmonicity, α = −EC [7]. It is then important to mention that reducing
EC , also the anharmonicity decreases. This may seem a drawback: as the higher order energy levels
become more similar in energy to the computational two-level system, they start to interfere. However,
the transmon exploits a remarkable property: the charge dispersion reduces exponentially in EJ/EC ,
while the anharmonicity only decreases algebraically with a slow power law in EJ/EC , hence an energy
ratio sufficiently large (EJ/EC ≥ 50) can suppress charge sensitivity, while at the same time preserving
the computational space from higher order energy levels on a certain extent [9].
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Figure 6: Eigenenergies Em (first three levels, m = 0, 1, 2 of the qubit Hamiltonian) as a function of the
effective offset charge ng for different ratios EJ/EC . Energies are given in units of the transition energy
E01, evaluated at the degeneracy point ng = 1/2.

1.4 Control and Readout in Transmons

Transmon qubit versatility relies on its circuital design. It is engineered to feature flux tunability by
external flux, allowing to tune the qubit frequency for certain applications, as well as to tune more qubits
on resonance establishing quantum entanglement between coupled qubits. Moreover, it is possible to
perform quantum non-demolition readout measurement of the qubit state, and to control the qubit state
through opportunely shape drive pulses.

1.4.1 Flux tunability

One widely-used technique in transmon architectures is to use a loop interrupted by two identical junc-
tions in place of a single JJ, forming a DC Superconducting Quantum Interference Device (DC-SQUID)
(Fig. 7) [9]. Due to the interference between the two arms of the SQUID, the total critical current of the
DC-SQUID can be tuned by applying a magnetic flux threading the loop. In this case, the transmon is
flux-tunable, and is also known as split-transmon. The addition of a flux-tunable element in the circuit is
the key to implement two-qubit gate operations, allowing to set two qubits on resonance in a controlled
way.
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Exploiting the DC-SQUID loop it is possible to tune up the transmon, modifying the effective EJ by
applying an external magnetic flux ϕext [27]:

ωq(ϕext) =
√

8EJ(ϕext)EC − EC
2
, (12)

where

EJ(ϕext) = EJΣ cos

(
πϕext
ϕ0

)√
1 + d2 tan2

(
πϕext
ϕ0

)
, (13)

and, being EJ1,2 the Josephson energies of the two JJs of the SQUID,

d =
EJ1 − EJ2
EJ1 + EJ2

. (14)

The latter is known as asymmetry parameter and can influence the flux effect on the qubit frequency
in terms of noise sensitivity: working at zero derivative points dωq

dϕext
= 0 flux noise sensitivity is al-

ways minimized [9]. However, for asymmetric split-transmons, the qubit frequency tipically assumes a
smoother dependence as a function of the external flux fields, thus allowing to operate the qubit even far
from the sweetspot [9]. In this thesis, we have worked with symmetric flux-tunable transmons. There-
fore, we tipically prefer to work in the sweetspot of the qubits to suppress flux noise, whenever possible.

1.4.2 Quantum non-demolition readout

To achieve high fidelity quantum non-demolition (QND) measurements, transmons are operated in the
“dispersive” regime [7]. Since the qubit in transmon architecture is capacitively coupled to a super-
conducting resonator, which acts as a probe, it is possible to infer the qubit state by interrogating the
resonator rather than directly interacting with the qubit.
The qubit-resonator interaction is described by the Jaynes-Cummings Hamiltonian:

HJC = ωr

(
a†a+

1

2

)
+
ωq
2
σz + g

(
σ+a+ σ−a

†
)
, (15)

where ωr and ωq denote the resonator and qubit frequencies, respectively, g is the transverse qubit-
resonator coupling rate, a† and a are the resonator single excitation creation and annihilation operators,
σ+ and σ− operators represent the qubit exciting and de-exciting processes.
In the ∆ = |ωq − ωr| ≪ g limit, detuning between the qubit and the resonator is small compared
with their coupling rate and excitations are coherently swapped between the two systems leading to a
quantum demolition readout. Instead, in dispersive regime, the qubit is far detuned from the resonator,
thus ∆ ≫ g, and there is no longer a direct exchange of energy between the two systems. In this regime
the Hamiltonian in Eq. (15) can be approximated using second-order perturbation theory in terms of
g/∆, known as the dispersive approximation [28]:

HJCd
= (ωr + χσz)

(
a†a+

1

2

)
+
ω̃q
2
σz, (16)

where χ = g2/∆ is the dispersive shift and ω̃q = ωq + g2/∆ is an induced Lamb shift due to the void
fluctuations in the resonator. Hence, since the readout resonator frequency will shift depending on the
state of the qubit, as shown in Fig. 7b, it is possible to encode the quantum state into specific voltage
levels by fixing the readout resonator frequency corresponding to the |0⟩ state of the qubit.
It is worth to note that the dispersive regime applies only in the so called "low-photon" regime, i.e. when
the readout signal has sufficiently low power. As a matter of fact, the qubit-resonator coupling strength g
depends on the number of photons in the resonator [7]. The larger this number, the higher is the chance
to saturate the qubit energy levels, falling in what is known as bare state of the resonator.
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Figure 7: In (a) equivalent circuit of a flux-tunable trasmon qubit coupled with a LC resonator for
readout (light blue), and a transmission line for control signals (black). In (b) the dispersive shift χ of
the resonator frequency ωr depending on the qubit state.

1.4.3 Qubit drive

The initialization of qubit state, stated by Di Vincenzo criteria II, and the qubit driving along the Bloch
sphere, is obtained through a controlled radio frequency (RF) signal, which resonates with the qubit, and
is shaped according to the desired operation. In case of a capacitive coupling between the drive signal
and the transmon (Fig. 7a), the Hamiltonian reads as [7]:

H = HJC +Hd = HJC +
Cd
CΣ

Vd(t)Q̂, (17)

where HJC is the transmon Hamiltonian (Eq. (15)), Q̂ is the charge operator, Cd is the coupling capaci-
tance, CΣ = Cd+C the total capacitance, and Vd(t) is the drive signal. By writing Q̂ in terms of raising
and lowering operators

Q̂ = −iQzpf (a− a†), (18)

where Qzpf =
√

ℏ/2Z is the zero-point charge fluctuations and Z =
√
L/C is the impedance of the

circuit to ground, and since (a− a†) ∝ σy, the drive Hamiltonian Hd becomes:

Hd =
Cd
CΣ

Vd(t)
√

ℏ/2Zσy, (19)

and the total qubit Hamiltonian (omitting for simplicity the readout term in Eq. (16)) becomes:

H = −ωq
2
σz︸ ︷︷ ︸

H0

+ΩVd(t)σy︸ ︷︷ ︸
Hd

, (20)

where Ω = Cd
CΣ

√
ℏ/2Z, and H0 is the qubit two level system with ωq its transition frequency. Then,

using the Rotating Wave Approximation (RWA), the drive Hamiltonian reads as [7]:

Hd = ΩVd(t)(σy cosωqt− σx sinωqt). (21)

Assuming that the drive voltage Vd(t) has the generic form

Vd(t) = V0s(t) sin (ωdt+ ϕ) = V0s(t)(cosϕ sinωdt+ sinϕ cosωdt), (22)

where V0s(t) sets the drive amplitude with s(t) a dimensionless envelope function, and adopting the
definitions

I = cosϕ In-phase component, (23)

Q = sinϕ Out-of-phase component, (24)
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one can apply the prosthaphaeresis formulae. Finally, by expressing the drive pulse in the dipole ap-
proximation, valid for δω = ωq − ωd ≪ ωq + ωd, one can drop fast rotating terms and Hd takes the
form:

H̃d =
ΩV0s(t)

2
[(−I cos δωt+Q sin δωt)σx + (I sin δωt−Q cos δωt)σy] . (25)

When δω = 0, i.e. when the drive signals resonate with the qubit frequency,

H̃d =
ΩV0s(t)

2
(Iσx +Qσy) , (26)

showing that for an in-phase pulse (ϕ = 0) the drive applies a rotation around the x-axis of the Bloch
sphere, whereas for an out-of-phase pulse (ϕ = π

2 ) it applies a rotation around the y-axis. Therefore, one
can implement the main single-qubit gates in the universal gate set reported later in Sec. 2.2.2, i.e. the X
and Y gates, opportunely setting the phase of drive signals.

1.5 Couplings between superconducting qubit

The implementation of two-qubit gates requires a coupling between two qubits which can be achieved in
many ways, for instance via direct capacitive or inductive coupling or via capacitively coupled resonator
[7].

(a)
(b)

(c)

Figure 8: Schematic of capacitive and inductive coupling between two superconducting qubits: in (a)
direct capacitive coupling, where the voltage nodes of two qubits V1 and V2 are connected by a capaci-
tance Cg; in (b) direct inductive coupling, where the two qubits are coupled via mutual inductance M12;
in (c) capacitive coupling via a coupler in form of a linear resonator.

The Hamiltonian that describes two coupled systems takes the generic form:

H = H1 +H2 +Hint. (27)

In this case, H1,2 represent the isolated qubits Hamiltonians, while Hint is the interaction term, which
features different forms according to the particular coupling. Taking into account two transmon qubits
capacitively coupled through a high-frequency resonator coupler (Fig. 8c), which is specifically the case
of the device analyzed in this work, the effective Hamiltonian of this system in the dispersive limit, i.e.
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when both qubits frequency is detuned from the resonator coupler frequency, takes the form [29]:

Heff =
∑
i=1,2

(
ℏωqi
2

+ ℏχiσzi
)
+ ℏωra†a+ ℏJ(σ−1 σ

+
2 + σ−2 σ

+
1 ), (28)

where ωqi are the qubits frequencies, ωr is the resonance frequency of the coupling resonator and ±χi
are the dispersive qubit-state-dependent shifts of the resonator frequency. The last term describes the
transverse exchange interaction between the qubits of strength J = g1g2

2 ( 1
∆1

+ 1
∆2

) with the detuning
∆1,2 = ω1,2 − ωr and coupling strengths g1,2: the qubit-qubit interaction results in a virtual exchange
of photons with the coupling resonator. When the qubits are degenerate with each other, an excitation
in one qubit can be transferred to the other qubit by virtually becoming a photon in the cavity. Coherent
interaction between the two qubits is observed by performing spectroscopy of their transition frequencies
while applying a magnetic flux in order to tune qubits on resonance with each other and revealing an
"avoided level crossing" (Fig. 9). The new eigenstates of the coupled system are [30]:{

|00⟩, |ψs⟩ =
1√
2
(|01⟩+ |10⟩) , |ψa⟩ =

1√
2
(|01⟩ − |10⟩) , |11⟩

}
. (29)

For large qubit-qubit detuning, i.e. δ → ∞, the two two-level systems realize asymptotically |01⟩ and
|10⟩ states, as |ψa⟩ → |10⟩ and |ψs⟩ → |01⟩. On the other hand, when the detuning δ decreases, the
entangled |ψs⟩ and |ψa⟩ are realized and a gap opens in the energy spectrum. The possibility to establish
an avoided level crossing, hence a finite exchange of energy between two qubits, is fundamental for the
implementation of multi-qubit gates.

Figure 9: Spectroscopic measurement of the avoided level crossing as function of flux threading one
qubit (qC3) with the second qubit at a fixed frequency (qC1).
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2 Coherence and Fidelity benchmarking

The possibility to implement quantum algorithms in superconducting quantum processors is currently
severely limited by three main bottlenecks:

i) The number of coupled qubits so far is still not yet compatible with the required number to perform
feasible quantum computing [14];

ii) The errors committed when implementing quantum gates are still too large;

iii) Superconducting qubits are strongly affected by decoherence, even more when considering multiple
qubits coupled together.

In this thesis, we have characterized a 25-qubit transmon-based superconducting quantum processing
unit, which behaves as a NISQ (Noisy and Intermediate-Scale Quantum) device [13]. This is the first
prototype in Italy, and among the very few in Europe, with such a complexity in terms of number of
coupled qubits on the same chip, which will be used in the near future for the implementation of quantum
algorithms. As a first fundamental step in order to assess its feasibility for such implementation, it is
required to study its performances in terms of fidelity and coherence, which is the main goal of this
work. In this chapter, we provide the theory behind this interesting subject, which will be discussed and
applied in the remaining of this work.

2.1 Impact of noise in qubits

Random, uncontrollable physical processes in the qubit control and measurement equipment, or in the
local environment surrounding the quantum processor, are sources of noise that lead to decoherence and
reduce the operational fidelity of the qubits [7].
The source of noise can be categorized in: systematic noise, which arises from a process that is traceable
to a fixed control or readout error, leading to the same error each time, and then can be corrected through
proper calibration; stochastic noise, which arises from random fluctuations of parameters that are coupled
to our qubit. In turn, decoherence phenomena can be primarily categorized in longitudinal relaxation,
transverse relaxation and pure dephasing [7].
Within the standard Bloch-Redfield picture of two-level system dynamics, the density matrix ρBR for
the qubit state (Eq. (1)) reads as:

ρBR =

(
1 + (|α|2 − 1)e−Γ1t αβ∗eiδωte−Γ2t

α∗βe−iδωte−Γ2t |β|2e−Γ1t

)
, (30)

in which e−Γ1t and e−Γ2t are, respectively, the longitudinal and transverse decay functions, and the eiδωt

term, where δω = ωq − ωd, accounts for cases where the qubit frequency ωq differs from the rotating-
frame frequency ωd. Note that the matrix is constructed such that for t≫ (T1, T2), the upper-left matrix
element will approach unit value, indicating that all the population relaxes to the ground state.

2.1.1 Longitudinal relaxation

The longitudinal relaxation rate Γ1 is defined as:

Γ1 ≡
1

T1
. (31)

T1 is the 1/e decay time in the exponential decay function in Eq. (30), and it is the characteristic time
scale over which the qubit population will relax to ground state.
Indeed, Γ1 rate describes the depolarization, often referred to as "energy relaxation", along the qubit
quantization axis (see Fig. 10). This depolarization occurs due to energy exchange with an environment,

15



generally leading to both an "up transition rate" Γ1↑ (excitation from |0⟩ to |1⟩), and a "down transition
rate" Γ1↓ (relaxation from |1⟩ to |0⟩). Thus, the longitudinal relaxation rate can be written as:

Γ1 ≡
1

T1
= Γ1↑ + Γ1↓. (32)

These transition processes follow the Boltzmann equilibrium statistics, then Γ1↑ ∝ e
− ℏωq

kBT . Since su-
perconducting qubits are typically operated at very low temperatures, Γ1↑ can be neglected and only the
down-rate Γ1↓ contributes. For superconducting transmon qubits, typical T1 values are of the order of
tens or few hundreds of µs [7].

