
Avviso MUR DD3264 del 28/12/2021

Missione 4, Componente 2, Investimento 3.1

(Decreto Concessione n.415 del 27/10/2022)

Codice progetto MUR: IR0000034, CUP:

C33C22000640006

STILES - Strengthening the Italian Leadership

in ELT and SKA

ADHOC – Astrophysical Data HPC

Operating Center

User Guide

1 Introduction

ADHOC is a Tier 2 computing infrastructure integrated into a pre-existing com-
puting center called DC1, with a full-capacity computing power of 2 Petaflops,
equipped with a total storage system of 20 Petabytes (PB) “raw,” divided into
two systems: (i) 8 PB of long-term tape storage (two units, respectively, 6 PB
located at the INAF data processing center in Bologna, and 2 PB at DC1); (ii)
12 PB of “hot” storage on disks, divided into 4 logical units of 3 PB each and
managed by dedicated front-end servers; a computing system, divided into two
subsystems, HPC (High Performance Computing) and HTC (High Throughput
Computing), logically divided into three modular clusters of different sizes. The
HPC system includes 34 dual processor servers, 22 of which are equipped with
dual H100 GPU cards and 12 with dual L40 GPU cards, dedicated to high-
performance parallel computing. The HTC system includes 10 dual-processor
servers dedicated to multiprocessing (MPI) and, in part, to the management and
interfacing of the various devices that make up the entire infrastructure. Three
additional HTC/HPC servers are separated from the clusters and dedicated to
specific projects and services.

A data network and monitoring system connected via a redundant 10 Gb/s
line to the GARR node of the CSI (University Center for IT Services), located in

the same university complex. The data network architecture consists of various
subnetworks, respectively, at 10/25 Gb/s for interfacing with the outside world
and infrastructure management/monitoring, at 100 Gb/s for interfacing with
the storage system and HTC, and at 200 Gb/s for Infiniband connections with
the HPC system. From a functional point of view, the ADHOC data center
consists of three clusters of computing and storage resources of varying sizes,
intended for incremental and differentiated use. The three clusters are called
Newton, Fermi, and Einstein, and refer, respectively, to the three small, medium
and large clusters.

The clusters are equipped with advanced tools for resource management and
optimization.

• User management and authentication with FreeIPA;

• SLURM job scheduler for efficient resource allocation;

• Parallel computing with OpenMPI;

• Acceleration on NVIDIA GPUs of different sizes and computational ca-
pacities;

• Shared file system based on different protocols;

• Support for Python and scientific libraries for data analysis and simula-
tions.

2 Access to the ADHOC Cluster

Access Credentials

Each user receives personalized credentials to access the ADHOC-Newton Clus-
ter:

Username: < username >
Initial Password: $$cambiami
Hostname: newton.stiles.unina.it

▲ On the first login, you will be asked to change your password. At the same
time, a personal Conda virtual environment named < username > will auto-
matically be created.

VPN Connection

For security reasons, access to the cluster from external networks is possible
only via VPN.

You will receive a personalized VPN configuration file named ADHOC <
username > .ovpn

For the installation of VPN Client, we suggest the following software:

• Windows/Linux: install and use OpenVPN https://openvpn.net/client/.

• macOS: install Tunnelblick, a free client compatible with .ovpn files https:
//tunnelblick.net/downloads.html.

Activation

Install the VPN client.
Import the fileADHOC < username > .ovpn.
Start the VPN connection.

✓ No credentials will be required during VPN activation.

SSH Access

Once the VPN is active, connect to the cluster using SSH:

ssh < username > @newton.stiles.unina.it

Data Storage

Do not use your home directory to store data.
A dedicated folder has been created for you at:

/data1/ < username >

Please use this directory to store and write your data.

3 Launching jobs on the nodes

SLURM (Simple Linux Utility for Resource Management) is the workload man-
ager used on the ADHOC-Newton cluster to allocate resources and run jobs on
compute nodes. This section provides a practical introduction to submitting
jobs using SLURM.

Interactive vs. Batch Jobs

There are two main ways to run tasks on the cluster:
Interactive jobs: allow the user to interact directly with a compute node.

Useful for debugging or testing small scripts.
Batch jobs: the recommended method for production runs, where jobs are

submitted via a script and executed by SLURM when resources become avail-
able.

Interactive Jobs

You can request an interactive session on a compute node using:

1 srun --partition=standard --nodelist=compute -node41 --ntasks

=1 --cpus -per -task=4 --time =02:00:00 --pty bash

Explanation of the options:

• partition=standard → the queue/partition to use.

• nodelist=compute-node41 → specify the node (optional).

• ntasks=1 → number of tasks (MPI processes).

• cpus-per-task=4 → number of CPU cores per task.

• gres=gpu:1 → number of GPUs, this option has to be used only for nodes
that have GPUs.

• time=02:00:00 → walltime limit (hh:mm:ss).

• pty bash → opens an interactive bash shell.

Once granted, you will be logged into the compute node and can run commands
interactively.

Batch Jobs

For larger jobs, you should create a job script. This is a text file with SLURM
directives and the commands you want to execute.

Listing 1: Example SLURM job script

1 #!/bin/bash

2 #SBATCH --job -name=test_job

3 #SBATCH --output=output_%j.txt

4 #SBATCH --error=error_%j.txt

5 #SBATCH --partition=normal

6 #SBATCH --nodelist=compute -node41

7 #SBATCH --nodes=1

8 #SBATCH --ntasks =1

9 #SBATCH --cpus -per -task=8

10 #SBATCH --gres=gpu:1

11 #SBATCH --time =04:00:00

12

13 # Load required modules or environments

14 module load python /3.10

15

16 # Execute your program

17 python myscript.py

Figure 1: Output of the command sinfo

Listing 2: Submit the job

1 sbatch job.slurm

SLURM will place the job in the queue and execute it when resources are
available. The %j symbol in –output and –error will be replaced by the Job ID.

Monitoring Jobs

You can check the status of your jobs using the following:

1 squeue -u <username >

Other useful commands:

1 scancel <jobid > # cancel a running or pending job.

1 scontrol show job <jobid > # detailed information about a

job.

Resource Considerations

• Always request the minimum resources your job needs.

• Overestimating time or CPU usage may result in longer queue times.

• Jobs that exceed their allocated resources will be terminated by SLURM.

Before starting a job on a node, it is recommended to verify the most appropriate
partition and check nodes currently available.

Listing 3: check the available nodes

1 sinfo

The expected output looks like Figure 1, where the first column lists the
name of the partitions, the second column indicates if the partition is available,
the third column shows the maximum wall-clock time a job can run in that
partition (or queue), the node column shows the nodes that are included in
the specific partition and state indicates if the node of the specific partition
is available or not. Finally, the nodelist column lists the names of the nodes
included in a partition that are in a given state.

Good Practices

• Use interactive jobs only for short tests.

• For reproducibility, prefer batch jobs with clearly defined scripts.

• Redirect all output to files (–output and –error) to avoid losing informa-
tion.

• Store your data in the dedicated storage directory /data1/ < username >,
not in your home directory.

