Continuum Mechanics

Professor: Arturo Tagliacozzo	2 081676832	email:arturo.tag	liacozzo@unina.it.
SSD FIS/03 Course Credit	8	Year (I, II) II	Semester (I , II)
CONTENTS			
Program of Continuum Mechanics for Geophysicists			
PHENOMENOLOGICAL INTRODUCTION TO ELASTICITY: elastic forces, pressure, phenomenological constants. Hooke law. DISPLACEMENT AND STRAIN: strain tensor. Cauchy's stress tensor and stress theorem. CONTINUITY EQUATIONS Mass and momentum conservation. Newton's Law for a continuum. Energy variation of a deformable body under an applied stress. Elasticity tensor. Cauchy's laws of motion			
STRESS ANALYSIS: Mohr circle in 2D and 3D. Normal and shear stresses. Coulomb theory of faulting. Normal and strike-slip			
taults and dip-slip faults.			
the isothermal and adiabatic case. Application to geothermics: model for the temperature of the crust, thermal effect on the stress with Einite Element Method			

BASICS OF FLUID statics and DYNAMICS: Stevino's and Archimede's law. Velocity of sound. Bernoulli theorem. Viscous fluid and Navier-Stokes equation. Energy balance in a fluid. Hagen-Poiseuille flow. Couette flow Reynolds number. Laminar and chaotic flow. Vortices.

FREE CONVECTION. Similarity in the dimensionless Navier-Stokes equation: Prandtl and Nusselt numbers; Boussinesq approximate solution. When the convection starts: Rayleigh number.

BIBLIOGRAPHY

Feynman, Leighton, Sands, Feynman lectures on physics/ La fisica di Feynman (edizione bilingue), Longman Atkin e Fox, An introduction to the theory of elasticity, Longman Landau e Lifsitz, A course on theoretical physics: vol 7, Teory of elasticity, Pergamon press Jaeger e Cook, Fundamentals of rock mechanics, Chapman and Hall Batchelor, An introduction to fluid dynamics, Cambridge university press Landau e Lifsitz, A course on theoretical physics: vol 6 Fluid mechanics, Pergamon press