Figure 10: Longitudinal relaxation of the qubit state on the Bloch sphere [7].

Longitudinal relaxation is caused by transverse noise, which couples to the qubit via the x- or y-axis,
driving transitions between states |0⟩ and |1⟩. Types of noise which lead to longitudinal relaxation are:

• Spontaneous emission, i.e. radiative decay due to the qubit coupling with the electromagnetic field
inside the transmission line resonator [9];

• Purcell effect, i.e. an enhanced spontaneous emission of photons that occurs into the readout
resonant cavity [7][9][31];

• Charge noise in terms of dielectric losses, due to the charge fluctuations in the defects or charge
traps that reside in interfacial dielectrics, in the junction tunnel barrier and in the substrate of the
qubit [7];

• Quasiparticle noise, due to thermal breaking of Cooper pairs [7][32];

• Flux coupling noise, due to the coupling of the transmon to an external magnetic flux bias, for
tuning purpose, when on resonance with the qubit [7]. Coherence times in presence of this noise
are of the order of milliseconds [7], thus compared with the other mentioned above, doesn’t affect
predominantly the qubit relaxation.

2.1.2 Pure dephasing

The pure dephasing rate Γφ describes depolarization in the x − y plane of the Bloch sphere. Pure
dephasing is caused by longitudinal noise that couples to the qubit via the z-axis leading to stochastic
fluctuations of qubit frequency ωq, such that it is no longer equal to the rotating frame frequency ωd, and
causing the Bloch vector to precess forward or backward in the rotating frame, leading to a complete
depolarization of the azimuthal angle φ (see Fig. 11).
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In contrast to energy relaxation, pure dephasing is not a resonant phenomenon, therefore noise at any
frequency can modify the qubit. Secondly, since pure dephasing doesn’t involve energy exchange with
the environment, it is in principle reversible.

Figure 11: Pure dephasing of a qubit on the Bloch sphere [7].

In case of transmon qubit, principal noise sources that lead to pure dephasing are:

• Charge noise, which derives from fluctuations of the charge in the superconducting islands of a JJ
[7];

• Magnetic flux noise, which originates from the stochastic flipping of magnetic dipoles (spins) that
reside on the surfaces of the superconducting metals comprising the qubit, and resulting in random
fluctuations of the effective magnetic field that biases flux-tunable qubits [7][9];

• Critical current noise, which is generated by trapping and detrapping of charges associated with
spatial reconfigurations of ions inside the JJ [9];

• Photon number fluctuation, typically due to radiation coming from higher temperature stages in
the cryogenic environment used to cooldown the qubit [7].

2.1.3 Transverse relaxation

The transverse relaxation rate is:
Γ2 ≡

1

T2
=

Γ1

2
+ Γφ. (33)

It describes the loss of coherence of a superposition state (for example 1√
2
(|0⟩+ |1⟩)) and it is caused by

both longitudinal noise and transverse noise. Such a relaxation event is also a phase-breaking process,
because once it occurs, the Bloch vector points to the north pole |0⟩ (see Fig. 12), and there is no longer
any knowledge of which direction it was pointing along the equator. In other words, the relative phase
of the superposition state is lost. For superconducting transmon qubits, typical T2 values are of the order
of tens or few hundreds of µs [7].
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Figure 12: Transverse relaxation of a qubit on the Bloch sphere [7].

2.2 Universal Quantum Computing

The Di Vincenzo criteria IV demands for a Universal set of logic operations in order to physically
implement a quantum computer. Superconducting quantum processors successfully answer for this re-
quirement, since they allow to implement what is known as "Gate-based Quantum Computing". The
minimum number of gates required to build a universal quantum computer defines a "universal gate set"
[7], which must include operations that are able to rotate the Bloch vector around arbitrary axes on the
Bloch sphere (i.e. a complete single-qubit gate set), and at least one entangling two-qubit operation. As
shown in Sec. 1.4, the circuital design of superconducting transmon qubits allows for the implementation
of controllable rotations around the different axes of the Bloch sphere, henceforth to design microwave
and flux pulses able to perform single-qubit gates. Moreover, the possibility to couple two or more qubits
in the processor allows to perform two-qubit gates. In the following, we will report a detailed description
of the most fundamental single- and two-qubit gates in transmon qubits.

2.2.1 Single-qubit gates

In classical boolean logic, bits can assume two deterministic values, state 0 or state 1, whereas qubits, as
discussed in Sec. 1.1, besides the classical states |0⟩ and |1⟩, can also assume arbitrary superpositions
α|0⟩+ β|1⟩, corresponding to any other position on the sphere.
Single-qubit operations, i.e. quantum single-qubit gates, translate an arbitrary quantum state from one
point on the Bloch sphere to another point by rotating the Bloch vector a certain angle about a particular
axis. As shown in Fig. 13, there are several single-qubit gates, each represented by a unitary matrix
that describes the quantum operation in the computational basis of the σz operator eigenvectors, i.e.
|0⟩ ≡ [1 0]T and |1⟩ ≡ [0 1]T [7].
In particular, as shown in Fig.13:

▷ The Identity gate I ideally performs no rotation on the state of the qubit.

▷ The X, Y and Z gates perform a π rotation about the respective axis.

▷ The S-gate performs a π/2 rotation about the z axis.

▷ The T-gate performs a rotation of π/4 about the z axis.

▷ The Hadamard gate H performs a π rotation about an axis diagonal in the x− z plane.
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Figure 13: Quantum single-qubit gates. For each gate, the name, a short description, quantum circuit
representation, matrix representation, truth tables, and effect on Bloch vector [7].

One can notice that I, X, Y, Z gates correspond to the Pauli matrices σ0, σx, σy and σz , respectively:
since Pauli matrices are unitary, they are also reversible, thus applying a gate and its opposite should
result in the state vector returning to its original form [7]. Moreover, it’s important to say that applying
the Hadamard gate to a single qubit creates a superposition state of both |0⟩ and |1⟩. Indeed by making
several measurements of the qubit state, prepared in the |0⟩ state, after a H-gate is applied, a 50% proba-
bility to be either in |0⟩ or in |1⟩ should be observed, unless statistical errors are present [33].
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2.2.2 Two-qubit gates

Two-qubit quantum-logic gates are generally conditional gates and take two qubits as inputs, one as
control qubit, and the other as target qubit [7]. These gates are represented by unitary operators in the
two-qubit state basis vectors |00⟩ ≡ [1 0 0 0]T , |01⟩ ≡ [0 1 0 0]T , |10⟩ ≡ [0 0 1 0]T ,
|11⟩ ≡ [0 0 0 1]T which are applied to the target qubit, yielding a result depending on the control
qubit state. Thus two-qubit gates are reversible operations too. Common two-qubit gates are (Fig. 14):

▷ The Controlled NOT (CNOT) gate, which flips the state of the target qubit when the control qubit is in
the excited state |1⟩.

▷ The Controlled Phase (CPHASE or CZ) gate applies a Z-gate to the target qubit when the control qubit
is in state |1⟩.

▷ The iSWAP gate acts to swap an excitation between the two qubits providing an additional phase.

Figure 14: Quantum two-qubit gates. For each gate, the name, a short description, quantum circuit and
matrix representation, and the truth tables. Adapted from [7].

Some two-qubit gates, such as CNOT and CZ, are also called "entangling gates", because they can take
product states as input and produce entangled states as output, also called Bell states [7].
To get the representative unitary matrix of iSWAP two-qubit gate, let’s start from the total Hamiltonian
H = H1 +H2 +Hint (Eq. (27)). The interaction Hamiltonian Hint of two capacitively coupled qubits
can be written as [7]:

Hint = Jσy1 ⊗ σy2. (34)

By using the RWA, then dropping the fast rotating terms, and exploiting the flux tunability to bring qubits
on resonance by means of an external flux, Eq. (34) becomes [7]:

Hint = J
(
σ+1 σ

−
2 + σ−1 σ

+
2

)
=
J

2
(σx1σx2 + σy1σy2) . (35)
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Eq. (35) shows that a capacitive interaction leads to a swapping of excitations between the two qubits,
also said ’XY’ interaction. The unitary matrix corresponding to a XY (swap) interaction is:

U(t) =


1 0 0 0
0 cos Jt −i sin Jt 0
0 −i sin Jt cos Jt 0
0 0 0 1

 . (36)

Again, tuning the qubits into resonance for a time t = π
2J , one can implement the iSWAP:

U
( π
2J

)
=


1 0 0 0
0 0 −i 0
0 −i 0 0
0 0 0 1

 ≡ iSWAP, (37)

which simultaneously swaps an excitation between the two qubits, adding a phase of i = ei
π
2 . From an

operative point of view, the iSWAP is performed at the avoided level crossing where Φ = ΦiSWAP (Fig.
9). It consists in fixing the lower frequency qubit in the pair in its sweetspot and then tuning the higher
frequency qubit, initially prepared in its excited state |1⟩, until they are on resonance. By waiting for a
time τ in this configuration, the excitation is swapped back and forth between the two qubits, as shown
in Fig. 15.

Figure 15: Probability of swapping into the |01⟩ state as a function of time and flux. The pulse sequence
corresponds to preparing the |10⟩ state and performing a typical iSWAP operation for a time τ [7].

While for the iSWAP gate higher energy levels of the qubit could be neglected, in case of a transmon
qubit they can be used to implement the CZ gate. It is possible to show that in order to implement a CZ
gate the avoided level crossing must occur between the |11⟩ and the |20⟩ states. The Hamiltonian for this
system written in the {|00⟩, |01⟩, |10⟩, |11⟩, |02⟩, |20⟩}-basis is given by [7]:

H =



E00 0 0 0 0 0
0 E01 J 0 0 0
0 J E10 0 0 0

0 0 0 E11

√
2J

√
2J

0 0 0
√
2J E02 0

0 0 0
√
2J 0 E20

 , (38)

where the |02⟩, |20⟩ ↔ |11⟩ transitions are scaled by a factor
√
2 due to the higher photon number [7].
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By preparing the system in the state |11⟩ and moving towards the avoided crossing, the resulting
unitary operator in the computational basis is given by:

Uad

( π
2J

)
=


1 0 0 0

0 eiθ01(ℓ) 0 0

0 0 eiθ10(ℓ) 0

0 0 0 eiθ11(ℓ)

 , (39)

where θij(ℓ(τ)) is the phase acquired by the state |ij⟩ along the trajectory (ℓ) in (Φ, t)-space during time
τ . The movement should be sufficiently slow on a time-scale set by J , i.e. the movement should be
adiabatic. In terms of applied flux, the avoided crossing between the |11⟩ ↔ |20⟩ state happens before
|10⟩ ↔ |01⟩ (due to the negative anharmonicity of the transmon, α ≃ −EC) and consequently ℓ does not
take the states through the ΦiSWAP operating point (see Fig.16). Moreover, it is possible to define the ζ
parameter which quantifies the difference in phase acquired by the |11⟩ relative to the single excitation
states, also known as the repulsion of the |11⟩ due to the |20⟩ state [7]:

ζ = (ω11 − (ω01 + ω10)) . (40)

Then if one chooses a trajectory ℓπ such that θ11 = π and, after the adiabatic process, the single-qubit
phases get erased by means of applied flux, such that θ10(ℓπ) = θ01(ℓπ) = 0, the matrix in Eq. (39)
becomes:

Uad =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1

 ≡ CZ. (41)

Figure 16: In (a) the spectrum of two coupled transmon qubits as a function of the local magnetic flux
for the higher frequency qubit. The two lower branches corresponding to |01⟩ and |10⟩ are involved in
the iSWAP gate operation. The avoided crossing indicated in the black box is used to implement the CZ
gate. The black line with arrows delimited by the gray and black dots indicates a ℓ(τ) trajectory used to
implement the gate. In (b) the zoom in of the |20⟩ ↔ |11⟩ avoided crossing: the parameter ζ quantifies
the difference in energy between |11⟩ and |10⟩+ |01⟩ [7].
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Once discussed the main logical operations that one can implement in multi-qubit transmon devices,
we can finally define an example of Universal gate set as [7]:

G0 = {Xθ, Yθ, Zθ, Phθ, CNOT}, (42)

where Phθ = eiθI applies an overall phase θ to a single qubit. Therefore, a Universal gate set must
include the minimum number of gates required to perform all possible operations in terms of Bloch
vector rotations about arbitrary axes and entangling gates. Here, the CNOT plays the role of entangling
gate and it can be implemented by using both CZ gate combined with H gates or two iSWAP gates
combined with Xπ

2
and Z±π

2
gates (Fig. 17).

Figure 17: CNOT gate implemented by using CZ or iSWAP gates.

Moreover, in the frame of G0 gate set, the Hadamard gate can be decomposed as:

H = Phπ
2
Yπ

2
Zπ = i

1√
2

[
1 −1
1 1

] [
−i 0
0 i

]
=

1√
2

[
1 1
1 −1

]
. (43)

It is therefore quite clear that, in order to successfully run quantum algorithms, it must be possible to
implement each and any of these gates in the best way possible, i.e. with the lowest chance of error. In
this thesis, we have focused on one particular technique to quantify the gate fidelity and benchmark the
performances of a quantum processor: the randomized benchmarking.
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2.3 Fidelity and Randomized Benchmarking

The number of performable gates in a quantum computer has been theorized to be orders of magnitude
larger than the number of available qubits. Then, to build and test such a large system, a modular design
is essential. The concept of scalable gate-based quantum computing denotes a strategy of designing
systems and gates in testable sub-parts, keeping well in mind errors in computational quantum gates are
unavoidable. However, one can make an effort in detecting, mitigating and correcting such errors, falling
under the broad title of fault-tolerance [57]. In this paradigm, by reducing the probability that a gate acts
erroneously, one can reduce the extra coding overheads required. Therefore, it is first of all important to
define a way to quantify quantum processors performances in terms of their error rate.
The scientific community introduced a mathematical and physical way to quantify the quality of the
qubit performances by means of the state, gate and readout fidelity [15]. In this thesis we will focus in
particular on the evaluation of gate fidelity.
For a system consisting of n qubits, there are 2n pure quantum states that correspond to classical states of
n bits (i.e. {|0⟩, |1⟩} for a single qubit and {|00⟩, |01⟩, |10⟩, |11⟩} for two qubits). These orthogonal states
additively generate all pure quantum states of n qubits, thus a vector space V over the complex numbers
of dimension 2n [15]. When describing systems about which one does not have complete knowledge,
for instance when there is a possibility of unwanted interaction to occur, it is useful the concept of mixed
states, i.e. statistical ensembles of pure states. Any mixed state of a finite number of qubits can be
represented by a density matrix ρ =

∑
i,j ρi,j |i⟩⟨j|, with {|i⟩}i in any basis in V . Moreover, mixed

states can be represented as 2n × 2n matrices over complex numbers. Here we report some properties of
these density matrix:

• ρ is Hermitian and positive semi-definite;

• Tr(ρ) = 1;

• ρ2 = ρ.

An interaction that maps all pure states into other pure states is constrained to have a unitary (or anti-
unitary) matrix representation U acting on the space vector V . The result of this interaction acting on
a system represented by a density matrix ρ is given by UρU †. In practice, UρU † represents the ideal
implementation of unitary quantum gates. However, the implementation of these gates will always be
affected by environmental noise which leads to decoherence, so they will not actually be unitary. Being
Λ̂U the experimental implementation of a gate, the quality of Λ̂U is the degree to which the density
operator Λ̂U (ρ) = ΛρΛ† is close to UρU †.
The state fidelity describes the discrepancy between an experimental density matrix σ and its theoretical
expectation ρ as [15]:

F (ρ, σ) = Tr

(√√
ρσ

√
ρ

)2

. (44)

Note that if ρ = |ψ⟩⟨ψ| is a pure state, then F (|ψ⟩⟨ψ|, σ) = ⟨ψ|σ|ψ⟩. Moreover, if σ = |ϕ⟩⟨ϕ| is also a
pure state, then the definition further simplifies to F (|ψ⟩⟨ψ|, |ϕ⟩⟨ϕ|) = |⟨ψ|ϕ⟩|2, which is the square of
the overlap between the two pure states.
The definition of state fidelity can be extended to a definition of gate fidelity as [15]:

F
(
U, Λ̂U

)
=

∫
dρF

(
UρU †, Λ̂U (ρ)

)
. (45)

Operationally, this fidelity describes the average probability that, after initializing the system in a random
known state, a measurement after an applied operation will result in the correct expected final state.
For a pure state ρ = |ψ⟩⟨ψ|, the integrand in Eq. (45) becomes:

F
(
UρU †, Λ̂U (ρ)

)
= ⟨ψ|U †Λ̂U (|ψ⟩⟨ψ|)U |ψ⟩, (46)
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which reduces to 1 if Λ̂U (ρ) = UρU †, i.e. Λ̂U exactly implements the unitary gate U .
There are two fundamental difficulties in practically exploiting such definition: first, averaging over all
pure states is not experimentally possible, and second, no ideal inverse gate exists. The first problem
might be solved if the integral over all states in the gate fidelity definition is formally equal to a sum over
a finite representative set of states. About the second problem, if the inverting gate U † is actually a faulty
operation Λ̂U† as well (as it must be in a real experiment), then one must attempt to distinguish between
the errors of the operations Λ̂U† and Λ̂U in the data analysis through gate fidelity comparison.
An alternative approach to fidelity calculation is the Randomized Benchmarking (RB) procedure, a
Monte-Carlo integration over a randomized set of quantum states [15]. This approach relies on ran-
dom initialization and measurements of the system state: the advantage of a randomized approach is
in its faster convergence rate, simplicity, and immunity to certain adversarial noise models. Moreover,
the solution employed by the RB for the ill-characterized gates is to try to ensure that the preparation
and measurement steps are consistently faulty in a simple way so that these faults might be estimated
and eliminated during the analysis [34]. The RB procedure extracts the average gate fidelity over a set
of gates by performing fidelity estimations on randomized sequences of gates from that set, thus, the
resultant fidelity describes the aggregate quality of the quantum control, instead of the quality of any
particular gate. This makes standard RB a poor tool for diagnosing specific errors but an excellent tool
for describing overall performance.
In standard RB procedure the chosen gate set for the fidelity test is the so called Clifford gate set. Clifford
gates are generated by Ci = e±iσu

π
2 with u = x, y, then the complete set of single-qubit Clifford gates is

{I,±Xπ,±Yπ,±Zπ,±Xπ
2
,±Yπ

2
,±Zπ

2
} [35]. The RB protocol steps are then:

• Initialize the system in the ground state;

• Apply a sequence of random Clifford gates, in the pattern
∏
i CiPi with Pi the Pauli rotations, i.e.

I, X, Y and Z;

• Apply the last inverse Clifford or Pauli pulse to return to the initial state, i.e. the ground state;

• Perform repeated measurements of the state to estimate the average fidelity;

• Repeat with an increased number of applied gates.

In case no error has occurred during the operations sequence, the system would return to its initial state
and the experimental fidelity should be equal to 100%, i.e. the probability to measure the ground state
is 1. However experimental average fidelity features an exponential decay with the increasing number
of Clifford gates (called also "survival probability") due to the noise effecting operations outputs and
that can be well described with the introduction of the depolarizing channel [15]. The depolarizing
channels are superoperators of the form (1 − p)X + pTr(X)

d I parameterized by a single real number p,
called strength: a depolarizing channel of strength 0 is the identity superoperator and does not change
whatever operator to which it is applied; a depolarizing channel of strength 1 replaces the operator with
a normalized identity operator (with d = 2n). Lastly, considering the composition of two depolarizing
channels Λ̂a with strength pa and Λ̂b with strength pb [15],(

Λ̂a ◦ Λ̂b
)
(X) = (1− pa)(1− pb)X + (1− (1− pa)(1− pb))

Tr(X)

d
I (47)

is also a depolarizing channel with strength (1 − (1 − pa)(1 − pb)). Then, the average fidelity of a
lenght-l sequence is described by a product of l depolarizing channels of the same strength ps = ϵs

αn
,

with ϵs the probability that a step could introduce an error, and one additional depolarizing channel of
different strength pm = ϵm

αn
with ϵm corresponding to the State Preparation And Measurement (SPAM)

probability errors. The result is a depolarizing channel with strength 1− (1− pm) (1− ps)
l which gives

the average fidelity as [15]:

Fl = (1− αn) + αn

(
1− ϵm

αn

)(
1− ϵs

αn

)l
, (48)
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where αn = 2n−1
2n for n qubits. Therefore, the measurement of the gate fidelity allows to get information

on the quality of the gate implemented on the actual hardware too.
Finally, with optimized control, the fidelity is limited by decoherence processes such as energy decay
and dephasing. The reduction on average fidelity due to these uncorrelated process for a N -qubit system
is [36]:

F̄N = 1− d

2(d+ 1)
τ

N∑
k=1

(
Γk1 + Γkφ

)
, (49)

where d = 2N , Γ1 and Γφ are the characteristic rates of the qubit, and τ is the mean duration of the gate
regardless of which one is applied (further details in Appendix A).
Finally, let us now give a definition of readout fidelity, which is strictly related to the Signal to Noise
Ratio (SNR) of the integrated signal power of the detector used to infer qubit state. In transmon qubits,
for example, it is related to the SNR of the voltage measured across the readout resonator in the dispersive
regime used to identify the qubit state indirectly and in a quantum non-demolitive way (Sec. 1.4.2). A
qualitative relationship is given by the formula [37]:

F = erf

(√
τintSNR

2

)
, (50)

where erf is the error function and τint = t
T1

is a dimensionless integration time normalized to the qubit
decay time. This expression, valid only in the ideal case of no qubit decay, states that maximizing the
SNR correspond to maximizing the fidelity. A specific definition of SNR is given in Ref. [38]:

SNR =
ηκ|β|2 cos2 (θβ − ϕ)

Γ1
, (51)

where:

• η = κout
κin+κout

1
Nnoise+1 is the detection efficiency, where Nnoise is the effective number of noise

photons in the measurement and, κin and κout are the resonator decay rates with respect to the
input and output line capacitively coupled (see Fig. 18) [39]. The model suggests that once a
photon has entered the resonator, it has only two possible paths to exit. Then, measuring only
at the output port (i.e. in the limit κout ≫ κin) this value approaches the maximum of 1. It is
quite important to note that when working in the dispersive regime, input signals in the readout
resonator of a transmon are very weak, and therefore cryogenic amplification stages are required,
which add to the complexity of the circuital components on chip. In fact, considering the noise
figure, defined as F = SNRin/SNRout, which describes the degradation of the SNR as it passes
through each circuital component, it is shown that cascaded components lead to a total noise figure
given by [39]:

Ftot = F1 +
F2 − 1

G1
+

F3 − 1

G1G2
+ ..., (52)

where Fi is the noise factor at the ith stage of amplification and Gi is the gain of the ith amplifica-
tion stage. This formula states that the first amplifier is the most important for the effective noise
level of the system, i.e. Nnoise [39].

Figure 18: Readout line couplings with the inferred resonator [39].
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• The presence of κ = κin + κout in Eq. (51) is only a formal issue, since it would be canceled
considering the explicit form of η. However, it is important to note that larger κ will also result
in a larger Purcell decay, actually resulting to be a damping factor. Purcell decay rate is given by
[39]:

κ
g2

∆2
= ΓPurcell ≥ Γ1 =

1

T1
, (53)

where g and ∆ are, respectively, the coupling and the frequency detuning between the qubit and
the resonator (Sec. 1.4.2).

• β = αe(t)− αg(t) is the state discrepancy, i.e. the distance in the (I,Q)-plane between the ground
state |αe(t)⟩ and the excited state |αe(t)⟩, with the associated angle θβ = arg(β) (Fig. 19).
It gives information about how well the readout hardware is able distinguish between the two
possible output states, detecting the actual output of a operation.

Figure 19: Representation of the resonator state in (I,Q)-space for increasing qubit-field interaction times,
i.e. photon population in resonator, from t = 0 in (a) to steady state solutions in (c). In this last case
θβ = π, corresponding to all of the information stored in the in-phase component I, and no information
stored in the out-of-phase component Q [38].

In conclusion, the decoherence and the user’s ability to prepare initial quantum states, as well as to
implement Universal gate sets and readout its output, set a limit to the performances of a quantum
computer, and it is fundamental to quantify all of the possible sources of error coming from decoherence
effects, faulty control and readout. In this thesis, we have primarily focused on coherence and gate
fidelity benchmarking, and will leave the study of readout fidelity to future work.
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3 Experimental setup and protocols

In this chapter we will give an overview of the experimental setup exploited during this thesis, starting
from the quantum processing unit design in Sec. 3.1. Then we will describe the dilution refrigerator sys-
tem and the cooling procedure that allows to reach sufficiently low temperatures to operate the quantum
processor in Sec. 3.2, and give an overview of cryogenic and room temperature electronics needed for
control and readout signal generation in Sec. 3.3 and Sec. 3.4. Indeed, being the typical range of fre-
quencies of transmon qubits compatible with 4− 6GHz, it is straightforward to note that the operation
temperature should be below 100 − 200mK. Dilution refrigerators are the best cryogenic platform to
achieve this goal, and it is of fundamental importance to engineer the cryogenic electronics in order to
protect the qubit from external spurious noise as much as possible to preserve coherence. Furthermore,
we will give an overview of characterization procedures in Sec. 3.5 with a special focus on control
and pulse shape optimization and errors correction protocols in Sec. 3.6 and 3.7, respectively. Lastly
we will describe measurement protocols to characterize the qubit coherence times in Sec. 3.8 and the
Randomized Benchmarking in Sec. 3.9.

3.1 Quantum Processing Unit (QPU)

The QPU characterized in this master thesis is a Contralto-D processor produced by QuantWare, spin-
off company of the University of Delft [40].

Figure 20: QPU circuital schematics and description: false-color microscopic image of the QuantWare
Contralto-D chip.

This processor features 21 fully connected flux-tunable qubits and 4 fixed-frequency isolated qubits. In
Fig. 20, we show a microscope false-color image of the chip, provided by the producer and a schematic
representation of the chip connectivity.
In order to perform multiplexed readout of the qubits, namely a simultaneous readout of all qubits through
multimode signals, there are 4 feedlines (A,B,C,D marked in blue in Fig. 20 and 21) each connected to
5 qubits through superconducting CoPlanar Waveguide (CPW) readout resonators (marked in orange in
Fig. 20 and 21), except for feedline A, which is coupled to 6 qubits. Readout resonators frequency
depends on geometrical parameters, including the length of the CPW. On each feedline, the length of
the resonators changes in order to guarantee different readout resonator frequencies, ranging from 7 to
7.8GHz.
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Figure 21: QPU circuital schematics and description: schematic representation of the qubit-qubit matrix
connectivity and frequency scales.

Every flux tunable qubit features a flux bias line and a drive line. The former is a transmission line
inductively coupled to the superconducting DC-SQUID of the flux tunable transmon (marked in green in
Fig. 20). In this way, current signals sent to these lines generate a concatenated and maximized magnetic
field perpendicular to the area of the DC-SQUID. The latter is a capacitively coupled transmission line
(marked in light green in Fig. 20), thus guaranteeing maximum coupling with the electric field coun-
terpart of microwave radiations. This design is commonly depicted in state-of-the-art superconducting
QPU, and well-known in superconducting transmon qubit design. Finally, the qubit in the QPU are
coupled with their neighbors via resonator buses (marked in red in Fig. 20), in a rectangular-like 2D
connection matrix, as schematized in Fig. 21.
Conversely, isolated qubits (A0, B0, C0, D0) are used for coherence benchmarking, being these systems
not only isolated from other qubits, but also from external connections for control and frequency tunabil-
ity.
Finally, qubits features different operative frequency bands, as typically requested for circuital design
suitable for advanced quantum error detection and correction [41]. By following the color coding in Fig.
21 we can identify:

• Green and yellow ones, working in a low frequency band (∼ 4− 5GHz);

• Blue ones, working in a mid frequency band (∼ 5− 6GHz);

• Red ones, working in a high frequency band (∼ 6− 7GHz).

29



In the following we report the qubits and resonators parameters provided by the builder and to be
compared with the measured ones (Tab.1).

Qubit frequency GHz Resonator frequency GHz

A1 4.82 7.20

A2 5.45 7.44

A3 5.56 7.56

A4 4.90 7.32

A5 5.45 7.68

A6 6.05 7.80

B1 4.72 7.20

B2 5.23 7.44

B3 5.39 7.56

B4 6.16 7.80

B5 5.45 7.68

C1 4.55 7.20

C2 5.38 7.44

C3 5.41 7.56

C4 4.61 7.32

C5 5.38 7.68

D1 4.63 7.20

D2 5.32 7.44

D3 5.34 7.56

D4 6.14 7.80

D5 5.19 7.68

Table 1: Contralto-D QPU qubits and resonators factory frequencies: in green low frequency band qubits,
in blue mid frequency band qubits and in red high frequency band qubits.

The sample is then mounted on a PCB, which allows direct connection between the chip and the cryo-
genic lines, and protected first by a copper-plated cavity, and then by two stages of magnetic shielding,
which use the Meissner effect to expel spurious external magnetic fields (Sec. 1.2). The sample package
is finally mounted at the lowest temperature stage of a dilution refrigerator (Fig. 22).
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Figure 22: Contralto-D QPU stage: at the center, the copper-plated cavity which hosts the qubits; on the
edges, the qubits drive and flux lines, and feedlines connections.

3.2 The dilution refrigerator

Modern dilution refrigerators provide operative temperatures around 10mK and exploit the peculiar
thermodynamics of a mixture of He3 − He4, as proposed by H. London and G.R. Clarke [42]. The
dilution procedure requires a starting temperature of about liquid helium (4.2K). By means of the
Joule-Thomson effect, the mixture is compressed and condensed, reaching the liquid He3 temperature
(1.8 − 2K), thus allowing for both the two gases to be in the liquid phase at this stage (condensation).
Then, at temperatures below 0.8K (depending on concentration), the He3 −He4 mixture will separate
into two phases: a He3 rich phase (concentrated phase) and a He3 poor phase (dilute phase), as shown
in Fig. 23a. The concentrated phase becomes pure He3 while in the dilute He4 rich phase there is
6.6% of He3. The enthalpy of He3 in the dilute phase is larger than in the concentrated phase, hence,
the energy required to move He3 atoms from the concentrated to the dilute phase is taken from a well
isolated environment, named Mixing Chamber (see Fig. 23b, 8 and Fig. 24c), resulting in a cooling
effect due the evaporation of the dilute phase. This process is called "evaporation", and occurs in the Still
chamber (see Fig. 23b, 4 and Fig.24a). Together with the condensation and the dilution, this is one of
the fundamental step in the cooldown procedure. The three steps are continuously run in a closed cycle
through the use of scroll, turbo and compressors pumps in a Gas Handling System (GHS), connected to
the cryostat through the condensing pumping line (used for inserting the mixture in the dilution unit, see
Fig. 23b, 1), and Still pumping line (used to maintain the phase separation in the cycle in the evaporation
process, see Fig. 23b, 2).
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(a) (b)

Figure 23: Evaporation process: in (a) Phase diagram ofHe3−He4 mixture. In (b) Dilution unit scheme:
(1) Condensing Line, (2) Still Pumping Line, (3) He3 rich gas phase, (4) Still, (5) Heat exchangers, (6)
Cold Plate, (7) He3 poor phase, (8) Mixing Chamber, (9) Phase separation, (10) He3 rich phase.

Based on the different cooldown stages, the cryostat (see Fig. 24), a Bluefors XLD1000SL system
[43], is made of several plates, characterized by different temperatures:

• the RT plate, where the connections to the GHS and the room-temperature electronics is made;

• the 50K plate, where a temperature of 50K is reached in normal operation;

• the Still plate, where a temperature of ∼ 800mK is reached and the Still chamber (in Fig. 24a)
sits;

• the Cold plate, where heat exchangers (in Fig. 24b) are located;

• the MXC plate, where two Mixing chambers (in Fig. 24a) are located, and is the coldest stage of
the cryostat. Here, the base temperature in normal operation is of the order of 10mK.

The dilution refrigerator used in this work is a dry dilution fridge, meaning that the 4.2K required
for starting the condensation cycle is achieved through the use of two Cryomech Pulse Tube coolers. The
pulse tubes are thermally anchored to the 50K plate, and to the 4K plate, through flexible copper braids to
damp any possible vibration caused by the pulse tube. The mixture is henceforth precooled to < 4.2K,
assisted by the presence of different heat exchangers: first by a Cold Trap at approximately 50K which
takes out any contamination of circulation by freezing; then by two Heat Switches1 installed between the
4K flange and the Still flange and between the Still and MXC flanges that enable thermal contact during
the initial pre-cool stage. The thermal contact is disabled once low temperature regime is reached.

3.3 Cryogenic electronics

The cryostat architecture is designed to host the cryogenic electronics required for qubit characterization.
The cryostat is equipped with slots (sideloaders) dedicated to pre-assembled microwave RF coaxial ca-
bles sets, which can be freely moved, changed and upgraded. At the time of writing, the cryostat is
equipped with a total of 96 lines, separated in three sideloaders. We have four types of lines engineered
to fulfill specific operation tasks on the quantum processor: 48 control lines, 32 flux lines, 8 output lines
and 8 pump lines, which will be dedicated in the future for Traveling Wave Parametric Amplification
(TWPA) cryogenic devices [44]. Since in this work we have not yet exploited such devices, we won’t
give details on their operation, nor discuss the specifics of the cryogenic lines.

1The Heat Switches consist of two copper heat exchanger parts, one on the high and on one the low temperature side,
separated by a stainless-steel tube (designed to minimize heat transfer when disabled) and filled with helium gas (when enabled)
that plays the role of heat conductor medium between them.
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Figure 24: Cryostat stages: from the top, the 50K plate, 4K plate, Still plate at ∼ 800mK, Cold plate,
Mixing Chamber plate and sample compartment at ∼ 10mK. On the left insets, the Dilution unit: Still
chamber (a), Heat exchangers (b), and Mixing chamber (c). On the right insets, the amplification chain
with HEMTs on 4K stage (d), isolators (e) and output line filters (f) on MXC stage. For the sideloaders
setup: drive lines highlighted in the green box, input and output lines in the blue box, and flux lines in
the purple box.

Input lines (green and blue box in Fig. 24) for both control and readout of the qubits, i.e. to provide
the input signals in the feedline of readout resonators in the QPU, are made of stainless steel which pro-
vide the lowest passive heat load [45]. Furthermore they are equipped with 20 dB cryogenic attenuators
on the 4K, Cold and MXC plates resulting in a −60 dB total attenuation, which adds to ∼ −10 dB of
the lines themselves, in order to minimize black body room temperature radiation, known as Jhonson-
Nyquist noise [45]. Secondly they are equipped with an Eccosorb low pass filter with a 10GHz cutoff
(see Fig. 25).
Output lines (blue box in Fig. 24) are made of copper from room temperature stage to 4K plate, and of
superconducting NbTi to minimize signal loss, and are properly thermalized at each plate of the cryostat
through 0 dB cryogenic attenuators. Moreover these output lines are equipped with double junction iso-
lators at the MXC stage (Fig. 24e), and with High Electron Mobility Transistor (HEMT) amplifiers (Fig.
24d) with nominal amplification of 40 dB between 4÷8GHz (see Fig.25). Lastly, further amplification
is obtained through three 16 dB amplifiers at RT stage.
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Figure 25: Cyogenic setup including feedline Input and Output lines, and qubit Drive and Flux lines,
each with its own attenuators, filters and amplifiers.

Since amplifiers are noisy devices it is convenient to distribute them on a stage where the nominal
temperature is higher than their noise temperature: HEMTs amplifiers feature 1.5K noise temperature,
indeed, they have been anchored at the 4K plate. The double junction isolators at the MXC attenuate
backwards signals from the HEMTs to the qubit stage generated because of the finite noise temperature
of about 35 dB, thus further protecting the qubits from spurious noise and signals. This adds the presence
of 10GHz Eccosorb filters, mounted at the MXC plate.
Finally flux lines (purple box in Fig. 24) allow for both DC and AC signals: these are used to generate
both fast RF flux-based two-qubit gates, as well as setting the best flux-point operation for multi-qubit
devices. They are made of superconducting NbTi below 4K stage, and of stainless steel above it. These
lines are equipped with a −20 dB attenuator on 4K plate, which is sufficient to mitigate qubit dephasing
due to current thermal noise [45], and with two low-pass filters (see Fig. 25): the first one with a 1GHz
cutoff to cut thermal noise at qubit frequency, and compatible with standard duration of two-qubit gates
(∼ hundreds of MHz), then the second one for a 10GHz cutoff aimed to avoid pulses non-linearity
effects [45].
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3.4 Room temperature electronics and acquisition software framework

Electronic characterization of the QPU at room temperature was performed using the QBLOX electron-
ics [46][47], composed of one QBLOX Cluster and two SPI racks.

Figure 26: QBLOX instruments: (a) Schematics of Cluster and SPI Rack modules for a 4 transmons
display with every dedicated line, (b) CMM, (c) QCM, (d) QCM-RF, (d) QRM-RF [46].

The QBLOX Cluster (Fig. 26a) is a scalable instrument which hosts different type of Modules, listed as
follows.

• CMM module (Fig. 26b): present in every Cluster in slot 0, it allows communication from and to
the host PC via Ethernet and the other modules. It is in charge of:

i) distributing a 10MHz clock-reference signal among the instruments;

ii) controlling that the distributed reference clocks are length matched and the phase of the clocks
perfectly align. The protocol used for fully deterministic and fixed timing relations, is called
SYNQ, and allows to synchronize both Analog and Digital signals in the Cluster’s modules
down to the picoseconds level. This is essential for the implementation of quantum algo-
rithms in the fastest way possible.

• The Qubit Control Module (QCM) (Fig. 26c) is an instrument generally dedicated to qubit control
using parameterized pulses. In this work, we have used such modules to generate fast flux pulses
for two-qubit gates implementation. Pulses are stored as waveform envelopes in memory and can
be parameterized by changing gain and offset. Outputs channel are in the base-band regime of
0− 400MHz.

• The QCM-RF (Fig. 26d) is a RF signal generator designed for the control of quantum devices
through parameterized pulses. The module incorporates six multiplexed sequence processors with
frequency span of 500MHz, thus in principle allowing to control six qubits with the same output
channel (Fig. 28). Nevertheless, in this work we have dedicated each channel of the QCM-RF
to just one qubit at a time. Specifically, each QCM-RF is provided with two independent output
channels. Each output channel has its own local oscillator to facilitate internal up-conversion [47].
The module creates signals parameterized by variables such as gain, offset, Numerically Controlled
Oscillator (NCO) frequency and phase, and also by waveform envelopes stored in memory. This
parameterization is controlled by the AWG paths of each sequencer. The outputs of the AWG
paths are mixed with the NCO by the onboard IQ mixers, enabling operation as modulated IQ
signals. The RF up-conversion stage features two additional independent IQ mixers on-board
for generating the output signals in the range of 2 − 18.5GHz, thus compatible with typical
superconducting transmon qubit frequencies in our QPU.

• The Qubit Readout Module (QRM-RF) (Fig. 26e) synthesizes and acquires signals in the range of
2− 18.5GHz using internal RF conversion stages. Each module is equipped with one output and
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one input channel (Fig. 28): the former generates the excitation required to readout the qubit state
through up-conversion, similarly to what occurs in QCM-RF modules, the latter is used to acquire
the readout response signal of the qubit. As for the QCM-RF, it is equipped with six sequence
processors onboard. Using parameterization, each sequencer can target six readout resonators at
once, allowing for multiplexed readout of multiple qubits on the same channel. The AWG paths
can generate the readout pulses and the acquisition paths can process the returning readout data
through Analog to Digital Converters (ADC).

Figure 27: Block diagram of QCM-RF module showing the path from Cluster, to sequencer processors,
AWG and NCO stages, until the up-conversion stage. Figure adapted from [46].

Figure 28: Block diagram of QRM-RF module showing the path from and to Cluster, with intermediate
steps through sequencer processors, AWG and NCO stages, and up- and down-conversion stages. Figure
adapted from [46].
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Finally, in order to generate flux-based two-qubit gates, the QCM pulsed outputs are combined
through bias tees at room temperature to ultra-low noise DC sources in two SPI racks. The SPI Rack
(Fig. 29a) is a modular system for DC current and DC voltage source. Modules are designed to max-
imize output stability. Together with galvanically isolated control interface and isolated power supply,
ground loops are avoided and interference is minimized. In this work, we have used either DAC current
generators with 4 channels (S4g in Fig. 29c), or voltage generators with 16 channels (D5a in Fig. 29b).

Figure 29: SPI instruments: (a) Rack, (b) D5a module, (c) S4g module.

Within this integration, we are able to detune transition frequencies of flux-tunable transmon qubits
in our QPU with the lowest 1/f noise available.

The characterization and study of superconducting QPUs, as well as the implementation of quantum
gates for algorithms, require a high-level data acquisition framework. The infrastructure used in this
thesis has been built with the idea to be open. Therefore, our software codes are Python-based, and built
on top of Quantify [48], which consists of quantify-core and quantify-scheduler.

Quantify-core enables users to quickly setup experiments while taking care of practical aspects such as
data storage, live plotting of experiments, monitoring the state of instruments, and data analysis.

Quantify-scheduler is a Python module for writing quantum programs featuring a hybrid gate-pulse
control model with explicit timing control allowing users to easily express complex quantum ex-
periments.

The library that we use for diagnostic is SuperConducting Qubit Tool (SCQT) from Orange Quantum
System [49], which embeds both protocols implementation and data analysis based on well-known phys-
ical models.

37



3.5 Single-qubit and resonator characterization

The implementation of a precise experimental protocol is crucial for the realization of high-fidelity gates.
An accurate characterization of the single qubits is needed in order to be able to define the optimal control
and readout signal features.

Resonator spectroscopy

In order to characterize the qubit, it is first necessary to characterize the readout resonator coupled with
it. The first measurement is an heterodyne spectroscopy in order to identify its resonance frequency.
Here, a single-tone signal in the range of the nominal resonator frequency is sent through the feedline.
When this signal resonates with the readout resonator, a typical Lorentian dip in the transmission S21
stands out among the background due to the photons absorption (Fig. 30a). Once the frequencies of the
resonators have been identified, a sweep in power of the feedline input signal is performed around the
resonator frequency, in order to estimate the power of the readout tone which allows to enter in the
single-photon (or low-photon) regime, fundamental for performing quantum non-demolition and
dispersive readout of the qubit state (Sec. 1.4.2). As shown in Fig. 30b, for high values of the input
power, the qubit is completely saturated and the input signal only resonates with the frequency of the
isolated readout resonator (bare state). The dispersive regime is recovered by decreasing the input
signal, i.e. pointing towards the single-photon regime [52].
Last characterization protocol is a flux spectroscopy (Fig. 30c), in which a readout resonator
spectroscopy is performed as a function of a current applied to the flux line (i.e. flux treading the
transmon SQUID), in order to observe the flux modulation of the resonator and to identify its
periodicity and the current value at which the sweetspots occur.

(a) (b)

(c)

Figure 30: In (a) Resonator spectroscopy of qB2 as a function of transmitted and reflected signal; in (b)
Power spectroscopy of qC4 showing the Λχ shift from the resonator bare state and low-photon regime;
in (c) flux spectroscopy of qB2 resonator as a function of power.
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Qubit spectroscopy

In order to provide a measurement of the qubit frequency, a two-tone spectroscopy is performed [52].
The two-tone signal is composed of an RF signal sent through the feedline, which is close to the
resonance frequency of the readout resonator in the low-photon regime, and an RF signal that sweeps in
frequency, sent through the dedicated qubit drive line, which excites the qubit (drive tone). The idea is
to continuously send a weak microwave signal to the cavity at the low power, in order to leave the qubit
in its ground state. Once the control signal resonates with the qubit transition frequency, the qubit
passes to the excited state causing a shift in the cavity frequency. Thus, since the fixed input signal is no
longer resonant with the cavity, the transmitted power S21 changes as depicted in Fig. 31a. Moreover,
performing the same experiment as a function of the amplitude of the control signal, one can also
experimentally observe higher orders energy transitions of the qubit. Given the negative anharmonicity
of the transmon (Sec. 1.3), energy peaks can be measured at a frequency lower than the |0⟩ → |1⟩
transition frequency. For example, one can measure both the assisted two-photons |0⟩ → |2⟩ transition,
or even the |1⟩ → |2⟩ transition for sufficiently high power (Fig. 31a).
Finally, a flux spectroscopy of the qubit is also performed, in order to estimate the qubit flux arc,
fundamental for the estimation of the qubit Josephson energy, the charging energy, the flux-tunable
transmon asymmetry and the flux sweetspot (Fig. 31b).

(a) (b)

Figure 31: Qubit power spectroscopy of qA5 in (a), showing the first order transition frequency |0⟩ → |1⟩
at higher frequency than the assisted two-photon transition |0⟩ → |2⟩, and qB2 flux arc spectroscopy in
(b) as a function of magnitude.

3.6 Control pulses optimization and hardware implementation

Time-domain measurements are at the core of the qubit coherence and fidelity benchmarking character-
ization. Here we describe a step-by-step sequence of experimental protocols to perform coherence and
fidelity benchmarking experiments.

Rabi oscillation and Chevron plots

Rabi oscillations measurements provide the estimation of the π-pulse amplitude (Fig. 32a), a
fundamental quantity for qubit gates implementation [50]. The π-pulse is a drive signal on-resonance
with the qubit frequency with an amplitude able to bring the qubit from the ground state |0⟩ to the first
excited state |1⟩. X, Y and Z gates, are in fact π-pulses, that allow to perform a 180◦ rotation of Bloch
vector, with the only difference of a relative phase in the drive pulse.
When a qubit, initially in its ground state, is driven by a harmonically oscillating weak field with a
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frequency ωd close to its energy splitting ωq (up to a factor of ℏ), its probability to be found in the
excited state at a later time t is given by:

P =
ω2
d

Ω2
d +∆2

1− cos (ΩRt)

2
, (54)

where ∆ = |ωd − ωq| is the detuning between the drive tone frequency and the qubit frequency, and

ΩR =

√
∆2+ω2

d
2 is the Rabi frequency [50].

The operative procedure to measure the Rabi oscillations consists in sending a drive signal followed by
a readout pulse (Fig.32b). The protocol can be performed both by fixing the power drive tone (i.e. the
amplitude) while its duration, called plateau, is variable, or vice versa. In this thesis we have changed
the amplitude of the drive tone from −1V to 1V , i.e. the maximum range of voltage that we can
generate with the QCM-RF (Sec. 3.4). An example of the pulse chain in the two extremes of this range
is shown in Fig. 32c and 32d.

(a)

(b)

(c) (d)

Figure 32: In (a) Rabi oscillation measurement of qB5 showing in the highlighted box the π-pulse, which
corresponds to the half period; in (b) the Rabi protocol pulse sequence: the qubit is prepared in its ground
state, then a drive pulse (see following Sec.3.6) is sent to it, followed by qubit state measurement. In
(c) and (d) Drive pulse amplitude as a function of time showing the first and last pulse of the amplitude
screening performed during the Rabi protocol (blue waveform) followed by resonator readout pulse
(orange waveform).

In order to define the π-pulse, Eq. (54) states that the transition probability to the excited state is
maximized when the drive tone is on resonance with the qubit frequency (Fig. 33). Therefore, the first
calibration procedure for control pulses frequency involves what is known as Ramsey interferometry.
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Figure 33: In (a) the 2D Chevron plot of the excited state population P versus time for different detunings
∆, and in (b) three cuts from the Chevron plot at different detuning values [52].

Ramsey interferometry

Ramsey interferometry protocol consists in preparing the qubit on the Bloch sphere equator applying a
Xπ

2
-pulse, i.e. a pulse whose amplitude is half of the π-pulse, measured through Rabi oscillations

experiments (Fig. 34a). Then the qubit is left free to evolve spontaneously for a time τ . Subsequently, a
second Xπ

2
-pulse projects the Bloch vector back to the z-axis before inferring the qubit state (see Fig.

35). In presence of detuning δω = |ωd − ωq| between the drive and qubit frequencies, the Bloch vector
will start precess around the z-axis at a rate δω [7]. As result, if the drive signal is off-resonance with

(a)

(b)

Figure 34: Ramsey Interferometry oscillation as function of time delay in (a) [7] and Ramsey fringes as
a function of the qubit drive frequency and time delay τ between the two π/2-pulses in (b) [54].

the qubit frequency, damped oscillations with an exponential decay ∝ cos (δωt)e−Γ2t with a
characteristic time T ∗

2 arise (Fig. 34a). Repeatedly changing the drive tone and measuring Ramsey
oscillations allow to erase these oscillations until the output exhibits only an exponential decay feature.
The on-resonance drive frequency is then found as the center of the Ramsey fringes plot (Fig. 34b).
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Figure 35: Pulses amplitude of qubit drive (blu data) and readout resonator (orange data) as a function
of time delay (I), and sequence pulse of qubit drive (II).

Drive pulse shape optimization: DRAG scheme

Finally, for weakly anharmonic qubits, such as the transmon characterized by an anharmonicity (Eq.
(11)) of the order of 200 to 300MHz, drive pulses can have spectral contents that lead to non-zero
overlaps with the higher orders energy levels. This may induce leakage errors, which take the qubit out
of the computational subspace, and phase errors [7]. The latter occurs because of the repulsion between
|1⟩ and |2⟩ levels due to the presence of the drive pulse, resulting in a change of ω0→1

q and leading to a
relative phase accumulation between those levels.
The DRAG scheme (Derivative Reduction by Adiabatic Gate) is able to mitigate these two deleterious
effects by applying an extra signal in the out-of-phase component of the control pulses (Eq. (24)) [7].
This operation modifies the waveform envelope s(t) in Eq. (26) according to:

s(t) → s′(t) =

{
s(t) on I

λ ṡ(t)α on Q
, (55)

where λ is a dimensionless scaling parameter and α is the anharmonicity (Fig. 36). For λ = 0 no DRAG
correction is applied. The theoretically optimal choice for reducing phase error is λ = 0.5. Meanwhile,
for reducing leakage error, it is λ = 1 [55][56]. Therefore a trade-off value is needed. However, it is
possible to reduce both errors simultaneously by introducing a frequency detuning parameter δf to the
waveform (δf = 0 corresponds to standard qubit frequency):

s′δf (t) = s′(t)ei2πδft, (56)

and choosing λ to minimize leakage errors [7].
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Figure 36: Comparison between a Xπ pulse waveform without DRAG modulation (λ = 0) (a) with its
resulting effect on a qubit initialized in the |0⟩ state (b), and aXπ pulse waveform with DRAG modulation
(λ = 0.5) (c) with its resulting effect (d). The dephasing error is visible as a deviation from the |1⟩ state
after the pulse in (b), then canceled after DRAG scheme in (d).

3.7 Detecting syndromes for control optimization

Rabi and Ramsey experiments are adequate tune-ups for most basic single-qubit experiments. However,
higher quality rotations are often desirable for applications where a high fidelity is needed, as for algo-
rithms. The AllXY sequence tests the result of all combinations of one or two single-qubit gates being
sensitive to a variety of error syndromes [57]. During the protocol, 21 different pulse combination, be-
longing to the “Clifford set” of quantum gates [58], are performed on a qubit producing rotations around
the x- and y-axes by an angle of π/2 or π before measuring its state. Since each pulse combination is
sensitive to various errors to varying degrees, different errors will then have a distinct fingerprint in the
deviation from the ideal response, providing a quick way of diagnosing problems [57].
The first tier of ordering, as seen in Tab. 2, is determined by the place that the qubit should reach on the
Bloch sphere at the end of the sequence. Pulses that end up on the north or south pole are often rela-
tively insensitive to errors, and so the most valuable information is primarily given by the pulses ending
on the equator, being particularly sensitive to over rotations. This is because the expected value ⟨z⟩ is
proportional to the cosine of the angle θ by which the Bloch vector has been rotated (e.g. X(θ)).
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Table 2: AllXY sequences. The first and second pulse are listed and ordered according to where the qubit
should ideally end up: north pole, i.e. ground state (Ideal ⟨z⟩ = 1), equator (Ideal ⟨z⟩ = 0), or south
pole, i.e. excited state (Ideal ⟨z⟩ = −1) of the Bloch sphere. The analytically calculated leading-order
power and detuning error dependence of the qubit z projection are shown [57].

By ordering the pulses according to this sensitivity, too much or too little power of the control signal
yields a characteristic “step” pattern, shown in Fig. 37a. The remaining order is given by X and Y
rotations in the first column of Tab. 2, which is helpful because the two axes feel the opposite effect
of detuning, giving a characteristic “zig-zag” pattern, shown in Fig. 37b. Finally, one can also observe
phase errors, mainly due the IQ mixer imperfections, such as amplitude imbalance and skewness. In
this case, in Ref. [57] was introduced an X scale factor used to compensate for phase errors due to the
presence of higher excited-state levels, shown in Fig. 37c. In this thesis, we did not focus on this last
syndrome, but we exploited the AllXY protocol to identify which parameters of the control pulses were
to be corrected. For frequency detuning syndromes, we have iteratively run Ramsey experiments.
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(a) (b)

(c)

Figure 37: In (a) simulated "step" pattern signatures of amplitude syndrome showing the ideal z pro-
jection as a function of AllXY sequences and power; in (b) simulated "zig-zag" pattern signatures of
detuning syndrome showing the ideal z projection as a function of AllXY sequences and detuning; in (c)
simulated pattern signature of X scaling syndrome showing the ideal z projection as a function of AllXY
sequences and scaling parameter. Figures adapted from [57].

To correct amplitude error, or power syndrome (see Fig. 37a), we have implemented the so-called
Flipping protocol. The Flipping protocol consists in preparing the qubit on the equator of the Bloch
sphere by applying a π/2-pulse. Then, 2N π-pulses are applied, with an increasing N (Fig. 38c).
Each additional π-pulse amplifies the power error syndrome, and since the qubit is initially prepared
on the equator, it is first-order sensitive to these errors. If the qubit state oscillates as a function of N ,
then dephasing is accumulating (Fig. 38a). By fitting these oscillations, it is possible to identify the
control pulse amplitude to correct this behavior, and observe instead a linear dependence of the qubit
state population (Fig. 38b).
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Figure 38: Flipping protocol on qB2 before (a) and after (b) applying power error syndrome correction.
In (c) pulse sequence performed during the protocol.

Lastly, another syndrome is associated with DRAG technique which corrects for gate phase errors
caused by the presence of higher excited states of the transmon qubit [59]. The lowest-order correction
involves either continuously detuning the pulse as a function of its instantaneous amplitude or adding a
copy of the derivative of the primary pulse to its orthogonal quadrature. In both cases, there is a scale
factor for this correction. Through Motzoi technique [60] it is possible to efficiently tune-up the DRAG
parameter: by taking two of the AllXY pulses which exhibit the opposite sign of error (for instance YπXπ

2

and XπYπ
2

) and performing each as a function of the parameter proportional to the DRAG derivative
correction, two lines that cross at the point where the DRAG optimal coefficient can be obtained (Fig.
39b).

Figure 39: DRAG coefficient error syndrome pattern signature (a) showing the ideal z projection as a
function of AllXY sequences and DRAG coefficient, here given as the number of megahertz that the
drive qubit pulse should instantaneously be detuned by at a π-pulse amplitude. In order to tune-up
this parameter, Motzoi protocol is performed in (b) choosing two of the AllXY pulse sequences with
opposite sign errors, and measure them both with varying DRAG coefficient: the optimal DRAG value is
individuated by the crossing point of two resulting lines [57].

46



Frequency detuning correction through Ramsey experiments, amplitude correction through Flipping
protocol and DRAG coefficient parameter optimization through Motzoi experiment are tipically run iter-
atively, and checked by measuring the AllXY response of the qubit. This allows to optimize the control
pulses before performing coherence and fidelity benchmarking. In the following, we will report on the
fundamental experimental protocols for measurement of coherence times, like relaxation, Ramsey and
Echo times.

3.8 Coherence times

As introduced in Sec. 2.1, coherence times give information on qubit behavior in presence of noise.
The T1 measurement protocol (Fig. 40) consists in the preparation of the qubit in its excited state using
an Xπ-pulse, and then leave it to spontaneously decay to the ground state for a variable time τ , after
which the qubit state is measured (see Fig. 40a). A single measurement will project the quantum state
into either state |0⟩ or state |1⟩, with probabilities that correspond to the qubit polarization. To make an
estimate of this polarization by statistics, one needs to identically prepare the qubit in |0⟩ and |1⟩, and
repeat the experiment many times [7][52]. The expected behavior is an exponential decay, whose time
constant identifies the relaxation time.

(a) (b)

Figure 40: In (a) sequence pulses of T1 measurement protocol: pulses amplitude of qubit drive (blu data)
and readout resonator (orange data) as a function of time delay (I), and sequence pulse of qubit drive
(II). In (b) exponential energy relaxation as function of time [7].

For what concerns the measurement of T2 coherence time, in this thesis we have used two protocols:
the Ramsey and Spin-Echo protocols. For the former, in contrast with operative procedure for the op-
timization in Sec. 3.6, the carrier frequency of the drive pulse is intentionally detuned from the qubit
frequency by δω for a simpler analysis in terms of fitting function, ∝ cos (δωt)e−Γ2t (see Fig. 34a). The
exponential decay time of the Ramsey oscillation is also labeled as T ∗

2 , which is sensitive to inhomoge-
neous broadening. Which means, it is highly sensitive to quasi-static, low-frequency fluctuations that are
constant within one experimental trial, but vary from trial to trial, e.g. due to 1/f -type noise [7].
This value for the coherence time tipically differs from the one measured through the Hahn Spin Echo
protocol, which is less sensitive to quasi-static noise. By placing a Xπ-pulse at the center of a Ramsey
interferometry experiment (see Fig. 41a), the quasi-static contributions to dephasing can be “refocused”
leaving an estimate of T2E (Fig. 41b), that is less sensitive to inhomogeneous broadening mechanisms.
The pulses are generally chosen to be resonant with the qubit transition for a Hahn echo, since any
frequency detuning would be nominally refocused anyway.
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(a) (b)

Figure 41: In (a) sequence pulses of T2E measurement protocol: pulses amplitude of qubit drive (blu
data) and readout resonator (orange data) as a function of time delay (I), and sequence pulse of qubit
drive (II). In (b) exponential trend as function of time in Spin Echo protocol [7].

3.9 Randomized Benchmarking

The Randomized Benchmarking protocol performs an average gate fidelity evaluation which is robust
to SPAM errors, allowing to gain an overall information on the hardware gate implementation [67]. As
introduced in Sec. 2.3, RB protocol consists in applying a random sequence of N gate, sorted form
the Clifford gate set {Ci} to the qubit, followed by one last inverse Clifford gate before measuring its
state. Ideally the measured state should be identical to the initial state, i.e. ground state |0⟩, but the
actual measured state will be different due to the error induced by the gate implementation. The number
of gates in a sequence is chosen to be NCl = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512, ...] in order to easily
obtain an exponential decay trend (Fig. 42). In order to perform repeated measurements with different
gate combinations, for each sequence NCl, random gates are sorted through a certain number of seeds,
i.e. random number generators. Therefore, for each sequence the survival probability F|0⟩, i.e. the
average sequence gate fidelity, is measured. After the measurement, the p parameter is fitted using the
model

F|0⟩ = ApNCl +B. (57)

Here A and B parameters give information about SPAM errors (further details in Appendix B). Then the
gate fidelity over all the Clifford sequences is given by [67]:

FCl = 1− d− 1

d
(1− p). (58)
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Lastly, it is possible to get an estimation of average gate fidelity per applied gate as [68]:

Favg.gate = (FCl)
1

1.875 , (59)

where the exponent of the root-square is related to the decomposition of each gate into the standard
minimal sequence of π- and π/2-pulses around the x and y axes, requiring an average ⟨NP ⟩ = 1.875
pulses per Clifford.

Figure 42: Single-qubit Randomized Benchmarking protocol on qC3 with 200 seeds per sequence.
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4 Final results and discussion

In this chapter we will report the experimental results on the analysis of the Contralto-D QPU. In order
to establish the quality of processor performance, for each qubit we have performed the calibration pro-
tocols described in Sec. 3 and then an evaluation of coherence times and gate fidelity. The experimental
data have been acquired and analyzed through the hardware and software set-up described in Sec. 3.4.
We here report a detailed discussion of the experimental procedure, as well as on the obtained results on
one qubit, namely B4. The same approach has been used to characterize the other qubits of the QPU, for
which we report a comparative analysis of their parameters.

4.1 Single-qubit characterization of qubit B4: a case study

To give an example of the experimental steps we have performed on each qubit to evaluate their per-
formances in terms of single-qubit gate fidelity and coherence, in the following we report the complete
characterization of qubit B4.

B4 resonator characterization

As discussed in Sec. 3.5, the first protocol concerns the characterization of the readout resonator
coupled with the qubit.
The first step was to identify the resonance frequency of the resonator through heterodyne spectroscopy.
Therefore, a single-tone signal in the range of the nominal resonator frequency was sent through the
feedline. When this signal resonates with the readout resonator, a typical Lorentian dip in the
transmission S21 stands out against the background, at the resonance frequency of the resonator, due to
photons absorption. The nominal frequency reported by QuantWare was f∗res = 7.8GHz, while the
measured resonance frequency was found to be fres = 7.579± 1 ∗ 10−3GHz (Fig. 43).
Once the resonance frequency was identified, in order to estimate the readout tone power required to
switch from the bare state of the resonator to the dressed state in low-photon regime, a sweep in power
of the feedline input signal was performed around fres. As shown in Fig. 44a, for a starting attenuation
of −20 dB on the input signal, the readout resonator is already transitioning to the low-photons regime,
where we can recover flow = 7.579± 1.0 ∗ 10−3GHz, at a reference magnitude power of −50 dB.
Here, the frequency shift respect to that of the bare state was χlow = −1.12± 0.05MHz.
The last characterization test was the readout resonator flux spectroscopy which was performed in order
to observe the flux modulation of the resonator and to identify the current value at which sweetspots
occur. In this protocol, a sweep in frequency of the feedline input signal was performed while tuning the
qubit with a current sent through the flux line, and so changing the flux threading the transmon’s
SQUID. As shown in Fig. 44b, the resonator sweetspot has been identified at a frequency
fsweetspot = 7.579± 1.0 ∗ 10−3GHz, which corresponds to a bias current value
Isweetspot = −8.05± 0.13mA. Moreover the modulation featured a period Iperiod = 25.1± 0.2mA.
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Figure 43: Qubit B4 resonator spectroscopy: magnitude S21 vs frequency in top panel, phase ∠S vs
frequency in bottom panel.

(a) (b)

Figure 44: Qubit B4 resonator spectroscopy: in (a) power spectroscopy, in (b) flux spectroscopy.

B4 qubit characterization

The next step was the qubit characterization, starting from the measurement of the resonance frequency,
followed by the qubit transitions frequencies evaluation and the sweetspot identification.
The first request was accomplished by a two-tone spectroscopy of the qubit: an RF signal was sent
through the feedline close to the resonance frequency of the readout resonator in the low-photon regime
flow, and another RF signal that sweeps in frequency was sent through the qubit drive line exciting the
qubit. As shown in Fig. 45 the measured resonance frequency was fq,res = 6.159± 10−3GHz, which
is consistent with the high band frequencies working regime provided by QuantWare (Fig. 21 in Sec.
3.1).
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Figure 45: Qubit B4 resonator spectroscopy.

Subsequently, by performing the same experiment as a function of the power of the drive tone, it has
been possible to identify energy peaks corresponding to the |0⟩ → |1⟩ transition and the |0⟩ → |2⟩
transition assisted by two photons. They have been observed at frequency values
f01 = 6.168± 10−3GHz and f∗02 = 6.068± 10−3GHz, respectively. The f01 value is comparable
with fq,res. Note that f∗02 corresponds to the decay of only one of the 2 photons involved in the
transition, then being actually the f02

2 frequency value.
From these values, it is possible to estimate f12 = (f∗02 ∗ 2)− f01 = 5.968± 3 ∗ 10−3GHz and the
anharmonicity α = −0.200± 4 ∗ 10−3GHz = −200± 4MHz, which is comparable to standard
anharmonicity values in transmons [7]. Furthermore, since for the transmon qubit α ≃ −EC , we had a
first estimation of the Charge energy E(1)

C = 200± 4MHz.
Then, in order to identify the qubit sweetspot, another two-tone spectroscopy was performed, but this
time the second signal was sent to the qubit flux line for biasing it with a current, and resulting in a
frequency modulation. As shown in Fig. 46b the measured qubit sweetspot occurs at a frequency
fq,sweetspot = 6.1730± 3.0 ∗ 10−4GHz, corresponding to a current
Iq,sweetspot = −8.51± 4.0 ∗ 10−2mA, in agreement with the resonator current sweetspot Iq,sweetspot.
Moreover, from this protocol it was possible to estimate EC and EJ by using Eq. (12). Here,
EC = 204± 42MHz and EJ = 24.0± 0.3GHz, considering a symmetric junction d ≃ 0 and
Φ
Φ0

∝ I−Iq,sweetspot

Iperiod
, where Iperiod is the frequency modulation period. Note that the charge energy EC

measured with this protocol is comparable with the previous E(1)
C .
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(a) (b)

Figure 46: Qubit B4 spectroscopy: in (a) power spectroscopy, in (b) flux arc spectroscopy.

B4 control pulses calibration and optimization

At this point of the analysis, it was necessary to properly calibrate the drive pulses. As seen in Sec. 3.6,
the first protocol to be performed is the Rabi oscillation experiment which provides a measure for the
π-pulse. By changing the amplitude of the drive tone from −1V to 1V , the resulting plot features an
oscillating trend (Fig. 47). Here, the half-period corresponds to the π − pulse = 0.532± 0.002V (Fig.
47).

Figure 47: Rabi oscillation on qubit B4.

In order to offer a comparison between the control performances before and after the optimization
procedures, a Randomized Benchmarking protocol was performed (Fig. 48b). For this preliminary
measurement, it was chosen to set 5 seeds.
The result was an average gate fidelity of F preavg.gate = 0.9986± 0.0004.
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Therefore, we started the optimization procedure by performing a first AllXY protocol in order to
identify possible error syndromes (Sec. 3.7). As shown in Fig. 48a the central part of the plot featured a
zig-zag pattern, pointing a possible detuning error.

(a) (b)

Figure 48: Starting point of the calibration and optimization: in (a) First trial AllXY; in (b) preliminary
RB protocol with 5 seeds.

Therefore, we performed a Ramsey fringes protocol in order to find the optimal frequency of the drive
tone. As described in Sec. 3.6, the Ramsey fringes protocol measures the response of the readout
resonator coupled to the qubit as a function of qubit drive tone frequency and of the time delay between
the two π

2 -pulses. As shown in Fig.49a, the optimal drive tone resonant frequency was found to be
fres = 6.1603± 2.0 ∗ 10−4GHz. This value for the qubit frequency is much more precise than the one
estimated by the qubit spectroscopy experiment, because the Ramsey protocol is more sensitive to the
drive-qubit frequency detuning. Therefore, it stands as our main reference for the experimental qubit
frequency.

(a) (b)

Figure 49: Ramsey fringes in (a) and AllXY protocol after frequency calibration through Ramsey inter-
ferometry in (b).

In the second AllXY trial (Fig. 49b) the pattern did not change, but rather the first and the last output
operations in the central part of the plot featured opposite shifts, suggesting a possible error arising
from a detuned DRAG parameter.
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Then a Motzoi protocol was performed by taking Xπ
2
Yπ and Yπ

2
Xπ pulses which exhibit the opposite

sign of error (Tab. 2) and finding the optimal DRAG coefficient at the crossing point of the resultant
lines λ = −0.058 (Fig. 50a).

(a) (b)

Figure 50: Motozi protocol in (a) and AllXY protocol after Motzoi calibration in (b).

The subsequent AllXY trial did not feature the zigzag pattern anymore, but a step pattern arose,
suggesting a possible power syndrome (Fig. 50b).
Then a Flipping protocol was performed, which consists in preparing the qubit state on the equator, and
then applying an increasing number of pairs of π-pulses. If the π-pulses causes an over- or undershoot,
an oscillation pattern arise.
In the following we show the flipping protocol before (Fig. 51a) and after (Fig. 51b) applying the
corrected pulse of π = 0.523V . Finally, the last AllXY trial, shown in Fig. 52, featured no remarkable
syndrome, indicating we reached the optimal pulse calibration and that we have successfully corrected
the control pulses.

Figure 51: Flipping protocol: in a oscillation resulting from over- and undershot of π-pulse; in b no
oscillation occurs after the pulse correction.
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Figure 52: Fourth trial AllXY.

B4 Gate Fidelity

Since the qubit was completely characterized and the drive pulse was properly calibrated, all the
requirements had been fulfilled in order to evaluate the qubit performance in terms of control quality.
We performed the Randomized Benchmarking protocol, both with 5 seeds set for a comparative
purpose (compare Fig. 53a with Fig. 48b), and with 200 seeds for a better evaluation (Fig. 53b). For the
5 seeds RB, we obtained an average gate fidelity F postavg.gate = 0.9996± 0.0002, resulting higher then
F preavg.gate as expected, since a proper calibration reduces the SPAM errors that affect the performances.
For the 200 seeds RB we obtained Favg.gate = 0.99942± 5.0 ∗ 10−5. These fidelity values are
comparable to the state-of-the-art values [61], suggesting an efficient control optimization.

(a) (b)

Figure 53: RB protocols after calibration and optimization in (a) RB protocol with 5 seeds; in (b) RB
protocol with 200 seeds.

Coherence times

Lastly, we measured the coherence times of qB4 according to protocol described in Sec. 3.8.
First we measured the relaxation time T1 by preparing the qubit in its ground state, then exciting it by
applying a π-pulse, and then leaving it to evolve spontaneously for a variable time τ before performing
the measurement. The resultant exponential decay allows us to fit the characteristic time, which was
found to be T1 = (25.3± 0.9)µs (Fig. 54a). For a more accurate estimation, we performed several
measurements in order to do a statistical analysis. As shown in Fig. 54b, the counts of T1 have been
collected in a count distribution with binning of 10.
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(a) (b)

Figure 54: Qubit B4 relaxation time: in (a) T1 measurement protocol; in (b) T1 statistical analysis.

Moreover, according to Sec. 2.1, coherence times are affected by stochastic noise, therefore it is
possible to estimate T1 as the mean value of the normal distribution [7]. Here, the mean value is defined
as µ = 1

N

∑N
i=1 xi, where xi are the N sampled data, while the error is given by the standard deviation,

defined as σ =
√

1
N

∑N
i=1(xi − µ)2. The resulting relaxation time was T1 = (27± 3)µs.

Then, in order to measure T ∗
2 , a Ramsey Interferometry protocol was performed, in which the qubit is

prepared on the equator by a π
2 -pulse, left to evolve spontaneously for a variable time τ , then followed

by another π2 -pulse before measuring its state. We decided to perform T ∗
2 measurement both for an

off-resonant and an on-resonance qubit drive tone. In Fig. 55a it is shown the off-resonance case, in
which we applied an artificial detuning of 150 kHz. As consequence of the off-resonant drive tone, an
oscillation trend occurred, allowing for a damped oscillatory curve fitting (Sec. 3.6). The resultant time
was T ∗

2 = (7.3± 0.5)µs, with a fitted detuning between the drive signal frequency and the qubit
resonance frequency of ∆ = (306± 2) kHz. Conversely, in Fig. 55b it is shown the on-resonance case,
after applying a correction to the detuning of 460 kHz and resulting only in the exponential decay.
Here, T ∗

2 = (7± 3)µs and the fitted detuned was ∆ = (14± 3) kHz. As with T1, a statistical analysis
of T ∗

2 was performed too (Fig. 56). Here, the counts have been collected in a count distribution with
binning of 12, and the normal distribution gave T ∗

2 = (8.0± 0.7)µs.

Figure 55: Qubit B4 Ramsey Interferometry: in (a) and (b) T ∗
2 off-resonance and on-resonance measure-

ment protocols, respectively.
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Figure 56: T ∗
2 statistical analysis.

Lastly, for a better estimation of T2, it was also performed the T2 Echo protocol, in witch a refocusing
π-pulse is applied between the two π

2 -pulses mitigating the quasi-static, low frequencies fluctuations
that cause inhomogeneous broadening during the Ramsey protocol (Sec. 3.8). As shown in Fig. 57a, the
resulting time was T2E = (27.2± 7.3)µs. Again, for a better T2E estimation, a statistical analysis was
performed collecting counts in a binning of 12 (Fig. 57b), and resulting in T2E = (21.5± 3.0)µs, a
larger value if compared with T ∗

2 , as expected. The coherence times we found for the qubit B4 are
comparable with the state-of-art values [7].

(a) (b)

Figure 57: Qubit B4 Echo protocol: in (a) T2E measurement protocol; in (b) T2E statistical analysis.

Noise impact on coherence times and qubit frequency

As we reported in Sec. 2.1, there are several noise sources that affect the qubit coherence properties.
For this reason we evaluated the noise impact on the qubit B4.
First we report the coherence times trend over a period of about two hours as a function of the Mixing
Chamber temperature fluctuations. As illustrated in Sec. 3.2, the sample stage has approximately the
same temperature of the MXC, allowing us to study the impact of thermal noise on the qubit.
As shown in the Fig. 58, the coherence times haven’t been affected by temperature fluctuations,
featuring no remarkable correlation between the measured data and the temperature rise and fall, at least
in this time period and for this temperature range.
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(a) (b)

(c)

Figure 58: Qubit B4 coherence times as a function of Mixing Chamber temperature over a period of
about 2 hours: T1 in (a), T ∗

2 in (b) and T2E in (c).

Further proof of the fact that thermal noise doesn’t affect qubit properties, in this range of temperature
and time, is the same analysis done for the qubit frequency. As shown in Fig. 59, the qubit frequency,
calculated from the Ramsey oscillations fitting, exibits an oscillation trend in the order of tens of kHz
that doesn’t depend on temperature fluctuations.
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Figure 59: Qubit B4 resonance frequency as a function of Time period of around 2 hours and MXC
temperature.

Another noise source that can influence coherence times of a transmon qubit is the flux noise due the
flux threading the SQUID’s loop in the tuning operation (Sec. 1.4.1). Therefore, we measured the
relaxation time T1 and the dephasing time T2E of qubit B4 as a function of flux by changing the bias
current through the flux line (Fig. 60a and 60b).

(a) (b)

Figure 60: Qubit B4 coherence times as a function of normalized flux Φ/Φ0: in (a) T1 sampled data in
blue with their error bands and the mean T1 value with his error band highlighted in cyan; in (b) T2E
sampled data in green with their error bands and the mean T2E value with his error band highlighted in
yellow.
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As expected, the relaxation time T1 was not strongly affected by the flux noise (Sec. 2.1.1). Conversely,
the dephasing time was strongly affected by the flux noise, featuring the 1/f noise trend which is
characteristic of the SQUID [62].
In order to give a better view of this characteristic trend, we plotted the Tφ values, obtained from T1 and
T2 (Eq. (33)), as a function of normalized flux Φ/Φ0. We compared our data with a simulated trend by
using the scqubits package on Python, which allows for qubit features simulations from its
characteristic parameters [63]. As shown in Fig. 61, the experimental data spread following the
simulated trend. The only exception is on the zero-point flux where the simulation features a divergence
due to the identity T2 = 2T1 which actually never happen both for an instrumental limit issue and for
the effect of other noise sources on coherence times [64].

Figure 61: Pure dephasing time Tφ as a function of normalized flux Φ/Φ0: in blue the experimental data
with their own error bars, in red the scqubits simulated trend.

4.2 Qubits parameters

In this section, we report the main parameters we obtained by performing the experimental procedures
on most of Contralto-D QPU qubits, as previously shown for B4. At the time of measurement the
drive and flux lines of feedline A were not connected, for these reasons we managed to perform only
the preliminary spectroscopy measurements. One of the future goal will be the characterization of this
feedline with the same protocols exploited for the other feedlines. Moreover qubits D1 and C5 were
found to be not working, while the drive line of qubit B3 was shorted to the ground, thus no control
operation could be performed.
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f01 ± 10−3GHz freadout ± 10−3GHz Isweetspot ± 10−1mA EC ± 10−1MHz EJ ± 10−2GHz

A1 4.746 7.126 X X X

A2 5.464 7.402 X X X

A3 5.583 7.504 X X X

A4 4.948 7.654 X X X

A5 5.405 7.757 X X X

B1 4.731 7.132 6.2 195.5 15.52

B2 5.240 7.376 0.8 302.8 12.68

B4 6.169 7.579 -8.0 204.8 24.00

B5 5.459 7.619 -12.4 246.7 16.50

C1 4.550 7.080 8.2 244.0 12.69

C2 5.412 7.353 4.7 251.6 15.88

C3 5.422 7.478 0.7 294.0 13.16

C4 4.685 7.299 -7.9 379.0 8.44

D2 5.349 7.393 -5.0 372.0 11.00

D3 5.387 7.498 6.2 251.0 15.80

D4 6.189 7.718 9.2 247.3 20.98

D5 5.239 7.651 6.5 259.2 12.56

Table 3: Contralto-D QPU qubits and resonators parameters: in green low frequency band qubits, in blue
mid frequency band qubits and in red high frequency band qubits.

In Tab.3, we collect all the qubit parameters measured until the time of writing. From a first analysis we
can confirm that all qubits feature a resonance frequency f01 within the range requested to QuantWare
for the QPU design (Tab. 1). Moreover, the resonators readout frequency freadout in each distinct
feedline are sufficiently far apart so that it is possible to address to a qubit in a univocal way, allowing
for a multiplexing readout in the future measurements. About the charge energies EC , and so the
anharmonicity of the transmons, all the values are comparable with the standard ones [7], and the
predicted 200MHz value designed by the producer. Lastly, given the measured Josephson energies EJ ,
EJ
EC

ratios for each qubit are comparable with those expected for the transmon working regime [7].
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In the Tab.4 we report the qubit drive parameters for each measured qubit, namely the πpulse amplitude
and the pulse duration τ . The error on τ was establish considering the QBLOX clock time grid of 4ns
on which operations are performed (Sec. 3.4).

π − pulse± 2mV τ ± 4ns

B1 858 176

B2 420 20

B4 521 20

B5 434 20

C1 383 20

C2 779 20

C3 670 20

C4 403 20

D2 464 20

D3 578 20

D4 527 20

D5 455 20

Table 4: Contralto-D QPU qubits drive parameters: in green low frequency band qubits, in blue mid
frequency band qubits and in red high frequency band qubits.

All π-pulse values are in the range of hundreds of mV , as well as the pulse duration are all the same
with the exception of B1 which features an unusual longer τ . The reason why the drive pulse for qB1
requires a longer time at same range of amplitudes could be a possible mismatch between the drive line
and the transmon qubit that might be due to fabrication issues. The more plausible cause for the
mismatch in the drive power required to excite qB1 can be related to a lower capacitive coupling
between the qubit and its dedicated drive line. Another reason may be related to the fact that a fraction
of power sent through the drive line actually flows towards the ground of the chip instead of being fully
coupled to the qubit. In our processor the ground uniformity is guaranteed through the integration of air
bridges around each line of the device [65]. Due to the intrinsic fragile nature of the air bridges, they
may collapse in some points, thus shorting to ground the line on which they are suspended.
Room-temperature measurements of the resistance to ground of drive lines should always identify an
open circuit. However, for qB1 we have indeed measured a finite resistance, who may be possibly
caused by a sub-optimal air bridges configuration, that has shortened to ground this drive line
specifically.
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4.3 Coherence times

In the following we report a summary of the coherence times of the Contralto-D qubits. For all the
qubits, these have been obtained at the flux sweetspot, setting the neighboring qubits to their minimum
in frequency, i.e. at the half flux quantum Φ0

2 . This is done in order to work in the single-qubit regime,
and avoid intentional interaction between the investigated qubits.
Moreover, we report the same data in the form of a color mapping, taking into account the geometry and
the connectivity of the device (Fig. 62).
From Fig. 62a we found that the qubit on QPU feature comparable relaxation times T1, with the highest
value for qB1 and lowest values for qD5 and qC1. From Fig. 62b we found that Ramsey times T ∗

2 are
almost the same throughout the QPU, featuring highest coherence time along feedline D, and with the
lowest value on qC3. Lastly, from Fig. 62c we found that Echo times values T2E seem higher along
feedline D, while lower along feedline C.
Further analysis of feedline A will be necessary in order to have a complete knowledge of the QPU.

T1 µs ∆T1 µs T ∗
2 µs ∆T ∗

2 µs T2E µs ∆T2E µs

B1 33.0 6.0 17.0 5.0 16.0 7.0

B2 25.0 4.0 20.9 1.7 21.0 5.0

B4 26.5 2.5 8.0 0.7 21.5 3.0

B5 25.0 4.0 18.0 3.0 19.0 5.0

C1 15.0 2.0 17.0 5.0 16.0 4.0

C2 26.0 2.0 17.0 5.0 24.0 5.0

C3 25.0 3.0 2.7 0.6 15.0 2.0

C4 23.0 4.0 15.0 5.3 15.0 4.0

D2 29.0 2.0 27.0 1.0 27.0 4.0

D3 23.0 2.0 28.0 2.0 36.0 6.0

D4 26.0 1.0 21.0 1.0 27.3* 3.8*

D5 17.0 3.0 17.0 14.0 22.0 5.0

Table 5: Contralto-D QPU qubits coherence times: in green low frequency band qubits, in blue mid fre-
quency band qubits and in red high frequency band qubits. For each qubit we have performed statistical
analysis. *For qD4 the number of T2E values wasn’t enough for a statistical analysis, then we show the
mean value and the maximum error.
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(a) (b)

(c)

Figure 62: Contralto-D coherence times diagrams: relaxation times T1 in (a); dephasing times T ∗
2 and

T2E in (b) and (c), respectively. Feedline A wasn’t connected at the time of measurements. In black the
inoperative qubits.

4.4 Single-qubit Gate Fidelity

In the following we report the single-qubit average gate fidelity measured with the Randomized Bench-
marking with 200 seeds.
From a first analysis of values in the table shown in Fig. 63, we can confirm that all the analyzed qubits
feature an high average gate fidelity around 0.999 and 0.998 comparable with the today’s standard values
[61], only exception for qubits C2 and B1: the lower fidelity of B1 may be due the unusual longer pulse
duration τ (Tab. 4), which reduce the average gate fidelity (Eq. 49).
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Favg.gate ∆Favg.gate

B1 0.9958 1∗10−4

B2 0.99915 6∗10−5

B4 0.99939 3∗10−5

B5 0.99907 7∗10−5

C1 0.99871 6∗10−5

C2 0.9969 2∗10−4

C3 0.9989 1∗10−4

C4 0.9988 1∗10−4

D2 0.9988 1∗10−4

D3 0.99836 9∗10−5

D4 X X

D5 0.99871 5∗10−5

Figure 63: Contralto-D QPU single-qubit average gate fidelity: in green low frequency band qubits, in
blue mid frequency band qubits and in red high frequency band qubits (on the left). QPU Gate Fidelity
diagram on the right.

Then, in order to compare the experimental results with the coherence-fidelity dependence model (Eq.
(49)), we performed a rough estimation of the Clifford gates duration τCl from the gate fidelity FCl,
obtained from the experimental survival probability p, and coherence times T1 and T2, by combining Eq.
(49) with Eq. (58) in the single qubit approximation N = 1:

τCl = (1− FCl)
3

Γ1 + Γφ
. (60)

From these values the theoretical Clifford gate fidelity was estimated and compared with the experimental
values (Tab. 6).
Therefore, the discrepancy between the experimental and theoretical values ∆ = |FCl−Fmodel|

σCl
, with

σCl = 0.00112 the error on FCl, was plotted as function of coherence times T1 and T2 in order to check
the compatibility within 3σ (Fig. 64). All the fidelity values fall under the compatibility threshold with
the exception of qB1 and qC2 fidelity. The strong assumption of isolated qubits might be a plausible
reason for the incompatibility of those fidelity values with the model: as a matter of the fact, the survival
probabilities of qB1 and qC2, as well as their Clifford fidelity values, are lower then the other ones
suggesting a less effective gate implementation that could be related to depolarizing channels (Eq. (48)).
Moreover, the reduction of gate fidelity is proportional to the time required to perform the gates τCl, then
the compatibility threshold could lay between 200ns (qD3 falls within the 3σ region) and 300ns. Lastly,
more precise comparison with the model must be done with fidelity values from statistical analysis.
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p FCl τCl ns Fmodel

B1 0.98433 0.99217 300 0.999992

B2 0.99682 0.99841 70 0.999998

B4 0.99783 0.99892 50 0.999998

B5 0.99462 0.99731 100 0.999997

C1 0.99515 0.99758 80 0.999997

C2 0.98884 0.99421 300 0.999994

C3 0.99571 0.99786 70 0.999997

C4 0.99545 0.99773 80 0.999997

D2 0.99540 0.99770 100 0.999997

D3 0.99384 0.99692 200 0.999996

D4 X X X X

D5 0.99517 0.99758 100 0.999997

Table 6: Contralto-D QPU single-qubit RB survival probability p, Clifford gate Fidelity FCl, Clifford
gate duration estimation τCl and theoretical Clifford gate Fidelity Fmodel. In green low frequency band
qubits, in blue mid frequency band qubits and in red high frequency band qubits.

(a) (b)

Figure 64: Clifford gate fidelity discrepancies ∆ between experimental and theoretical values, as a func-
tion of relaxation time T1 in (a) and dephasing time T2 in (b). In green the 3σ threshold under which the
values are compatible.
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4.5 Towards two-qubits characterization

The implementation of two-qubit gates, like the iSWAP gate (Sec. 2.2.2), requires a coherent energy
exchange between coupled qubits while they are on resonance. Therefore, it is demanded the character-
ization of their interaction in terms of coupling strength J (Eq. (28)), which can be estimated through
avoided level crossing measurements (Sec. 1.5).
As example purposes, in Fig. 65 we show the avoided level crossing measurements between the qubit
B4 and the neighbors qubits B2, B5 and C3 (qubit B3 was inoperative). Since the qubit B4 operates at
higher frequency band, for each possible pair, the measurement consisted in performing a spectroscopy
of the lower frequency band qubit, set in its sweetspot, while tuning B4 through external flux until it
resonates with each coupled qubit. When the two qubits are on resonance, a gap in the energy spectrum
opens, from which it’s possible to estimate the coupling strength J .

(a) (b)

(c)

Figure 65: Avoided level crossing of qubit B4 with its neighbors qubits B2 in (a), B5 in (b) and C3 in
(c). From each power spectroscopy the mean value of the coupling strength J was estimated by fitting it
from the higher and lower branches.

According to Ref. [66], it is possible to fit J from the upper and lower branch of the avoided crossing by
the function:

f
(
ω;ω(2)

ge , J
)
=

((
ω + ω(2)

ge

)
±
√(

ω + ω
(2)
ge

)2
+ 4J2

)
/2, (61)

where the ω is the tuned frequency of the higher frequency qubit (Eq. (12)) and ω(2)
ge is the fixed qubit

resonance frequency. Once fitted the J values from the two branches, the mean value and and the
maximum error was estimated (Tab. 7).
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J GHz ∆J GHz t ns

B2-B4 0.007 0.001 224.399

B5-B4 0.007 0.001 224.399

C3-B4 0.0075 0.0001 224.3995

Table 7: Coupling strength J fitted from the avoided level crossing of qubit B4 with qubits B2, B5 and
C3.

From the coupling strength J it is possible to estimate the time required to perform an iSWAP gate, i.e.
the time after which an excitation is coherently swapped from one qubit to another when on resonance
(Eq. (37)). These times resulted to be much smaller then the qubits coherence times, meaning that they
are suitable for performing fast two-qubit operations (Tab. 7). The same analysis will be performed on
all QPU qubits in the next future.
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Conclusions

In this thesis a 25-trasmon qubit quantum processor has been characterized. Being the first prototype
of its kind in Italy, and among the very few ones in Europe, and in view of its deployment for running
quantum algorithms, a detailed comparative analysis of the circuital parameters and performances has
been carried out. The focus of this thesis work was the coherence and control fidelity evaluation, key
parameters for the computing performances. For each transmon qubit the following parameters have
been characterized:

• The readout resonator frequency, its “low photon” shift and flux modulation.
The readout resonator resonance frequencies resulted to be comparable with the builder’s values,
spreading in the range of (7.080 ÷ 7.759) ± 10−3GHz. Therefore, since they are univocally
addressable through a single multi-tone signal, they result suitable for the future implementation
of multiplexing readout for algorithms outputs. The characterization of "low photon" regime, i.e.
when the photons population inside the readout resonator is poor, allowed us to find the proper
condition to perform non-demolition measurements of the qubit quantum state. Finally, the study
of flux modulation aimed at finding the current sweetspot value at which the qubit is less sensitive
to the flux noise and then able to provide better performances.

• The qubit resonance frequency, its transition frequency from the ground to the excited state, its flux
arc modulation, from which the sweetspot was identified, and the Josephson and Charge energies.
The qubit resonance frequencies resulted to be comparable with the builder’s values, falling in
the three different frequency bands (4 ÷ 5, 5 ÷ 6 and 6 ÷ 7GHz) with values in the range
(4.746 ÷ 6.189) ± 10−3GHz. This configuration allows to implement two-qubits gates by tun-
ing the frequency of higher bands qubits until they are on resonance with the lower bands ones.
Moreover, this particular geometry allows for future surface code detection and correction im-
plementation in order to mitigate errors arising form decoherence phenomena. The Josephson
energies resulted to be in the range (8.44 ÷ 24.00) ± 10−2GHz, then comparable with the
state-of-art values around tens of GHz. Also the Charge energies, with values in the range
(195.5÷ 302.0)± 10−1MHz resulted to be comparable with the state-of-art values around hun-
dreds of MHz. Therefore, the EJ/EC ratios were all compatible with the transmon working
regime, then making the qubits less sensitive to the charge noise.

After the spectroscopy measurements, the qubit control drive calibration and optimization have been
performed. For each qubit the calibrated parameters have been:

• The π-pulse amplitude and duration measured through the Rabi protocol. The first one resulted to
be in the range of (383÷858)±2mV , while the last one resulted to be (20±4)ns for every qubit,
with the exception of qB1 of (176 ± 4)ns. This higher value might be caused by a bad coupling
between the drive line and the qubit. The π-pulse estimation, i.e. the pulse required to lead the
|0⟩ → |1⟩ energy transition or, in general, a 180◦ rotation of the unitary qubit state vector within
the Bloch sphere, allows for an accurate control of the qubit system.

• The drive signal frequency through Ramsey Interferometry protocol which allows for adjusting its
detuning with the qubit resonance frequency. This calibration is necessary in order to avoid the
qubit state vector to precess uncontrollably when an operation is performed.

Finally, for each qubit the AllXY protocol has been performed in order to eventually identify syndrome
errors related to detuning, power or DRAG parameters, respectively corrected through Ramsey Fringes
Interferometry, Flipping and Motzoi protocols.
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This optimization process not only highlighted the efficiency of our experimental setup, which results
to be capable of interfacing properly with tens of qubits, as quantum systems, and of performing gates,
but most importantly allowed us to:

i) understand the best optimization procedure to follow before any quantum algorithms implementation,
being it effective in improving the single-qubit gate fidelities towards state-of-the-art values;

ii) highlight fundamental relations between the hardware performances and the coherence.

In fact, once the qubits parameters have been identified, and the control parameters optimized, the per-
formance evaluations have been carried out by measuring the qubits coherence times and gate fidelity.
For each qubit T1, T ∗

2 and T2E times have been measured several times in order to make a statistical
analysis. The T1 times fall between (15.0± 2.0)µs and (33.0± 6.0)µs, T ∗

2 between (8.0± 0.7)µs and
(28.0±2.0)µs, while T2E between (15.0±2.0)µs and (36±6.0)µs: these values are comparable with
the state-of-art values, being also a benchmark of the efficiency of our experimental setup in mitigating
environmental noise.
Therefore, the impact noise sources on coherence times, T1 and T2, and qubit frequency have been
analyzed: as a result of around 2 hours measurements, we noticed that the coherence times have not
been affected by thermal noise in that range of temperature, as well as the qubit frequency features only
stochastic oscillations in the order of kHz. This is a result of primary importance for allowing researchers
to run their algorithms in the long term, since it demonstrates that the performances of the device are not
limited by our experimental setup, and that we have efficiently thermalized the most important cryogenic
components and the processor. Therefore, this work has been fundamental to assess the capabilities of
the infrastructure, which promises performances comparable to those of state-of-the-art superconducting
quantum computing centers worldwide. Secondly, we have checked the negligible impact of flux noise
on the relaxation time T1, contrary to the visible dependence of the transverse relaxation time T2 which
featured a typical 1/f trend. These results provide knowledge on the dissipative channels influence on
qubits performance and on the reliability of our experimental setup of mitigate their effects while oper-
ating at the flux sweetspot, where negligible 1/f noise has been detected.
About the QPU control performances, for each qubit the average gate fidelity has been measured through
Randomized Benchmarking protocol, resulting in values around 0.998 ÷ 0.999 (with the exception of
qB1 and qC2 with values around 0.996), reaching the state-of-art values and the so called “golden three
nines”. Moreover, the coherence-fidelity dependence model has been validated. This indicates that aver-
age single-qubit gate fidelities are only limited by the coherence times of the device, and the optimization
procedures that we have chosen to exploit have been successful. Checking on error syndromes occurring
in the QPU by performing the AllXY protocol to understand which parameters need to be adjusted, has
limited the number of optimization iterations down to few cycles, while at the same time providing ex-
cellent results and knowledge about complex correction techniques. Therefore, this work has provided
fundamental feedback on the selection of the most important protocols to run in the hardware calibration
phase before the quantum algorithms implementation. We are currently working in integrating them into
automatized tune-up routines, which promises to lower the required calibration time even further.
As final step, a preview of two-qubit characterization was given by analyzing the coupling strength of
qubit B4 with its neighbors qubits, key parameter for efficient two-qubit gates, related to the energy gap
that opens when two qubits are on resonance.
Downstream of this comparative analysis, we can affirm that the QPU coherence and control fidelity
performances make it suitable for performing algorithms in the near future. Then this work can be
seen as the first step in the perspective of an open source quantum computing node for the academic
community, where researchers can develop and implement their own algorithms. Further analysis on
feedline A qubits, two-qubits characterization and readout fidelity evaluations will be done shortly to get
a comprehensive knowledge on QPU potentialities for an efficient deployment.
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Appendix A

Derivation of Fidelity-Coherence dependence

The average gate fidelity F̄ of a trace-preserving quantum operator E acting on an N -qubit system, is
defined as [36]:

F̄ =

∫
dψ⟨ψ|U †

gE(ψ)Ug|ψ⟩, (62)

where the integral is over all pure initial states and Ug is the unitary operator corresponding to the ideal
gate operation. Note that F̄ = 1 only if E implements Ug perfectly, while lower values indicate a noisy
or imperfect implementation. The gate operation in Eq. (62) can be generated by a time-dependent
Hamiltonian H(t) applied for a time τ , such that Ug = U(0, τ), where we have introduced the

time-evolution operator for the ideal gate operation U(t1, t2) = T exp
[
− i

ℏ
∫ t2
t1
H(t)dt

]
and T is the

time-ordering operator. The effect of decoherence can be described using the standard Lindblad
superoperator

D[L̂]ρ = L̂ρL̂† − 1

2
{L̂†L̂, ρ}, (63)

acting on the system density matrix ρ. The time evolution of the system with NL dissipative processes
is then given by the master equation

ρ̇(t) = − i

ℏ
[H(T ), ρ(t)] +

NL∑
k=1

ΓkD[L̂k]ρ(t), (64)

where each process has its corresponding rate Γk and Lindblad jump operator L̂k. Jump operators
describe the dissipative part of dynamics and their shape define the environmental action on the system.
Since in experimental state-of-art incoherent errors are on percent level or less, it is possible to expand
the solution of the master equation in the small parameter Γkτ ≪ 1 for a pure initial state |ψ⟩. The
unperturbed solution is ρ(0)ψ = |ψ(t)⟩⟨ψ(t)|, where |ψ(t)⟩ = U(0, t)|ψ⟩. The first-order correction due
to the kth decoherence process is

ρ
(1)
ψ,k(t) = Γk

∫ t

0
dt′U(t′, t)

[
D[L̂k]ρ

(0)
ψ (t′)

]
U †(t′, t), (65)

which corresponds to applying the dissipator D[L̂k] to the ideal pure state |ψ(t′)⟩ once, at any time
t′ < t. Then, considering this correction, it is possible to show that each dissipative process contributes
independently to first order, bringing to an average gate fidelity

F̄ = 1 +

NL∑
k=1

∫
dψ⟨ψ|U †(0, τ)ρ

(1)
ψ,k(τ)U(0, τ)|ψ⟩. (66)

Inserting Eq. (65) and performing the integral we find∫
dψ
[
⟨ψ|L̂|ψ⟩⟨ψ|L̂†|ψ⟩ − ⟨ψ|L̂†L̂|ψ⟩

]
≡ δF (L̂). (67)

Since the integrand appears to be time-independent, the Eq. (66) leads to

F̄ = 1 + τ

NL∑
k=1

ΓkδF (L̂k) +O(τ2Γ2
k). (68)

The reduction of gate fidelity is thus independent of which unitary gate Ug is performed and
proportional to the time τ it takes to perform the gate. Each dissipative channel contributes
independently, proportional to its rate Γk and the factor δF (L̂k).
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Individual qubit energy relaxation acts one qubit with jump operator L̂ = σ− and rate Γ1, while the
additional pure dephasing with jump operator L̂ = σz and rate Γφ. For uncorrelated dissipation, the
N -qubit jump operators are tensor products with identity matrices acting on all other qubits, then

δFN (σ
1
z ⊗ σ20...σ

N
0 ) = − d

2(d+ 1)
, (69)

with d = 2N . Finally, remembering that different dissipators add independently to the gate fidelity, the
first-order reduction due to uncorrelated energy relaxation and pure dephasing on all N qubits is:

F̄ ucN = 1− d

2(d+ 1)
τ

N∑
k=1

(
Γk1 + Γkφ

)
. (70)
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Appendix B

Derivation of fitting function in Randomized Benchmarking protocol

The Randomized Benchmarking protocol consists of the following steps [67], repeated for several
values of m number of gate operation in a sequence:

Step 1 Generate a sequence of m+ 1 quantum operations with the first m chosen uniformly at random
from the Clifford group and the final operation chosen so that the net sequence is the Identity
operation. The m+ 1th correction gate will also be a Clifford element. In practice each operation
Cij will have some associated error and the entire sequence can be modeled by
Sim = ⃝m+1

j=1 (Λij ,j ◦ Cij ) where im is the m-tuple (i1; ...; im) and im+1 is uniquely determined
by im. Here, Λij ,j represents the error associated with the operation Cij , which doesn’t depend
on the time-step j. In this noise model, the only assumption is that correlations in the noise are
negligible on time scales longer than the time of the operation Cij (so that Λij ,j does not depend
on earlier operations). This assumption becomes very well motivated as n increase.

Step 2 For each sequence measure the survival probability Tr [EψSim(ρψ)]. Here ρψ is the the initial
state taking into account preparation errors and Eψ is the POVM [69] element that takes into
account measurement errors. In the ideal noise-free case ρψ = Eψ = |ψ⟩⟨ψ|.

Step 3 Average over random realizations of the sequence to find the averaged sequence fidelity

Fseq(m,ψ) = Tr [EψSm(ρψ)] , (71)

where Sm is the average sequence operation

Sm =
1

|{im}|

|{im}|∑
im

Sim . (72)

Step 4 Fit the results for averaged sequence fidelity to the model

F (1)
seq(m,ψ) = A1p

m +B1 + C1(m− 1)(q − p2)pm−2. (73)

Here A1, B1 and C1 absorb SPAM errors as well as the error on the final gate. Moreover the term
(q − p2) is related to the presence of weak gate dependence. The average error rate
r = 1− p− 1−p

d with d = 2n.
In the particular case of gate-independent errors, the fitting results simplify to

F (0)
seq(m,ψ) = A0p

m +B0, (74)

where A0 and B0 still absorb SPAM errors as well as the error on the final gate.

In order to define the parameters r and p, let’s start to define

Λ ≡ 1

|{(ij , j)}|

|{(ij ,j)}|∑
(ij ,j)

Λij ,j (75)

as the average error for the set of error operators {Λij ,j}. The standard experimental figure of merit for
a noise model Λ is the average gate fidelity Favg =

∫
dψ⟨ψ|Λ(|ψ⟩⟨ψ|)|ψ⟩, which is the survival

probability averaged over all pure input state (as in Sec. 2.3). Then the average error rate is defined as
r ≡ 1− Favg.
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To define p, Λ is "twirled" over the Clifford group [15], giving

1

K

∑
l

C†
l ◦ Λ ◦ Cl = Λdep, (76)

where Λdep(ρ) = pρ+ (1− p) Id is the unique depolarizing channel with the same average fidelity as Λ,
and K is the number of operation in the Clifford set.
Hence, Favg = p+ (1−p)

d which relates the fidelity decay parameter p to the average error rate r as
given above:

Favg = 1− d− 1

d
(1− p). (77)

Lastly, further derivation leads to:

A0 = Tr

[
EψΛ

(
ρψ − I

d

)]
, (78)

B0 = Tr

[
EψΛ

(
I
d

)]
. (79)
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